[go: up one dir, main page]

WO2007116646A1 - In vivo indwelling object - Google Patents

In vivo indwelling object Download PDF

Info

Publication number
WO2007116646A1
WO2007116646A1 PCT/JP2007/055979 JP2007055979W WO2007116646A1 WO 2007116646 A1 WO2007116646 A1 WO 2007116646A1 JP 2007055979 W JP2007055979 W JP 2007055979W WO 2007116646 A1 WO2007116646 A1 WO 2007116646A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
vivo indwelling
active substance
acid complex
drug release
Prior art date
Application number
PCT/JP2007/055979
Other languages
French (fr)
Japanese (ja)
Inventor
Keiko Yamashita
Yotaro Fujita
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to JP2008509720A priority Critical patent/JPWO2007116646A1/en
Publication of WO2007116646A1 publication Critical patent/WO2007116646A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • A61L2300/406Antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/432Inhibitors, antagonists

Definitions

  • the present invention relates to an in-vivo indwelling object. More specifically, a stent, a catheter, an artificial blood vessel, which is inserted into the site in order to expand a stenosis or occlusion in the living body, is expanded, and is placed in the site to maintain the state.
  • the present invention relates to in-vivo articles such as stent grafts. Background art
  • the in vivo indwelling material of the present invention includes various forces such as a stent, a catheter, an artificial blood vessel, and a stent graft.
  • a stent will be described as an example.
  • PTCA Transvascular coronary angioplasty
  • PTCA is a guide catheter in which a small incision is made in the artery of a patient's leg or arm, an introducer system (introducer) is placed, and a guide wire is advanced through the lumen of the introducer sheath.
  • an introducer system introduction system
  • a guide wire is advanced through the lumen of the introducer sheath.
  • withdraw the guide wire insert another guide wire and balloon catheter into the lumen of the guide catheter, and lead the guide wire ahead
  • the balloon catheter is advanced to the lesion area of the patient's coronary artery under X-ray contrast, and the balloon is positioned in the lesion area. At that position, the doctor presses the balloon once at a predetermined pressure for 30 to 60 seconds. It is a technique to inflate.
  • the vascular lumen of the lesion is expanded and the blood flow through the vascular lumen is increased.
  • the intima proliferates, which is a healing reaction of the blood vessel wall, and restenosis has been reported at a rate of about 30 to 40%.
  • Stents have been studied for use as a method for preventing such restenosis, and have achieved some results.
  • the term stent refers to the expansion of the stenosis or occlusion site and the securing of the lumen in order to treat various diseases caused by stenosis or occlusion of blood vessels and other lumens. It is a tubular medical device that can be indwelled. Most of them are medical devices made of a metal material or a polymer material. For example, a tubular body made of a metal material or a polymer material provided with pores, a wire made of a metal material, or a polymer material. Various shapes have been proposed, such as those formed by knitting fibers into a cylindrical shape. The purpose of stent placement is the force that aims to prevent and reduce restenosis that occurs after procedures such as PTCA. Stent placement alone does not significantly reduce stenosis. The actual situation was.
  • Patent Document 1 describes a stent in which the surface of a stent body is coated with a mixture of a bioabsorbable polymer or a biostable polymer and a therapeutic substance. It is described that poly-L lactic acid and poly-strength prolatatone can be used as the polymer.
  • Patent Document 2 describes a stent in which a drug is attached and coated using a biocompatible polymer or the like.
  • a biocompatible polymer it is described that poly DL lactic acid (copolymer of D-form and L-form), polydaricholic acid, polylactic acid Z polyglycolic acid copolymer can be used.
  • Patent Document 1 JP-A-8-33718
  • Patent Document 2 JP-A-9-56807
  • the poly L lactic acid described in Patent Document 1 and Poly DL lactic acid (copolymer of D-form and L-form), polydaricholic acid, and polylactic acid Z-polydalicolic acid copolymer are low in strength, so stents coated with these on the surface When indwelled, it could be damaged by external force.
  • these polymers since these polymers have a low elongation of only a few percent, they cannot follow the expansion operation when placed in a living body with a balloon or the like, and the stent body force may be peeled off. In addition, cracks may occur due to the expansion operation.
  • the fragments may block the lumen in the living body.
  • the surface is turned upside down.
  • blood flow may be turbulent and may cause thrombosis.
  • the polymer is damaged or cracked, it may be difficult to keep the drug release rate constant.
  • the poly-force prolataton described in Patent Document 1 has a high elongation of several hundred%, but the strength is low.
  • a stent coated on the surface thereof is placed in a living body, it is damaged by an external force. There was a case.
  • this poly force prolatatone has a slow degradation rate in vivo. For this reason, for example, when a stent having this polymer on the surface is used in a blood vessel, a blood plug is likely to be attached to the surface of this polymer. Therefore, antiplatelet therapy is applied for a long period until poly force prolatatone disappears. Will be forced.
  • the stent has a layer that releases a drug containing a biodegradable polymer on the surface, and the biodegradable polymer has a necessary strength in vivo, and is expanded by a balloon or the like.
  • cracks that are easy to stretch during operation are less likely to occur, and there is no such thing that can adjust the degradation rate in vivo to a desired rate.
  • an object of the present invention is to surface a drug releasing layer comprising a biodegradable polymer.
  • the biodegradable polymer possesses the necessary strength in vivo, and it is difficult for cracks to easily extend during expansion operations using a balloon or the like.
  • An object of the present invention is to provide an in-vivo indwelling object capable of adjusting the speed to a desired speed.
  • the present inventor has intensively studied for the purpose of solving the above-mentioned problems, and on the surface of the main body, a biologically physiologically active substance and a polylactic acid having a specific structure which is a biodegradable polymer. It has been found that an in-vivo indwelling material having a drug release layer containing a complex solves the above problems.
  • the present invention includes the following (1) to (18).
  • An in-vivo indwelling material having a drug release layer on the surface of a main body, wherein the drug release layer strength is 0-polylactic acid and 1 ⁇ -polylactic acid and a stereocompressor at a mass ratio of 5:55 to 55:45.
  • An in-vivo indwelling material comprising a polylactic acid complex that forms and forms a complex with a skeleton structure and a biological physiologically active substance.
  • At least a part of the biological physiologically active substance is a powder, and the biological physiologically active substance of the powder is dispersed in the drug release layer! In vivo indwelling object as described in 2).
  • the drug-releasing layer is composed of two or more layers, and the layers include the layer containing the biologically bioactive substance and the layer containing the polylactic acid complex. In vivo indwelling.
  • the polylactic acid complex has a first melting peak between 65 and 75 ° C. and a second melting peak between 200 and 250 ° C. in differential scanning calorimetry.
  • the in-vivo indwelling product according to any one of (1) to (8), which is a body.
  • the polylactic acid composite is a polylactic acid composite having a breaking strength specified by JIS K7113 of 70 MPa or more, a breaking elongation of 15% or more, and a Young's modulus of lOOMPa or more (1
  • the in-vivo indwelling object according to any of (9) to (9).
  • the biological physiologically active substance is an anticancer agent, immunosuppressive agent, antibiotic, antirheumatic agent, antithrombotic agent, HMG—CoA reductase inhibitor, ACE inhibitor, calcium antagonist, anti-high Lipemia, integrin inhibitor, antiallergic agent, antioxidant, GPIIbllla antagonist, retinoid, flavonoid, carotenoid, lipid improver, DNA synthesis inhibitor, tyrosine kinase inhibitor, antiplatelet drug, anti-inflammatory drug In vivo indwelling material in any one of said (1)-(14) which is at least one selected from the group force which is a biomaterial, an interferon, and NO production promotion substance power.
  • an in-vivo indwelling material having a layer that releases a drug containing a biodegradable polymer on its surface, the biodegradable polymer has a necessary strength in vivo.
  • FIG. 1 is a side view showing an embodiment of the stent of the present invention.
  • FIG. 2 is an enlarged cross-sectional view taken along line AA in FIG.
  • FIG. 3 is another enlarged cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is an enlarged cross-sectional view taken along line BB in FIG.
  • FIG. 5 is another enlarged cross-sectional view taken along line BB in FIG. 1.
  • FIG. 6 is an enlarged photograph (800 ⁇ ) after expansion of the stent in Example 5.
  • FIG. 7 is an enlarged photograph (800 ⁇ ) after expansion of the stent in Comparative Example 8.
  • FIG. 8 is an enlarged photograph (800 ⁇ ) after expansion of the stent in Comparative Example 9.
  • FIG. 9 is a contrast-enhanced photograph (magnification of the right and left iliac arteries) of a rabbit according to the in vivo placement test of Example 7.
  • FIG. 10 is a contrast-enhanced photograph (same magnification) of the right and left iliac arteries of a rabbit according to the in vivo placement test of Comparative Example 10.
  • the present invention is an in-vivo indwelling product having a drug release layer on the surface of a main body part, the drug
  • the agent release layer forms a complex of stereocomplex structure with D-form polylactic acid and L-form polylactic acid at a mass ratio of 5:55 to 55:45!
  • In vivo indwelling material containing a physiologically active substance In vivo indwelling material containing a physiologically active substance.
  • the polylactic acid complex contained in the drug release layer of the in-vivo indwelling material of the present invention is a complex of D-form polylactic acid and L-form polylactic acid. In this composite, these polylactic acids form a stereocomplex structure.
  • the stereocomplex structure is a three-dimensional structure in which enantiomeric macromolecules such as D-form and L-form interact with each other by van der Waals forces to produce structural fitting.
  • a stereocomplex structure can be formed even on a polymer having stereoregularity such as isotactic and syndiotactic.
  • polylactic acid poly - gamma - Benjirugu Rutameto, poly - gamma - methyl Dal data formate, poly - tert butylene oxide, poly - tert Bed chill ethylene sulfates id, poly - alpha -Methylbenzyl metatalylate, poly- ⁇ -methyl- ⁇ -ethyl-j8-propiolatathone, j8-1, 1-dichloropropyl-j8-propiolatathone, etc. are known.
  • the mass ratio of D-form polylactic acid to L-form polylactic acid in the polylactic acid complex is 45:55 to 55:45. This mass ratio is preferably 50: 50! /.
  • a polylactic acid composite having such a mass ratio and having the above-described stereocomplex structure is unlikely to crack during expansion when the strength and elongation are significantly high.
  • the mass ratio of D-form polylactic acid and L-form polylactic acid here refers to the respective mass ratios used in producing the polylactic acid composite.
  • the weight average molecular weight of D-form polylactic acid forming the polylactic acid complex is a force S of 1,000 to 1,000,000, preferably 2,000 to 700,000. More preferably, the power of 5,000 to 400,000 is even more preferred! /.
  • the weight average molecular weight of the L-form polylactic acid forming the polylactic acid complex is 1,000 to A force that is 1,000,000 S, preferably a force that is 2,000 to 700,000, more preferably a force that is S, more preferably a force that is 5,000 to 400,000! /.
  • the polylactic acid complex has a weight average molecular weight of 1,000 to 1,000,000, preferably S, more preferably 2,000 to 700,000, and more preferably 5,000 to 400,000. It is further preferable that
  • the polylactic acid complex has a first melting peak (glass transition point) between 65 and 75 ° C. in differential scanning calorimetry, and a second melting peak between 200 and 250 ° C. ( A melting point).
  • first melting peak glass transition point
  • second melting peak between 200 and 250 ° C.
  • differential scanning calorimetry is performed at 5 ° C under N gas flow.
  • DT-50 manufactured by Shimadzu Corporation can be preferably used.
  • the D-form polylactic acid, the L-form polylactic acid, and the polylactic acid complex have a weight average molecular weight in such a range, or when the polylactic acid complex has such a melting peak, The strength and elongation of the polylactic acid composite are further increased, and cracks during expansion are less likely to occur.
  • the polylactic acid composite has a breaking strength of 70 MPa or more, a breaking elongation of 15% or more, and a hang rate of lOOMPa when a 1Z5 scale No. 2 test piece specified in JIS K7113 is used.
  • the polylactic acid complex as described above is preferable.
  • the breaking strength is more preferably 75 MPa or more, more preferably 80 MPa or more.
  • the upper limit is not particularly limited, but is preferably 500 MPa or less.
  • the elongation at break is more preferably 20% or more, and further preferably 30% or more.
  • the upper limit is not particularly limited, but is preferably 200% or less.
  • the Young's modulus is more preferably 500 MPa or more, and more preferably 1, OOOMPa or more.
  • the upper limit is not particularly limited, but is preferably 50, OOOMPa or less.
  • An in-vivo indwelling material using a polylactic acid complex having such a value in such a range is preferable because the strength and elongation in the living body are high and cracks during expansion are unlikely to occur.
  • breaking strength is measured by the method specified in JIS K7113 (using No. 2 test piece of 1Z5 scale). Means.
  • the polylactic acid composite is preferably a stretched polylactic acid composite.
  • the polylactic acid complex is preferably a polylactic acid complex produced by an alternating lamination method. Further, this alternate lamination method is preferably an alternate lamination method performed by forming a micro-order thin film and a Z or nano-order ultrathin film. Furthermore, the thickness of the micro-order thin film and Z or nano-order ultra-thin film is Inn! It is preferable that it is ⁇ 50 ⁇ m, and it is more preferable that it is 10 nm to 30 m, and it is more preferable that it is 100 nm to 20 m.
  • the polylactic acid composite produced by this alternate lamination method has particularly good strength and elongation, an in-vivo indwelling body using this polylactic acid composite is more difficult to break in vivo. Further, it is preferable because cracks during expansion are less likely to occur.
  • the alternate lamination method is a method for producing a thin film by alternately immersing a substrate in a D-form polylactic acid solution and an L-form polylactic acid solution.
  • a polylactic acid complex having a stereocomplex structure can be formed more efficiently than in a balta (solution).
  • a solution in which D-form polylactic acid is dissolved in acetonitrile and a solution in which L-form polylactic acid is dissolved in acetonitrile are prepared, and PFA (tetrafluoroethylene / perfluoroalkoxy vinyl ether copolymer) is prepared.
  • a method of repeatedly immersing and drying a substrate such as a polymerized resin in each solution is prepared.
  • the polylactic acid composite can also be produced by a conventional casting method or the like.
  • the probability that a stereocomplex structure is formed is lower than that in the alternate lamination method.
  • the casting method a structure that is not a stereocomplex structure, for example, the probability that a single crystal is formed is relatively high, but in the case of manufacturing by an alternating lamination method, the stereocomplex structure is usually about 90% or more. Percentage of Can be formed.
  • the method for producing the polylactic acid composite is not limited, and can be produced, for example, by such an alternate lamination method or a casting method.
  • the polylactic acid complex can adjust the degradation rate in vivo to a desired rate. Specifically, it can be prepared by changing the molecular weight of D-form polylactic acid or L-form polylactic acid to be used.
  • the drug release layer of the in-vivo indwelling material of the present invention contains such a polylactic acid complex.
  • the in-vivo indwelling material of the present invention has a drug release layer on the surface of the main body, and the drug release layer comprises It contains a lactic acid complex and a biological physiologically active substance.
  • the type and properties of the biologically physiologically active substance are not particularly limited.
  • the drug release layer force is also released in the process of being decomposed in the living body, and the desired effect, for example, the effect of suppressing stenosis and restenosis, and the drug Any material may be used as long as it has an effect of suppressing an inflammatory reaction associated with biodegradation of the release layer.
  • this biological and physiologically active substance examples include anticancer agents, immunosuppressive agents, antibiotics, antirheumatic agents, antithrombotic agents, HMG-CoA reductase inhibitors, ACE inhibitors, calcium antagonists, anticancer agents, Hyperlipidemic agent, integrin inhibitor, antiallergic agent, antioxidant, GPIIbllla antagonist, retinoid, flavonoid, carotenoid, lipid improver, DNA synthesis inhibitor, tyrosin kinase inhibitor, antiplatelet agent, anti-inflammatory agent Preferred examples include biological material, interferon and NO production promoting substance. More preferably, the biologically and physiologically active substance is at least one selected from the group force consisting of these.
  • the anticancer agent for example, vincristine, vinblastine, vindesine, irinotecan, pirarubicin, paclitaxel, docetaxel, methotrexate and the like are preferable.
  • an immunosuppressant for example, sirolimus, everolimus, biolimus, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolic acid mofeethyl, dasperimus, mizoribine and the like are preferable.
  • antibiotics examples include mitomycin, adriamycin, doxorubicin, Actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epilubicin, pepromycin, dinostatin styramer and the like are preferred.
  • anti-rheumatic agent for example, methotrexate, sodium thiomalate, penicillamine, oral benzalit and the like are preferable.
  • antithrombotic drug for example, heparin, aspirin, antithrombin preparation, ticlopidine, hirudin and the like are preferable.
  • HMG-CoA reductase inhibitor for example, cerivastatin, cerivastatin sodium, atorvastatin, nispastatin, itapastatin, flupastatin, flupastatin sodium, simpastatin, oral pastatin, pravastatin and the like are preferable.
  • ACE inhibitor for example, quinapril, perindopril elpmin, trandolapril, cilazapril, temocapril, delapril, enalapril maleate, lisinopril, captopril and the like are preferable.
  • calcium antagonist for example, hifedipine, dirubadipine, diltiazem, vedipine, disoldipine and the like are preferable.
  • probucol is preferable as an antihyperlipidemic agent.
  • tralast is preferable.
  • antioxidants examples include catechins, anthocyanins, and proanthocyanins.
  • Lycopene j8-carotene and the like are preferred.
  • epigallocatechin gallate is particularly preferred.
  • retinoid for example, all-trans retinoic acid is preferable.
  • tyrosine kinase inhibitor for example, genistein, chinorephostin, albumin and the like are preferable.
  • steroids such as dexamethasone and prednisolone are preferable.
  • examples of the biological material include EGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epider
  • jr vascular endothelial growth factor
  • ir LjF hepatocyte growth fac tor
  • PDGF platelet derived growth factor
  • BFGF basic nbroblast gr owth factor
  • the drug release layer may be composed of such a biological and physiologically active substance and the polylactic acid complex. , Also referred to as “remainder component”).
  • the remaining component is not particularly limited as long as it is safe for the living body and biodegradable.
  • a biodegradable polymer can be used.
  • biodegradable polymers include polylactic acid having no stereocomplex structure such as the polylactic acid complex (D-form polylactic acid alone, L-form polylactic acid alone, D-form And L-form polymers (copolymers, etc.), polydalicolic acid, polyhydroxybutyric acid, polyphosphonic acid, poly ⁇ -amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, Poly-force prolatatones and their co-polymer power are at least one selected from mixtures and composites (copolymers, etc.).
  • polylactic acid and cocoon, or a copolymer of polylactic acid and polydaricholic acid can be preferably used. The reason is that it is easy to set the desired strength and decomposition rate.
  • the ratio of the content ratio of the polylactic acid complex and the biologically physiologically active substance is 99: 1 to 1:99.
  • 90: 10 ⁇ : L0: 90 is more preferable than force S, and 80: 20-20: 80 is more preferable. The reason is that it is easy to obtain the release rate of the desired biological and physiologically active substance.
  • the content of the remaining component is not particularly limited!
  • the total mass of the polylactic acid complex and the biological physiologically active substance is not limited.
  • the content is preferably 40% by mass or less. This is because the strength of the drug release layer becomes higher when it is 40% by mass or less.
  • the drug release layer may have one layer force as described above, or may have two or more layer forces. Further, it is preferably composed of two or more layers, and these layers include a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex. That is, the drug release layer is preferably composed of two layers, ie, a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex, and another layer. Furthermore, the drug release layer is preferably composed of two layers: a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex.
  • a layer containing the biological physiologically active substance is present on the main body side, and a layer containing the polylactic acid complex is present on the upper surface thereof.
  • the drug release layer is composed of two or more layers, after the in-vivo indwelling material of the present invention is placed in the living body, in the process in which the drug release layer is decomposed in the living body, the biological physiology is performed. The active substance is easily released at a constant rate!
  • the layer containing the biological physiologically active substance is a layer composed of the biological physiologically active substance and the remaining component (the biodegradable polymer or the like).
  • the mass ratio of the biologically biologically active substance and the remaining component is not particularly limited, but is preferably 10:90 to 90:10.
  • the layer containing the polylactic acid complex is a layer composed of the polylactic acid complex and the remaining component.
  • the mass ratio between the polylactic acid complex and the remaining component is not particularly limited, but is preferably 99: 1 to 70: 30! /.
  • the drug release layer has a layer other than the two layers of the layer containing the biological physiologically active substance and the layer containing the polylactic acid complex, the other layer is the remaining portion. It is a layer that also has component power.
  • the drug release layer a plurality of these layers may be present. Further, the order in which these layers are stacked is not limited. For example, it may have a layer made of the remaining component on the surface of the main body, and a layer containing the biological physiologically active substance or a layer containing the polylactic acid complex on the upper surface. Even such a case is within the scope of the present invention.
  • the thickness of such a drug release layer is not particularly limited, and the amount and type of the biological and physiologically active substance that needs to be held on the surface of the main body and the type of in-vivo indwelling material. Furthermore, it can be determined as appropriate in consideration of the extracorporeal force, delivery to the lesion in the living body (easy reachability), and other various conditions. This thickness is preferably 1 to: LOO ⁇ m, more preferably 1 to 50 ⁇ m, and most preferably 1 to 20 ⁇ m.
  • the total thickness of all the layers is A range such as force is preferred.
