[go: up one dir, main page]

WO2007032255A1 - T細胞レセプター及び該レセプターをコードする核酸 - Google Patents

T細胞レセプター及び該レセプターをコードする核酸 Download PDF

Info

Publication number
WO2007032255A1
WO2007032255A1 PCT/JP2006/317773 JP2006317773W WO2007032255A1 WO 2007032255 A1 WO2007032255 A1 WO 2007032255A1 JP 2006317773 W JP2006317773 W JP 2006317773W WO 2007032255 A1 WO2007032255 A1 WO 2007032255A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
polypeptide
cells
sequence
hla
Prior art date
Application number
PCT/JP2006/317773
Other languages
English (en)
French (fr)
Inventor
Hiroshi Shiku
Atsunori Hiasa
Satoshi Okumura
Hiroaki Naota
Yoshihiro Miyahara
Original Assignee
Mie University
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University, Takara Bio Inc. filed Critical Mie University
Priority to JP2007535435A priority Critical patent/JP5276846B2/ja
Priority to KR1020087008686A priority patent/KR101130597B1/ko
Priority to US11/991,964 priority patent/US8003770B2/en
Priority to CN2006800336340A priority patent/CN101287831B/zh
Priority to EP06797633.2A priority patent/EP1930433B1/en
Publication of WO2007032255A1 publication Critical patent/WO2007032255A1/ja
Priority to US13/167,414 priority patent/US8383401B2/en
Priority to US13/734,625 priority patent/US8951510B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/10Cellular immunotherapy characterised by the cell type used
    • A61K40/11T-cells, e.g. tumour infiltrating lymphocytes [TIL] or regulatory T [Treg] cells; Lymphokine-activated killer [LAK] cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/30Cellular immunotherapy characterised by the recombinant expression of specific molecules in the cells of the immune system
    • A61K40/32T-cell receptors [TCR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/40Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
    • A61K40/41Vertebrate antigens
    • A61K40/42Cancer antigens
    • A61K40/4267Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K40/4268MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • T cell receptor and nucleic acid encoding the receptor
  • the present invention relates to an HLA-A2402-restricted cell specific to MAGE-A4 peptide.
  • TCR Vesicle receptor
  • nucleic acid encoding the polypeptide, polypeptide constituting the TCR ⁇ -chain
  • nucleic acid encoding the polypeptide, polypeptide constituting the a-chain and ⁇ ⁇ cell receptor composed of a polypeptide constituting a chain
  • a recombinant nucleic acid comprising the nucleic acid
  • a vector comprising the recombinant nucleic acid
  • a cell into which the nucleic acid or vector has been introduced and the vector or cell
  • the present invention relates to an anticancer agent comprising as an active ingredient.
  • Cytotoxic cell is a major tissue compatible antigen molecule (MHC molecule) encoded by a major histocompatibility gene complex (hereinafter abbreviated as MHC).
  • MHC tissue compatible antigen molecule
  • HLA human leukocyte antigen
  • TCR T cell receptor
  • Such an antigen peptide is produced, for example, when an antigen synthesized in the cell of a mammalian cell is processed in the cytoplasm and decomposed into small peptides, and further combined with an HLA molecule, Presented to. That is, in the proteasome complex composed of many subunits, the protein is broken down into peptides of 8 to 15 amino acids, and some of them are transported to the cytoplasmic endoplasmic reticulum by the TAP transporter. If these peptides are able to bind to class IZ j82 microglobulin heterodimers in the endoplasmic reticulum, they are stabilized as trimolecular complexes and transported to the cell surface through the Golgi apparatus. It is. Tumor cells expressing tumor-associated antigens or tumor-specific antigen proteins should be able to present on the cell surface HLA-restricted antigenic peptides that are recognized by T cells.
  • HLA class I molecules mainly include HLA-A, 1B, 1C, and the antigen peptides presented by binding to these consist of 8 to 10 amino acids, and also differ depending on each HLA molecule. It is known that there are certain structural features. For example, the world's most common HLA-A2. Peptide that binds to one molecule is a peptide consisting of 9-10 amino acids having Leu second from the N-terminus and Leu or Val at the C-terminus. It is the best known.
  • the peptide that binds to the HLA-A24 molecule which is common in Asians, including Japanese, is Tyr, Phe, Met, or Trp second from the N-terminus, and Leu, Ile, or Trp at the C-terminus.
  • Peptides consisting of 9 to 10 amino acids having any of Phe are best known.
  • Tumor antigens that have been identified to date include MAGE-Al, MAGE-A3, MAGE-A4, HLA-A2.1 for MAGE-A3, MARTI, tyrosinase, gplOO for HLA-A1 , HER2Zneu, CEA, etc., MAGE—A3 for HLA—Cwl, MAGE—A3 for HLA—B44, MAGE—A4 for HLA—B37, MAGE—Al, MAGE—A2, MAGE—A3, MAGE—A4, NY—ESO-1, CEA, HER2 / neu, tyrosinase, j8—catenin, etc.
  • HLA class I molecules can be classified into several subtypes.
  • the types of possessed subtypes vary greatly among races, and globally, HLA-A2 is the most white 4 5% are 13 ⁇ 4 ⁇ -8 positive.
  • Identification of this HLA-A2-restricted antigenic peptide Is the most advanced. In Japan, HLA-A2 positivity accounts for 40%. Looking at its subtypes, HLA-A * 0201 positivity is 20%, which is the same as that of white race, and the rest are A * 0206 positivity.
  • the peptides that bind to these subtypes are different, and HL 8-8, which is mainly studied, is 13 ⁇ 4 ⁇ ⁇ -8 * 0201.
  • HLA-A24 positivity accounts for 60% or more in Japanese, and the HLA-A24 positivity rate is higher in Asian races than in other races. Therefore, the discovery of HLA-A24-restricted antigenic peptides plays an important role in the provision of CTLs useful for tumor therapy by inducing CTLs that act specifically on tumor cells in Asians, particularly Japanese. Indicates.
  • Tumor antigen-specific TCR genes include, for example, HLA-A2-restricted MART1-specific TCR [Non-Patent Document 1], MAGE-A3-specific TCR [Non-Patent Document 2], CAMEL (CT L recognized antigen on melanoma) -specific TCR [Non-patent document 3], gp100-specific TCR [Non-patent document 4], NY—ESO-1 specific TCR [Non-patent document 5], HLA—24-restricted WT1 (Wilms tumor 1 ) Genes such as specific TCR [Non-patent document 6] and HLA-Cwl6-restricted MAGE-A1-specific TCR [Non-patent document 7] have been cloned.
  • TCR gene targeting MART1 [Non-patent document 8], gplOO [Non-patent document 4] and mHAG HA-2 antigen [Non-patent document 9] Attempts have been made to gene therapy by children.
  • MAGE—A4 is an antigen belonging to the MAGE subfamily of the cancer testis antigen family. It is expressed in various cancers and is highly antigenic (60 of esophageal cancer). %, Positive in 50% of head and neck cancers, 24% of non-small cell lung cancers, 33% of gastric cancers and 21% of Hodgkin's disease), it is promising as a target antigen for cancer vaccine therapy. HLA-A24-restricted MAGE-A4 peptide-specific CTL clone was obtained
  • Non-Patent Document 1 Cancer Research, 54th, 5265-5268 (1994)
  • Non-Patent Document 2 Anticancer Res., 20th, 1793 — 1799 (2000)
  • Non-Patent Document 3 International Journal of Cancer, Int. J. Cancer, 99th, 7-13 (2002)
  • Non-Patent Document 4 Journal of Immunology, (J. Immunol.) No. 170, 218 6–2194 (2003)
  • Non-Patent Document 5 Journal of Immunology, 174th, 4415–4423 (200 5)
  • Non-Patent Document 6 Blood, pp. 106, 470-476 (2005)
  • Non-Patent Document 7 International Immunology (Int. Immunol.), VIII, 146
  • Non-Patent Document 8 Journal of Immunology, 163rd pp. 507-513 (1999)
  • Non-Patent Document 9 Blood, 103rd pp. 3530-3540 (2003)
  • Non-Patent Document 10 Clin. Cancer Res. 11th, 5581-5589 (2005)
  • the HLA-A24-restricted TCR gene for tumor-associated antigens is known to have a strength against WT1, but its analysis is still delayed compared to HLA-A2.1. It is impossible to provide a TCR gene that is useful for tumor treatment in Gia, especially Japanese. Therefore, discovery of a new TCR gene restricted to HLA-A24 against various tumor antigens is desired.
  • the present inventors clone cDNA encoding TCR a chain and j8 chain from HLA-A24 restricted CTL against tumor antigen MAGE-A4. Succeeded. Furthermore, by introducing RNA prepared from these cDNAs into cells such as CTLs that express HLA-A24 molecules, these cells have cytotoxicity specific to HLA-A24-restricted MAGE-A4-derived peptides. The present invention has been completed.
  • the first aspect of the present invention is an HLA-A24-restricted MAGE-A4-specific T cell.
  • the present invention relates to a polypeptide constituting a cell receptor and a polypeptide having a polypeptide of the variable region of the receptor.
  • a second aspect of the present invention relates to an HLA-A24-restricted, MAGE-A4-specific TCR characterized by comprising the polypeptide of the first aspect of the present invention.
  • a third aspect of the present invention is the HLA-A24-restricted MAGE-A4-specific TC.
  • the present invention relates to a nucleic acid encoding R, and a nucleic acid encoding a polypeptide having the polypeptide of the variable region of the receptor.
  • a fourth aspect of the present invention relates to a recombinant nucleic acid comprising the nucleic acid of the third aspect of the present invention.
  • a fifth aspect of the present invention relates to a vector into which the recombinant nucleic acid according to the fourth aspect of the present invention has been inserted.
  • a sixth aspect of the present invention is characterized in that the nucleic acid according to the third aspect of the present invention is introduced or transformed with the vector according to the fifth aspect.
  • Restricted MA GE-A4 relates to cells expressing TCR specific.
  • a seventh aspect of the present invention relates to an anticancer agent, comprising the cell of the sixth aspect of the present invention or the vector of the fifth aspect as an active ingredient.
  • An eighth aspect of the present invention relates to a method for treating cancer, comprising the step of administering the anticancer agent of the seventh aspect of the present invention.
  • HLA-A24-restricted MAGE-A4-specific TCR ⁇ -chain and
  • Tumors that use T cells as effector cells that are not HLA-A24-restricted or have MAGE-A4 specificity are not HLA-A24-restricted or have MAGE-A4 specificity
  • Cytotoxic methods are provided.
  • the above effector cells are useful, for example, in the treatment of cancer.
  • the first aspect of the present invention is an HLA-A24-restricted, MAGE-A4-specific T cell.
  • the present invention relates to a polypeptide constituting a vesicle receptor having a polypeptide of a variable region of the receptor.
  • a polypeptide constituting a vesicle receptor having a polypeptide of a variable region of the receptor.
  • TCR a chain and TCR ⁇ chain. These chains are combined to form HLA- H24-restricted MAGE- ⁇ 4 specific
  • the ⁇ chain polypeptide, together with the j8 chain, is HLA— ⁇ 24-restricted MAGE— ⁇ 4
  • the polypeptide derived from the ⁇ chain of TCR in the present invention contains the amino acid sequence of the ⁇ chain variable region or a sequence similar thereto as an essential component.
  • amino acid sequence of the entire a chain containing the constant region (SEQ ID NO: 1) or a similar sequence, that is, a polymorphic amino acid sequence having deletion, addition, insertion or substitution of one to several amino acid residues.
  • a peptide is one of the preferred embodiments of the present invention.
  • the ⁇ chain polypeptide is HLA-A24-restricted MAGE-A4 together with the a chain.
  • TCR 14 It can form a specific TCR, and as a 13-chain variable region polypeptide,
  • the polypeptide derived from the ⁇ chain of TCR in the present invention contains the amino acid sequence of the ⁇ chain variable region or a sequence similar thereto as an essential component.
  • the polypeptide is one of the preferred embodiments of the present invention.
  • HLA-A24-restricted MAGE-A4-specific TCR is a sequence listing.
  • the T cell is HLA-A24 restricted P 14 3 specific to the target cell It can impart a specific cytotoxic activity.
  • Specific methods for confirming specific recognition of the complex include known tetramer analysis and ELISPOT assay using, for example, HLA-A24 molecule and P143. By performing ELISP OT assembly, it is possible to confirm that T cells expressing the TCR on the cell surface recognize the target cell by TCR and that the signal is transmitted into the cell.
  • cytotoxicity can be imparted to the T cell when the complex is present on the surface of the T cell.
  • HLA-A24 such as chromium release assay. Measurement of cytotoxic activity against positive target cells can be mentioned.
  • the polypeptide of the present invention can be produced by genetic engineering using the nucleic acid of the present invention described later. For example, by introducing both the nucleic acid encoding the ⁇ chain polypeptide and the nucleic acid encoding the j8 chain polypeptide into a cell and expressing the ⁇ chain and j8 chain polypeptide, HLA-A24 Restraint, MAGE—A4 specific TCR
  • a second aspect of the present invention relates to an HLA-A24-restricted, MAGE-A4-specific TCR characterized by being constituted by the polypeptide of the present invention.
  • R is not particularly limited to the present invention, but for example, by using the nucleic acid of the present invention described later to artificially express the polypeptide encoded by the nucleic acid, it is naturally attached. Thus, it can be prepared in a form separated from the biological component.
  • a third aspect of the present invention is the HLA-A24-restricted, MAGE-A4-specific TC.
  • It relates to a nucleic acid encoding R or a variable region thereof.
  • the nucleic acid of the present invention is a nucleic acid encoding a polypeptide having a TCR a chain variable region polypeptide or a nucleic acid encoding a polypeptide having a TCR ⁇ chain variable region polypeptide, each of which has a TCR ⁇ HLA—A24ZMAGE—A4 when introduced into a cell with a nucleic acid encoding a chain polypeptide or a nucleic acid encoding a TCR a chain polypeptide
  • the nucleic acid encoding a polypeptide having a TCR a chain variable region polypeptide includes a nucleic acid encoding a TCR a chain polypeptide, TCR o; a nucleic acid ability encoding a chain variable region polypeptide, TCR ⁇ chain variable region polypeptide
  • the nucleic acid encoding the ⁇ -chain polypeptide includes a nucleic acid consisting of the base sequence shown in SEQ ID NO: 3 in the sequence listing, a nucleic acid of the base sequence or a complementary strand thereof. And nucleic acids that can hybridize under stringent conditions.
  • the nucleic acid encoding the variable region of the ⁇ -chain polypeptide includes a nucleic acid having a base sequence ability shown in SEQ ID NO: 6 in the sequence listing, and a nucleic acid that can hybridize with a nucleic acid of the base sequence or a complementary chain thereof under stringent conditions. Is exemplified.
  • the nucleic acid encoding the j8-chain polypeptide includes a nucleic acid consisting of the base sequence shown in SEQ ID NO: 4 in the sequence listing, and a stringent condition with the nucleic acid of the base sequence or its complementary strand. Examples of nucleic acids that can be hybridized are given below.
  • the nucleic acid encoding the variable region of the ⁇ -chain polypeptide is hybridized under stringent conditions with the nucleic acid consisting of the base sequence shown in SEQ ID NO: 8 in the Sequence Listing, as well as the nucleic acid of the base sequence or its complementary strand. Possible nucleic acids are exemplified.
  • stringent conditions are as follows: 1989, Cold 'Spring' Nova 1 'Laboratories, edited by J. Sambrook et al. The conditions described in Laboratory 'M-Yuanore 2nd Edition (Molecular Cloning: A Laboratory Manual 2nd ed.) Etc. are exemplified. Specifically, for example, in 6 X SSC containing 0.5% SDS, 5X Denharz solution, 0.01% denatured salmon sperm DNA, conditions for incubation with a probe at 65 ° C for 12-20 hours Can be mentioned. Nucleic acid hybridized to the probe can be detected after removing non-specifically bound probe by washing at 37 ° C in 0.1 X SSC containing 0.5% SDS, for example.
  • the nucleic acid in the present specification means single-stranded or double-stranded DNA, RNA, or DNA-RNA chimera, or DNA-RNA heteroduplex.
  • RNA DNA
  • T in the sequence listing described in this specification is read as U for the sequence of the RNA portion.
  • a nucleic acid encoding a TCR a chain polypeptide of the present invention or a nucleic acid encoding a TCR a chain variable region polypeptide, a nucleic acid encoding a TCR ⁇ chain polypeptide, or a TCR ⁇ chain variable A combination of two nucleic acids of a nucleic acid encoding a region polypeptide is exemplified. The combination of nucleic acids described above produces an HLA-A24-restricted, MAGE-A4-specific TCR in cells.
  • the nucleic acid of the present invention can be obtained, for example, as follows.
  • HLA A24-restricted AGEAGE—A4-specific CTL, for example clone # 2— 28
  • RNA by conventional methods and synthesize cDNA.
  • 5'-rabbit amplification of cDNA end (RACE) is performed using an antisense primer complementary to the nucleic acid encoding the constant region of TCR o; and ⁇ strands.
  • 5′-RACE can be performed by a known method, for example, using a commercially available kit such as CapFishing Full-length cDNA Premix Kit (manufactured by Sea Gene). Said method The DNA amplified by is incorporated into a plasmid vector, and E. coli is transformed. A plasmid is prepared from the transformant strength, and the nucleotide sequence of the inserted DNA is determined.
  • [0035] Exclude DNA unrelated to the TCR gene amplified by 5'—RACE by comparing the obtained nucleotide sequence with the sequences of known TCR a chain and / 3 chain genes. Is possible. Further, since DNA having a mutation in the base sequence may be amplified during PCR, in the present invention, a plurality of E. coli clones are also sequenced, and the CTL estimated by the consensus sequence is determined. It is preferable to use the sequences of the TCR a chain gene and ⁇ chain gene that are originally present.
  • a nucleic acid encoding the aCR a chain of the amino acid sequence of SEQ ID NO: 1 having the base sequence shown by SEQ ID NO: 3 in the sequence listing, and a sequence having the base sequence shown by SEQ ID NO: 4 in the sequence listing
  • 8 chain of the amino acid sequence of No. 2 was obtained by the above method.
  • the DNA obtained by the above method may be used, or a nucleic acid having the same sequence may be chemically synthesized and used.
  • a nucleic acid encoding a portion corresponding to the variable region of each chain constituting TCR is a constant among other functional molecules such as nucleic acids encoding antibodies and receptors. It can be connected to a region or a region encoding an intracellular region.
  • the new nucleic acid constructed in this way gives HLA-A24-restricted MAGE-A4-specific binding activity.
  • a fourth aspect of the present invention is a recombinant nucleic acid comprising the nucleic acid of the present invention.
  • the recombinant nucleic acid is not particularly limited to the present invention, but includes various elements encoded by the nucleic acid that enable translation of the polypeptide when the nucleic acid of the present invention is introduced into a cell.
  • the added nucleic acid is exemplified.
  • Recombinant nucleic acids of the present invention comprising DNA include promoters (eg, phosphodareric phosphate kinase promoter, Xist promoter, j8-actin promoter, RNA polymerase II promoter and other mammalian promoters, SV40 early promoter, site Virus promoters such as megalovirus promoters, simple herpesvirus thymidine kinase promoters, LTR promoters of various retroviruses, Examples include those having a transcription control region such as a terminator, Jenno, sensor. Furthermore, it may encode a sequence (Kozak sequence or the like) that contributes to translation of the polypeptide of the first invention.
