WO2007077933A1 - 超高強度薄鋼板 - Google Patents
超高強度薄鋼板 Download PDFInfo
- Publication number
- WO2007077933A1 WO2007077933A1 PCT/JP2006/326278 JP2006326278W WO2007077933A1 WO 2007077933 A1 WO2007077933 A1 WO 2007077933A1 JP 2006326278 W JP2006326278 W JP 2006326278W WO 2007077933 A1 WO2007077933 A1 WO 2007077933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- weight
- less
- steel
- ultra
- Prior art date
Links
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 title claims abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 220
- 239000001257 hydrogen Substances 0.000 claims abstract description 220
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 220
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 198
- 239000013078 crystal Substances 0.000 claims abstract description 51
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 360
- 239000010959 steel Substances 0.000 claims description 360
- 230000000717 retained effect Effects 0.000 claims description 130
- 229910000859 α-Fe Inorganic materials 0.000 claims description 53
- 229910000734 martensite Inorganic materials 0.000 claims description 45
- 238000012545 processing Methods 0.000 claims description 35
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 229910001562 pearlite Inorganic materials 0.000 claims description 20
- 229910052726 zirconium Inorganic materials 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 description 97
- 238000005260 corrosion Methods 0.000 description 97
- 238000000576 coating method Methods 0.000 description 77
- 238000012360 testing method Methods 0.000 description 77
- 239000011248 coating agent Substances 0.000 description 74
- 230000000694 effects Effects 0.000 description 47
- 238000002474 experimental method Methods 0.000 description 45
- 238000000034 method Methods 0.000 description 44
- 238000001816 cooling Methods 0.000 description 42
- 230000001976 improved effect Effects 0.000 description 41
- 238000010438 heat treatment Methods 0.000 description 39
- 150000001247 metal acetylides Chemical class 0.000 description 32
- 238000005097 cold rolling Methods 0.000 description 27
- 239000003973 paint Substances 0.000 description 26
- 238000011156 evaluation Methods 0.000 description 25
- 230000001965 increasing effect Effects 0.000 description 24
- 239000006185 dispersion Substances 0.000 description 23
- 238000011282 treatment Methods 0.000 description 23
- 238000005098 hot rolling Methods 0.000 description 22
- 238000007747 plating Methods 0.000 description 22
- 238000000137 annealing Methods 0.000 description 21
- 239000010949 copper Substances 0.000 description 20
- 230000003111 delayed effect Effects 0.000 description 19
- 239000002436 steel type Substances 0.000 description 19
- 238000005259 measurement Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 16
- 230000009466 transformation Effects 0.000 description 16
- 229910000794 TRIP steel Inorganic materials 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 14
- 238000005336 cracking Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 13
- 238000003466 welding Methods 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229910052719 titanium Inorganic materials 0.000 description 11
- 230000009471 action Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 238000004070 electrodeposition Methods 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000001737 promoting effect Effects 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 6
- 229910000165 zinc phosphate Inorganic materials 0.000 description 6
- 229910001567 cementite Inorganic materials 0.000 description 5
- 239000010960 cold rolled steel Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- -1 salt ions Chemical class 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910002588 FeOOH Inorganic materials 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229920001074 Tenite Polymers 0.000 description 2
- 239000012963 UV stabilizer Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- NJFMNPFATSYWHB-UHFFFAOYSA-N ac1l9hgr Chemical compound [Fe].[Fe] NJFMNPFATSYWHB-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to an ultra-high strength thin steel plate used as a steel plate for automobiles and a steel plate for transportation equipment, and in particular, breakage caused by hydrogen embrittlement, such as cracking and delayed fracture, which is a problem with steel plates having a tensile strength of 980 MPa or more.
- the present invention relates to a suppressed ultra high strength thin steel sheet.
- high-strength steel is often used for applications such as bolts, PC steel wires, and line pipes.
- tensile strength of 980 MPa or more is reached, hydrogen embrittlement (pickling) occurs due to the penetration of hydrogen into the steel. It is known that brittleness, brittleness of plating, slowness, «breakage, etc. ⁇ occur.
- thin steel plates are so thin that even if hydrogen enters, they are released in a short time, and from the viewpoint of workability and weldability, steel plates of 780 MPa or more were rarely used. It can be said that no aggressive measures have been taken against hydrogen embrittlement.
- TRIP steel is a steel sheet in which an austenitic structure remains, and when deformed by work, the retained austenite (residual iron ) is induced and transformed into martensite by stress, resulting in a large elongation.
- TRIP type composite structure steel TPF steel
- TRIP type tempered martensite containing tempered martensite as a parent phase
- residual austenite residual austenite.
- Sight steel TRIP type bainitic steel (TBF steel) containing pautic ferrite as a parent phase and containing retained austenite is known.
- TBF steel has been known for a long time (for example, Non-Patent Document 1 etc. ), It is easy to obtain high strength by hard paytic ferrite, and fine retained austenite is easily generated at the boundary of lath-like paytic ferrite in the structure. It has the following characteristics when it produces excellent elongation.
- TBF steel has the manufacturing advantage that it can be easily manufactured by a single heat treatment (continuous annealing process or mating process).
- Non-Patent Document 2 reports that additive elements exhibiting resistance to temper softening such as Cr, Mo, and V, which are mainly composed of tempered martensite, are effective in improving the resistance to slowness and delay. Yes. This is a technology that shifts the delayed fracture mode from intergranular to intragranular fracture by precipitating alloy carbide in steel and using it as a hydrogen trap site.
- Patent Document 1 reports that an oxide mainly composed of Ti and Mg is effective in preventing hydrogen defects.
- Patent Document 2 discloses ductility (elongation) and control of dispersion morphology of Mg oxide, sulfide, composite precipitate or precipitated composite, and control of retained austenite and steel sheet strength in the microstructure of the steel sheet. Slow resistance after molding; «It is reported that both fracture resistance is achieved.
- Patent Document 1 Japanese Patent Laid-Open No. 11-293383
- Patent Document 2 Japanese Patent Laid-Open No. 2003-166035
- Non-Patent Document 1 NISSHIN STEEL TECHNICAL REPORT (Nisshin Steel Technical Report), No. 43, De C.1980, p.l ⁇ 10
- Non-Patent Document 2 "New Development of Delayed Fracture Elucidation” (Iron Japan Society, issued in January 1997), p.lll ⁇ 120
- Non-Patent Documents 1 and 2 steel has a C content of 0.4% by mass or more and contains a large amount of alloying elements, so that the workability and weldability required for thin steel sheets are inferior.
- precipitation of alloy carbide requires a precipitation heat treatment of several hours or more, and thus there is a problem in manufacturability.
- the target is a thick steel plate, and is particularly considered for delayed fracture after welding with high heat input.
- the usage environment of thin steel plates in automobile parts is fully considered. It is not a thing.
- the present invention has been made in view of the above circumstances, and its purpose is in an ultra-high strength region where the tensile strength is 980 MPa or more without impairing the excellent ductility (elongation) characteristic of TRIP steel sheets.
- the object is to provide a TRIP-type ultra-high strength steel sheet that can significantly improve the resistance to hydrogen embrittlement.
- the purpose of the steel sheet is to show excellent hydrogen embrittlement resistance in a harsh environment for a long time after the steel sheet is molded into parts, and the workability is further improved and the tensile strength is 980 MPa or more. It is to provide a TRIP type ultra high strength steel sheet.
- TRIP-type ultra-high strength steel sheets of 980 MPa or higher that dramatically improve the resistance to hydrogen embrittlement without generating coarse carbides in the vicinity of grain boundaries even when Cr is added. There is to do.
- the present invention provides:
- the average axis ratio of the retained austenite crystal grains (major axis Z minor axis) is 5 or more, the average minor axis length of the retained austenite crystal grains is 1 m or less, and
- the present invention relates to an ultra-high strength thin steel sheet excellent in hydrogen embrittlement resistance, wherein the nearest neighbor distance between crystal grains of the retained austenite is 1 ⁇ m or less.
- the ultra-high-strength thin steel sheet according to the first aspect of the present invention shown below, by controlling the composition of the steel sheet and the retained austenite, it is in the vicinity of the grain boundary where the ductility (elongation) is not impaired.
- the resistance to hydrogen embrittlement is remarkably increased.
- the coating corrosion resistance is improved by reducing the Mo content and adding B.
- ultra-high strength steel sheets with excellent hydrogen embrittlement resistance can be produced with high productivity, and reinforcing materials such as bumpers and impact beams as ultra-high-strength parts that are extremely unlikely to cause delayed fracture Nya can be used for automobile parts such as seat rails, pillars, reinforcements and members.
- the ultra-high strength thin steel sheet according to the second aspect of the present invention shown below, by controlling the component composition and retained austenite of the steel sheet, it is coarse in the vicinity of the grain boundary without impairing the ductility (elongation). In the ultra-high strength region where the tensile strength without generating carbides is 980 MPa or more, the resistance to hydrogen embrittlement is remarkably improved and the workability is improved. In addition, the coating corrosion resistance is improved by reducing the Mo content and adding B.
- ultra-high strength steel sheets with excellent hydrogen embrittlement resistance can be produced with high productivity, and reinforcing materials such as bumpers and impact beams as ultra-high-strength parts that are extremely unlikely to cause delayed fracture Nya can be used for automobile parts such as seat rails, pillars, reinforcements and members.
- FIG. 1 is a diagram schematically showing crystal grains of retained austenite in the first embodiment of the present invention.
- FIG. 2 is a graph showing the relationship between the average axial ratio of residual austenite crystal grains and the hydrogen embrittlement risk evaluation index in the first embodiment of the present invention.
- FIG. 3 is a view schematically showing crystal grains of retained austenite in the second embodiment of the present invention.
- FIG. 4 shows the average axial ratio of residual austenite grains and hydrogen in the second embodiment of the present invention. It is a graph which shows the relationship of an embrittlement risk evaluation index.
- FIG. 5 is a schematic perspective view of parts used in the pressure-resistant fracture test in Examples.
- FIG. 6 is a side view schematically showing the state of the pressure-resistant fracture test in the examples.
- FIG. 7 is a schematic perspective view of parts used in an impact resistance test in Examples.
- FIG. 8 is a cross-sectional view taken along line AA in FIG.
- FIG. 9 is a side view schematically showing an impact resistance test in an example. Explanation of symbols
- One preferred embodiment of the present invention includes the following (1). (Hereafter, it may be simply referred to as the first aspect of the present invention.)
- the ultra high strength thin steel sheet excellent in hydrogen embrittlement resistance according to the first aspect of the present invention is: At weight 0/0, C:. 0. 10 ⁇ 0 25%, Si:.. L 0 ⁇ 3 0%, ⁇ :. 1. 0 ⁇ 3 5%, P:.
- the ultra-high-strength thin steel sheet according to the first aspect of the present invention has an area ratio with respect to the entire structure of the steel sheet, with a total of 80% or more of paytic ferrite and martensite, and ferrite and pearlite. It is characterized by a total of 9% or less (including 0%).
- the parent phase of the steel sheet is composed of paytic ferrite and martensite, which further improves the strength of the steel sheet and eliminates the origin of grain boundary fracture.
- the ultra-high-strength thin steel sheet according to the first aspect of the present invention is characterized in that the steel sheet further comprises, by weight, Cu.
- thermodynamically stable protective rust is promoted by containing a predetermined amount of Cu and Ni, and promoted cracking by hydrogen is caused even in a severe corrosive environment. Sufficiently suppressed, the corrosion resistance is improved, and as a result, the resistance to hydrogen embrittlement is further improved.
- the ultra-high-strength thin steel sheet according to the first aspect of the present invention is the steel sheet further comprising: And / or V, Zr, and W are included in a total of 0.0003-1. 0%.
- the strength of the steel sheet is further improved by containing a predetermined amount of Ti, V, Zr, and W.
- the structure of the steel sheet becomes finer and the hydrogen trapping capability is further improved.
- the formation of thermodynamically stable protective rust is promoted, corrosion resistance is improved, and hydrogen brittleness resistance is further improved as a result.
- the steel sheet further contains, by weight%, Mo: l. 0% or less, and Z or Nb: 0.1% or less. It is characterized by that.
- the strength of the steel sheet is further improved by containing predetermined amounts of Mo and Nb.
- the structure of the steel sheet becomes finer and the retained austenite is more effectively generated, so that the hydrogen trapping capability is further improved.
- the steel sheet further includes, by weight%, Mo: 0.2% or less, and Z or Nb: 0.1% or less. It is characterized by that.
- the ultra-high-strength thin steel sheet according to the first aspect of the present invention is further in wt%, B:
- the strength of the steel sheet is further improved by containing a predetermined amount of B, and intergranular cracking is prevented by concentrating B at the grain boundaries.
- the ultra-high-strength thin steel sheet according to the first aspect of the present invention is characterized in that the steel sheet is further in wt%, B:
- the coating pretreatment becomes uniform by containing a predetermined amount of B.
- Coating film adhesion is improved.
- the ultra-high-strength thin steel sheet according to the first aspect of the present invention is characterized in that the steel sheet further comprises, by weight, Ca.
- the present inventors are to achieve a higher level of hydrogen embrittlement resistance (delayed fracture resistance) that fully considers the usage environment in ultra-high strength thin steel sheets (hereinafter referred to as steel sheets). Focusing on the detoxification of hydrogen (enhancement of hydrogen trapping capability), we examined specific means.
- Residual austenite in general TRIP steel is a lump in the order of microns, but the first aspect of the present invention is characterized by a fine lath shape in the order of submicrons.
- the average axis ratio of the retained austenite grains (major axis Z minor axis) is 5 or more, the average minor axis length of the retained austenite grains is 1 m or less, and Nearest neighbor distance between the crystal grains of residual austenite is less 1 mu m
- the hydrogen embrittlement resistance slow resistance
- the inventors have found that the promoted cracking property and the like can be sufficiently enhanced, and have come up with the first aspect of the present invention.
- the area ratio of retained austenite and the dispersion mode in the first embodiment of the present invention will be described.
- the first aspect of the present invention requires that the retained austenite be 1% or more in terms of the area ratio relative to the entire structure of the steel sheet.
- the area ratio is desirably 2% or more, more desirably 3% or more. Also, if it is present at 15% or more, problems such as difficulty in securing strength occur, so the upper limit is desirably 15%.
- the area ratio is more desirably 14% or less, and further desirably 13% or less.
- FIG. 2 shows the average axis ratio of residual austenite grains measured by the method described later (residual ⁇ -axis ratio in FIG. 2) and an index of hydrogen embrittlement resistance in the first embodiment of the present invention.
- 6 is a graph showing the relationship of hydrogen embrittlement risk evaluation index (measured by the method shown in the examples described later, and the lower the value, the better the resistance to hydrogen embrittlement).
- the hydrogen embrittlement risk evaluation index sharply decreases especially when the average axial ratio of the retained austenite crystal grains is 5 or more. This is because the retained austenite crystal grains have a high average axial ratio of 5 or more, so that the hydrogen storage ability inherent in retained austenite is fully exerted, and the hydrogen trapping capability is overwhelmingly larger than that of carbide, so-called atmospheric pressure. Hydrogen that invades due to corrosion is made virtually harmless and has a remarkable improvement effect on hydrogen embrittlement resistance. It is thought to do.
- the upper limit of the average axial ratio is a viewpoint power for enhancing the resistance to hydrogen embrittlement V, but is not particularly specified, but a certain thickness of retained austenite is required to effectively exhibit the TRIP effect. . Therefore, the upper limit should be 30, more preferably 20 or less.
- FIG. 1 is a diagram schematically showing crystal grains of (lass-like) retained austenite. As shown in Fig. 1, it was proved that the resistance to hydrogen embrittlement was improved by dispersing the austenite grains with an average minor axis length of 1 ⁇ m or less. This is presumably because the surface area of the retained austenite increases and the hydrogen trapping capability increases when a large number of fine retained austenite crystal grains with a short average minor axis length are dispersed. Further, the average minor axis length is desirably 0.5 m or less, and more desirably 0.25 m or less.
- the nearest neighbor distance is desirably 0. or less, and more desirably 0. or less.
- Residual austenite means an area observed as an FE—SEM (Pield Emission Type Scanning Electron Microscope) with EBSP (Electron Back Scatter Diffraction Pattern) detection.
- EBSP Electron Back Scatter Diffraction Pattern
- an electron beam is incident on the sample surface and the Kikuchi pattern obtained from the reflected electrons generated at this time is analyzed to determine the crystal orientation at the electron beam incident position.
- the orientation distribution on the sample surface can be measured by scanning the surface in two dimensions and measuring the crystal orientation at a given pitch.
- the measurement area (approx. 50 X 50 m, measurement interval is 0 .: L m) on the plane parallel to the rolling surface at the thickness of 1Z4 is the measurement target.
- electrolytic polishing is performed to prevent transformation of retained austenite.
- EBSP images are taken with a high-sensitivity camera and loaded into a computer. Image analysis is performed, and the FCC phase determined by comparison with a simulated pattern using a known crystal system (FCC (face-centered cubic lattice in the case of retained austenite)) is color-mapped.
- FCC face-centered cubic lattice in the case of retained austenite
- the area ratio of the mapped region is obtained, and this is used as the area ratio of the residual austenite structure.
- OIM Orientation Imaging Microscooy Nosisam
- TexSEM Laboratoriese Inc. can be used as hardware and software for the above analysis.
- the method for measuring the average axis ratio, average minor axis length, and nearest neighbor distance between crystal grains of the retained austenite crystal grains is as follows. First, the average axial ratio of residual austenite grains is observed by TEM (magnification is, for example, 150,000 times), and the major axis and minor axis of the remaining austenite grains exist in three arbitrarily selected fields of view. Measure the axial ratio (see Fig. 1), calculate the average value, and use it as the average axial ratio. The average minor axis length of the residual austenite crystal grains is obtained by calculating the average value of the minor axes measured as described above.
- the nearest neighbor distance between crystal grains of retained austenite was observed with TEM (magnification is, for example, 150,000 times), and it was shown as (a) in Fig. 1 in three arbitrarily selected visual fields. Measure the distance between grains of retained austenite aligned in the axial direction, and use the minimum value as the nearest neighbor distance, and average the nearest neighbor distances in the three fields of view. Note that the distance shown in Fig. 1 (b) is not the closest distance.
- the inventors of the present invention have focused on eliminating the starting point of the intergranular fracture that achieves further improvement in the hydrogen embrittlement resistance (delayed fracture resistance) of the steel sheet, and studied specific means.
- the matrix phase of the steel sheet have a two-phase structure of pay-tic ferrite and martensite rather than a martensite single-phase structure.
- martensite carbides such as film-like cementite precipitate at the grain boundaries, and the grain boundaries are easily broken.
- pay-tick ferrite unlike general (polygonal) ferrite, is a plate-like ferrite with high dislocation density, high strength of the entire structure, and high hydrogen trapping capability of carbides that are the starting point of grain boundary fracture. It is optimal as a matrix for steel sheets.
- the total area ratio of paytic ferrite and martensite is 80% or more with respect to the total structure of the steel sheet. More preferably, it is 85% or more.
- the upper limit is If it does not contain ferrite structure, etc., the upper limit is controlled to 99%.
- the copper plate according to the first aspect of the present invention may be composed of only the above structure (that is, a mixed structure of paytic ferrite + martensite and retained austenite).
- polygonal ferrite and pearlite may be included as other structures. These are structures that can inevitably remain in the production process of the present invention.
- the smaller the amount the more desirable the first aspect of the present invention, the area ratio with respect to the entire structure is suppressed to 9% or less. Desirably less than 5%, more desirably less than 3%.
- the paytic ferrite referred to in the present invention is a plate-like ferrite and means a substructure having a high dislocation density.
- Polygonal ferrite and pearlite have no dislocation or very little substructure, are polygonal, and do not contain retained austenite or martensite.
- the area ratio of (paytic ferrite + martensite) and (polygonal ferrite + pearlite) is obtained as follows. That is, a copper plate was corroded with nital, and an arbitrary measurement area (about 50 X 50 m) in a plane parallel to the rolling surface was observed at a thickness of 1Z4 with the above-mentioned FE-SEM (magnification: 1500 times) The tissue is identified by the color difference, and the area ratio is calculated. Pay-tick ferrite and martensite are dark gray in SEM photographs (in the case of SEM, pay-itc ferrite and retained austenite and martensite may not be distinguished from each other), but polygonal ferrite and pearlite are SEM. It is black in the photo and is clearly distinguished.
- the present invention is characterized in that it controls the area ratio of retained austenite and its dispersion form, and thus controls and defines the area ratio of retained austenite and its dispersion form.
- the component composition In order to obtain a steel sheet exhibiting the above strength, it is necessary to control the component composition as follows.
- C is an element that can increase the strength of the steel sheet.
- it is an essential element particularly for securing retained austenite, and in order to obtain a strength of 980 MPa or more, 0.10% by weight or more is necessary.
- 0.10% by weight or more Preferably 0.12% by weight or more, more preferred Or 0.15% by weight or more.
- the C content is suppressed to 0.25% by weight or less. Preferably it is 0.23% by weight or less.
- Si is an important element that effectively suppresses the formation of carbides by decomposition of retained austenite, and is a substitutional solid solution strengthening element that greatly hardens the material.
- it is necessary to contain 1.0% by weight or more (desirably 1.2% by weight or more, more preferably 1.5% by weight or more), but 3.0% by weight. If it exceeds 50%, the scale formation in hot rolling becomes remarkable and the removal of scratches is costly and economically disadvantageous, so this is the upper limit (preferably 2.5% by weight or less, more preferably Is less than 2.0% by weight).
- Mn is necessary to stabilize austenite and obtain the desired retained austenite, and is required to be 1.0% by weight or more (preferably 1.2% by weight or more, more preferably 1.5% by weight or more). Conversely, if the amount is too high, the prayer becomes prominent and the workability may deteriorate, so the upper limit is 3.5% by weight (preferably 3.0% by weight or less).
- P is an element that promotes grain boundary fracture due to grain boundary segregation.
- the lower one is desirable, so the upper limit is made 0.15% by weight. Desirably, it is 0.10% by weight or less, more desirably 0.05% by weight or less.
- S is an element that promotes hydrogen absorption in a corrosive environment, and its lower content is desirable, so the upper limit is 0.02% by weight.
- A1 may be added in an amount of 0.01% by weight or more for deoxidation. It has the effect of suppressing the penetration of hydrogen into the steel, and it is desirable to add 0.02% by weight or more (preferably 0.2% by weight or more, more desirably 0.5% by weight or more).
- A1 has not only a deoxidizing action but also an action of improving corrosion resistance and improving resistance to hydrogen embrittlement. Corrosion resistance improved with A1 As a result, the amount of hydrogen generated by atmospheric corrosion is reduced, and as a result, the hydrogen embrittlement resistance is considered to be improved.
- the stability of the lath-like retained austenite is increased by the A1-added kiln, contributing to the improvement of the resistance to hydrogen embrittlement.
- the upper limit is 1.5% by weight.
- the lower limit of the addition amount needs to be 0.003% by weight or more (preferably 0.1% by weight or more, more preferably 0.3% by weight or more).
- the upper limit is set to 2.0% by weight (preferably 1.5% by weight or less, more preferably 1. 0% by weight or less).
- Cr also has an action of promoting corrosion under the coating film. Therefore, in order to improve the coating corrosion resistance, it is desirable to add as little as possible within the above range.
- the component yarns defined in the present invention are as described above, and the residual component is substantially Fe, but as an unavoidable impurity brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. 0. 001% by weight or less of N or the like is allowed to be included, and it is also possible to positively contain the following elements as long as the effects of the present invention are not adversely affected. .
- ⁇ Cu 0.003 to 0.5 wt%, and Z or
- Ti like Cu, Ni and Cr, has the effect of promoting the formation of protective rust.
- the protective rust has a very beneficial effect when it suppresses the formation of ⁇ FeOOH, which is produced particularly in a chloride environment and adversely affects the corrosion resistance (resulting in hydrogen embrittlement resistance).
- the formation of such protective rust is particularly promoted by the combined addition of Ti and V (or Zr, W).
- Ti is an element that provides very good corrosion resistance, and has the advantage of cleaning steel.
- V is an element effective in improving the hydrogen embrittlement resistance in coexistence with Ti, and also effective in increasing the strength and refining of the steel sheet, and in the form of carbonitride. Control functions effectively as a hydrogen trap. Coexists with Ti and Zr and has the effect of improving the resistance to hydrogen embrittlement.
- Zr is an element effective for increasing the strength of steel sheets and fine grains, and coexists with Ti and has an effect of improving hydrogen embrittlement resistance.
- W is effective in increasing the strength of the steel sheet, and the precipitate is also effective as a hydrogen trap.
- the generated rust has the ability to repel salt and salt ions, contributing to improved corrosion resistance. Coexists with Ti and Zr, and has the effect of improving corrosion resistance and hydrogen embrittlement resistance.
- Mo is necessary to stabilize austenite and obtain the desired retained austenite. It suppresses hydrogen intrusion and slows the resistance; «It is an effective element for improving the fracture characteristics and enhancing the hardenability of the steel sheet. It has the effect of suppressing the occurrence of hydrogen embrittlement by strengthening the grain boundaries. However, since these effects are saturated at more than 1.0% by weight, the upper limit is desirably 0.8% by weight or less, and more desirably 0.5% by weight or less.
- Mo when added to a certain level or more, it has a side surface that makes the pretreatment for coating nonuniform and reduces the corrosion resistance of the coating.
- the strength of hot-rolled material is greatly increased, and manufacturing problems such as difficulty in rolling become obvious.
- Mo is an economically very expensive element, which is disadvantageous in terms of power and cost.
- the addition amount of Mo must be 0.2% by weight or less. Desirably, it is 0.03 wt% or less, more desirably 0.005 wt% or less.
- Nb is a very effective element for increasing the strength and refining of the steel sheet. It is particularly effective when combined with Mo. However, if the content exceeds 0.1% by weight, the moldability will decrease, so the upper limit is set, preferably 0.08% by weight or less. Although the lower limit is not set, it is desirable to add 0.005% by weight or more, more desirably 0.01% by weight or more.
- B is an element effective for increasing the strength of the steel sheet.
- it is necessary to contain 0.0002% by weight or more (preferably 0.0005% by weight or more) in order to exert the effect. If less than 0.0002% by weight, these effects cannot be obtained, so the lower limit is set. On the other hand, if the content exceeds 0.01% by weight, the hot workability deteriorates, so the upper limit is more desirable, and it is more preferably 0.005% by weight or less.
