[go: up one dir, main page]

WO2006067986A1 - 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置 - Google Patents

熱電変換モジュールとそれを用いた熱交換器および熱電発電装置 Download PDF

Info

Publication number
WO2006067986A1
WO2006067986A1 PCT/JP2005/022759 JP2005022759W WO2006067986A1 WO 2006067986 A1 WO2006067986 A1 WO 2006067986A1 JP 2005022759 W JP2005022759 W JP 2005022759W WO 2006067986 A1 WO2006067986 A1 WO 2006067986A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
conversion module
thermoelectric conversion
bonding
electrode
Prior art date
Application number
PCT/JP2005/022759
Other languages
English (en)
French (fr)
Inventor
Shinsuke Hirono
Takayuki Naba
Masami Okamura
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Priority to CN200580043512A priority Critical patent/CN100595940C/zh
Priority to EP05814548.3A priority patent/EP1835551B1/en
Priority to JP2006548821A priority patent/JP4896742B2/ja
Priority to US11/793,217 priority patent/US20080135082A1/en
Publication of WO2006067986A1 publication Critical patent/WO2006067986A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • thermoelectric conversion module and heat exchanger and thermoelectric generator using the same
  • the present invention relates to a thermoelectric conversion module using a thermoelectric material whose main phase is an intermetallic compound having an MgAgAs type crystal structure, a heat exchanger using the thermoelectric conversion module, and a thermoelectric generator.
  • thermoelectric elements have been used up as waste heat in the environment and are expected to be a means of recovering energy!
  • Thermoelectric elements are used as thermoelectric conversion modules in which p-type thermoelectric elements (p-type thermoelectric semiconductors) and n-type thermoelectric elements (n-type thermoelectric semiconductors) are alternately connected in series.
  • thermoelectric element to be used has a higher usable temperature (a temperature range where practical thermoelectric conversion efficiency can be obtained).
  • a thermoelectric element having a usable temperature of 300 ° C or higher for power generation in a waste heat boiler or the like it is preferable to apply a thermoelectric element having a usable temperature of 300 ° C or higher for power generation in a waste heat boiler or the like.
  • thermoelectric materials that have been put to practical use in conventional thermoelectric conversion modules are Bi-Te-based thermoelectric semiconductors (including systems in which Sb or Se is added as a third element). Although the material has been produced for special applications, it has reached the industrial production base.
  • the usable temperature of the above-mentioned Bi-Te-based thermoelectric semiconductors is up to 200 ° C, which is effective for cooling devices using the Peltier effect, but is used for power generation in waste heat boilers, etc. It cannot be used for the thermoelectric element of the device.
  • the main phase is an intermetallic compound having an MgAgAs-type crystal structure.
  • Thermoelectric materials (hereinafter referred to as half-Heusler materials) exhibit semiconducting properties and are attracting attention as new thermoelectric conversion materials. It has been reported that some intermetallic compounds having an MgAgAs-type crystal structure exhibit a high Seebeck effect at room temperature (see, for example, Non-Patent Document 1). Half-Heusler materials are also attractive for thermoelectric conversion modules in power generation devices that use high-temperature heat sources because they are expected to improve thermoelectric conversion efficiency at higher usable temperatures.
  • Patent Document 1 describes a method in which cream solder is applied to the electrode surface by screen printing, and the electrode and the thermoelectric element are joined with the cream solder.
  • Patent Document 2 describes a method in which a conductive coating (such as an electroless Ni plating layer) is formed in advance on the bonding surface of a thermoelectric element, and soldered to an electrode via this conductive coating.
  • Patent Document 3 describes that a silicon nitride ceramic substrate is used as an insulating substrate that supports an electrode.
  • thermoelectric conversion modules In order to increase the practicality of thermoelectric conversion modules, the reliability (such as reliability against mechanical and thermal stress) of the joint between the thermoelectric element and the electrode, which is a half-Heusler material force, is improved. It is necessary to improve the conductivity at the joint.
  • the soldering described in Patent Documents 1 and 2 cannot satisfy the heat resistance required for a thermoelectric conversion module using a high-temperature heat source. As a result, the bonding reliability between the thermoelectric element and the electrode is lowered.
  • no joining method has been found that can improve the reliability, conductivity, thermal conductivity, etc. of the junction between the thermoelectric element and the electrode, which is a half-Heusler material, and is practically useful. We have not yet achieved an excellent thermoelectric conversion module.
