[go: up one dir, main page]

WO2007036135A1 - Composant actif d’un catalyseur, son procédé de préparation et catalyseur comprenant ledit composant actif - Google Patents

Composant actif d’un catalyseur, son procédé de préparation et catalyseur comprenant ledit composant actif Download PDF

Info

Publication number
WO2007036135A1
WO2007036135A1 PCT/CN2006/002356 CN2006002356W WO2007036135A1 WO 2007036135 A1 WO2007036135 A1 WO 2007036135A1 CN 2006002356 W CN2006002356 W CN 2006002356W WO 2007036135 A1 WO2007036135 A1 WO 2007036135A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
titanium
weight
reaction
parts
Prior art date
Application number
PCT/CN2006/002356
Other languages
English (en)
Chinese (zh)
Inventor
Jiang Xu
Original Assignee
Beijing Jindingke Chemical Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jindingke Chemical Technology Ltd. filed Critical Beijing Jindingke Chemical Technology Ltd.
Publication of WO2007036135A1 publication Critical patent/WO2007036135A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Catalyst active component preparation method thereof, and catalyst including the same
  • the present invention relates to a catalyst active component for ethylene polymerization or copolymerization, a process for the preparation thereof, and a catalyst using the same.
  • Ethylene polymerization generally requires a high catalytic activity of the catalyst, and has long-lasting properties. At the same time, the molecular weight and molecular weight distribution of the polymer are required to be controlled, and a good morphology is obtained to stabilize the process and improve the running efficiency.
  • the industrially used Ziegler-Natta type polyepoxy catalysts are all supported high-efficiency catalysts, and the carrier used is magnesium chloride.
  • polyethylene catalysts require not only high activity, but also good copolymerization performance, good hydrogen sensitivity, and high bulk density, uniform particle size distribution, and fine powder. Good mechanical properties, etc. This is the future direction of the development of polyethylene germination agent. This requires the catalyst to have a high mechanical wear strength and a good particle shape.
  • CN1085569A discloses a process for preparing a titanium catalyst which forms a magnesium solution with an alcohol having at least six carbon atoms and a hydrocarbon solvent, and then reacts with an organoaluminum compound to form a solid aluminum complex.
  • the solid magnesium aluminum compound is suspended in a hydrocarbon solvent, and a tetravalent titanium compound is added to obtain a solid titanium catalyst suitable for ethylene polymerization.
  • CN1050389A discloses an ethylene polymerization catalyst comprising magnesium chloride and silica, the active component being Ti, and further comprising a complexing agent R0H, an electron donor ester and an alkyl aluminum compound.
  • the catalyst is prepared by mixing magnesium chloride and silica, and then adding an appropriate amount of alcohol to make the alcohol/magnesium.
  • the molar ratio is 3_25:1, and the reaction is sufficiently carried out under stirring, and then an aluminum alkyl and an ester are added to remove excess alcohol to obtain a solid component of the catalyst.
  • the above preparation method is also not very effective, and at the same time, the catalyst cost is increased because the magnesium chloride needs to be supported on the expensive silica gel.
  • CN1118488C reports an ethylene polymerization catalyst containing a halogenated hydrocarbon and an active component of Ti.
  • the modification of the halogenated hydrocarbon improves the morphology of the magnesium chloride, not only the catalytic activity, but also the resin.
  • the bulk density has also increased significantly.
  • this catalyst requires dealkylation with an aluminum alkyl, which inevitably increases the cost of the catalyst and increases environmental concerns.
  • CN1112373C discloses an ethylene polymerization catalyst which comprises modifying a catalyst by adding an electron donor, the morphology of the magnesium chloride is improved, the catalytic activity is improved, and the bulk density of the resin is also significantly increased.