  • promoters eg, phosphodareric phosphate kinase promoter, Xist promoter, j8-actin promoter, RNA polymerase II promoter and other mammalian promoters, SV40 early promoter, site Virus promoters such as mega
  • the above-described elements are arranged at functionally linked positions so as to be suitable for transcription of RNA from the nucleic acid of the present invention and translation of polypeptides.
  • the recombinant nucleic acid is RNA, elements relating to transcription control are not necessary.
  • the recombinant nucleic acid of the present invention can be used by being incorporated into a vector as described later, or can be used for expression of TCR by directly introducing the nucleic acid of the present invention, which is RNA, into a cell.
  • a method for introducing RNA a known method may be used. For example, electroporation can be preferably used.
  • a fifth aspect of the present invention relates to a vector into which at least one recombinant nucleic acid of the present invention has been inserted.
  • the above-described vector is useful for expressing a desired cell in a MCR-A4-specific TCR that is HLA-A24-restricted.
  • (1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + (a) of the present invention is useful for expressing a desired cell in a MCR-A4-specific TCR that is HLA-A24-restricted.
  • a recombinant nucleic acid containing a nucleic acid encoding a TCR a chain polypeptide of the present invention or a polypeptide having a variable region polypeptide thereof and a TCR ⁇ chain polypeptide of the present invention or a polypeptide having the variable region polypeptide A vector into which both recombinant nucleic acids containing a nucleic acid encoding a peptide are inserted, and (2) a nucleic acid encoding a polypeptide having the TCR o; chain polypeptide or its variable region polypeptide of the present invention.
  • the nucleic acid encoding the TCR a chain polypeptide and the nucleic acid encoding the TCR ⁇ chain polypeptide are each an internal ribosome entry site (I RES) can be transcribed and translated by a single promoter.
  • I RES internal ribosome entry site
  • the vector used in the present invention is not particularly limited, and a suitable vector may be selected from known vectors such as a plasmid vector and a virus vector according to the purpose.
  • a suitable vector may be selected from known vectors such as a plasmid vector and a virus vector according to the purpose.
  • gene introduction methods such as the calcium phosphate method, the cationic lipid method, the ribosome method, and the electoporation method can be used for introduction into cells.
  • Viral vectors having the ability to infect cells and introduce foreign DNA are suitable for the present invention.
  • virus vectors such as retrovirus vectors (including lentivirus vectors and pseudotype vectors), adenovirus vectors, adeno-associated virus vectors, and herpes virus vectors can be used.
  • the viral vector into which the recombinant nucleic acid of the present invention has been inserted can infect a target cell under conditions suitable for each virus and can introduce the nucleic acid of the present invention.
  • a retroviral vector having the ability to incorporate an inserted foreign nucleic acid onto a chromosome is suitable for the present invention.
  • a sixth aspect of the present invention relates to a cell expressing an HLA-A24-restricted MAGE-A4-specific TCR, wherein the nucleic acid of the present invention is introduced.
  • a preferred embodiment of the cell of the present invention that may be introduced into the desired cell as the above-described recombinant nucleic acid of the present invention or the vector of the present invention is a nucleic acid of the present invention. Transformation with a cell in which both a nucleic acid encoding a polypeptide having a variable region polypeptide and a nucleic acid encoding a TCR ⁇ -chain polypeptide or a polypeptide having the variable region polypeptide are introduced and the vector of the present invention
  • the cells that are being exemplified are illustrated.
  • a cell in which the above-mentioned nucleic acid is integrated on chromosomal DNA is also encompassed by the present invention.
  • a preferred embodiment of the present invention is a sputum cell into which the nucleic acid of the present invention has been introduced.
  • the nucleic acid may be introduced into a cell that can be separated into T cells, and then the cells may be separated into T cells.
  • Examples of cells that can differentiate into T cells include hematopoietic stem cells, lymphocyte common progenitor cells, and ⁇ cell progenitor cells.
  • the introduction target cells into which the nucleic acid is introduced can be fractionated into a single cell type! /, And the cell population containing the introduction target cells is not necessarily required.
  • the cell population containing the cells to be introduced may be collected from peripheral blood, bone marrow and umbilical cord blood such as human or non-human mammals. If necessary, T cells and cells that can be differentiated into Z or T cells can be fractionated or enriched and used in the present invention. Book When the TCR gene-introduced cell of the invention is used for the treatment of cancer or the like, it is preferable to collect the cell population of the patient who is the subject of treatment or a donor force that matches the HLA type of the patient.
  • a known method without particular limitation can be used for introducing the nucleic acid of the present invention into a cell.
  • a method using an electoporation method for example, a method using an electoporation method, a calcium phosphate method, a cationic lipid method, or a ribosome method can be used.
  • transfection reagents eg, Transl T series (Mirras), Genejuice (Novagen), Ribojuice (Novagen), Lipofectamine (Invitrogen)
  • An acid can be introduced.
  • the vector of the present invention when used, if the vector is a plasmid vector, it can be introduced into cells by the same method as that for the nucleic acid.
  • the vector if the vector is a virus vector, an infection method suitable for each virus vector may be selected.
  • retroviral vectors CH-296 (manufactured by Takarabio Co., Ltd.)
  • a thread-replaceable fibronectin fragment reduces the infection efficiency of various cells, particularly retroviral vectors. In contrast, highly efficient gene transfer is possible.
  • a seventh aspect of the present invention relates to an anticancer agent, comprising the vector of the fifth aspect of the present invention or the cell of the sixth aspect as an active ingredient.
  • the T cell introduced with the nucleic acid of the present invention obtained by the sixth aspect of the present invention exhibits cytotoxic activity against cells presenting HLA-A24 molecule and MAGE-A4 peptide. Therefore, the above
  • the vectors and cells of the present invention can be used as anticancer agents against cancers that express MAGE-A4.
  • the anticancer agent of the present invention includes the vector or cell of the present invention as an active ingredient.
  • the anticancer agent is provided in the form of the vector or cells suspended in a pharmaceutically acceptable diluent.
  • the diluent referred to here is, for example, a medium, physiological saline, or phosphate buffered physiological saline suitable for storage of the vector or cells.
  • the medium is not particularly limited, and generally includes a medium such as RPMI, AIM-V, X-VIVO 10 or the like.
  • the anticancer agent includes a pharmaceutically acceptable carrier, A preservative or the like may be added for the purpose of stabilization.
  • the carrier referred to here is human serum albumin or the like.
  • the anticancer agent containing the cell of the present invention as an active ingredient is preferably 1 ⁇ 10 4 to 1 ⁇ 10 8 cells / mL, more preferably 5 ⁇ 10 5 to 5 ⁇ 10 7 cells / m. L is contained.
  • the anticancer agent containing the cell of the present invention as an active ingredient is administered to a human, it can be administered, for example, with a syringe.
  • the dose per adult is usually as described above.
  • the number of cells is preferably 1 ⁇ 10 6 to 1 ⁇ 10 1 (> . Note that the above value is only a guideline and is not limited to this.
  • the vector concentration and dosage in the anticancer drug vary greatly depending on the route of administration and the type of vector.
  • the present invention provides a method for treating cancer.
  • the therapeutic method is in vivo gene therapy when the vector of the fifth aspect of the present invention is used as an active ingredient.
  • the cell of the present invention when used as an active ingredient, a nucleic acid encoding an HLA-A24-restricted, MAGE-A4-specific TCR for cells removed from the body.
  • an administered individual eg, human
  • cells derived from an individual having the same HLA type toxicity is not particularly observed.
  • Non-Patent Document 10 SEQ ID NO: 9 in the sequence listing, below
  • Target cells pulsed with P143 are cultured on HLA-A2402-restricted CTL clone # 2—28 cells and cultured from 2 ⁇ 10 5 cells to RNeasy Mini Kit (Qiagen) ) Was used to extract RNA.
  • RNA RNA in a bowl shape
  • using a CapFishing Full-length cDNA Premix Kit (Chigene) CDNA was synthesized according to the instruction manual.
  • a reverse transcription reaction was performed using the oligo dT adapter shown in SEQ ID NO: 10 in the sequence listing, Reverse Transcriptase M-MLV (RNaseH free) (manufactured by Takara noio) and the reaction buffer attached to the enzyme. .
  • 96 plasmids were selected from each of the transformants derived from PCR- ⁇ and PCR- ⁇ 2 thus obtained, and plasmids were prepared from each of the transformants.
  • DN sequence was determined using an automatic sequencer. When clustering was performed after removing the sequence of pT7blue, the sequence of the longest open reading frame included in the consensus sequence of the largest container was as shown in SEQ ID NO: 3 and SEQ ID NO: 4 in the sequence listing. Met. These sequences are in turn the cDNA sequences of the TCR a chain gene and ⁇ chain gene of # 2-28 cells.
  • TCR a chain and / 3 chain deduced from the cDNA base sequence are shown in SEQ ID NO: 1 and SEQ ID NO: 2 in the sequence listing.
  • plasmids having the consensus sequences of TCR a chain gene and ⁇ chain gene cDNA in the same direction as the pT7blue ⁇ ⁇ ⁇ ⁇ ⁇ 7 promoter were selected and named pBS MAGE TCR ⁇ and pBS MAGE TCR j8, respectively.
  • PBS MAGE TCR a and pBS MAGE TCR j8 were linearized by digestion with the restriction enzyme EcoRI. Using these as a saddle, in vitro transcription was performed using mMESSAGE mMACHINE T7 Kit (Ambion) according to the instruction manual of the kit. After that, using the Poly (A) Tailing Kit (Ambion), the transcribed RNA was attached to the transcribed RNA according to the instruction manual of the kit. Thus, MAGE-A4 TCR a mRNA and MAGE-A4 TCR jS mRNA were obtained. These were dissolved in phosphate buffered saline (PBS) and stored at ⁇ 80 ° C. until use.
  • PBS phosphate buffered saline
  • ms69 cells are CTL clones that show cytotoxic activity in a restricted manner on HLA-A2402 to target cells pulsed with SAGE715-723 peptide (SEQ ID NO: 15 in the sequence listing, hereinafter abbreviated as P715). It is a clone different from # 22 obtained by the same method as # 22 cells. 1 ⁇ 10 7 ms69 cells were washed twice with X—VIVO20 medium (Camprex).
  • Example 2 80 g of each of MAGE-A4 TCR a mRNA and MAGE-A4 TCR jS mRNA prepared in (1) and the above cells were mixed in X-VIVO20 medium so as to be 150 L, and the ECM830 gene RNA was introduced into the cells by electroporation using an introduction device (BTX). Cells after introduction of mRNA were cultured in X-VIVO20 medium at 37 ° C for 1 day in the presence of 5% CO. Hereafter, the cells thus obtained are
  • PBMC Peripheral blood mononuclear cells
  • MAGE-A4 TCR a mRNA and MAGE-A4 TCR jS mRNA were introduced into this Itoda vesicle in the same manner as for ms69 cells.
  • RNA-introduced CD8-positive cells Cultured on day.
  • the cells thus obtained are referred to as RNA-introduced CD8-positive cells.
  • HLA-A2402 heavy chain C-terminal polypeptide with sequence added as a substrate for piotin protein ligase BirA and j82-microglobulin were expressed in E. coli as insoluble inclusion bodies. The inclusion bodies were refolded in vitro in the presence of P143 peptide to form HLA-A2402 / j82-microglobulin / P143 complex. Piotin protein ligase (Avidity) was allowed to act on the resulting complex, and tetramer was prepared using phycoerythrin-labeled streptavidin (Streptavidin-PE, manufactured by Invitrogen).
  • RNA-introduced ms69 cells and RNA-introduced CD8-positive cells were reacted with 20 ⁇ g ZmL tetramer at 37 ° C for 30 minutes, and then reacted with Tricolor-labeled mouse anti-human CD8 antibody (manufactured by Caltag) for 15 minutes on ice. It was. After washing the cells, flow cytometry analysis was performed using FACS Calibur (BD). ms69 cells and CD8 positive cells were used as negative subjects, and # 2-28 cells were used as positive subjects.
  • the tetramer positive rate was 0.660% in the negative-introduced ms69 cell compared to 66.65% in the RNA-introduced ms69 cell, and 23 in the negative control CD8-positive cell. It was 34.4% for RNA-introduced CD8-positive cells compared to 1%.
  • Fig. 1 and Fig. 2 show the results of tetramer assembly of ms69 cells and CD8 positive cells into which RNA was introduced. From this result, it was revealed that the gene products of TCR a chain and TCR ⁇ chain cloned from # 2-28 cells recognize the complex of P143 and HLA- ⁇ 2402.
  • ELISPOT Target cells were prepared as follows.
  • T2 (hereinafter abbreviated as ⁇ 2 cells) ⁇ ⁇ ⁇ ⁇ 2— ⁇ 2 4 cells (Ikuta Y. et al., Blood, 99 ⁇ , 3717) — Page 3724 (2002) was cultured in RPMI1640 medium containing 10% urine fetal serum (FCS), and the supernatant was discarded after centrifugation. The cells were then washed by suspending in RPMI 1640 medium and centrifuging and discarding the supernatant. After washing the cells three times in this manner, the cells were suspended in 1 mL of 10 / z M P143 or P715-containing or peptide-free RPMI1640 medium, and 3% in the presence of 5% CO.
  • the cells were collected by centrifugation, suspended in RPMI1640 medium, and then centrifuged to wash the cells.
  • the cells were suspended in RPMI1640 medium so that 5 ⁇ 10 4 cells were 100 ⁇ L, and used as target cells for ELISPOT assembly.
  • Multi-screen ⁇ 96-well filtration and anti-human interferon ⁇ antibody (1-D 1 ⁇ , manufactured by Mabtech) diluted with PBS to 2 ⁇ gZmL for each well of Atwell plate (Millipore) was dispensed in 100 L aliquots and allowed to stand at 4 ° C for 1 kg. After discarding the solution in the well, 100 L of RPMI1640 medium was added to each well, and the plate was washed by discarding the solution for 15 minutes. After further washing once, RPMI1640 medium containing 10% AB type serum was placed in each well and allowed to stand at 37 ° C for 1 hour for blocking. After blocking, the supernatant was aspirated and 100 ⁇ L of RPMI1640 medium was added to each well to wash the plate. This washing operation was performed three times in total.
  • Example 2 (a) RNA-introduced ms69 cells prepared in (2), (b) Negative control ms69 cells, and (c) Positive target # 2-28 cells and Example 2- (2)
  • the (d) RNA-introduced CD8-positive cells and the (e) negative control CD8-positive cells prepared in (1) were collected by centrifugation and washed once with RPMI1640 medium.
  • (A), (b) and (c) are 2000, 1000 or 500 Z100, (d) and (e) are suspended in RPMI1640 medium so that 2 x 10 4 Z100 ⁇ L. It became turbid and dispensed 100 L at a time to the wells of the washed plate prepared in Example 2- (4). To this, add 100 L of the above target cell suspension and grow at 37 ° C for 20 hours in the presence of 5% CO.
  • Figure 3 shows the results of ELISPOT assembly when CTL clone is used as effector cells.
  • Ms 69 cells are the target cells pulsed with P715, and # 2-28 cells are the target cells pulsed with 1 3 143.
  • RNA introduced ms69 cells also to form a number of interferon ⁇ positive spots relative to target cells of deviation.
  • Figure 4 shows the results of ELISPOT assembly when CD8 positive cells were used as effector cells. RNA-introduced CD8 positive cells specifically formed interferon gamma positive spots on target cells pulsed with 143.
  • ms69 cells, RNA introduced ms69 cells, # 2-28 cells, CD8 positive cells and RNA introduced CD8 cells were washed twice with RPMI1640 medium, 2 106 111 Re 1 106 111 Le 5 X 10 5 cells ZmL, 2. 5 X 10 5 cells ZmL, 1. 25 X 10 5 cells ZML and, 6
  • the suspension was suspended in 10% FCS-containing RPMI1640 medium (effector cells) at 25 ⁇ 10 4 ZmL, and 100 ⁇ L thereof was placed in a well of a 96-well V-bottom plate.
  • Target cells were suspended in RPMI1640 medium containing 10% FCS so that the concentration was 1 ⁇ 10 6 ZmL, and 100 ⁇ L was added to each well containing effector cells. After reacting at 37 ° C for 4 hours, the supernatant was collected by centrifugation, and the amount of 51 Cr released in 100 ⁇ L supernatant was measured using a gamma counter. Specific cytotoxic activity was calculated from the measured radioactivity by the following formula.
  • the minimum release value is the 51 Cr release amount in the well where no effector cells are added, and indicates the natural release amount of 51 Cr having the target cell strength.
  • the maximum release value indicates the amount of 51 Cr released when Triton X-100 is added to target cells and destroyed.
  • FIG. 5 shows the cytotoxic activity of the CTL clone against T2-A24 cells pulsed with P715 (a), T2-A24 cells pulsed with P143 (b), and T2-A2 cells pulsed with P143 (c).
  • the horizontal axis represents the effector cell number Z target cell number ratio (EZT ratio), and the vertical axis represents specific cytotoxic activity (%).
  • ms69 cells showed only cytotoxic activity on T71-A24 cells pulsed with P71 5, while # 2-28 cells showed cytotoxic activity only on D2-2-824 cells pulsed with 1 3 143, whereas RNA was introduced The ms69 cells showed cytotoxic activity against both target cells.
  • FIG. 6 shows CD8 cells versus T143 cells pulsed with P143 (a), peptide-pulsed! /, NA! /, T2-A24 cells (b) and T2-A24 cells (c) pulsed with P143. It is a figure which shows a cytotoxic activity, a horizontal axis
  • HLA-A24-restricted CTL-derived TCR a-chain and j8-chain polypeptides against MAGE-A4 and nucleic acids encoding the polypeptides are provided. These nucleic acids are directed against cells presenting HLA-A24 molecules and MAGE-A4 peptides.
  • FIG. 1 is a diagram showing the results of tetramer assembly of # 2-28 cells, RNA-introduced ms69 cells and ms69 cells.
  • FIG. 2 shows the results of tetramers of # 2-28 cells, RNA-introduced CD8-positive cells and CD8-positive cells.
  • FIG. 3 shows the results of ELISPOT assay for # 2-28 cells, RNA-introduced ms69 cells and ms69 cells.
  • FIG. 4 shows the results of ELISPOT assay for RNA-introduced CD8-positive cells and CD8-positive cells.
  • FIG. 5 is a graph showing the cytotoxic activity of # 2-28 cells, RNA-introduced ms69 cells and ms69 cells.
  • FIG. 6 is a graph showing the cytotoxic activity of # 2-28 cells, RNA-introduced CD8-positive cells and CD8-positive cells.
  • SEQ ID NO: ll 5'—RACE primer.
  • Synthetic primer 3 TRbeta— C2 to amplify a DNA fragment encoding TCR beta chain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 配列表の配列番号5で示されるアミノ酸配列からなるポリペプチド又は該配列に1~数個のアミノ酸残基の欠失、不可、挿入もしくは置換がなされたアミノ酸配列からなるポリペプチドを有し、かつ配列表の配列番号2で示されるアミノ酸配列からなるポリペプチドとともにHLA-A24拘束性のMAGE-A4143-151特異的なT細胞レセプターを構成しうるポリペプチド。

