[go: up one dir, main page]

WO2007073656A1 - Préparation microbienne pour le traitement d'eaux d'égout contenant une huile épaisse et procédé de préparation de celle-ci - Google Patents

Préparation microbienne pour le traitement d'eaux d'égout contenant une huile épaisse et procédé de préparation de celle-ci Download PDF

Info

Publication number
WO2007073656A1
WO2007073656A1 PCT/CN2006/002675 CN2006002675W WO2007073656A1 WO 2007073656 A1 WO2007073656 A1 WO 2007073656A1 CN 2006002675 W CN2006002675 W CN 2006002675W WO 2007073656 A1 WO2007073656 A1 WO 2007073656A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacillus
culture
microbial
heavy oil
microbial agent
Prior art date
Application number
PCT/CN2006/002675
Other languages
English (en)
French (fr)
Inventor
Shuhai Guo
Fengmei Li
Jiuhui Qu
Xilin Liu
Wanting Liu
Original Assignee
Shenyang Institute Of Applied Ecology, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute Of Applied Ecology, Chinese Academy Of Sciences filed Critical Shenyang Institute Of Applied Ecology, Chinese Academy Of Sciences
Publication of WO2007073656A1 publication Critical patent/WO2007073656A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/343Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of grease, fat, oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously

Definitions

  • the invention relates to a biological treatment technology for oil production sewage, in particular to a composite microbial agent for treating heavy oil sewage and a preparation method thereof.
  • the essential feature of heavy oil wastewater is that it contains relatively high gum and asphaltenes. Due to the particularity of the heavy oil mining process, a large number of polymer chemicals are added in the production process. These pollutants have large molecular weight and poor biodegradability. It makes the treatment of sewage more difficult. Microorganisms dominate the various forms of intermittent, combined biological treatment of wastewater. The biological treatment efficiency of heavy oil wastewater depends mainly on the degradation and conversion of pollutants in wastewater.
  • the object of the present invention is to provide a composite microbial agent for treating heavy oil sewage and a preparation method thereof, wherein the microbial agent has strong synergistic effect, can improve the degradation efficiency of the refractory pollutant in the treatment of heavy oil wastewater, and realize the orientation of the pollutant. Conversion, shortening the processing time, can well solve the problem that heavy oil wastewater can not meet the standard discharge.
  • the technical scheme of the invention is: Considering that the heavy oil sewage can be effectively treated, the degradation efficiency of the pollutants in the sewage is improved, the directional conversion of the pollutants is realized, and the problem that the heavy oil sewage cannot meet the standard discharge is solved, and the invention is mainly good.
  • the composition of the oxygen bacteria, the facultative bacteria and the anaerobic bacteria, the content of each of the microbial agents can be adjusted and proportioned according to the nature of the pollutants in the heavy oil sewage.
  • the microbial agent composition is: 5 ⁇ 10% Pseudomonas aeruginosa, 10-15% Bacillus subtilis, 5 ⁇ 15% Bacillus licheniformis, 10 ⁇ 15% F.
  • Acid bacillus 10 ⁇ 20% liquefied bacillus, 5-10% Bacillus circulans, 5 ⁇ 10% bacillus brevis, 5 ⁇ 10% bacillus, 5 ⁇ 10%, and 10 ⁇ 15% hot Oxygen bacterium; the bacterium of the genus Arthrobacter, the genus Mycobacterium for the production of biosurfactant bacteria; Pseudomonas aeruginosa, Bacillus subtilis, Bacillus licheniformis, Propionibacterium freudenii, Bacillus liquefaciens, ring Bacillus, B. wilfordii, and hot soil anaerobic bacteria are petroleum-degrading bacteria.
  • the strain is connected to the slant medium in the prepared test tube by a conventional method, and cultured separately, and cultured at 25 to 30 ° C for 3 to 7 days to obtain a slant culture. , wherein the hot soil anaerobic culture is carried out under strict anaerobic conditions;
  • step 2 fermentation fermentation, to obtain microbial fermentation broth
  • the biosurfactant-producing medium component is (g 1 ): ammonium sulfate 5.0 g, glucose 2.0 g, potassium chloride 1.10 g, sodium chloride 1.10 g, ferrous sulfate 0.028 g, potassium dihydrogen phosphate 1.5 g, Potassium hydrogen phosphate 1.5g, magnesium sulfate 0.5g, yeast extract 0.5g, trace element solution 5.0ml, diesel 20.0ml, pH 7 ⁇ 7.5.
  • the bacterial medium component is (gL-4: beef grit 5 g, peptone 10 g, sodium chloride 5 g, pH 7-7.5 ; the slant medium is a bacterial culture medium.
  • the species of Mycobacterium sphaeroides and Mycobacterium sphaeroides in the composite microbial agent of the present invention belong to a biosurfactant-producing strain which uses petroleum hydrocarbons as a matrix to synthesize glycolipids and surface active proteins, etc., which are metabolites.
  • the anaerobic and facultative bacteria such as: hot soil anaerobic bacteria, Bacillus licheniformis, Propionibacterium faecalis and Bacillus circulans convert macromolecules such as petroleum hydrocarbons into small molecules in an anaerobic or anoxic environment to promote the degradation and conversion of pollutants;
  • the petroleum hydrocarbon degradation Mainly by the aerobic organisms such as Pseudomonas aeruginosa, Bacillus subtilis, Bacillus liquefaciens and B.
  • the invention can effectively treat heavy oil sewage in a low temperature environment of 10 ⁇ 15 °C.
  • the composite microbial agent of the present invention is put into a treatment system, and petroleum hydrocarbon organic pollutants are used as a carbon source to achieve the purpose of waste waste disposal and high treatment efficiency, and no secondary pollution, and the effluent reaches Emission Standards.
  • the invention has wide application and is also applicable to the treatment of three-sewage sewage and heavy oil sewage in other oil fields.
  • Fig. 1 is a graph showing changes in the content of stone sleeve hydrocarbons and their family components in the water after the addition of the microbial agent of the present invention. detailed description
  • self-dispensing oily wastewater is used as (gL- 1 ): crude oil 10g, ammonium sulfate 0.5g, sodium nitrate 0.5g, calcium chloride 0.02g, magnesium sulfate 0.2g, potassium dihydrogen phosphate 1.0g, sodium dihydrogen phosphate 1.0g, adjusted pH 7.5, indoor petroleum hydrocarbon degradation experiments.
  • crude oil 10g ammonium sulfate 0.5g, sodium nitrate 0.5g, calcium chloride 0.02g, magnesium sulfate 0.2g, potassium dihydrogen phosphate 1.0g, sodium dihydrogen phosphate 1.0g, adjusted pH 7.5, indoor petroleum hydrocarbon degradation experiments.
  • the bacterial agent is a bacterial strain, specifically: 10% Pseudomonas aeruginosa iPseudomonas aerugi should be cd, 15% Bacillus subtilis), 8% Bacillus licheniformis (Sfld// s licheniformis), 12% Freunds Propionibacterium freudennreichii, 14% Aureobacterium liquefaciens, 5% Bacillus circulans C7 CM/O 3 ⁇ 4S), 10% Bacillus breviscapus (Cwrto ⁇ cten'ww? flaccumfaciens) 10% Arthrobacter bacterium Arthrobacter Glopiformis, 6% of Clavibacter xylO and 10% hot soil anaerobic bacteria iAnaerobaculum thermoterrenum
  • the strain is inoculated into the prepared test tube in a slant medium (the bacterial medium is used in the present embodiment) by the conventional method, and the slant culture is cultured at 28 ° C. Day, in which hot earth anaerobic culture is carried out under strict anaerobic conditions;
  • Shake flask culture The slant culture is made into a bacterial suspension with sterile water, and the bacterium of Mycobacterium sphaeroides and Mycobacterium sphaeroides is inoculated into a biosurfactant-producing medium for 5 days at 28 , respectively.