  • the thickness of the layer containing the biological physiologically active substance is 1 to: LOO m is preferably 1 to 15 / ⁇ ⁇ , and more preferably 3 to 7 m. Further preferred.
  • the layer containing the polylactic acid complex preferably has a thickness of 1 to 75 m, more preferably 1 to 25 / ⁇ ⁇ , and more preferably 1 to 10 / ⁇ ⁇ . preferable.
  • the biological physiologically active substance is contained as a powder.
  • the biologically and biologically active substance in the powder is preferably dispersed in the drug release layer.
  • the biological physiologically active substance of the leverage powder is dispersed in this layer. This is because the biologically biologically active substance is easily released at a constant rate in the process of decomposing in vivo after the in vivo indwelling material of the present invention is indwelled.
  • the biological physiologically active substance is chemically bonded to the polylactic acid complex.
  • the biological physiologically active substance is decomposed at a more constant rate simultaneously with the decomposition of the polylactic acid complex. This is because it is easily released. This can further suppress the inflammatory reaction.
  • the biological and physiologically active substance is a micro-order thin film and an ultrathin or nano-order ultra-thin film (ultra-thin film) formed by the alternate lamination method in the polylactic acid complex. (Including thin film) is preferred! In the process in which the in-vivo indwelling material of the present invention is placed in the living body and then decomposed in the living body, the biological physiologically active substance is released at a more constant rate simultaneously with the decomposition of the polylactic acid complex. It is easy.
  • such a drug-releasing layer has the D-form polylactic acid chemically bonded to the stenosis or restenosis inhibitor, which is the biological physiologically active substance, and the biological physiologically active substance.
  • the drug-releasing layer has the L-form polylactic acid chemically bonded to the biological physiologically active substance stenosis or restenosis inhibitor and the anti-inflammation which is the biological physiologically active substance.
  • the D-form polylactic acid chemically bonded to an agent, and producing the micro-order thin film and the Z- or nano-order ultra-thin thin film by the alternate lamination method, including the biological and physiologically active substance
  • the polylactic acid complex it is preferable to contain the polylactic acid complex.
  • the stenosis or restenosis inhibitor and the anti-inflammatory agent are alternately laminated in the laminated structure of the thin film forming the polylactic acid complex.
  • the release rate into the living body is preferable because it becomes more constant.
  • the in-vivo indwelling material of the present invention has such a drug release layer on the surface of the main body.
  • the in-vivo indwelling material of the present invention preferably has the drug release layer on the surface of the main body described below, but other substances are present between the drug release layer and the main body. Also good. In other words, even when the drug release layer is present on the surface of the main body not only on the surface of the main body, it is within the scope of the present invention.
  • the main body is the main part of the in-vivo in-vivo.
  • the in-vivo indwelling material of the present invention is a stent having the drug release layer on the surface of the stent body, it corresponds to the body portion referred to in the present invention.
  • the shape of the main body is preferably a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape. The reason is that it can be easily placed in a lumen in a living body.
  • the material forming the main body has a strength that allows the in-vivo indwelling material of the present invention to be placed in a lesion part generated in a lumen in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, or a urethra.
  • a metal material, a polymer material, ceramics, or the like can be used.
  • the main body portion is also made of metal material and Z or polymer material. This is because the strength of the metal material is excellent, and the in vivo indwelling material of the present invention can be surely placed in the affected area.
  • it has high polymer material strength, it has excellent flexibility, and when expanded, the body (blood vessels) This is because excessive force is not applied to the wall.
  • examples of the metal material include stainless steel, Ni—Ti alloy, tantalum, nickel, chromium, iridium, tungsten, cobalt-based alloy, and the like. Of these, stainless steel is preferred, and SUS316L is most preferred. This is because the corrosion resistance is high.
  • the polymer material may be biodegradable or non-biodegradable. Any material can be used as long as it does not decompose in a living body for a desired period of time (for example, several weeks to several months), maintains its shape, and can be placed in a lesion or the like.
  • polystyrene resin examples include polyesters such as polyethylene terephthalate and polybutylene terephthalate, or polyester elastomers having the structural unit thereof, polyamides such as nylon 6, nylon 12, nylon 66, nylon 610, and the like.
  • the biodegradable polymer can be used.
  • the shape, size, etc. of the main body are not particularly limited.
  • the in-vivo indwelling material of the present invention may be any material that can be indwelled in a lesion in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, or a urethra! ,.
  • the in-vivo indwelling material of the present invention is an in-vivo indwelling material having the drug release layer on the surface of such a main body.
  • the in-vivo indwelling material of the present invention is inserted into the site to expand a stenosis part or occlusion part, etc. generated in the living body, expanded, and then placed in the site to maintain the state. If it is an indwelling thing, it will not specifically limit.
  • Examples include stents, covered stents, stent grafts, aneurysm treatment devices, and implantable medical devices that use a stent as a holder.
  • the closing member as a closing system for hollow space connection and pipe system may be appropriately selected according to the application location.
  • the in-vivo indwelling material of the present invention is preferably a stent.
  • the reason is that it can be easily delivered and placed in the affected area.
  • the main stent body may be either a balloon expansion type or a self-expansion type. If the material of the stent body is an elastic body, self-expanding means using this elastic force can be used.
  • the size of the stent may be appropriately selected according to the application location.
  • the outer diameter before dilation is preferably 1.0 to 3. Omm and the length is preferably 5 to 50 mm.
  • the thickness of the stent has a radial force necessary for placement in the lesion, and is not particularly limited as long as it does not inhibit blood flow when used in a blood vessel, for example.
  • LOOO ⁇ m range is preferred 10-500 ⁇ m range force is preferred, 40-200 ⁇ m range force ⁇ most preferred! / ⁇ .
  • the shape of the stent is not limited. An example is shown in FIG.
  • a stent body 1 is a cylindrical body that is open at both ends and extends between the ends in the longitudinal direction.
  • the side surface of the cylindrical body has a large number of notches communicating with the outer side surface and the inner side surface, and this notch portion is deformed to have a structure that can expand and contract in the radial direction of the cylindrical body. It is placed at the target site and maintains its shape.
  • the stent body 1 is composed of a linear member 2 and has a substantially rhombic element 11 having a notch inside as a basic unit.
  • a plurality of substantially rhombic elements 11 are arranged in a continuous manner in the minor axis direction of the approximately rhombus shape to form an annular unit 12.
  • the annular unit 12 is connected to an adjacent annular unit via a linear coupling member 13.
  • the plurality of annular units 12 are continuously arranged in the axial direction in a state where the portions are joined.
  • the stent body (stent) 1 has a cylindrical body having both ends opened and extending between the ends in the longitudinal direction.
  • the stent body (stent) 1 has a substantially diamond-shaped notch, and has a structure that can be expanded and contracted in the radial direction of the cylindrical body by deformation of the notch.
  • the length in the width direction of the linear member 2 configured to have a large number of notches is preferably 0.01- It is 0.5 mm, more preferably 0.05 to 0.2 mm.
  • the stent 1 shown above is only one embodiment, and is a cylindrical body that is composed of a linear member 2, has both end portions open, and extends between the both end portions in the longitudinal direction.
  • a large number of notches that communicate the outer side surface and the inner side surface are provided on the side surface, and a structure that can be expanded and contracted in the radial direction of the cylindrical body by deforming the notch portion is widely included.
  • the in-vivo indwelling thing of this invention can be manufactured with the following method, for example.
  • a known method such as a mixing method using a mixer, a method of melting and kneading each component, a method of kneading each component into a paste, and the like.
  • the drug release layer can be formed on the surface of the main body by a known method such as coating, spraying, brushing, or dipping the main body.
  • the thickness of the drug release layer can be appropriately adjusted by a known method shown here, such as adjusting the coating amount by the concentration of the solution or the like.
  • the drug release layer contains the biologically physiologically active substance of the powder, the polylactic acid composite produced by, for example, the alternating lamination method or the casting method as described above And the biological and biologically active substance of the powder and, if desired, the remaining component, for example, by applying a known method similar to the above so as to have a preferable content as described above, and mixing the mixture And a method of forming a drug release layer on the surface of the main body using the mixture by a known method similar to the above.
  • the drug release layer is composed of a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex
  • the biological physiologically active substance and the The remaining component is mixed by applying a known method similar to the above so as to have a preferable content as described above, for example, to form a layer containing the biologically physiologically active substance.
  • the polylactic acid composite produced by the alternate lamination method or the casting method as described above and the remaining component are preferably used, for example, as described above so as to have a content.
  • the same known method as described above is applied and mixed to prepare a mixture for forming the layer containing the polylactic acid complex, and these mixtures are sequentially applied to the surface of the main body part in the same manner as described above.
  • Examples thereof include a method of forming a drug release layer by coating or the like.
  • the drug release layer further has a layer other than the layer containing the biological physiologically active substance and the layer containing the polylactic acid complex, the upper and lower surfaces of these layers formed by such a method, For example, a layer made of the biodegradable polymer can be formed between these layers by the same method.
  • the biological physiologically active substance when at least a part of the biological physiologically active substance is chemically bonded to the polylactic acid complex, for example, D-form and L-form having a hydroxyl group or a carboxyl group at the terminal in advance.
  • Examples include a method of preparing a polylactic acid complex having a stereocomplex structure such as a polylactic acid body, and using the terminal functional group as a microinitiator to form an ester bond or an amide bond with the biological physiologically active substance.
  • a mixture is prepared by applying a method of growing lactide starting from a specific functional group of the biological biologically active substance to form a polylactic acid complex having the stereocomplex structure, Furthermore, a method of forming a drug release layer on the surface of the main body using the mixture by a known method similar to the above can be mentioned.
  • the biological physiologically active substance when at least a part of the biological physiologically active substance is contained between the micro-order thin film and the Z- or nano-order ultra-thin thin film formed by the alternate lamination method.
  • a solution in which D-form polylactic acid is dissolved in acetonitrile, a solution in which L-form polylactic acid is dissolved in acetonitrile, and a solution in which the biological physiologically active substance is dissolved are prepared, and PFA (four Substrate such as fluorinated styrene (perfluoroalkoxy-ether ether resin) is soaked in each solution in order, and the mixture is prepared by applying drying repeatedly.
  • PFA four Substrate such as fluorinated styrene (perfluoroalkoxy-ether ether resin) is soaked in each solution in order, and the mixture is prepared by applying drying repeatedly.
  • this substrate is first dipped in a solution in which D-form polylactic acid is dissolved and dried, and then dipped in a solution in which the biological physiologically active substance is dissolved and then dried.
  • L-form polylactic acid After immersing in a solution in which is dissolved, and then drying, it is again immersed in a solution in which the biological and physiologically active substance is dissolved and dried.
  • the biological and physiologically active substance is contained between all the thin films of the micro-order thin film and the Z- or nano-order ultra-thin film forming the polylactic acid complex.
  • the L-form polylactic acid or the D-form polylactic acid chemically bound to the anti-inflammatory agent the micro-order thin film and the Z- or nano-order ultra-thin film are formed by an alternating lamination method.
  • the polylactic acid complex containing the biological physiologically active substance for example, a substance obtained by esterifying or amide-bonding D-form polylactic acid and the stenosis or restenosis inhibitor to acetononitrile.
  • a solution prepared by dissolving an L-form polylactic acid and the above-mentioned anti-inflammatory agent in an ester bond or amide bond in acetonitrile is prepared, and PFA (tetrafluoroethylene perfluoroalkyl) is prepared.
  • the mixture is prepared by applying a method of repeatedly immersing a substrate such as millet-luite monoterpolymer resin (resin) alternately in each solution and drying, and further using this mixture on the surface of the main body. Examples thereof include a method for forming a drug release layer by a known method similar to the above.
  • the method of forming the main body is not particularly limited, and can be formed by a known method.
  • the in-vivo indwelling material of the present invention is a stent
  • the above-described material is made into a fiber and then knitted into a cylindrical shape, or this material is molded into a tubular body.
  • the method of providing a pore is mentioned.
  • the present invention is an in-vivo indwelling having the drug release layer on the surface of the main body.
  • FIG. 1 the case where the in-vivo indwelling object of the present invention is the stent shown in Fig. 1 is taken as an example, and some aspects of the A-A line cross-sectional view and the BB line cross-sectional view are described. To do.
  • FIG. 2 shows a stent in which the stent 1 shown in FIG. 1 has a drug release layer composed of a layer 32 containing a biological physiologically active substance and a layer 42 containing a polylactic acid complex on the surface of the stent body 10. It is sectional drawing in the case of a certain aspect.
  • FIG. 3 shows that the stent 1 shown in FIG. 1 has a stent main body 10 on which a drug release layer comprising a polylactic acid complex 40 in which a biological bioactive substance 30 in powder form is dispersed.
  • FIG. 3 is a cross-sectional view in the case of having a stent.
  • FIGS. 4 and 5 are enlarged cross-sectional views taken along the line BB in FIG.
  • FIG. 4 shows a case similar to that shown in FIG.
  • FIG. 5 shows a case similar to that shown in FIG.
  • L-polylactic acid (API, 100L0105) pellets (hereinafter also referred to as “PLLA”) having a weight average molecular weight of about 150,000, and D—polylactic acid having a weight average molecular weight of about 50,000 synthesized by fermentation ( (Hereinafter also referred to as “PLDA”) were each dissolved in a acetonitrile solution previously adjusted to 50 ° C. (hereinafter, each solution was also referred to as “PLLA solution” and “PLDA solution”). Here, each concentration was adjusted to 30 mg / ml.
  • the PFA plate was alternately immersed in these two solutions for 15 minutes and dried. Specifically, the PFA plate is immersed in the PLLA solution for 15 minutes, washed with pure water, dried, then immersed in the PLDA solution for 15 minutes, and then similarly washed with pure water and dried. This series of operations was taken as one step, and this was repeated 630 steps. A thin film of polylactic acid composite having a thickness of 50 ⁇ m was formed on the surface of the PFA plate.
  • the film formed by such an alternate lamination method was immersed in an oil bath at 120 ° C, and then the oil bath was heated to 150 ° C to uniaxially stretch the film. Total of this time The draw ratio was 4 times.
  • the thickness of the film obtained by stretching was 40 m.
  • the stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation.
  • the film was punched into 1/5 scale type 2 specimens and used.
  • the total concentration of PLLA and PLDA was set to 20 mg / ml.
  • the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 m. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 m. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
  • Example 3 the same operation and measurement were performed in the same manner as in Example 2, except that the ratio of PLLA: PLDA, which was 50:50, was 45:55.
  • Example 4 the same operation and measurement were performed in the same manner as in Example 2, except that the ratio of PLLA: PLDA, which was 50:50, was 55:45.
  • the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 ⁇ m. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 / zm. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
  • Then, the total concentration of PLLA and PLDA was set to 20 mg / ml.
  • rabamycin (hereinafter also referred to as “RM”), which is an anticancer agent, was mixed with this solution.
  • the mixing amount of RM was set to 1: 1 by mass ratio with respect to the total mass of PLLA and PLDA.
  • these PLLA, Ka ⁇ E the PLDA and RM further to Asetonitoriru the Asetonitoriru solution of the, PLLA, the total concentration of PLDA and RM was adjusted to 1 mass 0/0.
  • this stent was expanded to an outer diameter of 3. Omm with a balloon catheter (made by Alashi, Terumone Earth), and the degree of destruction of the drug release layer on the surface was observed with a microscope.
  • PLLA and RM were dissolved in tetrahydrofuran (THF) at a mass ratio of 1: 1.
  • THF tetrahydrofuran
  • the total concentration force of PLLA and RM was set to be mass%.
  • this THF was sprayed onto the surface of the stent body (Tsunami (outer diameter 2. lmm, length 10mm, thickness 80m), made of Thermonet) using a spray (Micro Spray Gun I II NORDSON). . After drying, it was confirmed by a scanning electron microscope (SEM) that a drug release layer having PLLA and RM force of about 600 / zg was formed on the surface of the stent body.
  • SEM scanning electron microscope
  • PCL poly force prolatathon
  • a PLLA solution in which PLLA was dissolved in acetonitrile at 30 mg / ml was prepared in a beaker.
  • a PLDA solution in which PLDA was dissolved in acetonitrile to give 30 mg / ml was prepared in a beaker.
  • the beaker containing the PLLA solution and the beaker containing the PLDA solution were immersed in a hot water bath adjusted to 50 ° C., and the PLLA solution and the PLDA solution were maintained at 50 ° C.
  • PLLA and PLDA were completely dissolved in each solution.
  • Aspirin is an anti-inflammatory agent (hereinafter, also referred to as "AP”) solution in THF at 5 mass 0/0 (hereinafter also "AP solution", U) was prepared in a beaker.
  • AP solution an anti-inflammatory agent
  • PLLA: PLDA: RM 1: 1: 0.5
  • a beaker with a methylene chloride solution (hereinafter also referred to as “RM solution”) adjusted to a total concentration of 10 mgZ ml.
  • RM solution methylene chloride solution
  • the stent (Tsunami (outer diameter 2. lmm, length 10mm, thickness 80 ⁇ m), made of Thermonet) was immersed in the above PLLA solution adjusted to 50 ° C for 15 minutes. And from the PLLA solution After removal, the stent was washed and dried to form a PLLA thin film on the stent surface.
  • the washing and drying operation is specifically an operation in which the stent taken out from the PLLA solution is washed with acetonitrile for about 15 seconds, then washed with ultrapure water for about 10 seconds, and further dried with nitrogen gas. .
  • the resulting stent with the PLLA thin film formed on it was immersed in the above-mentioned PLDA solution adjusted to 50 ° C for 15 minutes, and subjected to the same cleaning and drying operation on the stent surface. Furthermore, a thin film of PLD A was formed.
  • the process of forming a thin film of PLLA in this way and then forming a thin film of PLDA on the upper surface is one step. Then, this operation is further performed in 5 steps (that is, a total of 6 steps are performed, and 6 thin films of PLLA and 6 thin films of PLDA are alternately formed on the surface of the stent), and PLLA is formed on the surface of the stent.
  • the thickness of the polylactic acid composite layer was about 0.45 m.
  • a series of operations having a 6-step force for forming such a polylactic acid composite layer is also referred to as “operation 1” below.
  • AP solution was coated on the upper surface of the polylactic acid composite layer using a microsyringe to form a layer (AP layer) of about Lm.
  • operation 2 the operation for forming the AP layer of about 1 ⁇ m is also referred to as “operation 2”.
  • operation 1 is further performed on the stent on which the AP layer is formed, and then operations 2 and 1 are further performed, so that a PLLA having a thickness of about 3.4 ⁇ m is formed on the surface of the stent.
  • a layer consisting of PLDA and AP was formed.
  • a drug release layer (thickness: about 7 m) consisting of a layer consisting of PLLA, PLDA and AP (thickness: about 3.4 m) and an RM layer (thickness: about 4 m) on the surface.
  • a stent with 4 m) was formed.
  • the release amount of RM and AP was measured. Specifically, the stent having this drug release layer was immersed in 10 ml of 4% by mass urushi serum-added reverse osmosis water (hereinafter also referred to as “BSA”) adjusted to 50 ° C., and stirred with a diameter of 10 mm.
  • BSA mass urushi serum-added reverse osmosis water
  • the mass of RM and AP in BSA was measured after 7 days, 14 days, 28 days, 42 days, and 56 days after stirring with a magnetic stirrer using a magnetic stirrer.
  • High performance liquid chromatography (HPLC) manufactured by Shimadzu Corporation) was used for the measurement of RM and AP mass.
  • the amount of soot released after 14 days and 28 days was 0%. After that, the release of soot was started with the degradation of the polylactic acid complex in the drug release layer, and the amount of soot released after 42 days was compared to the soot mass in the drug release layer before being immersed in BSA. About 50%. Furthermore, it was about 100% after 56 days. After 56 days, all the polylactic acid complex in the drug release layer is degraded and disappears! /
  • a test was performed in which two stents were placed in the right and left iliac arteries of a rabbit for 3 months.
  • Fig. 9 shows the contrast image.
  • Fig. 10 shows the contrast photograph.
  • stenosis was observed 3 months after placement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

An in vivo indwelling object has a layer containing a biodegradable polymer and releasing a drug on a surface. Because of the biodegradable polymer, the in vivo indwelling object having a drug-releasing layer on a surface of a main body portion has a necessary strength in vivo, is easily stretched upon an expansion operation with a balloon or the like, is difficult to cause a crack, and is capable of adjusting a degradation rate in vivo to a desired rate. The drug-releasing layer contains a polylactic acid complex in which a complex with a stereocomplex structure of D-polylactic acid and L-polylactic acid at a mass ratio of 45:55 to 55:45 is formed and a biologically physiologically active substance.