Description

T細胞レセプター及び該レセプターをコードする核酸
技術分野
[0001] 本発明は、 MAGE—A4 ペプチドに特異的な HLA—A2402拘束性の Τ細
143- 151
胞レセプター (TCR) α鎖を構成するポリペプチド、該ポリペプチドをコードする核酸 、前記 TCRの β鎖を構成するポリペプチド、該ポリペプチドをコードする核酸、前記 a鎖を構成するポリペプチドと β鎖を構成するポリペプチドで構成される Τ細胞レセ プター、前記核酸を含んでなる組換え核酸、該組換え核酸を含むベクター、前記核 酸又はベクターを導入された細胞、並びに前記のベクター又は細胞を有効成分とし て含んでなる制がん剤に関する。
背景技術
[0002] 細胞傷害性 Τ細胞 (CTL)には、主要組織適合性抗原遺伝子複合体 (major hist ocompatibility gene complex ;以下、 MHCと略す)にコードされる主要組織適 合性抗原分子(MHC分子、ヒトの場合 human leukocyte antigenと呼ばれ、以 下、 HLAと略す)と抗原ペプチドとの結合物である複合体を特異的な T細胞レセプタ 一 (T cell receptor ;以下、 TCRと略す)によって認識し、その複合体を細胞表面 に提示して 、る細胞を傷害することのできるものがある。したがって該細胞傷害反応 が成立するためには、 1)標的細胞の HLAクラス Iのタイプに特異的な TCRを持った CTLが存在すること、 2) HLA分子に結合して形成される複合体が TCRによる認識 を受けることができるような抗原ペプチドが存在すること、が必要である。
[0003] このような抗原ペプチドは、例えば哺乳類細胞の細胞内で合成された抗原等が細 胞質でプロセスされ、小さいペプチドに分解されることにより生じ、更に HLA分子と会 合し、細胞表面に提示される。すなわち、多くのサブユニットよりなるプロテアソーム複 合体の中で、タンパク質は 8〜15アミノ酸よりなるペプチドに分解され、そのうちのい くつかが TAPトランスポーターにより細胞質力 小胞体に運ばれる。これらのぺプチ ドは小胞体でクラス IZ j8 2ミクログロブリン(microglobulin)のへテロダイマーに結合 できれば、 3分子複合体として安定化され、ゴルジ装置を通って、細胞表面に輸送さ れる。腫瘍関連抗原又は腫瘍特異的抗原タンパク質を発現している腫瘍細胞は、 T 細胞に認識される HLA拘束性抗原ペプチドを細胞表面に提示できるはずである。
[0004] HLAクラス I分子は主として HLA— A、 一 B、 一Cがあり、これらに結合して提示さ れる抗原ペプチドは、 8〜10個のアミノ酸よりなり、更に各々の HLA分子によって異 なる一定の構造上の特徴があることが知られている。例えば、世界的に最も頻度の高 い HLA— A2. 1分子に結合するペプチドとしては N末端より 2番目に Leu、且つ C末 端に Leu又は Valを有する 9〜10個のアミノ酸よりなるペプチドが最も良く知られてい るものである。また、 日本人を始めとするアジアの人種に多い HLA—A24分子に結 合するペプチドは N末端より 2番目に Tyr、 Phe、 Met, Trpのいずれ力、且つ C末端 に Leu、 Ile、 Trp、 Pheのいずれかを有する 9〜10個のアミノ酸よりなるものであるぺ プチドが最もよく知られて 、る。
[0005] 現在までに抗原ペプチドが同定されて 、る腫瘍抗原としては、 HLA— A1に対する MAGE— Al、 MAGE— A3、 MAGE— A4、 HLA— A2. 1に対する MAGE— A3 、 MARTI、チロシナーゼ、 gplOO、 HER2Zneu、 CEA等、 HLA— Cwlに対する MAGE— A3、 HLA— B44に対する MAGE— A3、 HLA— B37に対する MAGE —A4、 HLA— A24に対する MAGE— Al、 MAGE—A2、 MAGE— A3、 MAGE — A4、 NY— ESO— 1、 CEA、 HER2/neu,チロシナーゼ、 j8—力テ-ン(cateni n)等がある。これらの中の多くは、まず腫瘍細胞を認識するクラス I拘束性の CTLを 株化し、この CTLの認識する腫瘍抗原を同定し、続いて遺伝子工学的方法により腫 瘍抗原タンパク質中最小単位を見出し、更に HLAクラス I分子への結合モチーフに 関する情報を基に最小単位中のペプチドが見出されている。また、まず前記の HLA クラス I分子結合ペプチドに共通したモチーフ構造を基に、腫瘍抗原タンパク質中の HLAクラス I分子結合ペプチドを見出し、続ヽて抗原提示細胞を利用して CTLを誘 導可能なものを選択した後、最終的に腫瘍細胞に対して傷害性を有する CTLが誘 導できて 、るかどうかにより抗原ペプチドが決定されて 、る。
[0006] 一方、 HLAクラス I分子はいくつかのサブタイプに分類される力 その保有サブタイ プの種類は人種間で大きく異なり、世界的には HLA— A2が最も多ぐ白色人種の 4 5%が1¾^ー八2陽性でぁる。そして、この HLA—A2拘束性の抗原ペプチドの同定 が最も進んでいる。 日本人では HLA—A2陽性は 40%を占める力 そのサブタイプ を見ると白色人種と同じ HLA— A*0201陽性は 20%で、残りの多くは A*0206陽性 である。これらのサブタイプへの結合ペプチドは異なり、主として研究されている HL 八ー八2は1¾^\ー八*0201でぁる。一方、日本人では HLA—A24陽性が 60%以上 を占めており、アジア人種では他の人種に比べて HLA— A24陽性率が高い。従つ て、 HLA—A24拘束性の抗原ペプチドの発見はアジア人種、特に日本人において 腫瘍細胞特異的に作用する CTLを誘導する事による、腫瘍治療に有用な CTLの提 供に重要な役割を示す。
[0007] 同じ抗原でも、 HLAの違いに基づ 、て抗原ペプチドが異なるため、抗原ペプチド を利用した CTLの誘導は煩雑である。この問題を解決するために色々な工夫がなさ れているが、まだ満足できる成果は得られていない。工夫されていることの一つは、 患者自身(自家)由来の抗原提示細胞に抗原遺伝子を形質導入し、これを利用した T細胞誘導方法である。抗原提示細胞として、 B細胞、マクロファージ、榭状細胞が 検討され、プロフェッショナル抗原提示細胞として知られて 、る榭状細胞を中心とし て、ワクチンのアジュバント等として使用する臨床試験が実施されている。しかし、こ れらの抗原提示細胞は、免疫誘導に必要な量を準備するのに労力を要することが課 題である。 B細胞は EBウィルスによる不死化による大量調製が可能である力 ウィル スを使用している点力も安全性上問題がある。
[0008] 腫瘍抗原特異的 TCR遺伝子としては、例えば HLA— A2拘束性の MART1特異 的 TCR〔非特許文献 1〕、 MAGE— A3特異的 TCR〔非特許文献 2〕、 CAMEL (CT L recognized antigen on melanoma)特異的 TCR〔非特許文献 3〕、 gp 100 特異的 TCR〔非特許文献 4〕、 NY— ESO— 1特異的 TCR〔非特許文献 5〕、 HLA— 24拘束性の WT1 (Wilms tumor 1)特異的 TCR〔非特許文献 6〕、 HLA— Cwl6 拘束性の MAGE— A1特異的 TCR〔非特許文献 7〕等の遺伝子がクローユングされ ている。
[0009] TCR遺伝子を任意の CTLに導入することにより目的の抗原に特異的な細胞傷害 活性を付与することが期待できる。これに基づき、 MART1〔非特許文献 8〕、 gplOO 〔非特許文献 4〕及び mHAG HA- 2抗原〔非特許文献 9〕を標的とした TCR遺伝 子による遺伝子治療が試みられている。
[0010] MAGE— A4はがん精巣抗原ファミリーの MAGEサブファミリーに属する抗原であ り、様々ながんにお 、て発現して 、る上に高 、抗原性を有する(食道がんの 60%、 頭頸部がんの 50%、非小細胞肺がんの 24%、胃がんの 33%及びホジキン病の 21 %において陽性)ことから、がんワクチン療法の標的抗原として有望視されている。 H LA—A24拘束性の MAGE—A4 ペプチド特異的 CTLクローンが取得されて
143- 151
いる〔非特許文献 10〕。
非特許文献 1 :カンサー リサーチ(Cancer Res. )、第 54卷、第 5265— 5268頁( 1994)
非特許文献 2 :アンチカンサー リサーチ(Anticancer Res. )、第 20卷、第 1793 — 1799頁(2000)
非特許文献 3 :インターナショナル ジャーナル ォブ カンサー(Int. J. Cancer) 、第 99卷、第 7— 13頁(2002)
非特許文献 4:ジャーナル ォブ ィムノロジー、(J. Immunol. )第 170卷、第 218 6— 2194頁(2003)
非特許文献 5 :ジャーナル ォブ ィムノロジー、第 174卷、第 4415— 4423頁(200 5)
非特許文献 6 :ブラッド (Blood)、第 106卷、第 470— 476頁(2005)
非特許文献 7 :インターナショナル ィムノロジー(Int. Immunol. )、第 8卷、第 146
3— 1466頁(1996)
非特許文献 8 :ジャーナル ォブ ィムノロジー、第 163卷、第 507— 513頁(1999) 非特許文献 9 :ブラッド(Blood)、第 103卷、第 3530— 3540頁(2003)
非特許文献 10 :タリ-カル カンサー リサーチ(Clin. Cancer Res. )、第 11卷、 第 5581— 5589頁(2005)
発明の開示
発明が解決しょうとする課題
[0011] 腫瘍関連抗原に対する HLA—A24拘束性の TCR遺伝子としては、 WT1に対す るものが知られている力 HLA-A2. 1に比べると未だにその解析は遅れており、了 ジァ人種、特に日本人の腫瘍治療に有用な TCR遺伝子の提供が不可能である。し たがって、種々の腫瘍抗原に対する HLA— A24拘束性の新たな TCR遺伝子の発 見が望まれる。
[0012] 生体内で TCRを介した細胞傷害活性を担って ヽるのは抗原特異的な TCRを持つ CTLであるが、これを体外で増殖させてがん等の疾患の治療に使用するには、これ らの細胞の取り扱い、例えば採取や拡大培養に問題を有している。したがって、所望 の抗原特異性を有する CTLを大量かつ容易に調製するための、腫瘍抗原等に特異 的な TCRの遺伝子を提供することが待ち望まれて 、る。
課題を解決するための手段
[0013] 本発明者らは、腫瘍抗原に対する CTLについて鋭意研究した結果、腫瘍抗原であ る MAGE— A4に対する HLA— A24拘束性の CTLから TCR a鎖及び j8鎖をコー ドする cDNAをクローユングすることに成功した。さらに、 HLA— A24分子を発現す る CTL等の細胞にこれらの cDNAから調製した RNAを導入することにより、これらの 細胞が HLA— A24拘束性の MAGE— A4由来ペプチド特異的な細胞傷害性を示 すことを見出し、本発明を完成した。
[0014] 本発明の第 1の態様は、 HLA— A24拘束性の、 MAGE— A4 特異的な T細
143- 151
胞レセプターを構成するポリペプチド、ならびに前記レセプターの可変領域のポリべ プチドを有するポリペプチドに関する。
[0015] 本発明の第 2の態様は、本発明の第 1の態様のポリペプチドにより構成されているこ とを特徴とする、 HLA— A24拘束性の、 MAGE— A4 特異的な TCRに関す
143- 151
る。
[0016] 本発明の第 3の態様は、 HLA— A24拘束性の、 MAGE— A4 特異的な TC
143- 151
Rをコードする核酸、ならびに前記レセプターの可変領域のポリペプチドを有するポリ ペプチドをコードする核酸に関する。
[0017] 本発明の第 4の態様は、本発明の第 3の態様の核酸を含んでなる組換え核酸に関 する。
[0018] 本発明の第 5の態様は、本発明の第 4の態様の組換え核酸が挿入されてなるベタ ターに関する。 [0019] 本発明の第 6の態様は、本発明の第 3の態様の核酸が導入されている、又は第 5の 態様のベクターで形質転換されて ヽることを特徴とする、 HLA— A24拘束性の MA GE-A4 特異的な TCRを発現する細胞に関する。
143- 151
[0020] 本発明の第 7の態様は、本発明の第 6の態様の細胞又は第 5の態様のベクターを 有効成分として含有することを特徴とする制がん剤に関する。
[0021] 本発明の第 8の態様は、本発明の第 7の態様の制がん剤を投与する工程を包含す る、癌の治療方法に関する
発明の効果
[0022] 本発明により、 HLA—A24拘束性の MAGE—A4 特異的な TCRの α鎖及
143- 151
び j8鎖をコードする核酸が提供される。また、 HLA— A24拘束性ではない、または MAGE-A4 特異性を有しな ヽ T細胞をエフェクター細胞として使用する腫瘍
143- 151
細胞傷害方法が提供される。前記のエフェクター細胞は、例えばがんの治療におい て有用である。
発明を実施するための最良の形態
[0023] 本発明の第 1の態様は、 HLA— A24拘束性の、 MAGE— A4 特異的な T細
143- 151
胞レセプターを構成するポリペプチドであって、前記レセプターの可変領域のポリべ プチドを有するものに関する。前記のポリペプチドには、 TCR a鎖及び TCR β鎖の 2種があり、両鎖が組み合わされて HLA— Α24拘束性の MAGE— Α4 特異
143- 151 的な TCRを構成する。
[0024] 前記 α鎖ポリペプチドは、 j8鎖とともに HLA— Α24拘束性の MAGE— Α4
143- 151 特異的な TCRを形成しうるものであって、 α鎖可変領域のポリペプチドとして、配列 表の配列番号 5に示されるアミノ酸配列のポリペプチド;配列表の配列番号 5に示さ れるアミノ酸配列において、 1〜数個のアミノ酸残基の欠失、付加、挿入又は置換を 有するポリペプチド;から選択されるものを有するものを意味する。本発明における、 TCRの α鎖由来のポリペプチドは、前記の α鎖可変領域のアミノ酸配列もしくはこれ に類似した配列を必須の構成成分として含有するものである。定常領域を含有する、 a鎖全体のアミノ酸配列(配列番号 1)もしくはこれに類似した配列、すなわち 1〜数 個のアミノ酸残基の欠失、付加、挿入又は置換を有するアミノ酸配列力 なるポリべ プチドは本発明の好適な態様の一つである。
[0025] また、前記 β鎖ポリペプチドは、 a鎖とともに HLA—A24拘束'性の MAGE—A4
14 特異的な TCRを形成しうるものであって、 13鎖可変領域のポリペプチドとして、
3- 151
配列表の配列番号 7に示されるアミノ酸配列のポリペプチド;配列表の配列番号 7に 示されるアミノ酸配列において、少なくとも 1つのアミノ酸残基の欠失、不可、挿入又 は置換を有するポリペプチド;力 選択されるものを有するものを意味する。本発明に おける、 TCRの β鎖由来のポリペプチドは、前記の β鎖可変領域のアミノ酸配列もし くはこれに類似した配列を必須の構成成分として含有するものである。定常領域を含 有する、 j8鎖全体のアミノ酸配列(配列番号 2)もしくはこれに類似した配列、すなわ ち 1〜数個のアミノ酸残基の欠失、付加、挿入又は置換を有するアミノ酸配列からな るポリペプチドは本発明の好適な態様の一つである。
[0026] ここで、「HLA—A24拘束性の MAGE—A4 特異的な TCR」とは、配列表
143- 151
の配列番号 9に示されるアミノ酸配列を有するペプチド (MAGE— A4 、以下、
143- 151
P143と略す)と HLA— A24分子との複合体を特異的に認識し、かつ、該 TCRが T 細胞表面に存在するときに該 T細胞に標的細胞に対する HLA— A24拘束性の P 14 3特異的な細胞傷害活性を付与しうるものである。上記複合体を特異的に認識するこ とは公知の方法によって確認すればよぐ好適な方法として、例えば HLA— A24分 子と P143を用いたテトラマー解析および ELISPOTアツセィが挙げられる。 ELISP OTアツセィを行うことにより、該 TCRを細胞表面に発現している T細胞が TCRにより 標的細胞を認識し、そのシグナルが細胞内に伝達されたことを確認することができる 。上記複合体が T細胞表面に存在するときに該 T細胞に細胞傷害活性を付与しうる ことの確認も公知の方法によればよぐ好適な方法として、例えばクロムリリースアツセ ィなどの HLA—A24陽性標的細胞に対する細胞傷害活性の測定が挙げられる。
[0027] 本発明のポリペプチドは、後述する本発明の核酸を使用して遺伝子工学的に生産 することができる。例えば、前記の α鎖ポリペプチドをコードする核酸、 j8鎖ポリぺプ チドをコードする核酸の両方を細胞に導入して α鎖、 j8鎖ポリペプチド発現させるこ とにより、当該細胞に HLA— A24拘束性の、 MAGE— A4 特異的な TCRを
143- 151
発現させることができる。 [0028] 本発明の第 2の態様は、本発明のポリペプチドにより構成されていることを特徴とす る、 HLA— A24拘束性の、 MAGE— A4 特異的な TCRに関する。前記の TC
143- 151
Rは、特に本発明を限定するものではないが、例えば後述の本発明の核酸を使用し て、前記核酸にコードされているポリペプチドを人為的に発現させることにより、天然 にお 、て付随して 、る生体成分とは分離された形態で調製することができる。
[0029] 本発明の第 3の態様は、 HLA— A24拘束性の、 MAGE— A4 特異的な TC
143- 151
Rまたはその可変領域をコードする核酸に関する。