- B when Mo is reduced in order to improve the coating corrosion resistance of the steel sheet, it is necessary to compensate for insufficient strength of Mo reduction by addition of B. Improved strength For this purpose, B must be contained in an amount of 0.0005% by weight or more (preferably 0.0008% by weight or more, more preferably 0.0015% by weight or more). B also has the function of making coating pretreatments such as phosphate treatment uniform and improving coating adhesion (coating corrosion resistance). Although the mechanism is unclear, this effect is more apparent when 0.01% by weight or more of Ti is added to the steel. Further, it is more preferable that Ti is contained in an amount of 0.03% by weight or more and B is contained in an amount of 0.0005% by weight or more. Further, B strengthens the grain boundaries and has the function of improving the slow resistance;
- REM One or more selected from the group consisting of 0.0005 to 0.01% by weight>
- the present invention is not limited to the production conditions, but to form the above-described structure exhibiting ultrahigh strength and excellent hydrogen embrittlement resistance characteristics using a steel sheet satisfying the above component composition. It is recommended that the finishing temperature in hot rolling be as low as possible in the supercooled austenite region where no ferrite is formed. This is because the austenite of the hot-rolled steel sheet can be refined by performing finish rolling at the temperature, and as a result, the structure of the final product becomes fine.
- T1 Holding temperature (T1) for 10 to 1800 seconds (tl) Heating and holding, with average cooling rate of 3 ° CZs or higher (Ms point (Martensite transformation start temperature) 100 ° C) to Bs point It is recommended to cool to the heating holding temperature (T2) of (Bainite transformation start temperature) and hold the heating for 60 to 1800 seconds (t2) in this temperature range.
- the heating holding temperature (T1) exceeds (Ac point + 50 ° C) or the heating holding time (tl) is 1800.
- the (tl) is preferably 30 seconds or longer and 600 seconds or shorter, more preferably 60 seconds or longer and 400 seconds or shorter.
- the steel sheet is cooled, but it is cooled at an average cooling rate of 3 ° CZs or more in order to prevent the formation of a pearlite structure by avoiding the pearlite transformation region. It is recommended that the average cooling rate be larger, more preferably 5 ° CZs or more, more preferably 10 ° CZs or more.
- a predetermined structure can be introduced by performing isothermal transformation. If the heating and holding temperature (T2) here exceeds the Bs point, a large amount of pearlite which is undesirable for the present invention is generated, and a sufficient paytic ferrite structure cannot be secured. On the other hand, if it is less than the (T2) force S (Ms point—100 ° C.), retained austenite decreases, which is not preferable.
- the heat holding time (t2) exceeds 1800 seconds, the dislocation density force of the paytic ferrite and the amount of trapped hydrogen are reduced, and the predetermined retained austenite cannot be obtained.
- the heating and holding time (t2) is 90 seconds to 1200 seconds, more preferably 120 seconds to 600 seconds.
- the cooling method after heating and holding is not particularly limited, and air cooling, rapid cooling, air-water cooling, and the like can be performed.
- the form of retained austenite in the steel sheet can be controlled by the cooling rate during production, the heating and holding temperature (T2), the calorie heat holding time (t2), and the like.
- residual austenite having a small average axial ratio can be formed by lowering the heating holding temperature (T2).
- the heat treatment annealing treatment
- cold-rolled sheets are plated to form hot-dip galvanized steel.
- the plating conditions may be set so as to satisfy the above heat treatment conditions, and the above heat treatment may be performed in the plating process.
- the hot rolling step (if necessary, the cold rolling step) before the above-described continuous annealing treatment is not particularly limited except for the hot rolling finishing temperature, and usually the conditions under which it is carried out are appropriately selected. Can be adopted. Specifically, as the hot rolling process, for example, an Ar point (austen
- the present invention is intended for steel plates (thin steel plates), but the product form is not particularly limited, and hot-rolled steel plates, cold-rolled steel plates, hot-rolled or cold-rolled were performed. Steel plates that have been annealed later can be subjected to chemical treatment, melting, electrical plating, vapor deposition, and various coatings, coating surface treatments, and organic coatings.
- plating may be any of ordinary zinc plating, aluminum plating, and the like.
- Plating may be either hot dip or electro galvanizing, and alloying heat treatment may be applied after plating, or multilayer plating may be used.
- a steel sheet that is not subjected to plating or a film laminated process on a plated steel sheet does not depart from the present invention.
- paints can be used, such as epoxy resin, fluorine resin, silicone acrylic resin, polyurethane resin, acrylic resin, polyester resin, phenolic resin, alkyd resin, melamine resin, etc. It can be used with a known curing agent. In particular, from the viewpoint of corrosion resistance, the use of epoxy, fluorine, or silicon acrylic resin is recommended.
- additives added to the paint such as coloring pigments, coupling agents, leveling agents, sensitizers, antioxidants, UV stabilizers, flame retardants, etc. may be added.
- the form of the paint is not particularly limited, and may be appropriately selected depending on the application, such as solvent-based paint, powder paint, water-based paint, water-dispersed paint, and electrodeposition paint.
- a known method such as a dubbing method, a roll coater method, a spray method, or a curtain flow coater method may be used.
- a known appropriate value for the thickness of the coating layer, use a known appropriate value according to the application.
- the ultra high strength steel sheet of the present invention can be applied to automotive strength parts (for example, reinforcing members such as bumpers and door impact beams), indoor parts such as seat rails, and the like. Parts obtained by forming and processing in this way also have sufficient material properties (strength, rigidity, etc.) and shock absorption, and exhibit excellent hydrogen embrittlement resistance (delayed fracture resistance).
- automotive strength parts for example, reinforcing members such as bumpers and door impact beams
- indoor parts such as seat rails, and the like.
- Parts obtained by forming and processing in this way also have sufficient material properties (strength, rigidity, etc.) and shock absorption, and exhibit excellent hydrogen embrittlement resistance (delayed fracture resistance).
- another preferred embodiment of the present invention includes the following (2). (Hereafter, it may be simply referred to as the second aspect of the present invention.)
- the average axis ratio (major axis Z minor axis) of the residual austenite crystal grains is 5 or more, and the average minor axis length of the residual austenite crystal grains is 1 m or less, and
- the ultra-high-strength thin steel sheet according to the second aspect of the present invention has a metal structure after stretching at a processing rate of 3% in the steel sheet in an area ratio with respect to this metal structure.
- the site is 80% or more in total, and ferrite and pearlite are 9% or less (including 0%) in total.
- the parent phase of the steel sheet is composed of paytic ferrite and martensite, which further improves the strength of the steel sheet and eliminates the origin of grain boundary fracture.
- the ultra-high-strength thin steel sheet according to the second aspect of the present invention is characterized in that the steel sheet further comprises, by weight, Cu
- thermodynamically stable protective rust is promoted by containing a predetermined amount of Cu and Ni, and promoted cracking by hydrogen is caused even in a severe corrosive environment. Sufficiently suppressed, the corrosion resistance is improved, and as a result, the resistance to hydrogen embrittlement is further improved.
- the steel sheet further contains 0.003 to 1.0% in total of Ti and / or V, Zr, and W by weight%. It is characterized by that.
- the strength of the steel sheet is further improved by containing predetermined amounts of Ti, V, Zr, and W.
- the structure of the steel sheet becomes finer and the hydrogen trapping capability is further improved.
- the formation of thermodynamically stable protective rust is promoted, corrosion resistance is improved, and hydrogen brittleness resistance is further improved as a result.
- the ultra-high-strength thin steel sheet according to the second aspect of the present invention is characterized in that the steel sheet is further in% by weight. o: l. 0% or less, and Z or Nb: 0.1% or less.
- the strength of the steel sheet is further improved by containing predetermined amounts of Mo and Nb.
- the structure of the steel sheet becomes finer and the retained austenite is more effectively generated, so that the hydrogen trapping capability is further improved.
- the steel sheet further includes, by weight%, Mo: 0.2% or less, and Z or Nb: 0.1% or less. It is characterized by that.
- the coating pretreatment is uniformed and coating film adhesion is improved by containing a predetermined amount of Mo and Nb.
- the ultra-high-strength thin steel sheet according to the second aspect of the present invention is characterized in that the steel sheet is further in wt%,
- the strength of the steel sheet is further improved by containing a predetermined amount of B, and intergranular cracking is prevented by concentrating B at the grain boundaries.
- the ultra-high-strength thin steel sheet according to the second aspect of the present invention is characterized in that the steel sheet further comprises, by weight, Ca.
- the present inventors are to achieve higher hydrogen embrittlement resistance (delayed fracture resistance) that fully considers the usage environment in ultra-high strength thin steel sheets (hereinafter referred to as steel sheets). Focusing on the detoxification of hydrogen (enhancement of hydrogen trapping capability), we examined specific means.
- retained austenite having very high hydrogen trapping ability and hydrogen storage ability As a result, it has been found that it is effective to form retained austenite having very high hydrogen trapping ability and hydrogen storage ability.
- the retained austenite having a high hydrogen storage capacity exists as a coarse lump, voids are likely to be formed under stress load, which becomes the starting point of fracture.
- the form In order to fully exert the hydrogen trap action of retained austenite and not to be the starting point of destruction, the form must be controlled in a fine lath form.
- the retained austenite in general TRIP steel is in the micron-order lump, but the second aspect of the present invention is characterized by sub-micron order and fine lath.
- the residual austenite exist in the form of fine lath, it will not be transformed more than necessary during processing, so it is possible to secure the residual austenite after processing.
- the stability of retained austenite during processing does not affect the transformation induced workability degradation of TRIP steel.
- the metal structure after the tensile process with a processing rate of 3% in the steel sheet is an area ratio with respect to this metal structure (the entire structure of the steel sheet), and has a retained austenite of 1% or more.
- the average axial ratio of residual austenite grains (major axis Z minor axis) is 5 or more, the average minor axis length of residual austenite grains is 1 m or less, and the maximum distance between the residual austenite grains.
- Residual austenite is dispersed in the steel sheet so that all adjacent distances are less than 1 ⁇ m, so that the hydrogen embrittlement resistance (slag resistance) of the steel sheet can be reduced without adding any special alloying elements.
- the inventors have found that it is possible to sufficiently enhance the fracture property, the resistance to accelerating cracking, and the like, and have arrived at the second aspect of the present invention.
- the steel sheet has a working rate of 3% after tensile processing.
- the metal structure force and the area ratio with respect to this metal structure must be a residual austenite force Sl% or more.
- the area ratio is desirably 2% or more, and more desirably 3% or more.
- the upper limit is desirably 15%.
- the area ratio is more desirably 14% or less, and further desirably 13% or less.
- FIG. 4 shows the average axis ratio (residual ⁇ -axis ratio in FIG. 4) of residual austenite grains measured by the method described below and the index of hydrogen embrittlement resistance in the second embodiment of the present invention.
- 6 is a graph showing the relationship of hydrogen embrittlement risk evaluation index (measured by the method shown in the examples described later, and the lower the value, the better the resistance to hydrogen embrittlement).
- the hydrogen embrittlement risk evaluation index is sharp when the average axial ratio of residual austenite grains is 5 or more. It can be seen that This is because the retained austenite grains have an average axial ratio of 5 or more, so that the hydrogen storage capacity inherent in retained austenite is fully exerted, and the hydrogen trapping capacity is overwhelmingly larger than that of carbides, so-called atmospheric corrosion. This is considered to make the hydrogen intruding in harmless and have a remarkable improvement effect on the resistance to hydrogen embrittlement.
- the upper limit of the above average axial ratio is the viewpoint power to improve the resistance to hydrogen embrittlement, but V is not particularly specified. However, in order to effectively exhibit the TRIP effect, a certain thickness of retained austenite is required. . Therefore, the upper limit should be 30, more preferably 20 or less.
- FIG. 3 is a diagram schematically showing crystal grains of (lass-like) retained austenite.
- hydrogen embrittlement resistance is obtained by dispersing the austenite crystal grains with an average minor axis length of 1 ⁇ m or less in the microstructure after tensile processing at a processing rate of 3%.
- the improvement of the ⁇ characteristics was remarkable. This is thought to be because the surface area of retained austenite is increased and the hydrogen trapping capability is increased when a large number of fine retained austenite crystal grains having a short average minor axis length are dispersed.
- the average minor axis length is desirably 0.5 / z m or less, and more desirably 0.25 / z m or less.
- the nearest neighbor distance is desirably 0.8 / z m or less, and more desirably 0.5 / z m or less.
- Residual austenite refers to the area observed as FE—SEM (Pield Emission Type Scanning Electron Microscope) with EBSP (Electron Back Scatter Diffraction Pattern) detection.
- FE—SEM Field Emission Type Scanning Electron Microscope
- EBSP Electro Back Scatter Diffraction Pattern
- an electron beam is incident on the sample surface and the Kikuchi pattern obtained from the reflected electrons generated at this time is analyzed to determine the crystal orientation at the electron beam incident position.
- the orientation distribution on the sample surface can be measured by scanning the surface in two dimensions and measuring the crystal orientation at a given pitch.
- the measurement area (approx. 50 X 50 m, measurement interval is 0 .: L m) on the plane parallel to the rolling surface at the thickness of 1Z4 is the measurement target.
- electrolytic polishing is performed to prevent transformation of retained austenite.
- EBSP images are taken with a high-sensitivity camera and loaded into a computer. Image analysis is performed, and the FCC phase determined by comparison with a simulated pattern using a known crystal system (FCC (face-centered cubic lattice in the case of retained austenite)) is color-mapped.
- FCC face-centered cubic lattice in the case of retained austenite
- the area ratio of the mapped region is obtained, and this is used as the area ratio of the residual austenite structure.
- OIM Orientation Imaging Microscooy Nosisam
- TexSEM Laboratoriese Inc. can be used as hardware and software for the above analysis.
- the method for measuring the average axial ratio, average minor axis length, and nearest neighbor distance between crystal grains of the retained austenite crystal grains is as follows. First, the average axial ratio of residual austenite grains is observed by TEM (magnification is, for example, 150,000 times), and the major axis and minor axis of the remaining austenite grains exist in three arbitrarily selected fields of view. Measure the axial ratio (see Fig. 1), calculate the average value, and use it as the average axial ratio. The average minor axis length of the residual austenite crystal grains is obtained by calculating the average value of the minor axes measured as described above.
- the nearest neighbor distance between crystal grains of retained austenite was observed with TEM (magnification is, for example, 150,000 times), and it was shown as (a) in Fig. 3 in three arbitrarily selected visual fields. Measure the distance between grains of retained austenite aligned in the axial direction, and use the minimum value as the nearest neighbor distance, and average the nearest neighbor distances in the three fields of view.
- the nearest neighbor distance means the distance between the short axes of retained austenite with respect to two retained austenites aligned in the major axis direction as shown in (a) in FIG. .
- the distance between two retained austenites that are not aligned in the major axis direction as shown in Fig. 3 (b) is not the nearest neighbor distance.
- the inventors of the present invention have focused on eliminating the starting point of the intergranular fracture to achieve further improvement of the hydrogen embrittlement resistance (slow resistance;
- the matrix phase of the steel sheet have a two-phase structure of pay-tic ferrite and martensite rather than a martensite single-phase structure.
- martensite carbides such as film-like cementite precipitate at the grain boundaries, and the grain boundaries are easily broken.
- pay-tick ferrite unlike ordinary (polygonal) ferrite, is a plate-like ferrite with high dislocation density, high strength of the entire structure, and high hydrogen trapping capability of carbides that are the starting point of grain boundary fracture. It is optimal as a matrix for steel sheets.
- the metal structure after the tensile process with a processing rate of 3% is an area ratio with respect to the metal structure, and the plastic
- the total of ferrite and martensite is preferably 80% or more, more preferably 85% or more.
- the upper limit can be determined by the balance with other structures (residual austenite), and when the ferrite structure is not contained, the upper limit is controlled to 99%.
- the copper plate of the present invention may be composed of only the above-described structure (that is, a mixed structure of paytic ferrite + martensite and residual austenite). However, it does not impair the function of the present invention. It is also possible to have polygonal ferrite or pearlite as another structure. These are the structures that can inevitably remain in the manufacturing process of the present invention.
- the less desirable the second aspect of the present invention the more desirable the metal structure after tensile processing with a processing rate of 3%.
- the area ratio is less than 9%. Desirably less than 5%, more desirably less than 3%.
- the paytic ferrite referred to in the present invention is a plate-like ferrite and means a substructure having a high dislocation density.
- Polygonal ferrite and pearlite have no dislocation or very little substructure, are polygonal, and do not contain retained austenite or martensite.
- the area ratio of (paytic ferrite + martensite) and (polygonal ferrite + pearlite) is obtained as follows. That is, a copper plate was corroded with nital, and an arbitrary measurement area (about 50 X 50 m) in a plane parallel to the rolling surface was observed at a thickness of 1Z4 with the above-mentioned FE-SEM (magnification: 1500 times) The tissue is identified by the color difference, and the area ratio is calculated. Pay-tick ferrite and martensite are dark gray in SEM photographs (in the case of SEM, pay-itc ferrite and retained austenite and martensite may not be distinguished from each other), but polygonal ferrite and pearlite are SEM. It is black in the photo and is clearly distinguished.
- the present invention is characterized in that it controls the area ratio of retained austenite and its dispersion form, and thus controls and defines the area ratio of retained austenite and its dispersion form.
- the component composition is controlled as follows: It is necessary.
- C is an element necessary for securing the strength of the steel sheet.
- C is an element necessary for increasing the C concentration (C) in the retained austenite. Residual austenite is transformed to martensite by applying (deformation) to the steel sheet. If the C concentration in the retained austenite is high, the stability of the retained austenite increases and it becomes difficult to transform more than necessary. As a result, retained austenite can be secured in the processed steel sheet, and excellent hydrogen embrittlement resistance can be maintained.
- it is necessary to exceed 0.25% by weight in order to obtain the effect of the second aspect of the present invention, and when the amount of C is insufficient, the workability deteriorates.
- the amount is desirably 0.27% by weight or more, more desirably 0.30% by weight or more.
- the C content is limited to 0.60% by weight or less. Desirably, it is 0.55% by weight or less. More desirably, it is 0.50% by weight or less.
- the C concentration (C) in the retained austenite can be easily increased.
- Si is an important element that effectively suppresses the formation of carbides by decomposition of retained austenite, and is a substitutional solid solution strengthening element that greatly hardens the material. It is necessary to contain 1.0% by weight or more in order to effectively exhibit such action (preferably 1.2% by weight or more, more desirably 1.5% by weight or more), but 3.0% by weight. If it exceeds 50%, the scale formation in hot rolling becomes remarkable and the removal of scratches is costly and economically disadvantageous, so this is the upper limit (preferably 2.5% by weight or less, more preferably Is less than 2.0% by weight).
- Mn is necessary for stabilizing austenite, obtaining desired retained austenite, and for obtaining strength and elongation, and is required to be 1.0 wt% or more (preferably 1.2 wt% or more, more Desirably 1.5% by weight or more).
- the upper limit is 3.5% by weight (preferably 3.0% by weight or less).
- P 0.15 wt% or less (excluding 0 wt%)>
- P is an element that promotes grain boundary fracture due to grain boundary segregation.
- the lower one is desirable, so the upper limit is made 0.15% by weight. Desirably, it is 0.10% by weight or less, more desirably 0.05% by weight or less.
- S is an element that promotes hydrogen absorption in a corrosive environment, and its lower content is desirable, so the upper limit is 0.02% by weight.
- A1 may be added in an amount of 0.01% by weight or more for deoxidation.
- the concentration of A1 on the steel surface has the effect of suppressing hydrogen from entering the steel, and it is desirable to add 0.02% by weight or more.
- A1 has not only a deoxidizing action, but also an action of improving corrosion resistance and improving resistance to hydrogen brittleness. Corrosion resistance is improved by the addition of A1, and as a result, the amount of hydrogen generated by atmospheric corrosion is reduced, and as a result, the resistance to hydrogen embrittlement is considered to be improved. Furthermore, it is considered that the stability of the lath-like retained austenite is increased by the addition of A1 and contributes to the improvement of hydrogen embrittlement resistance. However, if the added amount increases, inclusions such as alumina increase and the workability deteriorates, so the upper limit is 1.5% by weight.
- the lower limit of the addition amount must be 0.003 wt% (preferably 0.1 wt% or more, more preferably 0.3 wt% or more).
- the excess amount of calorie is saturated, the workability will be degraded if the effect is saturated.
- % Preferably 1.5% by weight or less, more preferably 1.0% by weight or less.
- Cr also has an action of promoting corrosion under the coating film. Therefore, in order to improve the coating corrosion resistance, it is desirable to add as little as possible within the above range.
- the component yarns defined in the present invention are as described above, and the residual component is substantially Fe, but as an unavoidable impurity brought into the steel depending on the conditions of raw materials, materials, production equipment, etc. 0. 001% by weight or less of N or the like is allowed to be included, and it is also possible to positively contain the following elements as long as the effects of the present invention are not adversely affected. .
- ⁇ Cu 0.003 to 0.5% by weight, and Z or
- Cu 0.003 to 0.5% by weight
- Ni 0.003 to 1.0% by weight
- the presence of Cu and Ni improves the corrosion resistance of the steel sheet itself, so that hydrogen generation due to corrosion of the steel sheet can be sufficiently suppressed.
- These elements also have the effect of accelerating the production of acid iron iron: OC FeOOH, which is said to be thermodynamically stable and protective among rust produced in the atmosphere. By promoting the generation, penetration of the generated hydrogen into the steel sheet can be suppressed, and assisted cracking by hydrogen can be sufficiently suppressed in a severe corrosive environment.
- the respective contents must be 0.003% by weight or more. Desirably, it is 0.05% by weight or more, more desirably 0.1% by weight or more. If any element is excessively contained, the workability deteriorates, so the upper limit is set to 0.5% by weight and 1.0% by weight, respectively.
- Ti like Cu, Ni and Cr, has the effect of promoting the formation of protective rust.
- the protective rust has a very beneficial effect when it suppresses the formation of ⁇ FeOOH, which is produced particularly in a chloride environment and adversely affects the corrosion resistance (resulting in hydrogen embrittlement resistance).
- the formation of such protective rust is particularly promoted by the combined addition of Ti and V (or Zr, W).
- Ti is an element that provides very good corrosion resistance, and has the advantage of cleaning steel.
- V has the effect of improving the hydrogen embrittlement resistance in coexistence with Ti, and is effective for increasing the strength of steel sheets and fine grains of old ⁇ grains (former austenite grains). It is an element and also functions effectively as a hydrogen trap by controlling the form of carbonitride. Coexists with Ti and Zr and has the effect of improving the resistance to hydrogen embrittlement.
- Zr is an element effective for increasing the strength of steel sheets and refining old ⁇ grains. It coexists with Ti and has the effect of improving the resistance to hydrogen embrittlement.
- W is effective in increasing the strength of the steel sheet, and the precipitate is also effective as a hydrogen trap.
- the generated rust has the ability to repel salt and salt ions, contributing to improved corrosion resistance. Coexists with Ti and Zr, and has the effect of improving corrosion resistance and hydrogen embrittlement resistance.
- Mo is necessary to stabilize austenite and obtain the desired retained austenite. It is an effective element to suppress hydrogen penetration, improve delayed fracture resistance, and enhance the hardenability of steel sheets. It has the effect of suppressing the occurrence of hydrogen embrittlement by strengthening the grain boundaries. However, if the content exceeds 1.0% by weight, these effects are saturated, so the upper limit is set. Desirably, it is 0.8 weight% or less, More desirably, it is 0.5 weight% or less.
- the addition amount of Mo must be 0.2% by weight or less. Desirably, it is 0.03% by weight or less, more desirably 0.005% by weight or less.
- Nb is a very effective element for increasing the strength of the steel sheet and fine grains of old ⁇ grains. It is particularly effective when combined with ⁇ . However, if it exceeds 0.1% by weight, these effects are saturated. Therefore, the upper limit is set. Desirably, it is 0.08 weight% or less. The lower limit is not set, but it is desirable to add 0.005% by weight or more. More desirably, the content is 0.01% by weight or more.
- B is an element effective for increasing the strength of the steel sheet.
- Mo when Mo is reduced to improve the coating corrosion resistance of the steel sheet, it is necessary to compensate for the lack of strength of Mo reduction by adding B.
- B in order to improve the strength, it is necessary to contain 0.0002% by weight or more (preferably 0.0008% by weight or more, more preferably 0.0015% by weight or more). . If less than 0.0002% by weight, these effects cannot be obtained, so the lower limit is set.
- B has the function of making coating pretreatments such as phosphate treatment uniform and improving coating adhesion (coating corrosion resistance). Although the mechanism has not been elucidated, this effect is more exhibited when 0.01% by weight or more of Ti is added to the steel.
- Ti is contained in an amount of 0.03% by weight or more and B is contained in an amount of 0.0005% by weight or more.
- B has the function of strengthening grain boundaries and improving delayed fracture resistance. Conversely, if it exceeds 0.01 wt%, the hot workability deteriorates, so the upper limit is set. More desirably, it is 0.005% by weight or less.
- REM One or more selected from the group consisting of 0.0005 to 0.01% by weight>
- the present invention is not limited to the production conditions, but using the steel sheet satisfying the above component composition to form the above-described structure exhibiting ultrahigh strength and excellent hydrogen embrittlement resistance. , Finishing temperature in hot rolling, supercooled austenite region where ferrite is not generated It is recommended that the temperature be as low as possible. This is because the austenite of the hot-rolled steel sheet can be refined by performing finish rolling at the temperature, and as a result, the structure of the final product becomes fine.
- the heating holding temperature T2 (Ms point (martensite transformation start temperature) 100 ° C)
- Bs point bainite transformation start temperature
- the heating holding temperature (T1) exceeds (Ac point + 50 ° C) or the heating holding time (tl) is 1800.
- the (tl) is preferably 30 seconds or longer and 600 seconds or shorter, more preferably 60 seconds or longer and 400 seconds or shorter.
- the steel sheet is cooled, but it is cooled at an average cooling rate of 3 ° CZs or more in order to prevent the formation of a pearlite structure by avoiding the pearlite transformation region. It is recommended that the average cooling rate be larger, more preferably 5 ° CZs or more, more preferably 10 ° CZs or more.