  • Bacillus subtilis, Bacillus subtilis, Bacillus licheniformis, Propionibacterium faecalis, A. liquefaciens, Bacillus circulans, Bacillus brevis, and hot soil anaerobic bacteria were inoculated into bacterial culture medium and cultured at 28 ° C. Days, hot soil anaerobic cultures are carried out under strict anaerobic conditions.
  • step 2) fermentation culture, to obtain microbial fermentation broth
  • the expanded microbial fermentation broth is mixed according to the wet weight ratio of the microorganisms to obtain 150.0 g of the microbial inoculum, and 30.0 g of the straw powder is added as a microbial carrier.
  • the biosurfactant-producing medium component is (g L - : ammonium sulfate 5.0 g , glucose 2.0 g, potassium chloride l. lg, sodium chloride l. lg, ferrous sulfate 0.028 g, potassium dihydrogen phosphate 1.5 g, 1.5 g of dipotassium hydrogen phosphate, 0.5 g of magnesium sulfate, 0.5 g of yeast extract, 5 ml of trace element solution, 20 ml of diesel oil, and pH 7.
  • the bacterial medium component was (g L' 1 ): beef grit 5 g, peptone 10 g, sodium chloride 5 g, pH 7.2.
  • the self-contained oily wastewater was sterilized at 1 atmosphere for 30 minutes and then added to the reactor.
  • the reactor was 21 cm high and the total volume was 15 L.
  • a cylindrical device made of PVC material was used, and a ventilating stirring device was arranged in the reactor.
  • the inoculum is 1% by weight of the oily sewage, culture at 28 °C, and continuously agitate for 8 hours per day for the first 7 days of culture; after the culture For 8 days, continuous ventilation for 16 hours per day. Samples were taken on days 3, 6, 9, 12 and 15 of the culture to determine the total amount of petroleum hydrocarbons in the water and the changes in the composition of each group.
  • the invention fully utilizes the different characteristics of each strain, and the biosurfactant-producing bacteria can increase the solubility of petroleum hydrocarbons in water, making petroleum hydrocarbons more easily contact with microorganisms, and being boring.
  • Oxygen bacteria, facultative bacteria and aerobic bacteria have large degradation ability, which can promote the degradation and transformation of pollution i. Suitable for biological treatment of heavy oil sewage. From the measurement results: After the addition of the microbial agent, the content of petroleum hydrocarbons in the wastewater is reduced, and after 15 days of treatment, the removal rate of total hydrocarbons reaches 57.25%; under the action of the microorganism of the present invention, the components of each group are also processed. Great changes have occurred.
  • the content of aromatics first rises and then decreases.
  • the content of colloid and asphaltenes first decreases and then rises, indicating that under the action of microorganisms, some macromolecular substances in pollutants are converted into small molecular substances, which promotes wastewater. Degradation and conversion of pollutants in the process, thereby shortening the sewage treatment time, as shown in Figure 1.
  • Embodiment 1 The difference from Embodiment 1 is that:
  • the experimental water is heavy oil produced in Liaohe Oilfield with complex composition.
  • the organic pollutants are mainly alkane, aromatic hydrocarbon, organic acid and petroleum colloid, and the content of unsaturated hydrocarbons and non-hydrocarbons is low.
  • the proportion of substances below 12 carbon in saturated hydrocarbons is not high, the ratio of high carbon chain and aromatic substances is high, and the sewage is difficult to degrade.
  • the average value of CODcr is around 300mg/L.
  • the bacterial agent is a bacterial strain, specifically: 8% Pseudomonas aeruginosa Ps domonas aeruginosa 12% Bacillus subtilis, 5% Bacillus licheniformis ( ⁇ zc // ⁇ licheniformis), 10% Propionibacterium faecalis (Proionibacterium freudennheimii), 20% Aureobacterium liquefaciens, 10% Bacillus licheniformis ( ⁇ cz7/u?
  • Shake flask culture The slant culture is made into a bacterial suspension with sterile water, and the bacterium of Mycobacterium sphaeroides and Mycobacterium sphaeroides is inoculated into a biosurfactant-producing medium for 30 days at 30 , respectively.
  • Bacillus, Bacillus subtilis, Bacillus licheniformis, Propionibacterium faecalis, Bacillus licheniformis, Bacillus circulans, Bacillus brevis, and hot soil anaerobic stalks were inoculated into bacterial culture medium at 30 ° C After 3 days of culture, the hot soil anaerobic culture was carried out under strict anaerobic conditions.
  • step 2) fermentation culture, to obtain microbial fermentation broth
  • the expanded microbial fermentation broth is mixed according to the wet weight ratio of the microorganisms to obtain 5000 g of the microbial inoculum, and 1500 g of straw powder is added as a microbial carrier.
  • the prepared microbial agent is added to the heavy oil sewage biological treatment system, and the dosage is 1% of the weight of the oily sewage.
  • Gas chromatography-spectroscopy (GC / MS) was used to analyze the changes of pollutants after anaerobic treatment before and after the addition of the fungicide of the present invention.
  • Ketones 3 3 Ketones 0.389 0.11 Esters 4 4 Esters 1.467 2.85 Acids 3 3 Acids 0.195 0.16 Alcohols 4 5 Alcohols 0.619 0.19 Terpenoids 1 1 Anthracene 0.260 0.02 Organics containing CH 35 24 CH organics 23.06 2.21 @contentmgL" 1
  • Embodiment 1 The difference from Embodiment 1 is that:
  • the experimental water is heavy oil sewage of Liaohe Oilfield Wastewater Treatment Plant.
  • the water quality of the sewage is alkaline.
  • the CODcr concentration is 200 ⁇ 220 ⁇ 3 ⁇ 4 ⁇ BOD 5 is very low, BOD 5 /CODcr is less than 0.10, basically no Biochemical.
  • Organic polymers such as petroleum and emulsifiers and demulsifiers are the main pollutants and are also the main refractory pollutants.
  • the bacterial agent is a bacterial strain, specifically: 5% Pseudomonas aeruginosa, 10% Bacillus subtilis, 15% Bacillus licheniformis (SadZ/z ⁇ //c/2e; or ), 15% Propionibacterium fi'eudennreichii, -10% Aureobacterium liquefaciens, 9% Bacillus circularis 9% Bacillus subtilis i Curtobacterium flaccumfaciens, 9% spherical section Zr zra ⁇ cter globiformis ), 5% Clavibacter xyli and 13% hot soil anaerobic bacteria ⁇ Anaerobaculum thermoterrenum ) a
  • Shake flask culture The slant culture is made into a bacterial suspension with sterile water, and the bacterium of Mycobacterium sphaeroides and Mycobacterium sphaeroides is inoculated into a biosurfactant-producing medium for 7 days at 25 ° C, respectively. Monocytobacteria, Bacillus subtilis, Bacillus licheniformis, Propionibacterium faecalis, Bacillus licheniformis, Bacillus circulans, B. faecalis, hot soil anaerobic stalks inoculated into bacterial culture medium, respectively, at 25 ° C culture for 7 days, hot soil anaerobic bacteria culture in Performed under strict anaerobic conditions.
  • step 2) fermentation culture, to obtain microbial fermentation broth
  • the expanded microbial fermentation broth is mixed according to the wet weight ratio of the microorganisms, and 8000 g of the microbial inoculum is mixed, and 2000 g of straw powder is added as a microbial carrier.
  • the prepared microbial agent was added to a bioreactor for heavy oil sewage treatment, and the dosage was 1% by weight of the oily sewage, and the hydraulic retention time was 24 hours.
  • Gas chromatography-mass spectrometry (GC/MS) was used to analyze the changes of pollutants in the anaerobic reactor before and after the addition of the present invention.
  • concentration of CODcr in the influent and effluent was determined by potassium dichromate method.
  • the anaerobic treatment effluent CODcr concentration is Schedule 2 is the analysis results of the main organic pollutants before and after biological treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