[0030] 本発明の核酸とは、 TCR a鎖可変領域ポリペプチドを有するポリペプチドをコード する核酸または TCR β鎖可変領域ポリペプチドを有するポリペプチドをコードする核 酸であって、それぞれ、 TCR β鎖ポリペプチドをコードする核酸または TCR a鎖ポリ ペプチドをコードする核酸とともに細胞に導入した場合に HLA— A24ZMAGE— A4
143- 151複合体特異的に結合する分子が前記の細胞で発現される。なお、 TCR a 鎖可変領域ポリペプチドを有するポリペプチドをコードする核酸には TCR a鎖ポリべ プチドをコードする核酸、 TCR o;鎖可変領域ポリペプチドをコードする核酸力 TCR β鎖可変領域ポリペプチドを有するポリペプチドをコードする核酸には TCR |8鎖ポリ ペプチドをコードする核酸、 TCR |8鎖可変領域ポリペプチドをコードする核酸が含ま れ、 TCR a鎖ポリペプチドをコードする核酸と TCR β鎖ポリペプチドをコードする核 酸、 TCR a鎖可変領域ポリペプチドをコードする核酸と TCR β鎖可変領域ポリぺプ チドをコードする核酸、 V、ずれの組み合わせを細胞に導入した場合にも HLA— Α24 拘束性の MAGE— Α4 特異的な TCRが前記の細胞で発現される。
143- 151
[0031] 本発明を限定するものではないが、前記 α鎖ポリペプチドをコードする核酸として は、配列表の配列番号 3に示される塩基配列からなる核酸、ならびに前記塩基配列 の核酸又はその相補鎖とストリンジェントな条件下にハイブリダィズしうる核酸が例示 される。 α鎖ポリペプチドの可変領域をコードする核酸としては、配列表の配列番号 6に示される塩基配列力 なる核酸、ならびに前記塩基配列の核酸又はその相補鎖 とストリンジェントな条件下にハイブリダィズしうる核酸が例示される。また、前記 j8鎖 ポリペプチドをコードする核酸としては、配列表の配列番号 4に示される塩基配列か らなる核酸、ならびに前記塩基配列の核酸又はその相補鎖とストリンジ ントな条件 下にハイブリダィズしうる核酸が例示される。 β鎖ポリペプチドの可変領域をコードす る核酸としては、配列表の配列番号 8に示される塩基配列からなる核酸、ならびに前 記塩基配列の核酸又はその相補鎖とストリンジェントな条件下にハイブリダィズしうる 核酸が例示される。
[0032] ここで、ストリンジェントな条件としては、 1989年、コールド 'スプリング'ノヽーバ一'ラ ボラトリー発行、 J.サムブルック (J. Sambrook)ら編集、モレキユラ一'クロー-ング: ァ 'ラボラトリー 'マ-ユアノレ第 2版 (Molecular Cloning : A Laboratory Man ual 2nd ed. )等に記載された条件が例示される。具体的には、例えば 0. 5% S DS、 5 Xデンハルツ溶液、 0. 01 % 変性サケ精子 DNAを含む 6 X SSC中、プロ一 ブとともに 65°Cにて 12〜20時間インキュベートする条件が挙げられる。プローブに ハイブリダィズした核酸は、例えば 0. 5% SDSを含む 0. 1 X SSC中、 37°Cで洗浄 して非特異的に結合したプローブを除去した後に検出することができる。
[0033] 本明細書における核酸とは、 1本鎖あるいは 2本鎖の、 DNA、 RNAあるいは DNA —RNAキメラ、又は DNA—RNAヘテロ 2本鎖を意味する。核酸の全部又は一部が RNAである場合は、 RNA部分の配列については、本願明細書に記載の配列表に おける Tを Uと読み替えることとする。本発明の好適な態様としては、本発明の TCR a鎖ポリペプチドをコードする核酸または TCR a鎖可変領域ポリペプチドをコードす る核酸と、 TCR β鎖ポリペプチドをコードする核酸または TCR β鎖可変領域ポリべ プチドをコードする核酸の、 2種の核酸の組合せが例示される。前記の核酸の組み合 わせは、細胞において HLA—A24拘束性の、 MAGE—A4 特異的な TCRを
143—151
発現させる目的に有用である。
[0034] 本発明の核酸は、例えば次のようにして得ることができる。 HLA—A24拘束性の Μ AGE—A4 特異的な CTL、例えば非特許文献 10に記載のクローン # 2— 28
143- 151
力ゝら常法により RNAを調製し、 cDNAを合成する。これを铸型とし、 TCR o;鎖及び β鎖の定常領域をコードする核酸に相補的なアンチセンスプライマーを用いて 5 '— ラビッド アンプリフィケーシヨン ォブ cDNA エンド (RACE)を行う。 5 '—RACE は公知の方法により行えばよぐ例えば CapFishing Full-length cDNA Pre mix Kit (シージーン社製)のような市販のキットを用いて行うことができる。前記手法 により増幅された DNAをプラスミドベクターに組み込み、大腸菌を形質転換する。形 質転換体力ゝらプラスミドを調製し、挿入された DNAの塩基配列を決定する。
[0035] 得られた塩基配列と既知の TCR a鎖及び /3鎖の遺伝子の配列を比較することによ り、 5 '— RACEにより増幅された、 TCR遺伝子とは無関係の DNAを除外することが できる。また、 PCRの際に塩基配列に変異が生じた DNAが増幅される可能性がある ので、本発明では、複数の大腸菌クローン力も配列を決定し、そのコンセンサス配列 カゝら推定される前記 CTLが本来有する TCR a鎖遺伝子及び β鎖遺伝子の配列を 使用することが好ましい。
[0036] 配列表の配列番号 3で示される塩基配列を有する、配列番号 1のアミノ酸配列の Τ CR a鎖をコードする核酸、及び、配列表の配列番号 4で示される塩基配列を有する 、配列番号 2のアミノ酸配列の TCR |8鎖をコードする核酸は、上記の方法により得ら れたものである。
[0037] 本発明には、上記の方法により得られた DNAを使用してもよいし、同じ配列を有す る核酸を化学合成して使用してもょ ヽ。
[0038] 本発明の核酸のうち、 TCRを構成する各鎖の可変領域に相当する部分をコードす る核酸は、他の機能性分子、例えば抗体やレセプターをコードする核酸のうちの、定 常領域や細胞内領域をコードする領域に接続させることができる。こうして構築された 新規核酸は、 HLA— A24拘束性の MAGE— A4 特異的な結合活性が付与
143- 151
された、キメラ機能性分子の製造に有用である。
[0039] 本発明の第 4の態様は、本発明の核酸を含んでなる組換え核酸である。前記の組 換え核酸とは、特に本発明を限定するものではないが、本発明の核酸を細胞に導入 した場合に前記核酸にコードされて 、るポリペプチドの翻訳を可能とする種々の要素 を付加された核酸が例示される。
[0040] DNAからなる本発明の組換え核酸としては、プロモーター(例えば、ホスホダリセリ ン酸キナーゼプロモーター、 Xistプロモーター、 j8—ァクチンプロモーター、 RNAポ リメラーゼ IIプロモーター等の哺乳類由来プロモーター、 SV40初期プロモーター、 サイトメガロウィルスプロモーター、単純へルぺスウィルスのチミジンキナーゼプロモ 一ター、各種レトロウイルスの LTRプロモーター等のウィルス由来プロモーター)、タ ーミネーター、ェンノ、ンサ一やそのほかの転写制御領域を有するものが例示される。 さらに、第 1の発明のポリペプチドの翻訳に寄与する配列 (Kozak配列等)をコードし ていてもよい。前記の各要素が本発明の核酸からの RNAの転写、ポリペプチドの翻 訳に適するよう、機能的に連携する位置に配置されることは当然である。なお、組換 え核酸が RNAである場合には転写の制御に関する要素は不要である。
[0041] 本発明の組換え核酸は後述するようにベクターに組み込んで使用する他、 RNAで ある本発明の核酸を直接細胞に導入することにより TCRの発現に使用することもでき る。 RNAの導入方法としては、公知の方法を用いれば良いが、例えば電気穿孔法が 好適に使用できる。
[0042] 本発明の第 5の態様は、本発明の組換え核酸が少なくとも 1つ挿入されてなるベタ ターに関する。前記のベクターは所望の細胞に HLA—A24拘束性の、 MAGE— A 4 特異的な TCRを発現させるうえで有用である。特に好適な態様としては、 ( 1
143- 151
)本発明の TCR a鎖ポリペプチド又はその可変領域ポリペプチドを有するポリべプチ ドをコードする核酸を含有する組換え核酸と本発明の TCR β鎖ポリペプチド又はそ の可変領域ポリペプチドを有するポリペプチドをコードする核酸を含有する組換え核 酸の両方が挿入されてなるベクター、および(2)本発明の TCR o;鎖ポリペプチド又 はその可変領域ポリペプチドを有するポリペプチドをコードする核酸を含有する組換 え核酸が挿入されてなるベクターと本発明の TCR β鎖ポリペプチド又はその可変領 域ポリペプチドを有するポリペプチドをコードする核酸を含有する組換え核酸が挿入 されてなるベクターの組み合わせが例示される。前記の(1)の態様において、 TCR a鎖ポリペプチドをコードする核酸と TCR β鎖ポリペプチドをコードする核酸はそれ ぞれ別のプロモーターにより転写、翻訳されてもよぐ内部リボソームエントリー部位 (I RES)を使用して一つのプロモーターで転写、翻訳されてもょ 、。
[0043] 本発明に使用されるベクターには特に限定はなぐプラスミドベクター、ウィルスべク ターなど公知のベクターより目的に応じて適当なものを選択し、使用すればよい。た とえば、前記の組換え核酸をプラスミドベクターに組み込んだ場合には、細胞への導 入にはリン酸カルシウム法、カチォニック'リピド法、リボソーム法、エレクト口ポーレー シヨン法等の遺伝子導入法を使用できる。 [0044] 細胞に感染して外来 DNAを導入する能力を有するウィルスベクターは本発明に好 適である。本発明には、レトロウイルスベクター(レンチウィルスベクターゃシユードタ ィプベクターを含む)、アデノウイルスベクター、アデノ随伴ウィルスベクター、ヘルべ スウィルスベクター等の公知のウィルスベクターを使用することができる。本発明の組 換え核酸を挿入されたウィルスベクターは、各ウィルスに適した条件で目的の細胞に 感染させ、本発明の核酸を導入させることができる。挿入された外来の核酸を染色体 上に組み込む能力を有するレトロウイルスベクターは本発明に好適である。
[0045] 本発明の第 6の態様は、本発明の核酸が導入されていることを特徴とする、 HLA- A24拘束性の MAGE— A4 特異的な TCRを発現する細胞に関する。ここで、
143- 151
本発明の核酸は、前記の本発明の組換え核酸もしくは本発明のベクターとして所望 の細胞に導入されていてもよぐ本発明の細胞の好適な態様としては、 TCR o;鎖ポリ ペプチド又はその可変領域ポリペプチドを有するポリペプチドをコードする核酸と TC R β鎖ポリペプチド又はその可変領域ポリペプチドを有するポリペプチドをコードする 核酸の両方が導入されて ヽる細胞や本発明のベクターで形質転換されて!ヽる細胞 が例示される。さらに、前記の核酸が染色体 DNA上に組み込まれている細胞も本発 明に包含される。
[0046] TCRは Τ細胞の抗原の認識に重要な役割を示すことから、好適な本発明の態様は 本発明の核酸が導入された Τ細胞である。生体より採取された Τ細胞に、前記の手法 により本発明の核酸を導入することにより、 HLA— Α24拘束性の、 MAGE— Α4
143- 特異的な TCRを発現する T細胞を得ることができる。さらに、本発明の好適な態様
151
として、 T細胞に分ィ匕しうる細胞に前記の核酸を導入し、その後に細胞を T細胞に分 ィ匕させてもよい。 T細胞に分化しうる細胞としては、例えば造血幹細胞、リンパ球系共 通前駆細胞及び τ細胞前駆細胞が例示される。なお、核酸が導入される導入対象細 胞は単一の細胞種に分画されて!/、る必要はなぐ前記の導入対象細胞を含有する 細胞集団を核酸導入の対象とすることができる。
[0047] 前記の、導入対象細胞を含有する細胞集団は、ヒトもしくは非ヒト哺乳動物の例え ば末梢血、骨髄および臍帯血より採取すればよい。必要に応じ、 T細胞および Zまた は T細胞に分ィ匕しうる細胞を分画もしくは富化して本発明に使用することができる。本 発明の TCR遺伝子導入細胞をがんなどの治療に用いる場合には、当該細胞集団は 治療対象となる患者本人、あるいは患者の HLAタイプと一致したドナー力 採取す ることが好ましい。
[0048] 本発明の核酸を細胞に導入する方法に特に限定はなぐ公知の方法を用いること ができる。本発明の核酸または本発明の組換え核酸を導入する場合には、例えばェ レクト口ポーレーシヨン法、リン酸カルシウム法、カチォニック'リピド法、リボソーム法を 使用する方法を用いることができる。市販のトランスフエクシヨン試薬〔例えば、 Transl Tシリーズ(ミラス社製)、 Genejuice (ノバジェン社製)、 Ribojuice (ノバジェン社製) 、 Lipofectamine (インビトロジェン社製)〕を用いることにより、簡便かつ高効率に核 酸を導入できる。本発明のベクターを用いる場合には、ベクターがプラスミドベクター であれば前記の核酸と同様の方法により細胞に導入することができる。一方、ベクタ 一がウィルスベクターであれば、各々のウィルスベクターに適した感染方法を選択す ればよい。特に、レトロウイルスベクターを用いる場合には、糸且換えフイブロネクチンフ ラグメントである CH— 296 (タカラバィォ社製)を用いることにより、各種細胞、特にレ トロウィルスベクターの感染効率が低 ヽ造血幹細胞に対して、高効率な遺伝子導入 が可能となる。
[0049] 本発明の第 7の態様は、本発明の第 5の態様のベクターまたは第 6の態様の細胞を 有効成分として含有することを特徴とする制がん剤に関する。本発明の第 6の態様に より得られた、本発明の核酸を導入された T細胞は、 HLA— A24分子と MAGE— A 4 ペプチドを提示する細胞に対して細胞傷害活性を示す。したがって、前記の
143- 151
本発明のベクターおよび細胞は MAGE— A4を発現する癌に対する制がん剤として 使用することができる。
[0050] 前記の、本発明の制がん剤は、本発明のベクターまたは細胞を有効成分として含 有することを特徴とする。該制がん剤は、前記のベクターまたは細胞を医薬的に許容 される希釈剤に懸濁した形で提供される。なお、ここで言う希釈剤とは例えば当該べ クタ一または細胞の保存に適した培地、生理食塩水、又はリン酸緩衝生理食塩水で ある。培地としては、特に限定するものではないが、 RPMI、 AIM— V、 X- VIVO 10 などの培地が一般的に挙げられる。また該制がん剤には医薬的に許容される担体、 保存剤等が安定化の目的で添加されていてもよい。なおここで言う担体とはヒト血清 アルブミン等である。本発明の細胞を有効成分として含有する制がん剤には前記の 細胞を好ましくは 1 X 104〜1 X 108個/ mL、より好ましくは 5 X 105〜5 X 107個/ m L含有させる。
[0051] 本発明の細胞を有効成分として含有する制がん剤をヒトに投与する場合には、例え ば注射器で投与することができ、成人 1人当たりの投与量としては、通常、前記の細 胞数が好ましくは 1 X 106〜1 X 101(>個となるようにする。なお、前記の値は目安であ り、これに限定されるものではない。また、本発明のベクターを有効成分として含有す る制がん剤の場合、投与経路やベクターの種類等により制がん剤中のベクター濃度 および投与量は大きく異なる。
[0052] 以上のとおり、本発明により癌の治療方法が提供される。前記治療方法は、本発明 の第 5の態様のベクターを有効成分として使用する場合には in vivo遺伝子治療で ある。一方、本発明の細胞を有効成分として使用する場合には、体外に摘出された 細胞に HLA— A24拘束性の、 MAGE— A4 特異的な TCRをコードする核酸
143- 151
を導入した後にこれを患者に投与する ex vivo治療である。本発明の治療方法は、 投与する個体 (たとえばヒト)由来の細胞、もしくは HLAのタイプが同一である個体由 来の細胞に核酸を導入して使用することができるため、毒性は特に認められない。 実施例
[0053] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に 限定されるものではない。
[0054] 実施例 1 MAGE— A4特異的 CTLクローン # 2— 28の TCR a鎖及び β鎖遺伝子 のクローニングと配列決定
( 1) # 2— 28からの RNA調製、 5, -RACE,クローユング
非特許文献 10記載の、 MAGE -A4 ペプチド (配列表の配列番号 9、以下
143- 151
P143と略す)をパルスした標的細胞に HLA— A2402拘束性に細胞傷害活性を示 す CTLクローンである # 2— 28細胞を培養し、 2 X 105個の細胞から RNeasy Mini Kit (キアゲン社製)を用いて RNAを抽出した。この RNAのうち 200ngを铸型に、 C apFishing Full-length cDNA Premix Kit (シージーン社製)を用いて、キッ トの取扱説明書に従って cDNAを合成した。なお、配列表の配列番号 10に示すオリ ゴ dTアダプター、 Reverse Transcriptase M— MLV (RNaseH free) (タカラノ ィォ社製)及び前記酵素に添付の反応用緩衝液を用いて逆転写反応を行った。
[0055] こうして得られた 1本鎖 cDNAを铸型に、上記キットを用いて PCRを行った。 5 '側プ ライマーとしてはキット添付の 5 '— RACEプライマー(配列番号 11)を、 3 '側プライマ 一としては TCR a鎖 C領域に特異的な 3— TR a Cプライマー(配列番号 12)、 TC R β鎖 C1領域に特異的な 3— TR β CIプライマー(配列番号 13)又は TCR β鎖 C2領域に特異的な 3— TR |8— C2プライマー(配列番号 14)を使用した。これらの 反応を、順に PCR— a、 PCR— β 1及び PCR— β 2と呼ぶ。各反応液を 94°Cで 3分 間保持したあと、 94°Cで 40秒間、 58°Cで 40秒間、 72°Cで 1分間のサイクルを 30回 繰り返し、 72°Cで 5分間保持した。各反応産物の一部をァガロースゲル電気泳動に より分析したところ、 PCR— α及び PCR— β 2において約 lkbの DNAが増幅してい た。