  • Non Patent Literature l J. Phys. Condens. Matter 11 1697-1709 (1999)
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-168402
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-352107
  • Patent Document 3 JP 2002-203993 A Disclosure of the invention
  • An object of the present invention is to improve the practicality as a module by improving the reliability, conductivity, thermal conductivity, etc. of the junction between the thermoelectric element and the electrode, which is a half-Heusler material force. And providing a heat exchanger and a thermoelectric generator using such a thermoelectric conversion module.
  • thermoelectric conversion module includes a first electrode member disposed on a high temperature side, and a second electrode member disposed on a low temperature side facing the first electrode member.
  • a thermoelectric element that is disposed between the first electrode member and the second electrode member and is made of a thermoelectric material having an intermetallic compound having an MgAgAs type crystal structure as a main phase; and the thermoelectric element A joint that is electrically and mechanically connected to the first and second electrode members, and at least one selected from Ag, Cu, and Ni as a main component, and 1 mass% or more and 10 mass% or less
  • a bonding portion having a bonding material containing at least one active metal selected from Ti, Zr, Hf, Ta, V, and Nb in the range described above.
  • a heat exchanger includes a heating surface, a cooling surface, and the thermoelectric conversion module according to the above-described aspect of the present invention disposed between the heating surface and the cooling surface. It is characterized by comprising.
  • a thermoelectric power generation device includes the heat exchanger according to the above-described aspect of the present invention and a heat supply unit that supplies heat to the heat exchanger, and is supplied by the heat supply unit. The generated heat is converted into electric power by the thermoelectric conversion module in the heat exchanger and generated.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a thermoelectric conversion module according to an embodiment of the present invention.
  • FIG. 2 is a view showing a crystal structure of an MgAgAs type intermetallic compound.
  • thermoelectric conversion module 3 is a cross-sectional view showing a modification of the thermoelectric conversion module shown in FIG.
  • FIG. 4 is a cross-sectional view showing a schematic structure of a heat exchanger according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration of a waste incineration facility to which a thermoelectric power generation system according to an embodiment of the present invention is applied.
  • thermoelectric element and electrode plate in thermoelectric conversion module of Example 1 It is a SEM observation image which shows a state.
  • FIG. 6B is an element mapping diagram of Ti by EPMA in the same part as FIG. 6A.
  • FIG. 6C is an explanatory diagram of FIG. 6B.
  • FIG. 7A is an SEM observation image showing a bonding interface between a thermoelectric element and an electrode plate in the thermoelectric conversion module of Comparative Example 1.
  • FIG. 7B is an element mapping diagram of Ti by EPMA in the same part as FIG. 7A.
  • FIG. 7C is an explanatory diagram of FIG. 7B.
  • FIG. 8 is an SEM observation image showing the state of the interface between the thermoelectric element and the bonding material in the thermoelectric conversion module of Example 40.
  • FIG. 9 is an SEM observation image showing the state of the interface between the thermoelectric element and the bonding material in the thermoelectric conversion module of Example 48.
  • thermoelectric element 11 ⁇ ⁇ type thermoelectric element, 12 ⁇ ⁇ ⁇ ⁇ type thermoelectric element, 13 ⁇ ⁇ ⁇ first electrode member, 14 ⁇ ⁇ ⁇ second electrode member, 15, 16 ⁇ ⁇ ⁇ insulation Heat conduction plate, 17, 18, 21 ⁇ Joint portion, 19, 20... Metal plate for lining, 3 0... Heat exchanger, 40 ⁇
  • FIG. 1 is a cross-sectional view showing the structure of a thermoelectric conversion module according to an embodiment of the present invention.
  • a thermoelectric conversion module 10 shown in the figure has a plurality of ⁇ -type thermoelectric elements 11 and a plurality of ⁇ -type thermoelectric elements 12. These ⁇ -type thermoelectric elements 11 and ⁇ -type thermoelectric elements 12 are arranged alternately on the same plane, and the entire module is arranged in a matrix to constitute a thermoelectric element group.
  • a ⁇ -type thermoelectric element 12 is adjacent to one ⁇ -type thermoelectric element 11.