- the heat holding time (t2) exceeds 1800 seconds, the dislocation density force of the paytic ferrite and the amount of trapped hydrogen are reduced, and the predetermined retained austenite cannot be obtained.
- the heating holding time (t2) is less than 60 seconds, the predetermined pay-tick ferrite The organization cannot be obtained.
- the heating and holding time (t2) is 90 seconds to 1200 seconds, more preferably 120 seconds to 600 seconds.
- the cooling method after heating and holding is not particularly limited, and air cooling, rapid cooling, air-water cooling, and the like can be performed.
- the form of retained austenite in the steel sheet can be controlled by the cooling rate during production, the heating and holding temperature (T2), the heating and holding time (t2), and the like.
- the retained austenite having a small average axial ratio can be formed by setting the heat holding temperature (T2) to the low temperature side.
- the heat treatment (annealing treatment) is easily performed using a continuous annealing apparatus or a batch annealing apparatus.
- the plating conditions may be set so as to satisfy the heat treatment conditions, and the heat treatment may be performed in the plating process.
- the hot rolling step (if necessary, the cold rolling step) prior to the above-described continuous annealing treatment is not particularly limited except for the hot rolling finishing temperature, and usually the conditions under which it is carried out are appropriately selected. Can be adopted. Specifically, as the hot rolling process, for example, an Ar point (austen
- the present invention is intended for steel plates (thin steel plates), but the product form is not particularly limited, and hot-rolled steel plates, cold-rolled steel plates, hot-rolled or cold-rolled were used. Steel sheets that have been annealed later can be subjected to electrodeposition coating for automobiles, chemical conversion treatment, melting adhesion, electrical plating, vapor deposition and other coatings, various types of coating, coating surface treatment, and organic coating treatment. It is.
- the plating may be either normal zinc plating or aluminum plating.
- Plating may be either hot dip or electro galvanizing, and alloying heat treatment may be applied after plating, or multilayer plating may be used.
- a steel sheet that is not subjected to plating or a film laminated process on a plated steel sheet does not depart from the present invention.
- chemical conversion treatment such as phosphate treatment or electrodeposition coating may be applied according to various applications.
- Known paints can be used, such as epoxy resin, fluorine resin, silicone acrylic resin, polyurethane resin, acrylic resin, polyester resin, phenolic resin, alkyd resin, melamine resin, etc. It can be used with a known curing agent.
- the use of epoxy, fluorine, or silicon acrylic resin is recommended.
- known additives added to the paint such as coloring pigments, coupling agents, leveling agents, sensitizers, antioxidants, UV stabilizers, flame retardants, etc. may be added.
- the form of the coating is not particularly limited, and may be appropriately selected depending on the application, such as a solvent-based coating, a powder coating, a water-based coating, a water-dispersed coating, and an electrodeposition coating.
- a known method such as a dubbing method, a roll coater method, a spray method, or a curtain flow coater method may be used.
- a known appropriate value for the thickness of the coating layer, use a known appropriate value according to the application.
- the ultra-high strength thin steel sheet of the present invention can be applied to automotive strength parts (for example, reinforcing members such as bumpers and door impact beams), indoor parts such as seat rails, and the like. Parts obtained by forming and processing in this way also have sufficient material properties (strength, rigidity, etc.) and shock absorption, and exhibit excellent hydrogen embrittlement resistance (delayed fracture resistance).
- automotive strength parts for example, reinforcing members such as bumpers and door impact beams
- indoor parts such as seat rails, and the like.
- Parts obtained by forming and processing in this way also have sufficient material properties (strength, rigidity, etc.) and shock absorption, and exhibit excellent hydrogen embrittlement resistance (delayed fracture resistance).
- Cooling rate 40 ° CZs
- the steel plates of Experiment Nos. 1 to 15, 17 to 19, and 21 to 23 are steel plates after cold rolling using the Ac point (Table 1
- the steel plate of Experiment No. 16 which has martensite steel strength, which is a conventional high-strength steel using steel grade (P), was water-quenched after holding the cold-rolled steel plate at 880 ° C for 30 minutes to 300 ° C. And tempered for 1 hour.
- the steel sheet of Experiment No. 20 uses the steel type (A), and the steel sheet after cold rolling has a temperature of Ac point 50 ° C.
- the average axial ratio, average minor axis length, and nearest neighbor distance between crystal grains of the residual ⁇ crystal grains were measured according to the above-described methods.
- an average axial ratio of 5 or more, an average short axis length of 1 / z mdOOOnm) or less, and a nearest neighbor distance of 1 m (lOOOnm) or less satisfy the requirements of the present invention ( ⁇ )
- the average axial ratio is less than 5
- the average minor axis length is more than 1 / ⁇ ⁇ (1000 ⁇ m)
- the nearest neighbor distance is more than 1 ⁇ m (lOOOnm).
- Tensile test Tensile strength (TS) and elongation (EL) were measured using a WIS No. 5 test piece. The strain rate in the tensile test was ImmZsec. In the first example, a steel sheet having a tensile strength measured by the above method of 980 MPa or more was evaluated as “excellent in elongation” when the elongation was 10% or more.
- Hydrogen embrittlement risk evaluation index (%) 100 X (1 -E1 / E0) ⁇ ⁇ ⁇ (1)
- E0 indicates the elongation at break of the test piece in a state where hydrogen is not substantially contained in the steel
- E1 is a result of a combined cycle test in which a long wet time is set and a severe corrosive environment is assumed. It shows the elongation at break when hydrogen penetrates into the steel plate (test piece).
- the composite cycle test was conducted for 7 cycles, with one cycle consisting of 5% salt spray 8 hours, (temperature) 35 ° C (humidity) 60% RH constant temperature and humidity test 16 hours. If the hydrogen embrittlement risk evaluation index exceeds 50%, there is a risk of causing hydrogen embrittlement during use. Therefore, in the present invention, those with 50% or less were evaluated as having excellent hydrogen embrittlement resistance.
- Experiment Nos. 14 to 20 that do not satisfy the provisions of the present invention have the following problems.
- Experiment Nol4 since the amount of C is excessive, the dispersion form of residual ⁇ (residual austenite) is not satisfied, the weldability is not sufficient, and the resistance to hydrogen embrittlement is inferior.
- Experiment 15 ⁇ 15 the amount of ⁇ is insufficient, so the dispersion form of residual ⁇ is not satisfied, hardenability is deteriorated, and sufficient strength, elongation, and resistance to hydrogen embrittlement are not obtained.
- Experiment No. 16 is an example in which martensite steel, which is a conventional high-strength steel, was obtained using a steel type with insufficient Si content. However, since there is almost no residual ⁇ , Hydrogen embrittlement resistance is not obtained.
- Experiment No. 17 does not have sufficient strength and resistance to hydrogen embrittlement because the amount of C is insufficient and the dispersion form of residual ⁇ is not satisfied.
- Experiment ⁇ 18 does not contain Cr and does not satisfy the dispersion form of residual ⁇ , so it does not have sufficient strength and hydrogen embrittlement resistance, which are poor in hardenability.
- the amount of Cr is excessive and the dispersion form of residual ⁇ is not satisfied. Therefore, coarse carbides are deposited, the workability is difficult, and sufficient strength and hydrogen embrittlement resistance are not obtained.
- Experiment No. 20 uses a steel grade (A) that satisfies the compositional range specified in the present invention, but it did not work under the recommended production conditions (the heat holding temperature T1 during annealing was Ac3). Therefore, the obtained steel plate became a conventional TRIP steel plate. In other words, the retained austenite did not satisfy the dispersion form defined in the present invention and became agglomerated, and the parent phase also had a two-phase structure of paytic ferrite and martensite. Therefore, sufficient strength and resistance to hydrogen embrittlement are not obtained.
- a part (test body, knot channel part) 1 as shown in Fig. 5 was prepared, and a crushability test was conducted. It was. Spot welding was performed at a 35 mm pitch as shown in FIG. 5 by applying a current 0.5 kA lower than the dust generation current from an electrode having a tip diameter of 6 mm to the spot welding position 2 of the part shown in FIG. Next, as shown in Fig. 6, the upper force mold 3 at the center in the longitudinal direction of the part 1 was pressed to obtain the maximum load. Absorbed energy was obtained from the area of the load-displacement diagram. The results are shown in Table 3.
- FIG. 8 shows an AA sectional view of the part 4 in FIG.
- spot welding was performed at spot welding position 5 of part 4 in the same manner as in the above-mentioned fracture resistance test, and then part 4 was set on base 7 as shown schematically in FIG.
- the drop energy (110 kg) 6 was dropped from a height of 1 lm, and the energy absorbed until the part 4 deformed 40 mm (shrinks in the height direction) was determined.
- Table 4 The results are shown in Table 4.
- Cooling rate 40 ° CZs
- Test Nos. 24-42, 44, and 45 steel plates are cold-rolled with a temperature of Ac point + 30 ° C.
- steel plate No. 43 which is a martensitic steel, a conventional high-strength steel using steel grade (H)
- H steel grade
- the steel sheet after cold rolling was heated to 830 ° C and held for 5 minutes, then water quenched and tempered at 300 ° C for 10 minutes.
- the steel plate of Experiment No. 46 uses steel grade (1). After the cold-rolled steel plate was heated to 800 ° C and held for 120 seconds, the average cooling rate was 20 ° CZs and 350 ° C (T
- a strip of 120 mm ⁇ 30 mm was cut out from each of the steel plates and subjected to bending so that the R of the bent portion was 15 mm to obtain a bending test piece.
- the bending test piece was immersed in a 5% HC1 aqueous solution under a stress of 1000 MPa, the time until cracking was measured, and the hydrogen embrittlement resistance was evaluated. The time until cracking occurred was 24 hours or more, and the hydrogen embrittlement resistance was excellent.
- the corrosion resistance after painting was also evaluated by simulating the usage environment.
- Each steel plate force A flat plate test piece having a thickness of 1.2 mm was cut out to obtain a test piece.
- This test piece was treated with zinc phosphate, and then commercially available electrodeposition coating was performed to form a coating film with a thickness of 25 m.
- a rust that reaches the substrate was put with a cutter and subjected to a corrosion test. After a certain period of time, the spread of corrosion (blister width) from the artificial scratches by the cutter was measured.
- the blister width was standardized by setting the blister width of the test piece of Experiment No. 24 as “1”, and was ranked as follows to evaluate the coating corrosion resistance. When the blister width exceeds 1.0 and is 1.5 or less, the coating corrosion resistance is slightly lowered ( ⁇ ), and when the blister width is 1.0 or less, the coating corrosion resistance is excellent ( ⁇ to ⁇ ) evaluated.
- the coating corrosion resistance is ( ⁇ )
- the blistering width when the blistering width is 0.7 or less, the coating corrosion resistance is ( ⁇ ), and when the blistering width is over 0.7 and below 0.75, the coating corrosion resistance is ( ⁇ ⁇ ), the blistering width Coating corrosion resistance ( ⁇ ) exceeding 0.75 and 0.8 or less, and blistering width exceeding 0.8 and 0.8 or less coating corrosion resistance ( ⁇ ⁇ )
- the coating width is more than 0.85 and less than 0.9
- the coating corrosion resistance is ( ⁇ ⁇ )
- the blistering width is more than 0.9 and the coating resistance is less than 0.95 ( ⁇ )
- the blistering width is more than 0.95.
- the coating corrosion resistance is described as 0 (less than 0) and the blistering width exceeds 1.0. 1.5
- the coating corrosion resistance is described as ( ⁇ ) when 5 or less.
- the zinc phosphate treatment is performed after the pretreatment (degreasing, water washing, surface adjustment) for normal phosphate treatment, and the electrodeposition coating uses SD5000 made by Nippon Paint. Performed at ° C for 2 minutes. The amount of coating (coating film) was controlled by the treatment time of zinc phosphate treatment.
- Experiment No. 41-46 (Comparative Example) that does not satisfy the provisions of the present invention has the following problems.
- Experiment No. 41 since the C content is excessive, sufficient elongation, hydrogen embrittlement resistance, and weldability are not obtained. In addition, the corrosion resistance of the paint is also reduced.
- Experiment No. 42 does not have sufficient hydrogen embrittlement resistance due to insufficient Mn content. Also, the growth is not enough.
- Experiment No. 43 shows that there is almost no retained austenite, which is an example of obtaining martensitic steel, which is a conventional high-strength steel, using steel grade “20” with insufficient Si content. Therefore, the hydrogen embrittlement resistance is inferior. Also, the elongation required for thin steel sheets has not been secured.
- Experiment No. 44 does not have sufficient strength due to insufficient C content.
- Experiment No. 45 since the Nb amount is excessively contained, the moldability is remarkably lowered and sufficient elongation is not obtained.
- the bending force could not be measured and the hydrogen embrittlement resistance could not be investigated.
- Experiment No. 46 was made using a steel material satisfying the component composition specified in the present invention !, but it was not manufactured under the recommended conditions (heat retention temperature T1 during annealing was less than Ac point) In order to get
- the resulting steel plate became the conventional TRIP steel plate.
- the retained austenite did not satisfy the average axial ratio defined in the present invention, and the parent phase had the same strength as a two-phase structure of paytic ferrite and martensite. Therefore, sufficient strength is not obtained.
- Cooling rate 40 ° CZs
- Test Nos. 47 to 62 and 64 to 66 are steel sheets after cold rolling using the Ac point (see Table 9) to A.
- the average cooling rate is 20 ° CZs.
- the steel plate of Experiment No. 63 which has martensite steel strength, which is a conventional high-strength steel using steel grade (q), was water quenched after holding the cold-rolled steel plate at 880 ° C for 30 minutes, at 300 ° C. Tempered for 1 hour.
- the steel sheet of Experiment No. 67 uses the steel type (b), and the steel sheet after cold rolling is treated at a temperature of Ac point-50 ° C.
- JIS No. 5 test specimens were collected from the steel sheets obtained in this way, and subjected to a tensile force of 3% for the machining rate to simulate the actual processing.
- Metal structure, tensile strength (TS) and elongation before processing [total elongation (EL)], hydrogen embrittlement resistance after processing (hydrogen embrittlement risk evaluation index), corrosion resistance, delayed fracture resistance Each was examined and evaluated in the following manner. The results are shown in Table 10.
- Manufactured by XL30S-FEG), and the area ratios of paytic ferrite (BF) and martensite (M) and the area ratio of residual austenite (residual ⁇ ) were measured according to the method described above. The same measurement was performed in two arbitrarily selected fields of view, and the average value was obtained.
- the average axial ratio, average minor axis length, and nearest neighbor distance between crystal grains of residual ⁇ crystal grains before and after processing were measured according to the above-described methods.
- the average axial ratio is 5 or more, the average minor axis length is m (lOOOnm) or less, and the nearest neighbor distance is 1 / zm dOOOnm) or less.
- the average axial ratio is less than 5, the average minor axis length exceeds 1 m (lOOOnm), and the nearest neighbor distance exceeds 1 m (lOOOnm).
- the tensile test was performed using a JIS No. 5 specimen before processing, and the tensile strength (TS) and elongation (EL) were measured.
- the strain rate in the tensile test was ImmZsec.
- a steel sheet having a tensile strength measured by the above method of 980 MPa or more was evaluated as having “elongation” of 8% or more.
- Hydrogen embrittlement risk evaluation index (%) 100 X (1 -E1 / E0) ⁇ ⁇ ⁇ (1)
- E0 indicates the elongation at break of the test piece in a state where hydrogen is not substantially contained in the steel
- E1 is a result of a combined cycle test in which a long wet time is set and a severe corrosive environment is assumed. It shows the elongation at break when hydrogen penetrates into the steel plate (test piece).
- the composite cycle test was conducted for 7 cycles, with one cycle consisting of 5% salt spray 8 hours, (temperature) 35 ° C (humidity) 60% RH constant temperature and humidity test 16 hours. If the hydrogen embrittlement risk evaluation index exceeds 50%, there is a risk of causing hydrogen embrittlement during use. Therefore, in the present invention, those with 50% or less were evaluated as having excellent hydrogen embrittlement resistance.
- a strip test piece of 150 mm x 30 mm is cut out from each of the above steel plates, and the strip test piece is pulled to give a deformation with a processing rate of 3%.
- the bending test piece was immersed in a 5% HC1 aqueous solution under a load of lOOOMPa, and the time until cracking was measured to evaluate the resistance to hydrogen embrittlement.
- the time to crack initiation is 24 hours or more, and the hydrogen embrittlement resistance is excellent.
- the corrosion resistance after painting was also evaluated by simulating the usage environment.
- Each steel plate force A flat plate test piece having a thickness of 1.2 mm was cut out to obtain a test piece.
- This test piece was treated with zinc phosphate, and then commercially available electrodeposition coating was performed to form a coating film with a thickness of 25 m.
- a rust that reaches the substrate was put with a cutter and subjected to a corrosion test. After a certain period of time, the spread of corrosion (blister width) from the artificial scratches by the cutter was measured.
- the blister width was standardized by setting the blister width of the test piece of Experiment No. 47 as “1”, and was ranked as follows to evaluate the coating corrosion resistance. If the blister width exceeds 1.0 and is 1.5 or less, the coating corrosion resistance is reduced (X). If the blister width is 1.0 or less, the paint corrosion resistance is excellent ( ⁇ to ⁇ ). did.
- the zinc phosphate treatment is performed after the pretreatment (degreasing, washing with water, adjusting the surface) for normal phosphate treatment, and electrodeposition coating uses SD5000 made by Nippon Paint. Performed at ° C for 2 minutes. The amount of coating (coating film) was controlled by the treatment time of zinc phosphate treatment.
- Experiments Nos. 61 to 67 that do not satisfy the provisions of the present invention have the following problems.
- the resistance to hydrogen embrittlement was not obtained because the amount of C was insufficient and there was almost no residual ⁇ (residual austenite) after 3% tensile processing. Therefore, it can be said that it is inferior in workability.
- experiment ⁇ 62 the amount of ⁇ is insufficient, so there is almost no residual ⁇ , and the dispersion form of residual ⁇ is not satisfied. Therefore, the hydrogen embrittlement resistance rating index with high hydrogen embrittlement risk evaluation index has not been obtained. Therefore, it can be said that it is inferior in workability.
- hardenability deteriorates, and sufficient strength and elongation are not obtained. Furthermore, the corrosion resistance of the paint has been reduced.
- Experiment ⁇ 63 is an example of obtaining martensitic steel, which is a conventional high-strength steel, using a steel type with insufficient Si content, but there is almost no residual ⁇ , and the dispersion form of residual ⁇ is also Not satisfied. Therefore, sufficient elongation and hydrogen embrittlement resistance characteristics are not obtained. Therefore, it can be said that it is inferior in workability. In addition, the coating corrosion resistance is also reduced. Experiment ⁇ 64 has an excessive amount of C and does not contain Cr, so it does not satisfy the dispersion form of residual ⁇ and is inferior in hydrogen brittleness resistance. Therefore, it can be said that it is inferior to workability. Also, the paint corrosion resistance is inferior.
- the amount of ⁇ is excessive, but the prescribed retained austenite is obtained.
- the stability of retained austenite is low, the retained austenite does not remain stably after processing. Therefore, the resistance to hydrogen embrittlement has not been obtained. Therefore, it can be said that it is inferior to workability. Moreover, sufficient elongation has not been obtained. Furthermore, the coating corrosion resistance is reduced.
- the retained austenite did not satisfy the dispersion form defined in the present invention and became a lump, and the parent phase had the same strength as a two-phase structure of bait ferrite and martensite. Therefore, sufficient strength is not obtained. Moreover, the hydrogen embrittlement risk evaluation index is high, and the hydrogen embrittlement resistance characteristic is not obtained. Therefore, it can be said that it is inferior to workability.
- parts (test body, hat channel parts) 1 as shown in FIG. 5 were prepared using the steel type (e) and the comparative steel sheets shown in Table 9, and the crushability test was performed. Spot welding was performed at a 35 mm pitch as shown in Fig. 5 by applying a current 0.5 kA lower than the dust generation current from an electrode having a tip diameter of 6 mm to spot welding position 2 of component 1 shown in Fig. 5.
- the upper force mold 3 at the center in the longitudinal direction of the part 1 was pressed to obtain the maximum load. Absorbed energy was obtained from the area of the load-displacement diagram. The results are shown in Table 11.
- FIG. 8 is a cross-sectional view taken along the line AA of the part 4 in FIG.
- the part 4 was set on the base 7 as schematically shown in FIG.
- the drop weight (110 kg) 6 was dropped by 1 lm force, and the absorbed energy until the part 4 deformed 40 mm (shrinks in the height direction) was obtained.
- the results are shown in Table 12.
- the ductility (elongation) is not impaired, and even if Cr is added, coarse carbides are not generated in the vicinity of the grain boundary, and the hydrogen embrittlement resistance is dramatically improved.
- An ultra-high strength TRIP type thin steel sheet of 980 MPa or higher is provided.