Description

明 細 書  Specification
生体内留置物  In vivo indwelling
技術分野  Technical field
[0001] 本発明は生体内留置物に関する。更に詳しくは、生体内に生じた狭窄部や閉塞部 等を拡張するために当該部位に挿入し、拡張した上で、その状態を保持するために 当該部位に留置するステント、カテーテル、人工血管、ステントグラフト等の生体内留 置物に関する。 背景技術  [0001] The present invention relates to an in-vivo indwelling object. More specifically, a stent, a catheter, an artificial blood vessel, which is inserted into the site in order to expand a stenosis or occlusion in the living body, is expanded, and is placed in the site to maintain the state. The present invention relates to in-vivo articles such as stent grafts. Background art
[0002] 本発明の生体内留置物としては、ステント、カテーテル、人工血管、ステントグラフト 等、様々なものが挙げられる力 以下においては例としてステントを挙げて説明する。  [0002] The in vivo indwelling material of the present invention includes various forces such as a stent, a catheter, an artificial blood vessel, and a stent graft. Hereinafter, a stent will be described as an example.
[0003] まず、虚血性心疾患に適用される血管形成術について説明する。  [0003] First, angioplasty applied to ischemic heart disease will be described.
我が国における食生活の欧米化が、虚血性心疾患 (狭心症、心筋梗塞)の患者数 を急激に増カロさせて ヽることを受け、それらの冠動脈病変を軽減化する方法として経 皮的経血管的冠動脈形成術 (PTCA)が施行され、飛躍的に普及してきている。現 在では、技術的な発展により適用症例も増えており、 PTCAが始まった当時の限局 性 (病変の長さが短いもの)で一枝病変(1つの部位にのみ狭窄がある病変)のものか ら、より遠位部で偏心的で石灰化しているようなもの、そして多枝病変(2つ以上の部 位に狭窄がある病変)へと PTCAの適用が拡大されて 、る。  The Westernization of dietary habits in Japan has led to a sudden increase in the number of patients with ischemic heart disease (anginal angina, myocardial infarction). Transvascular coronary angioplasty (PTCA) has been performed and has become very popular. At present, the number of applied cases has increased due to technological development. Whether it is localized at the time PTCA began (short lesion length) or single-branch lesion (lesion with stenosis only at one site)? Thus, PTCA has been extended to more distal, eccentric, calcified, and multi-branch lesions (lesions with stenosis in more than one site).
[0004] PTCAとは、患者の脚又は腕の動脈に小さな切開を施してイントロデューサーシ一 ス (導入器)を留置し、イントロデューサーシースの内腔を通じて、ガイドワイヤを先行 させながら、ガイドカテーテルと呼ばれる長い中空のチューブを血管内に挿入して冠 状動脈の入口に配置した後ガイドワイヤを抜き取り、別のガイドワイヤとバルーンカテ 一テルをガイドカテーテルの内腔に挿入し、ガイドワイヤを先行させながらバルーン カテーテルを X線造影下で患者の冠状動脈の病変部まで進めて、バルーンを病変 部内に位置させて、その位置で医師がバルーンを所定の圧力で 30〜60秒間、 1回 力 複数回膨らませる手技である。  [0004] PTCA is a guide catheter in which a small incision is made in the artery of a patient's leg or arm, an introducer system (introducer) is placed, and a guide wire is advanced through the lumen of the introducer sheath. After inserting a long hollow tube called a blood vessel into the blood vessel and placing it at the entrance of the coronary artery, withdraw the guide wire, insert another guide wire and balloon catheter into the lumen of the guide catheter, and lead the guide wire ahead The balloon catheter is advanced to the lesion area of the patient's coronary artery under X-ray contrast, and the balloon is positioned in the lesion area. At that position, the doctor presses the balloon once at a predetermined pressure for 30 to 60 seconds. It is a technique to inflate.
これにより、病変部の血管内腔は拡張され血管内腔を通る血流は増加する。しかし ながら、カテーテルによって血管壁が傷つけられたりすると、血管壁の治癒反応であ る血管内膜の増殖が起こり 30〜40%程度の割合で再狭窄が報告されている。 As a result, the vascular lumen of the lesion is expanded and the blood flow through the vascular lumen is increased. However However, when the blood vessel wall is damaged by a catheter, the intima proliferates, which is a healing reaction of the blood vessel wall, and restenosis has been reported at a rate of about 30 to 40%.
[0005] ステントは、このような再狭窄を予防する方法にぉ 、て用いるものとして検討され、 ある程度の成果をあげている。ここで言うステントとは、血管や他の管腔が狭窄もしく は閉塞することによって生じる様々な疾患を治療するために、その狭窄もしくは閉塞 部位を拡張し、その内腔を確保するためにそこに留置することができる管状の医療用 具である。そして、それらの多くは、金属材料又は高分子材料よりなる医療用具であ り、例えば金属材料や高分子材料よりなる管状体に細孔を設けたものや、金属材料 のワイヤや高分子材料の繊維を編み上げて円筒形に成形したもの等様々な形状の ものが提案されている。ステント留置の目的は、 PTCA等の手技を施した後に起こる 再狭窄の予防及びその低減ィ匕を狙ったものである力 このようなステントの留置のみ では狭窄を顕著に抑制することができていないのが実状であった。 [0005] Stents have been studied for use as a method for preventing such restenosis, and have achieved some results. The term stent refers to the expansion of the stenosis or occlusion site and the securing of the lumen in order to treat various diseases caused by stenosis or occlusion of blood vessels and other lumens. It is a tubular medical device that can be indwelled. Most of them are medical devices made of a metal material or a polymer material. For example, a tubular body made of a metal material or a polymer material provided with pores, a wire made of a metal material, or a polymer material. Various shapes have been proposed, such as those formed by knitting fibers into a cylindrical shape. The purpose of stent placement is the force that aims to prevent and reduce restenosis that occurs after procedures such as PTCA. Stent placement alone does not significantly reduce stenosis. The actual situation was.
[0006] そこで、近年、このステントに免疫抑制剤や抗癌剤等の薬剤を担持させることによつ て、管腔の留置部位で長期にわたって局所的にこの薬剤を放出させ、再狭窄率の低 減ィ匕を図る方法が提案されて 、る。 [0006] Therefore, in recent years, by carrying a drug such as an immunosuppressive agent or an anticancer drug on this stent, this drug is locally released over a long period of time at the indwelling site of the lumen, thereby reducing the restenosis rate. A method for achieving this is proposed.
例えば、特許文献 1には、ステント本体の表面に生体吸収性ポリマー又は生体安定 性ポリマーと、治療のための物質との混合物をコーティングしたステントが記載されて いる。そして、そのポリマーとして、ポリ L乳酸、ポリ力プロラタトンを用いることができる ことが記載されている。  For example, Patent Document 1 describes a stent in which the surface of a stent body is coated with a mixture of a bioabsorbable polymer or a biostable polymer and a therapeutic substance. It is described that poly-L lactic acid and poly-strength prolatatone can be used as the polymer.
また、特許文献 2には、薬剤を生体適合性ポリマー等を用いて付着'コーティングし たステントが記載されている。そして、この生体適合性ポリマー等として、ポリ DL乳酸 (D体と L体との共重合体)、ポリダリコール酸、ポリ乳酸 Zポリグリコール酸共重合体 を用いることができることが記載されて 、る。  Patent Document 2 describes a stent in which a drug is attached and coated using a biocompatible polymer or the like. As this biocompatible polymer, it is described that poly DL lactic acid (copolymer of D-form and L-form), polydaricholic acid, polylactic acid Z polyglycolic acid copolymer can be used.
特許文献 1 :特開平 8— 33718号公報  Patent Document 1: JP-A-8-33718
特許文献 2:特開平 9 - 56807号公報  Patent Document 2: JP-A-9-56807
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、特許文献 1に記載されて 、るポリ L乳酸、及び特許文献 2に記載され ているポリ DL乳酸 (D体と L体との共重合体)、ポリダリコール酸、ポリ乳酸 Zポリダリ コール酸共重合体のポリマーは強度が低いため、これらを表面にコーティングしたス テントを生体内に留置した場合、外力により破損する場合があった。また、これらのポ リマーは伸び難ぐ伸度が数%と低いため、バルーン等による生体内への留置時の 拡張操作に追随できず、ステント本体力も剥離する場合があった。更に、拡張操作に よりクラックが生じる場合があった。 [0007] However, the poly L lactic acid described in Patent Document 1 and Poly DL lactic acid (copolymer of D-form and L-form), polydaricholic acid, and polylactic acid Z-polydalicolic acid copolymer are low in strength, so stents coated with these on the surface When indwelled, it could be damaged by external force. In addition, since these polymers have a low elongation of only a few percent, they cannot follow the expansion operation when placed in a living body with a balloon or the like, and the stent body force may be peeled off. In addition, cracks may occur due to the expansion operation.
このようにステント本体の表面のポリマーが破損した場合、その破片が生体内の管 腔を閉塞する可能性があった。例えば血管に適用した場合であれば、末梢の血流を 遮断する恐れがあった。また、クラックが生じた場合、その表面がささくれ状態となる ので、例えば血管内で用いた場合であれば、血流に乱流が生じ、血栓症を引き起こ す可能性があった。更に、このポリマーに破損やクラックが生じた場合、薬剤の放出 速度を一定に保つことが困難になる恐れがあった。  Thus, when the polymer on the surface of the stent body is damaged, the fragments may block the lumen in the living body. For example, when applied to blood vessels, there was a risk of blocking peripheral blood flow. In addition, when a crack occurs, the surface is turned upside down. For example, when used in a blood vessel, blood flow may be turbulent and may cause thrombosis. Furthermore, when the polymer is damaged or cracked, it may be difficult to keep the drug release rate constant.
[0008] また、特許文献 1に記載されているポリ力プロラタトンは、伸度は数百%と高いもの の強度が低ぐこれを表面にコーティングしたステントを生体内に留置した場合、外力 により破損する場合があった。  [0008] In addition, the poly-force prolataton described in Patent Document 1 has a high elongation of several hundred%, but the strength is low. When a stent coated on the surface thereof is placed in a living body, it is damaged by an external force. There was a case.
また、このポリ力プロラタトンは生体内における分解速度が遅い。このため、例えばこ のポリマーを表面に有するステントを血管内で用いた場合、このポリマーの表面に血 栓が付きやすくなるので、ポリ力プロラタトンが消失するまでの長期間、抗血小板療法 を適用することが余儀なくされる。  In addition, this poly force prolatatone has a slow degradation rate in vivo. For this reason, for example, when a stent having this polymer on the surface is used in a blood vessel, a blood plug is likely to be attached to the surface of this polymer. Therefore, antiplatelet therapy is applied for a long period until poly force prolatatone disappears. Will be forced.
[0009] このように、生分解性ポリマーを含む薬剤を放出する層を表面に有するステントであ つて、その生分解性ポリマーが、生体内における必要な強度を有し、また、バルーン 等による拡張操作時に伸び易ぐクラックが生じ難ぐ更に、生体内における分解速 度を所望の速度に調整することが可能であるものが存在しな力つた。  [0009] As described above, the stent has a layer that releases a drug containing a biodegradable polymer on the surface, and the biodegradable polymer has a necessary strength in vivo, and is expanded by a balloon or the like. In addition, cracks that are easy to stretch during operation are less likely to occur, and there is no such thing that can adjust the degradation rate in vivo to a desired rate.
[0010] なお、上記ではステントを例に挙げた力 このような問題はステントに限らず、生体 内に生じた狭窄部や閉塞部等を拡張するために当該部位に挿入し、拡張した上で、 その状態を保持するために当該部位に留置する生体内留置物に共通する問題であ る。  [0010] It should be noted that in the above, the force exemplified in the stent, such a problem is not limited to the stent, but is inserted into the site to expand the stenosis or occlusion in the living body, and then expanded. This is a problem common to in-vivo indwelling objects that are indwelled at the site in order to maintain the state.
[0011] したがって、本発明の目的は、生分解性ポリマーを含む薬剤を放出する層を表面 に有する生体内留置物であって、その生分解性ポリマーが、生体内における必要な 強度を有し、また、バルーン等による拡張操作時に伸び易ぐクラックが生じ難ぐ更 に、生体内における分解速度を所望の速度に調整することが可能である生体内留置 物を提供することにある。 [0011] Accordingly, an object of the present invention is to surface a drug releasing layer comprising a biodegradable polymer. The biodegradable polymer possesses the necessary strength in vivo, and it is difficult for cracks to easily extend during expansion operations using a balloon or the like. An object of the present invention is to provide an in-vivo indwelling object capable of adjusting the speed to a desired speed.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者は上記の課題を解決することを目的に鋭意検討し、本体部の表面に、生 物学的生理活性物質と、生分解性ポリマーであり特定の構造を具備するポリ乳酸複 合体とを含む薬剤放出層を有する生体内留置物が、上記の課題を解決することを見 出した。  [0012] The present inventor has intensively studied for the purpose of solving the above-mentioned problems, and on the surface of the main body, a biologically physiologically active substance and a polylactic acid having a specific structure which is a biodegradable polymer. It has been found that an in-vivo indwelling material having a drug release layer containing a complex solves the above problems.
[0013] すなわち、本発明は次の(1)〜(18)である。  That is, the present invention includes the following (1) to (18).
(1)本体部の表面に薬剤放出層を有する生体内留置物であって、前記薬剤放出 層力 0体ポリ乳酸と1^体ポリ乳酸とカ 5 : 55〜55 :45の質量比でステレォコンプレ ックス構造の複合体を形成して!/ヽるポリ乳酸複合体と、生物学的生理活性物質とを 含む生体内留置物。  (1) An in-vivo indwelling material having a drug release layer on the surface of a main body, wherein the drug release layer strength is 0-polylactic acid and 1 ^ -polylactic acid and a stereocompressor at a mass ratio of 5:55 to 55:45. An in-vivo indwelling material comprising a polylactic acid complex that forms and forms a complex with a skeleton structure and a biological physiologically active substance.
(2)前記本体部が、金属材料及び Z又は高分子材料からなる上記(1)に記載の生 体内留置物。  (2) The in-vivo indwelling according to (1), wherein the main body is made of a metal material and Z or a polymer material.
(3)前記生物学的生理活性物質の少なくとも一部が粉体であり、この粉体の生物 学的生理活性物質が前記薬剤放出層中で分散して!/、る上記(1)又は (2)に記載の 生体内留置物。  (3) At least a part of the biological physiologically active substance is a powder, and the biological physiologically active substance of the powder is dispersed in the drug release layer! In vivo indwelling object as described in 2).
(4)前記生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学結 合して!/、る上記(1)〜(3)の 、ずれかに記載の生体内留置物。  (4) The in-vivo indwelling product according to any one of (1) to (3), wherein at least a part of the biological physiologically active substance is chemically bonded to the polylactic acid complex!
(5)前記薬剤放出層が 2以上の層からなり、それらの層が前記生物学的生理活性 物質を含む層及び前記ポリ乳酸複合体を含む層を含む上記(1)又は(2)に記載の 生体内留置物。  (5) The drug-releasing layer is composed of two or more layers, and the layers include the layer containing the biologically bioactive substance and the layer containing the polylactic acid complex. In vivo indwelling.
[0014] (6)前記ポリ乳酸複合体を形成する D体ポリ乳酸及び Z又は L体ポリ乳酸の重量平 均分子量が 1, 000〜1, 000, 000である上記(1)〜(5)のいずれかに記載の生体 内留置物。  [0014] (6) The above (1) to (5), wherein the weight average molecular weight of D-form polylactic acid and Z-form L-form polylactic acid forming the polylactic acid complex is 1,000 to 1,000,000 The in-vivo indwelling object in any one of.
(7)前記ポリ乳酸複合体の重量平均分子量が 1, 000-1, 000, 000である上記( 1)〜(6)の 、ずれかに記載の生体内留置物。 (7) The above polylactic acid complex having a weight average molecular weight of 1,000-1,000,000 ( The in-vivo indwelling object according to any one of 1) to (6).
(8)前記ポリ乳酸複合体が、延伸されたポリ乳酸複合体である上記(1)〜(7)の 、 ずれかに記載の生体内留置物。  (8) The in-vivo indwelling product according to any one of (1) to (7), wherein the polylactic acid complex is a stretched polylactic acid complex.
(9)前記ポリ乳酸複合体が、示差走査熱量測定において 65〜75°Cの間に第 1の 融解ピークを有し、 200〜250°Cの間に第 2の融解ピークを有するポリ乳酸複合体で ある上記(1)〜(8)の 、ずれかに記載の生体内留置物。  (9) The polylactic acid complex has a first melting peak between 65 and 75 ° C. and a second melting peak between 200 and 250 ° C. in differential scanning calorimetry. The in-vivo indwelling product according to any one of (1) to (8), which is a body.
(10)前記ポリ乳酸複合体が、 JIS K7113に規定される破断強度が 70MPa以上 であり、破断伸度が 15%以上であり、ヤング率が lOOMPa以上であるポリ乳酸複合 体である上記(1)〜(9)の 、ずれかに記載の生体内留置物。  (10) The polylactic acid composite is a polylactic acid composite having a breaking strength specified by JIS K7113 of 70 MPa or more, a breaking elongation of 15% or more, and a Young's modulus of lOOMPa or more (1 The in-vivo indwelling object according to any of (9) to (9).
[0015] (11)前記ポリ乳酸複合体が、交互積層法により製造されたポリ乳酸複合体である 上記(1)〜(10)のいずれかに記載の生体内留置物。  (11) The in-vivo indwelling product according to any one of (1) to (10), wherein the polylactic acid complex is a polylactic acid complex produced by an alternating lamination method.
(12)前記交互積層法が、マイクロオーダー薄膜及び Z又はナノオーダー超薄膜を 形成して行う交互積層法である上記(11)に記載の生体内留置物。  (12) The in-vivo indwelling product according to (11), wherein the alternate lamination method is an alternate lamination method performed by forming a micro-order thin film and a Z- or nano-order ultrathin film.
( 13)前記マイクロオーダー薄膜及び Z又はナノオーダー超薄膜の厚さが Inn!〜 5 0 mである上記(12)に記載の生体内留置物。  (13) The thickness of the micro-order thin film and the Z or nano-order ultra-thin film is Inn! The in-vivo indwelling thing as described in said (12) which is -50 m.
(14)前記マイクロオーダー薄膜及び Z又はナノオーダー超薄膜の薄膜の間に、 前記生物学的生理活性物質を含有する上記(12)又は(13)に記載の生体内留置 物。  (14) The in-vivo indwelling product according to (12) or (13), wherein the biological physiologically active substance is contained between the micro-order thin film and the Z- or nano-order ultra-thin film.
[0016] (15)前記生物学的生理活性物質が、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ 剤、抗血栓薬、 HMG— CoA還元酵素阻害剤、 ACE阻害剤、カルシウム拮抗剤、抗 高脂血症薬、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、 GPIIbllla拮抗薬、レ チノイド、フラボノイド、カロチノイド、脂質改善薬、 DNA合成阻害剤、チロシンキナー ゼ阻害剤、抗血小板薬、抗炎症薬、生体由来材料、インターフェロン及び NO産生 促進物質力 なる群力 選ばれる少なくとも 1つである上記(1)〜(14)のいずれかに 記載の生体内留置物。  [0016] (15) The biological physiologically active substance is an anticancer agent, immunosuppressive agent, antibiotic, antirheumatic agent, antithrombotic agent, HMG—CoA reductase inhibitor, ACE inhibitor, calcium antagonist, anti-high Lipemia, integrin inhibitor, antiallergic agent, antioxidant, GPIIbllla antagonist, retinoid, flavonoid, carotenoid, lipid improver, DNA synthesis inhibitor, tyrosine kinase inhibitor, antiplatelet drug, anti-inflammatory drug In vivo indwelling material in any one of said (1)-(14) which is at least one selected from the group force which is a biomaterial, an interferon, and NO production promotion substance power.
[0017] (16)前記生物学的生理活性物質である狭窄又は再狭窄抑制剤と化学結合した前 記 D体ポリ乳酸又は前記 L体ポリ乳酸と、前記生物学的生理活性物質である前記抗 炎症薬と化学結合した前記 L体ポリ乳酸又は前記 D体ポリ乳酸とを用いて、前記マイ クロオーダー薄膜及び z又はナノオーダー超薄膜の薄膜を形成して行う交互積層 法により製造された、前記生物学的生理活性物質を含む前記ポリ乳酸複合体を含む 薬剤放出層を有する上記(12)〜(15)のいずれかに記載の生体内留置物。 (16) The D-form polylactic acid or the L-form polylactic acid chemically bonded to the stenosis or restenosis inhibitor which is the biologically physiologically active substance, and the antimicrobial agent which is the biologically physiologically active substance Using the L-form polylactic acid or the D-form polylactic acid chemically bonded to an inflammatory drug, The above (12) having a drug release layer comprising the polylactic acid complex containing the biologically bioactive substance, produced by an alternating lamination method performed by forming a black order thin film and a thin z-order nanothin film. The in-vivo indwelling object in any one of-(15).
(17)前記本体部の形状が、チューブ状、管状、網状、繊維状、不織布状、織布状 又はフィラメント状である上記(1)〜(16)のいずれかに記載の生体内留置物。  (17) The in-vivo indwelling product according to any one of (1) to (16), wherein the shape of the main body portion is a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape.
(18)ステントである上記(1)〜(17)のいずれかに記載の生体内留置物。 発明の効果  (18) The in-vivo indwelling material according to any one of (1) to (17), which is a stent. The invention's effect