  • the tetraalkoxysilane electron donor added in this patent has a great advantage in maintaining the morphology of the catalyst and the morphology of the obtained polymer, but is easily decomposed, and its decomposition degree is sensitive to catalytic activity, polymer morphology and hydrogen modulation. Sex has a great influence.
  • One of the objects of the present invention is to provide a catalyst active component for ethylene polymerization or copolymerization. Another object of the present invention is to provide a process for preparing the above-mentioned catalyst active component.
  • the present invention provides a catalyst active component for ethylene polymerization or copolymerization, based on 100 parts by weight of the total weight of the catalyst active component, including: 12.0 ⁇ 18.0 parts by weight of magnesium; 4.0 ⁇ 8.0 parts by weight of titanium; 1.1 to 11.0 parts by weight of alkoxy group; 0.5 to 2.5 parts by weight of silicon; and 55.0 to 75.0 parts by weight of halogen.
  • the above catalyst active component according to the present invention wherein 1.0 to 6.0 parts by weight of an alkoxy group is formed from an organic alcohol based on 100 parts by weight of the total weight of the catalyst active component, and the organic alcohol is selected from the group consisting of ethanol and propanol.
  • the electron donor added may not produce an ethoxy group.
  • the present invention further provides a method (Method 1) for preparing the above-mentioned catalyst active component, the method comprising the steps of:
  • magnesium alkoxide slurry In an inert hydrocarbon solvent containing at least one C6-12 aliphatic hydrocarbon at 50 to 180 ° C, the magnesium compound and the organic compound having 2 to 10 carbon atoms Alcohol reaction for 0.5 ⁇ 3 hours, forming a homogeneous solution, wherein the molar ratio of magnesium / alcohol is 1: 0.5 ⁇ 6, 1.8 5.0 liters of inert hydrocarbon solvent per mole of magnesium compound;
  • reaction temperature is 20 to: 100 ° C, and 0.05 to 1.0 mole of the electron donor is added per mole of the magnesium compound;
  • the titanium compound Ti(OR)4-nXn is added to the reaction solution in (2) to carry out the pre-loading titanium reaction, wherein the reaction temperature is - 30 to 20 ° C, X is a halogen, and R is an alkyl group, n An integer of 0 or less than 4, 1.0 to 80.0 moles of the titanium compound is added per mole of the magnesium compound, and the titanium compound Ti (OR ) 4-n X n is added and maintained at -1 (0.5 to 3 hours under TC).
  • reaction liquid in (3) is added with a halogenated hydrocarbon to carry out a titanium-supporting reaction, wherein the reaction temperature is raised to 70 to 130 ° C in 1 to 4 hours, and the reaction is continued for 1 to 6 hours, and the halogenated hydrocarbon is The molar amount is 2 to 20 times the molar amount of the magnesium compound, and the halogenated hydrocarbon is a halogenated hydrocarbon or a halogenated cycloalkane;
  • step (1) it is preferred to use 1.8 to 5.0 liters, more preferably 2.0 to 3.0 liters of the inert hydrocarbon solvent per mole of the magnesium compound.
  • the magnesium compound used in the step (1) may be one or more selected from the group consisting of MgCl 2 , MgBr 2 , Mgl 2 , Mg(0Et) 2 , Mg (OPr) 2 , Mg ( OBu) a group of 2 compounds.
  • the reaction temperature in the step (1) is 70 to 120 ° C and the molar ratio of magnesium to alcohol is 1: 2 to 4.
  • the reaction temperature of the step (2) is 40 to 80 °C.
  • the electron donor in step (2) is one or more selected from the group consisting of having the formula (R 1 ) (R 2 ) (R 3 ) (R 4 ) Si, R ⁇ R 2 , R 3 , R 4 may all be the same or R 1 and R 2 are the same, or R 1 R 2 and R 3 may be the same, and R 1 R 2 , R 3 > R 4 may be four alkoxy groups or Three alkoxy groups or two alkoxy groups having at least one alkoxy group.
  • RR 2 , R 3 , R 4 are selected from C C C 12 alkyl, C 6 -C 9 alkaryl or d ⁇ C 12 alkoxy, C 6 ⁇ C 9 alkaryloxy or C Cn alkyl halide a C 3 -C 6 epoxy group, more preferably the electron donor is selected from the group consisting of dinonyldimethoxysilane, dipropyldimethoxysilane, diisopropyldimethoxysilane, and Isobutyldimethoxysilane, dibutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylisopropyldimethoxysilane, cyclopentylisobutyldioxyloxy Silane, cyclopentylisopropyldimethoxysilane, cyclopentylbutyldimethoxysilane, cyclopentylpropyldime