- An ultra-high strength TRIP type thin steel sheet of 980MPa and higher is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
本発明は、重量%にて、C:0.10~0.60%、Si:1.0~3.0%、Mn:1.0~3.5%、P:≦0.15%、S:≦0.02%、Al:≦1.5%、Cr:0.003~2.0%を含有し、残部が鉄及び不可避不純物である鋼板からなり、残留オーステナイトの結晶粒の平均軸比(長軸/短軸)が5以上であると共に、当該残留オーステナイトの結晶粒の平均短軸長さが1μm以下で、かつ当該残留オーステナイトの結晶粒間の最隣接距離が1μm以下である、耐水素脆化特性に優れた超高強度薄鋼板に関する。
Description
明 細 書
超高強度薄鋼板
技術分野
[0001] 本発明は、自動車用鋼板、輸送機用鋼板として用いられる超高強度薄鋼板に係り 、特に引張強度 980MPa以上の鋼板で問題となる置き割れ、遅れ破壊と言った水素 脆性による破壊を抑制した超高強度薄鋼板に関するものである。
背景技術
[0002] 従来、ボルト、 PC鋼線やラインパイプといった用途には高強度鋼が多く使われてお り、 980MPa以上の引張強度になると、鋼中への水素の侵入により水素脆化 (酸洗 脆性、めっき脆性、遅; «壊など)が発生することが知られている。これに対し、薄鋼 板は板厚が薄いため水素が侵入しても短時間で放出されること、加工性や溶接性の 観点から 780MPa以上の鋼板の利用があまりなかったことなどから、いわゆる水素脆 化に対して積極的な対策はされていな力つたと言える。
[0003] しかし、最近では自動車の軽量ィ匕ゃ衝突安全性の向上の必要性から、 980MPa 以上の超高強度鋼板にプレス成形や曲げ加工などを施して、バンパーやインパクト ビーム等の補強材ゃシートレール等に使用される場合が急速に増えてきている。さら にはプレス成型や曲げ加工等を施したビラ一等の部品にも高強度化が求められてい る。それに伴!、耐水素脆化感受性を備えた超高強度薄鋼板のニーズが高揚しており 、この様なニーズに応える鋼板として、特に TRIP (TRansformation Induced PI asticity;変態誘起塑性)鋼が使用された鋼板が注目されて!/、る。
[0004] TRIP鋼は、オーステナイト組織が残留しており、加工変形させると、応力によって 残留オーステナイト (残留 Ί )がマルテンサイトに誘起変態して大きな伸びが得られる 鋼板である。その種類として幾つか挙げられ、例えば、ポリゴナルフェライトを母相とし 、残留オーステナイトを含む TRIP型複合組織鋼 (TPF鋼);焼戻マルテンサイトを母 相とし、残留オーステナイトを含む TRIP型焼戻マルテンサイト鋼 (TAM鋼);ペイ- ティックフェライトを母相とし、残留オーステナイトを含む TRIP型べイナイト鋼 (TBF鋼 )等が知られている。このうち TBF鋼は古くから知られており(例えば非特許文献 1等
)、硬質のペイ-ティックフェライトによって高強度が得られ易ぐまた当該組織中には 、ラス状のペイ-ティックフェライトの境界に微細な残留オーステナイトが生成し易ぐ この様な組織形態が非常に優れた伸びをもたらすと 、つた特徴を有して 、る。更に T BF鋼は、 1回の熱処理 (連続焼鈍工程またはめつき工程)によって容易に製造できる という製造上のメリットもある。
[0005] TRIP鋼の耐水素脆性 (耐水素脆性ィ匕特性)の向上を図るにあたり、鋼中に種々の 元素添加を行う条鋼,ボルト用鋼等に関する技術を転用することが考えられ、例えば 、非特許文献 2には、金属組織を焼戻しマルテンサイト主体とし、 Cr、 Mo、 Vといった 焼き戻し軟ィ匕抵抗性を示す添加元素が耐遅; ίτ¾壊性向上に有効であることが報告 されている。これは鋼中に合金炭化物を析出させて水素トラップサイトとして活用する ことで遅れ破壊形態を粒界から粒内破壊へと移行させる技術である。また、特許文献 1には、 Ti、 Mgを主体とする酸ィ匕物が水素性欠陥を防ぐことに効果があると報告され ている。更に、特許文献 2には、 Mgの酸化物、硫化物、複合析出または析出したィ匕 合物の分散形態制御と鋼板のミクロ組織中の残留オーステナイトと鋼板強度を制御 して延性 (伸び)および成形加工後の耐遅; «壊性を両立させると報告されて ヽる。 特許文献 1:特開平 11― 293383号公報
特許文献 2 :特開 2003— 166035号公報
非特許文献 1 :NISSHIN STEEL TECHNICAL REPORT (日新製鋼技報)、 No.43、 De C.1980、 p.l〜10
非特許文献 2 :「遅れ破壊解明の新展開」(日本鉄鋼協会、 1997年 1月発行)、 p.lll 〜120
発明の開示
[0006] しかし、非特許文献 1、 2の技術では、鋼は C量 0. 4質量%以上で合金元素も多く 含むことから、薄鋼板で要求される加工性や溶接性が劣悪で、さらに、合金炭化物 析出には数時間以上という析出熱処理が必要なため、製造性にも問題がある。
[0007] また、特許文献 1の技術では、対象が厚鋼板であり、特に大入熱の溶接後の遅れ 破壊については考慮されている力 薄鋼板の自動車用部品における使用環境を十 分考慮したものではない。更に、特許文献 2の技術では、実際に腐食が発生し、水素
が存在するような環境では析出物のトラップ効果だけでは不十分である。
[0008] また、 Crを添加することにより、 TRIP鋼中(特に粒界近傍)に粗大介在物 (炭化物) が生成してしまうこと、また加工の際、割れの原因となる非常に硬いセメンタイトを多く 析出させてしまうこと、および残留オーステナイトの生成を妨げること等から、従来 TR IP鋼には Crが添加されることはな力つた。また粒界近傍に粗大介在物 (炭化物)が生 成すると、鋼板の強度や伸びが低下するだけでなぐ粗大介在物の周辺に環境中か ら侵入した水素が集積し、耐水素脆性の低下の原因となってしまう。
[0009] 前記したように、条鋼 ·ボルト用鋼等の技術では、 TRIP鋼の耐水素脆性の向上を 図ることができなカゝつた。また、 TRIP鋼板の特徴である優れた加工性を発揮すると共 に、自動車用部品の様に後の長時間にわたる過酷な使用環境を十分考慮して、カロ ェ後の水素脆ィ匕に対する対策を講じた開発事例はほとんどない。
本発明は上記事情に鑑みてなされたものであって、その目的は、 TRIP鋼板の特徴 である優れた延性 (伸び)を損なうことなぐ引張強度が 980MPa以上の超高強度域 にお 、て、耐水素脆ィ匕特性を著しく高めることのできた TRIP型超高強度薄鋼板を提 供することにある。
また、その目的は、鋼板を部品に成型した後、長時間にわたる過酷な使用環境下 で優れた耐水素脆ィ匕特性を発揮すると共に、加工性が一層高められた引張強度が 9 80MPa以上の TRIP型超高強度薄鋼板を提供することにある。
また、 Cr添加を行っても従来技術のような粒界近傍に粗大炭化物などを生成させる ことなぐ耐水素脆ィ匕特性を飛躍的に向上させた 980MPa以上の TRIP型超高強度 薄鋼板を提供することにある。
[0010] すなわち、本発明は、
重量%にて、
C : 0. 10〜0. 60%、 Si: l . 0〜3. 0%、 Mn: l. 0〜3. 5%、 P :≤0. 15%、 S :≤0 . 02%、A1:≤1. 5%、 Cr: 0. 003-2. 0%を含有し、残部が鉄及び不可避不純物 である鋼板力 なり、
残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に、 当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ
当該残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下である、耐水素脆 化特性に優れた超高強度薄鋼板、に関する。
[0011] 以下に示す本発明の第 1の様態に係る超高強度薄鋼板によれば、鋼板の成分組 成及び残留オーステナイトを制御することにより、延性 (伸び)を損なうことなぐ粒界 近傍に粗大炭化物などを生成させることなぐ引張強度が 980MPa以上の超高強度 域において、耐水素脆ィ匕特性が著しく高くなる。また、 Mo含有量を低減し、かつ、 B を添加することにより、塗装耐食性が向上する。
また、耐水素脆ィ匕特性が優れた超高強度薄鋼板を生産性よく製造することができ、 遅れ破壊等が極めて生じ難い超高強度部品としての、例えば、バンパー、インパクト ビーム等の補強材ゃシートレール、ピラー、レインフォース、メンバー等の自動車部 品に使用できる。
また、以下に示す本発明の第 2の様態に係る超高強度薄鋼板によれば、鋼板の成 分組成及び残留オーステナイトを制御することにより、延性 (伸び)を損なうことなぐ 粒界近傍に粗大炭化物などを生成させることなぐ引張強度が 980MPa以上の超高 強度域において、耐水素脆ィ匕特性が著しく高くなると共に、加工性が向上する。また 、 Mo含有量を低減し、かつ、 Bを添加することにより、塗装耐食性が向上する。
また、耐水素脆ィ匕特性が優れた超高強度薄鋼板を生産性よく製造することができ、 遅れ破壊等が極めて生じ難い超高強度部品としての、例えば、バンパー、インパクト ビーム等の補強材ゃシートレール、ピラー、レインフォース、メンバー等の自動車部 品に使用できる。
図面の簡単な説明
[0012] [図 1]本発明の第 1の様態における、残留オーステナイトの結晶粒を模式的に示した 図である。
[図 2]本発明の第 1の様態における、残留オーステナイトの結晶粒の平均軸比と水素 脆化危険度評価指数の関係を示すグラフである。
[図 3]本発明の第 2の様態における、残留オーステナイトの結晶粒を模式的に示した 図である。
[図 4]本発明の第 2の様態における、残留オーステナイトの結晶粒の平均軸比と水素
脆化危険度評価指数の関係を示すグラフである。
[図 5]実施例における耐圧壊性試験に用いた部品の概略斜視図である。
[図 6]実施例における耐圧壊性試験の様子を模式的に示した側面図である。
[図 7]実施例における耐衝撃特性試験に用いた部品の概略斜視図である。
[図 8]図 7における A— A線断面図である。
[図 9]実施例における耐衝撃特性試験の様子を模式的に示した側面図である。 符号の説明
[0013] 1 耐圧壊性試験用部品 (試験体)
2、 5 スポット溶接位置
3 金型
4 耐衝撃特性試験用部品 (試験体)
6 落錘
7 土台 (耐衝撃特性試験用)
発明を実施するための最良の形態
[0014] 以下、本発明について詳細に説明する。
本発明の好ましい様態の一つとしては、下記の(1)が挙げられる。(以下、単に本発 明の第 1の様態ということがある。 )
(1) 重量%にて、
C : 0. 10〜0. 25%、 Si: l. 0〜3. 0%、 Mn: l. 0〜3. 5%、 P :≤0. 15%、 S :≤ 0. 02%, Al:≤l. 5%、Cr: 0. 003〜2. 0%を含有し、残部が鉄及び不可避不純 物である鋼板からなり、
前記鋼板の全組織に対する面積率で、残留オーステナイトを 1 %以上有し、 前記残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に 当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ 当該残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下である、耐水素脆 化特性に優れた超高強度薄鋼板。
ここで、本発明の第 1の様態に係る耐水素脆ィ匕特性に優れた超高強度薄鋼板は、
重量0 /0にて、 C : 0. 10〜0. 25%、 Si: l. 0〜3. 0%、 Μη: 1. 0〜3. 5%, P :≤0. 15%、 S :≤0. 02%、 Al:≤l. 5%、 Cr: 0. 003〜2. 0%を含有し、残部力 S鉄及び 不可避不純物である鋼板からなり、前記鋼板の全組織に対する面積率で、残留ォー ステナイトを 1%以上有し、前記残留オーステナイトの結晶粒の平均軸比 (長軸 Z短 軸)が 5以上であると共に、当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ当該残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下であ ることを特徴とする。
[0015] このように構成すれば、所定量の C、 Si、 Mn、 P、 S、 Al、 Crを含有することにより、 鋼板の強度が向上すると共に、鋼板中に残留オーステナイトが効果的に生成する。 その残留オーステナイトの面積率、分散形態 (平均軸比、平均短軸長さ、最隣接距 離)を規定することで、鋼中に塊状でなく微細ラス状の残留オーステナイトが分散する こととなる。この微細ラス状オーステナイトは、鋼板中の炭化物よりも圧倒的に大きい 水素トラップ能力を発揮するため、大気腐食で侵入する水素は実質無害化される。ま た、特に、所定量の Crを含有することにより、鋼板中に粗大炭化物が析出せず、微 細炭化物が分散することとなり、水素トラップ能力が向上すると共に、割れの伝播が 防止される。
[0016] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板の全組織に対する面積 率で、ペイ-ティックフェライト及びマルテンサイトが合計で 80%以上であり、フェライ ト及びパーライトが合計で 9%以下 (0%を含む)であることを特徴とする。
[0017] このように構成すれば、鋼板の母相がペイ-ティックフェライト及びマルテンサイトか ら構成されることとなり、鋼板の強度がさらに向上すると共に、粒界破壊の起点がなく なる。
[0018] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 Cu
: 0. 003〜0. 5%、及び/又は Ni: 0. 003〜1. 0%を含むことを特徴とする。
[0019] このように構成すれば、所定量の Cu、 Niを含有することにより、熱力学的に安定な 保護性さびの生成が促進され、過酷な腐食環境においても、水素による助長割れ等 が十分に抑制され、耐食性が向上し、結果的に耐水素脆ィ匕特性がさらに向上する。
[0020] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 Ti
及び/又は V、Zr、 Wを合計で 0. 003-1. 0%含むことを特徴とする。
[0021] このように構成すれば、所定量の Ti、 V、 Zr、 Wを含有することにより、鋼板の強度 がさらに向上する。また、鋼板の組織が細粒ィ匕して、水素トラップ能力がさらに向上す る。さらに、熱力学的に安定な保護性さびの生成が促進され、耐食性が向上し、結果 的に耐水素脆ィ匕特性がさらに向上する。
[0022] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 M o : l. 0%以下、及び Z又は Nb : 0. 1%以下を含むことを特徴とする。
[0023] このように構成すれば、所定量の Mo、 Nbを含有することにより、鋼板の強度がさら に向上する。また、鋼板の組織が細粒ィ匕すると共に、残留オーステナイトがさらに効 果的に生成するため、水素トラップ能力がさらに向上する。
[0024] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 M o : 0. 2%以下、及び Z又は Nb : 0. 1%以下を含むことを特徴とする。
[0025] このように構成すれば、所定量の Mo、 Nbを含有することにより、塗装前処理が均 一になり、塗膜密着性が向上する。
[0026] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 B :
0. 0002-0. 01%を含むことを特徴とする。
[0027] このように構成すれば、所定量の Bを含有することにより、鋼板の強度がさらに向上 すると共に、 Bが粒界に濃化することにより、粒界割れが防止される。
[0028] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 B :
0. 0005〜0. 01%を含むことを特徴とする。
[0029] このように構成すれば、所定量の Bを含有することにより、塗装前処理が均一になり
、塗膜密着性が向上する。また、 Mo低減による強度不足を補うことが可能となる。
[0030] 本発明の第 1の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 Ca
: 0. 0005〜0. 005%、 Mg: 0. 0005〜0. 01%、及び REM : 0. 0005〜0. 01% よりなる群力も選択される 1種以上を含むことを特徴とする。
[0031] このように構成すれば、所定量の Ca、 Mg、 REMを含有することにより、鋼板表面 の腐食に伴う界面雰囲気の水素イオン濃度の上昇が抑制されるため、耐食性が向上 し、結果的に耐水素脆ィ匕特性がさらに向上する。
以下に、本発明の第 1の様態に関して詳細に説明する。
[0032] 高強度鋼材として従来より一般に採用されている焼戻しマルテンサイト鋼や、マル テンサイト +フェライト鋼の場合、水素起因の遅れ破壊は、旧オーステナイト粒界等 に水素が集積してボイド等が形成され、該部分が起点となって生じるものと考えられ ており、遅; ίτ¾壊の感受性を下げるには、炭化物などの水素のトラップサイトを均等 かつ微細に分散させ、該部分で水素をトラップさせて拡散性水素濃度を下げることが 一般的な解決手段として考えられてきた。しかし、炭化物等を水素のトラップサイトと して多数分散させても、トラップ能力に限界があるため、水素を起因とする遅 壊 を十分に抑制することができな 、。
[0033] また、鋼中(特に粒界近傍)に粗大介在物が存在していると、介在物に変形等によ る応力が集中することにより割れを助長すると考えられる。これを抑制するためには組 織形態を工夫し、鋼中に粗大な介在物が無いほうが応力集中しな 、ために好まし 、
[0034] そこで、本発明者らは、超高強度薄鋼板 (以下、鋼板と称す)における使用環境を 十分に考慮したより高度な耐水素脆ィ匕特性 (耐遅れ破壊性)を達成すベぐ水素の 無害化 (水素トラップ能力強化)に着目し、その具体的手段を検討した。
[0035] その結果、水素トラップ能力、水素吸蔵能力が非常に高い残留オーステナイトを形 成することが有効であることを見出した。しかし、この水素吸蔵能力の高い残留ォー ステナイトは粗大な塊として存在すると、応力負荷において、ボイドを形成しやすくな り破壊の起点になってしまう。残留オーステナイトの水素トラップ作用を十分に発揮さ せ、破壊の起点にしないためには、微細なラス状に形態を制御しなければいけない。 一般的な TRIP鋼内にある残留オーステナイトはミクロンオーダーの塊状であるが、 本発明の第 1の様態ではサブミクロンオーダーで、微細ラス状であることに特徴があ る。
[0036] そして、鋼板の全組織に対する面積率で、残留オーステナイトを 1%以上有し、そ の分散形態として、
残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に、 残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ
残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下
を全て満足するように、残留オーステナイトを鋼板中に分散させて存在させることによ り、特別な合金元素を添加せずとも、鋼板における耐水素脆ィ匕特性 (耐遅; ίτ¾壊性 、耐助長割れ性等)を十分に高めることができることを見出し、本発明の第 1の様態に 想到した。以下、本発明の第 1の様態における残留オーステナイトの面積率、分散形 態について説明する。
[0037] <残留オーステナイトを面積率で 1%以上 >
残留オーステナイトの水素吸蔵能および鋼板の伸びの確保の観点から、本発明の 第 1の様態においては、鋼板の全組織に対する面積率で、残留オーステナイトが 1% 以上であることが必要である。その面積率として望ましくは 2%以上、より望ましくは 3 %以上である。また、 15%以上存在すると強度の確保が困難になるなどの問題が生 じるため、望ましくはその上限を 15%とする。その面積率としてより望ましくは 14%以 下、さらに望ましくは 13%以下とする。
[0038] また、残留オーステナイトの安定性の観点から、残留オーステナイト中の C濃度 (C
)は 0. 8重量%以上であることが推奨される。また、この C を 0. 8重量%以上に制 御すれば、伸び等を有効に高めることができる。望ましくは 1. 0重量%以上であり、よ り望ましくは 1. 2重量%以上である。なお、前記 C は高い程望ましいが、実操業上 、調整可能な上限は概ね 1. 6重量%と考えられる。
[0039] <残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上 >
図 2は、本発明の第 1の様態において、後記する方法で測定した残留オーステナイ トの結晶粒の平均軸比(図 2では残留 γ軸比)と、耐水素脆ィヒ特性の指標である水素 脆ィ匕危険度評価指数 (後記する実施例に示す方法で測定したものであり、数値が低 いほど耐水素脆ィ匕特性に優れることを意味する)の関係を示すグラフである。
[0040] 図 2から、特に残留オーステナイトの結晶粒の平均軸比が 5以上となれば水素脆ィ匕 危険度評価指数が急激に低減することがわかる。これは、残留オーステナイトの結晶 粒の平均軸比が 5以上と高くなることで、残留オーステナイトが本来有する水素吸蔵 能が十分発揮され、水素トラップ能力が炭化物よりも圧倒的に大きくなり、いわゆる大 気腐食で侵入する水素を実質無害化して、耐水素脆ィ匕特性の顕著な向上効果を奏
するためと考えられる。
[0041] 一方、上記平均軸比の上限は耐水素脆ィ匕特性を高める観点力 特に規定されな V、が、 TRIP効果を有効に発揮させるためには残留オーステナイトの厚さがある程度 必要となる。そのためその上限を 30とするのが望ましぐより望ましくは 20以下とする
[0042] <残留オーステナイトの結晶粒の平均短軸長さが 1 m以下 >
図 1は、(ラス状)残留オーステナイトの結晶粒を模式的に示した図である。図 1に示 すように、残留オーステナイトの結晶粒の平均短軸長さとして 1 μ m以下のものを分 散させることによって耐水素脆ィ匕特性を向上させることがわ力つた。これは、平均短 軸長さの短い微細な残留オーステナイト結晶粒が多数分散している方が、残留ォー ステナイトの表面積が大きくなり、水素トラップ能力が増大するからと考えられる。また 、平均短軸長さは望ましくは 0. 5 m以下、より望ましくは 0. 25 m以下である。
[0043] く残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下 >
図 1に示すように、残留オーステナイト結晶粒の最隣接距離を制御することにより、 より一層の耐水素脆性を向上させることがわ力 た。これは、微細なラス状残留ォー ステナイト結晶粒が微細に分散することにより、破壊の伝搬が抑制されるためと考えら れる。また、最隣接距離は望ましくは 0. 以下、より望ましくは 0. 以下であ る。
[0044] 残留オーステナイトは、 EBSP (Electron Back Scatter diffraction Pattern)検出 備 た FE— SEM (Pield Emission type Scanning Electron Microscope)【こよ り、 FCC (面心立方格子)として観察される領域を意味する。 EBSPは、試料表面に 電子線を入射させて、このときに発生する反射電子から得られた菊池パターンを解析 することにより、電子線入射位置の結晶方位を決定するものであり、電子線を試料表 面に 2次元で走査させ、所定のピッチごとに結晶方位を測定すれば、試料表面での 方位分布を測定できる。
[0045] 測定の一例を挙げる。板厚 1Z4の位置で圧延面と平行な面における任意の測定 面積 (約 50 X 50 m、測定間隔は 0.: L m)を測定対象とする。なお、当該測定面 まで研磨する際には、残留オーステナイトの変態を防ぐため、電解研磨する。次に、
前記「EBSP検出器を備えた FE— SEM」を用い、 EBSP画像を高感度カメラで撮影 し、コンピューターに画像として取り込む。画像解析を行い、既知の結晶系(残留ォ ーステナイトの場合は FCC (面心立方格子))を用いたシミュレーションによるパター ンとの比較によって決定した FCC相をカラーマップする。このようにして、マッピングさ れた領域の面積率を求め、これを残留オーステナイト組織の面積率とする。なお、前 記解析に係るハードウェア及びソフトとして、 TexSEM Laboratoriese Inc.の OIM (Orie ntation Imaging Microscooy ノシスアムを用 ヽることがでさ o。
[0046] 残留オーステナイトの結晶粒の平均軸比、平均短軸長さ、及び結晶粒間の最隣接 距離の測定方法は、次の通りである。まず、残留オーステナイトの結晶粒の平均軸比 は、 TEMで観察し (倍率は、例えば 1. 5万倍)、任意に選択した 3視野において、存 在する残留オーステナイト結晶粒の長軸と短軸(図 1参照)を測定して軸比を求め、 その平均値を算出して平均軸比とする。残留オーステナイトの結晶粒の平均短軸長 さは、前記の通り測定した短軸の平均値を算出して求める。残留オーステナイトの結 晶粒間の最隣接距離は、 TEMで観察し (倍率は、例えば 1. 5万倍)、任意に選択し た 3視野において、図 1中に(a)として示した、長軸方向に揃った残留オーステナイト の結晶粒間の距離を測定し、その最小値を最隣接距離とし、 3視野の最隣接距離を 平均して求める。なお、図 1中に示した (b)の様な距離は最隣接距離としない。
[0047] 本発明者らは、鋼板の耐水素脆化特性 (耐遅れ破壊性)のさらなる向上を達成す ベぐ粒界破壊の起点をなくすことに着目し、その具体的手段を検討した。
[0048] その結果、鋼板の母相を、マルテンサイト単相組織とするのではなぐペイ-ティック フェライトとマルテンサイトとの二相組織とすることが有効であることを見出した。マル テンサイトでは、粒界に炭化物、例えばフィルム状セメンタイトなどが析出し、粒界破 壊しやすい。一方、ペイ-ティックフェライトは一般の(ポリゴナル)フェライトと異なり、 板状のフェライトで転位密度が高ぐ組織全体の強度が高ぐかつ粒界破壊の起点と なる炭化物がなぐ水素トラップ能力が高いので鋼板の母相として最適である。
[0049] 本発明の第 1の様態において、このような水素トラップ能力を有効に発揮させるには 、鋼板の全組織に対する面積率で、ペイ-ティックフェライトとマルテンサイトを合計 で 80%以上とするのが好ましぐより好ましくは 85%以上である。一方、その上限は