  • the ⁇ -type thermoelectric element 11 and the ⁇ -type thermoelectric element 12 are formed of a thermoelectric material (half-Heusler material) whose main phase is an intermetallic compound having an MgAgAs-type crystal structure.
  • the main phase refers to the phase with the highest volume fraction among the constituent phases.
  • Half-Heusler materials are attracting attention as new thermoelectric conversion materials, and high thermoelectric performance has been reported. Yes.
  • Half-Heusler compounds (intermetallic compounds with MgAgAs type crystal structure) are expressed by the chemical formula ABX and are intermetallic compounds with cubic MgAgAs type crystal structure.
  • the half-Heusler compound has a crystal structure in which B atoms are inserted into a NaCl-type crystal lattice of A and X atoms.
  • Z indicates a hole.
  • Non-Patent Document 1 reports the Zeck coefficient of half-Heusler compounds at room temperature.
  • Half-Heusler compounds are generic names for compounds having the MgAgAs-type crystal structure as shown in Fig. 2, and many types of elements constituting X are known.
  • Group A elements such as rare earth elements including Sc and Y
  • Group 4 elements Ti, Zr, Hf, etc.
  • Group 5 elements V, Nb
  • the B-site elements include Group 7 elements (Mn, Tc, Re, etc.), Group 8 elements (Fe, Ru, Os, etc.), Group 9 elements (Co, Rh, Ir, etc.), and Group 10 elements (Ni, At least one element selected from Pd, Pt, etc. is used.
  • X-site elements include group 13 elements (B, Al, Ga, In, Tl), group 14 elements (C, Si, Ge, Sn, Pb, etc.), and group 15 elements (N, P, As, Sb, Bi) ) Force At least one element selected is used.
  • A is at least one element selected from Group 3, Element 4 and Group 5 element forces
  • B is at least one element selected from Group 7, Element 8, Group 9 and Group 10 element forces.
  • the original elements of, X is a group 13 element, a group 14 element and a group 15 element force also represents at least one element selected, X and y are 25 ⁇ x ⁇ 50 atoms 0/0, 25 ⁇ Y ⁇ 50 atom 0 / 0, the number of full foot x + y ⁇ 75 atom 0/0)
  • thermoelectric element 11 For the p-type thermoelectric element 11 and the n-type thermoelectric element 12, a material whose main phase is the half-Heusler compound represented by the formula (1) can be applied.
  • half-Heusler compounds especially General formula: A1 B1 X1--(2)
  • A1 is at least one element selected from Ti, Zr, Hf and rare earth elements
  • B1 is at least one element selected from Ni, Co and Fe
  • XI is at least selected from Sn and Sb. indicates one element, X and y are 30 ⁇ x ⁇ 35 atoms 0/0, is a number satisfying 30 ⁇ y ⁇ 35 atomic%)
  • thermoelectric elements 11, 12 are represented by the general formula: (Ti Zr Hf) B1 X1 ⁇ ' ⁇ (3)
  • the half-Heusler compounds represented by the formulas (2) and (3) are particularly high, exhibit the Seebeck effect, and have a high usable temperature (specifically, 300 ° C or more). For this reason, it is effective as the thermoelectric elements 11 and 12 of the thermoelectric conversion module 10 for use in a power generator using a high-temperature heat source.
  • the amount (X) of the A site (or A1 site) element is preferably in the range of 30 to 35 atomic% in order to obtain a high Seebeck effect.
  • the amount (y) of the B site (or B1 site) element is preferably in the range of 30 to 35 atomic%.
  • the rare earth elements constituting the A site (or A1 site) elements include Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like.
  • a part of the A site (or A1 site) element in the formulas (2) and (3) may be substituted with V, Nb, Ta, Cr, Mo, W, or the like.
  • Part of the B site element (or B1 site) may be replaced with Mn, Cu, or the like.
  • Part of the X site (or XI site) element may be replaced with Si, Mg, As, Bi, Ge, Pb, Ga, In, or the like.
  • thermoelectric element 11 and one n-type thermoelectric element 12 adjacent thereto a first electrode member 13 that connects these elements is disposed.
  • a second electrode member 14 is disposed below one p-type thermoelectric element 11 and one n-type thermoelectric element 12 adjacent thereto to connect these elements.
  • the first electrode member 13 and the second electrode member 14 are elements 1 It is arranged in a state shifted by the number. In this way, a plurality of p-type thermoelectric elements 11 and n-type thermoelectric elements 12 are electrically connected in series.