一种处理稠油污水的微生物菌剂及制备方法 技术领域
本发明涉及采油污水的生物治理技术,具体地说是一种处理稠油污水的复合型微生 物菌剂及制备方法。
背景技术
随着石油工业的发展, 我国大部分油田都己进入高含水稠油或超稠油热采阶段, 原 油采出液中含水率高达 80%~90%以上。关于油田采出水的处理, 国内外已有不少报道, 对稠油污水的处理大都是经深度处理后回用于锅炉做循环水。稠油污水处理一般包括油 水分离、混凝沉淀、气浮等工艺,其最大弊端是无法满足达标排放(主要是 COD达标)。 国外的稠油污水经深度处理后部分回用于锅炉作循环水, 国内油田原油含水率逐渐升 高, 回用量增加不大, 导致稠油污水外排现象严重, 因此外排达标成为国内各大油田污 水处理工作的关键环节。稠油污水的本质特征是含有比较高的胶质与沥青质, 并且由于 稠油开采工艺的特殊性,在生产工程中投加了大量的高分子药剂,这些污染物分子量大, 生物降解性差, 使污水的处理难度加大。在废水的各种形式的间歇、 组合生物处理工艺 中, 微生物占据着主导地位, 稠油污水的生物处理效率主要取决于废水中污染物的降解 和转化。但因以往采用的膜分离活性污泥、颗粒化活性污泥等技术采用的是土著微生物, 不能提高污水降解和转化效率,进而不能有效的去除稠油污水中的污染物和缩短处理时 间, 稠油污水达标排放还是个难题。
发明内容
本发明目的是提供一种处理稠油污水复合型微生物菌剂及其制备方法,其微生物菌 剂协同作用强, 在稠油废水处理中能提高难降解污染物的降解效率, 实现污染物的定向 转化, 缩短处理时间, 可很好地解决稠油污水无法达标排放的难题。
本发明的技术方案是: 在考虑能有效地对稠油污水进行处理, 提高污水中污染物的 降解效率, 实现污染物的定向转化, 解决稠油污水无法达标排放的难题, 本发明主要由 好氧菌、兼性菌及厌氧菌组成, 所述微生物菌剂中的各菌中含量可根据稠油污水中污染 物性质进行调节、 配比。
按重量百分比计(湿重),所述微生物菌剂成份为: 5~10%铜绿假单孢杆菌、 10-15% 枯草芽孢杆菌、 5~15%地衣芽孢杆菌、 10~15%弗氏丙酸杆菌、 10~20%液化金杆菌、 5-10% 环状芽孢杆菌、 5~10%萎蔫短小杆菌、 5~10%球形节杆菌、 5~10%木棍杆菌、 10~15%热 土厌氧棒菌; 所述球形节杆菌、 木棍杆菌为产生生物表面活性剂菌; 铜绿假单孢杆菌、 枯草芽抱一杆菌、地衣芽孢杆菌、 弗氏丙酸杆菌、 液化金杆菌、.环状芽孢杆菌、 萎蔫短小 杆菌、 热土厌氧棒菌为石油降解菌。
微生物菌剂制备方法具体操作步骤为:
( 1 )菌种活化: 采用所述菌种, 用常规方法将菌种接到准备好的试管中的斜面培 养基上, 分别培养, 在 25~30°C培养 3~7天, 得斜面培养物, 其中热土厌氧棒菌培养在 严格厌氧环境下进行;
(2)摇瓶培养: 将上述斜面培养物用无菌水制成菌悬液, 球形节杆菌、 木棍杆菌 接种到产生生物表面活性剂培养基中分别培养, 在 25~30°C培养 3 天; 铜绿假单抱杆 菌、 枯草芽孢杆菌、 地衣芽孢杆菌、 弗氏丙酸杆菌、 液化金杆菌、 环状芽孢杆菌、 萎蔫 短小杆菌和热土厌氧棒菌接种到细菌培养基中分别培养, 在 25~30°C培养 3~7天; 热土 厌氧棒菌培养在严格厌氧环境下进行。
(3 )扩繁: 按步骤 2) 的方法进行发酵培养, 得微生物发酵液;
-■ (4) 混合: 将上述微生物发酵液按所述微生物湿重比例混合, 同时加入微生物菌 剂湿重总量 20~30%的秸秆粉作为微生物载体。
所述产生生物表面活性剂培养基成分为(g 1 ): 硫酸铵 5.0g, 葡萄糖 2.0g, 氯化钾 1.10g,氯化钠 1.10g,硫酸亚铁 0.028g,磷酸二氢钾 1.5g,磷酸氢二钾 1.5g,硫酸镁 0.5g, 酵母膏 0.5g, 微量元素液 5.0ml, 柴油 20.0ml, pH7~7.5。
所述细菌培养基成分为 (gL— 4: 牛肉膏 5 g, 蛋白胨 10 g, 氯化钠 5 g, pH7~7.5; 所述斜面培养基采用细菌培养基。
所述本发明复合型微生物菌剂中的球形节杆菌和木棍杆菌种属于产生生物表面活 性剂菌株, 它们以石油烃类物质为基质, 合成糖脂类化合物及表面活性蛋白等, 这些代 谢产物可降低石油烃与水的界面张力, 增加石油烃在水中的溶解性, 使石油烃更易与微 生物直接接触, 促进生物降解; 所述厌氧菌和兼性菌, 如: 热土厌氧棒菌、地衣芽孢杆 菌、弗氏丙酸杆菌和环状芽孢杆菌在厌氧或缺氧环境下将石油烃等大分子物质转化为小 分子物质, 促进污染物的降解和转化; 所述的石油烃类降解主要是通过好氧生物如铜绿 假单孢杆菌、 枯草芽孢杆菌、 液化金杆菌及萎蔫短小杆菌的降解作用产生细胞体、 C02 和 H20来完成的; 由于产生生物表面活性剂菌和石油降解菌共存,它们共同发挥的作用 比单独使用石油降解菌时的作用提高 20%左右; 污水中污染物成分复杂, 由于厌氧降解 菌和好氧降解菌共存, 有效的发挥了微生物之间的协同作用和共代谢作用, 提高污水的 处理效率。
本发明在低温环境 10~15°C下可有效地处理稠油污水。 使用时, 将本发明所述的复 合微生物菌剂投入到处理系统中, 以石油烃类有机污染物为碳源, 达到以废制废、 提高 处理效率的目的, 且无二次污染, 出水达到排放标准。
本发明的优点是:
( 1 ) 处理稠油污水效果明显。 采用多种菌种组合的方式, 兼顾了厌氧、 好氧和兼 性菌对稠油污水的不同作用, 可促进污水中污染物的降解和定向转化, 为后续物化处理 奠定了基础。
(2)将石油降解菌和产生表面活性剂菌有机的结合, 有效地利用了微生物能降解 脂肪族和芳香族等石油烃类化 物、在微生物细胞表面和烃接触的界面上产生生物 -表面 活性剂的特性, 增加污染物在水中的溶解性。
(3 )本发明应用广泛, 也适用于其它油田三采污水和重油污水处理。
(4) 由于本发明所述的菌种来源广泛, 从而降低了污水处理的成本; 其对稠油污 水的处理效果明显, 操作方便, 所以有着很大的实用和推广价值。
附图说明
图 1 为添加本发明微生物菌剂后自配水中石袖烃及其族组分含量的变化情况。 具体实施方式
下面结合实施例对本发明作进一步详细说明。