[0018] 本発明によれば、生分解性ポリマーを含む薬剤を放出する層を表面に有する生体 内留置物であって、その生分解性ポリマーが、生体内における必要な強度を有し、ま た、バルーン等による拡張操作時に伸び易ぐクラックが生じ難ぐ更に、生体内にお ける分解速度を所望の速度に調整することが可能である生体内留置物を提供するこ とがでさる。  [0018] According to the present invention, an in-vivo indwelling material having a layer that releases a drug containing a biodegradable polymer on its surface, the biodegradable polymer has a necessary strength in vivo. In addition, it is difficult to generate a crack that easily expands during an expansion operation using a balloon or the like, and further, it is possible to provide an in-vivo indwelling product that can adjust the decomposition rate in a living body to a desired speed.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は、本発明のステントの一態様を示す側面図である。 FIG. 1 is a side view showing an embodiment of the stent of the present invention.
[図 2]図 2は、図 1の A— A線に沿って切断した拡大横断面図である。  2 is an enlarged cross-sectional view taken along line AA in FIG.
[図 3]図 3は、図 1の A— A線に沿って切断した他の拡大横断面図である。  FIG. 3 is another enlarged cross-sectional view taken along the line AA in FIG.
[図 4]図 4は、図 1の B— B線に沿って切断した拡大横断面図である。  FIG. 4 is an enlarged cross-sectional view taken along line BB in FIG.
[図 5]図 5は、図 1の B— B線に沿って切断した他の拡大横断面図である。  FIG. 5 is another enlarged cross-sectional view taken along line BB in FIG. 1.
[図 6]図 6は、実施例 5におけるステントの拡大後の拡大写真(800倍)である。  FIG. 6 is an enlarged photograph (800 ×) after expansion of the stent in Example 5.
[図 7]図 7は、比較例 8におけるステントの拡大後の拡大写真(800倍)である。  FIG. 7 is an enlarged photograph (800 ×) after expansion of the stent in Comparative Example 8.
[図 8]図 8は、比較例 9におけるステントの拡大後の拡大写真(800倍)である。  FIG. 8 is an enlarged photograph (800 ×) after expansion of the stent in Comparative Example 9.
[図 9]図 9は、実施例 7の生体内留置試験に係るうさぎの左右腸骨動脈の造影写真( 等倍)である。  FIG. 9 is a contrast-enhanced photograph (magnification of the right and left iliac arteries) of a rabbit according to the in vivo placement test of Example 7.
[図 10]図 10は、比較例 10の生体内留置試験に係るうさぎの左右腸骨動脈の造影写 真 (等倍)である。 発明を実施するための最良の形態  FIG. 10 is a contrast-enhanced photograph (same magnification) of the right and left iliac arteries of a rabbit according to the in vivo placement test of Comparative Example 10. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下に本発明につ 、て詳細に説明する。 [0020] The present invention is described in detail below.
本発明は、本体部の表面に薬剤放出層を有する生体内留置物であって、前記薬 剤放出層が、 D体ポリ乳酸と L体ポリ乳酸と力 5: 55〜55 :45の質量比でステレオコ ンプレックス構造の複合体を形成して!/ヽるポリ乳酸複合体と、生物学的生理活性物 質とを含む生体内留置物である。 The present invention is an in-vivo indwelling product having a drug release layer on the surface of a main body part, the drug The agent release layer forms a complex of stereocomplex structure with D-form polylactic acid and L-form polylactic acid at a mass ratio of 5:55 to 55:45! In vivo indwelling material containing a physiologically active substance.
[0021] 初めに、本発明の生体内留置物の薬剤放出層が含むポリ乳酸複合体について説 明する。 [0021] First, the polylactic acid complex contained in the drug release layer of the in-vivo indwelling material of the present invention will be described.
本発明の生体内留置物の薬剤放出層が含むポリ乳酸複合体は、 D体ポリ乳酸と L 体ポリ乳酸との複合体である。そして、この複合体において、これらのポリ乳酸はステ レオコンプレックス構造を形成して 、る。  The polylactic acid complex contained in the drug release layer of the in-vivo indwelling material of the present invention is a complex of D-form polylactic acid and L-form polylactic acid. In this composite, these polylactic acids form a stereocomplex structure.
ここでステレオコンプレックス構造とは、 D体及び L体のような鏡像異性体の関係に ある高分子同士がファンデルワールス力により相互に作用して、構造的フィッティング を生じてなる立体構造である。  Here, the stereocomplex structure is a three-dimensional structure in which enantiomeric macromolecules such as D-form and L-form interact with each other by van der Waals forces to produce structural fitting.
[0022] ステレオコンプレックス構造は、ァイソタクチックとシンジオタクチックとのような立体 規則性を持つ高分子にぉ ヽても形成し得る。 [0022] A stereocomplex structure can be formed even on a polymer having stereoregularity such as isotactic and syndiotactic.
ステレオコンプレックスを形成する例としては、ポリ乳酸以外に、ポリ- γ -ベンジルグ ルタメート、ポリ- γ -メチルダルタメート、ポリ- tert-ブチレンオキサイド、ポリ- tert-ブ チルエチレンサルフイド、ポリ - α -メチルベンジルメタタリレート、ポリ- α -メチル - α - ェチル - j8 -プロピオラタトン、 j8 - 1、 1-ジクロロプロピル- j8 -プロピオラタトンなどが知 られている。 As an example of forming a stereocomplex, in addition to polylactic acid, poly - gamma - Benjirugu Rutameto, poly - gamma - methyl Dal data formate, poly - tert butylene oxide, poly - tert Bed chill ethylene sulfates id, poly - alpha -Methylbenzyl metatalylate, poly-α-methyl-α-ethyl-j8-propiolatathone, j8-1, 1-dichloropropyl-j8-propiolatathone, etc. are known.
[0023] また、前記ポリ乳酸複合体にぉ 、て、 D体ポリ乳酸と L体ポリ乳酸との質量比は 45: 55〜55: 45である。この質量比は 50: 50であることが好まし!/、。  [0023] The mass ratio of D-form polylactic acid to L-form polylactic acid in the polylactic acid complex is 45:55 to 55:45. This mass ratio is preferably 50: 50! /.
このような質量比であって、かつ、上記のようなステレオコンプレックス構造を有する ポリ乳酸複合体は強度及び伸度が顕著に高ぐ拡張時にクラックが生じ難い。  A polylactic acid composite having such a mass ratio and having the above-described stereocomplex structure is unlikely to crack during expansion when the strength and elongation are significantly high.
なお、ここでいう D体ポリ乳酸と L体ポリ乳酸との質量比は、前記ポリ乳酸複合体を 製造する際に用いた各々の質量比をいう。  The mass ratio of D-form polylactic acid and L-form polylactic acid here refers to the respective mass ratios used in producing the polylactic acid composite.
[0024] また、前記ポリ乳酸複合体を形成する D体ポリ乳酸の重量平均分子量は 1, 000〜 1, 000, 000であること力 S好ましく、 2, 000〜700, 000であること力 Sより好ましく、 5, 000〜400, 000であること力更に好まし!/、。 [0024] The weight average molecular weight of D-form polylactic acid forming the polylactic acid complex is a force S of 1,000 to 1,000,000, preferably 2,000 to 700,000. More preferably, the power of 5,000 to 400,000 is even more preferred! /.
また、前記ポリ乳酸複合体を形成する L体ポリ乳酸の重量平均分子量は 1, 000〜 1, 000, 000であること力 S好ましく、 2, 000〜700, 000であること力 Sより好ましく、 5, 000〜400, 000であること力更に好まし!/、。 The weight average molecular weight of the L-form polylactic acid forming the polylactic acid complex is 1,000 to A force that is 1,000,000 S, preferably a force that is 2,000 to 700,000, more preferably a force that is S, more preferably a force that is 5,000 to 400,000! /.
また、前記ポリ乳酸複合体の重量平均分子量は 1, 000〜1, 000, 000であること 力 S好ましく、 2, 000〜700, 000であること力 Sより好ましく、 5, 000〜400, 000である ことが更に好ましい。  The polylactic acid complex has a weight average molecular weight of 1,000 to 1,000,000, preferably S, more preferably 2,000 to 700,000, and more preferably 5,000 to 400,000. It is further preferable that
また、前記ポリ乳酸複合体が、示差走査熱量測定において 65〜75°Cの間に第 1の 融解ピーク (ガラス転移点)を有し、 200〜250°Cの間に第 2の融解ピーク(融点)を 有するものであることが好ましい。ここで、示差走査熱量測定は Nガス気流下、 5°C  Further, the polylactic acid complex has a first melting peak (glass transition point) between 65 and 75 ° C. in differential scanning calorimetry, and a second melting peak between 200 and 250 ° C. ( A melting point). Here, differential scanning calorimetry is performed at 5 ° C under N gas flow.
2  2
Zminの昇温速度で測定するものとする。島津製作所社製 DT— 50を好ましく用いる ことができる。  It shall be measured at Zmin heating rate. DT-50 manufactured by Shimadzu Corporation can be preferably used.
前記 D体ポリ乳酸、前記 L体ポリ乳酸及び前記ポリ乳酸複合体がこのような範囲の 重量平均分子量である場合や、前記ポリ乳酸複合体がこのような融解ピークを有す る場合は、このポリ乳酸複合体の強度及び伸度が更に高くなり、更に拡張時のクラッ クが更に生じ難くなる。  When the D-form polylactic acid, the L-form polylactic acid, and the polylactic acid complex have a weight average molecular weight in such a range, or when the polylactic acid complex has such a melting peak, The strength and elongation of the polylactic acid composite are further increased, and cracks during expansion are less likely to occur.
また、前記ポリ乳酸複合体が、 JIS K7113に規定される 1Z5スケールの 2号試験 片を用いた場合の破断強度が 70MPa以上であり、破断伸度が 15%以上であり、ャ ング率が lOOMPa以上であるポリ乳酸複合体であることが好ましい。  In addition, the polylactic acid composite has a breaking strength of 70 MPa or more, a breaking elongation of 15% or more, and a hang rate of lOOMPa when a 1Z5 scale No. 2 test piece specified in JIS K7113 is used. The polylactic acid complex as described above is preferable.
ここで、破断強度は、 75MPa以上であることがより好ましぐ 80MPa以上であること が更に好まし 、。上限は特に限定されな 、が 500MPa以下であることが好まし 、。 また、破断伸びは、 20%以上であることがより好ましぐ 30%以上であることが更に 好まし 、。上限は特に限定されな 、が 200%以下であることが好まし 、。  Here, the breaking strength is more preferably 75 MPa or more, more preferably 80 MPa or more. The upper limit is not particularly limited, but is preferably 500 MPa or less. Further, the elongation at break is more preferably 20% or more, and further preferably 30% or more. The upper limit is not particularly limited, but is preferably 200% or less.
また、ヤング率は、 500MPa以上であることがより好ましぐ 1, OOOMPa以上である ことが更に好ましい。上限は特に限定されないが 50, OOOMPa以下であることが好ま しい。  The Young's modulus is more preferably 500 MPa or more, and more preferably 1, OOOMPa or more. The upper limit is not particularly limited, but is preferably 50, OOOMPa or less.
これらの値がこのような範囲のポリ乳酸複合体を用いてなる生体内留置物は、生体 内での強度及び伸度が高ぐ更に拡張時のクラックが生じ難いので好ましい。  An in-vivo indwelling material using a polylactic acid complex having such a value in such a range is preferable because the strength and elongation in the living body are high and cracks during expansion are unlikely to occur.
なお、以下において「破断強度」、「破断伸度」、「ヤング率」と記した場合、全て JIS K7113に規定された方法(1Z5スケールの 2号試験片を使用)で測定されたもの を意味する。 In the following description, “breaking strength”, “breaking elongation”, and “Young's modulus” are all measured by the method specified in JIS K7113 (using No. 2 test piece of 1Z5 scale). Means.
[0026] また、前記ポリ乳酸複合体が、延伸されたポリ乳酸複合体であることが好ま 、。  [0026] The polylactic acid composite is preferably a stretched polylactic acid composite.
これは、前記ポリ乳酸複合体をそのガラス転移温度以上、融点以下の温度で延伸 すると、非晶部分の分子が延伸方向に引き伸ばされ結晶化度が増すとともに、分子 が延伸方向に配向するので、延伸方向の引張強度や引張弾性率が大きくなるからで ある。  This is because when the polylactic acid complex is stretched at a temperature not lower than the glass transition temperature and not higher than the melting point, the amorphous portion of the molecules is stretched in the stretching direction and the degree of crystallinity increases, and the molecules are oriented in the stretching direction. This is because the tensile strength and tensile modulus in the stretching direction increase.
[0027] また、前記ポリ乳酸複合体は、交互積層法により製造されたポリ乳酸複合体である ことが好ましい。更に、この交互積層法は、マイクロオーダー薄膜及び Z又はナノォ 一ダー超薄膜を形成して行う交互積層法であることが好ましい。更に、前記マイクロ オーダー薄膜及び Z又はナノオーダー超薄膜の厚さは Inn!〜 50 μ mであることが 好ましぐ 10nm〜30 mであることがより好ましぐ 100nm〜20 mであることが更 に好ましい。  [0027] The polylactic acid complex is preferably a polylactic acid complex produced by an alternating lamination method. Further, this alternate lamination method is preferably an alternate lamination method performed by forming a micro-order thin film and a Z or nano-order ultrathin film. Furthermore, the thickness of the micro-order thin film and Z or nano-order ultra-thin film is Inn! It is preferable that it is ˜50 μm, and it is more preferable that it is 10 nm to 30 m, and it is more preferable that it is 100 nm to 20 m.
この交互積層法により製造された前記ポリ乳酸複合体は、強度及び伸びが特に良 好となるので、このポリ乳酸複合体を用いてなる生体内留置物は、生体内で更に破 損し難くなる。また、拡張時のクラックが更に生じ難くなるので好ましい。  Since the polylactic acid composite produced by this alternate lamination method has particularly good strength and elongation, an in-vivo indwelling body using this polylactic acid composite is more difficult to break in vivo. Further, it is preferable because cracks during expansion are less likely to occur.
[0028] ここで交互積層法とは、基板を D体ポリ乳酸溶液及び L体ポリ乳酸溶液に交互に浸 漬することによって薄膜を作製する方法である。このような交互積層法を適用すること により、バルタ (溶液)中よりも効率よくステレオコンプレックス構造のポリ乳酸複合体を 形成できる。 Here, the alternate lamination method is a method for producing a thin film by alternately immersing a substrate in a D-form polylactic acid solution and an L-form polylactic acid solution. By applying such an alternate layering method, a polylactic acid complex having a stereocomplex structure can be formed more efficiently than in a balta (solution).
具体的には、例えば、 D体ポリ乳酸をァセトニトリルに溶解させた溶液と、 L体ポリ乳 酸をァセトニトリルに溶解させた溶液とを準備し、 PFA (四フッ化工チレン'パーフル ォロアルコキビニルエーテル共重合榭脂)等の基板を各溶液に交互に浸漬.乾燥を 繰り返す方法が挙げられる。  Specifically, for example, a solution in which D-form polylactic acid is dissolved in acetonitrile and a solution in which L-form polylactic acid is dissolved in acetonitrile are prepared, and PFA (tetrafluoroethylene / perfluoroalkoxy vinyl ether copolymer) is prepared. For example, a method of repeatedly immersing and drying a substrate such as a polymerized resin in each solution.
本発明において前記ポリ乳酸複合体は、従来法であるキャスト法等によって製造す ることもできる。しかし、この場合、交互積層法と比較してステレオコンプレックス構造 が形成される確率が低くなる。キャスト法の場合はステレオコンプレックス構造ではな い構造、例えば単独結晶が形成される確率が比較的高くなつてしまうが、交互積層 法で製造した場合であると、ステレオコンプレックス構造を通常 90%以上程度の割合 で形成することができる。 In the present invention, the polylactic acid composite can also be produced by a conventional casting method or the like. However, in this case, the probability that a stereocomplex structure is formed is lower than that in the alternate lamination method. In the case of the casting method, a structure that is not a stereocomplex structure, for example, the probability that a single crystal is formed is relatively high, but in the case of manufacturing by an alternating lamination method, the stereocomplex structure is usually about 90% or more. Percentage of Can be formed.
[0029] また、前記ポリ乳酸複合体の製造方法は限定されず、例えば、このような交互積層 法やキャスト法により製造することができる。  [0029] The method for producing the polylactic acid composite is not limited, and can be produced, for example, by such an alternate lamination method or a casting method.
[0030] また、前記ポリ乳酸複合体は、生体内における分解速度を所望の速度に調整する ことができる。具体的には、使用する D体ポリ乳酸又は L体ポリ乳酸の分子量を変更 することがで調製することができる。 [0030] In addition, the polylactic acid complex can adjust the degradation rate in vivo to a desired rate. Specifically, it can be prepared by changing the molecular weight of D-form polylactic acid or L-form polylactic acid to be used.
[0031] 本発明の生体内留置物の薬剤放出層は、このようなポリ乳酸複合体を含む。 [0031] The drug release layer of the in-vivo indwelling material of the present invention contains such a polylactic acid complex.
[0032] 次に、薬剤放出層及びそれに含まれる生物学的生理活性物質について説明する 本発明の生体内留置物は本体部の表面に薬剤放出層を有し、その薬剤放出層は 、前記ポリ乳酸複合体と生物学的生理活性物質とを含む。 [0032] Next, the drug release layer and the biological physiologically active substance contained therein will be described. The in-vivo indwelling material of the present invention has a drug release layer on the surface of the main body, and the drug release layer comprises It contains a lactic acid complex and a biological physiologically active substance.
ここで、生物学的生理活性物質の種類、性状等は特に限定されない。本発明の生 体内留置物を生体内に留置した後、その生体内で分解していく過程で薬剤放出層 力も放出され、所望の効果、例えば、狭窄、再狭窄を抑制する効果や、その薬剤放 出層の生分解に伴う炎症反応を抑制する効果を奏するものであればよい。  Here, the type and properties of the biologically physiologically active substance are not particularly limited. After the in vivo indwelling material of the present invention is placed in the living body, the drug release layer force is also released in the process of being decomposed in the living body, and the desired effect, for example, the effect of suppressing stenosis and restenosis, and the drug Any material may be used as long as it has an effect of suppressing an inflammatory reaction associated with biodegradation of the release layer.
[0033] この生物学的生理活性物質としては、例えば、抗癌剤、免疫抑制剤、抗生物質、抗 リウマチ剤、抗血栓薬、 HMG— CoA還元酵素阻害剤、 ACE阻害剤、カルシウム拮 抗剤、抗高脂血症薬、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、 GPIIbllla拮 抗薬、レチノイド、フラボノイド、カロチノイド、脂質改善薬、 DNA合成阻害剤、チロシ ンキナーゼ阻害剤、抗血小板薬、抗炎症薬、生体由来材料、インターフェロン及び N O産生促進物質を好ましく例示できる。前記生物学的生理活性物質は、これらからな る群力も選ばれる少なくとも 1つであることがより好ましい。 [0033] Examples of this biological and physiologically active substance include anticancer agents, immunosuppressive agents, antibiotics, antirheumatic agents, antithrombotic agents, HMG-CoA reductase inhibitors, ACE inhibitors, calcium antagonists, anticancer agents, Hyperlipidemic agent, integrin inhibitor, antiallergic agent, antioxidant, GPIIbllla antagonist, retinoid, flavonoid, carotenoid, lipid improver, DNA synthesis inhibitor, tyrosin kinase inhibitor, antiplatelet agent, anti-inflammatory agent Preferred examples include biological material, interferon and NO production promoting substance. More preferably, the biologically and physiologically active substance is at least one selected from the group force consisting of these.
[0034] ここで、抗癌剤としては、例えばビンクリスチン、ビンブラスチン、ビンデシン、イリノテ カン、ピラルビシン、パクリタキセル、ドセタキセル、メトトレキサート等が好ましい。 また、免疫抑制剤としては、例えば、シロリムス、エベロリムス、バイオリムス、タクロリ ムス、ァザチォプリン、シクロスポリン、シクロフォスフアミド、ミコフエノール酸モフエチ ル、ダスペリムス、ミゾリビン等が好ましい。 [0034] Here, as the anticancer agent, for example, vincristine, vinblastine, vindesine, irinotecan, pirarubicin, paclitaxel, docetaxel, methotrexate and the like are preferable. Moreover, as an immunosuppressant, for example, sirolimus, everolimus, biolimus, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolic acid mofeethyl, dasperimus, mizoribine and the like are preferable.
また、抗生物質としては、例えば、マイトマイシン、アドリアマイシン、ドキソルビシン、 ァクチノマイシン、ダウノルビシン、イダルビシン、ピラルビシン、アクラルビシン、ェピ ルビシン、ぺプロマイシン、ジノスタチンスチマラマー等が好ましい。 Examples of antibiotics include mitomycin, adriamycin, doxorubicin, Actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epilubicin, pepromycin, dinostatin styramer and the like are preferred.
[0035] また、抗リウマチ剤としては、例えば、メトトレキサート、チオリンゴ酸ナトリウム、ぺニ シラミン、口ベンザリット等が好ましい。  [0035] As the anti-rheumatic agent, for example, methotrexate, sodium thiomalate, penicillamine, oral benzalit and the like are preferable.
また、抗血栓薬としては、例えば、へパリン、アスピリン、抗トロンビン製剤、チクロピ ジン、ヒルジン等が好ましい。  As the antithrombotic drug, for example, heparin, aspirin, antithrombin preparation, ticlopidine, hirudin and the like are preferable.
また、 HMG— CoA還元酵素阻害剤としては、例えば、セリバスタチン、セリバスタ チンナトリウム、アトルバスタチン、ニスパスタチン、イタパスタチン、フルパスタチン、 フルパスタチンナトリウム、シンパスタチン、口パスタチン、プラバスタチン等が好まし い。  As the HMG-CoA reductase inhibitor, for example, cerivastatin, cerivastatin sodium, atorvastatin, nispastatin, itapastatin, flupastatin, flupastatin sodium, simpastatin, oral pastatin, pravastatin and the like are preferable.
[0036] また、 ACE阻害剤としては、例えば、キナプリル、ぺリンドプリルエルプミン、トランド ラプリル、シラザプリル、テモカプリル、デラプリル、マレイン酸ェナラプリル、リシノプリ ル、カプトプリル等が好ましい。  [0036] Further, as the ACE inhibitor, for example, quinapril, perindopril elpmin, trandolapril, cilazapril, temocapril, delapril, enalapril maleate, lisinopril, captopril and the like are preferable.
また、カルシウム拮抗剤としては、例えば、ヒフエジピン、二ルバジピン、ジルチアゼ ム、ベ-ジピン、二ソルジピン等が好ましい。  In addition, as the calcium antagonist, for example, hifedipine, dirubadipine, diltiazem, vedipine, disoldipine and the like are preferable.
また、抗高脂血症剤としては、例えば、プロブコールが好ましい。  Moreover, as an antihyperlipidemic agent, for example, probucol is preferable.
また、抗アレルギー剤としては、例えば、トラ-ラストが好ましい。  As the antiallergic agent, for example, tralast is preferable.