  • first and second electrode members 13 and 14 are arranged so that a direct current flows in the order of the p-type thermoelectric element 11, the n-type thermoelectric element 12, the p-type thermoelectric element 11, the n-type thermoelectric element 12. Yes.
  • the first and second electrode members 13, 14 are preferably made of a metal material containing at least one selected from Cu, Ag, and Fe as a main component. Since such a metal material is soft, when it is joined to thermoelectric elements 11 and 12 that also have a half-Heusler material force, it functions to relieve thermal stress. Therefore, it is possible to improve the reliability with respect to the thermal stress at the joint between the first and second electrode members 13 and 14 and the thermoelectric elements 11 and 12, for example, thermal cycle characteristics. Since the metal material mainly composed of Sarakuko, Cu, Ag, and Fe is excellent in conductivity, for example, the electric power generated by the thermoelectric conversion module 10 can be taken out efficiently.
  • an upper insulating heat conducting plate 15 bonded in common to the electrode members 13 is disposed on the outside of the first electrode member 13 (the surface opposite to the surface bonded to the thermoelectric elements 11 and 12). It has been.
  • a lower insulating heat conducting plate 16 joined in common to these electrode members 14 is also arranged outside the second electrode member 14. That is, the first and second electrode members 13 and 14 are supported by the insulating heat conducting plates 15 and 16, respectively, thereby maintaining the module structure.
  • the insulative heat conducting plates 15 and 16 are composed of insulative ceramic plates.
  • the insulating heat conductive plates 15 and 16 should be made of a ceramic plate having a sintered body strength mainly composed of at least one selected from the group consisting of aluminum nitride, silicon nitride, silicon carbide, alumina and magnesia having excellent thermal conductivity. Is desirable.
  • a highly thermally conductive silicon nitride substrate silicon nitride-based sintered body having a thermal conductivity of 65 WZm'K or higher and a three-point bending strength of 600 MPa or higher as described in the aforementioned Japanese Patent Laid-Open No. 2002-203993 is used. Desirable to use.
  • the first and second electrode members 13, 14 and the p-type and n-type thermoelectric elements 11, 12 are joined via a joint portion 17, respectively.
  • the p-type and n-type thermoelectric elements 11, 12 are electrically and mechanically connected to the first and second electrode members 13, 14 via the joint portion 17.
  • the junction 17 is mainly composed of at least one selected from Ag, Cu and M, and at least one active gold selected from Ti, Zr, Hf, Ta, V and Nb. It consists of a bonding material (active metal-containing bonding material) containing a genus in the range of 1 to 10% by mass.
  • the active metal-containing bonding material constituting the bonding portion 17 exhibits good wettability with respect to the thermoelectric elements 11 and 12 made of a half-Heusler material and forms a strong bonding interface structure. Further, it is possible to reduce the amount of pores (voids) generated in the interface between the thermoelectric elements 11 and 12 and the joint 17 or in the joint 17. For this reason, it is possible to mechanically and strongly bond the thermoelectric elements 11 and 12 and the electrode members 13 and 14 by applying the bonding portion 17 using the active metal-containing bonding material. In addition, the junction 17 can be realized with low electrical loss and thermal loss at the junction interface.
  • the active metal-containing bonding material is applied based on the following process.
  • thermoelectric conversion module 10 in order to configure the thermoelectric conversion module 10 using the thermoelectric elements 11 and 12 that also have half-Heusler material force, the electrode members 13 and 14 and the electrode members 13 and 14 are firmly bonded to the practically-connected structure. In addition, it is necessary to realize a junction structure with small electrical loss and thermal loss force S between them. On the other hand, it has become clear that half-Heusler materials are difficult to obtain a good bonding state with a general electrode member, which has a very poor bondability with other materials. It was.
  • the diffusion bonding method was used without using a brazing material as another bonding method, the A1 foil was sandwiched as an intermediate material and bonded to the SUS electrode member. It was possible to obtain a degree of bonding strength. However, even in this joining method, when a power generation test was performed for several minutes with a temperature difference of about 400 ° C at both ends of the joined body, delamination occurred at the joining interface between the electrode member and the thermoelectric element having half-Heusler material strength. Such a module is not well connected, resulting in unstable output and module energy. One conversion efficiency is also low.