实施例 1
本实施例采用自配含油废水为 (gL—1 ) : 原油 10g、 硫酸铵 0.5g、 硝酸钠 0.5g、 氯化 钙 0.02g、 硫酸镁 0.2g、 磷酸二氢钾 1.0g、 磷酸二氢钠 1.0g、 调节 pH 7.5, 在室内进行 石油烃降解实验。 <· (
所述菌剂采用细菌菌株, 具体为: 10%铜绿假单孢杆菌 iPseudomonas aerugi應 cd、 15%枯草芽孢杆菌 Bacillus subtilis) , 8%地衣芽孢杆菌 (Sfld// s licheniformis), 12%弗 氏丙酸杆菌 ( Propionibacterium freudennreichii )、 14%液化金杆菌 (Aureobacterium liquefaciens) 、 5%环状芽孢杆菌 C7 CM/O ¾S)、 10%萎蔫短小杆菌 ( Cwrto ^cten'ww? flaccumfaciens ) 10%球形节杆菌 Arthrobacter globiformis 、 6%木棍杆菌 ( Clavibacter xylO和 10%热土厌氧棒菌 iAnaerobaculum thermoterrenum )
微生物菌剂制备方法具体操作步骤为 -
1 ) 菌种活化: 采用所述菌种, 用常规方法将菌种接种到准备好的试管中斜面培养 基(本实施例采用细菌培养基)上, 得斜面培养物, 在 28 °C培养 5天, 其中热土厌氧棒 菌培养在严格厌氧环境下进行;
2 )摇瓶培养: 将所述斜面培养物用无菌水制成菌悬液, 球形节杆菌、 木棍杆菌接 种到产生生物表面活性剂培养基中分别在 28 Ό培养 5天,铜绿假单孢杆菌、枯草芽孢杆 菌、 地衣芽孢杆菌、 弗氏丙酸杆菌、 液化金杆菌、 环状芽孢杆菌、 萎蔫短小杆菌、 热土 厌氧棒菌接种到细菌培养基中分别培养,在 28°C培养 5天,热土厌氧棒菌培养在严格厌 ·, 氧环境下进行。
3 )扩繁: 按步骤 2 ) 的方法进行, 发酵培养, 得微生物发酵液;
4 ) 混合: 将所述扩繁后的微生物发酵液按所述微生物湿重比例混合, 得混合微生 物菌剂 150.0g, 同时加入秸秆粉 30.0g作为微生物载体。
所述产生生物表面活性剂培养基成分为 (g L— : 硫酸铵 5.0g, 葡萄糖 2.0g, 氯化 钾 l.lg,氯化钠 l .lg,硫酸亚铁 0.028g,磷酸二氢钾 1.5g,磷酸氢二钾 1.5g,硫酸镁 0.5g, 酵母膏 0.5g, 微量元素液 5ml, 柴油 20ml, pH为 7。
所述细菌培养基成分为 (g L'1 ) : 牛肉膏 5 g, 蛋白胨 10 g, 氯化钠 5 g, pH7.2。
降解处理:
将自配含油废水在 1个大气压下灭菌 30min后加入反应器中, 反应器高 21cm, 总 容积 15L, 选用 PVC材料制作的圆柱体装置, 反应器内配有通气搅拌装置。
' 将制备好的微生物菌剂接种于自配含油废水中,一接种量为含油污水重量的 1 %, 28 °C 培养, 在培养的前 7天, 每天连续通气搅拌 8小时; 在培养的后 8天, 每天连续通气 16 小时。 分别在培养第 3、 6、 9、 12和 15天采样, 测定自配水中石油烃的总量及各族组 分的变化。
.本发明根据每种菌株的不同特点、 不同用途, 充分利用了各菌株的不同特性, 生物 表面活性剂产生菌可增大石油烃在水中的溶解性, 使石油烃更易与微生物直接接触, 厌 氧菌、兼性菌和好氧菌降解能力大,可促进污水中污染 i.的降解和转化,其协同作用强, 适用于稠油污水的生物处理。从测定结果来看: 添加微生物菌剂后, 废水中石油烃的含 量降低, 经过 15天的处理, 总烃的去除率达到 57.25%; 在本发明微生物作用下, 各族 组分在处理过程中也发生很大变化, 芳烃的含量首先升高然后降低, 胶质、 沥青质的含 量首先降低后升高, 说明在微生物的作用下, 污染物中部分大分子物质转化为了小分子 物质, 促进了废水中的污染物的降解和转化, 从而缩短了污水处理时间, 如图 1所示。
实施例 2
与实施例 1不同之处在于:
实验用水为辽河油田稠油采出水, 成份复杂, 其中有机污染物主要为烷烃、 芳烃、 有机酸和石油胶质, 不饱和烃类和非烃类物质含量较低。 饱和烃中 12碳以下物质比例 不高, 高碳链和芳香类物质比例较高, 污水难于降解, CODcr的平均值在 300mg/L左 右。
所述菌剂采用细菌菌株, 具体为: 8%铜绿假单孢杆菌 Ps domonas aeruginosa 12%枯草芽孢杆菌 Bacillus subtilis , 5%地衣芽孢杆菌 (^zc //^ licheniformis), 10%弗 氏丙酸杆菌 ( Propionibacterium freudennreichii ) 、 20%液化金杆菌 (A ureobacterium liquefaciens) 、 10%环状芽抱杆菌 (^cz7/u? c/m^/<my)、 5%萎蔫短小杆菌 (CM厂 to ^cf '讓 flaccumfaciens ) > 5%球形节杆菌 (Arthrobacter globiformis) ^ 10%木棍杆菌 iClavibacter xyli)禾口 15%热土厌氧棒菌 {Anaerobaculum thermoterrenum ) =
微生物菌剂制备方法具体操作步骤为 -
1 ) 菌种活化: 采用所述菌种, 用常规方法将菌种接到准备好的试管中斜面培养基 (同实施例 1 )上, 在 30°C培养 3天, 得斜面培养物, 其中热土厌氧棒菌培养在严格厌 氧环境下进行;
2)摇瓶培养: 将所述斜面培养物用无菌水制成菌悬液, 球形节杆菌、 木棍杆菌接 种到产生生物表面活性剂培养基中分别在 30Ό培养 3天,铜绿假单孢杆菌、枯草芽孢杆 菌、 地衣芽抱杆菌、 弗氏丙酸杆菌、 液化金杆菌、 环状芽孢杆菌、 萎蔫短小杆菌、 热土 厌氧棒菌斜面上接种到细菌培养基中分别培养,在 30°C培养 3天,热土厌氧棒菌培养在 严格厌氧环境下进行。
3 )扩繁: 按步骤 2) 的方法进行, 发酵培养, 得微生物发酵液;