[0056] PCR- a及び PCR— β 2の残りの反応産物をァガロースゲル電気泳動によって分 離し、約 lkbの DNAをゲルから回収した。これらを pT7blue T— Vector (ノバジェ ン社製)とライゲーシヨンし、大腸菌 DH5 aを形質転換した。
[0057] (2)配列の決定、クラスタリング、クローンの選択
こうして得られた PCR— α及び PCR— β 2に由来する形質転換体からそれぞれ 96 個を選択してそのそれぞれからプラスミドを調製し、自動シークェンサ一を用いて DN Α塩基配列を決定した。配列データ力も pT7blueの配列を除去した後にクラスタリン グを行ったところ、最も大きいコンテイダのコンセンサス配列に含まれる最も長いォー プンリーディングフレームの配列は配列表の配列番号 3及び配列番号 4に示すとおり であった。これらの配列は順に、 # 2— 28細胞の TCR a鎖遺伝子及び β鎖遺伝 子の cDNA配列である。 cDNA塩基配列から推定される TCR a鎖及び /3鎖のアミ ノ酸配列を、配列表の配列番号 1及び配列番号 2に示す。上記のプラスミドの中から TCR a鎖遺伝子及び β鎖遺伝子 cDNAのコンセンサス配列を pT7blueの Τ7プロ モーターと同じ向きに持つプラスミドを選択し、それぞれ pBS MAGE TCR α及び pBS MAGE TCR j8と命名した。 [0058] 実施例 2 mRNAトランスフエクシヨンによる MAGE— A4特異的 TCRの発現
( l) mRNAの調製
制限酵素 EcoRIで消化することにより pBS MAGE TCR a及び pBS MAGE TCR j8を直鎖化した。これらを铸型とし、 mMESSAGE mMACHINE T7 Kit ( アンビオン社製)を用いて、キットの取扱説明書に従ってインビトロ転写を行った。そ の後、 Poly (A) Tailing Kit (アンビオン社製)を用いて、キットの取扱説明書に従 つて、前記転写された RNAにポリ(A)鎖を付カ卩した。こうして MAGE— A4 TCR a mRNA及び MAGE—A4 TCR jS mRN Aを得た。これらをリン酸緩衝生理食塩 水(PBS)に溶解し、使用時まで— 80°Cで保存した。
[0059] (2) mRNAトランスフエクシヨン
ms69細胞は SAGE715— 723ペプチド(配列表の配列番号 15、以下 P715と略 す)をパルスした標的細胞に HLA— A2402拘束性に細胞傷害活性を示す CTLクロ ーンであり、非特許文献 10記載の # 22細胞と同様の方法により得られた、 # 22とは 別のクローンである。 1 X 107個の ms69細胞を X—VIVO20培地(キャンプレックス 社製)で 2回洗浄した。実施例 2— ( 1)で調製した MAGE— A4 TCR a mRNA及 び MAGE— A4 TCR jS mRNAの各 80 gと上記細胞を X— VIVO20培地中、 1 50 Lとなるように混合し、 ECM830遺伝子導入装置 (BTX社製)を用いて電気穿 孔法により RNAの細胞への導入を行った。 mRNA導入後の細胞は、 X— VIVO20 培地中、 5%CO存在下 37°Cで 1日培養した。以下、こうして得られた細胞を RNA
2
導入 ms69細胞と記載する。
[0060] ヒト末梢血から Ficoll遠心法により末梢血単核球(PBMC)を分離し、 0. 5% AB 型血清添加 PBSで 2回洗浄した。これに、抗 CD8抗体を固相化した磁気ビーズであ る MACS CD8 MicroBeads (ミルテュー社製)を添カ卩して 4°Cで 15分間反応させ た後、ビーズを 0. 5% AB型血清添加 PBSで 1回洗浄した。マグネットを装着した力 ラムでトラップした磁気ビーズから回収した CD8陽性細胞を 10% AB血清及び 100 U/mLインターロイキン 2 (IL— 2)を添カ卩した RPMI1640培地に 1 X 106個 ZmLと なるように懸濁した。 24ゥエルプレートの各ゥエルに PBSで 1 μ gZmLに希釈した抗 CD3抗体(オルソクローン OKT3、ヤンセンファーマ社製)を 300 μ Lずつ加え、 4°C で 1晚静置したあと上清を捨て、各ゥエルに上記の CD8陽性細胞懸濁液を lmLずつ 分注した。培養開始 4日後、 7日後及び 10日後に培地を半量ずつ交換しながら 5% CO存在下 37°Cで培養した。培養開始 12日後の CD8陽性細胞 1 X 107個を X— VI
2
VO20培地(キャンプレックス社製)で 2回洗浄した。 ms69細胞と同様の方法により、 この糸田胞に MAGE— A4 TCR a mRNA及び MAGE— A4 TCR jS mRNAを 導入した。 mRNA導入後の細胞は X—VIVO20培地中、 5%CO存在下 37°Cで 1
2
日培養した。以下、こうして得られた細胞を RNA導入 CD8陽性細胞と記載する。
[0061] (3)テトラマーアツセィ
HLA— A2402重鎖の C末端にピオチンプロテインリガーゼ BirAの基質となる配列 を付加したポリペプチド及び j8 2—ミクログロブリンを不溶性封入体として大腸菌に発 現させた。前記の封入体を P 143ペプチド存在下、インビトロでリフオールデイングさ せることにより、 HLA—A2402/ j8 2—ミクログロブリン/ P143複合体を形成させた 。得られた複合体にピオチンプロテインリガーゼ (アビディティー社製)を作用させ、フ ィコエリスリン標識ストレプトアビジン(Streptavidin— PE、インビトロジェン社製)を用 いてテトラマーを調製した。
[0062] 上記 RNA導入 ms69細胞及び RNA導入 CD8陽性細胞を 20 μ gZmLテトラマー と 37°Cで 30分間反応させた後、 Tricolor標識マウス抗ヒト CD8抗体 (カルタグ社製) と氷上で 15分間反応させた。細胞を洗浄後、 FACS Calibur(BD社製)を用いてフ ローサイトメトリー解析を行った。 ms69細胞及び CD8陽性細胞を陰性対象、 # 2— 2 8細胞を陽性対象として使用した。
[0063] その結果、テトラマー陽性率は、陰性対照の ms69細胞では 0. 60%であったのに 対して RNA導入 ms69細胞では 66. 65%であり、また、陰性対照の CD8陽性細胞 では 23. 1%であったのに対して RNA導入 CD8陽性細胞では 34. 4%であった。 R NAを導入した ms69細胞及び CD8陽性細胞のテトラマーアツセィの結果を図 1及び 図 2に示す。この結果から、 # 2— 28細胞からクローユングした TCR a鎖及び TCR β鎖の遺伝子産物は、 P143と HLA— Α2402の複合体を認識することが明らかに なった。
[0064] (4) ELISPOTアツセィ 標的細胞は次のようにして調製した。 B XTハイブリッド細胞株 174CEM. T2 (以 下、 Τ2細胞と略す)に HLA— 2402遺伝子をトランスフエタトして作製された Τ2—Α2 4細胞(Ikuta Y.ら、 Blood,第 99卷、第 3717— 3724頁、 2002年)を 10% ゥシ 胎児血清 (FCS)含有 RPMI1640培地で培養し、遠心分離のあと上清を捨てた。そ の後、 RPMI 1640培地に懸濁し、遠心分離のあと上清を捨てることにより細胞を洗 浄した。このようにして細胞の洗浄を合計 3回行ったあと、 lmLの 10 /z M P143ある いは P715含有又はペプチド不含 RPMI1640培地に懸濁して、 5%CO存在下、 3
2
7°Cで 1時間インキュベートした。遠心分離により細胞を回収し、 RPMI1640培地に 懸濁したあと遠心分離を行って細胞を洗浄した。 5 X 104個 Z100 μ Lとなるように細 胞を RPMI1640培地に懸濁し、 ELISPOTアツセィの標的細胞として使用した。
[0065] マルチスクリーン ΗΑ 96ゥエル濾過およびアツセィプレート(ミリポア社製)の各ゥ エルに 2 μ gZmLとなるように PBSで希釈した抗ヒトインターフェロン γ抗体( 1— D 1 Κ、マブテック社製)を 100 Lずつ分注し、 4°Cで 1晚放置した。ゥエル内の液を捨て た後、各ゥエルに 100 Lの RPMI1640培地を加え、 15分間放置し、液を捨ててプ レートを洗浄した。この洗浄を更に 1回行った後、 10% AB型血清含有 RPMI1640 培地を各ゥエルにカ卩え、 37°Cで 1時間放置し、ブロッキングを行った。ブロッキング後 、上清を吸引したあと各ゥエルに 100 μ Lの RPMI1640培地を添カ卩してプレートを洗 浄した。この洗浄操作を合計 3回行った。
[0066] 実施例 2— (2)で調製した (a)RNA導入 ms69細胞、(b)陰性対照の ms69細胞及 び (c)陽性対象の #2— 28細胞並びに実施例 2— (2)で調製した (d)RNA導入 CD8 陽性細胞及び (e)陰性対照の CD8陽性細胞を遠心分離により回収し、 RPMI1640 培地で 1回洗浄した。(a)、 (b)及び(c)は 2000個、 1000個又は 500個 Z100 と なるように、(d)及び(e)は 2 X 104個 Z100 μ Lになるように RPMI1640培地に懸濁 し、実施例 2— (4)で調製した洗浄済みプレートのゥエルに 100 Lずつ分注した。こ れに 100 Lの上記標的細胞懸濁液を添加し、 5%CO存在下、 37°Cで 20時間培
2
し 7こ。
[0067] プレートの各ゥエルから液を除去し、 0· 05% Tween20含有 PBS (PBS— T)で 6 回洗浄した。ピオチン化抗ヒトインターフェロン γ抗体 (マブテック社製、クローン名: 7 — B6— 1)を 0. 2 /z gZmLになるように PBSで希釈し、各ゥエルに 100 Lずつ分注 したあと、 4°Cで 1晚放置した。
[0068] プレートの各ゥヱルカも液を除去し、 PBS— Tで 6回洗浄した。 1 μ gZmLになるよ うに PBSで希釈したアルカリフォスファターゼ標識ストレプトアビジン (バイオラッド社 製)を各ゥエルに 100 Lずつ分注し、室温で 1時間反応させた。プレートの各ゥエル 力も液を除去し、 PBS— Tで 3回洗浄した後、 AP発色キット (バイオラッド社製、 170 — 6432)の取扱説明書に従い調製した発色液を各ゥエルに 100 Lずつ分注し、遮 光して発色反応を行った。蒸留水で発色を停止した後、プレートの写真を撮影した。
[0069] その結果、 ms69細胞及び CD8陽性細胞に比べて RNAを導入した ms69細胞及 び CD8陽性細胞は、標的細胞が P143をパルスされている場合により多数のインタ 一フエロン γ陽性スポットを形成した。この結果を図 3及び図 4に示す。図 3は CTLク ローンをエフェクター細胞として使用したときの ELISPOTアツセィの結果であり、 ms 69細胞は P715をパルスした標的細胞に対して、 # 2— 28細胞は13143をパルスし た標的細胞に対して、 RNA導入 ms69細胞は 、ずれの標的細胞に対しても多数の インターフェロン Ύ陽性スポットを形成した。図 4は CD8陽性細胞をエフェクター細胞 として使用したときの ELISPOTアツセィの結果であり、 RNA導入 CD8陽性細胞は Ρ 143をパルスされた標的細胞に特異的にインターフェロン γ陽性スポットを形成した
[0070] (5)細胞傷害活性
Τ2細胞、 Τ2— Α24細胞及び、 Τ2細胞に HLA— A0201遺伝子をトランスフエタト して作製された Τ2—Α2細胞を RPMI1640培地で 3回洗浄し、 5 Χ 106個/ mLにな るように RPMI 1640培地に懸濁した。これらの細胞懸濁液 lmLに終濃度 10 Mの P143又は P715をカ卩え、室温で 15分間静置した後、 10%FCS含有 RPMI1640培 地 lmLを添カ卩して 37°Cで 1時間インキュベートした。細胞を FCS不含 RPMI1640 培地で 3回洗浄し、 1 X 106個の細胞を 100 μ Lの10%FCS含有RPMI1640培地 に懸濁した。これに 50 /z Lの Na 51CrO水溶液(3. 7MBq)を添加し、 37°Cで 2時
2 4
間標識した。これを標的細胞として細胞傷害活性の測定に使用した。
[0071] ms69細胞、 RNA導入 ms69細胞、 # 2— 28細胞、 CD8陽性細胞及び RNA導入 CD8細胞を RPMI1640培地で 2回洗浄し、 2 106個 111レ 1 106個 111レ 5 X 105個 ZmL、 2. 5 X 105個 ZmL、 1. 25 X 105個 ZmL及び、 6. 25 X 104個 ZmL となるように 10%FCS含有 RPMI1640培地に懸濁し(エフェクター細胞)、その 100 μ Lを 96穴 V底プレートのゥエルに入れた。 1 X 106個 ZmLとなるように標的細胞を 1 0%FCS含有 RPMI1640培地に懸濁し、エフェクター細胞の入ったゥエルに 100 μ Lずつ添加した。 37°Cで 4時間反応させた後、遠心分離により上清を回収し、 100 ^ Lの上清に遊離された51 Cr量をガンマカウンターを用いて測定した。放射活性の測 定値から、次の式により特異的細胞傷害活性を計算した。
[0072] [数 1] 特異的細胞傷害活性 (%) = 〔 (各ゥエルの測定値一最小放出値) Z (最大放出値一 最小放出値) 〕 X 1 0 0
[0073] 上式において、最小放出値とはエフェクター細胞を加えないゥエルにおける51 Cr遊 離量であり、標的細胞力もの51 Crの自然遊離量を示す。また、最大放出値とはトリトン X— 100を標的細胞に加えて破壊したときの51 Cr遊離量を示す。
[0074] この結果を図 5及び図 6に示す。図 5は P715でパルスした T2— A24細胞(a)、 P1 43でパルスした T2— A24細胞(b)及び P143でパルスした T2— A2細胞(c)に対す る CTLクローンの細胞傷害活性を示す図であり、横軸はエフェクター細胞数 Z標的 細胞数比 (EZT比)を、縦軸は特異的細胞傷害活性(%)を示す。 ms69細胞は P71 5でパルスした T2—A24細胞にだけ、 # 2— 28細胞は13143でパルスした丁2—八2 4細胞にだけ細胞傷害活性を示したのに対して、 RNAを導入した ms69細胞は両方 の標的細胞に対して細胞傷害活性を示した。 P143でパルスした T2—A2細胞に対 してはどのエフェクター細胞も細胞傷害活性を示さなカゝつた。図 6は P143でパルスし た T2細胞(a)、ペプチドパルスして!/、な!/、T2— A24細胞(b)及び P143でパルスし た T2— A24細胞 (c)に対する CD8細胞の細胞傷害活性を示す図であり、横軸は E ZT比を、縦軸は特異的細胞傷害活性 (%)を示す。陰性対照の CD8陽性細胞はい ずれの細胞に対しても細胞傷害活性を示さなカゝつたのに対して、 RNAを導入した C D8陽性細胞及び陽性対象の # 2— 28細胞は P143でパルスした T2— A24細胞に 対して細胞傷害活性を示した。
[0075] 以上の結果から、 # 2— 28細胞の TCR α鎖及び j8鎖をコードする遺伝子は、 P1 43特異的な HLA— A2402拘束性の細胞傷害活性を、 CTLクローン及び末梢血由 来 CD8細胞に付与することが明らかになった。
産業上の利用可能性
[0076] 本発明により MAGE— A4に対する HLA— A24拘束性の CTL由来の TCR a鎖 及び j8鎖のポリペプチド、ならびに該ポリペプチドをコードする核酸が提供される。前 記の核酸は HLA—A24分子と MAGE—A4 ペプチドを提示する細胞に対す
143- 151
る細胞傷害活性を T細胞に付与できることから、 MAGE— A4を発現する癌の治療 に有用である。
図面の簡単な説明
[0077] [図 1] # 2— 28細胞、 RNA導入 ms69細胞および ms69細胞のテトラマーアツセィの 結果を示す図である。
[図 2] # 2— 28細胞、 RNA導入 CD8陽性細胞および CD8陽性細胞のテトラマーァ ッセィの結果を示す図である。
[図 3] # 2— 28細胞、 RNA導入 ms69細胞および ms69細胞の ELISPOTアツセィの 結果を示す図である。
[図 4]RNA導入 CD8陽性細胞および CD8陽性細胞の ELISPOTアツセィの結果を 示す図である。
[図 5] # 2— 28細胞、 RNA導入 ms69細胞および ms69細胞の細胞傷害活性を示す 図である。
[図 6] # 2— 28細胞、 RNA導入 CD8陽性細胞および CD8陽性細胞の細胞傷害活 性を示す図である。
配列表フリーテキスト
[0078] SEQ ID NO:10; Oligo dT adaptor.
SEQ ID NO:ll; 5'— RACE primer.
SEQ ID NO :12; Synthetic primer 3— TRalpha— C to amplify a DNA fragment encoding TCR alpha chain. SEQ ID NO: 13; Synthetic primer 3— TRbeta— CI to amplify a DNA fragment encoding TCR beta chain.
SEQ ID NO :14; Synthetic primer 3— TRbeta— C2 to amplify a DNA fragment encoding TCR beta chain.