[0037] また、抗酸化剤としては、例えば、カテキン類、アントシァニン、プロアントシァ-ジン[0037] Examples of the antioxidant include catechins, anthocyanins, and proanthocyanins.
、リコピン、 j8 -カロチン等が好ましい。カテキン類の中では、ェピガロカテキンガレー トが特に好ましい。 Lycopene, j8-carotene and the like are preferred. Of the catechins, epigallocatechin gallate is particularly preferred.
また、レチノイドとしては、例えば、オールトランスレチノイン酸が好ましい。 また、チロシンキナーゼ阻害剤としては、例えば、ゲニスティン、チノレフォスチン、ァ 一ブスタチン等が好まし 、。  Further, as the retinoid, for example, all-trans retinoic acid is preferable. In addition, as the tyrosine kinase inhibitor, for example, genistein, chinorephostin, albumin and the like are preferable.
また、抗炎症剤としては、例えば、デキサメタゾン、プレドニゾロン等のステロイドが 好ましい。  As the anti-inflammatory agent, for example, steroids such as dexamethasone and prednisolone are preferable.
[0038] 更に、生体由来材料としては、例えば、 EGF (epidermal growth factor)、VE [0038] Further, examples of the biological material include EGF (epidermal growth factor), VE
jr (vascular endothelial growth factor)、 ir LjF(hepatocyte growth fac tor)、 PDGF (platelet derived growth factor)、 BFGF (basic nbroblast gr owth factor)等が好ましい。 jr (vascular endothelial growth factor), ir LjF (hepatocyte growth fac tor), PDGF (platelet derived growth factor), BFGF (basic nbroblast gr owth factor) and the like.
[0039] 本発明の生体内留置物において薬剤放出層は、このような生物学的生理活性物 質と前記ポリ乳酸複合体とからなるものであってもよいが、更に、他の成分 (以下、「残 部成分」ともいう。)を含んでもよい。この残部成分は生体に安全であり、かつ、生分解 する成分であれば特に限定されない。例えば生分解性高分子を用いることができる。  [0039] In the in vivo indwelling material of the present invention, the drug release layer may be composed of such a biological and physiologically active substance and the polylactic acid complex. , Also referred to as “remainder component”). The remaining component is not particularly limited as long as it is safe for the living body and biodegradable. For example, a biodegradable polymer can be used.
[0040] このような生分解性高分子としては、例えば、前記ポリ乳酸複合体のようなステレオ コンプレックス構造を有さないポリ乳酸 (D体ポリ乳酸の単体、 L体ポリ乳酸の単体、 D 体と L体との重合体 (共重合体等)等)、ポリダリコール酸、ポリヒドロキシ酪酸、ポリリン ゴ酸、ポリ α アミノ酸、コラーゲン、ラミニン、へパラン硫酸、フイブロネクチン、ビト ロネクチン、コンドロイチン硫酸、ヒアルロン酸、ポリ力プロラタトン及びこれらの共重合 体力 なる群力 選ばれる少なくとも 1つである混合物やィ匕合物(共重合体等)が挙 げられる。これらの中でもポリ乳酸及び Ζ又はポリ乳酸とポリダリコール酸との共重合 体を好ましく用いることができる。理由は、所望の強度や分解速度を設定することが 容易だからである。  [0040] Examples of such biodegradable polymers include polylactic acid having no stereocomplex structure such as the polylactic acid complex (D-form polylactic acid alone, L-form polylactic acid alone, D-form And L-form polymers (copolymers, etc.), polydalicolic acid, polyhydroxybutyric acid, polyphosphonic acid, poly α-amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, Poly-force prolatatones and their co-polymer power are at least one selected from mixtures and composites (copolymers, etc.). Among these, polylactic acid and cocoon, or a copolymer of polylactic acid and polydaricholic acid can be preferably used. The reason is that it is easy to set the desired strength and decomposition rate.
[0041] このような成分力もなる薬剤放出層が 1層からなるものである場合、前記ポリ乳酸複 合体と、前記生物学的生理活性物質との含有率の比は 99 : 1〜1 : 99であることが好 ましく、 90 : 10〜: L0 : 90であること力 Sより好ましく、 80 : 20〜20 : 80でぁることカ更に 好ましい。理由は、所望の生物学的生理活性物質の放出速度を得ることが容易だか らである。  [0041] When the drug release layer having such component power is composed of one layer, the ratio of the content ratio of the polylactic acid complex and the biologically physiologically active substance is 99: 1 to 1:99. 90: 10˜: L0: 90 is more preferable than force S, and 80: 20-20: 80 is more preferable. The reason is that it is easy to obtain the release rate of the desired biological and physiologically active substance.
更に、この薬剤放出層において、前記残部成分 (前記生分解性高分子等)の含有 率は特に限定されな!、が、前記ポリ乳酸複合体と前記生物学的生理活性物質との 合計の質量に対して、 40質量%以下であることが好ましい。 40質量%以下であると 薬剤放出層の強度がより高くなるからである。  Furthermore, in this drug release layer, the content of the remaining component (the biodegradable polymer, etc.) is not particularly limited! However, the total mass of the polylactic acid complex and the biological physiologically active substance is not limited. The content is preferably 40% by mass or less. This is because the strength of the drug release layer becomes higher when it is 40% by mass or less.
[0042] また、この薬剤放出層は上記のように 1層力もなるものであっても、あるいは 2以上の 層力もなるものであってもよい。また、 2以上の層からなり、それらの層が前記生物学 的生理活性物質を含む層及び前記ポリ乳酸複合体を含む層を含むことが好ましい。 つまり、前記薬剤放出層は、前記生物学的生理活性物質を含む層及び前記ポリ乳 酸複合体を含む層の 2層及び他の層からなることが好ましい。 更に、前記薬剤放出層は、前記生物学的生理活性物質を含む層及び前記ポリ乳 酸複合体を含む層の 2層からなることが好ましい。 [0042] Further, the drug release layer may have one layer force as described above, or may have two or more layer forces. Further, it is preferably composed of two or more layers, and these layers include a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex. That is, the drug release layer is preferably composed of two layers, ie, a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex, and another layer. Furthermore, the drug release layer is preferably composed of two layers: a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex.
更に、前記薬剤放出層において、前記生物学的生理活性物質を含む層が本体部 側に存在し、その上面に前記ポリ乳酸複合体を含む層が存在することが好ましい。 前記薬剤放出層が 2以上の層からなる場合、本発明の生体内留置物が生体内に 留置された後、その生体内でこの薬剤放出層が分解していく過程で、前記生物学的 生理活性物質が一定速度で放出されやす!/ヽからである。  Furthermore, in the drug release layer, it is preferable that a layer containing the biological physiologically active substance is present on the main body side, and a layer containing the polylactic acid complex is present on the upper surface thereof. In the case where the drug release layer is composed of two or more layers, after the in-vivo indwelling material of the present invention is placed in the living body, in the process in which the drug release layer is decomposed in the living body, the biological physiology is performed. The active substance is easily released at a constant rate!
[0043] ここで前記生物学的生理活性物質を含む層は、前記生物学的生理活性物質と、 前記残部成分 (前記生分解性高分子等)とからなる層である。ここで前記生物学的生 理活性物質と、前記残部成分との質量比は特に限定されないものの、 10 : 90〜90: 10であることが好ましい。 Here, the layer containing the biological physiologically active substance is a layer composed of the biological physiologically active substance and the remaining component (the biodegradable polymer or the like). Here, the mass ratio of the biologically biologically active substance and the remaining component is not particularly limited, but is preferably 10:90 to 90:10.
また、前記ポリ乳酸複合体を含む層は、前記ポリ乳酸複合体と前記残部成分とから なる層である。ここで前記ポリ乳酸複合体と前記残部成分との質量比は特に限定され な 、ものの、 99: 1〜70: 30であることが好まし!/、。  The layer containing the polylactic acid complex is a layer composed of the polylactic acid complex and the remaining component. Here, the mass ratio between the polylactic acid complex and the remaining component is not particularly limited, but is preferably 99: 1 to 70: 30! /.
[0044] また、この薬剤放出層は、前記生物学的生理活性物質を含む層及び前記ポリ乳酸 複合体を含む層の 2つの層以外の他の層を有する場合、他の層は、前記残部成分 力もなる層である。 [0044] In addition, when the drug release layer has a layer other than the two layers of the layer containing the biological physiologically active substance and the layer containing the polylactic acid complex, the other layer is the remaining portion. It is a layer that also has component power.
[0045] また、この薬剤放出層にお 、て、これらの層は、各々複数存在してもよ 、。また、こ れらの層が積層される順番も限定されない。例えば、前記本体部の表面に前記残部 成分からなる層を有し、その上面に前記生物学的生理活性物質を含む層や前記ポリ 乳酸複合体を含む層を有してもよい。このような場合であっても本発明の範囲内であ る。  [0045] In the drug release layer, a plurality of these layers may be present. Further, the order in which these layers are stacked is not limited. For example, it may have a layer made of the remaining component on the surface of the main body, and a layer containing the biological physiologically active substance or a layer containing the polylactic acid complex on the upper surface. Even such a case is within the scope of the present invention.
[0046] また、このような薬剤放出層の厚さは特に限定されず、前記本体部の表面に保持さ せる必要がある前記生物学的生理活性物質の量や種類及び生体内留置物の種類 等、更に生体外力 生体内の病変部へのデリバリー性 (到達容易性)やその他諸条 件を考慮して適宜決めることができる。この厚さは 1〜: LOO μ mであることが好ましぐ 1〜50 μ mであることが更に好ましぐ 1〜20 μ mであることが最も好ましい。  [0046] Further, the thickness of such a drug release layer is not particularly limited, and the amount and type of the biological and physiologically active substance that needs to be held on the surface of the main body and the type of in-vivo indwelling material. Furthermore, it can be determined as appropriate in consideration of the extracorporeal force, delivery to the lesion in the living body (easy reachability), and other various conditions. This thickness is preferably 1 to: LOO μm, more preferably 1 to 50 μm, and most preferably 1 to 20 μm.
[0047] また、前記薬剤放出層が 2以上の層からなる場合は、それら全ての層の合計の厚さ 力 のような範囲であることが好ましい。そして、前記生物学的生理活性物質を含む 層の厚さは 1〜: LOO mであることが好ましぐ 1〜15 /ζ πιであることがより好ましぐ 3 〜7 mであることが更に好ましい。また、前記ポリ乳酸複合体を含む層の厚さは 1〜 75 mであることが好ましぐ 1〜25 /ζ πιであることがより好ましぐ 1〜10 /ζ πιである ことが更に好ましい。 [0047] When the drug release layer is composed of two or more layers, the total thickness of all the layers is A range such as force is preferred. The thickness of the layer containing the biological physiologically active substance is 1 to: LOO m is preferably 1 to 15 / ζ πι, and more preferably 3 to 7 m. Further preferred. The layer containing the polylactic acid complex preferably has a thickness of 1 to 75 m, more preferably 1 to 25 / ζ πι, and more preferably 1 to 10 / ζ πι. preferable.
[0048] このような薬剤放出層において、前記生物学的生理活性物質は、少なくともその一 部が粉体として含まれていることが好ましい。そして、この粉体の生物学的生理活性 物質は前記薬剤放出層中で分散していることが好ましい。また、前記薬剤放出層が 前記生物学的生理活性物質を含む層を有する場合であれば、この層中にお 、てこ の粉体の生物学的生理活性物質が分散していることが好ましい。本発明の生体内留 置物が生体内に留置された後、その生体内で分解していく過程で、前記生物学的生 理活性物質が一定の速度で放出され易 、からである。  [0048] In such a drug release layer, it is preferable that at least a part of the biological physiologically active substance is contained as a powder. The biologically and biologically active substance in the powder is preferably dispersed in the drug release layer. Further, when the drug release layer has a layer containing the biological physiologically active substance, it is preferable that the biological physiologically active substance of the leverage powder is dispersed in this layer. This is because the biologically biologically active substance is easily released at a constant rate in the process of decomposing in vivo after the in vivo indwelling material of the present invention is indwelled.
[0049] また、前記生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学 結合していることが好ましい。本発明の生体内留置物が生体内に留置された後、そ の生体内で分解して ヽく過程で、生物学的生理活性物質がポリ乳酸複合体の分解と 同時に、より一定の速度で放出され易いからである。このことより炎症反応をより抑制 することができる。  [0049] Further, it is preferable that at least a part of the biological physiologically active substance is chemically bonded to the polylactic acid complex. After the in vivo indwelling material of the present invention is indwelled in the living body, in the process of being decomposed in the living body, the biological physiologically active substance is decomposed at a more constant rate simultaneously with the decomposition of the polylactic acid complex. This is because it is easily released. This can further suppress the inflammatory reaction.
[0050] また、前記生物学的生理活性物質の少なくとも一部が、前記ポリ乳酸複合体にお ける、前記交互積層法により形成した前記マイクロオーダー薄膜及び Ζ又はナノォ 一ダー超薄膜の薄膜 (超薄膜を含む)の間に含有されて!ヽることが好ま ヽ。本発明 の生体内留置物が生体内に留置された後、その生体内で分解していく過程で、ポリ 乳酸複合体の分解と同時に生物学的生理活性物質が、より一定の速度で放出され 易いからである。  [0050] In addition, at least a part of the biological and physiologically active substance is a micro-order thin film and an ultrathin or nano-order ultra-thin film (ultra-thin film) formed by the alternate lamination method in the polylactic acid complex. (Including thin film) is preferred! In the process in which the in-vivo indwelling material of the present invention is placed in the living body and then decomposed in the living body, the biological physiologically active substance is released at a more constant rate simultaneously with the decomposition of the polylactic acid complex. It is easy.
[0051] また、このような薬剤放出層が、前記生物学的生理活性物質である狭窄又は再狭 窄抑制剤と化学結合した前記 D体ポリ乳酸と、前記生物学的生理活性物質である前 記抗炎症剤と化学結合した前記 L体ポリ乳酸とを用いて、前記マイクロオーダー薄膜 及び Ζ又はナノオーダー超薄膜の薄膜を形成して行う交互積層法により製造された 、前記生物学的生理活性物質を含む前記ポリ乳酸複合体を含むことが好まし ヽ。 また、このような薬剤放出層が、前記生物学的生理活性物質である狭窄又は再狭 窄抑制剤と化学結合した前記 L体ポリ乳酸と、前記生物学的生理活性物質である前 記抗炎症剤と化学結合した前記 D体ポリ乳酸とを用いて、前記マイクロオーダー薄膜 及び Z又はナノオーダー超薄膜の薄膜を形成して行う交互積層法により製造された 、前記生物学的生理活性物質を含む前記ポリ乳酸複合体を含むことが好まし ヽ。 このようなポリ乳酸複合体は、それを形成する薄膜の積層構造において、前記狭窄 又は再狭窄抑制剤と前記抗炎症剤とが交互に積層されることとなるので、これら抑制 剤及び抗炎症剤の生体への放出速度がより一定となり好ましい。 [0051] In addition, such a drug-releasing layer has the D-form polylactic acid chemically bonded to the stenosis or restenosis inhibitor, which is the biological physiologically active substance, and the biological physiologically active substance. The biological and physiological activity produced by the alternate lamination method in which the micro-order thin film and the cocoon or nano-order ultra-thin film are formed using the L-form polylactic acid chemically bonded to the anti-inflammatory agent. It is preferable to include the polylactic acid complex containing a substance. In addition, the drug-releasing layer has the L-form polylactic acid chemically bonded to the biological physiologically active substance stenosis or restenosis inhibitor and the anti-inflammation which is the biological physiologically active substance. Using the D-form polylactic acid chemically bonded to an agent, and producing the micro-order thin film and the Z- or nano-order ultra-thin thin film by the alternate lamination method, including the biological and physiologically active substance It is preferable to contain the polylactic acid complex. In such a polylactic acid complex, the stenosis or restenosis inhibitor and the anti-inflammatory agent are alternately laminated in the laminated structure of the thin film forming the polylactic acid complex. The release rate into the living body is preferable because it becomes more constant.
[0052] 本発明の生体内留置物は、このような薬剤放出層を本体部の表面に有する。 [0052] The in-vivo indwelling material of the present invention has such a drug release layer on the surface of the main body.
次に、この本体部について説明する。  Next, the main body will be described.
なお、本発明の生体内留置物は、前記薬剤放出層を次に説明する本体部の表面 に有することが好ましいが、前記薬剤放出層と本体部との間に他の物質が存在して いてもよい。つまり、前記薬剤放出層が本体部の表面上に存在するだけでなぐ本体 部の表面の上に存在する場合であっても本発明の範囲内である。  Note that the in-vivo indwelling material of the present invention preferably has the drug release layer on the surface of the main body described below, but other substances are present between the drug release layer and the main body. Also good. In other words, even when the drug release layer is present on the surface of the main body not only on the surface of the main body, it is within the scope of the present invention.
[0053] 本発明の生体内留置物において本体部は、その生体内留置物における主要部で ある。 [0053] In the in-vivo indwelling body of the present invention, the main body is the main part of the in-vivo in-vivo.
例えば、本発明の生体内留置物が、ステント本体の表面に前記薬剤放出層を有す るステントである場合、ここでいぅステント本体力 本発明でいう本体部に相当する。  For example, when the in-vivo indwelling material of the present invention is a stent having the drug release layer on the surface of the stent body, it corresponds to the body portion referred to in the present invention.
[0054] この本体部の形状は、チューブ状、管状、網状、繊維状、不織布状、織布状又はフ イラメント状であることが好ましい。理由は、生体内の管腔に容易に留置することがで きるためである。 [0054] The shape of the main body is preferably a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape. The reason is that it can be easily placed in a lumen in a living body.
[0055] また、この本体部を形成する材料は、本発明の生体内留置物を血管、胆管、気管、 食道、尿道などの生体内の管腔に生じた病変部に留置することができる強度等を有 するものであれば特に限定されない。例えば、金属材料、高分子材料、セラミックス 等を用いることが形成することができる。これらの中でも、この本体部は、金属材料及 び Z又は高分子材料力もなるものであることが好まし 、。金属材料力もなる場合は、 強度に優れ、本発明の生体内留置物を病変部に確実に留置することが可能だから である。また、高分子材料力もなる場合は、柔軟性に優れ、拡張した際に生体 (血管 壁等)に過度の力が加わらないためである。 [0055] Further, the material forming the main body has a strength that allows the in-vivo indwelling material of the present invention to be placed in a lesion part generated in a lumen in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, or a urethra. There is no particular limitation as long as it has the like. For example, a metal material, a polymer material, ceramics, or the like can be used. Among these, it is preferable that the main body portion is also made of metal material and Z or polymer material. This is because the strength of the metal material is excellent, and the in vivo indwelling material of the present invention can be surely placed in the affected area. In addition, when it has high polymer material strength, it has excellent flexibility, and when expanded, the body (blood vessels) This is because excessive force is not applied to the wall.
[0056] ここで、金属材料としては、例えばステンレス鋼、 Ni— Ti合金、タンタル、ニッケル、 クロム、イリジウム、タングステン、コバルト系合金等が挙げられる。そして、これらの中 でも、ステンレス鋼であることが好ましぐ更に SUS316Lであることが最も好ましい。 耐食性が高いからである。  Here, examples of the metal material include stainless steel, Ni—Ti alloy, tantalum, nickel, chromium, iridium, tungsten, cobalt-based alloy, and the like. Of these, stainless steel is preferred, and SUS316L is most preferred. This is because the corrosion resistance is high.
[0057] また、高分子材料は、生分解性を有するものであっても、生分解しな ヽものであつ てもよい。所望の一定期間 (例えば数週間〜数ケ月)以上、生体内で分解せず、形状 を保ち、病変部等に留置できるものであればよい。  [0057] The polymer material may be biodegradable or non-biodegradable. Any material can be used as long as it does not decompose in a living body for a desired period of time (for example, several weeks to several months), maintains its shape, and can be placed in a lesion or the like.
このような高分子材料としては、例えば、ポリエチレンテレフタレート、ポリブチレンテ レフタレート等のポリエステル類又はそれを構成単位とするポリエステル系エラストマ 一、ナイロン 6、ナイロン 12、ナイロン 66、ナイロン 610等のポリアミド類又はそれを構 成単位とするポリアミド系エラストマ一、ポリウレタン類、ポリエチレン、ポリプロピレン 等のポリオレフイン類、又はそれらを構成単位とするポリオレフイン系エラストマ一、ポ リエチレンカーボネート、ポリプロピレンカーボネート等のポリカーボネート、セノレロー スアセテート、セルロースナイトレート等が挙げられる。また、例えば、前記生分解性 高分子を用いることもできる。  Examples of such a polymer material include polyesters such as polyethylene terephthalate and polybutylene terephthalate, or polyester elastomers having the structural unit thereof, polyamides such as nylon 6, nylon 12, nylon 66, nylon 610, and the like. Polyamide elastomers as structural units, polyolefins such as polyurethanes, polyethylene and polypropylene, or polyolefin elastomers containing these as structural units, polycarbonates such as polyethylene carbonate and polypropylene carbonate, sanolose acetate, cellulose nitrate Etc. Also, for example, the biodegradable polymer can be used.