  • the temperature of the precharged titanium reaction is -20 to 20 ° C, more preferably -10 to 10, most preferably -5 ° C.
  • the step (3) preferably, 1.0 to 50.0 mol, more preferably 20.0 50.0 mol, of the titanium compound is added per mol of the magnesium compound.
  • the titanium compound Ti(OR) 4 _ n X n in the step (3) is selected from the group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, tetrabutoxy A group of titanium, tetraethoxytitanium, monochlorotriethoxytitanium, dichlorodiethoxytitanium, trichloromonoethoxytitanium, and mixtures thereof.
  • the reaction temperature is raised to 90 to 110 in 2 to 3 hours.
  • C continue to react for 2 to 4 hours, the molar amount of halogenated hydrocarbon is 5 to 20 times the molar amount of the magnesium compound.
  • the halogenated hydrocarbon used in the step (4) is selected from the group consisting of 1,2-dichloroethane, 1, 3-dichloropropane, 1, 4-dichlorobutane, a group of 1,6-dichlorohexane, monochlorocyclohexane, dichlorocyclohexane, monochlorocyclopentane, dichlorocyclopentane, and mixtures thereof.
  • reaction solution in (2) is slowly added to the titanium compound Ti(OR) 4_ n X n solution for pre-loading titanium reaction, wherein the reaction temperature is -30 to 20 ° C, preferably -10 to 10 ° C, X is a halogen, R is an alkyl group, n is 0 or an integer of 4 or less, and 1 to 80.0 mol, preferably 20.0 to 50.0 mol of the titanium compound is added per mol of the magnesium compound;
  • reaction liquid in (4) and (3) is subjected to a titanium-containing reaction after adding a halogenated hydrocarbon, which is the same as in the method 1;
  • the difference between the two is mainly:
  • the titanium compound solution is added to the magnesium alkoxide slurry by increasing the amount of the inert hydrocarbon solvent and in the preloaded titanium reaction.
  • the amount of the titanium compound is greatly reduced.
  • the magnesium alkoxide slurry prepared in the step (2) is added to the titanium compound solution, so that the use of the titanium compound is higher. Therefore, Method 1 is more preferable.
  • the present invention also provides a catalyst for ethylene polymerization or copolymerization comprising the above catalyst active component and a cocatalyst, wherein the cocatalyst is an organoaluminum compound R 3 — n AlX n , wherein X is a halogen and R is C1 ⁇ C6 alkyl, n is an integer from 0 to 3; the molar ratio of aluminum in the cocatalyst to titanium in the active component of the catalyst is from 20 to 800, preferably from 50 to 300.
  • the above catalyst according to the present invention can be used to prepare high density high strength polyethylene. It can be applied to the existing ethylene polymerization slurry method and the gas phase method, and can produce parallel or series grade polyethylene.
  • the present invention proposes a catalyst for olefin polymerization or copolymerization, introducing an electron donor which is not easily decomposed, and simultaneously introducing an electron donor and a hydrocarbon into a titanium-containing active group. In the middle.
  • the amount of the solvent is increased at the same time, so that the obtained catalyst particles are large; and only a small amount of the titanium compound is required in the preparation of the active component of the catalyst; it is not necessary to add a halogenated hydrocarbon at the time of polymerization to increase the activity of the catalyst.
  • Another feature of the catalyst of the present invention is that the introduction of the electron donor can greatly improve the hydrogen sensitivity of the catalyst; and the invention has the feature of eliminating the need for alcohol removal from the alkyl aluminum, thereby reducing the cost. Environmental pollution.
  • the catalyst particles prepared by the present invention are large, the catalyst particles have a high sedimentation speed and are easy to be washed, so that the preparation of the catalyst is simpler and the preparation cycle is greatly shortened, which is advantageous for the industrial production of the catalyst.
  • the catalyst prepared by the invention has high hydrogen sensitivity and can be twice as high as similar catalyst.