4 ) 混合: 将所述扩繁后的微生物发酵液按所述微生物湿重比例混合, 得混合微生 物菌剂 5000g, 同时加入秸秆粉 1500g作为微生物载体。
降解处理:
将制备好的微生物菌剂投加于稠油污水生物处理系统中,投加量为含油污水重量的 1%。 釆用气相色谱- 谱法 (GC / MS ) 分析投加本发明菌剂前后污染物经厌氧处理后 的变化。
污水经 140~150h厌氧处理后,污染物分子量明显减小,其中 100~200部分约占 30°/。, 大于 300部分约占 40%。在成份组成上表现为醇、 醛、 酸类物质明显增多, 厌氧前测得 的胶质物质全部消失, 不饱和物质中芳烃含量比例增大, 说明厌氧处理对污染物具有一 定的转化作用, 见附表 1。 附表 1 加入本发明菌剂后在厌氧反应器内处理前后污染物变化
项目 原水 处 理 项目 原水 处理后
有机物种类数目 67 57 >C26的烃 9 8 含 C-H-O 的有机物 32 33 C-H-0的有机物 40.86 8.78
含量, mgL—1
其中:酚类 17 17 其中:酚类 37.93 5.45
酮类 3 3 酮类 0.389 0.11 酯类 4 4 酯类 1.467 2.85 酸类 3 3 酸类 0.195 0.16 醇类 4 5 醇类 0.619 0.19 醌类 1 1 醌类 0.260 0.02 含 C-H 的有机物数 35 24 C-H的有机物 23.06 2.21 @ 含量 mgL"1
其中: <C15 11 6 被检出的有机物 63.92 10.99
含量, mg 1
C16〜C25的烃 15 10 一 一 一
实施例 3
与实施例 1不同之处在于:
实验用水为辽河油田污水处理厂稠油污水, 该污水水质偏碱性, 经隔油、气浮处理 后, CODcr浓度为 200~220π¾ΐ BOD5值很低, BOD5/CODcr小于 0.10, 基本没有可 生化性。 石油类和乳化剂、破乳剂等有机聚合物为主要污染物, 也是主要的难降解污染 物。
所述菌剂采用细菌菌株, 具体为: 5%铜绿假单孢杆菌 (Pseudomonas aeruginosa)、 10%枯草芽孢杆菌 Bacillus subtilis、 15%地衣芽孢杆菌 (SadZ/z^ //c/2e ; or )、 15%弗 氏两酸杆菌 ( Propionibacterium fi'eudennreichii )、- 10%液化金杆菌 (Aureobacterium liquefaciens) 、 9%环状芽抱杆菌 ί Bacillus circularis e 9%萎蔫短小杆菌 i Curtobacterium flaccumfaciens )、 9%球形节杆菌 r zra^cter globiformis )、 5%木棍杆菌 ( Clavibacter xyli ) 禾口 13%热土厌氧棒菌 {Anaerobaculum thermoterrenum ) a
微生物菌剂制备方法具体操作步骤为:
1 )菌种活化: 采用所述菌种, 用常规方法将菌种接到准备好的试管中斜面培养基
(同实施例 1 )上, 在 25 'C培养 7天, 得斜面培养物, 其中热土厌氧棒菌培养在严格厌 氧环境下进行; ·
2 )摇瓶培养: 将所述斜面培养物用无菌水制成菌悬液, 球形节杆菌、 木棍杆菌接 种到产生生物表面活性剂培养基中分别在 25 °C培养 7天,铜绿假单孢杆菌、枯草芽孢杆 菌、 地衣芽孢杆菌、 弗氏丙酸杆菌、 液化金杆菌、 环状芽孢杆菌、 萎蔫短小杆菌、 热土 厌氧棒菌斜面上接种到细菌培养基中分别培养,在 25 °C培养 7天,热土厌氧棒菌培养在 严格厌氧环境下进行。
3 )扩繁: 按步骤 2) 的方法进行, 发酵培养, 得微生物发酵液;
4) 混合: 将所述扩繁后的微生物发酵液按所述微生物湿重比例混合, 得混合微生 物菌剂 8000g, 同时加入秸秆粉 2000g作为微生物载体。
降解处理:
将制备好的微生物菌剂投加于稠油污水处理的生物反应器中,投加量为含油污水重 量的 1%, 其水力停留时间为 24小时。采用气相色谱-质谱法(GC / MS)分析投加本发 明菌剂前后污染物在厌氧反应器中的变化; 采用重铬酸钾法测定进水、 出水 CODcr浓 度。
经过厌氧生物处理后, 水中大部分大分子有机物转化为小分子有机化合物, 当进水 CODcr浓度在 200~220mgL— 1时,厌氧处理出水 CODcr浓度在
Figure imgf000008_0001
附表 2是 经生物处理前后主要有机污染物分析检测结果。
附表 2生物处理前后水中主要有机污染物变化
生物处理前有机污染物 厌氧处理后水中有机污染物
比例% 分子式 分 子 比 例 分子式 分 子 比 例 分子式 分 子 量 % 量 % 量
2.51 390 13.35 C7H10O 110 2.97 C13H38 254
1.32 C18H3lN 261 4.24 C9H16 124 2.63 C21¾4 296
9.43 256 4.08 C8H120 124 1.04 C23H46 322
8.49 C22H38O2 322 2.08 C19H4o 268 2.22 C21H440 296
2.41 C19H40 254 3.61 C8H10O 122 9.01 C24¾804 390
1.42 023¾8〇7 416 3.44 C9H120 136 10.05 C24H3804 390
6.87 C15H30O3 258 1.89 C15H3o02 242 1.84 C43H88 604
1.03 C13H24O2 212 2.16 C18H38 268 1.34 C18H38 254
1.01 C21H24N206 400 2.95 C21H2204 268 1.04 C20H40O2 312
24.58 C15H280 224 14.10 C16H2204 334 2.97 C13H38 254
7.49 C18H380 270 2.47 C21H44 296 2.63 C21H44 296
3.2 C43H88 604 1.99 C19H3802 298 1.04 C23¾6 322
3.92 C29H52O2 432 2.64 C13¾8 184 2.22 Ca^O 296