[0058] また、この本体部の形状、大きさ等も特に限定されない。本発明の生体内留置物を 血管、胆管、気管、食道、尿道などの生体内の管腔等に生じた病変部に留置するこ とができるものであればよ!、。  [0058] The shape, size, etc. of the main body are not particularly limited. The in-vivo indwelling material of the present invention may be any material that can be indwelled in a lesion in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, or a urethra! ,.
[0059] 本発明の生体内留置物は、このような本体部の表面に前記薬剤放出層を有する生 体内留置物である。  The in-vivo indwelling material of the present invention is an in-vivo indwelling material having the drug release layer on the surface of such a main body.
本発明の生体内留置物は、生体内に生じた狭窄部や閉塞部等を拡張するために 当該部位に挿入し、拡張した上で、その状態を保持するために当該部位に留置する 生体内留置物であれば特に限定されない。  The in-vivo indwelling material of the present invention is inserted into the site to expand a stenosis part or occlusion part, etc. generated in the living body, expanded, and then placed in the site to maintain the state. If it is an indwelling thing, it will not specifically limit.
例えば、ステント、カバードステント、ステントグラフト、血管瘤治療デバイス、保持体 にステントを使用した体内埋め込み医療器などである。  Examples include stents, covered stents, stent grafts, aneurysm treatment devices, and implantable medical devices that use a stent as a holder.
また、例えば、中空器官及び Z又は管系 (尿管、胆管、尿道、子宮、食道、気管支) 内の内腔支持機能を有するものである。 また、例えば、中空空間接続、管系のための閉鎖システムとしての閉鎖部材である これらの大きさ等は適用箇所に応じて適宣選択すれば良い。 Also, for example, it has a hollow organ and a function of supporting the lumen in the Z or duct system (ureter, bile duct, urethra, uterus, esophagus, bronchi). Further, for example, the size of the closing member as a closing system for hollow space connection and pipe system may be appropriately selected according to the application location.
[0060] これらの中でも本発明の生体内留置物はステントであることが好ましい。理由は、病 変部へのデリバリーや留置が容易に行えるためである。  [0060] Among these, the in-vivo indwelling material of the present invention is preferably a stent. The reason is that it can be easily delivered and placed in the affected area.
[0061] 本発明の生体内留置物がステントである場合、その本体部であるステント本体は、 バルーン拡張タイプ、自己拡張タイプのいずれであっても良い。このステント本体の 材料が弾性体であれば、この弾性力を利用した自己拡張手段を用いることができる。  [0061] When the in-vivo indwelling object of the present invention is a stent, the main stent body may be either a balloon expansion type or a self-expansion type. If the material of the stent body is an elastic body, self-expanding means using this elastic force can be used.
[0062] また、このステントの大きさは適用箇所に応じて適宣選択すれば良い。例えば、心 臓の冠状動脈に用いる場合は、拡張前における外径は 1. 0〜3. Omm,長さは 5〜 50mmが好ましい。また、ステントの肉厚は、病変部に留置するために必要なラジア ルフォースを有し、例えば血管内に用いる場合あれば血流を阻害しない程度であれ ば特に限定されないが、ステント本体の肉厚として 1〜: LOOO μ mの範囲が好ましぐ 10〜500 μ mの範囲力より好ましく、 40〜200 μ mの範囲力 ^最ち好まし!/ヽ。  [0062] The size of the stent may be appropriately selected according to the application location. For example, when used for a coronary artery of the heart, the outer diameter before dilation is preferably 1.0 to 3. Omm and the length is preferably 5 to 50 mm. In addition, the thickness of the stent has a radial force necessary for placement in the lesion, and is not particularly limited as long as it does not inhibit blood flow when used in a blood vessel, for example. As 1-: LOOO μm range is preferred 10-500 μm range force is preferred, 40-200 μm range force ^ most preferred! / ヽ.
[0063] また、そのステントの形状も限定されない。例えば、図 1に示すものが挙げられる。  [0063] Further, the shape of the stent is not limited. An example is shown in FIG.
図 1において、ステント本体 1は、両末端部が開口し、前記両末端部の間を長手方 向に延在する円筒体である。円筒体の側面は、その外側面と内側面とを連通する多 数の切欠部を有し、この切欠部が変形することによって、円筒体の径方向に拡縮可 能な構造になっており、目的部位に留置され、その形状を維持する。  In FIG. 1, a stent body 1 is a cylindrical body that is open at both ends and extends between the ends in the longitudinal direction. The side surface of the cylindrical body has a large number of notches communicating with the outer side surface and the inner side surface, and this notch portion is deformed to have a structure that can expand and contract in the radial direction of the cylindrical body. It is placed at the target site and maintains its shape.
図 1に示す態様において、ステント本体 1は、線状部材 2からなり、内部に切り欠き 部を有する略菱形の要素 11を基本単位とする。複数の略菱形の要素 11が、略菱形 の形状がその短軸方向に連続して配置され結合することで環状ユニット 12をなして いる。環状ユニット 12は、隣接する環状ユニットと線状の連結部材 13を介して接続さ れている。これにより複数の環状ユニット 12がー部結合した状態でその軸方向に連 続して配置される。ステント本体 (ステント) 1は、このような構成により、両末端部が開 口し、前記両末端部の間を長手方向に延在する円筒体をなしている。ステント本体( ステント) 1は、略菱形の切り欠き部を有しており、この切欠部が変形することによって 、円筒体の径方向に拡縮可能な構造になっている。 [0064] ステント本体 1が線状部材 2で構成される場合、ステント本体 1を多数の切欠き部を 有するように構成する線状部材 2の幅方向の長さは、好ましくは 0. 01-0. 5mmで あり、より好ましくは 0. 05〜0. 2mmである。 In the embodiment shown in FIG. 1, the stent body 1 is composed of a linear member 2 and has a substantially rhombic element 11 having a notch inside as a basic unit. A plurality of substantially rhombic elements 11 are arranged in a continuous manner in the minor axis direction of the approximately rhombus shape to form an annular unit 12. The annular unit 12 is connected to an adjacent annular unit via a linear coupling member 13. As a result, the plurality of annular units 12 are continuously arranged in the axial direction in a state where the portions are joined. With such a configuration, the stent body (stent) 1 has a cylindrical body having both ends opened and extending between the ends in the longitudinal direction. The stent body (stent) 1 has a substantially diamond-shaped notch, and has a structure that can be expanded and contracted in the radial direction of the cylindrical body by deformation of the notch. [0064] When the stent main body 1 is composed of the linear member 2, the length in the width direction of the linear member 2 configured to have a large number of notches is preferably 0.01- It is 0.5 mm, more preferably 0.05 to 0.2 mm.
[0065] なお、上記に示したステント 1は一態様に過ぎず、線状部材 2からなり、両末端部が 開口し、前記両末端部の間を長手方向に延在する円筒体であって、その側面上に、 外側面と内側面とを連通する多数の切欠部を有し、この切欠部が変形することによつ て、円筒体の径方向に拡縮可能な構造を広く含む。  [0065] It should be noted that the stent 1 shown above is only one embodiment, and is a cylindrical body that is composed of a linear member 2, has both end portions open, and extends between the both end portions in the longitudinal direction. In addition, a large number of notches that communicate the outer side surface and the inner side surface are provided on the side surface, and a structure that can be expanded and contracted in the radial direction of the cylindrical body by deforming the notch portion is widely included.
[0066] 次に本発明の生体内留置物の製造方法について説明する。  [0066] Next, a method for producing the in-vivo indwelling material of the present invention will be described.
本発明の生体内留置物は例えば次の方法で製造することできる。  The in-vivo indwelling thing of this invention can be manufactured with the following method, for example.
例えば、上記のような交互積層法やキャスト法により製造した前記ポリ乳酸複合体と 、前記生物学的生理活性物質と、所望により前記残部成分とを、例えば上記のような 好ましい含有率となるように公知の方法、例えばミキサーを用いた混合方法や、各成 分を溶融して混練する方法や、各成分をペースト状にして混練する方法等を適用し て混合して混合物を調製し、更に、この混合物を前記本体部の表面に公知の方法、 例えば、塗布、スプレー、はけを用いた方法、本体部を浸漬させる方法等により、前 記薬剤放出層を形成することができる。前記薬剤放出層の厚さは、溶液の濃度ゃス プレー等による塗布量を調整すること等、ここに示した公知の方法おいて適宜調製 することでさる。  For example, the polylactic acid complex produced by the alternating lamination method and the casting method as described above, the biological and physiologically active substance, and optionally the remaining component so as to have a preferable content as described above, for example. To prepare a mixture by applying a known method such as a mixing method using a mixer, a method of melting and kneading each component, a method of kneading each component into a paste, and the like. The drug release layer can be formed on the surface of the main body by a known method such as coating, spraying, brushing, or dipping the main body. The thickness of the drug release layer can be appropriately adjusted by a known method shown here, such as adjusting the coating amount by the concentration of the solution or the like.
[0067] また、例えば、前記薬剤放出層が前記粉体の生物学的生理活性物質を含有する 場合であれば、例えば、上記のような交互積層法やキャスト法により製造した前記ポリ 乳酸複合体と、前記粉体の生物学的生理活性物質と、所望により前記残部成分とを 、例えば上記のような好ましい含有率となるように、上記と同様な公知の方法を適用 して混合して混合物を調製し、更に、この混合物を用いて前記本体部の表面に上記 と同様な公知の方法によって薬剤放出層を形成する方法が挙げられる。  [0067] Also, for example, if the drug release layer contains the biologically physiologically active substance of the powder, the polylactic acid composite produced by, for example, the alternating lamination method or the casting method as described above And the biological and biologically active substance of the powder and, if desired, the remaining component, for example, by applying a known method similar to the above so as to have a preferable content as described above, and mixing the mixture And a method of forming a drug release layer on the surface of the main body using the mixture by a known method similar to the above.
[0068] また、例えば、前記薬剤放出層が前記生物学的生理活性物質を含む層及び前記 ポリ乳酸複合体を含む層からなる場合であれば、例えば、前記生物学的生理活性物 質と前記残部成分とを、例えば上記のような好ましい含有率となるように、上記と同様 な公知の方法を適用して混合して前記生物学的生理活性物質を含む層を形成する ための混合物を調製し、更に、同様に、上記のような交互積層法やキャスト法により 製造した前記ポリ乳酸複合体と前記残部成分とを、例えば上記のような好ま 、含有 率となるように、上記と同様な公知の方法を適用して混合して前記ポリ乳酸複合体を 含む層を形成するための混合物を調製し、これらの混合物を順に前記本体部の表面 に上記と同様な公知の方法で塗布等して薬剤放出層を形成する方法が挙げられる。 前記薬剤放出層が、更に前記生物学的生理活性物質を含む層及び前記ポリ乳酸 複合体を含む層以外の層を有する場合は、このような方法で形成したこれらの層の 上面や下面や、これらの層の間に、同様な方法で、例えば前記生分解性高分子から なる層を形成することがでさる。 [0068] Further, for example, if the drug release layer is composed of a layer containing the biological physiologically active substance and a layer containing the polylactic acid complex, for example, the biological physiologically active substance and the The remaining component is mixed by applying a known method similar to the above so as to have a preferable content as described above, for example, to form a layer containing the biologically physiologically active substance. In addition, similarly, the polylactic acid composite produced by the alternate lamination method or the casting method as described above and the remaining component are preferably used, for example, as described above so as to have a content. The same known method as described above is applied and mixed to prepare a mixture for forming the layer containing the polylactic acid complex, and these mixtures are sequentially applied to the surface of the main body part in the same manner as described above. Examples thereof include a method of forming a drug release layer by coating or the like. When the drug release layer further has a layer other than the layer containing the biological physiologically active substance and the layer containing the polylactic acid complex, the upper and lower surfaces of these layers formed by such a method, For example, a layer made of the biodegradable polymer can be formed between these layers by the same method.
[0069] また、例えば、前記生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合 体と化学結合している場合であれば、例えば、予め末端に水酸基やカルボキシル基 を持つ D体及び L体ポリ乳酸カゝら前記ステレオコンプレックス構造のポリ乳酸複合体 を作成し、この末端の官能基をマイクロイニシエータ一として前記生物学的生理活性 物質とエステル結合やアミド結合させる方法が挙げられる。他にも、前記生物学的生 理活性物質の特定の官能基を開始点としてラクチドを成長させ、前記ステレオコンプ レックス構造を有するポリ乳酸複合体を形成する方法を適用して混合物を調製し、更 に、この混合物を用いて前記本体部の表面に上記と同様な公知の方法によって薬 剤放出層を形成する方法が挙げられる。  [0069] Also, for example, when at least a part of the biological physiologically active substance is chemically bonded to the polylactic acid complex, for example, D-form and L-form having a hydroxyl group or a carboxyl group at the terminal in advance. Examples include a method of preparing a polylactic acid complex having a stereocomplex structure such as a polylactic acid body, and using the terminal functional group as a microinitiator to form an ester bond or an amide bond with the biological physiologically active substance. In addition, a mixture is prepared by applying a method of growing lactide starting from a specific functional group of the biological biologically active substance to form a polylactic acid complex having the stereocomplex structure, Furthermore, a method of forming a drug release layer on the surface of the main body using the mixture by a known method similar to the above can be mentioned.
[0070] また、例えば、前記生物学的生理活性物質の少なくとも一部が、前記交互積層法 により形成した前記マイクロオーダー薄膜及び Z又はナノオーダー超薄膜の薄膜の 間に含有されている場合であれば、例えば、 D体ポリ乳酸をァセトニトリルに溶解させ た溶液と、 L体ポリ乳酸をァセトニトリルに溶解させた溶液と、前記生物学的生理活性 物質を溶解させた溶液とを準備し、 PFA (四フッ化工チレン'パーフルォロアルコキビ -ルエーテル共重合榭脂)等の基板を各溶液に順に浸漬し、乾燥を繰り返す方法を 適用して混合物を調整し、更に、この混合物を用いて前記本体部の表面に上記と同 様な公知の方法によって薬剤放出層を形成する方法が挙げられる。ここで、例えば、 この基板を、まず、 D体ポリ乳酸を溶解させた溶液に浸漬し、乾燥させ、次に、前記 生物学的生理活性物質を溶解させた溶液に浸漬し、乾燥させ、更に、 L体ポリ乳酸 を溶解させた溶液に浸漬し、乾燥させた後、再度、前記生物学的生理活性物質を溶 解させた溶液に浸漬し、乾燥させる。この操作を繰り返し行うことで、前記ポリ乳酸複 合体を形成する前記マイクロオーダー薄膜及び Z又はナノオーダー超薄膜の、全て の薄膜の間に前記生物学的生理活性物質が含有されることとなる。このような方法を 適用して前記生物学的整理活性物質を含む前記ポリ乳酸複合体を調製し、更に、こ れを用いて前記本体部の表面に上記と同様な公知の方法によって薬剤放出層を形 成する方法が挙げられる。 [0070] Further, for example, when at least a part of the biological physiologically active substance is contained between the micro-order thin film and the Z- or nano-order ultra-thin thin film formed by the alternate lamination method. For example, a solution in which D-form polylactic acid is dissolved in acetonitrile, a solution in which L-form polylactic acid is dissolved in acetonitrile, and a solution in which the biological physiologically active substance is dissolved are prepared, and PFA (four Substrate such as fluorinated styrene (perfluoroalkoxy-ether ether resin) is soaked in each solution in order, and the mixture is prepared by applying drying repeatedly. And a method of forming a drug release layer on the surface of the part by a known method similar to the above. Here, for example, this substrate is first dipped in a solution in which D-form polylactic acid is dissolved and dried, and then dipped in a solution in which the biological physiologically active substance is dissolved and then dried. L-form polylactic acid After immersing in a solution in which is dissolved, and then drying, it is again immersed in a solution in which the biological and physiologically active substance is dissolved and dried. By repeating this operation, the biological and physiologically active substance is contained between all the thin films of the micro-order thin film and the Z- or nano-order ultra-thin film forming the polylactic acid complex. By applying such a method, the polylactic acid complex containing the biological organization active substance is prepared, and further, using this, the drug release layer is formed on the surface of the main body by the same known method as described above. The method of forming is mentioned.
[0071] また、例えば、前記生物学的生理活性物質である狭窄又は再狭窄抑制剤と化学結 合した前記 D体ポリ乳酸又は前記 L体ポリ乳酸と、前記生物学的生理活性物質であ る前記抗炎症剤と化学結合した前記 L体ポリ乳酸又は前記 D体ポリ乳酸とを用いて、 前記マイクロオーダー薄膜及び Z又はナノオーダー超薄膜の薄膜を形成して行う交 互積層法により製造された、前記生物学的生理活性物質を含む前記ポリ乳酸複合 体を用いた場合であれば、例えば、 D体ポリ乳酸と前記狭窄又は再狭窄抑制剤とを エステル結合又はアミド結合させたものをァセトニトリルに溶解させた溶液と、 L体ポリ 乳酸と前記抗炎症剤とをエステル結合又はアミド結合させたものをァセトニトリルに溶 解させた溶液とを準備し、 PFA (四ふつ化工チレン'パーフルォロアルコキビ-ルェ 一テル共重合榭脂)等の基板を各溶液に交互に浸漬し、乾燥させる操作を繰り返す 方法を適用して混合物を調整し、更に、この混合物を用いて前記本体部の表面に上 記と同様な公知の方法によって薬剤放出層を形成する方法が挙げられる。  [0071] Further, for example, the D-form polylactic acid or the L-form polylactic acid chemically combined with the stenosis or restenosis inhibitor, which is the biological physiologically active substance, and the biological physiologically active substance. Using the L-form polylactic acid or the D-form polylactic acid chemically bound to the anti-inflammatory agent, the micro-order thin film and the Z- or nano-order ultra-thin film are formed by an alternating lamination method. In the case of using the polylactic acid complex containing the biological physiologically active substance, for example, a substance obtained by esterifying or amide-bonding D-form polylactic acid and the stenosis or restenosis inhibitor to acetononitrile. A solution prepared by dissolving an L-form polylactic acid and the above-mentioned anti-inflammatory agent in an ester bond or amide bond in acetonitrile is prepared, and PFA (tetrafluoroethylene perfluoroalkyl) is prepared. The mixture is prepared by applying a method of repeatedly immersing a substrate such as millet-luite monoterpolymer resin (resin) alternately in each solution and drying, and further using this mixture on the surface of the main body. Examples thereof include a method for forming a drug release layer by a known method similar to the above.
[0072] なお、前記本体部を形成する方法は特に限定されず、公知の方法で形成すること ができる。  [0072] The method of forming the main body is not particularly limited, and can be formed by a known method.
例えば、本発明の生体内留置物がステントである場合、上記のような材質のものを 繊維状とした後、円筒状に編み上げる方法や、この材質のものを管状体に成形し、こ れに細孔を設ける方法が挙げられる。  For example, when the in-vivo indwelling material of the present invention is a stent, the above-described material is made into a fiber and then knitted into a cylindrical shape, or this material is molded into a tubular body. The method of providing a pore is mentioned.
[0073] このように、本発明は、前記本体部の表面に前記薬剤放出層を有する生体内留置 物である。 Thus, the present invention is an in-vivo indwelling having the drug release layer on the surface of the main body.
したがって、本発明の生体内留置物の断面を示すと、例えば次に示す図 2〜6のよ うになる。 [0074] 次に、本発明の生体内留置物が図 1に示したステントである場合を例に挙げ、その A— A線断面図及び B— B線断面図について、いくつかの態様を説明する。 Therefore, when the cross section of the in-vivo indwelling object of this invention is shown, it will become like FIG. [0074] Next, the case where the in-vivo indwelling object of the present invention is the stent shown in Fig. 1 is taken as an example, and some aspects of the A-A line cross-sectional view and the BB line cross-sectional view are described. To do.
図 2、 3は、図 1の A— A線に沿って切断した場合の拡大横断面図である。 図 2は、図 1に示したステント 1が、ステント本体 10の表面に、生物学的生理活性物 質を含む層 32とポリ乳酸複合体を含む層 42とからなる薬剤放出層を有するステント である態様の場合の断面図である。  2 and 3 are enlarged cross-sectional views taken along line AA in FIG. FIG. 2 shows a stent in which the stent 1 shown in FIG. 1 has a drug release layer composed of a layer 32 containing a biological physiologically active substance and a layer 42 containing a polylactic acid complex on the surface of the stent body 10. It is sectional drawing in the case of a certain aspect.