  • the catalyst of the invention has good polymerization performance, the polymerization efficiency of the catalyst is more than 50,000 times, and the particle morphology and bulk density of the polymer are also better than the prior art.
  • the electron donor may be added in two ways, one is added in the reaction step (2); the second method is to first add a part of the electron donor to the reaction temperature to 60 ⁇ : 130 ° C, preferably 90 ⁇ 110 ° C; then follow the reaction step (2) when adding another part of the electron donor.
  • the halogenated hydrocarbon is added after the completion of the titanium-supporting reaction or during the polymerization of the olefin.
  • the present invention finds that the halogenated hydrocarbon can be added during the titanium-supporting reaction or can be completed in the titanium-loaded reaction. It is added later, but it is added during the titanium-containing reaction process, which is more effective in improving the catalytic activity and increasing the polymer bulk density, and the operation is also simpler.
  • the catalyst of the invention has excellent copolymerization performance, which is much better than the prior art.
  • a small amount of comonomer is added, no oligomer is collected in the ethane, and a small amount of oligomerization can be collected when the comonomer is large.
  • the prior art generally produces a large amount of low molecular weight copolymer which is soluble in ethane, and the obtained copolymer polymer particles are also better in morphology and bulk density than the prior art, which is for the development of new products and long-term operation of the device. It is of considerable importance.
  • the catalyst of the invention not only has high catalytic activity, good copolymerization performance, but also has very good hydrogen sensitivity, and the melt index is more than double that of the polymer obtained in the prior art, and the obtained polyethylene product has good morphology and uniform particle distribution.
  • the bulk density is high.
  • the polymer has good physical and mechanical properties, especially high impact strength, and can produce high-density high-strength polyethylene. Due to the good shape of the catalyst particles of the present invention, It is only suitable for the existing acetonitrile polymerization slurry method and can also be used in the gas phase process, and can produce parallel or series grade polyethylene.
  • diisopropyldimethoxysilane diisobutyldimethoxysilane, butyldimethoxysilane, cyclohexyldimethoxysilane, cyclohexylisopropyldimethyl Oxysilane, cyclopentyl isobutyl dimethoxy silane, cyclopentyl isopropyl dimethoxy silane, cyclopentyl butyl dimethoxy silane, dicyclopentyl dimethoxy silane, Diphenyldimethoxysilane, phenyltrimethoxysilane, decyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, Y-chloropropyltrimethoxysilane instead of two A solid catalyst component was prepared in the same manner as in Example 1 except for propyldimethoxysilane.
  • the solid catalyst component was prepared in the same manner as in Example 1 except that the amounts and components of the electron donor used were as shown in Table 1.
  • Example 17 7. 5 octo ol diisobutyl dimethoxy silane 7. 5ramo l tetraethoxy siloxane
  • Example 18 5. 0 crypto 01 diisobutyl dimethoxy silane 10. Ommo l tetraethoxy ⁇ 3 ⁇ 4
  • Example 19 75 legs. 1 diisobutyl dimethoxy silane 11. 25mmo l tetraethoxy shoe
  • Example 21 Ommo 1 dicyclopentyldimethoxysilane 10. Ommo l tetraethoxy gram
  • Example 22 75 mmol of dicyclopentyldimethoxysilane 11.25 mmol of tetraethoxy keet
  • Example 23 7. 5 mmol of cyclohexylmethyldimethoxysilane 7. 5 mmo l tetraethoxysilane
  • Example 24 5. 0 draw ol cyclohexylmethyldimethoxysilane 10. Ommol tetraethoxy siloxane
  • Example 26 7. 5 mmol of cyclopentylisobutyldimethoxysilane 7. 5 mmo l tetraethoxysilane
  • Example 27 5. 0 draw ol cyclopentyl isobutyl dimethoxysilane 10. Ommol tetraethoxy mat
  • Example 31 75 mmol of cyclopentylisopropyldimethoxysilane 11. 25 mmol of tetraethoxysilane
  • Example 33 5. 0 leg 01 diphenyldimethoxysilane 10. Ommol tetraethoxysilane
  • Example 35 7. 5 mmol of Y-chloropropyltrimethoxysilane 7. 5 mmol of tetraethoxy shoe pit
  • Example 36 5. 0 occlusion ol ⁇ -chloropropyltrimethoxysilane 10. Ommol tetraethoxy
  • Example 37 75mtnol ⁇ -chloropropyltrimethoxycethane 11. 25mmo l tetraethoxy guane
  • Example 38 Ommol diisobutyldimethoxysilane 5.