他の組織 (残留オーステナイト)とのノ ランスによって決定され得、フェライト組織等を 含有しない場合には、その上限が 99%に制御される。
[0050] 本発明の第 1の様態の銅板は、上記組織のみ (即ち、ペイ-ティックフェライト +マ ルテンサイトと残留オーステナイトとの混合組織)から構成されていても良いが、本発 明の作用を損なわな ヽ範囲で、他の組織としてポリゴナルフェライトやパーライトを有 していても良い。これらは、本発明の製造過程で必然的に残存し得る組織であるが、 少なければ少ない程望ましぐ本発明の第 1の様態では、全組織に対する面積率で 、 9%以下に抑える。望ましくは 5%未満、更に望ましくは 3%未満である。
[0051] 本発明でいうペイ-ティックフェライトは、板状のフェライトであり、転位密度が高い 下部組織を意味する。一方、ポリゴナルフェライトやパーライトは、転位がないか、ある いは極めて少ない下部組織を有し、多角形の形状で、内部に残留オーステナイトや マルテンサイトを含まない。
[0052] (ペイ-ティックフェライト +マルテンサイト)、(ポリゴナルフェライト +パーライト)の 面積率は次の様にして求める。即ち、銅板をナイタールで腐食し、板厚 1Z4の位置 で圧延面と平行な面における任意の測定面積 (約 50 X 50 m)を前記した FE— SE Mで観察 (倍率:1500倍)し、色調差によって前記組織を識別して、その面積率を算 出する。尚、ペイ-ティックフェライトやマルテンサイトは SEM写真では濃灰色を示す (SEMの場合、ペイ-イツクフェライトと残留オーステナイトやマルテンサイトとを分離 区別できない場合もある)が、ポリゴナルフェライトやパーライトは SEM写真において 黒色であり、明確に区別される。
[0053] 本発明は、前記のとおり、残留オーステナイトの面積率及びその分散形態を制御す る点に特徴があるが、この様に残留オーステナイトの面積率及びその分散形態を制 御し、かつ規定の強度を発揮する鋼板を得るには、以下の通り成分組成を制御する ことが必要である。
[0054] < C : 0. 10〜0. 25重量%>
Cは、鋼板の強度を上昇できる元素である。本発明の第 1の様態においては、特に 残留オーステナイトを確保するためには必須の元素であり、 980MPa以上の強度を 得るために 0. 10重量%以上が必要である。好ましくは 0. 12重量%以上、より好まし
くは 0. 15重量%以上である。但し、耐食性や溶接性を確保する観点から、本発明の 第 1の様態では C量を 0. 25重量%以下に抑える。好ましくは 0. 23重量%以下であ る。
[0055] < Si: l . 0〜3. 0重量%>
Siは、残留オーステナイトが分解して炭化物が生成するのを有効に抑える重要な 元素であり、かつ、材質を大きく硬質化する置換型固溶体強化元素である。このよう な作用を有効に発現させるには 1. 0重量%以上含有することが必要である(望ましく は 1. 2重量%以上、より好ましくは 1. 5重量%以上)が、 3. 0重量%を超えると熱間 圧延でのスケール形成が顕著になることと、キズの除去にコストがかかり経済的に不 利なため、これを上限とする(望ましくは 2. 5重量%以下、より望ましくは 2. 0重量% 以下)。
[0056] < Mn: l. 0〜3. 5重量%>
Mnは、オーステナイトの安定化、所望の残留オーステナイトを得るために必要で、 1. 0重量%以上が必要である(望ましくは 1. 2重量%以上、より望ましくは 1. 5重量 %以上)。逆に多いと偏祈が顕著となり、加工性が劣化する場合があるため 3. 5重量 %を上限とする(望ましくは 3. 0重量%以下)。
[0057] < P : 0. 15重量%以下(0重量%を含まない) >
Pは、粒界偏析による粒界破壊の助長をする元素であり、低い方が望ましいため、 上限を 0. 15重量%とする。望ましくは 0. 10重量%以下、より望ましくは 0. 05重量 %以下とする。
[0058] < S: 0. 02重量%以下(0重量%を含まな!/、) >
Sは、腐食環境下での水素吸収を助長する元素であり、低い方が望ましいため、上 限を 0. 02重量%とする。
[0059] <A1: 1. 5重量%以下(0重量%を含まない) >
A1は、脱酸のために 0. 01重量%以上を添加してもよい。鋼中に水素が侵入する のを抑制する効果があり、 0. 02重量%以上添加することが望ましい(望ましくは 0. 2 重量%以上、さらに望ましくは 0. 5重量%以上)。また、 A1は脱酸作用のみならず耐 食性向上作用と耐水素脆ィ匕特性向上の作用を有する。 A1添カ卩により耐食性が向上
し、結果として大気腐食で発生する水素量が低減され、その結果、耐水素脆化特性 が向上するものと考えられる。さらに、 A1添カ卩によりラス状残留オーステナイトの安定 度が増し、耐水素脆ィ匕特性の向上に寄与していると考えられる。しかし、添加量が増 加すると、アルミナ等の介在物が増加し、加工性が劣化するため 1. 5重量%を上限 とする。
[0060] < Cr: 0. 003〜2. 0重量%>
Crは、 0. 003-2. 0重量%を含有させることが大変有効である。 Crを添加すること で焼き入れ性が向上して鋼板の強度確保が容易になること、また、耐食性向上作用 により大気腐食で発生する水素量が低減され、その結果、耐水素脆化特性が向上す るものと考えられる。また、本発明は、熱処理条件等の検討により、 Cr添加によっても 鋼中に粗大炭化物を析出させず、微細炭化物を鋼中に分散させること、また、組成 範囲を検討することにより、残留オーステナイトを効果的に生成させることを見出した 。これにより、水素トラップ能力の向上、および割れの伝搬の防止に寄与するものと考 えられる。該効果は、特に後に述べる Cu、 Niと共存することによって、さらに有効に 作用する。
[0061] これらの効果を発揮させるには、添加量の下限値を 0. 003重量%以上とする必要 がある(望ましくは 0. 1重量%以上、より望ましくは 0. 3重量%以上)。また、過剰に添 加するとその効果が飽和するば力りでなぐ加工性が劣化するために、上限値を 2. 0 重量%とした(望ましくは 1. 5重量%以下、より望ましくは 1. 0重量%以下)。なお、 C rは、塗膜下腐食を促進する作用も有する。そのため、塗装耐食性を向上させるには 、前記範囲内で出来る限り少量添加することが望ましい。
[0062] 本発明で規定する成分糸且成は前記の通りであり、残留成分は実質的に Feであるが 、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物として 、 0. 001重量%以下の N等が含まれることが許容されるのは勿論のこと、本発明の 作用に悪影響を与えない範囲で、以下の元素を積極的に含有させることも可能であ る。
[0063] < Cu: 0. 003〜0. 5重量%、及び Z又は
Ni: 0. 003〜1. 0重量%>
Cu : 0. 003〜0. 5重量%、Ni : 0. 003〜1. 0重量%、を含有させることが大変有 効である。詳細には、 Cu、 Niの存在により、鋼板自体の耐食性が向上するため、鋼 板の腐食による水素発生を十分に抑制することができる。またこれらの元素は、大気 中で生成するさびの中でも熱力学的に安定で保護性があるといわれている酸ィ匕鉄: a FeOOHの生成を促進させる効果も有しており、該さびの生成促進を図ることで 、発生した水素の鋼板への侵入を抑制でき、過酷な腐食環境下において水素による 助長割れを十分に抑制することができる。上記効果を発揮させるには、 Cu、 Niを含 有させる場合、それぞれの含有量を 0. 003重量%以上とする必要がある。好ましく は 0. 05重量%以上、より好ましくは 0. 1重量%以上である。尚、どの元素も過剰に 含有させると加工性が劣化するためそれぞれ上限を 0. 5重量%、 1. 0重量%とする
[0064] く Ti、 V、 Zr、 W:合計で 0. 003〜1. 0重量%>
Tiは、上記 Cu、 Ni、 Crと同様に保護性さびの生成促進効果を有する。該保護性さ びは、特に塩化物環境下で生成して耐食性 (結果として耐水素脆化特性)に悪影響 を及ぼす β FeOOHの生成を抑制するといつた非常に有益な作用を有している。 この様な保護性さびの形成は、特に Tiと V (または Zr、 W)とを複合添加することで促 進される。 Tiは、非常に優れた耐食性を付与する元素でもあり、鋼を清浄化する利点 も併せ持つ。
[0065] また Vは、前記の通り、 Tiと共存して耐水素脆化特性を向上させる効果を有する他 、鋼板の強度上昇、細粒化に有効な元素であり、さらに炭窒化物の形態制御により 水素のトラップとして有効な機能を果たす。 Ti、 Zrと共存し、耐水素脆ィ匕特性を向上 させる効果がある。
[0066] Zrは、鋼板の強度上昇、細粒ィ匕に有効な元素であり、 Tiと共存し、耐水素脆化特 性を向上させる効果がある。
[0067] Wは、鋼板の強度上昇に有効であり、析出物は水素トラップとしても有効である。ま た、生成したさびは塩ィ匕物イオンを反発する性能を持っため、耐食性向上にも寄与 する。 Tiや Zrと共存し、耐食性と耐水素脆ィ匕特性を向上させる効果がある。
[0068] 上記 Ti、 V、 Zr、 Wの効果を十分に発揮させるには、合計で 0. 003重量%以上(望
ましくは 0. 01重量%以上)含有させることが必要である。過剰に添加すると、炭窒化 物の析出が多くなり加工性の低下を招く。よって合計 1. 0重量%以下の範囲内で添 加することが必要である。望ましくは 0. 5重量%以下である。
[0069] < Mo : 1. 0重量%以下(0重量%を含まない) >
Moは、オーステナイトの安定化、所望の残留オーステナイトを得るために必要で、 水素侵入を抑制し耐遅; «壊特性を向上させる効果や、鋼板の焼入れ性を高める ためにも有効な元素であるだけでなぐ粒界を強化して水素脆性の発生を抑制する 効果がある。ただし、 1. 0重量%超ではこれらの効果が飽和するため、上限値とする 、望ましくは 0. 8重量%以下、より望ましくは 0. 5重量%以下である。
[0070] また、 Moを一定以上添加すると、塗装前処理を不均一にし、塗装耐食性を低下さ せる側面も有している。加えて、熱延材の強度が非常に高まり、圧延しにくいなどの 製造上の問題が顕在化する。さらに、 Moは経済的には非常に高価な元素であること 力 コスト面でも不利になる。この様なことから、塗装耐食性も期待する場合には、 M oの添加量は 0. 2重量%以下が必要である。望ましくは 0. 03重量%以下、より望ま しくは 0. 005重量%以下である。
[0071] <Nb : 0. 1重量%以下(0重量%を含まない) >
Nbは、鋼板の強度上昇及び細粒化に非常に有効な元素である。特に Moとの複合 効果で効果を発揮する。ただし、 0. 1重量%超では成形性が低下するため、上限値 とする、望ましくは 0. 08重量%以下である。また下限値は設定しないが、 0. 005重 量%以上添加するのが望ましい、より望ましくは 0. 01重量%以上である。
[0072] < B : 0. 0002〜0. 01重量%>
Bは、鋼板の強度上昇に有効な元素である。本発明の第 1の様態において、該効 果を発揮させるには、 0. 0002重量%以上(望ましくは 0. 0005重量%以上)含有さ せることが必要である。 0. 0002重量%未満ではこれらの効果が得られないため、下 限値とする。逆に 0. 01重量%超含有すると熱間加工性が劣化するため、上限値と する、より望ましくは 0. 005重量%以下である。
[0073] また、本発明の第 1の様態において、鋼板の塗装耐食性を向上させるために Moを 低減させた場合には、 Mo低減の強度不足を B添加で補う必要がある。強度を向上さ
せるには、 Bを 0. 0005重量%以上(望ましくは 0. 0008重量%以上、より望ましくは 0. 0015重量%以上)含有させる必要がある。また、 Bはリン酸塩処理など塗装前処 理を均一にし、塗装密着性 (塗装耐食性)を向上させる働きを持つ。メカニズムは未 解明ながら、この効果は、鋼中に Tiが 0. 01重量%以上添加されていると、より発揮 される。また、 Tiを 0. 03重量%以上含有し、かつ、 Bを 0. 0005重量%以上含有し ていることがより望ましい。さらに、 Bは粒界を強化して、耐遅; |τ¾壊性を向上させる 働きも持つ。
[0074] < Ca: 0. 0005〜0. 005重量0 /0、
Mg : 0. 0005〜0. 01重量%、及び
REM : 0. 0005〜0. 01重量%ょりなる群から選択される 1種以上 >
これらの元素は、鋼板表面の腐食に伴う界面雰囲気の水素イオン濃度の上昇を抑 制する、すなわち pHの低下を抑制するのに有効な元素である。また、鋼中硫化物の 形態を制御し、加工性向上に有効である。しかし、それぞれ 0. 0005重量%未満で はこれらの効果が得られないため、下限値とする。また、過剰に含まれていると加工 性が劣化するため、それぞれ上限値を 0. 005重量%、 0. 01重量%、 0. 01重量% とする。
[0075] 本発明は、製造条件まで規定するものではな 、が、上記成分組成を満たす鋼板を 用いて、超高強度かつ優れた耐水素脆ィ匕特性を発揮する上記組織を形成するには 、熱間圧延における仕上げ温度を、フェライトの生成しない過冷却オーステナイト域 温度であって極力低温とすることが推奨される。該温度で仕上げ圧延を行うことによ つて、熱延鋼板のオーステナイトを微細化することができ、結果として最終製品の組 織が微細となるからである。
[0076] また、熱間圧延後またはその後に行う冷間圧延の後に、下記要領で熱処理を行うこ とが推奨される。即ち、前述した成分組成を満足する鋼を Ac点 (フェライト—オース
3
テナイト変態完了温度)〜 (Ac点 + 50
3 °C)の加熱保持温度 (T1)で 10〜1800秒間( tl)加熱保持後、 3°CZs以上の平均冷却速度で (Ms点 (マルテンサイト変態開始温 度) 100°C)〜Bs点 (ベイナイト変態開始温度)の加熱保持温度 (T2)まで冷却し、 該温度域で 60〜1800秒間 (t2)加熱保持することが推奨される。
[0077] 前記加熱保持温度 (T1)が (Ac点 + 50°C)を超えるか、加熱保持時間(tl)が 1800
3
秒を超えると、オーステナイトの粒成長を招き、加工性 (伸びフランジ性)が悪化する ので好ましくない。一方、前記 (T1)が Ac点の温度より低くなると、所定のペイ-ティ
3
ックフェライト組織が得られない。また、前記 )が 10秒未満の場合には、オーステナ イト化が充分行われず、セメンタイトやその他の合金炭化物が残存してしまうので好ま しくない。前記 (tl)は、好ましくは 30秒以上 600秒以下、より好ましくは 60秒以上 40 0秒以下である。
[0078] 次いで前記鋼板を冷却するが、 3°CZs以上の平均冷却速度で冷却するのは、パ 一ライト変態領域を避けてパーライト組織の生成を防止する為である。この平均冷却 速度は大きい程よぐ好ましくは 5°CZs以上、より好ましくは 10°CZs以上とすること が推奨される。
[0079] 次に、加熱保持温度 (T2)まで前記冷却速度で急冷した後、恒温変態させることに よって所定の組織を導入することができる。ここでの加熱保持温度 (T2)が Bs点を超 えると、本発明にとって好ましくないパーライトが多量に生成し、ペイ-ティックフェライ ト組織を十分に確保することができない。一方、前記 (T2)力 S (Ms点— 100°C)を下 回ると残留オーステナイトが減少するので好ましくない。
[0080] また、加熱保持時間(t2)が 1800秒を超えるとペイ-ティックフェライトの転位密度 力 、さくなり水素のトラップ量が少なくなる他、所定の残留オーステナイトが得られな い。一方、前記加熱保持時間 (t2)が 60秒未満でも、所定のペイ-ティックフェライト 組織が得られない。好ましくは前記加熱保持時間 (t2)を 90秒以上 1200秒以下、よ り好ましくは 120秒以上 600秒以下とする。なお、加熱保持後の冷却方法について は特に限定されず、空冷、急冷、気水冷却等を行うことができる。また、鋼板中の残 留オーステナイトの存在形態は、製造時の冷却速度、加熱保持温度 (T2)およびカロ 熱保持時間 (t2)などにより制御することができる。例えば、加熱保持温度 (T2)を低 温側にすることにより、平均軸比の小さい残留オーステナイトを形成させることができ る。
[0081] 実操業を考慮すると、上記熱処理 (焼鈍処理)は、連続焼鈍設備またはバッチ式焼 鈍設備を用いて行うのが簡便である。また冷間圧延板にめっきを施して溶融亜鉛め
つきとする場合には、めっき条件が上記熱処理条件を満足するように設定し、該めつ き工程で上記熱処理を行ってもよ!ヽ。
[0082] また、前記した連続焼鈍処理する前の熱延工程 (必要に応じて冷延工程)は、前記 熱延仕上げ温度以外は、特に限定されず、通常、実施される条件を適宜選択して採 用することができる。具体的には、上記熱延工程としては、例えば Ar点 (オーステナ
3
イト フェライト変態開始温度)以上で熱延終了後、平均冷却速度約 30°CZsで冷却 し、約 500〜600°Cの温度で卷取る等の条件を採用することができる。また、熱延後 の形状が悪い場合には、形状修正の目的で冷間圧延を行ってもよい。ここで、冷延 率は 1〜70%とすることが推奨される。冷延率 70%を超える冷間圧延は、圧延荷重 が増大して圧延が困難となる。
[0083] 本発明は、鋼板 (薄鋼板)を対象とするものであるが、製品形態は特に限定されず、 熱間圧延した鋼板、更に冷間圧延した鋼板、熱延あるいは冷延を行った後に焼鈍を 施した鋼板に、化成処理、溶融めつき、電気めつき、蒸着などのめつきや各種塗装、 塗装下地処理、有機皮膜処理などを行うことも可能である。
[0084] 更に、めっきは通常の亜鉛めつき、アルミめつき等のいずれでもかまわない。めっき は溶融めつき及び電気めつきのいずれでも良ぐ更に、めっき後に合金化熱処理を 施してもかまわないし、複層めっきでもかまわない。また、めっきを施さない鋼板上や めっき鋼板上にフィルムラミネート処理をした鋼板も本発明を逸脱するものではない。
[0085] 塗装の場合、各種用途に応じてリン酸塩処理などの化成処理を施したり、電着塗装 を施しても良い。塗料は公知の榭脂が使用可能であり、エポキシ榭脂、フッ素榭脂、 シリコンアクリル榭脂、ポリウレタン榭脂、アクリル榭脂、ポリエステル榭脂、フエノーノレ 榭脂、アルキッド榭脂、メラミン榭脂などを公知の硬化剤とともに使用可能である。特 に耐食性の観点からすればエポキシ、フッ素、シリコンアクリル榭脂の使用が推奨さ れる。その他、塗料に添加される公知の添加剤、たとえば着色用顔料、カップリング 剤、レべリング剤、増感剤、酸化防止剤、紫外線安定剤、難燃剤などを添加しても良 い。
[0086] また、塗料形態も特に限定されず、溶剤系塗料、粉体塗料、水系塗料、水分散型 塗料、電着塗料など、用途に応じて適宜選択することができる。上記塗料を用い、所
望の被覆層を鋼材に形成させるには、デイツビング法、ロールコーター法、スプレー 法、カーテンフローコーター法などの公知の方法を用いればよい。被覆層の厚みは 用途に応じて公知の適切な値を用いればょ 、。
本発明の超高強度薄鋼板は、自動車用強度部品(例えばバンパーやドアインパク トビーム等の補強部材)、シートレール等の室内部品等に適用することができる。この 様に形成加工して得られる部品においても、十分な材質特性 (強度、剛性等)、衝撃 吸収性を有し、優れた耐水素脆化特性 (耐遅れ破壊性)を発揮する。
また、本発明の別の好ましい様態としては、下記の(2)が挙げられる。(以下、単に 本発明の第 2の様態ということがある。 )
(2) 重量%にて、
C : 0. 25超〜 0. 60%、Si: l . 0〜3. 0%、Μη: 1. 0〜3. 5%, P :≤0. 15%、 S : ≤0. 02%、A1:≤1. 5%、Cr: 0. 003-2. 0%を含有し、残部が鉄及び不可避不 純物である鋼板力 なり、
前記鋼板における加工率 3%の引張加工後の金属組織が、
この金属組織に対する面積率で、残留オーステナイトを 1%以上有し、
前記残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に 当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ
当該残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下である、耐水素脆 化特性に優れた超高強度薄鋼板。
ここで、本発明の第 2の様態に係る耐水素脆ィ匕特性に優れた超高強度薄鋼板は、 重量0 /0にて、 C : 0. 25超〜 0. 60%、Si: l. 0〜3. 0%、Μη: 1. 0〜3. 5%, P :≤0 . 15%、 S :≤0. 02%, Al:≤l. 5%、 Cr: 0. 003〜2. 0%を含有し、残部力鉄及 び不可避不純物である鋼板力 なり、前記鋼板における加工率 3%の引張力卩ェ後の 金属組織が、この金属組織に対する面積率で、残留オーステナイトを 1%以上有し、 前記残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に、 当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ当該残留ォ ーステナイトの結晶粒間の最隣接距離が: L m以下であることを特徴とする。
[0088] このように構成すれば、所定量の C、 Si、 Mn、 P、 S、 Al、 Crを含有することにより、 鋼板の強度が向上すると共に、鋼板中に残留オーステナイトが効果的に生成する。 その残留オーステナイトの加工率 3%の引張加工後の面積率、分散形態 (平均軸比 、平均短軸長さ、最隣接距離)を規定することで、鋼中に塊状でなく微細ラス状の残 留オーステナイトが分散することとなる。この微細ラス状オーステナイトは、鋼板中の 炭化物よりも圧倒的に大きい水素トラップ能力を発揮するため、大気腐食に起因して 発生し、鋼中に侵入する水素は実質無害化される。また、特に、所定量の Crを含有 することにより、鋼板中に粗大炭化物が析出せず、微細炭化物が分散することとなり、 水素トラップ能力が向上すると共に、割れ (クラック)の伝播が防止される。
[0089] 本発明の第 2の様態に係る超高強度薄鋼板は、前記鋼板における加工率 3%の引 張加工後の金属組織が、この金属組織に対する面積率で、ペイ-ティックフェライト 及びマルテンサイトが合計で 80%以上であり、フェライト及びパーライトが合計で 9% 以下 (0%を含む)であることを特徴とする。
[0090] このように構成すれば、鋼板の母相がペイ-ティックフェライト及びマルテンサイトか ら構成されることとなり、鋼板の強度がさらに向上すると共に、粒界破壊の起点がなく なる。
[0091] 本発明の第 2の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 Cu
: 0. 003〜0. 5%、及び/又は Ni: 0. 003〜1. 0%を含むことを特徴とする。
[0092] このように構成すれば、所定量の Cu、 Niを含有することにより、熱力学的に安定な 保護性さびの生成が促進され、過酷な腐食環境においても、水素による助長割れ等 が十分に抑制され、耐食性が向上し、結果的に耐水素脆ィ匕特性がさらに向上する。
[0093] 本発明の第 2の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 Ti 及び/又は V、Zr、 Wを合計で 0. 003〜1. 0%含むことを特徴とする。
[0094] このように構成すれば、所定量の Ti、 V、 Zr、 Wを含有することにより、鋼板の強度 がさらに向上する。また、鋼板の組織が細粒ィ匕して、水素トラップ能力がさらに向上す る。さらに、熱力学的に安定な保護性さびの生成が促進され、耐食性が向上し、結果 的に耐水素脆ィ匕特性がさらに向上する。
[0095] 本発明の第 2の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 M
o : l. 0%以下、及び Z又は Nb : 0. 1%以下を含むことを特徴とする。
[0096] このように構成すれば、所定量の Mo、 Nbを含有することにより、鋼板の強度がさら に向上する。また、鋼板の組織が細粒ィ匕すると共に、残留オーステナイトがさらに効 果的に生成するため、水素トラップ能力がさらに向上する。
[0097] 本発明の第 2の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 M o : 0. 2%以下、及び Z又は Nb : 0. 1%以下を含むことを特徴とする。
[0098] このように構成すれば、所定量の Mo、 Nbを含有することにより、塗装前処理が均 一になり、塗膜密着性が向上する。
[0099] 本発明の第 2の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 B :
0. 0002-0. 01%を含むことを特徴とする。
[0100] このように構成すれば、所定量の Bを含有することにより、鋼板の強度がさらに向上 すると共に、 Bが粒界に濃化することにより、粒界割れが防止される。
[0101] 本発明の第 2の様態に係る超高強度薄鋼板は、前記鋼板が、更に、重量%で、 Ca
: 0. 0005〜0. 005%、 Mg: 0. 0005〜0. 01%、及び REM : 0. 0005〜0. 01% よりなる群力も選択される 1種以上を含むことを特徴とする。
[0102] このように構成すれば、所定量の Ca、 Mg、 REMを含有することにより、鋼板表面 の腐食に伴う界面雰囲気の水素イオン濃度の上昇が抑制されるため、耐食性が向上 し、結果的に耐水素脆ィ匕特性がさらに向上する。
以下に、本発明の第 2の様態に関して詳細に説明する。
[0103] 高強度鋼材として従来より一般に採用されている焼戻しマルテンサイト鋼や、マル テンサイト +フェライト鋼の場合、水素起因の遅れ破壊は、旧オーステナイト粒界等 に水素が集積してボイド等が形成され、該部分が起点となって生じるものと考えられ ており、遅; «壊の感受性を下げるには、炭化物などの水素のトラップサイトを均等 かつ微細に分散させ、該部分で水素をトラップさせて拡散性水素濃度を下げることが 一般的な解決手段として考えられてきた。しかし、炭化物等を水素のトラップサイトと して多数分散させても、トラップ能力に限界があるため、水素を起因とする遅 壊 を十分に抑制することができな 、。
[0104] また、鋼中(特に粒界近傍)に粗大介在物が存在していると、介在物に変形等によ
る応力が集中することにより割れを助長すると考えられる。これを抑制するためには組 織形態を工夫し、鋼中に粗大な介在物を無くしたほうが、応力集中がおきないために 好ましい。
[0105] そこで、本発明者らは、超高強度薄鋼板 (以下、鋼板と称す)における使用環境を 十分に考慮したより高度な耐水素脆ィ匕特性 (耐遅れ破壊性)を達成すベぐ水素の 無害化 (水素トラップ能力強化)に着目し、その具体的手段を検討した。