Claims

权 利 要 求 书
1、 一种处理稠油污水的微生物菌剂,其特征在于:按重量百分比计,成份为: 5~10% 铜绿假单孢杆菌、 10~15%枯草芽孢杆菌、 5~15%地衣芽抱杆菌、 10~15%弗氏丙酸杆菌、 10~20%液化金杆菌、 5~10%环状芽孢杆菌、 5~10%萎蔫短小杆菌、 5~10%球形节杆菌、 5~10%木棍杆菌、 10~15%热土厌氧棒菌; 所述重量为湿重。
2、一种按照权利要求 1所述处理稠油污水的微生物菌剂制备方法, 包括菌种活化、 摇瓶培养、 扩繁、 混合四个步骤, 其特征在于具体为-
1 )菌种活化: 将铜绿假单孢杆菌、 枯草芽孢杆菌、 地衣芽孢杆菌、 弗氏丙酸杆菌、 液化金杆菌、 环状芽孢杆菌、 萎蔫短小杆菌、 热土厌氧棒菌、 球形节杆菌、 木棍杆菌菌 种接种到试管中的斜面培养基上, 在 25~30°C分别培养 3~7天, 得斜面培养物;
2)摇瓶培养: 将上述斜面培养物用无菌水制成菌悬液, 再将球形节杆菌、 木棍杆 菌接种到产生生物表面活性剂培养基中分别培养, 在 25~30°C下培养 3~7天; 铜绿假单 孢杆菌、 枯草芽抱杆菌、 地衣芽孢杆菌、 弗氏丙酸杆菌、 液化金杆菌、 环状芽孢杆菌、 萎蔫短小杆菌、热土厌氧棒菌接种到细菌培养基中分别培养,在 25~30°C下培养 3~7天;
3 )扩繁: 按步骤 2) 的方法进行发酵培养, 得微生物发酵液;
4)混合: 将步骤 3 )所述微生物发酵液按所述微生物湿重比例混合, 同时加入微生 物菌剂湿重总量 20~30%的秸秆粉作为微生物载体, 得微生物菌剂。
3、 按照权利要求 2所述处理稠油污水的微生物菌剂制备方法, 其特征在于: 其中 步骤 1 )、 2)和 3 )所述热土厌氧棒菌培养在厌氧环境下进行。
PCT/CN2006/002675 2005-12-27 2006-10-12 Préparation microbienne pour le traitement d'eaux d'égout contenant une huile épaisse et procédé de préparation de celle-ci WO2007073656A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005101309009A CN1990854A (zh) 2005-12-27 2005-12-27 一种处理稠油污水的微生物菌剂及制备方法
CN200510130900.9 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007073656A1 true WO2007073656A1 (fr) 2007-07-05

Family

ID=38213395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002675 WO2007073656A1 (fr) 2005-12-27 2006-10-12 Préparation microbienne pour le traitement d'eaux d'égout contenant une huile épaisse et procédé de préparation de celle-ci