  • Example 39 11. 25 mmol diisobutyl dimethoxy silane 3. 75 ramol tetraethoxy quinone
  • Example 40 Ommol dicyclopentyldimethoxysilane 5. Ommol tetraethoxy keet
  • Example 41 25 mmol of dicyclopentyldimethoxysilane 3. 75 mmol of tetraethoxysilane
  • Example 42 10. 0 awake ol cyclohexyl fluorenyl dimethoxy silane 5.
  • Example 44 Ommol cyclopentylisobutyl dimethoxysilane 5.
  • Example 46 Ommol cyclopentylisopropyldimethoxysilane 5. Ommol tetraethoxysilane pit
  • Example 47 25 octa ol cyclopentyl isopropyl dioxaxy silane 3. 75ramo l tetraethoxy siloxane
  • Example 48 10. 0 leg ol ⁇ -chloropropyltrimole M "silicon germanium 5. Ommol tetraethoxy ketone
  • Example 49 11. 25 mmol Y-chloropropyltrimethoxysilane 3. 75 mmo l tetraethoxysilane
  • the solid catalyst component was prepared in the same manner as in Example 50 except that the amounts and components of the electron donor used were as shown in Table 2.
  • the solid catalyst component was prepared in the same manner as in Example 62 except that the amounts and components of the electron donor used were as shown in Table 3.
  • the reaction was carried out at 110 ° C for 120 minutes to obtain a solid catalyst. After the stirring was stopped, the solid catalyst particles were found to settle quickly. After the completion of the reaction, the solid catalyst was filtered off, washed with hexane, 40 mL each time, until the filtrate was substantially colorless. , the free titanium content is less than 0.3 mg / mL, and a solid catalyst is obtained after drying.
  • the solid catalyst component was prepared in the same manner as in Example 73 except that the amount and composition of the electron donor used were as shown in Table 4.
  • Example 74 10 crypto 0 1 diisobutyldimethoxysilane 10.
  • Example 80 5 awake o l dicyclopentyldimethoxysilane 20. Ommol ⁇ -chloropropyltrimethoxysilane
  • Example 93 - 100 In addition to diisopropyldimethoxysilane, diisobutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclopentylisobutyldimethoxysilane, cyclopentyliso Propyldimethoxysilane, cyclopentylbutyldimethoxysilane, dicyclopentyldimethoxysilane, Y-chloropropyltrimethoxysilane instead of dipropyldimethoxysilane
  • a solid catalyst component was prepared in the same manner as in Example 92.
  • a solid catalyst component was prepared in the same manner as in Example 1 except that the amount of decane was changed to 90 mL.
  • a solid catalyst component was prepared in the same manner as in Example 1 except that the amount of decane was changed to 250 mL.
  • the temperature of the titanium loading was changed to 70 ° C and 120 ° C respectively; the reaction temperature of the magnesium alkoxide slurry and the electron donor was changed to 40 ° C and 120 respectively; the temperature of the pre-loaded titanium reaction was - 10 ° C, 10
  • the solid catalyst component was prepared in the same manner as in Example 1 except for °C.
  • the solid catalyst particles were found to have a rapid sedimentation rate. After the completion of the reaction, the solid catalyst was filtered off, washed with hexane, 40 mL each time, until the filtrate was substantially free. Color, wherein the free titanium content is less than 0.3 mg / mL, and a solid catalyst is obtained after drying.
  • Example 1 Ti Mg CI Si OCH 3 OC2H5 RO1
  • Example 1 6.6 16.1 64.0 1.3 0.3 3.5
  • Example 2 6.8 15.5 64.5 1.5 0.3 3.4
  • Example 3 6.7 15.9 64.0 1.5 0.3 3.5
  • Example 4 6.6 16.0 63.8 1.4 0.3 3.6
  • Example 5 6.8 15.7 64.2 1.4 0.3 3.8
  • Example 6 6.9 15.6 64.5 1.5 0.3 4.0
  • Example 7 7.1 15.2 64.6 1.5 0.3 3.3
  • Example 8 7.0 15.3 64.5 1.5 0.3 3.4
  • Example 9 7.2 15.2 64.5 1.5 0.3 , , 3.3
  • Example 10 7.2 15.1 64.8 1.4 0.3 3.1
  • Example 11 6.5 16.0 63.2 1.4 0.3 3.9
  • Example 12 6.3 16.5 63.1 1.3 0.3 4.0
  • Example 13 6.5 16.6 62.2 1.4 0.6 4.2
  • Example 14 6.6 16.5 62.6 1.6 0.5 3.9
  • Example 15 6.5 16.6 62.7 1.6 0.5
  • the catalysts, catalytic activity and polyethylene properties used in the respective examples and comparative examples are shown in Table 6.
  • the polyethylene melt index (Ml) was determined by the ASTM-D-1238 method, and the apparent density was measured by the ASTM-D-1895 method.
  • Example 1 5. 20 0. 32 0. 48 20. 0 4. 2 95. 0 0. 8
  • Example 2 5. 25 0. 32 0. 50 20. 5 5. 3 94. 0 0. 7