また、図 3は、図 1に示したステント 1が、ステント本体 10を有し、この表面に、粉体の 生物学的生理活性物質 30が分散したポリ乳酸複合体 40からなる薬剤放出層を有す るステントである場合の断面図である。  Also, FIG. 3 shows that the stent 1 shown in FIG. 1 has a stent main body 10 on which a drug release layer comprising a polylactic acid complex 40 in which a biological bioactive substance 30 in powder form is dispersed. FIG. 3 is a cross-sectional view in the case of having a stent.
[0075] 次に、図 4、 5は、図 1の B— B線に沿って切断した場合の拡大横断面図である。 Next, FIGS. 4 and 5 are enlarged cross-sectional views taken along the line BB in FIG.
図 4は、図 2で示したものと同様の態様の場合を示すものである。また、図 5は、図 3 で示したものと同様の態様の場合を示すものである。  FIG. 4 shows a case similar to that shown in FIG. FIG. 5 shows a case similar to that shown in FIG.
実施例  Example
[0076] 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるも のではない。  [0076] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
<実施例 1 >  <Example 1>
重量平均分子量が約 15万の L—ポリ乳酸 (API社製、 100L0105)ペレット(以下、 「PLLA」ともいう)、及び発酵法により合成した重量平均分子量が約 5万の D—ポリ乳 酸 (以下、「PLDA」ともいう)を、各々、予め 50°Cに調整したァセトニトリル溶液に溶 解した(以下、各々の溶液を「PLLA溶液」及び「PLDA溶液」ともいう)。ここで各々 の濃度は、共に 30mg/mlとなるようにした。  L-polylactic acid (API, 100L0105) pellets (hereinafter also referred to as “PLLA”) having a weight average molecular weight of about 150,000, and D—polylactic acid having a weight average molecular weight of about 50,000 synthesized by fermentation ( (Hereinafter also referred to as “PLDA”) were each dissolved in a acetonitrile solution previously adjusted to 50 ° C. (hereinafter, each solution was also referred to as “PLLA solution” and “PLDA solution”). Here, each concentration was adjusted to 30 mg / ml.
次に、 PFA板をこの 2つの溶液に交互に 15分間ずっ浸漬し、乾燥させる操作を繰 り返した。具体的には PFA板を PLLA溶液に 15分間浸漬し、純水で洗浄し、乾燥し た後、 PLDA溶液に 15分間浸漬し、その後、同様に純水で洗浄し、乾燥する。この ような一連の操作を 1ステップとし、これを 630ステップ繰り返した。そして、 PFA板の 表面に 50 μ mの厚さのポリ乳酸複合体の薄膜状のフィルムを形成した。  Next, the PFA plate was alternately immersed in these two solutions for 15 minutes and dried. Specifically, the PFA plate is immersed in the PLLA solution for 15 minutes, washed with pure water, dried, then immersed in the PLDA solution for 15 minutes, and then similarly washed with pure water and dried. This series of operations was taken as one step, and this was repeated 630 steps. A thin film of polylactic acid composite having a thickness of 50 μm was formed on the surface of the PFA plate.
次にこのような交互積層法により形成したフィルムを 120°Cのオイルバス中に浸漬さ せ、その後オイルバスを 150°Cに昇温させてフィルムを一軸延伸させた。この時の延 伸倍率は 4倍とした。延伸により得られたフィルムの厚さは 40 mであった。そして、 この延伸させたフィルムを JIS K7113 (プラスチックの引張試験方法)に基づく引張 試験に供し破断強度、破断伸度を求めた。ここでフィルムは 1/5スケールの 2号形試 験片に打ち抜 、たものを用いた。 Next, the film formed by such an alternate lamination method was immersed in an oil bath at 120 ° C, and then the oil bath was heated to 150 ° C to uniaxially stretch the film. Total of this time The draw ratio was 4 times. The thickness of the film obtained by stretching was 40 m. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 specimens and used.
結果を第 1表に示す。  The results are shown in Table 1.
[0077] <実施例 2> <Example 2>
PLLAと PLDAとを、予め 50°Cに調整したァセトニトリル溶液中にそれぞれ別々に 溶解させ、その後、 PLLA: PLDA= 50 : 50の割合になるように、それらを混合させ た。ここで、 PLLAと PLDAとの合計濃度が 20mg/mlとなるようにした。  PLLA and PLDA were dissolved separately in a acetonitrile solution adjusted beforehand to 50 ° C., and then mixed so that the ratio of PLLA: PLDA = 50: 50 was obtained. Here, the total concentration of PLLA and PLDA was set to 20 mg / ml.
次に、その溶液を PFAシャーレに入れ、厚さ 150 mのキャストフィルムを作製した 。その後、このフィルムを 80°Cの温浴中で一軸延伸させた。この時の延伸倍率は 4倍 とした。延伸により得られたフィルムの厚さは 100 mであった。そして、この延伸させ たフィルムを JIS K7113 (プラスチックの引張試験方法)に基づく引張試験に供し破 断強度、破断伸度を求めた。ここでフィルムは 1/5スケールの 2号形試験片に打ち抜 いたものを用いた。  Next, the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 m. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 m. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
結果を第 1表に示す。  The results are shown in Table 1.
[0078] <実施例 3、4> <Examples 3 and 4>
実施例 3では、実施例 2において 50 : 50とした PLLA: PLDAの比を 45 : 55とし、そ の他は全て同様とした操作及び測定を行った。  In Example 3, the same operation and measurement were performed in the same manner as in Example 2, except that the ratio of PLLA: PLDA, which was 50:50, was 45:55.
実施例 4では、実施例 2において 50 : 50とした PLLA: PLDAの比を 55 :45とし、そ の他は全て同様とした操作及び測定を行った。  In Example 4, the same operation and measurement were performed in the same manner as in Example 2, except that the ratio of PLLA: PLDA, which was 50:50, was 55:45.
結果を第 1表に示す。  The results are shown in Table 1.
[0079] [表 1] 難例引張麵直 [0079] [Table 1] Difficult cases
Figure imgf000024_0001
Figure imgf000024_0001
[0080] <比較例 1 > [0080] <Comparative Example 1>
50質量%の L ポリ乳酸と 50質量%の0 ポリ乳酸との共重合体 (API社製 100 D065)ペレット(以下、「DL— PLA」ともいう)を、予め 23°Cに調整したアセトン中に 溶解させた。ここで、アセトン中の共重合体濃度が 5%となるようにした。  A copolymer of 50% L polylactic acid and 50% 0 polylactic acid (API 100 D065) pellets (hereinafter also referred to as “DL-PLA”) in acetone adjusted to 23 ° C in advance. It was dissolved in. Here, the copolymer concentration in acetone was set to 5%.
次に、その溶液を PFAシャーレに入れ、厚さ 150 μ mのキャストフィルムを作製した 。その後、このフィルムを 80°Cの温浴中で一軸延伸させた。この時の延伸倍率は 4倍 とした。延伸により得られたフィルムの厚さは 100 /z mであった。そして、この延伸させ たフィルムを JIS K7113 (プラスチックの引張試験方法)に基づく引張試験に供し破 断強度、破断伸度を求めた。ここでフィルムは 1/5スケールの 2号形試験片に打ち抜 いたものを用いた。  Next, the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 μm. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 / zm. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
結果を第 2表に示す。  The results are shown in Table 2.
[0081] <比較例 2〜7 > [0081] <Comparative Examples 2 to 7>
比較例 2〜7では、実施例 1にお 、て 50: 50とした PLLA: PLDAの比を 70: 30 (比 較例 2)、 30 : 70 (比較例 3)、 60 :40 (比較例 4)、 40 : 60 (比較例 5)、 100 : 0 (比較 例 6)、 0 : 100 (比較例 7)とし、その他は全て同様とした操作及び測定を行った。 結果を第 2表に示す。  In Comparative Examples 2 to 7, the ratio of PLLA: PLDA, which was 50:50 in Example 1, was 70:30 (Comparative Example 2), 30:70 (Comparative Example 3), 60:40 (Comparative Example) 4), 40:60 (Comparative Example 5), 100: 0 (Comparative Example 6), 0: 100 (Comparative Example 7), and the other operations were the same. The results are shown in Table 2.
[0082] [表 2] 比翻引張纖値 [0082] [Table 2] Specific tension value
Figure imgf000025_0001
Figure imgf000025_0001
[0083] <実施例 5 > [0083] <Example 5>
PLLAと PLDAとを、予め 50°Cに調整したァセトニトリル溶液中にそれぞれ別々に 溶解させ、その後!^1^: ?1^>八= 50 : 50の割合になるょぅに、それらを混合させた 。ここで、 PLLAと PLDAとの合計濃度が 20mg/mlとなるようにした。  PLLA and PLDA are dissolved separately in the acetonitrile solution adjusted to 50 ° C in advance, and then they are mixed in a ratio of! ^ 1 ^:? 1 ^> 8 = 50: 50 The Here, the total concentration of PLLA and PLDA was set to 20 mg / ml.
次に、この溶液に抗癌剤であるラバマイシン(以下、「RM」ともいう)を混合させた。 ここで RMの混合量は、 PLLAと PLDAとの合計質量に対して、質量比で 1: 1となる ようにした。そして、これら PLLA、 PLDA及び RMが溶解したァセトニトリル溶液に更 にァセトニトリルをカ卩え、 PLLA、 PLDA及び RMの合計濃度が 1質量0 /0になるように 調整した。 Next, rabamycin (hereinafter also referred to as “RM”), which is an anticancer agent, was mixed with this solution. Here, the mixing amount of RM was set to 1: 1 by mass ratio with respect to the total mass of PLLA and PLDA. And these PLLA, Ka卩E the PLDA and RM further to Asetonitoriru the Asetonitoriru solution of the, PLLA, the total concentration of PLDA and RM was adjusted to 1 mass 0/0.
次に、このァセトニトリル溶液を、ステント本体 (Tsunami (外径 2. lmm、長さ 10m m、厚さ 80 /z m)、テルモネ土製)の表面にスプレー(マイクロスプレーガン 11、 NORD SON社製)を用いて噴霧した。そして、乾燥後、約 600 / gのポリ乳酸複合体及び R M力 なる薬剤放出層がステント本体の表面に形成されることを走査型電子顕微鏡( SEM)により確認した。  Next, spray this micro solution on the surface of the stent body (Tsunami (outer diameter 2. lmm, length 10mm, thickness 80 / zm), made of Thermonet), and apply this acetonitrile solution (Micro spray gun 11, NORD SON). Sprayed. Then, after drying, it was confirmed by a scanning electron microscope (SEM) that a polylactic acid complex of about 600 / g and a drug release layer having RM force were formed on the surface of the stent body.
次に、このステントを外径 3. Ommまでバルーンカテーテル(ァラシ、テルモネ土製)で 拡張して、その表面の薬剤放出層の破壊度合いを顕微鏡観察した。  Next, this stent was expanded to an outer diameter of 3. Omm with a balloon catheter (made by Alashi, Terumone Earth), and the degree of destruction of the drug release layer on the surface was observed with a microscope.
この結果、薬剤放出層に剥離やクラックが認められず(図 6)、バルーン拡張に良好 に追随することを確認した。  As a result, it was confirmed that no peeling or cracking was observed in the drug release layer (Fig. 6), and that the balloon expanded well.
[0084] <比較例 8〉 <Comparative Example 8>
PLLAと RMとをテトラヒドロフラン (THF)に質量比で 1: 1となるように溶解した。ここ で、 PLLAと RMとの合計濃度力 ^質量%となるようにした。 次に、この THFを、ステント本体(Tsunami (外径 2. lmm、長さ 10mm、厚さ 80 m)、テルモネ土製)の表面にスプレー(マイクロスプレーガン一 II NORDSON社製) を用いて噴霧した。そして、乾燥後、約 600 /z gの PLLA及び RM力もなる薬剤放出 層がステント本体の表面に形成されることを走査型電子顕微鏡 (SEM)により確認し た。 PLLA and RM were dissolved in tetrahydrofuran (THF) at a mass ratio of 1: 1. Here, the total concentration force of PLLA and RM was set to be mass%. Next, this THF was sprayed onto the surface of the stent body (Tsunami (outer diameter 2. lmm, length 10mm, thickness 80m), made of Thermonet) using a spray (Micro Spray Gun I II NORDSON). . After drying, it was confirmed by a scanning electron microscope (SEM) that a drug release layer having PLLA and RM force of about 600 / zg was formed on the surface of the stent body.
この結果、薬剤放出層に剥離やクラックが認められ(図 7)、バルーン拡張に良好に 追随できな ヽことを確認した。  As a result, peeling and cracking were observed in the drug release layer (Fig. 7), and it was confirmed that the balloon could not follow the balloon expansion well.
[0085] <比較例 9 > [0085] <Comparative Example 9>
比較例 8で用いた PLLAの代わりにポリ力プロラタトン (PCL)を用い、その他の条件 は全て同じとし操作を行った。  Instead of PLLA used in Comparative Example 8, poly force prolatathon (PCL) was used, and the other conditions were the same.
そして、比較例 8と同様に、乾燥後、約 600 /z gの PCL及び RM力もなる薬剤放出 層がステント本体の表面に形成されることを走査型電子顕微鏡 (SEM)により確認し た。  Then, as in Comparative Example 8, it was confirmed by a scanning electron microscope (SEM) that after drying, a drug release layer having a PCL and RM force of about 600 / zg was formed on the surface of the stent body.
この結果、薬剤放出層に剥離が認められな力つたものの、クラックが認められ (図 8) 、ノ レーン拡張に良好に追随できな 、ことを確認した。  As a result, it was confirmed that cracking was observed (Fig. 8), and the drug release layer could not follow well, although the drug release layer did not peel.
[0086] <実施例 6及び 7 > <Examples 6 and 7>
PLLAを 30mg/mlとなるようにァセトニトリルに溶解した PLLA溶液をビーカーに用 意した。また、同様に、 PLDAを 30mg/mlとなるようにァセトニトリルに溶解した PLD A溶液をビーカーに用意した。そして、これらの PLLA溶液を入れたビーカー及び P LDA溶液を入れたビーカーを 50°Cに調整した湯浴に漬け、 PLLA溶液及び PLDA 溶液を 50°Cに保持した。ここで、各溶液中で PLLA及び PLDAは完全に溶解した。 また、別に、抗炎症剤であるアスピリン (以下、「AP」ともいう)を 5質量0 /0で THFに 溶解した溶液 (以下、「AP溶液」とも 、う)をビーカーに用意した。 A PLLA solution in which PLLA was dissolved in acetonitrile at 30 mg / ml was prepared in a beaker. Similarly, a PLDA solution in which PLDA was dissolved in acetonitrile to give 30 mg / ml was prepared in a beaker. Then, the beaker containing the PLLA solution and the beaker containing the PLDA solution were immersed in a hot water bath adjusted to 50 ° C., and the PLLA solution and the PLDA solution were maintained at 50 ° C. Here, PLLA and PLDA were completely dissolved in each solution. Separately, Aspirin is an anti-inflammatory agent (hereinafter, also referred to as "AP") solution in THF at 5 mass 0/0 (hereinafter also "AP solution", U) was prepared in a beaker.
また、別に、 PLLA: PLDA:RM= 1 : 1 : 0. 5であり、これらの合計濃度が lOmgZ mlとなるように調整した塩化メチレン溶液を (以下、「RM溶液」とも 、う)をビーカーに 用总し 7 o  Separately, PLLA: PLDA: RM = 1: 1: 0.5, and a beaker with a methylene chloride solution (hereinafter also referred to as “RM solution”) adjusted to a total concentration of 10 mgZ ml. Squeeze 7 o
[0087] 次に、ステント(Tsunami (外径 2. lmm、長さ 10mm、厚さ 80 μ m)、テルモネ土製) を 50°Cに調整された上記の PLLA溶液に 15分間浸漬した。そして、 PLLA溶液から 取り出した後、このステントに洗浄'乾燥操作を施し、ステント表面に PLLAの薄膜を 形成した。ここで、洗浄'乾燥操作は、具体的には、 PLLA溶液から取り出したステン トをァセトニトリルで約 15秒間洗浄した後、超純水で約 10秒洗浄し、更に窒素ガスで 乾燥する操作である。 [0087] Next, the stent (Tsunami (outer diameter 2. lmm, length 10mm, thickness 80μm), made of Thermonet) was immersed in the above PLLA solution adjusted to 50 ° C for 15 minutes. And from the PLLA solution After removal, the stent was washed and dried to form a PLLA thin film on the stent surface. Here, the washing and drying operation is specifically an operation in which the stent taken out from the PLLA solution is washed with acetonitrile for about 15 seconds, then washed with ultrapure water for about 10 seconds, and further dried with nitrogen gas. .
次に、ここで得られた PLLAの薄膜を表面に形成したステントを、 50°Cに調整され た上記の PLDA溶液に 15分間浸漬し、同様な洗浄'乾燥操作を施して、ステント表 面に、更に PLD Aの薄膜を形成した。  Next, the resulting stent with the PLLA thin film formed on it was immersed in the above-mentioned PLDA solution adjusted to 50 ° C for 15 minutes, and subjected to the same cleaning and drying operation on the stent surface. Furthermore, a thin film of PLD A was formed.
このように PLLAの薄膜を形成し、更にその上面に PLDAの薄膜を形成する操作 を 1ステップとする。そして、このような操作を更に 5ステップ行い(つまり、合計で 6ス テツプ行い、ステントの表面に PLLAの薄膜及び PLDAの薄膜を各々 6枚ずつ、交 互に形成した)、ステントの表面に PLLAの薄膜及び PLDAの薄膜が積層された層 ( ポリ乳酸複合体層)を形成した。ここで、このポリ乳酸複合体層の厚さは約 0. 45 m であった。  The process of forming a thin film of PLLA in this way and then forming a thin film of PLDA on the upper surface is one step. Then, this operation is further performed in 5 steps (that is, a total of 6 steps are performed, and 6 thin films of PLLA and 6 thin films of PLDA are alternately formed on the surface of the stent), and PLLA is formed on the surface of the stent. A layer (polylactic acid composite layer) in which a thin film of PLDA and a thin film of PLDA were laminated was formed. Here, the thickness of the polylactic acid composite layer was about 0.45 m.
このようなポリ乳酸複合体層を形成する 6ステップ力もなる一連の操作を、以下では 「操作 1」ともいう。  A series of operations having a 6-step force for forming such a polylactic acid composite layer is also referred to as “operation 1” below.
[0088] 次に、このポリ乳酸複合体層の上面に、マイクロシリンジを用いて AP溶液をコーテ イングし、約: L mの層(AP層)を形成した。  [0088] Next, an AP solution was coated on the upper surface of the polylactic acid composite layer using a microsyringe to form a layer (AP layer) of about Lm.
このような約 1 μ mの AP層を形成する操作を、以下では「操作 2」ともいう。  Hereinafter, the operation for forming the AP layer of about 1 μm is also referred to as “operation 2”.
[0089] 次に、この AP層を形成したステントに、更に、操作 1を施し、その後、更に、操作 2 及び操作 1を施して、ステントの表面に約 3. 4 μ mの厚さの PLLA、 PLDA及び AP カゝらなる層を形成した。 [0089] Next, operation 1 is further performed on the stent on which the AP layer is formed, and then operations 2 and 1 are further performed, so that a PLLA having a thickness of about 3.4 μm is formed on the surface of the stent. A layer consisting of PLDA and AP was formed.
[0090] 次にこの層の上面に、マイクロシリンジを用いて RM溶液をコーティングし、約 4 m の層(RM層)を形成した。  [0090] Next, the upper surface of this layer was coated with the RM solution using a microsyringe to form an approximately 4 m layer (RM layer).
[0091] このようにして表面に PLLA、 PLDA及び APからなる層(厚さ:約 3. 4 m)と RM 層(厚さ:約 4 m)とからなる薬剤放出層(厚さ:約 7. 4 m)を有するステントを形成 した。 [0091] In this way, a drug release layer (thickness: about 7 m) consisting of a layer consisting of PLLA, PLDA and AP (thickness: about 3.4 m) and an RM layer (thickness: about 4 m) on the surface. A stent with 4 m) was formed.
[0092] このような薬剤放出層を有するステントを 3つ形成した。そして、 1つを次に説明する 「RM'AP放出量測定試験」に供し、残りの 2つを下記の「生体内留置試験」に供した [0093] <RM,AP放出量測定試験(実施例 6) > [0092] Three stents having such drug release layers were formed. Then, one was used for the “RM'AP release measurement test” described below, and the other two were used for the following “in vivo placement test”. [0093] <RM, AP release measurement test (Example 6)>
この薬剤放出層を有するステントについて、 RM及び APの放出量を測定した。 具体的には、この薬剤放出層を有するステントを、 50°Cに調整した 10mlの 4質量 %ゥシ血清アルビミン添加逆浸透水(以下、「BSA」ともいう)に浸漬し、 φ 10mmの 攪拌子を用いてマグネットスターラーで 200rpmの回転速度で攪拌し、 7日後、 14日 後、 28日後、 42日後、 56日後の BSA中の RM及び APの質量を測定した。 RM及び AP質量の測定には高速液体クロマトグラフィー (HPLC) (島津製作所社製)を用い た。  About the stent which has this chemical | medical agent release layer, the release amount of RM and AP was measured. Specifically, the stent having this drug release layer was immersed in 10 ml of 4% by mass urushi serum-added reverse osmosis water (hereinafter also referred to as “BSA”) adjusted to 50 ° C., and stirred with a diameter of 10 mm. The mass of RM and AP in BSA was measured after 7 days, 14 days, 28 days, 42 days, and 56 days after stirring with a magnetic stirrer using a magnetic stirrer. High performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation) was used for the measurement of RM and AP mass.
[0094] その結果、 RMの放出量は、 BSAへ浸漬前の薬剤放出層中の RM質量に対して、 14曰後 ίま約 400/0、 28曰後 ίま約 1000/0であった。 [0094] As a result, release of RM, relative RM weight of the drug release layer before immersion into the BSA, 14曰後ί or about 40 0/0, 28曰後ί or about 100 0/0 there were.
一方、 14日後及び 28日後の ΑΡの放出量は 0%であった。そして、その後、薬剤放 出層中のポリ乳酸複合体の分解に伴って ΑΡの放出が開始され、 42日後の ΑΡの放 出量は、 BSAへ浸漬前の薬剤放出層中の ΑΡ質量に対して約 50%であった。更に、 56日後は約 100%であった。また、 56日後には、薬剤放出層中のポリ乳酸複合体 は全量が分解され消失して!/ヽた。  On the other hand, the amount of soot released after 14 days and 28 days was 0%. After that, the release of soot was started with the degradation of the polylactic acid complex in the drug release layer, and the amount of soot released after 42 days was compared to the soot mass in the drug release layer before being immersed in BSA. About 50%. Furthermore, it was about 100% after 56 days. After 56 days, all the polylactic acid complex in the drug release layer is degraded and disappears! /
[0095] <生体内留置試験 (実施例 7) > [0095] <In vivo indwelling test (Example 7)>
この薬剤放出層を有するステントについて、 3ヶ月間、うさぎの左右腸骨動脈に 2本 留置する試験を行った。その造影写真を図 9に示す。  For the stent having this drug release layer, a test was performed in which two stents were placed in the right and left iliac arteries of a rabbit for 3 months. Fig. 9 shows the contrast image.
図 9に示すように、留置から 3ヶ月後に、狭窄は認められな力つた。  As shown in Figure 9, 3 months after placement, stenosis did not appear.
[0096] <比較例 10 > [0096] <Comparative Example 10>
比較例 8に示した方法で形成したステントを 2つ用意した。そして、実施例 7と同様 の試験を行った。  Two stents formed by the method shown in Comparative Example 8 were prepared. Then, the same test as in Example 7 was performed.
その造影写真を図 10に示す。  Fig. 10 shows the contrast photograph.
図 10に示すように、留置から 3ヶ月後に、狭窄が認められた。  As shown in Fig. 10, stenosis was observed 3 months after placement.