Country Status (2)

Country Link
CN (1) CN1990854A (zh)
WO (1) WO2007073656A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095855A4 (en) * 2014-06-03 2017-05-17 Jiangnan University Efficient bottom treatment bacillus, composite bottom treatment inoculant prepared using same and applications thereof
US10005837B2 (en) 2007-10-04 2018-06-26 Zymogenetics, Inc. B7 family member zB7H6 and related compositions and methods
CN109234200A (zh) * 2018-10-25 2019-01-18 北京润世能源技术有限公司 一株微生物采油菌w-y9及其应用
CN109609407A (zh) * 2018-12-27 2019-04-12 黄河三角洲京博化工研究院有限公司 一种用于原位污泥减量的嗜热微生物菌株及其应用
CN111088179A (zh) * 2019-12-13 2020-05-01 郑州大学 一种用于生态修复的复合微生物菌剂及其制备方法
CN111187742A (zh) * 2020-02-26 2020-05-22 上海淳渊环境科技有限公司 一种复合生物菌剂及含盐有机物废水的处理方法和系统
CN111748483A (zh) * 2019-03-29 2020-10-09 中国科学院沈阳应用生态研究所 一株石油烃降解芽孢杆菌及其应用
CN113583893A (zh) * 2021-06-15 2021-11-02 中国石油天然气股份有限公司 枯草芽孢杆菌株、菌剂、表面活性剂、其制备方法及应用
CN113846032A (zh) * 2021-10-13 2021-12-28 热纳亚环保科技(上海)有限公司 一种石油烃降解生物絮凝剂的制备方法
CN113862198A (zh) * 2021-11-08 2021-12-31 陕西科技大学 一种用于降解含油污泥中油类污染物的复合微生物菌剂及其制备方法和应用
CN115109711A (zh) * 2021-03-22 2022-09-27 中国石油天然气股份有限公司 复合菌剂及其制备方法、污水处理工艺
CN117904011A (zh) * 2024-03-20 2024-04-19 江苏省环境工程技术有限公司 用于处理高盐难降解工业废水的微生物菌剂及制备方法和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182093B (zh) * 2007-12-07 2010-06-23 陈五岭 油气田钻井废弃泥浆的微生物无害化处理方法
CN101948181B (zh) * 2009-09-28 2012-08-22 中国石油天然气集团公司 处理稠油污水的方法及嗜热菌在该方法中的应用
CN102040310B (zh) * 2009-10-20 2012-07-25 北京纬纶华业环保科技股份有限公司 油田采出水回注到低渗透油田的污水处理方法
CN101864362B (zh) * 2010-05-19 2012-05-09 江苏加德绿色能源有限公司 一种复合微生物菌剂及其应用
CN102465103B (zh) * 2010-11-04 2013-04-10 中国石油化工股份有限公司 一株好氧反硝化甲基杆菌及其应用
CN103160448B (zh) * 2011-12-13 2014-06-11 中国科学院沈阳应用生态研究所 适合于电场条件下的石油烃降解菌及其应用
CN103382057B (zh) * 2013-07-28 2014-06-25 华盛江泉集团有限公司 一种处理养殖废水的方法
CN103803714B (zh) * 2014-02-27 2015-08-05 常州大学 一种石油降解菌协同降解采油废水的方法
CN104353667B (zh) * 2014-10-10 2016-08-24 浙江大学 石油降解菌群与表面活性剂联合降解水中脱水原油的方法
CN104649758B (zh) * 2015-02-04 2017-08-29 中国烟草总公司广东省公司 一种发酵水稻秸秆制备得到的土壤高碳基添加物
CN105483058B (zh) * 2016-01-09 2019-09-17 国家海洋局北海环境监测中心 一种石油降解菌剂及其制备方法
CN107475150A (zh) * 2017-08-24 2017-12-15 青岛理工大学 一种造纸工业废水脱色的复合菌群及其制备方法
CN109576191B (zh) * 2019-01-09 2021-11-19 安徽霖德生物科技有限公司 一种稠油开发的复合微生物菌剂及其制备方法和应用
CN111849798A (zh) * 2019-08-30 2020-10-30 上海傲江生态环境科技有限公司 一种微生物菌群复配液以及石油烃污染土壤处理方法
CN110591985A (zh) * 2019-10-29 2019-12-20 浙江黛君生物医药科技有限公司 微生物共生培养菌剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2115727C1 (ru) * 1997-02-17 1998-07-20 Лидия Николаевна Капотина Способ очистки объектов окружающей среды от углеводородов нефти и масел
WO2001034528A1 (fr) * 1999-11-09 2001-05-17 Institut Francais Du Petrole Procede de traitement bacterien d'effluents contenant au moins un ether par gordonia terrae cip i-2194
CN1308670A (zh) * 1998-01-16 2001-08-15 第一制糖株式会社 有机废水处理用微生物体和制剂
CN1310949A (zh) * 2001-01-17 2001-09-05 中国科学院微生物研究所 利用微生物秸秆发酵剂生产秸秆蛋白饲料的方法
CN1347391A (zh) * 1999-03-24 2002-05-01 费利克斯·安东尼·佩里罗 用利用烷烃的细菌对石油污染物的生物除污
CN1348987A (zh) * 2001-12-02 2002-05-15 重庆和润实业(集团)有限公司 一种高效处理污水淤泥的微生物菌群的制备方法
CN1369552A (zh) * 2002-03-20 2002-09-18 刘铁军 微生物复合菌剂及使用其制成的微生物发酵剂和肥料
CN1407086A (zh) * 2001-08-30 2003-04-02 武军勇 一种纤维素分解复合菌剂其制备方法及其应用
CN1562820A (zh) * 2004-02-10 2005-01-12 凌亮 一种利用微生物处理焦化废水的方法
JP2005185220A (ja) * 2003-12-26 2005-07-14 Osaka Gas Co Ltd 可溶化微生物及び固形有機物の可溶化方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2115727C1 (ru) * 1997-02-17 1998-07-20 Лидия Николаевна Капотина Способ очистки объектов окружающей среды от углеводородов нефти и масел
CN1308670A (zh) * 1998-01-16 2001-08-15 第一制糖株式会社 有机废水处理用微生物体和制剂
CN1347391A (zh) * 1999-03-24 2002-05-01 费利克斯·安东尼·佩里罗 用利用烷烃的细菌对石油污染物的生物除污
WO2001034528A1 (fr) * 1999-11-09 2001-05-17 Institut Francais Du Petrole Procede de traitement bacterien d'effluents contenant au moins un ether par gordonia terrae cip i-2194
CN1310949A (zh) * 2001-01-17 2001-09-05 中国科学院微生物研究所 利用微生物秸秆发酵剂生产秸秆蛋白饲料的方法
CN1407086A (zh) * 2001-08-30 2003-04-02 武军勇 一种纤维素分解复合菌剂其制备方法及其应用
CN1348987A (zh) * 2001-12-02 2002-05-15 重庆和润实业(集团)有限公司 一种高效处理污水淤泥的微生物菌群的制备方法
CN1369552A (zh) * 2002-03-20 2002-09-18 刘铁军 微生物复合菌剂及使用其制成的微生物发酵剂和肥料
JP2005185220A (ja) * 2003-12-26 2005-07-14 Osaka Gas Co Ltd 可溶化微生物及び固形有機物の可溶化方法
CN1562820A (zh) * 2004-02-10 2005-01-12 凌亮 一种利用微生物处理焦化废水的方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005837B2 (en) 2007-10-04 2018-06-26 Zymogenetics, Inc. B7 family member zB7H6 and related compositions and methods
EP3095855A4 (en) * 2014-06-03 2017-05-17 Jiangnan University Efficient bottom treatment bacillus, composite bottom treatment inoculant prepared using same and applications thereof
CN109234200A (zh) * 2018-10-25 2019-01-18 北京润世能源技术有限公司 一株微生物采油菌w-y9及其应用
CN109609407A (zh) * 2018-12-27 2019-04-12 黄河三角洲京博化工研究院有限公司 一种用于原位污泥减量的嗜热微生物菌株及其应用
CN111748483A (zh) * 2019-03-29 2020-10-09 中国科学院沈阳应用生态研究所 一株石油烃降解芽孢杆菌及其应用
CN111748483B (zh) * 2019-03-29 2023-01-24 中国科学院沈阳应用生态研究所 一株石油烃降解芽孢杆菌及其应用
CN111088179A (zh) * 2019-12-13 2020-05-01 郑州大学 一种用于生态修复的复合微生物菌剂及其制备方法
CN111088179B (zh) * 2019-12-13 2022-11-08 郑州大学 一种用于生态修复的复合微生物菌剂及其制备方法
CN111187742A (zh) * 2020-02-26 2020-05-22 上海淳渊环境科技有限公司 一种复合生物菌剂及含盐有机物废水的处理方法和系统
CN115109711A (zh) * 2021-03-22 2022-09-27 中国石油天然气股份有限公司 复合菌剂及其制备方法、污水处理工艺
CN115109711B (zh) * 2021-03-22 2024-03-01 中国石油天然气股份有限公司 复合菌剂及其制备方法、污水处理工艺
CN113583893A (zh) * 2021-06-15 2021-11-02 中国石油天然气股份有限公司 枯草芽孢杆菌株、菌剂、表面活性剂、其制备方法及应用
CN113846032A (zh) * 2021-10-13 2021-12-28 热纳亚环保科技(上海)有限公司 一种石油烃降解生物絮凝剂的制备方法
CN113862198A (zh) * 2021-11-08 2021-12-31 陕西科技大学 一种用于降解含油污泥中油类污染物的复合微生物菌剂及其制备方法和应用
CN117904011A (zh) * 2024-03-20 2024-04-19 江苏省环境工程技术有限公司 用于处理高盐难降解工业废水的微生物菌剂及制备方法和应用
CN117904011B (zh) * 2024-03-20 2024-05-28 江苏省环境工程技术有限公司 用于处理高盐难降解工业废水的微生物菌剂及制备方法和应用