  • Example 3 5. 30 0. 33 0. 53 20. 8 4. 6 94. 5 0. 9
  • Example 4 5. 31 0. 33 0. 51 20. 3 8. 2 91. 0 0. 8
  • Example 5 5 50 0. 33 0. 58 23. 0 2. 1 97. 0 0. 9
  • Example 80 6. 69 0. 38 0. 87 32. 2 3. 0 96. 7 0. 3
  • Example 81 6. 55 0. 36 0. 83 30. 8 3. 2 96. 6 0. 2
  • Example 82 6. 79 0. 37 0. 85 32. 8 3. 2 96. 5 0. 3
  • Example 84 4 70 0.
  • Example 86 4. 81 0. 31 0. 41 17. 3 8. 2 89. 0 2. 8
  • Example 87 4. 90 0. 31 0. 48 19. 5 2. 1 95. 0 2. 9
  • Example 88 5. 01 0. 31 0. 49 20. 5 13. 2 84. 0 2. 8
  • Example 89 5. 05 0. 31 0. 55 21. 5 11. 4 86. 0 2. 6
  • Example 90 5. 02 0. 32 0 56 21. 6 6.
  • Example 91 5. 03 0. 31 0. 58 21. 6 7. 3 90. 0 2. 7
  • Example 92 4. 95 0. 31 0. 45 18. 0 4. 2 94. 0 1. 8
  • Example 93 5. 05 0. 31 0. 47 18. 5 5.
  • Example 94 5. 05 0. 32 0. 48 18. 8 4. 6 93. 5 1. 9
  • Example 95 5. 11 0. 32 0. 46 18. 3 8. 2 90. 0 1. 8
  • Example 96 5. 20 0. 32 0. 53 20. 9 2 1 96. 0 1. 9
  • Example 97 5. 30 0. 32 0. 54 21. 5 13. 2 85. 0 1. 8
  • Example 98 5. 35 0. 32 0. 63 22. 5 11. 4 87. 0 1. 6
  • Example 100 5.
  • Example 102 5. 01 0. 29 0. 38 16. 0 1. 2 96. 3 2.
  • Example 103 5. 22 0. 33 0. 50 21. 0 4. 0 95. 3 0. 7
  • Example 104 4. 88 0. 30 0. 28 12. 0 0. 2 96. 0 3. 8
  • Example 105 4. 91 0. 32 0. 32 13. 0 2. 2 97. 0 0. 8 Comparative example 1 5. 23 0. 36 0. 11 10. 8 1. 0 97. 5 1. 5 than hinge example 2 4. 56 0. 33 0. 092 10. 2 12. 1 85. 0 1. 9 Comparative Example 3 3. 54 0. 28 0. 097 10. 7 0 87 13. 0
  • Preparation Example 2 Copolymerization of ethylene with ⁇ -olefin
  • the catalysts, catalytic activities and polyethylene physical properties used in the respective examples and comparative examples are shown in Tables 7 and 8, respectively.
  • the polyethylene melt index (Ml) was determined by the ASTM-D-1238 method and the apparent density was measured by the ASTM-D-1895 method.
  • Example 3 6. 25 0. 315 ⁇ 0. 01 130. 23 1. 11 44. 6
  • Example 5 6. 51 0. 31 ⁇ 0. 01 130. 04 1. 15 46. 5
  • Example 10 6. 85 0. 32 ⁇ 0. 01 129. 25 1. 41 56. 2
  • Example 16 7. 05 0. 32 ⁇ 0. 01 129. 46 1. 35 54. 0
  • Example 17 7. 25 0. 34 ⁇ 0. 01 130. 43 0. 95 38. 6
  • Example 20 7. 35 0. 35 ⁇ 0. 01 130. 03 1. 16 46. 4
  • Example 23 7. 27 0. 34 ⁇ 0. 01 130. 29 1. 08 43. 2
  • Example 35 7. 64 0. 35 ⁇ 0. 01 130. 01 1. 18 47.
  • Example 38 6. 29 0. 34 ⁇ 0. 01 130. 56 0. 98 39. 2
  • Example 39 6. 17 0. 335 ⁇ 0. 01 130. 33 1. 02 40. 8
  • Example 40 6. 40 0. 34 ⁇ 0 01 129. 83 1. 21 48. 8
  • Example 41 6. 30 0. 335 ⁇ 0. 01 129. 36 1. 38 55. 5
  • Example 42 6. 32 0. 33 ⁇ 0. 01 130. 36 1 01 40. 1
  • Example 43 6. 31 0. 34 ⁇ 0. 01 130. 39 1. 05 42. 7
  • Example 48 6. 46 0. 33 ⁇ 0. 01 129. 78 1. 21 48. 5
  • Implementation Example 49 6. 43 0. 335 ⁇ 0. 01 129. 41 1. 31 52. 0
  • Example 51 6. 53 0. 32 ⁇ 0. 01 130. 27 1. 09 43. 8
  • Example 52 6.
  • Example 53 72 0 33 ⁇ 0. 01 129. 45 1. 32 52. 8 Example 53 6. 14 0. 345 ⁇ 0. 01 129. 38 1. 39 55. 5 Example 54 6. 61 0. 325 ⁇ 0. 01 130. 33 1. 02 40. 1 Example 55 6. 85 0. 315 ⁇ 0. 01 130. 29 1. 06 42. 7 Example 60 7. 11 0. 35 ⁇ 0. 01 129. 72 1. 25 50. 5 Example 61 7. 21 0. 345 ⁇ 0. 01 129. 33 1. 35 54. 0 Comparative Example 1 6. 11 0. 34 ⁇ 0. 01 131. 23 0. 80 32. 0 Comparative example 2 5. 46 0. 31 0. 92 131. 83 0. 61 20. 4 Comparative example 3 4. 21 0. 26 1. 53 132 . 13 0. 45 18. 7
  • Example 3 10 gPE/gCat g/cm 3 mg/ml °C g/min g/min Example 3 5. 68 0. 31 0. 21 129. 33 1. 31 52. 4 Example 5 5. 73 0. 31 0. 18 129. 03 1. 45 58. 5 Example 10 5. 91 0. 32 0. 24 128. 53 1. 61 64. 2 Real; ⁇ Example 16 6. 31 0. 32 0. 23 128. 73 1. 52 60. 8 Example 17 6. 54 0. 33 0. 19 129. 93 1. 14 45. 6 Example 20 6. 68 0. 34 0. 23 129 23 1. 36 54. 4 Example 23 6. 60 0. 33 0. 20 129. 43 1. 28 51. 2 Example 35 6. 87 0. 34 0. 24 129. 19 1. 38 55. 2 Example 38 5. 66 0. 33 0. 26 129. 81 1.
  • Example 39 5. 54 0. 32 0. 29 129. 49 1. 22 48. 8 Example 40 5. 75 0. 33 0. 23 128. 95 1. 41 56. 8 Example 41 5. 67 0. 32 0. 25 1. 65 66. 2 Example 42 5. 68 0. 32 0. 23 129. 47 1. 21 48. 4 Example 43 5. 67 0. 33 0. 26 129. 34 1. 25 50. 7 Example 48 5. 81 0. 32 0. 24 128. 85 1. 41 56. 4 Example 49 5. 78 0 32 0. 26 128. 56 1. 56 62. 0 Example 51 5. 87 0. 31 0. 29 129. 29 1. 29 51. 6 Example 52 6. 04 0. 32 0. 25 128. 61 1. 52 60. 8 Example 53 5. 52 0. 33 0. 20 128. 41 1. 61 64. 4 Example 54 5. 95 0. 31 0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