Claims

請求の範囲
[1] 配列表の配列番号 5で示されるアミノ酸配列力 なるポリペプチド又は該配列に 1 〜数個のアミノ酸残基の欠失、不可、挿入もしくは置換がなされたアミノ酸配列力 な るポリペプチドを有し、かつ配列表の配列番号 2で示されるアミノ酸配列力もなるポリ ペプチドとともに HLA—A24拘束性の MAGE—A4 特異的な T細胞レセプタ
143- 151
一を構成しうるポリペプチド。
[2] 配列表の配列番号 1で示されるアミノ酸配列力 なるポリペプチド、および該配列に 1〜数個のアミノ酸残基の欠失、不可、挿入又は置換がなされたポリペプチドから選 択されるポリペプチドであって、かつ配列表の配列番号 2で示されるアミノ酸配列から なるポリペプチドとともに HLA—A24ZMAGE—A4 複合体特異的に結合す
143- 151
る分子を構成しうる、請求項 1記載のポリペプチド。
[3] 配列表の配列番号 7で示されるアミノ酸配列力 なるポリペプチド又は該配列に 1 〜数個のアミノ酸残基の欠失、不可、挿入もしくは置換がなされたアミノ酸配列力 な るポリペプチドを有し、かつ配列表の配列番号 1で示されるアミノ酸配列力もなるポリ ペプチドとともに HLA—A24拘束性の MAGE—A4 特異的な T細胞レセプタ
143- 151
一を構成しうるポリペプチド。
[4] 配列表の配列番号 2で示されるアミノ酸配列力 なるポリペプチド、および該配列に 1〜数個のアミノ酸残基の欠失、不可、挿入又は置換がなされたポリペプチドから選 択されるポリペプチドであって、かつ配列表の配列番号 1で示されるアミノ酸配列から なるポリペプチドとともに HLA—A24ZMAGE—A4 複合体特異的に結合す
143- 151
る分子を構成しうる、請求項 3記載のポリペプチド。
[5] 請求項 1記載のポリペプチドおよび請求項 3記載のポリペプチドで構成されてなる HLA—A24拘束性の MAGE—A4 特異的な T細胞レセプター。
143- 151
[6] 請求項 1記載のポリペプチドをコードする核酸。
[7] 配列表の配列番号 3で示される塩基配列からなる核酸、又は前記の核酸もしくはそ の相補鎖とストリンジェントな条件下にハイブリダィズしうる核酸である請求項 6記載の 核酸。
[8] 配列表の配列番号 6で示される塩基配列からなる核酸、又は前記の核酸もしくはそ の相補鎖とストリンジェントな条件下にハイブリダィズしうる核酸である請求項 6記載の 核酸。
[9] 請求項 3記載のポリペプチドをコードする核酸。
[10] 配列表の配列番号 4で示される塩基配列からなる核酸、又は前記の核酸もしくはそ の相補鎖とストリンジェントな条件下にハイブリダィズしうる核酸である請求項 9記載の 核酸。
[11] 配列表の配列番号 8で示される塩基配列からなる核酸、又は前記の核酸もしくはそ の相補鎖とストリンジェントな条件下にハイブリダィズしうる核酸である請求項 9記載の 核酸。
[12] 請求項 6〜1 、ずれか記載の核酸を含有する組換え核酸。
[13] 請求項 12記載の組換え核酸が少なくとも 1つ挿入されてなるベクター。
[14] (1)請求項 6〜8 、ずれか記載の核酸を含有する組換え核酸と請求項 9〜 1 IVヽず れか記載の核酸を含有する組換え核酸の両方が挿入されてなるベクター、および(2 )請求項 6〜8 ヽずれか記載の核酸を含有する組換え核酸が挿入されてなるベクター と請求項 9〜1 ヽずれか記載の核酸を含有する組換え核酸が挿入されてなるベクタ 一の組み合わせ、力も選択される請求項 13記載のベクター。
[15] 請求項 6〜: L 1いずれか記載の核酸が導入された、 HLA— A24拘束性の MAGE
-A4 特異的な T細胞レセプターを発現する細胞。
143- 151
[16] 請求項 6〜8 、ずれか記載の核酸と請求項 9〜1 、ずれか記載の核酸の両方が 導入された請求項 15記載の細胞。
[17] 請求項 13又は 14記載のベクターで形質転換された、 HLA— A24拘束性の MAG
E-A4 特異的な T細胞レセプターを発現する細胞。
143- 151
[18] T細胞もしくは T細胞に分ィ匕しうる細胞である請求項 15〜17いずれか記載の細胞
[19] 請求項 13又は 14記載のベクターを有効成分として含有する制がん剤。
[20] 請求項 15〜18いずれか記載の細胞を有効成分として含有する制がん剤。
[21] 請求項 18または 19記載の制がん剤を投与する工程を包含する、癌の治療方法。
PCT/JP2006/317773 2005-09-13 2006-09-07 T細胞レセプター及び該レセプターをコードする核酸 WO2007032255A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007535435A JP5276846B2 (ja) 2005-09-13 2006-09-07 T細胞レセプターをコードする核酸が挿入されてなるベクター及び該レセプターを発現する細胞
KR1020087008686A KR101130597B1 (ko) 2005-09-13 2006-09-07 T 세포 리셉터 및 그 리셉터를 코드하는 핵산
US11/991,964 US8003770B2 (en) 2005-09-13 2006-09-07 T-cell receptor and nucleic acid encoding the receptor
CN2006800336340A CN101287831B (zh) 2005-09-13 2006-09-07 T细胞受体和编码该受体的核酸
EP06797633.2A EP1930433B1 (en) 2005-09-13 2006-09-07 T-cell receptor and nucleic acid encoding the receptor
US13/167,414 US8383401B2 (en) 2005-09-13 2011-06-23 T-cell receptor and nucleic acid encoding the receptor
US13/734,625 US8951510B2 (en) 2005-09-13 2013-01-04 T-cell receptor and nucleic acid encoding the receptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-266088 2005-09-13
JP2005266088 2005-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/991,964 A-371-Of-International US8003770B2 (en) 2005-09-13 2006-09-07 T-cell receptor and nucleic acid encoding the receptor
US13/167,414 Division US8383401B2 (en) 2005-09-13 2011-06-23 T-cell receptor and nucleic acid encoding the receptor