Also Published As

Publication number Publication date
CN1990854A (zh) 2007-07-04

Similar Documents

Publication Publication Date Title
WO2007073656A1 (fr) Préparation microbienne pour le traitement d&#39;eaux d&#39;égout contenant une huile épaisse et procédé de préparation de celle-ci
Cai et al. A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors
Song et al. Biodegradation of hydrolyzed polyacrylamide by the combined expanded granular sludge bed reactor-aerobic biofilm reactor biosystem and key microorganisms involved in this bioprocess
Wang et al. Biodegradation of pentyl amine and aniline from petrochemical wastewater
Vaishnavi et al. Biosurfactant mediated bioelectrokinetic remediation of diesel contaminated environment
Gargouri et al. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents
Yang et al. Biological treatment of refractory pollutants in industrial wastewaters under aerobic or anaerobic condition: Batch tests and associated microbial community analysis
Zhang et al. Biodegradability enhancement of hydrolyzed polyacrylamide wastewater by a combined Fenton-SBR treatment process
CN104031870A (zh) 一种微生物复合菌剂及由其制备的土壤联合修复剂及二者的应用
CN109161499B (zh) 一种产表面活性剂细菌及其在煤/石油化工废水中原位削减多环芳烃的应用
CN106734181A (zh) 一种石油污染土壤的微生物修复方法
CN1223673C (zh) 一种产生生物乳化剂和降解多环芳烃的赤红球菌Em及用途
CN117025490B (zh) 一株用于土壤修复的菌株、菌剂及其应用
CN110669692B (zh) 一种稠油降粘降解混合菌剂的制备方法及应用方法
CN100355875C (zh) 一种处理炼油废水的微生物菌剂、其制备方法及其应用
Mikolasch et al. From oil spills to barley growth–oil‐degrading soil bacteria and their promoting effects
AU759338B2 (en) Bacterial consortium EBC1000 and a method using the bacterial consortium EBC1000for remedying biologically recalcitrant toxic chemicals contained in industrial wastewater, waste materials and soils
CN116836847A (zh) 异养硝化-好氧反硝化菌及其应用
Kumari et al. Dye decolorization by Rhodococcus ruber strain TES III isolated from textile effluent wastewater contaminated soil
Liu et al. Comparative study on the performance of hydrolytic acidification immobilized filler and sludge in the pretreatment of municipal wastewater
Tomar et al. Comparison of rapid granulation developed from the same industrial sludge with two different substrates
CN107254421B (zh) 一种修复含油土壤的生物制剂及修复方法与应用
Wang et al. Treatment of petroleum wastewater using an up‐flow anaerobic sludge blanket (UASB) reactor and turf soil as a support material
CN108504699B (zh) 一种利用apg06促进剩余污泥厌氧发酵产酸的方法
CN101367580A (zh) 共固定化介体与菌体促进难降解有机物生物转化的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06791246

Country of ref document: EP

Kind code of ref document: A1