La présente invention concerne un composant actif d’un catalyseur pour la polymérisation ou la copolymérisation de l’éthylène, son procédé de préparation et un catalyseur utilisant ledit composant actif. Le composant actif d’un catalyseur selon l'invention comprend de 12,0 à 18,0 parties en poids de magnésium, de 4,0 à 8,0 parties en poids de titane, de 1,1 à 11,0 parties en poids d’alcoxy, de 0,5 à 2,5 parties en poids de silicium, et de 55,0 à 75,0 parties en poids d’halogène, sur la base de 100 parties en poids du poids total du composant actif d’un catalyseur. Le procédé de préparation du composant actif tel que décrit ci-dessus selon l'invention comprend les étapes consistant à préparer une suspension épaisse d’alcoolate de magnésium, faire réagir ladite suspension épaisse avec un donneur d'électrons, pré-supporter la réaction avec le titane et supporter la réaction avec le titane. Le catalyseur de l'invention a une activité catalytique élevée, une bonne performance de copolymérisation, une bonne réponse à l’hydrogène et un indice de fluidité élevé. Le produit de polyéthylène a une bonne morphologie, une distribution uniforme de la dimension des particules, une densité apparente élevée, une bonne propriété physique et une forte résistance aux chocs. Le catalyseur peut être utilisé pour produire un polyéthylène à haute densité et de haute résistance.
PCT/CN2006/002356 2005-09-28 2006-09-12 Composant actif d’un catalyseur, son procédé de préparation et catalyseur comprenant ledit composant actif WO2007036135A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB200510105626XA CN100424099C (zh) 2005-09-28 2005-09-28 一种催化剂活性组分及其制备方法、和包括该活性组分的催化剂
CN200510105626.X 2005-09-28