[0106] その結果、水素トラップ能力、水素吸蔵能力が非常に高い残留オーステナイトを形 成することが有効であることを見出した。しかし、この水素吸蔵能力の高い残留ォー ステナイトは粗大な塊として存在すると、応力負荷において、ボイドを形成しやすくな り破壊の起点になってしまう。残留オーステナイトの水素トラップ作用を十分に発揮さ せ、破壊の起点にしないためには、微細なラス状に形態を制御しなければいけない。 一般的な TRIP鋼内にある残留オーステナイトはミクロンオーダーの塊状であるが、 本発明の第 2の様態ではサブミクロンオーダーで、微細ラス状であることに特徴があ る。残留オーステナイトを微細ラス状で存在させることにより、加工時に必要以上に変 態しないため、加工後も残留オーステナイトを確保することができる。なお、加工時の 残留オーステナイトの安定ィ匕は TRIP鋼の変態誘起加工性の低下に影響を及ぼさな い。
[0107] そして、鋼板における加工率 3%の引張加工後の金属組織が、この金属組織 (鋼板 の全組織)に対する面積率で、残留オーステナイトを 1%以上有し、その分散形態と して、残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に、 残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ残留オーステナ イトの結晶粒間の最隣接距離が 1 μ m以下を全て満足するように、残留オーステナイ トを鋼板中に分散させて存在させることにより、特別な合金元素を添加せずとも、鋼 板における耐水素脆化特性 (耐遅れ破壊性、耐助長割れ性等)を十分に高めること ができることを見出し、本発明の第 2の様態に想到した。
ここで加工率 3%と規定したのは、実際の部品の加工状況を想定して種々の実験を 行った結果、加工率 3%で引張加工した場合に、前記種々の実験と実際の部品割れ との相関が最も良好だった力 である。
以下、本発明の第 2の様態における残留オーステナイトの面積率、分散形態につ いて説明する。
[0108] <残留オーステナイトを面積率で 1%以上 >
残留オーステナイトの水素吸蔵能の観点から、また、耐水素脆性 (耐水素脆化特性
)の観点、すなわち部品後の長時間にわたる過酷な使用環境下でも優れた耐水素脆 化特性を発揮するため、本発明の第 2の様態においては、鋼板における加工率 3% の引張加工後の金属組織力、この金属組織に対する面積率で、残留オーステナイト 力 Sl%以上であることが必要である。その面積率として望ましくは 2%以上、より望まし くは 3%以上である。また、 15%以上存在すると強度の確保が困難になるなどの問題 が生じるため、望ましくはその上限を 15%とする。その面積率としてより望ましくは 14 %以下、さらに望ましくは 13%以下とする。
[0109] また、残留オーステナイトの安定性の観点から、残留オーステナイト中の C濃度 (C
)は 0. 8重量%以上であることが推奨される。また、この C を 0. 8重量%以上に制 御すれば、伸び等を有効に高めることができる。望ましくは 1. 0重量%以上であり、よ り望ましくは 1. 2重量%以上である。なお、前記 C は高い程望ましいが、実操業上 、調整可能な上限は概ね 1. 6重量%と考えられる。
[0110] <残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上 >
図 4は、本発明の第 2の様態において、後記する方法で測定した残留オーステナイ トの結晶粒の平均軸比(図 4では残留 γ軸比)と、耐水素脆ィ匕特性の指標である水素 脆ィ匕危険度評価指数 (後記する実施例に示す方法で測定したものであり、数値が低 いほど耐水素脆ィ匕特性に優れることを意味する)の関係を示すグラフである。
[0111] 図 4から、鋼板における加工率 3%の引張力卩ェ後の金属組織において、特に残留 オーステナイトの結晶粒の平均軸比が 5以上となれば水素脆ィヒ危険度評価指数が 急激に低減することがわかる。これは、残留オーステナイトの結晶粒の平均軸比が 5 以上と高くなることで、残留オーステナイトが本来有する水素吸蔵能が十分発揮され 、水素トラップ能力が炭化物よりも圧倒的に大きくなり、いわゆる大気腐食で侵入する 水素を実質無害化して、耐水素脆ィ匕特性の顕著な向上効果を奏するためと考えられ る。
[0112] 一方、上記平均軸比の上限は耐水素脆ィ匕特性を高める観点力 特に規定されな V、が、 TRIP効果を有効に発揮させるためには残留オーステナイトの厚さがある程度 必要となる。そのためその上限を 30とするのが望ましぐより望ましくは 20以下とする
[0113] <残留オーステナイトの結晶粒の平均短軸長さが 1 m以下 >
図 3は、(ラス状)残留オーステナイトの結晶粒を模式的に示した図である。図 3に示 すように、鋼板における加工率 3%の引張加工後の金属組織において、残留オース テナイトの結晶粒の平均短軸長さとして 1 μ m以下のものを分散させることによって耐 水素脆ィ匕特性を向上させることがわ力つた。これは、平均短軸長さの短い微細な残 留オーステナイト結晶粒が多数分散している方が、残留オーステナイトの表面積が大 きくなり、水素トラップ能力が増大するからと考えられる。また、平均短軸長さは望まし くは 0. 5 /z m以下、より望ましくは 0. 25 /z m以下である。
[0114] く残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下 >
図 3に示すように、鋼板における加工率 3%の引張加工後の金属組織において、残 留オーステナイト結晶粒の最隣接距離を制御することにより、より一層の耐水素脆性 を向上させることがわ力つた。これは、微細なラス状残留オーステナイト結晶粒が微細 に分散することにより、割れ (クラック)の伝搬が抑制されるためと考えられる。また、最 隣接距離は望ましくは 0. 8 /z m以下、より望ましくは 0. 5 /z m以下である。
[0115] 残留オーステナイトは、 EBSP (Electron Back Scatter diffraction Pattern)検出 備 た FE— SEM (Pield Emission type Scanning Electron Microscope)【こよ り、 FCC (面心立方格子)として観察される領域を意味する。 EBSPは、試料表面に 電子線を入射させて、このときに発生する反射電子から得られた菊池パターンを解析 することにより、電子線入射位置の結晶方位を決定するものであり、電子線を試料表 面に 2次元で走査させ、所定のピッチごとに結晶方位を測定すれば、試料表面での 方位分布を測定できる。
[0116] 測定の一例を挙げる。板厚 1Z4の位置で圧延面と平行な面における任意の測定 面積 (約 50 X 50 m、測定間隔は 0.: L m)を測定対象とする。なお、当該測定面 まで研磨する際には、残留オーステナイトの変態を防ぐため、電解研磨する。次に、
前記「EBSP検出器を備えた FE— SEM」を用い、 EBSP画像を高感度カメラで撮影 し、コンピューターに画像として取り込む。画像解析を行い、既知の結晶系(残留ォ ーステナイトの場合は FCC (面心立方格子))を用いたシミュレーションによるパター ンとの比較によって決定した FCC相をカラーマップする。このようにして、マッピングさ れた領域の面積率を求め、これを残留オーステナイト組織の面積率とする。なお、前 記解析に係るハードウェア及びソフトとして、 TexSEM Laboratoriese Inc.の OIM (Orie ntation Imaging Microscooy ノシスアムを用 ヽることがでさ o。
[0117] 残留オーステナイトの結晶粒の平均軸比、平均短軸長さ、及び結晶粒間の最隣接 距離の測定方法は、次の通りである。まず、残留オーステナイトの結晶粒の平均軸比 は、 TEMで観察し (倍率は、例えば 1. 5万倍)、任意に選択した 3視野において、存 在する残留オーステナイト結晶粒の長軸と短軸(図 1参照)を測定して軸比を求め、 その平均値を算出して平均軸比とする。残留オーステナイトの結晶粒の平均短軸長 さは、前記の通り測定した短軸の平均値を算出して求める。残留オーステナイトの結 晶粒間の最隣接距離は、 TEMで観察し (倍率は、例えば 1. 5万倍)、任意に選択し た 3視野において、図 3中に(a)として示した、長軸方向に揃った残留オーステナイト の結晶粒間の距離を測定し、その最小値を最隣接距離とし、 3視野の最隣接距離を 平均して求める。なお、ここでいぅ最隣接距離とは、図 3中に示した (a)の様に、長軸 方向に揃った 2つの残留オーステナイトに対し、残留オーステナイトの短軸間の距離 のことをいう。図 3中に示した (b)の様な、長軸方向に揃っていない 2つの残留オース テナイト間の距離は最隣接距離としない。
[0118] 本発明者らは、鋼板の耐水素脆ィ匕特性 (耐遅; |τ¾壊性)のさらなる向上を達成す ベぐ粒界破壊の起点をなくすことに着目し、その具体的手段を検討した。
[0119] その結果、鋼板の母相を、マルテンサイト単相組織とするのではなぐペイ-ティック フェライトとマルテンサイトとの二相組織とすることが有効であることを見出した。マル テンサイトでは、粒界に炭化物、例えばフィルム状セメンタイトなどが析出し、粒界破 壊しやすい。一方、ペイ-ティックフェライトは一般の(ポリゴナル)フェライトと異なり、 板状のフェライトで転位密度が高ぐ組織全体の強度が高ぐかつ粒界破壊の起点と なる炭化物がなぐ水素トラップ能力が高いので鋼板の母相として最適である。
[0120] 本発明の第 2の様態において、このような水素トラップ能力を有効に発揮させるには 、加工率 3%の引張加工後の金属組織が、この金属組織に対する面積率で、ペイ- ティックフェライトとマルテンサイトを合計で 80%以上とするのが望ましぐより望ましく は 85%以上である。一方、その上限は他の組織 (残留オーステナイト)とのバランス によって決定され得、フェライト組織等を含有しない場合には、その上限が 99%に制 御される。
[0121] 本発明の銅板は、上記組織のみ (即ち、ペイ-ティックフェライト +マルテンサイトと 残留オーステナイトとの混合組織)から構成されていても良いが、本発明の作用を損 なわな 、範囲で、他の組織としてポリゴナルフェライトやパーライトを有して ヽても良 い。これらは、本発明の製造過程で必然的に残存し得る組織である力 少なければ 少ない程望ましぐ本発明の第 2の様態では、加工率 3%の引張加工後の金属組織 力 この金属組織に対する面積率で、 9%以下に抑える。望ましくは 5%未満、更に 望ましくは 3%未満である。
[0122] 本発明でいうペイ-ティックフェライトは、板状のフェライトであり、転位密度が高い 下部組織を意味する。一方、ポリゴナルフェライトやパーライトは、転位がないか、ある いは極めて少ない下部組織を有し、多角形の形状で、内部に残留オーステナイトや マルテンサイトを含まない。
[0123] (ペイ-ティックフェライト +マルテンサイト)、 (ポリゴナルフェライト +パーライト)の 面積率は次の様にして求める。即ち、銅板をナイタールで腐食し、板厚 1Z4の位置 で圧延面と平行な面における任意の測定面積 (約 50 X 50 m)を前記した FE— SE Mで観察 (倍率:1500倍)し、色調差によって前記組織を識別して、その面積率を算 出する。尚、ペイ-ティックフェライトやマルテンサイトは SEM写真では濃灰色を示す (SEMの場合、ペイ-イツクフェライトと残留オーステナイトやマルテンサイトとを分離 区別できない場合もある)が、ポリゴナルフェライトやパーライトは SEM写真において 黒色であり、明確に区別される。
[0124] 本発明は、前記のとおり、残留オーステナイトの面積率及びその分散形態を制御す る点に特徴があるが、この様に残留オーステナイトの面積率及びその分散形態を制 御し、かつ規定の強度を発揮する鋼板を得るには、以下の通り成分組成を制御する
ことが必要である。
[0125] < C : 0. 25超〜 0. 60重量%>
Cは、鋼板の強度確保に必要な元素である。また Cは、前記の残留オーステナイト 中の C濃度 (C )を高めるのに必要な元素である。残留オーステナイトは、鋼板に加 ェ (変形)を加えることによりマルテンサイトに変態する力 残留オーステナイト中の C 濃度が高ければ、残留オーステナイトの安定性が増し、必要以上に変態し難くなる。 その結果、加工後の鋼板中に残留オーステナイトを確保でき、優れた耐水素脆化特 性を維持することができる。本発明の第 2の様態においては、本発明の第 2の様態の 効果を得るために 0. 25重量%を超えることが必要であり、 C量が不足すると、加工性 が劣化する。望ましくは 0. 27重量%以上、より望ましくは 0. 30重量%以上である。 但し、耐食性を確保する観点から、本発明では C量を 0. 60重量%以下に抑える。望 ましくは 0. 55重量%以下である。より望ましくは 0. 50重量%以下である。
このように鋼板中の C量含有量を高めることにより、残留オーステナイト中の C濃度( C )を容易に高めることができる。
[0126] < Si: l . 0〜3. 0重量%>
Siは、残留オーステナイトが分解して炭化物が生成するのを有効に抑える重要な 元素であり、かつ、材質を大きく硬質化する置換型固溶体強化元素である。このよう な作用を有効に発現させるには 1. 0重量%以上含有することが必要である(望ましく は 1. 2重量%以上、より望ましくは 1. 5重量%以上)が、 3. 0重量%を超えると熱間 圧延でのスケール形成が顕著になることと、キズの除去にコストがかかり経済的に不 利なため、これを上限とする(望ましくは 2. 5重量%以下、より望ましくは 2. 0重量% 以下)。
[0127] < Mn: l. 0〜3. 5重量%>
Mnは、オーステナイトの安定化、所望の残留オーステナイトを得るため、また、強 度や伸びを得るために必要で、 1. 0重量%以上が必要である(望ましくは 1. 2重量 %以上、より望ましくは 1. 5重量%以上)。逆に多いと偏祈が顕著となり、加工性が劣 化する場合があるため 3. 5重量%を上限とする (望ましくは 3. 0重量%以下)。
[0128] < P : 0. 15重量%以下(0重量%を含まない) >
Pは、粒界偏析による粒界破壊の助長をする元素であり、低い方が望ましいため、 上限を 0. 15重量%とする。望ましくは 0. 10重量%以下、より望ましくは 0. 05重量 %以下とする。
[0129] < S: 0. 02重量%以下(0重量%を含まな!/、) >
Sは、腐食環境下での水素吸収を助長する元素であり、低い方が望ましいため、上 限を 0. 02重量%とする。
[0130] <A1: 1. 5重量%以下(0重量%を含まない) >
A1は、脱酸のために 0. 01重量%以上を添加してもよい。また、鋼材表面に A1が濃 化することにより、鋼中に水素が侵入するのを抑制する効果があり、 0. 02重量%以 上添加することが望ましい。また、 A1は脱酸作用のみならず耐食性向上作用と耐水 素脆ィ匕特性向上の作用を有する。 A1添カ卩により耐食性が向上し、結果として大気腐 食で発生する水素量が低減され、その結果、耐水素脆ィ匕特性が向上するものと考え られる。さらに、 A1添カ卩によりラス状残留オーステナイトの安定度が増し、耐水素脆化 特性の向上に寄与していると考えられる。しかし、添加量が増加すると、アルミナ等の 介在物が増加し、加工性が劣化するため 1. 5重量%を上限とする。
[0131] < Cr: 0. 003〜2. 0重量%>
Crは、 0. 003-2. 0重量%を含有させることが大変有効である。 Crを添加すること で焼き入れ性が向上して鋼板の強度確保が容易になること、また、耐食性向上作用 により大気腐食で発生する水素量が低減され、その結果、耐水素脆化特性が向上す るものと考えられる。また、本発明は、熱処理条件等の検討により、 Cr添加によっても 鋼中に粗大炭化物を析出させず、微細炭化物を鋼中に分散させること、また、組成 範囲を検討することにより、残留オーステナイトを効果的に生成させることを見出した 。これにより、水素トラップ能力の向上、および割れの伝搬の防止に寄与するものと考 えられる。該効果は、特に後に述べる Cu、 Niと共存することによって、さらに有効に 作用する。
[0132] これらの効果を発揮させるには、添加量の下限値を 0. 003重量%とする必要があ る(望ましくは 0. 1重量%以上、より望ましくは 0. 3重量%以上)。また、過剰に添カロ するとその効果が飽和するば力りでなぐ加工性が劣化するために、上限値を 2. 0重
量%とした(望ましくは 1. 5重量%以下、より望ましくは 1. 0重量%以下)。なお、 Cr は、塗膜下腐食を促進する作用も有する。そのため、塗装耐食性を向上させるには、 前記範囲内で出来る限り少量添加することが望ましい。
[0133] 本発明で規定する成分糸且成は前記の通りであり、残留成分は実質的に Feであるが 、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物として 、 0. 001重量%以下の N等が含まれることが許容されるのは勿論のこと、本発明の 作用に悪影響を与えない範囲で、以下の元素を積極的に含有させることも可能であ る。
[0134] < Cu: 0. 003〜0. 5重量%、及び Z又は
Ni: 0. 003〜1. 0重量%>
Cu: 0. 003〜0. 5重量%、Ni: 0. 003〜1. 0重量%を含有させることが大変有効 である。詳細には、 Cu、 Niの存在により、鋼板自体の耐食性が向上するため、鋼板 の腐食による水素発生を十分に抑制することができる。またこれらの元素は、大気中 で生成するさびの中でも熱力学的に安定で保護性があるといわれている酸ィ匕鉄: OC FeOOHの生成を促進させる効果も有しており、該さびの生成促進を図ることで、 発生した水素の鋼板への侵入を抑制でき、過酷な腐食環境下において水素による 助長割れを十分に抑制することができる。上記効果を発揮させるには、 Cu、 Niを含 有させる場合、それぞれの含有量を 0. 003重量%以上とする必要がある。望ましく は 0. 05重量%以上、より望ましくは 0. 1重量%以上である。尚、どの元素も過剰に 含有させると加工性が劣化するためそれぞれ上限を 0. 5重量%、 1. 0重量%とする
[0135] く Ti、 V、 Zr、 W:合計で 0. 003〜1. 0重量%>
Tiは、上記 Cu、 Ni、 Crと同様に保護性さびの生成促進効果を有する。該保護性さ びは、特に塩化物環境下で生成して耐食性 (結果として耐水素脆化特性)に悪影響 を及ぼす β FeOOHの生成を抑制するといつた非常に有益な作用を有している。 この様な保護性さびの形成は、特に Tiと V (または Zr、 W)とを複合添加することで促 進される。 Tiは、非常に優れた耐食性を付与する元素でもあり、鋼を清浄化する利点 も併せ持つ。
[0136] また Vは、前記の通り、 Tiと共存して耐水素脆化特性を向上させる効果を有する他 、鋼板の強度上昇、旧 γ粒(旧オーステナイト粒)の細粒ィ匕に有効な元素であり、さら に炭窒化物の形態制御により水素のトラップとして有効な機能を果たす。 Ti、 Zrと共 存し、耐水素脆ィ匕特性を向上させる効果がある。
[0137] Zrは、鋼板の強度上昇、旧 γ粒の細粒化に有効な元素であり、 Tiと共存し、耐水 素脆ィ匕特性を向上させる効果がある。
[0138] Wは、鋼板の強度上昇に有効であり、析出物は水素トラップとしても有効である。ま た、生成したさびは塩ィ匕物イオンを反発する性能を持っため、耐食性向上にも寄与 する。 Tiや Zrと共存し、耐食性と耐水素脆ィ匕特性を向上させる効果がある。
[0139] 上記 Ti、 V、 Zr、 Wの効果を十分に発揮させるには、合計で 0. 003重量%以上(望 ましくは 0. 01重量%以上)含有させることが必要である。過剰に添加すると、炭窒化 物の析出が多くなり加工性の低下を招く。よって合計 1. 0重量%以下の範囲内で添 加する。望ましくは 0. 5重量%以下である。
[0140] < Mo : l. 0重量%以下(0重量%を含まない) >
Moは、オーステナイトの安定化、所望の残留オーステナイトを得るために必要で、 水素侵入を抑制し、耐遅れ破壊性を向上させる効果や、鋼板の焼入れ性を高めるた めにも有効な元素であるだけでなぐ粒界を強化して水素脆性の発生を抑制する効 果がある。ただし、 1. 0重量%超ではこれらの効果が飽和するため、上限値とする。 望ましくは 0. 8重量%以下、より望ましくは 0. 5重量%以下である。
[0141] また、 Moを一定以上添加すると、塗装前処理を不均一にし、塗装後耐食性を低下 させる側面も有している。カロえて、熱延材の強度が非常に高まり、圧延しにくいなどの 製造上の問題が顕在化する。さらに、 Moは経済的には非常に高価な元素であること 力 コスト面でも不利になる。この様なことから、塗装耐食性も期待する場合には、 M oの添加量は 0. 2重量%以下が必要である。望ましくは 0. 03重量%以下、より望ま しくは、 0. 005重量%以下である。
[0142] <Nb : 0. 1重量%以下(0重量%を含まない) >
Nbは、鋼板の強度上昇及び旧 γ粒の細粒ィ匕に非常に有効な元素である。特に Μ οとの複合効果で効果を発揮する。ただし、 0. 1重量%超ではこれらの効果が飽和
するため、上限値とする。望ましくは 0. 08重量%以下である。また下限値は設定しな いが、 0. 005重量%以上添加するのが望ましい。より望ましくは 0. 01重量%以上で ある。
[0143] < B : 0. 0002〜0. 01重量%>
Bは、鋼板の強度上昇に有効な元素である。また、鋼板の塗装耐食性を向上させる ために Moを低減させた場合には、 Mo低減の強度不足を B添加で補う必要がある。 本発明の第 2の様態において、強度を向上させるためには、 0. 0002重量%以上( 望ましくは 0. 0008重量%以上、より望ましくは 0. 0015重量%以上)含有させること が必要である。 0. 0002重量%未満ではこれらの効果が得られないため、下限値と する。さらに、 Bはリン酸塩処理など塗装前処理を均一にし、塗装密着性 (塗装耐食 性)を向上させる働きを持つ。メカニズムは未解明ながら、この効果は、鋼中に Tiが 0 . 01重量%以上添加されていると、より発揮される。また、 Tiを 0. 03重量%以上含 有し、かつ、 Bを 0. 0005重量%以上含有していることがより望ましい。さらに、 Bは粒 界を強化して、耐遅れ破壊性を向上させる働きも持つ。逆に 0. 01重量%超含有す ると熱間加工性が劣化するため、上限値とする。より望ましくは 0. 005重量%以下で ある。
[0144] < Ca: 0. 0005〜0. 005重量0 /0、
Mg : 0. 0005〜0. 01重量%、及び
REM : 0. 0005〜0. 01重量%ょりなる群から選択される 1種以上 >
これらの元素は、鋼板表面の腐食に伴う界面雰囲気の水素イオン濃度の上昇を抑 制する、すなわち pHの低下を抑制するのに有効な元素である。また、鋼中硫化物の 形態を制御し、加工性向上に有効である。しかし、それぞれ 0. 0005重量%未満で はこれらの効果が得られないため、下限値とする。また、過剰に含まれていると加工 性が劣化するため、それぞれ上限値を 0. 005重量%、 0. 01重量%、 0. 01重量% とする。
[0145] 本発明は、製造条件まで規定するものではな 、が、上記成分組成を満たす鋼板を 用いて、超高強度かつ優れた耐水素脆ィ匕特性を発揮する上記組織を形成するには 、熱間圧延における仕上げ温度を、フェライトの生成しない過冷却オーステナイト域
温度であって極力低温とすることが推奨される。該温度で仕上げ圧延を行うことによ つて、熱延鋼板のオーステナイトを微細化することができ、結果として最終製品の組 織が微細となるからである。
[0146] また、熱間圧延後またはその後に行う冷間圧延の後に、下記要領で熱処理を行うこ とが推奨される。即ち、前述した成分組成を満足する鋼を Ac点 (フェライト—オース
3
テナイト変態完了温度)〜 (Ac点 + 50°C)の加熱保持温度 (T1)で 10
3 〜1800秒間( tl)加熱保持後、 3°CZs以上の平均冷却速度で (Ms点 (マルテンサイト変態開始温 度) 100°C)〜Bs点 (ベイナイト変態開始温度)の加熱保持温度 (T2)まで冷却し、 該温度域で 60〜1800秒間 (t2)加熱保持することが推奨される。
[0147] 前記加熱保持温度 (T1)が (Ac点 + 50°C)を超えるか、加熱保持時間(tl)が 1800
3
秒を超えると、オーステナイトの粒成長を招き、加工性 (伸びフランジ性)が悪化する ので好ましくない。一方、前記 (T1)が Ac点の温度より低くなると、所定のペイ-ティ
3
ックフェライト組織が得られない。また、前記 )が 10秒未満の場合には、オーステナ イト化が充分行われず、セメンタイトやその他の合金炭化物が残存してしまうので好ま しくない。前記 (tl)は、好ましくは 30秒以上 600秒以下、より好ましくは 60秒以上 40 0秒以下である。
[0148] 次いで前記鋼板を冷却するが、 3°CZs以上の平均冷却速度で冷却するのは、パ 一ライト変態領域を避けてパーライト組織の生成を防止する為である。この平均冷却 速度は大きい程よぐ好ましくは 5°CZs以上、より好ましくは 10°CZs以上とすること が推奨される。
[0149] 次に、加熱保持温度 (T2)まで前記冷却速度で急冷した後、恒温変態させることに よって所定の組織を導入することができる。ここでの加熱保持温度 (T2)が Bs点を超 えると、本発明にとって好ましくないパーライトが多量に生成し、ペイ-ティックフェライ ト組織を十分に確保することができない。一方、前記 (T2)力 S (Ms点— 100°C)を下 回ると残留オーステナイトが減少するので好ましくない。
[0150] また、加熱保持時間(t2)が 1800秒を超えるとペイ-ティックフェライトの転位密度 力 、さくなり水素のトラップ量が少なくなる他、所定の残留オーステナイトが得られな い。一方、前記加熱保持時間 (t2)が 60秒未満でも、所定のペイ-ティックフェライト
組織が得られない。好ましくは前記加熱保持時間 (t2)を 90秒以上 1200秒以下、よ り好ましくは 120秒以上 600秒以下とする。なお、加熱保持後の冷却方法について は特に限定されず、空冷、急冷、気水冷却等を行うことができる。
なお、鋼板中の残留オーステナイトの存在形態は製造時の冷却速度、および加熱 保持温度 (T2)、加熱保持時間 (t2)などにより制御することができる。例えば加熱保 持温度 (T2)を低温側にすることにより、平均軸比の小さい残留オーステナイトを形成 させることがでさる。
[0151] 実操業を考慮すると、上記熱処理 (焼鈍処理)は、連続焼鈍設備またはバッチ式焼 鈍設備を用いて行うのが簡便である。また冷間圧延板にめっきを施して溶融亜鉛め つきとする場合には、めっき条件が上記熱処理条件を満足するように設定し、該めつ き工程で上記熱処理を行ってもよ!ヽ。