Publications (1)

Publication Number Publication Date
WO2007032255A1 true WO2007032255A1 (ja) 2007-03-22

Family

ID=37864851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317773 WO2007032255A1 (ja) 2005-09-13 2006-09-07 T細胞レセプター及び該レセプターをコードする核酸

Country Status (6)

Country Link
US (3) US8003770B2 (ja)
EP (1) EP1930433B1 (ja)
JP (2) JP5276846B2 (ja)
KR (1) KR101130597B1 (ja)
CN (1) CN101287831B (ja)
WO (1) WO2007032255A1 (ja)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102557A1 (en) 2007-02-21 2008-08-28 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
WO2008126413A1 (en) 2007-04-11 2008-10-23 Oncotherapy Science, Inc. Tem8 peptides and vaccines comprising the same
WO2009025117A1 (ja) 2007-08-20 2009-02-26 Oncotherapy Science, Inc. Cdca1ペプチド及びこれを含む薬剤
WO2010013485A1 (en) * 2008-08-01 2010-02-04 Oncotherapy Science, Inc. Melk epitope peptides and vaccines containing the same
WO2010095428A1 (en) 2009-02-18 2010-08-26 Oncotherapy Science, Inc. Foxm1 peptides and vaccines containing the same
WO2010101249A1 (ja) 2009-03-06 2010-09-10 国立大学法人三重大学 T細胞の機能増強方法
WO2010106770A1 (en) 2009-03-18 2010-09-23 Oncotherapy Science, Inc. Neil3 peptides and vaccines including the same
WO2010137295A1 (en) 2009-05-26 2010-12-02 Oncotherapy Science, Inc. Cdc45l peptides and vaccines including the same
WO2011074236A1 (en) 2009-12-14 2011-06-23 Oncotherapy Science, Inc. Tmem22 peptides and vaccines including the same
WO2011111392A1 (en) 2010-03-11 2011-09-15 Oncotherapy Science, Inc. Hjurp peptides and vaccines including the same
WO2011122022A1 (en) 2010-04-02 2011-10-06 Oncotherapy Science, Inc. Ect2 peptides and vaccines including the same
EP2476697A2 (en) 2006-10-17 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides
WO2013024582A1 (en) 2011-08-12 2013-02-21 Oncotherapy Science, Inc. Mphosph1 peptides and vaccines including the same
WO2013113615A1 (en) 2012-02-03 2013-08-08 F. Hoffmann-La Roche Ag Bispecific antibody molecules with antigen-transfected t-cells and their use in medicine
WO2014141683A1 (en) 2013-03-12 2014-09-18 Oncotherapy Science, Inc. Kntc2 peptides and vaccines containing the same
US8871719B2 (en) 2010-01-25 2014-10-28 Oncotherapy Science, Inc. Modified MELK peptides and vaccines containing the same
JP2014528714A (ja) * 2011-09-15 2014-10-30 アメリカ合衆国 Hla−a1−又はhla−cw7−拘束性mageを認識するt細胞受容体
WO2016203048A1 (en) 2015-06-19 2016-12-22 Kobold Sebastian Pd-1-cd28 fusion proteins and their use in medicine
WO2017064222A1 (en) 2015-10-16 2017-04-20 Ludwig-Maximilians-Universität München Cxcr6-transduced t cells for targeted tumor therapy
EP3219720A2 (en) 2008-12-05 2017-09-20 Onco Therapy Science, Inc. Wdrpuh epitope peptides and vaccines containing the same
WO2018002358A1 (en) 2016-06-30 2018-01-04 F. Hoffmann-La Roche Ag Improved adoptive t-cell therapy
EP3296317A1 (en) 2011-10-28 2018-03-21 OncoTherapy Science, Inc. Topk peptides and vaccines including the same
JP2019511222A (ja) * 2016-03-16 2019-04-25 イマティクス バイオテクノロジーズ ゲーエムベーハー がんに対する免疫療法で使用するための形質移入t細胞およびt細胞受容体
JP2019077708A (ja) * 2011-04-28 2019-05-23 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 試料に関連するポリヌクレオチドの同定
EP3590954A2 (en) 2014-08-04 2020-01-08 OncoTherapy Science, Inc. Koc1-derived peptide and vaccine including same
WO2020027239A1 (ja) 2018-08-02 2020-02-06 オンコセラピー・サイエンス株式会社 Cdca1由来ペプチドおよびそれを含むワクチン
WO2020182681A1 (en) 2019-03-08 2020-09-17 Klinikum Der Universität München Ccr8 expressing lymphocytes for targeted tumor therapy
WO2020263830A1 (en) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
WO2021085497A1 (ja) 2019-10-28 2021-05-06 ノイルイミューン・バイオテック株式会社 がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品
EP3848383A2 (en) 2014-08-04 2021-07-14 Oncotherapy Science, Inc. Urlc10-derived peptide and vaccine containing same
WO2021163064A2 (en) 2020-02-14 2021-08-19 Jounce Therapeutics, Inc. Antibodies and fusion proteins that bind to ccr8 and uses thereof
WO2022087149A2 (en) 2020-10-22 2022-04-28 Gilead Sciences, Inc. Interleukin-2-fc fusion proteins and methods of use
WO2022245671A1 (en) 2021-05-18 2022-11-24 Gilead Sciences, Inc. Methods of using flt3l-fc fusion proteins
WO2023021113A1 (en) 2021-08-18 2023-02-23 Julius-Maximilians-Universität Würzburg Hybrid tumor/cancer therapy based on targeting the resolution of or inducing transcription-replication conflicts (trcs)
WO2023077030A1 (en) 2021-10-29 2023-05-04 Gilead Sciences, Inc. Cd73 compounds
WO2023076983A1 (en) 2021-10-28 2023-05-04 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
WO2023122581A2 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023122615A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
EP4219525A2 (en) 2015-10-08 2023-08-02 OncoTherapy Science, Inc. Foxm1-derived peptide, and vaccine including same
WO2023147418A1 (en) 2022-01-28 2023-08-03 Gilead Sciences, Inc. Parp7 inhibitors
EP4245756A1 (en) 2022-03-17 2023-09-20 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023205719A1 (en) 2022-04-21 2023-10-26 Gilead Sciences, Inc. Kras g12d modulating compounds
EP4282883A2 (en) 2014-08-04 2023-11-29 OncoTherapy Science, Inc. Cdca1-derived peptide and vaccine containing same
US11840577B2 (en) 2019-08-02 2023-12-12 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding MAGE-A
WO2024006929A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Cd73 compounds
US11945854B2 (en) 2016-03-16 2024-04-02 Immatics Biotechnologies Gmbh Transfected T-cells and T-cell receptors for use in immunotherapy against cancers
WO2024137852A1 (en) 2022-12-22 2024-06-27 Gilead Sciences, Inc. Prmt5 inhibitors and uses thereof
WO2024215754A1 (en) 2023-04-11 2024-10-17 Gilead Sciences, Inc. Kras modulating compounds
WO2024220917A1 (en) 2023-04-21 2024-10-24 Gilead Sciences, Inc. Prmt5 inhibitors and uses thereof
US12168044B2 (en) 2016-03-16 2024-12-17 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers
WO2025006720A1 (en) 2023-06-30 2025-01-02 Gilead Sciences, Inc. Kras modulating compounds
WO2025024663A1 (en) 2023-07-26 2025-01-30 Gilead Sciences, Inc. Parp7 inhibitors
WO2025024811A1 (en) 2023-07-26 2025-01-30 Gilead Sciences, Inc. Parp7 inhibitors
WO2025054530A1 (en) 2023-09-08 2025-03-13 Gilead Sciences, Inc. Pyrimidine-containing polycyclic derivatives as kras g12d modulating compounds
WO2025054347A1 (en) 2023-09-08 2025-03-13 Gilead Sciences, Inc. Kras g12d modulating compounds

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994298B2 (en) 2004-09-24 2011-08-09 Trustees Of Dartmouth College Chimeric NK receptor and methods for treating cancer
WO2011059836A2 (en) 2009-10-29 2011-05-19 Trustees Of Dartmouth College T cell receptor-deficient t cell compositions
US9273283B2 (en) 2009-10-29 2016-03-01 The Trustees Of Dartmouth College Method of producing T cell receptor-deficient T cells expressing a chimeric receptor
WO2013033626A2 (en) 2011-08-31 2013-03-07 Trustees Of Dartmouth College Nkp30 receptor targeted therapeutics
US9790278B2 (en) 2012-05-07 2017-10-17 The Trustees Of Dartmouth College Anti-B7-H6 antibody, fusion proteins, and methods of using the same
CA2955984A1 (en) 2014-07-22 2016-01-28 The University Of Notre Dame Du Lac Molecular constructs and uses thereof
GB201417803D0 (en) * 2014-10-08 2014-11-19 Adaptimmune Ltd T cell receptors
WO2016196388A1 (en) * 2015-05-29 2016-12-08 Juno Therapeutics, Inc. Composition and methods for regulating inhibitory interactions in genetically engineered cells
EP3399985B1 (en) * 2016-01-06 2022-02-23 Health Research, Inc. Compositions and libraries comprising recombinant t-cell receptors and methods of using recombinant t-cell receptors
EP4177264A1 (en) 2016-03-16 2023-05-10 Immatics Biotechnologies GmbH Transfected t-cells and t-cell receptors for use in immunotherapy against cancers
GB201604494D0 (en) 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Transfected T-Cells and T-Cell receptors for use in immunotherapy against cancers
KR20190059874A (ko) 2016-04-08 2019-05-31 어댑티뮨 리미티드 T 세포 수용체
SG11201808751SA (en) * 2016-04-08 2018-11-29 Adaptimmune Ltd T cell receptors
SMT202200306T1 (it) 2016-04-08 2022-09-14 Immunocore Ltd Recettori di cellule t
EP3235515A1 (en) * 2016-04-21 2017-10-25 Eberhard Karls Universität Tübingen Targeted mrna for in vivo application
CA3078472A1 (en) 2017-10-06 2019-04-11 Oslo Universitetssykehus Hf Chimeric antigen receptors
GB201819540D0 (en) * 2018-11-30 2019-01-16 Adaptimmune Ltd T cell modification
AU2022233285A1 (en) 2021-03-09 2023-10-19 Cdr-Life Ag Mage-a4 peptide-mhc antigen binding proteins
WO2023064952A1 (en) * 2021-10-15 2023-04-20 Windmil Therapeutics, Inc. Products and methods for determining antigens useful in cancer immunotherapy
US20240092859A1 (en) 2022-08-18 2024-03-21 Immunocore Ltd T cell receptors and fusion proteins thereof
WO2024056758A1 (en) 2022-09-14 2024-03-21 Cdr-Life Ag Mage-a4 peptide dual t cell engagers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511542A (ja) * 1994-11-16 1998-11-10 ストリンガー,ブラッドリー,マイケル,ジョン 標的化tリンパ球
WO2004015070A2 (en) * 2002-08-08 2004-02-19 Baylor College Of Medicine Isolation and identification of t cells
JP2004506021A (ja) * 2000-08-11 2004-02-26 ファブリル インコーポレイテッド T細胞媒介性病態を改変するための方法および組成物
US20050249743A1 (en) * 2004-01-12 2005-11-10 Thierry Boon-Falleur Isolated peptides which bind to HLA-A24 molecules and uses thereof
WO2006000830A2 (en) * 2004-06-29 2006-01-05 Avidex Ltd Cells expressing a modified t cell receptor
JP2006101735A (ja) * 2004-10-01 2006-04-20 Mie Univ 細胞傷害性tリンパ球

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783961B1 (en) * 1999-02-26 2004-08-31 Genset S.A. Expressed sequence tags and encoded human proteins
US6064292A (en) * 1998-12-31 2000-05-16 Lucent Technologies Inc. Electrostatic discharge protected fuse and fuse holder
US6911204B2 (en) * 2000-08-11 2005-06-28 Favrille, Inc. Method and composition for altering a B cell mediated pathology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511542A (ja) * 1994-11-16 1998-11-10 ストリンガー,ブラッドリー,マイケル,ジョン 標的化tリンパ球
JP2004506021A (ja) * 2000-08-11 2004-02-26 ファブリル インコーポレイテッド T細胞媒介性病態を改変するための方法および組成物
WO2004015070A2 (en) * 2002-08-08 2004-02-19 Baylor College Of Medicine Isolation and identification of t cells
US20050249743A1 (en) * 2004-01-12 2005-11-10 Thierry Boon-Falleur Isolated peptides which bind to HLA-A24 molecules and uses thereof
WO2006000830A2 (en) * 2004-06-29 2006-01-05 Avidex Ltd Cells expressing a modified t cell receptor
JP2006101735A (ja) * 2004-10-01 2006-04-20 Mie Univ 細胞傷害性tリンパ球

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning: A Laboratory Manual", COLD SPRING HARBOR LABORATORY
ANTICANCER RES., vol. 20, 2000, pages 1793 - 1799
BLOOD, vol. 103, 2003, pages 3530 - 3540
BLOOD, vol. 106, 2005, pages 470 - 476
CANCER RES., vol. 54, 1994, pages 5265 - 5268
CLIN. CANCER RES., vol. 11, 2005, pages 5581 - 5589
IKUTA Y. ET AL., BLOOD, vol. 99, 2002, pages 3717 - 3724
INT. IMMUNOL., vol. 8, 1996, pages 1463 - 1466
INT. J. CANCER, vol. 99, 2002, pages 7 - 13
J. IMMUNOL., vol. 163, 1999, pages 507 - 513
J. IMMUNOL., vol. 170, 2003, pages 2186 - 2194
J. IMMUNOL., vol. 174, 2005, pages 4415 - 4423
MIYAHARA Y. ET AL.: "Determination of cellularly processed HLA-A2402-restricted novel CTL epitopes derived from two cancer germ line genes, MAGE-A4 and SAGE", CLINICAL CANCER RESEARCH, vol. 11, no. 15, August 2005 (2005-08-01), pages 5581 - 5589, XP003010188 *
OTTAVIANI S. ET AL.: "A new MAGE-4 antigenic peptide recognized by cytolytic T lymphocytes on HLA-A24 carcinoma cells", CANCER IMMUNOLOGY IMMUNOTHERAPY, vol. 55, no. 7, pages 867 - 872, XP019333255 *
See also references of EP1930433A4
YOSHIKAI Y. ET AL.: "Sequences and repertoire of human T cell receptor alpha chain variable region genes in mature T lymphocytes", J. EXP. MED., vol. 164, no. 1, 1986, pages 90 - 103, XP000564477 *