Claims

請求の範囲 The scope of the claims
[1] 本体部の表面に薬剤放出層を有する生体内留置物であって、  [1] An in-vivo indwelling material having a drug release layer on the surface of the main body,
前記薬剤放出層力 D体ポリ乳酸と L体ポリ乳酸とが 45: 55〜55: 45の質量比でス テレオコンプレックス構造の複合体を形成して 、るポリ乳酸複合体と、生物学的生理 活性物質とを含む生体内留置物。  The drug release laminar force D-form polylactic acid and L-form polylactic acid form a complex of a stereocomplex structure at a mass ratio of 45:55 to 55:45, and the biological physiology An in vivo indwelling material containing an active substance.
[2] 前記本体部が、金属材料及び Z又は高分子材料からなる請求項 1に記載の生体 内留置物。 [2] The indwelling object according to claim 1, wherein the main body portion is made of a metal material and Z or a polymer material.
[3] 前記生物学的生理活性物質の少なくとも一部が粉体であり、この粉体の生物学的 生理活性物質が前記薬剤放出層中で分散している請求項 1又は 2に記載の生体内 留置物。  [3] The biological bioactive substance according to claim 1 or 2, wherein at least a part of the biological bioactive substance is a powder, and the biological bioactive substance of the powder is dispersed in the drug release layer. Indwelling in the body.
[4] 前記生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学結合し ている請求項 1〜3のいずれかに記載の生体内留置物。  [4] The in-vivo indwelling product according to any one of [1] to [3], wherein at least a part of the biological physiologically active substance is chemically bonded to the polylactic acid complex.
[5] 前記薬剤放出層が 2以上の層からなり、それらの層が前記生物学的生理活性物質 を含む層及び前記ポリ乳酸複合体を含む層を含む請求項 1又は 2に記載の生体内 留置物。 [5] The living body according to claim 1 or 2, wherein the drug release layer comprises two or more layers, and the layers include the layer containing the biologically physiologically active substance and the layer containing the polylactic acid complex. Detainment.
[6] 前記ポリ乳酸複合体を形成する D体ポリ乳酸及び Z又は L体ポリ乳酸の重量平均 分子量が 1, 000〜1, 000, 000である請求項 1〜5のいずれかに記載の生体内留 置物。  [6] The raw material according to any one of claims 1 to 5, wherein the D-form polylactic acid and the Z-form or L-form polylactic acid forming the polylactic acid complex have a weight average molecular weight of 1,000 to 1,000,000. In-vivo indwelling.
[7] 前記ポリ乳酸複合体の重量平均分子量が 1, 000〜1, 000, 000である請求項 1 7. The weight average molecular weight of the polylactic acid complex is 1,000 to 1,000,000.
〜6の!、ずれかに記載の生体内留置物。 The in-vivo indwelling object of ~ 6!
[8] 前記ポリ乳酸複合体が、延伸されたポリ乳酸複合体である請求項 1〜7のいずれか に記載の生体内留置物。 [8] The in-vivo indwelling product according to any one of [1] to [7], wherein the polylactic acid complex is a stretched polylactic acid complex.
[9] 前記ポリ乳酸複合体が、示差走査熱量測定において 65〜75°Cの間に第 1の融解 ピークを有し、 200〜250°Cの間に第 2の融解ピークを有するポリ乳酸複合体である 請求項 1〜8のいずれかに記載の生体内留置物。 [9] The polylactic acid complex has a first melting peak between 65 and 75 ° C. and a second melting peak between 200 and 250 ° C. in differential scanning calorimetry. The in-vivo indwelling material according to any one of claims 1 to 8.
[10] 前記ポリ乳酸複合体が、 JIS K7113に規定される破断強度が 70MPa以上であり[10] The polylactic acid composite has a breaking strength specified in JIS K7113 of 70 MPa or more.
、破断伸度が 15%以上であり、ヤング率が lOOMPa以上であるポリ乳酸複合体であ る請求項 1〜9のいずれかに記載の生体内留置物。 10. The in vivo indwelling product according to any one of claims 1 to 9, which is a polylactic acid composite having a breaking elongation of 15% or more and a Young's modulus of lOOMPa or more.
[11] 前記ポリ乳酸複合体が、交互積層法により製造されたポリ乳酸複合体である請求 項 1〜10のいずれかに記載の生体内留置物。 [11] The in-vivo indwelling product according to any one of [1] to [10], wherein the polylactic acid complex is a polylactic acid complex produced by an alternating lamination method.
[12] 前記交互積層法が、マイクロオーダー薄膜及び Z又はナノオーダー超薄膜を形成 して行う交互積層法である請求項 11に記載の生体内留置物。  12. The in-vivo indwelling product according to claim 11, wherein the alternating lamination method is an alternating lamination method performed by forming a micro-order thin film and a Z- or nano-order ultra-thin film.
[13] 前記マイクロオーダー薄膜及び Z又はナノオーダー超薄膜の厚さが Inn!〜 50 μ mである請求項 12に記載の生体内留置物。  [13] The thickness of the micro-order thin film and Z or nano-order ultra-thin film is Inn! The in-vivo indwelling thing of Claim 12 which is -50micrometer.
[14] 前記マイクロオーダー薄膜及び Z又はナノオーダー超薄膜の薄膜の間に、前記生 物学的生理活性物質を含有する請求項 12又は 13に記載の生体内留置物。  14. The in-vivo indwelling product according to claim 12 or 13, which contains the biologically physiologically active substance between the micro-order thin film and the Z- or nano-order ultra-thin film.
[15] 前記生物学的生理活性物質が、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ剤、 抗血栓薬、 HMG— CoA還元酵素阻害剤、 ACE阻害剤、カルシウム拮抗剤、抗高 脂血症薬、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、 GPIIbllla拮抗薬、レチ ノイド、フラボノイド、カロチノイド、脂質改善薬、 DNA合成阻害剤、チロシンキナーゼ 阻害剤、抗血小板薬、抗炎症薬、生体由来材料、インターフェロン及び NO産生促 進物質力もなる群力も選ばれる少なくとも 1つである請求項 1〜14のいずれかに記載 の生体内留置物。  [15] The biologically active substance is an anticancer agent, immunosuppressant, antibiotic, antirheumatic agent, antithrombotic agent, HMG—CoA reductase inhibitor, ACE inhibitor, calcium antagonist, antihyperlipidemia Drugs, integrin inhibitors, antiallergic agents, antioxidants, GPIIbllla antagonists, retinoids, flavonoids, carotenoids, lipid improvers, DNA synthesis inhibitors, tyrosine kinase inhibitors, antiplatelet drugs, anti-inflammatory drugs, biological materials The in-vivo indwelling product according to any one of claims 1 to 14, which is at least one selected from the group force that also has the ability to promote interferon and NO production.
[16] 前記生物学的生理活性物質である狭窄又は再狭窄抑制剤と化学結合した前記 D 体ポリ乳酸又は前記 L体ポリ乳酸と、前記生物学的生理活性物質である前記抗炎症 薬と化学結合した前記 L体ポリ乳酸又は前記 D体ポリ乳酸とを用いて、前記マイクロ オーダー薄膜及び Z又はナノオーダー超薄膜の薄膜を形成して行う交互積層法に より製造された、前記生物学的生理活性物質を含む前記ポリ乳酸複合体を含む薬 剤放出層を有する請求項 12〜15のいずれかに記載の生体内留置物。  [16] The D-form polylactic acid or the L-form polylactic acid chemically bonded to the stenosis or restenosis inhibitor that is the biologically physiologically active substance, and the anti-inflammatory drug that is the biologically physiologically active substance and the chemistry The biological physiology produced by the alternate lamination method in which the micro-order thin film and the Z- or nano-order ultra-thin thin film are formed using the bound L-form polylactic acid or the D-form polylactic acid. The in-vivo indwelling material according to any one of claims 12 to 15, which has a drug release layer containing the polylactic acid complex containing an active substance.
[17] 前記本体部の形状が、チューブ状、管状、網状、繊維状、不織布状、織布状又は フィラメント状である請求項 1〜16のいずれかに記載の生体内留置物。  [17] The in-vivo indwelling product according to any one of [1] to [16], wherein a shape of the main body portion is a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape.
[18] ステントである請求項 1〜17のいずれかに記載の生体内留置物。  18. The in-vivo indwelling product according to any one of claims 1 to 17, which is a stent.
PCT/JP2007/055979 2006-04-04 2007-03-23 In vivo indwelling object WO2007116646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509720A JPWO2007116646A1 (en) 2006-04-04 2007-03-23 In vivo indwelling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006102817 2006-04-04
JP2006-102817 2006-04-04

Publications (1)

Publication Number Publication Date
WO2007116646A1 true WO2007116646A1 (en) 2007-10-18

Family

ID=38580945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055979 WO2007116646A1 (en) 2006-04-04 2007-03-23 In vivo indwelling object

Country Status (2)

Country Link
JP (1) JPWO2007116646A1 (en)
WO (1) WO2007116646A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201992A (en) * 2008-02-26 2009-09-10 Cordis Corp Multi-layered stereo-complex type polymer as drug depot carrier or coating film in medical device
WO2009117398A2 (en) 2008-03-20 2009-09-24 Abbott Cardiovascular Systems Inc. Implantable medical device coatings with improved mechanical stability
JP2012176168A (en) * 2011-02-28 2012-09-13 Kyoto Medical Planning Ltd Stent device
WO2017073624A1 (en) * 2015-10-30 2017-05-04 学校法人同志社 Medical base material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501109A (en) * 1988-10-12 1992-02-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー polylactide composition
JPH0833718A (en) * 1993-04-26 1996-02-06 Medtronic Inc Stent in blood vessel, and method
JPH0956807A (en) * 1995-08-22 1997-03-04 Kanegafuchi Chem Ind Co Ltd Stent adhered and coated with medicine and its production
JP2000017164A (en) * 1998-06-30 2000-01-18 Shimadzu Corp Pellet for producing polylactic acid stereocomplex polymer and method for producing stereocomplex polymer molded product
WO2004043506A1 (en) * 2002-11-14 2004-05-27 Synecor, Llc. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
JP2005520640A (en) * 2002-03-20 2005-07-14 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Biodegradable hydrophobic polymers for stents
JP2005523119A (en) * 2002-04-24 2005-08-04 サン バイオメディカル, リミテッド Drug delivery intravascular stent and method for treating restenosis
US20050271617A1 (en) * 2002-06-25 2005-12-08 Hiroyuki Shirahama Biodegradable bio-absorbable material for clinical practice
US20060041102A1 (en) * 2004-08-23 2006-02-23 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable polymers having constant rate of degradation and methods for fabricating the same
US20070043434A1 (en) * 2005-08-18 2007-02-22 David Meerkin Biodegradable endovascular stent using stereocomplexation of polymers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501109A (en) * 1988-10-12 1992-02-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー polylactide composition
JPH0833718A (en) * 1993-04-26 1996-02-06 Medtronic Inc Stent in blood vessel, and method
JPH0956807A (en) * 1995-08-22 1997-03-04 Kanegafuchi Chem Ind Co Ltd Stent adhered and coated with medicine and its production
JP2000017164A (en) * 1998-06-30 2000-01-18 Shimadzu Corp Pellet for producing polylactic acid stereocomplex polymer and method for producing stereocomplex polymer molded product
JP2005520640A (en) * 2002-03-20 2005-07-14 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Biodegradable hydrophobic polymers for stents
JP2005523119A (en) * 2002-04-24 2005-08-04 サン バイオメディカル, リミテッド Drug delivery intravascular stent and method for treating restenosis
US20050271617A1 (en) * 2002-06-25 2005-12-08 Hiroyuki Shirahama Biodegradable bio-absorbable material for clinical practice
WO2004043506A1 (en) * 2002-11-14 2004-05-27 Synecor, Llc. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
US20060041102A1 (en) * 2004-08-23 2006-02-23 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable polymers having constant rate of degradation and methods for fabricating the same
US20070043434A1 (en) * 2005-08-18 2007-02-22 David Meerkin Biodegradable endovascular stent using stereocomplexation of polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUJI H. ET AL.: "Stereocomplex formation between enantiomeric poly(lactic acid).XI.Menchanical properties and morphology of solution-cast films", POLYMER, vol. 40, no. 24, November 1999 (1999-11-01), pages 6699 - 6708, XP004177305 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201992A (en) * 2008-02-26 2009-09-10 Cordis Corp Multi-layered stereo-complex type polymer as drug depot carrier or coating film in medical device
US9603980B2 (en) 2008-02-26 2017-03-28 CARDINAL HEALTH SWITZERLAND 515 GmbH Layer-by-layer stereocomplexed polymers as drug depot carriers or coatings in medical devices
WO2009117398A2 (en) 2008-03-20 2009-09-24 Abbott Cardiovascular Systems Inc. Implantable medical device coatings with improved mechanical stability
WO2009117398A3 (en) * 2008-03-20 2010-06-03 Abbott Cardiovascular Systems Inc. Implantable medical device coatings with improved mechanical stability
JP2011517969A (en) * 2008-03-20 2011-06-23 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Implantable medical device coating with improved mechanical stability
US8377116B2 (en) 2008-03-20 2013-02-19 Abbott Cardiovascular Systems Inc. Implantable medical device coatings with improved mechanical stability
JP2012176168A (en) * 2011-02-28 2012-09-13 Kyoto Medical Planning Ltd Stent device
WO2017073624A1 (en) * 2015-10-30 2017-05-04 学校法人同志社 Medical base material
JPWO2017073624A1 (en) * 2015-10-30 2018-08-23 明郎 萩原 Medical substrate
US10695464B2 (en) 2015-10-30 2020-06-30 Akeo Hagiwara Medical base material

Also Published As

Publication number Publication date
JPWO2007116646A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US8317857B2 (en) Biodegradable self-expanding prosthesis
JP5932073B2 (en) Absorbable stent with coating to control stent degradation and maintain pH neutral
ES2451653T3 (en) Implantable medical device with surface erosion polyester drug supply coating
EP2731661B1 (en) Drug elution medical device
JP5973520B2 (en) Insertable medical device having an elastic matrix with microparticles disposed thereon, and drug delivery method
JP5053668B2 (en) Stent
WO2007083797A1 (en) Stent
WO2009089382A1 (en) Biodegradable self-expanding drug-eluting prosthesis
US20180104044A1 (en) Close-cell structured stent, a preparation method and use thereof
CN109640882B (en) Implantable completely-bioabsorbable intravascular polymer stent
JP5102200B2 (en) In vivo indwelling
WO2007116646A1 (en) In vivo indwelling object
RU2571685C2 (en) Implanted stent
JP2005168937A (en) Stent
JP2009061021A (en) In-vivo indwelling containing branched biodegradable polyester
JP2010233744A (en) In vivo indwelling stent and biological organ dilator
JP2007313009A (en) Stent
JP2006262960A (en) Stent
JP4828268B2 (en) Stent
JP2008237677A (en) In vivo indwelling
JP2007105368A (en) Medical materials excluding tissue replacement and bonding materials
EP2731660B1 (en) Drug elution medical device
JP5968718B2 (en) Intraluminal implant device
JP2008113827A (en) In-vivo indwelling material
JP2007089917A (en) Indwelling material in living body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739420

Country of ref document: EP

Kind code of ref document: A1