Publications (1)

Publication Number Publication Date
WO2007036135A1 true WO2007036135A1 (fr) 2007-04-05

Family

ID=37899369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002356 WO2007036135A1 (fr) 2005-09-28 2006-09-12 Composant actif d’un catalyseur, son procédé de préparation et catalyseur comprenant ledit composant actif

Country Status (2)

Country Link
CN (1) CN100424099C (fr)
WO (1) WO2007036135A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567391C2 (ru) * 2009-08-21 2015-11-10 Чайна Петролеум Энд Кемикал Корпорейшн Компонент катализатора для полимеризации этилена, приготовление такового и катализатор, включающий компонент катализатора

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100484970C (zh) * 2007-04-30 2009-05-06 中国石油化工股份有限公司 一种制备烯烃聚合催化剂中固体催化剂的方法
CN102093498B (zh) * 2009-12-11 2012-07-18 中国石油天然气股份有限公司 一种聚乙烯专用料及其制备方法
CN101880341B (zh) * 2010-06-21 2012-05-30 中国石油天然气股份有限公司 一种乙烯均聚或共聚催化剂及其制备和应用
CN102329400B (zh) * 2011-06-23 2013-03-27 中国石油天然气股份有限公司 一种含硅烷类化合物的烯烃聚合催化剂及制备和应用
CN102863560A (zh) * 2011-07-04 2013-01-09 中国石油化工股份有限公司 一种外给电子体组分、含有该组分的烯烃聚合催化剂及其应用
CN104098727B (zh) * 2013-04-03 2016-11-16 中国石油天然气股份有限公司 一种高密度聚乙烯树脂及其制备和应用
CN105461745B (zh) * 2015-08-17 2019-04-02 临邑县鲁晶化工有限公司 一种二烷基二烷氧基硅烷及其合成方法
CN106632743B (zh) * 2015-10-29 2020-07-21 中国石油化工股份有限公司 用于乙烯聚合的催化剂体系及其应用
CN105542038B (zh) * 2015-11-14 2018-02-09 新疆独山子天利高新技术股份有限公司 硅氧烷混合物及调控小本体聚丙烯工艺聚合速度的方法
CN114426596A (zh) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 用于烯烃聚合的催化剂及应用和烯烃聚合方法与聚合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814312A (en) * 1986-12-26 1989-03-21 Toa Nenryo Kogyo Kabushiki Kaisha Method for production of catalyst component for olefin polymerization
CN1099041A (zh) * 1993-05-07 1995-02-22 三星综合化学株式会社 聚合烯烃用的高活性催化剂及其制备方法
CN1217345A (zh) * 1997-11-14 1999-05-26 中国科学院化学研究所 一种乙烯聚合载体催化剂体系
US6051666A (en) * 1995-04-10 2000-04-18 Dsm N.V. Method for preparing a catalyst suitable for polymerizing an olefin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990251A (en) * 1993-07-13 1999-11-23 Bp Chemicals Limited Process for polymerising olefin with a Ziegler-Natta catalyst
JP3529941B2 (ja) * 1995-05-18 2004-05-24 三井化学株式会社 固体状チタン触媒成分、その製造方法、固体状チタン触媒成分を含むオレフィン重合用触媒およびオレフィンの重合方法
JP4098419B2 (ja) * 1998-03-11 2008-06-11 三菱化学株式会社 耐衝撃性プロピレンブロック共重合体
KR100389962B1 (ko) * 2000-11-10 2003-07-02 삼성종합화학주식회사 에틸렌 중합 또는 공중합용 촉매의 제조 방법
CN1298749C (zh) * 2001-11-01 2007-02-07 出光兴产株式会社 烯烃聚合用固体催化剂成分、烯烃聚合用催化剂及烯烃聚合物的制备方法
CA2365718A1 (fr) * 2001-12-18 2003-06-18 Nova Chemicals Corporation Catalyseurs pour reaction ziegler-natta a haute temperature
CN1213082C (zh) * 2002-10-31 2005-08-03 中国石油化工股份有限公司 用于乙烯聚合的催化剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814312A (en) * 1986-12-26 1989-03-21 Toa Nenryo Kogyo Kabushiki Kaisha Method for production of catalyst component for olefin polymerization
CN1099041A (zh) * 1993-05-07 1995-02-22 三星综合化学株式会社 聚合烯烃用的高活性催化剂及其制备方法
US6051666A (en) * 1995-04-10 2000-04-18 Dsm N.V. Method for preparing a catalyst suitable for polymerizing an olefin
CN1217345A (zh) * 1997-11-14 1999-05-26 中国科学院化学研究所 一种乙烯聚合载体催化剂体系

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567391C2 (ru) * 2009-08-21 2015-11-10 Чайна Петролеум Энд Кемикал Корпорейшн Компонент катализатора для полимеризации этилена, приготовление такового и катализатор, включающий компонент катализатора

Also Published As

Publication number Publication date
CN100424099C (zh) 2008-10-08
CN1939937A (zh) 2007-04-04

Similar Documents

Publication Publication Date Title
WO2007036135A1 (fr) Composant actif d’un catalyseur, son procédé de préparation et catalyseur comprenant ledit composant actif
JP3022834B2 (ja) オレフィン重合及び共重合用触媒
KR100361224B1 (ko) 에틸렌 중합 및 공중합용 촉매의 제조방법
JP2004513990A (ja) エチレン重合又は共重合用触媒の製造方法
JP2004513993A (ja) エチレン重合体及び共重合体の製造方法
KR100430844B1 (ko) 올레핀중합및공중합용촉매
JP3817547B2 (ja) エチレン重合及び共重合用触媒
JP4073785B2 (ja) オレフィン重合用触媒の製造方法
CN111072806A (zh) 用于烯烃聚合的催化剂组分和催化剂及其应用与烯烃聚合方法
KR100430845B1 (ko) 알파올레핀중합및공중합용촉매
US7193022B2 (en) Method of polymerization and copolymerization of ethylene
KR102749512B1 (ko) 폴리올레핀 중합 촉매용 담체 조성물, 담체 제조방법 및 이를 포함하는 촉매 조성물
KR100430848B1 (ko) 개선된올레핀중합및공중합용촉매
CN111072815A (zh) 用于烯烃聚合的催化剂组分和催化剂及其应用与烯烃聚合方法
KR100435980B1 (ko) 고체착물티타늄 촉매를 이용한 올레핀의 중합 및 공중합방법
KR100612106B1 (ko) 프로필렌의 중합방법
CN101519463A (zh) 乙烯聚合和共聚反应催化剂的制备方法
KR20070011378A (ko) 염화마그네슘 기재 부가물 및 이로부터 수득된 촉매 성분
JP3578374B2 (ja) オレフィン類重合用触媒
CN116023553B (zh) 一种烯烃聚合反应的催化剂组分及催化剂体系、应用
CN114507303B (zh) 用于烯烃聚合的外给电子体及催化剂体系和烯烃聚合方法
TWI823951B (zh) 用於烯烴聚合的催化劑組分、其製備方法及包含其的催化劑
KR100554268B1 (ko) 알파올레핀 중합용 고체촉매의 제조 방법
JP4879931B2 (ja) オレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法
KR100827539B1 (ko) 에틸렌 중합 또는 공중합용 고체 착물 바나듐 티타늄촉매의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06790970

Country of ref document: EP

Kind code of ref document: A1