[0152] また、前記した連続焼鈍処理する前の熱延工程 (必要に応じて冷延工程)は、前記 熱延仕上げ温度以外は、特に限定されず、通常、実施される条件を適宜選択して採 用することができる。具体的には、上記熱延工程としては、例えば Ar点 (オーステナ
3
イト フェライト変態開始温度)以上で熱延終了後、平均冷却速度約 30°CZsで冷却 し、約 500〜600°Cの温度で卷取る等の条件を採用することができる。また、熱延後 の形状が悪い場合には、形状修正の目的で冷間圧延を行ってもよい。ここで、冷延 率は 1〜70%とすることが堆奨される。冷延率 70%を超える冷間圧延は、圧延荷重 が増大して圧延が困難となる。
[0153] 本発明は、鋼板 (薄鋼板)を対象とするものであるが、製品形態は特に限定されず、 熱間圧延した鋼板、更に冷間圧延した鋼板、熱延あるいは冷延を行った後に焼鈍を 施した鋼板に、自動車用の電着塗装をはじめ、化成処理、溶融めつき、電気めつき、 蒸着などのめつきや各種塗装、塗装下地処理、有機皮膜処理などを行うことも可能 である。
[0154] 更に、めっきは通常の亜鉛めつき、アルミめつき等のいずれでもかまわない。めっき は溶融めつき及び電気めつきのいずれでも良ぐ更に、めっき後に合金化熱処理を 施してもかまわないし、複層めっきでもかまわない。また、めっきを施さない鋼板上や めっき鋼板上にフィルムラミネート処理をした鋼板も本発明を逸脱するものではない。
[0155] 塗装の場合、各種用途に応じてリン酸塩処理などの化成処理を施したり、電着塗装 を施しても良い。塗料は公知の榭脂が使用可能であり、エポキシ榭脂、フッ素榭脂、 シリコンアクリル榭脂、ポリウレタン榭脂、アクリル榭脂、ポリエステル榭脂、フエノーノレ 榭脂、アルキッド榭脂、メラミン榭脂などを公知の硬化剤とともに使用可能である。特 に耐食性の観点からすればエポキシ、フッ素、シリコンアクリル榭脂の使用が推奨さ れる。その他、塗料に添加される公知の添加剤、たとえば着色用顔料、カップリング 剤、レべリング剤、増感剤、酸化防止剤、紫外線安定剤、難燃剤などを添加しても良 い。
[0156] また、塗料形態も特に限定されず、溶剤系塗料、粉体塗料、水系塗料、水分散型 塗料、電着塗料など、用途に応じて適宜選択することができる。上記塗料を用い、所 望の被覆層を鋼材に形成させるには、デイツビング法、ロールコーター法、スプレー 法、カーテンフローコーター法などの公知の方法を用いればよい。被覆層の厚みは 用途に応じて公知の適切な値を用いればょ 、。
[0157] 本発明の超高強度薄鋼板は、自動車用強度部品(例えばバンパーやドアインパク トビーム等の補強部材)、シートレール等の室内部品等に適用することができる。この 様に形成加工して得られる部品においても、十分な材質特性 (強度、剛性等)、衝撃 吸収性を有し、優れた耐水素脆化特性 (耐遅れ破壊性)を発揮する。
[0158] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例 によって制限を受けるものではなぐ本発明の趣旨に適合し得る範囲で適当に変更 を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれ る。
実施例
[0159] 以下、本発明の第 1の様態に係る、第 1の実施例及び第 2の実施例について述べる 〔第 1の実施例〕
表 1に示す成分組成の鋼 (鋼種 A〜V)を真空溶製し、スラブとしてから、以下のェ 程 (熱延→冷延→連続焼鈍)に従って、板厚 3. 2mmの熱延鋼板を得た後、酸洗に より表面スケールを除去し、 1. 2mmまで冷間圧延し、その後、以下に示す連続焼鈍
を施し、各種の鋼板 (実験 No. 1〜23)を作製した。
<熱延工程 >
開始温度: 1150〜 1250°Cで 30分間保持
仕上温度: 850°C
冷却速度: 40°CZs
卷取温度: 550°C
<冷延工程 >
冷延率: 50%
<連続焼鈍工程 >
実験 No. 1〜15、 17〜19、 21〜23の鋼板は、冷間圧延後の鋼板を Ac点(表 1
3 参照)〜 Ac点 + 30°Cの温度で、 120秒間保持した後、平均冷却速度 20°CZsで表
3
2の To°Cまで急速冷却(空冷)し、該 To°Cで 240秒保持し、その後、室温まで気水冷 却した。また、鋼種 (P)を使用した従来の高強度鋼であるマルテンサイト鋼力もなる実 験 No. 16の鋼板は、冷間圧延後の鋼板を 880°C30分保持後に水焼入れし、 300 °Cで 1時間焼き戻した。また、製造条件が鋼板の組織に与える影響を調査するため、 実験 No. 20の鋼板は、鋼種 (A)を用い、冷間圧延後の鋼板を Ac点 50°Cの温度
3
で 120秒間保持した後、平均冷却速度 20°CZsで表 2の To°Cまで急速冷却 (空冷) し、該 To°Cで 240秒保持し、その後、室温まで気水冷却した。
[0160] この様にして得られた各鋼板の金属組織、引張強度 (TS)、伸び [全伸びのこと (E
L) ]、耐水素脆化特性 (水素脆化危険度評価指数)及び溶接性を下記要領で夫々 調べ、評価した。その結果を表 2に示す。
[0161] (金属組織)
各鋼板の板厚 1Z4の位置で圧延面と平行な面における任意の測定領域 (約 50 μ πι Χ 50 /ζ πι、測定間隔は 0. l /z m)を対象に、 FE— SEM (Philips社製、 XL30S— FEG)で観察 ·撮影し、ペイ-ティックフェライト(BF)及びマルテンサイト(M)の面積 率、残留オーステナイト (残留 γ )の面積率を前記した方法に従って測定した。そして 任意に選択した 2視野において同様に測定し、平均値を求めた。また、その他の組 織 (フ ライトやパーライト等)を、全組織(100%)から前記組織 (BF、 M、残留 γ )の
占める面積率を差し引いて求めた。
[0162] 更に、残留 γの結晶粒の平均軸比、平均短軸長さ、及び結晶粒間の最隣接距離 を前記の方法に従って測定した。第 1の実施例においては、平均軸比が 5以上、平 均短軸長さが l /z mdOOOnm)以下、最隣接距離が 1 m (lOOOnm)以下のものを 本発明の要件を満たす(〇)とし、平均軸比が 5未満、平均短軸長さが 1 /ζ πι (1000η m)超、最隣接距離が 1 μ m (lOOOnm)超のものを本発明の要件を満たさな!/ヽ( X ) と評価した。
[0163] (引張強度、伸び)
引張試験 WIS5号試験片を用いて行 、、引張強度 (TS)と伸び (EL)を測定した。 尚、引張試験の歪速度は ImmZsecとした。そして、第 1の実施例では、前記方法に よって測定される引張強度が 980MPa以上の鋼板を対象に、伸びが 10%以上のも のを「伸びに優れる」と評価した。
[0164] (水素脆化危険度評価指数:耐水素脆化特性の評価)
板厚 1. 2mmの平板試験片を用いて、歪速度が l X 10_4mmZsecの低歪速度引 張試験法 (SSRT)を行い、下記式(1)にて定義される水素脆化危険度評価指数 (% )を求めて、耐水素脆化特性を評価した。
水素脆化危険度評価指数 (%) = 100 X (1 -E1/E0) · · · (1)
ここで、 E0は、実質的に鋼中に水素を含まない状態の試験片の破断時の伸びを示 し、 E1は、湿潤時間を長く設定し、厳しい腐食環境を想定した複合サイクル試験によ り鋼板 (試験片)に水素を侵入させた際の破断時の伸びを示している。なお、前記複 合サイクル試験は、 1サイクルを 5%塩水噴霧 8時間、(温度) 35°C (湿度) 60%RHの 恒温恒湿試験 16時間とし、 7サイクル行った。前記水素脆化危険度評価指数は、 50 %を超えると使用中に水素脆ィ匕を起こす危険があるので、本発明では、 50%以下の ものを耐水素脆化特性に優れると評価した。
[0165] (溶接性の評価)
実験 No. 7 (鋼種 (G) )と実験 No. 14 (鋼種 (N) )の鋼板について溶接性試験を行 つた。試験は厚さ 1. 2mmの鋼板を用いて、 JISZ3136、 JISZ3137に従って試験片 を作製し、以下の条件でスポット溶接を行った後、せん断引張試験(引張速度: 20m
mZminで最大荷重を測定)と十字引張試験(引張速度 20mmZminで最大荷重を 測定)を行い、せん断引張強度 (TSS)と十字引張強度 (CTS)を求めた。そして、前 記せん断引張強度 (TSS)と十字引張強度 (CTS)の比で表される延性比(CTSZT SS)が 0. 2以上の場合を、溶接性に優れると評価した。その結果、実験 No. 14 (比 較鋼板)の延性比は 0. 19で、溶接性に劣って 、た (表 2では Xと記載)。これに対し 、実験 No. 7 (本発明の鋼板)の延性比は 0. 23で、溶接性に優れていた (表 2では 〇と記載)。
[0166] <スポット溶接条件 >
•初期加圧時間: 60サイクル Z60Hz、カロ圧力 450kgf (4. 4kN)
•通電時間 :1サイクル Z60Hz
'溶接電流 :8. 5KA
[0167] [表 1]
6 m ±^ !≤-±m 、¥ias¾ ( )
[0169] 表 1、 2より、本発明で規定する要件を満たす実験 No. 1〜13、 21〜23 (実施例) につ 、ては 980MPa以上の超高強度鋼板でありながら、優れた耐水素脆化特性を 兼備している。また、 TRIP鋼板として具備すべき伸びも良好であり、さらに、優れた 溶接性も備えていることから、大気腐食雰囲気に曝される自動車の補強部品等として 最適な鋼板と言える。
[0170] これに対し本発明の規定を満たさない実験 No. 14〜20 (比較例)は、以下の不具 合を有している。実験 Nol4は C量が過剰であるため、残留 γ (残留オーステナイト) の分散形態も満足せず、十分な溶接性を有さず、耐水素脆ィ匕特性に劣っている。実 験 Νο15は Μη量が不足しているため、残留 γの分散形態も満足せず、焼き入れ性 等が劣化し、十分な強度、伸び、耐水素脆ィ匕特性が得られていない。実験 No. 16 は Si量が不足して 、る鋼種を用いて、従来の高強度鋼であるマルテンサイト鋼を得 た例であるが、残留 γがほとんど存在していないため、十分な伸び、耐水素脆化特 '性が得られていない。
[0171] 実験 No. 17は、 C量が不足し、残留 γの分散形態も満足しないため、十分な強度 、耐水素脆ィ匕特性が得られていない。実験 Νο18は Crを含有せず、残留 γの分散 形態も満足しないため、焼き入れ性に乏しぐ十分な強度、耐水素脆化特性が得ら れていない。実験 No 19は Cr量が過剰であり、残留 γの分散形態も満足しないため 、粗大炭化物が析出し加工性に難があり、十分な強度、耐水素脆化特性が得られて いない。
[0172] 実験 No. 20は、本発明で規定する成分範囲を満たす鋼種 (A)を使っているが、推 奨される製造条件でな力つた (焼鈍時の加熱保持温度 T1が Ac3点― 50°C)ために 、得られた鋼板は従来の TRIP鋼板となった。すなわち、残留オーステナイトが本発 明で規定する分散形態を満たさず塊状となり、また母相もペイ-ティックフェライトとマ ルテンサイトの二相組織とならなカゝつた。そのため、十分な強度、耐水素脆化特性が 得られていない。
[0173] 次に、表 1に示す鋼種 (B)、 (G)の鋼板と、比較鋼板 (従来品である 590MPa級の 高張力鋼板)を用いて部品を成型し、以下の通り耐圧壊性試験および耐衝撃特性試 験を行い、成型品としての性能を調査した。
[0174] (耐圧壊性試験)
まず、表 1に示す鋼種 (B)、 (G)の鋼板と比較鋼板を用いて、図 5に示すような部品 (試験体、ノヽットチャンネル部品) 1を作成し、圧壊性試験をおこなった。図 5に示す部 品のスポット溶接位置 2に先端径 6mmの電極から、チリ発生電流よりも 0. 5kA低い 電流を流して、図 5に示すとおり 35mmピッチでスポット溶接を行った。次に図 6に示 すように、部品 1の長手方向中央部の上部力 金型 3を押しつけて最大荷重を求め た。また荷重一変位線図の面積から吸収エネルギーを求めた。その結果を表 3に示 す。
[0175] [表 3]
[0176] 表 3より、本発明の鋼板 (鋼種 B, G)を用いて作製した部品 (試験体)は、強度の低 Vヽ比較鋼板を用いた場合より高!、荷重を示し、また吸収エネルギーも高くなつて!/ヽる ことから、優れた耐圧壊性を有している。
[0177] (耐衝撃特性試験)
表 1に示す鋼種 (B)、 (G)の鋼板と比較鋼板を用いて、図 7に示すような部品 (試験 体、ノ、ットチャンネル部品) 4を作成し、耐衝撃特性試験をおこなった。図 8は前記図 7における部品 4の A— A断面図を示している。耐衝撃特性試験は、上記耐圧壊性 試験の場合と同様に部品 4のスポット溶接位置 5にスポット溶接を行ったあと、図 9に 模式的に示すとおり部品 4を土台 7にセットして、部品 4の上力も落錘(110kg) 6を高 さ 1 lmから落下させて部品 4が 40mm変形 (高さ方向に収縮)するまでの吸収エネル ギーを求めた。その結果を表 4に示す。
[0178] [表 4]
使用した鋼板 試験体の評価結果 鋼種 TS Eし 残留 面積率 吸収エネルギー
(MPa) (%) (%) (kJ)
記号 B 1286 13 8 5.98
記号 G 1473 10 9 6.70
比較鋼 604 22 0 3.51
[0179] 表 4より、本発明の鋼板 (鋼種 B, G)を用いて作製した部品 (試験体)は、強度の低 V、従来の鋼板を用いた場合より高 、吸収エネルギーを有し、優れた耐衝撃特性を持 つことがわ力ゝる。
[0180] 〔第 2の実施例〕
表 5に記載の成分組成力 なる鋼 (鋼種 1〜22)を真空溶製し、スラブとした後、以 下の工程 (熱延→冷延→連続焼鈍)に従って、板厚 3. 2mmの熱延鋼板を得た後、 酸洗により表面スケールを除去し、 1. 2mmまで冷間圧延し、その後、以下に示す連 続焼鈍を施し、各種の鋼板 (実験 No. 24〜46)を作製した。
<熱延工程 >
開始温度: 1150〜 1250°Cで 30分間保持
仕上温度: 850°C
冷却速度: 40°CZs
卷取温度: 550°C
<冷延工程 >
冷延率: 50%
<連続焼鈍工程 >
実験 No. 24〜42、 44、 45の鋼板は、冷間圧延後の鋼板を Ac点 + 30°Cの温度
3
で 120秒間保持した後、平均冷却速度 20°CZsで、表 6に示す To°Cまで急速冷却( 空冷)し、該 To°Cで 240秒間保持した。その後は室温まで気水冷却した。また、鋼種 (チ)を使用した従来の高強度鋼であるマルテンサイト鋼力 なる実験 No. 43の鋼板
は、冷間圧延後の鋼板を 830°Cまで加熱し 5分間保持した後に水焼入れし、 300°C で 10分間焼き戻した。また、実験 No. 46の鋼板は、鋼種(1)を用い、冷間圧延後の 鋼板を 800°Cまで加熱し、 120秒間保持した後、平均冷却速度 20°CZsで 350°C (T
0)まで冷却し、該 To°Cで 240秒間保持した。その後は室温まで気水冷却した。
[0181] この様にして得られた各鋼板の金属組織、引張強度 (TS)、伸び [全伸びのこと (E
1) ]、耐水素脆化特性 (耐遅れ破壊性)、塗装耐食性及び溶接性を下記要領で夫々 調べ、評価した。その結果を表 6に示す。なお、金属組織、引張強度、伸び及び溶接 性については、前記の第 1の実施例と同様に行った。また、表 6において、残留 γの 平均軸比は 5以上を (〇)、 5未満を(X )と記載した。
[0182] (耐遅れ破壊性:耐水素脆化特性の評価)
前記の各鋼板から 120mm X 30mmの短冊片を切り出し、曲げ部の Rが 15mmと なる様な曲げ加工を施して曲げ試験片とした。そして、曲げ試験片に対し、 1000MP aの応力を負荷した状態で、 5%HC1水溶液中に浸漬して、割れ発生までの時間を 測定し、耐水素脆化特性を評価した。割れ発生までの時間が 24時間以上で、耐水 素脆化特性が優れて ヽるとした。
[0183] (塗装耐食性の評価)
使用環境を模擬して、塗装後の耐食性評価も行った。
前記の各鋼板力 板厚 1. 2mmの平板試験片を切り出して試験片とした。この試験 片をりん酸亜鉛処理後、市販の電着塗装を行い、膜厚 25 mの塗膜を形成した。電 着塗装を施した試験片の平行部の中央に、カッターにて素地に達する疵を入れ、腐 食試験に供した。一定期間後、カッターによる人工キズからの腐食の広がり(ふくれ 幅)を計測した。ふくれ幅は、実験 No. 24の試験片のふくれ幅を「1」として規格ィ匕し 、以下のようにランクわけを行い、塗装耐食性を評価した。ふくれ幅が、 1. 0を超え 1 . 5以下の場合は、塗装耐食性がやや低下(△)、ふくれ幅が 1. 0以下の場合は、塗 装耐食性が優れる(〇〜◎◎◎)と評価した。
[0184] そして、表 6では、ふくれ幅が 0. 7以下を塗装耐食性が(◎◎◎)、ふくれ幅が 0. 7 を超え 0. 75以下を塗装耐食性が(◎◎〇)、ふくれ幅が 0. 75を超え 0. 8以下を塗 装耐食性が(◎◎)、ふくれ幅が 0. 8を超え 0. 85以下を塗装耐食性が(◎〇)、ふく
れ幅が 0. 85を超え 0. 9以下を塗装耐食性が(◎△)、ふくれ幅が 0. 9を超え 0. 95 以下を塗装耐食性が(◎)、ふくれ幅が 0. 95を超え 1. 0以下を塗装耐食性が(〇)、 ふくれ幅が 1. 0を超え 1. 5以下を塗装耐食性が(△)と記載した。
[0185] また、りん酸亜鉛処理は、通常のりん酸塩処理を行うときの前処理 (脱脂、水洗、表 面調整)を実施後に行い、電着塗装は日本ペイント製 SD5000を使用し、 45°C、 2分 で行った。なお、塗装の付着量 (塗膜)は、りん酸亜鉛処理の処理時間で制御した。
[0186] さらに、腐食試験は、電着塗装を施した試験片に、 35°Cの NaCl水溶液を噴霧し、 60°Cで乾燥後、温度 50°C、相対湿度 95%の雰囲気下に放置することを 1サイクル( 8時間)とし、 1日 3サイクルを合計 30日間実施した。
[0187] [表 5]
9
[9挲] [8810]
LV
[0189] 表 6より、本発明で規定する要件を満たす実験 No. 24〜37、 40 (実施例)は、 980 MPa以上の超高強度鋼板でありながら、優れた耐水素脆ィ匕特性及び塗装耐食性を 兼備している。また、 TRIP鋼板として具備すべき伸びも良好であり、更に優れた溶接 性も具備していることから、大気腐食雰囲気に曝される自動車の補強部品等として最 適な鋼板と言える。
[0190] なお、実験 No. 38、 39 (実施例)は、十分な強度、伸び及び耐水素脆ィ匕特性を兼 備している。し力しながら、実験 No. 38は、 Moが多量に含まれているため、塗装耐 食性が低下する結果となった。実験 No. 39は、 Bが添加されていないため、塗装耐 食性が低下する結果となった。
[0191] これに対し、本発明の規定を満足しない実験 No. 41-46 (比較例)は、夫々、以 下の不具合を有している。実験 No. 41は C量が過剰であるため、十分な伸び、耐水 素脆化特性、溶接性が得られていない。また塗装耐食性も低下している。実験 No. 42は、 Mn量が不足しているため、十分な耐水素脆ィ匕特性が得られていない。また、 伸びも十分とは言い難い。
[0192] 実験 No. 43は、 Si量が不足している鋼種「20」を用いて、従来の高強度鋼である マルテンサイト鋼を得た例である力 残留オーステナイトがほとんど存在して ヽな 、た め、耐水素脆ィ匕特性に劣っている。また、薄鋼板に要求される伸びも確保できていな い。
[0193] 実験 No. 44は、 C量が不足しているため、十分な強度が得られていない。実験 No . 45は、 Nb量が過剰に含まれているため、成形性が著しく低下し、十分な伸びが得 られていない。なお、実験 No. 45では、曲げ力卩ェを行うことができず、耐水素脆化特 性を調べることができな力つた。
[0194] 実験 No. 46は、本発明で規定する成分組成を満たす鋼材を用いて!/ヽるが、推奨さ れる条件で製造しなかった (焼鈍時の加熱保持温度 T1が Ac点以下)ために、得ら
3
れた鋼板は従来の TRIP鋼板となった。その結果、残留オーステナイトは、本発明で 規定する平均軸比を満たさず、また母相もペイ-ティックフェライトとマルテンサイトの 二相組織とならな力つた。そのため、十分な強度が得られていない。
[0195] 次に、鋼種(10)の鋼板と、比較鋼板 (従来品である 590MPa級の高張力鋼板)を
用いて部品を成型し、第 1の実施例と同様にして、耐圧壊性試験及び耐衝撃特性試 験を行い、成型品としての性能を調査した。その結果を表 7、 8に示す。
[表 7]
[0197] [表 8]
[0198] 表 7より、本発明の鋼板 (鋼種 10)を用いて作製した部品 (試験体)は、強度の低い 比較鋼板を用いた場合より高い荷重を示し、また、吸収エネルギーも高くなつている ことから、優れた耐圧壊性を有している。
[0199] 表 8より、本発明の鋼板 (鋼種 10)を用いて作製した部品 (試験体)は、強度の低
V、比較鋼板を用いた場合より高!、吸収エネルギーを有し、優れた耐衝撃特性を持つ ことがわ力ゝる。
[0200] 次に、本発明の第 2の様態に係る、第 3の実施例について述べる。
〔第 3の実施例〕
表 9に示す成分組成の鋼 (鋼種 a〜t)を真空溶製し、スラブとしてから、以下の工程 (熱延→冷延→連続焼鈍)に従って、板厚 3. 2mmの熱延鋼板を得た後、酸洗により 表面スケールを除去し、 1. 2mmまで冷間圧延し、その後、以下に示す連続焼鈍を 施し、各種の鋼板 (実験 No. 47〜67)を作製した。
<熱延工程 >
開始温度: 1150〜 1250°Cで 30分間保持
仕上温度: 850°C
冷却速度: 40°CZs
卷取温度: 550°C
<冷延工程 >
冷延率: 50%
<連続焼鈍工程 >
実験 No. 47〜62、 64〜66の鋼板は、冷間圧延後の鋼板を Ac点(表 9参照)〜 A
3
c点 + 30°Cの温度で、 120秒間保持した後、平均冷却速度 20°CZsで表 10の To
3
°Cまで急速冷却 (空冷)し、該 To°Cで 240秒保持し、その後、室温まで気水冷却した 。また、鋼種 (q)を使用した従来の高強度鋼であるマルテンサイト鋼力もなる実験 No . 63の鋼板は、冷間圧延後の鋼板を 880°C30分保持後に水焼入れし、 300°Cで 1 時間焼き戻した。また、製造条件が鋼板の組織に与える影響を調査するため、実験 No. 67の鋼板は、鋼種 (b)を用い、冷間圧延後の鋼板を Ac点— 50°Cの温度で 12
3
0秒間保持した後、平均冷却速度 20°CZsで表 10の To°Cまで急速冷却 (空冷)し、 該 To°Cで 240秒保持し、その後、室温まで気水冷却した。
[0201] この様にして得られた鋼板から、 JIS5号試験片を採取し、実際に行なわれる加工を 模してカ卩工率 3%の引張力卩ェを施し、加工前後の各試料の金属組織、加工前の引 張強度 (TS)と伸び [全伸びのこと (EL) ]、及び加工後の耐水素脆化特性 (水素脆 化危険度評価指数)、耐食性、耐遅れ破壊性を下記要領で夫々調べ、評価した。そ の結果を表 10に示す。
[0202] (金属組織)
各鋼板の板厚 1Z4の位置で圧延面と平行な面における任意の測定領域 (約 50 μ πι Χ 50 /ζ πι、測定間隔は 0. l /z m)を対象に、 FE— SEM (Philips社製、 XL30S— FEG)で観察 ·撮影し、ペイ-ティックフェライト(BF)及びマルテンサイト(M)の面積 率、残留オーステナイト (残留 γ )の面積率を前記した方法に従って測定した。そして 任意に選択した 2視野において同様に測定し、平均値を求めた。また、その他の組
織 (フ ライトやパーライト等)を、全組織(100%)から前記組織 (BF、 M、残留 γ )の 占める面積率を差し引いて求めた。
[0203] 更に、加工前後の残留 γの結晶粒の平均軸比、平均短軸長さ、及び結晶粒間の 最隣接距離を前記の方法に従って測定した。第 3の実施例においては、加工後にお いて、平均軸比が 5以上、平均短軸長さが: m (lOOOnm)以下、最隣接距離が 1 /z m dOOOnm)以下のものを本発明の要件を満たす(〇)とし、平均軸比が 5未満、 平均短軸長さが 1 m(lOOOnm)超、最隣接距離が 1 m (lOOOnm)超のものを本 発明の要件を満たさな ヽ( X )と評価した。
[0204] (引張強度、伸び)
引張試験は、加工前の JIS5号試験片を用いて行い、引張強度 (TS)と伸び (EL)を 測定した。尚、引張試験の歪速度は ImmZsecとした。そして、第 3の実施例では、 前記方法によって測定される引張強度が 980MPa以上の鋼板を対象に、伸びが 8 %以上のものを「伸びに優れる」と評価した。
[0205] (水素脆化危険度評価指数:耐水素脆化特性の評価)
板厚 1. 2mmの平板試験片を用いて、歪速度が l X 10_4mmZsecの低歪速度引 張試験法 (SSRT)を行い、下記式(1)にて定義される水素脆化危険度評価指数 (% )を求めて、耐水素脆化特性を評価した。
水素脆化危険度評価指数 (%) = 100 X (1 -E1/E0) · · · (1)
ここで、 E0は、実質的に鋼中に水素を含まない状態の試験片の破断時の伸びを示 し、 E1は、湿潤時間を長く設定し、厳しい腐食環境を想定した複合サイクル試験によ り鋼板 (試験片)に水素を侵入させた際の破断時の伸びを示している。なお、前記複 合サイクル試験は、 1サイクルを 5%塩水噴霧 8時間、(温度) 35°C (湿度) 60%RHの 恒温恒湿試験 16時間とし、 7サイクル行った。前記水素脆化危険度評価指数は、 50 %を超えると使用中に水素脆ィ匕を起こす危険があるので、本発明では、 50%以下の ものを耐水素脆化特性に優れると評価した。
[0206] (耐遅れ破壊性:耐水素脆化特性の評価)
前記の各鋼板から 150mm X 30mmの短冊試験片を切り出し、この短冊試験片を 引っ張って、加工率 3%の変形を付与した後、曲げ部の Rが 15mmとなる様な曲げカロ
ェを施して曲げ試験片とした。そして、曲げ試験片に対し、 lOOOMPaの応力を負荷 した状態で、 5%HC1水溶液中に浸漬して、割れ発生までの時間を測定し、耐水素 脆ィ匕特性を評価した。割れ発生までの時間が 24時間以上で、耐水素脆化特性が優 れているとした。
[0207] (塗装耐食性の評価)
使用環境を模擬して、塗装後の耐食性評価も行った。
前記の各鋼板力 板厚 1. 2mmの平板試験片を切り出して試験片とした。この試験 片をりん酸亜鉛処理後、市販の電着塗装を行い、膜厚 25 mの塗膜を形成した。電 着塗装を施した試験片の平行部の中央に、カッターにて素地に達する疵を入れ、腐 食試験に供した。一定期間後、カッターによる人工キズからの腐食の広がり(ふくれ 幅)を計測した。ふくれ幅は、実験 No. 47の試験片のふくれ幅を「1」として規格ィ匕し 、以下のようにランク分けを行い、塗装耐食性を評価した。ふくれ幅が、 1. 0を超え 1 . 5以下の場合は、塗装耐食性が低下(X )、ふくれ幅が 1. 0以下の場合は、塗装耐 食性が優れる(△〜◎◎◎)と評価した。
[0208] そして、表 10では、ふくれ幅が 0. 7以下を塗装耐食性が(◎◎◎)、ふくれ幅が 0.