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476697A2 (en) 2006-10-17 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides
EP2695895A1 (en) 2006-10-17 2014-02-12 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides
EP2687540A1 (en) 2006-10-17 2014-01-22 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides
EP2687541A1 (en) 2006-10-17 2014-01-22 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides
EP2476699A2 (en) 2006-10-17 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides
EP2476698A2 (en) 2006-10-17 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides
EP2476693A2 (en) 2007-02-21 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2565203A1 (en) 2007-02-21 2013-03-06 Oncotherapy Science, Inc. Peptide vaccines having Seq ID: 344v for cancers expressing tumor-associated antigens
WO2008102557A1 (en) 2007-02-21 2008-08-28 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2573109A2 (en) 2007-02-21 2013-03-27 Oncotherapy Science, Inc. Peptide vaccines comprising Seq Id 101, 80 or 100 for cancers expressing tumor-associated antigens
EP2567971A2 (en) 2007-02-21 2013-03-13 Oncotherapy Science, Inc. Peptide vaccines comprising Seq Id 80, 100 or 101 for cancers expressing tumor-associated antigens
EP2476692A2 (en) 2007-02-21 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2465865A2 (en) 2007-02-21 2012-06-20 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2465867A2 (en) 2007-02-21 2012-06-20 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2465866A2 (en) 2007-02-21 2012-06-20 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2465864A2 (en) 2007-02-21 2012-06-20 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2476694A2 (en) 2007-02-21 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2476695A2 (en) 2007-02-21 2012-07-18 Oncotherapy Science, Inc. Peptide vaccines for cancers expressing tumor-associated antigens
EP2508601A2 (en) 2007-04-11 2012-10-10 Oncotherapy Science, Inc. Tem8 peptides and vaccines comprising the same
WO2008126413A1 (en) 2007-04-11 2008-10-23 Oncotherapy Science, Inc. Tem8 peptides and vaccines comprising the same
WO2009025117A1 (ja) 2007-08-20 2009-02-26 Oncotherapy Science, Inc. Cdca1ペプチド及びこれを含む薬剤
WO2010013485A1 (en) * 2008-08-01 2010-02-04 Oncotherapy Science, Inc. Melk epitope peptides and vaccines containing the same
US9675680B2 (en) 2008-08-01 2017-06-13 OncoTherapy Science MELK epitope peptides and vaccines containing the same
US9193765B2 (en) 2008-08-01 2015-11-24 Oncotherapy Science, Inc. Melk epitope peptides and vaccines containing the same
US8674069B2 (en) 2008-08-01 2014-03-18 Oncotherapy Science, Inc. MELK epitope peptides and vaccines containing the same
JP2011529683A (ja) * 2008-08-01 2011-12-15 オンコセラピー・サイエンス株式会社 Melkエピトープペプチドおよびそれを含むワクチン
EP4047009A2 (en) 2008-12-05 2022-08-24 OncoTherapy Science, Inc. Wdrpuh epitope peptides and vaccines containing the same
EP3219720A2 (en) 2008-12-05 2017-09-20 Onco Therapy Science, Inc. Wdrpuh epitope peptides and vaccines containing the same
WO2010095428A1 (en) 2009-02-18 2010-08-26 Oncotherapy Science, Inc. Foxm1 peptides and vaccines containing the same
JP2017035090A (ja) * 2009-03-06 2017-02-16 国立大学法人三重大学 T細胞の機能増強方法
US9181525B2 (en) 2009-03-06 2015-11-10 Mie University Method for enhancing a function of a T cell
WO2010101249A1 (ja) 2009-03-06 2010-09-10 国立大学法人三重大学 T細胞の機能増強方法
US9603874B2 (en) 2009-03-06 2017-03-28 Takara Bio Inc. Method for enhancing a function of a T cell
JP2018145205A (ja) * 2009-03-06 2018-09-20 国立大学法人三重大学 T細胞の機能増強方法
WO2010106770A1 (en) 2009-03-18 2010-09-23 Oncotherapy Science, Inc. Neil3 peptides and vaccines including the same
EP3556857A2 (en) 2009-05-26 2019-10-23 Oncotherapy Science, Inc. Cdc45l peptides and vaccines including the same
EP3208334A2 (en) 2009-05-26 2017-08-23 Oncotherapy Science, Inc. Cdc45l peptides and vaccines including the same
WO2010137295A1 (en) 2009-05-26 2010-12-02 Oncotherapy Science, Inc. Cdc45l peptides and vaccines including the same
EP3868778A2 (en) 2009-05-26 2021-08-25 OncoTherapy Science, Inc. Cdc45l peptides and vaccines including the same
WO2011074236A1 (en) 2009-12-14 2011-06-23 Oncotherapy Science, Inc. Tmem22 peptides and vaccines including the same
US8871719B2 (en) 2010-01-25 2014-10-28 Oncotherapy Science, Inc. Modified MELK peptides and vaccines containing the same
WO2011111392A1 (en) 2010-03-11 2011-09-15 Oncotherapy Science, Inc. Hjurp peptides and vaccines including the same
WO2011122022A1 (en) 2010-04-02 2011-10-06 Oncotherapy Science, Inc. Ect2 peptides and vaccines including the same
JP2019077708A (ja) * 2011-04-28 2019-05-23 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 試料に関連するポリヌクレオチドの同定
US11098302B2 (en) 2011-04-28 2021-08-24 The Board Of Trustees Of The Leland Stanford Junior University Identification of polynucleotides associated with a sample
WO2013024582A1 (en) 2011-08-12 2013-02-21 Oncotherapy Science, Inc. Mphosph1 peptides and vaccines including the same
JP2021100948A (ja) * 2011-09-15 2021-07-08 アメリカ合衆国 Hla−a1−又はhla−cw7−拘束性mageを認識するt細胞受容体
JP7149364B2 (ja) 2011-09-15 2022-10-06 アメリカ合衆国 Hla-a1-又はhla-cw7-拘束性mageを認識するt細胞受容体
US11306131B2 (en) 2011-09-15 2022-04-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing HLA-A1- or HLA-CW7-restricted mage
JP2014528714A (ja) * 2011-09-15 2014-10-30 アメリカ合衆国 Hla−a1−又はhla−cw7−拘束性mageを認識するt細胞受容体
EP3296317A1 (en) 2011-10-28 2018-03-21 OncoTherapy Science, Inc. Topk peptides and vaccines including the same
WO2013113615A1 (en) 2012-02-03 2013-08-08 F. Hoffmann-La Roche Ag Bispecific antibody molecules with antigen-transfected t-cells and their use in medicine
WO2014141683A1 (en) 2013-03-12 2014-09-18 Oncotherapy Science, Inc. Kntc2 peptides and vaccines containing the same
EP3848383A2 (en) 2014-08-04 2021-07-14 Oncotherapy Science, Inc. Urlc10-derived peptide and vaccine containing same
EP3981416A2 (en) 2014-08-04 2022-04-13 OncoTherapy Science, Inc. Koc1-derived peptide and vaccine including same
EP4282883A2 (en) 2014-08-04 2023-11-29 OncoTherapy Science, Inc. Cdca1-derived peptide and vaccine containing same
EP4353321A2 (en) 2014-08-04 2024-04-17 OncoTherapy Science, Inc. Koc1-derived peptide and vaccine including same
EP3590954A2 (en) 2014-08-04 2020-01-08 OncoTherapy Science, Inc. Koc1-derived peptide and vaccine including same
EP4349854A2 (en) 2015-06-19 2024-04-10 Kobold, Sebastian Pd1-cd28 fusion proteins and their use in medicine
WO2016203048A1 (en) 2015-06-19 2016-12-22 Kobold Sebastian Pd-1-cd28 fusion proteins and their use in medicine
EP3909972A1 (en) 2015-06-19 2021-11-17 Kobold, Sebastian Pd1-cd28 fusion proteins and their use in medicine
EP4219525A2 (en) 2015-10-08 2023-08-02 OncoTherapy Science, Inc. Foxm1-derived peptide, and vaccine including same
WO2017064222A1 (en) 2015-10-16 2017-04-20 Ludwig-Maximilians-Universität München Cxcr6-transduced t cells for targeted tumor therapy
JP7559120B2 (ja) 2016-03-16 2024-10-01 イマティクス バイオテクノロジーズ ゲーエムベーハー がんに対する免疫療法で使用するための形質移入t細胞およびt細胞受容体
JP2019511222A (ja) * 2016-03-16 2019-04-25 イマティクス バイオテクノロジーズ ゲーエムベーハー がんに対する免疫療法で使用するための形質移入t細胞およびt細胞受容体
KR102457504B1 (ko) 2016-03-16 2022-10-20 이매틱스 바이오테크놀로지스 게엠베하 암에 대한 면역요법에서의 사용을 위하여 형질주입된 t 세포 및 t 세포 수용체
US11945854B2 (en) 2016-03-16 2024-04-02 Immatics Biotechnologies Gmbh Transfected T-cells and T-cell receptors for use in immunotherapy against cancers
KR20210063486A (ko) * 2016-03-16 2021-06-01 이매틱스 바이오테크놀로지스 게엠베하 암에 대한 면역요법에서의 사용을 위하여 형질주입된 t 세포 및 t 세포 수용체
US12168044B2 (en) 2016-03-16 2024-12-17 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers
JP7340127B2 (ja) 2016-03-16 2023-09-07 イマティクス バイオテクノロジーズ ゲーエムベーハー がんに対する免疫療法で使用するための形質移入t細胞およびt細胞受容体
WO2018002358A1 (en) 2016-06-30 2018-01-04 F. Hoffmann-La Roche Ag Improved adoptive t-cell therapy
WO2020027239A1 (ja) 2018-08-02 2020-02-06 オンコセラピー・サイエンス株式会社 Cdca1由来ペプチドおよびそれを含むワクチン
WO2020182681A1 (en) 2019-03-08 2020-09-17 Klinikum Der Universität München Ccr8 expressing lymphocytes for targeted tumor therapy
WO2020263830A1 (en) 2019-06-25 2020-12-30 Gilead Sciences, Inc. Flt3l-fc fusion proteins and methods of use
US11840577B2 (en) 2019-08-02 2023-12-12 Immatics Biotechnologies Gmbh Antigen binding proteins specifically binding MAGE-A
WO2021085497A1 (ja) 2019-10-28 2021-05-06 ノイルイミューン・バイオテック株式会社 がんを治療するための医薬、組み合わせ医薬、医薬組成物、免疫応答性細胞、核酸送達媒体、及び製品
US11692038B2 (en) 2020-02-14 2023-07-04 Gilead Sciences, Inc. Antibodies that bind chemokine (C-C motif) receptor 8 (CCR8)
WO2021163064A2 (en) 2020-02-14 2021-08-19 Jounce Therapeutics, Inc. Antibodies and fusion proteins that bind to ccr8 and uses thereof
WO2022087149A2 (en) 2020-10-22 2022-04-28 Gilead Sciences, Inc. Interleukin-2-fc fusion proteins and methods of use
WO2022245671A1 (en) 2021-05-18 2022-11-24 Gilead Sciences, Inc. Methods of using flt3l-fc fusion proteins
WO2023021113A1 (en) 2021-08-18 2023-02-23 Julius-Maximilians-Universität Würzburg Hybrid tumor/cancer therapy based on targeting the resolution of or inducing transcription-replication conflicts (trcs)
WO2023076983A1 (en) 2021-10-28 2023-05-04 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
WO2023077030A1 (en) 2021-10-29 2023-05-04 Gilead Sciences, Inc. Cd73 compounds
WO2023122581A2 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023122615A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023147418A1 (en) 2022-01-28 2023-08-03 Gilead Sciences, Inc. Parp7 inhibitors
EP4464703A2 (en) 2022-03-17 2024-11-20 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023178181A1 (en) 2022-03-17 2023-09-21 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
EP4245756A1 (en) 2022-03-17 2023-09-20 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023205719A1 (en) 2022-04-21 2023-10-26 Gilead Sciences, Inc. Kras g12d modulating compounds
WO2024006929A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Cd73 compounds
WO2024137852A1 (en) 2022-12-22 2024-06-27 Gilead Sciences, Inc. Prmt5 inhibitors and uses thereof
WO2024215754A1 (en) 2023-04-11 2024-10-17 Gilead Sciences, Inc. Kras modulating compounds
WO2024220917A1 (en) 2023-04-21 2024-10-24 Gilead Sciences, Inc. Prmt5 inhibitors and uses thereof
WO2025006720A1 (en) 2023-06-30 2025-01-02 Gilead Sciences, Inc. Kras modulating compounds
WO2025024663A1 (en) 2023-07-26 2025-01-30 Gilead Sciences, Inc. Parp7 inhibitors
WO2025024811A1 (en) 2023-07-26 2025-01-30 Gilead Sciences, Inc. Parp7 inhibitors
WO2025054530A1 (en) 2023-09-08 2025-03-13 Gilead Sciences, Inc. Pyrimidine-containing polycyclic derivatives as kras g12d modulating compounds
WO2025054347A1 (en) 2023-09-08 2025-03-13 Gilead Sciences, Inc. Kras g12d modulating compounds

Also Published As

Publication number Publication date
CN101287831B (zh) 2013-05-15
JP2013126415A (ja) 2013-06-27
US8003770B2 (en) 2011-08-23
JP5276846B2 (ja) 2013-08-28
US20090324566A1 (en) 2009-12-31
KR101130597B1 (ko) 2012-04-02
US8383401B2 (en) 2013-02-26
KR20080064833A (ko) 2008-07-09
EP1930433A4 (en) 2009-09-16
EP1930433A1 (en) 2008-06-11
US20110256114A1 (en) 2011-10-20
JPWO2007032255A1 (ja) 2009-03-19
CN101287831A (zh) 2008-10-15
EP1930433B1 (en) 2016-03-16
US8951510B2 (en) 2015-02-10
US20130115199A1 (en) 2013-05-09
JP5655233B2 (ja) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5655233B2 (ja) T細胞レセプター及び該レセプターをコードする核酸
US10537624B2 (en) Transfected T-cells and T-cell receptors for use in immunotherapy against cancers
US11730796B2 (en) Transfected t-cells and t-cell receptors for use in immunotherapy against cancers
US20110280894A1 (en) Her2/neu specific t cell receptors
EP3898665B1 (en) Cd22-specific t cell receptors and adoptive t cell therapy for treatment of b cell malignancies
EP0792354B1 (en) Targeted t lymphocytes
WO2010114129A1 (ja) T細胞レセプター及び該レセプターをコードする核酸
JP7606510B2 (ja) Ebv-由来抗原に特異的なtcr構築物
Kuhröber et al. Vaccination with T cell receptor peptides primes anti‐receptor cytotoxic T lymphocytes (CTL) and anergizes T cells specifically recognized by these CTL
AU755156B2 (en) Methods for enhanced antigen presentation on antigen-presenting cells and compositions produced thereby
WO2018077242A1 (zh) 识别sage1抗原短肽的t细胞受体
Molloy et al. High-Affinity TCRs Generated by Phage
Popović Suitability of the TEL-AML1 chromosomal translocation for targeting by adoptive T cell therapy of leukemia: an investigation in a novel humanized mouse model

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033634.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007535435

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006797633

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087008686

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11991964

Country of ref document: US