7を超え 0. 75以下を塗装耐食性が(◎◎〇)、ふくれ幅が 0. 75を超え 0. 8以下を 塗装耐食性が(◎◎)、ふくれ幅が 0. 8を超え 0. 85以下を塗装耐食性が(◎〇)、ふ くれ幅が 0. 85を超え 0. 9以下を塗装耐食性が(◎)、ふくれ幅が 0. 9を超え 0. 95 以下を塗装耐食性が(〇)、ふくれ幅が 0. 95を超え 1. 0以下を塗装耐食性が(△)、 ふくれ幅が 1. 0を超え 1. 5以下を塗装耐食性が(X )と記載した。
[0209] また、りん酸亜鉛処理は、通常のりん酸塩処理を行うときの前処理 (脱脂、水洗、表 面調整)を実施後に行い、電着塗装は日本ペイント製 SD5000を使用し、 45°C、 2分 で行った。なお、塗装の付着量 (塗膜)は、りん酸亜鉛処理の処理時間で制御した。
[0210] さらに、腐食試験は、電着塗装を施した試験片に、 35°Cの NaCl水溶液を噴霧し、 60°Cで乾燥後、温度 50°C、相対湿度 95%の雰囲気下に放置することを 1サイクル( 8時間)とし、 1日 3サイクルを合計 30日間実施した。
[οι挲]
99
[0213] 表 9、 10より、本発明で規定する要件を満たす実験 No47〜60 (実施例)について は 980MPa以上の超高強度鋼板でありながら、加工後においても優れた耐水素脆 化特性及び塗装耐食性を兼備している。また、 TRIP鋼板として具備すべき伸びも良 好であることから、大気腐食雰囲気に曝される自動車の補強部品等として最適な鋼 板と言える。
[0214] これに対し本発明の規定を満たさない実験 No61〜67 (比較例)は、以下の不具合 を有している。実験 No61は、 C量が不足し、 3%の引張加工後に残留 γ (残留ォー ステナイト)がほとんど存在していないため、耐水素脆ィ匕特性が得られていない。した がって、加工性に劣るものであると言える。実験 Νο62は Μη量が不足しているため、 残留 γがほとんど存在せず、残留 γの分散形態も満足していない。そのため、水素 脆化危険度評価指数が高ぐ耐水素脆ィ匕特性が得られていない。したがって、加工 性に劣るものであると言える。また、焼き入れ性等が劣化し、十分な強度、伸びが得ら れていない。さら〖こ、塗装耐食性が低下している。
[0215] 実験 Νο63は Si量が不足している鋼種を用いて、従来の高強度鋼であるマルテン サイト鋼を得た例であるが、残留 γがほとんど存在せず、残留 γの分散形態も満足し ていない。そのため、十分な伸び、耐水素脆ィ匕特性が得られていない。したがって、 加工性に劣るものであると言える。また、塗装耐食性も低下している。実験 Νο64は C 量が過剰であり、また Crが含有されていないため、残留 γの分散形態を満足せず、 耐水素脆ィ匕特性に劣っている。したがって、加工性に劣るものであると言える。また、 塗装耐食性も劣って 、る。 Νο65は Μη量が過剰であるが所定の残留オーステナイト は得られている。しかし残留オーステナイトの安定度が低いため、残留オーステナイト が加工後に安定して残存していない。そのため、耐水素脆ィ匕特性が得られていない 。したがって、加工性に劣るものであると言える。また、十分な伸びが得られていない 。さらに、塗装耐食性が低下している。
[0216] 実験 Νο66は Cr量が過剰であり、残留 γの分散形態も満足しないため、粗大炭化 物が析出し加工性に難があり、耐水素脆ィ匕特性が得られていない。したがって、加工 性に劣るものであると言える。実験 Νο67は、本発明で規定する成分範囲を満たす鋼 種 (b)を使って 、るが、推奨される製造条件でなかった (焼鈍時の加熱保持温度 T1
が Ac点— 50°C)ために、得られた鋼板は従来の TRIP鋼板となった。すなわち、残
3
留オーステナイトが本発明で規定する分散形態を満たさず塊状となり、また母相もべ ィ-ティックフェライトとマルテンサイトの二相組織とならな力 た。そのため、十分な 強度が得られていない。また、水素脆化危険度評価指数が高く、耐水素脆化特性が 得られていない。したがって、加工性に劣るものであると言える。
[0217] 次に、表 9に示す鋼種 (e)の鋼板と、比較鋼板 (従来品である 590MPa級の高張力 鋼板)を用いて部品を成型し、以下の通り耐圧壊性試験および耐衝撃特性試験を行 い、成型品としての性能を調査した。
[0218] (耐圧壊性試験)
まず、表 9に示す鋼種 (e)の鋼板と比較鋼板を用いて、図 5に示すような部品(試験 体、ハットチャンネル部品) 1を作成し、圧壊性試験をおこなった。図 5に示す部品 1 のスポット溶接位置 2に先端径 6mmの電極から、チリ発生電流よりも 0. 5kA低い電 流を流して、図 5に示すとおり 35mmピッチでスポット溶接を行った。次に図 6に示す ように、部品 1の長手方向中央部の上部力 金型 3を押しつけて最大荷重を求めた。 また荷重一変位線図の面積から吸収エネルギーを求めた。その結果を表 11に示す
[0219] [表 11]
[0220] 表 11より、本発明の鋼板 (鋼種 e)を用いて作製した部品 (試験体)は、強度の低い 比較鋼板を用いた場合より高 、荷重を示し、また吸収エネルギーも高くなつて 、るこ とから、優れた耐圧壊性を有している。
[0221] (耐衝撃特性試験)
表 9に示す鋼種 (e)の鋼板と比較鋼板を用いて、図 7に示すような部品 (試験体、ハ
ットチャンネル部品) 4を作成し、耐衝撃特性試験をおこなった。図 8は前記図 7にお ける部品 4の A— A断面図を示している。耐衝撃特性試験は、上記耐圧壊性試験の 場合と同様に部品 4のスポット溶接位置 5にスポット溶接を行ったあと、図 9に模式的 に示すとおり部品 4を土台 7にセットして、部品 4の上力も落錘(110kg) 6を高さ 1 lm 力 落下させて部品 4が 40mm変形(高さ方向に収縮)するまでの吸収エネルギーを 求めた。その結果を表 12に示す。
[0222] [表 12]
[0223] 表 12より、本発明の鋼板 (鋼種 e)を用いて作製した部品(試験体)は、強度の低い 従来の鋼板を用レ、た場合より高レ、吸収エネルギーを有し、優れた耐衝撃特性を持つ ことがわ力ゝる。
[0224] 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れる ことなく様々な変更および修正が可能であることは、当業者にとって明らかである。 なお、本出願は、 2005年 12月 28日付けで出願された日本特許出願 (特願 2005 — 379188)、 2006年 11月 16日付けで出願された日本特許出願 (特願 2006— 31 0359)、及び 2006年 11月 16日付けで出願された日本特許出願 (特願 2006— 31 0458)に基づいており、その全体が引用により援用される。
また、ここに引用されるすべての参照は全体として取り込まれる。
産業上の利用可能性
[0225] 本発明によれば、延性 (伸び)を損なわず、また、 Cr添加を行っても粒界近傍に粗大 炭化物などを生成させることのない、耐水素脆ィ匕特性を飛躍的に向上させた 980M Pa以上の超高強度 TRIP型薄鋼板が提供される。また、 Cr添加を行っても粒界近傍 に粗大炭化物などを生成させることのな 、、加工性および耐水素脆ィ匕特性を飛躍的
に向上させた 980MPa以上の超高強度 TRIP型薄鋼板が提供される。
Claims
[1] 重量%にて、
C:0.10〜0.60%、 Si:l.0〜3.0%、 Mn:l.0〜3.5%、 P:≤0.15%、 S:≤
0.02%, Al:≤l.5%、Cr:0.003〜2.0%を含有し、残部が鉄及び不可避不純 物である鋼板からなり、
残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に、 当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ 当該残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下である、耐水素脆 化特性に優れた超高強度薄鋼板。
[2] 重量%にて、
C:0.10〜0.25%、 Si:l.0〜3.0%、 Mn:l.0〜3.5%、 P:≤0.15%、 S:≤
0.02%, Al:≤l.5%、Cr:0.003〜2.0%を含有し、残部が鉄及び不可避不純 物である鋼板からなり、
前記鋼板の全組織に対する面積率で、残留オーステナイトを 1 %以上有し、 前記残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に 当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ 当該残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下である、耐水素脆 化特性に優れた超高強度薄鋼板。
[3] 前記鋼板の全組織に対する面積率で、ペイ-ティックフェライト及びマルテンサイト が合計で 80%以上であり、フェライト及びパーライトが合計で 0〜9%である請求項 2 に記載の超高強度薄鋼板。
[4] 前記鋼板は、更に、重量%で、 Cu:0.003〜0.5%、及び Z又は Ni:0.003〜1
.0%を含む請求項 2または 3に記載の超高強度薄鋼板。
[5] 前記鋼板は、更に、重量%で、 Ti及び Z又は V、 Zr、 Wを合計で 0.003〜1.0% 含む請求項 2〜4のいずれか一項に記載の超高強度薄鋼板。
[6] 前記鋼板は、更に、重量%で、 Mo: 1.0%以下、及び Z又は Nb:0. 1%以下を含 む請求項 2〜5のいずれか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量%で、 Mo: 0.2%以下、及び Z又は Nb:0. 1%以下を含 む請求項 2〜5のいずれか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量%で、 B:0.0002〜0.01%を含む請求項 2〜7のいず れか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量%で、 B:0.0005〜0.01%を含む請求項 2〜7のいず れか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量0 /0で、 Ca:0.0005〜0.005%, Mg:0.0005〜0.01 %、及び REM:0.0005-0.01%よりなる群力 選択される 1種以上を含む請求項 2〜9の 、ずれか一項に記載の超高強度薄鋼板。
重量%にて、
C:0.25超〜 0.60%、Si:l.0〜3.0%、Μη:1.0〜3.5%, P:≤0.15%、 S: ≤0.02%、A1:≤1.5%、Cr:0.003-2.0%を含有し、残部が鉄及び不可避不 純物である鋼板力 なり、
前記鋼板における加工率 3%の引張加工後の金属組織が、
この金属組織に対する面積率で、残留オーステナイトを 1%以上有し、
前記残留オーステナイトの結晶粒の平均軸比 (長軸 Z短軸)が 5以上であると共に 当該残留オーステナイトの結晶粒の平均短軸長さが 1 m以下で、かつ
当該残留オーステナイトの結晶粒間の最隣接距離が 1 μ m以下である、耐水素脆 化特性に優れた超高強度薄鋼板。
前記鋼板における加工率 3%の引張加工後の金属組織力、この金属組織に対する 面積率で、ペイ-ティックフェライト及びマルテンサイトが合計で 80%以上であり、フ エライト及びパーライトが合計で 0〜9%である請求項 11に記載の超高強度薄鋼板。 前記鋼板は、更に、重量%で、 Cu:0.003〜0.5%、及び Z又は Ni:0.003〜1 .0%を含む請求項 11または 12に記載の超高強度薄鋼板。
前記鋼板は、更に、重量%で、 Ti及び Z又は V、 Zr、 Wを合計で 0.003〜1.0% 含む請求項 11〜 13の 、ずれか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量%で、 Mo:l.0%以下、及び Z又は Nb:0. 1%以下を含
む請求項 11〜 14のいずれか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量%で、 Mo: 0.2%以下、及び Z又は Nb:0. 1%以下を含 む請求項 11〜 14のいずれか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量%で、 B:0.0002〜0.01%を含む請求項 11〜16のい ずれか一項に記載の超高強度薄鋼板。
前記鋼板は、更に、重量0 /0で、 Ca:0.0005〜0.005%, Mg:0.0005〜0.01 %、及び REM:0.0005-0.01%よりなる群力 選択される 1種以上を含む請求項 11〜 17の 、ずれか一項に記載の超高強度薄鋼板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200680049968.7A CN101351570B (zh) | 2005-12-28 | 2006-12-28 | 超高强度薄钢板 |
US12/159,400 US7887648B2 (en) | 2005-12-28 | 2006-12-28 | Ultrahigh-strength thin steel sheet |
EP06843656A EP1975266B1 (en) | 2005-12-28 | 2006-12-28 | Ultrahigh-strength steel sheet |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-379188 | 2005-12-28 | ||
JP2005379188 | 2005-12-28 | ||
JP2006310359A JP4174592B2 (ja) | 2005-12-28 | 2006-11-16 | 超高強度薄鋼板 |
JP2006-310359 | 2006-11-16 | ||
JP2006-310458 | 2006-11-16 | ||
JP2006310458A JP4174593B2 (ja) | 2006-11-16 | 2006-11-16 | 超高強度薄鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007077933A1 true WO2007077933A1 (ja) | 2007-07-12 |
Family
ID=38228282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/326278 WO2007077933A1 (ja) | 2005-12-28 | 2006-12-28 | 超高強度薄鋼板 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7887648B2 (ja) |
EP (1) | EP1975266B1 (ja) |
KR (1) | KR100990772B1 (ja) |
CN (1) | CN101351570B (ja) |
WO (1) | WO2007077933A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534403A (zh) * | 2010-12-17 | 2012-07-04 | 鞍钢股份有限公司 | 一种贝氏体热处理钢轨及其热处理方法 |
WO2012153016A1 (fr) | 2011-05-10 | 2012-11-15 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier a hautes caracteristiques mecaniques de resistance, de ductilite et de formabilite, procede de fabrication et utilisation de telles tôles |
KR101362021B1 (ko) * | 2009-05-29 | 2014-02-11 | 뵈스트알파인 스탈 게엠베하 | 내수소취화 특성이 우수한 고강도 강판 |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8078418B2 (en) * | 2005-01-27 | 2011-12-13 | Electro Industries/Gauge Tech | Intelligent electronic device and method thereof |
JP4164537B2 (ja) * | 2006-12-11 | 2008-10-15 | 株式会社神戸製鋼所 | 高強度薄鋼板 |
JP5394709B2 (ja) * | 2008-11-28 | 2014-01-22 | 株式会社神戸製鋼所 | 耐水素脆化特性および加工性に優れた超高強度鋼板 |
US8460800B2 (en) * | 2009-03-31 | 2013-06-11 | Kobe Steel, Ltd. | High-strength cold-rolled steel sheet excellent in bending workability |
FR2947566B1 (fr) * | 2009-07-03 | 2011-12-16 | Snecma | Procede d'elaboration d'un acier martensitique a durcissement mixte |
JP5423191B2 (ja) * | 2009-07-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5883211B2 (ja) * | 2010-01-29 | 2016-03-09 | 株式会社神戸製鋼所 | 加工性に優れた高強度冷延鋼板およびその製造方法 |
JP5671359B2 (ja) | 2010-03-24 | 2015-02-18 | 株式会社神戸製鋼所 | 温間加工性に優れた高強度鋼板 |
JP5771034B2 (ja) * | 2010-03-29 | 2015-08-26 | 株式会社神戸製鋼所 | 加工性に優れた超高強度鋼板、およびその製造方法 |
JP5466576B2 (ja) * | 2010-05-24 | 2014-04-09 | 株式会社神戸製鋼所 | 曲げ加工性に優れた高強度冷延鋼板 |
EP2627790B1 (en) * | 2010-10-12 | 2014-10-08 | Tata Steel IJmuiden BV | Method of hot forming a steel blank and the hot formed part |
JP5662902B2 (ja) | 2010-11-18 | 2015-02-04 | 株式会社神戸製鋼所 | 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 |
JP5667472B2 (ja) | 2011-03-02 | 2015-02-12 | 株式会社神戸製鋼所 | 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 |
KR101604963B1 (ko) * | 2011-03-31 | 2016-03-18 | 가부시키가이샤 고베 세이코쇼 | 가공성이 우수한 고강도 강판 및 그의 제조 방법 |
JP5825119B2 (ja) | 2011-04-25 | 2015-12-02 | Jfeスチール株式会社 | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
JP5636347B2 (ja) | 2011-08-17 | 2014-12-03 | 株式会社神戸製鋼所 | 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法 |
CN102952998B (zh) * | 2011-08-19 | 2015-05-06 | 鞍钢股份有限公司 | 一种800MPa级热轧相变诱导塑性钢板及其制造方法 |
RU2480532C1 (ru) * | 2011-11-07 | 2013-04-27 | Открытое акционерное общество "Металлургический завод имени А.К. Серова" | Трубная заготовка из легированной стали |
RU2479663C1 (ru) * | 2011-11-07 | 2013-04-20 | Открытое акционерное общество "Металлургический завод имени А.К. Серова" | Трубная заготовка из легированной стали |
MX363411B (es) * | 2012-01-11 | 2019-03-22 | Kobe Steel Ltd | Acero para uso en pernos, pernos, y metodos para fabricar pernos. |
JP5860308B2 (ja) | 2012-02-29 | 2016-02-16 | 株式会社神戸製鋼所 | 温間成形性に優れた高強度鋼板およびその製造方法 |
WO2013144377A1 (en) | 2012-03-30 | 2013-10-03 | Voestalpine Stahl Gmbh | High strength cold rolled steel sheet and method of producing such steel sheet |
ES2746285T5 (es) | 2012-03-30 | 2022-12-19 | Voestalpine Stahl Gmbh | Lámina de acero de alta resistencia laminada en frío y procedimiento para producir dicha lámina de acero |
US10106874B2 (en) | 2012-03-30 | 2018-10-23 | Voestalpine Stahl Gmbh | High strength cold rolled steel sheet |
JP5860354B2 (ja) | 2012-07-12 | 2016-02-16 | 株式会社神戸製鋼所 | 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
EP2690184B1 (de) * | 2012-07-27 | 2020-09-02 | ThyssenKrupp Steel Europe AG | Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung |
CN104704136B (zh) * | 2012-09-27 | 2016-08-24 | 新日铁住金株式会社 | 热轧钢板及其制造方法 |
EP2840159B8 (de) | 2013-08-22 | 2017-07-19 | ThyssenKrupp Steel Europe AG | Verfahren zum Herstellen eines Stahlbauteils |
US20150176109A1 (en) * | 2013-12-20 | 2015-06-25 | Crs Holdings, Inc. | High Strength Steel Alloy and Strip and Sheet Product Made Therefrom |
WO2016001706A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability and obtained sheet |
WO2016001710A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength coated steel having improved strength and ductility and obtained sheet |
WO2016001700A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength, ductility and formability |
WO2016001702A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength coated steel sheet having improved strength, ductility and formability |
CN104357759A (zh) * | 2014-11-04 | 2015-02-18 | 武汉钢铁(集团)公司 | 一种抗拉强度≥1500MPa的输电铁塔用角钢 |
KR101676128B1 (ko) * | 2014-12-18 | 2016-11-15 | 주식회사 포스코 | 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법 |
EP3262205A1 (en) * | 2015-02-25 | 2018-01-03 | ArcelorMittal | Post annealed high tensile strength coated steel sheet having improved yield strength and hole expansion |
EP3315626B1 (en) * | 2015-06-29 | 2020-12-23 | Nippon Steel Corporation | Bolt |
SE539519C2 (en) | 2015-12-21 | 2017-10-03 | High strength galvannealed steel sheet and method of producing such steel sheet | |
BR112018071668A2 (pt) | 2016-07-15 | 2019-02-19 | Nippon Steel & Sumitomo Metal Corporation | chapa de aço galvanizada por imersão a quente |
CN106244888A (zh) * | 2016-08-15 | 2016-12-21 | 合肥万向钱潮汽车零部件有限公司 | 一种汽车花键轴 |
JP6187729B1 (ja) * | 2017-01-17 | 2017-08-30 | 新日鐵住金株式会社 | ホットスタンプ用鋼板 |
EP3550050B1 (en) * | 2017-02-10 | 2021-07-28 | JFE Steel Corporation | High strength galvanized steel sheet and production method therefor |
CN107457407B (zh) * | 2017-07-21 | 2019-06-04 | 湖南众鑫新材料科技股份有限公司 | 一种氮化钒铁的破碎方法 |
JP7333786B2 (ja) * | 2018-03-30 | 2023-08-25 | クリーブランド-クリフス スティール プロパティーズ、インク. | 低合金第3世代先進高張力鋼および製造プロセス |
TW201945554A (zh) * | 2018-04-23 | 2019-12-01 | 日商日本製鐵股份有限公司 | 鋼構件及其製造方法 |
JP6631765B1 (ja) | 2018-05-01 | 2020-01-15 | 日本製鉄株式会社 | 亜鉛系めっき鋼板及びその製造方法 |
US11685963B2 (en) | 2018-05-01 | 2023-06-27 | Nippon Steel Corporation | Zinc-plated steel sheet and manufacturing method thereof |
JP2019196918A (ja) * | 2018-05-07 | 2019-11-14 | 日本電信電話株式会社 | 鋼材破断起点推定方法、鋼材破断起点推定装置及び鋼材破断起点推定プログラム |
KR102513331B1 (ko) * | 2018-07-31 | 2023-03-22 | 제이에프이 스틸 가부시키가이샤 | 고강도 열연 도금 강판 |
KR102109271B1 (ko) | 2018-10-01 | 2020-05-11 | 주식회사 포스코 | 표면 품질이 우수하고, 재질편차가 적은 초고강도 열연강판 및 그 제조방법 |
MX2021004413A (es) * | 2018-10-18 | 2021-07-06 | Jfe Steel Corp | Lamina de acero y metodo para la produccion de la misma. |
EP3867417A1 (en) * | 2018-10-19 | 2021-08-25 | Tata Steel Nederland Technology B.V. | Hot rolled steel sheet with ultra-high strength and improved formability and method for producing the same |
KR102164108B1 (ko) | 2018-11-26 | 2020-10-12 | 주식회사 포스코 | 형상 품질 및 굽힘성이 우수한 초고강도 열연강판 및 그 제조방법 |
WO2020162561A1 (ja) | 2019-02-06 | 2020-08-13 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
JP6979636B1 (ja) * | 2020-04-20 | 2021-12-15 | パナソニックIpマネジメント株式会社 | 圧縮装置 |
CN112342469B (zh) * | 2020-10-30 | 2022-06-14 | 钢铁研究总院 | 一种高强韧石油吊环用钢及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004308002A (ja) * | 2003-03-26 | 2004-11-04 | Kobe Steel Ltd | 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法 |
JP2004332099A (ja) * | 2003-04-14 | 2004-11-25 | Nippon Steel Corp | 耐水素脆化、溶接性、穴拡げ性および延性に優れた高強度薄鋼板およびその製造方法 |
JP2005097725A (ja) * | 2003-09-05 | 2005-04-14 | Nippon Steel Corp | 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法 |
JP2005220440A (ja) * | 2004-01-09 | 2005-08-18 | Kobe Steel Ltd | 耐水素脆化特性に優れた超高強度鋼板及びその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2278841C (en) * | 1997-01-29 | 2007-05-01 | Nippon Steel Corporation | High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same |
JP3320014B2 (ja) * | 1997-06-16 | 2002-09-03 | 川崎製鉄株式会社 | 耐衝撃特性に優れた高強度高加工性冷延鋼板 |
JP3172505B2 (ja) * | 1998-03-12 | 2001-06-04 | 株式会社神戸製鋼所 | 成形性に優れた高強度熱延鋼板 |
JPH11293383A (ja) | 1998-04-09 | 1999-10-26 | Nippon Steel Corp | 水素性欠陥の少ない厚鋼板およびその製造方法 |
EP1365037B1 (en) | 2001-01-31 | 2008-04-02 | Kabushiki Kaisha Kobe Seiko Sho | High strength steel sheet having excellent formability and method for production thereof |
JP3924159B2 (ja) | 2001-11-28 | 2007-06-06 | 新日本製鐵株式会社 | 成形加工後の耐遅れ破壊性に優れた高強度薄鋼板及びその製造方法並びに高強度薄鋼板により作成された自動車用強度部品 |
JP2004169180A (ja) | 2002-10-31 | 2004-06-17 | Jfe Steel Kk | 高張力冷延鋼板およびその製造方法 |
JP4068950B2 (ja) | 2002-12-06 | 2008-03-26 | 株式会社神戸製鋼所 | 温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、温間加工方法、及び温間加工された高強度部材または高強度部品 |
EP1553202A1 (en) * | 2004-01-09 | 2005-07-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same |
EP1676932B1 (en) * | 2004-12-28 | 2015-10-21 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength thin steel sheet having high hydrogen embrittlement resisting property |
CA2531616A1 (en) * | 2004-12-28 | 2006-06-28 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability |
JP5072058B2 (ja) * | 2005-01-28 | 2012-11-14 | 株式会社神戸製鋼所 | 耐水素脆化特性に優れた高強度ボルト |
KR100764253B1 (ko) * | 2005-01-28 | 2007-10-05 | 가부시키가이샤 고베 세이코쇼 | 내수소취화 특성이 우수한 고강도 스프링용 강 |
-
2006
- 2006-12-28 WO PCT/JP2006/326278 patent/WO2007077933A1/ja active Application Filing
- 2006-12-28 CN CN200680049968.7A patent/CN101351570B/zh active Active
- 2006-12-28 EP EP06843656A patent/EP1975266B1/en active Active
- 2006-12-28 KR KR1020087015626A patent/KR100990772B1/ko active Active
- 2006-12-28 US US12/159,400 patent/US7887648B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004308002A (ja) * | 2003-03-26 | 2004-11-04 | Kobe Steel Ltd | 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法 |
JP2004332099A (ja) * | 2003-04-14 | 2004-11-25 | Nippon Steel Corp | 耐水素脆化、溶接性、穴拡げ性および延性に優れた高強度薄鋼板およびその製造方法 |
JP2005097725A (ja) * | 2003-09-05 | 2005-04-14 | Nippon Steel Corp | 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法 |
JP2005220440A (ja) * | 2004-01-09 | 2005-08-18 | Kobe Steel Ltd | 耐水素脆化特性に優れた超高強度鋼板及びその製造方法 |
Non-Patent Citations (2)
Title |
---|
"New Development in Elucidation of Delayed Fracture", January 1997, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 111 - 120 |
NISSIN STEEL TECHNICAL REPORT, December 1980 (1980-12-01), pages 1 - 10 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101362021B1 (ko) * | 2009-05-29 | 2014-02-11 | 뵈스트알파인 스탈 게엠베하 | 내수소취화 특성이 우수한 고강도 강판 |
US9464337B2 (en) | 2009-05-29 | 2016-10-11 | Kabushiki Kaisha Kobe Seiko Sho | High strength steel sheet having excellent hydrogen embrittlement resistance |
CN102534403A (zh) * | 2010-12-17 | 2012-07-04 | 鞍钢股份有限公司 | 一种贝氏体热处理钢轨及其热处理方法 |
WO2012153016A1 (fr) | 2011-05-10 | 2012-11-15 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier a hautes caracteristiques mecaniques de resistance, de ductilite et de formabilite, procede de fabrication et utilisation de telles tôles |
Also Published As
Publication number | Publication date |
---|---|
CN101351570A (zh) | 2009-01-21 |
KR20080073763A (ko) | 2008-08-11 |
US20090238713A1 (en) | 2009-09-24 |
EP1975266A4 (en) | 2010-11-03 |
EP1975266B1 (en) | 2012-07-11 |
US7887648B2 (en) | 2011-02-15 |
CN101351570B (zh) | 2013-01-30 |
KR100990772B1 (ko) | 2010-10-29 |
EP1975266A1 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007077933A1 (ja) | 超高強度薄鋼板 | |
JP4174592B2 (ja) | 超高強度薄鋼板 | |
JP4164537B2 (ja) | 高強度薄鋼板 | |
KR100723092B1 (ko) | 내수소취화 특성이 뛰어난 초고강도 박 강판 | |
KR101604963B1 (ko) | 가공성이 우수한 고강도 강판 및 그의 제조 방법 | |
US9738956B2 (en) | Ultrahigh-strength steel sheet with excellent workability, and manufacturing method thereof | |
KR100886052B1 (ko) | 내수소취화 특성 및 가공성이 우수한 초고강도 박강판 | |
WO2018026013A1 (ja) | 鋼板及びめっき鋼板 | |
JP5025211B2 (ja) | 打抜き加工用の超高強度薄鋼板 | |
WO2018123356A1 (ja) | 高強度鋼板および高強度電気亜鉛めっき鋼板 | |
JP5503346B2 (ja) | 耐水素脆性に優れた超高強度薄鋼板 | |
JP5213643B2 (ja) | 延性および穴拡げ性に優れた高強度冷延鋼板および高強度合金化溶融亜鉛めっき鋼板 | |
JP4684002B2 (ja) | 耐水素脆化特性に優れた超高強度薄鋼板 | |
US10822672B2 (en) | Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor | |
KR20220108810A (ko) | 열연강판 및 그 제조 방법 | |
KR102170060B1 (ko) | 고항복비형 고강도 아연 도금 강판 및 그의 제조 방법 | |
CN112867807A (zh) | 高延展性高强度电镀锌系钢板及其制造方法 | |
JP5374059B2 (ja) | 加工性および耐食性に優れた超高強度薄鋼板 | |
JP4174593B2 (ja) | 超高強度薄鋼板 | |
JP4868771B2 (ja) | 耐水素脆化特性に優れた超高強度薄鋼板 | |
JP4553372B2 (ja) | 耐水素脆化特性に優れた超高強度薄鋼板 | |
JP4684003B2 (ja) | 耐水素脆化特性及び加工性に優れた超高強度薄鋼板 | |
JP4551815B2 (ja) | 耐水素脆化特性及び加工性に優れた超高強度薄鋼板 | |
JP4551816B2 (ja) | 耐水素脆化特性及び加工性に優れた超高強度薄鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680049968.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006843656 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12159400 Country of ref document: US |