  • thermoelectric element having the material strength of half-Heusler can be used up to a high temperature and has high thermoelectric conversion performance, but has poor bonding property to other members! Therefore, if it is difficult to modularize, there is a difficulty.
  • thermoelectric elements 11 and 12 and the electrode members 13 and 14 having a half-Heusler material force can be firmly bonded without any special pretreatment. Since the bonding material contains the active metal, the wettability with respect to the half-Heusler material is greatly improved, and the electrode members 13 and 14 can be firmly bonded.
  • thermoelectric elements 11 and 12 When the active metal-containing bonding material is used, an alloy of the active metal in the bonding material and the constituent elements of the thermoelectric elements 11 and 12 at the interface between the thermoelectric elements 11 and 12 made of a half-Heusler material and the bonding portion 17 A layer is easily formed.
  • the constituent elements of the thermoelectric elements 11 and 12 forming the alloy layer include, for example, Ni ⁇ Co, Fe, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, And at least one element selected from Lu, Sn and Sb.
  • thermoelectric elements 11 and 12 having half-Heusler material force By realizing such an interface structure, it becomes possible to firmly join the thermoelectric elements 11 and 12 having half-Heusler material force to the joint portion 17 and thus to the electrode members 13 and 14. Further, since the alloy layer formed at the bonding interface itself functions as a conductive material only by improving the adhesion between the thermoelectric elements 11 and 12 and the bonding portion 17, the thermoelectric elements 11 and 12 and the electrode member 13, 14 can be electrically connected to each other satisfactorily. That is, the electrical contact resistance between the thermoelectric elements 11 and 12 and the electrode members 13 and 14 made of a half-Heusler material can be reduced. Because the heat conductivity is improved, the thermoelectric elements 11, 12 and The thermal resistance between the electrode members 13 and 14 can be reduced.
  • the joint 17 using the active metal-containing joining material contributes to a reduction in the amount of pores existing in the interface with the thermoelectric elements 11 and 12 and in the joint 17. That is, the ratio of the pores existing at the interface between the thermoelectric elements 11 and 12 and the joint portion 17 and in the joint portion 17 can be 10% (area ratio) or less.
  • the thermal resistance between the thermoelectric elements 11 and 12 and the electrode members 13 and 14 is reduced by reducing the amount of pores existing in the bonding interface and the bonding portion 17. Therefore, heat (temperature difference) for obtaining electric power can be efficiently transmitted to the thermoelectric elements 11 and 12. Further, since the electrical contact resistance is also reduced, the internal resistance of the thermoelectric conversion module 10 as a whole can be reduced by / J.
  • thermoelectric conversion module 10 having the interface structure as described above, energy is reduced on the basis of, for example, reduction in thermal resistance or electrical contact resistance between the thermoelectric elements 11, 12 and the electrode members 13, 14. Conversion efficiency can be improved.
  • the proportion of pores present in the joint interface or joint 17 is more preferably 5% or less, and even more preferably 3% or less.
  • the ratio of the pores is obtained by calculating the total area of pores existing in the interface between the thermoelectric elements 11 and 12 and the joint 17 and in the joint 17, and the entire joint interface and the joint 17. Calculated as the ratio of the pore area to the area.
  • thermoelectric conversion module 10 is turned on at the joint between the thermoelectric elements 11 and 12 and the electrode members 13 and 14 in the thermoelectric conversion module 10 in consideration of mechanical stress during assembly or installation. Thermal stress accompanying off or the like is also added. According to the above-described active metal-containing bonding material, it is possible to obtain the bonding portion 17 having excellent reliability against mechanical stress and thermal stress. Furthermore, the joint 17 between the thermoelectric elements 11 and 12 and the electrode members 13 and 14 is merely a mechanical joint when forming a module, and the P-type thermoelectric element 11 and the n-type thermoelectric element connected in series are connected. This is an electrical connection when the potential difference generated with the element 12 is taken out as electric power.
  • thermoelectric conversion efficiency When the contact resistance at such an electrical connection portion is large, the power extraction efficiency, that is, the thermoelectric conversion efficiency is lowered.
  • the electrical contact resistance between the thermoelectric elements 11 and 12 and the electrode members 13 and 14 is reduced, so that the internal resistance of the thermoelectric conversion module 10 as a whole is reduced. can do.
  • the thermal resistance between the thermoelectric elements 11 and 12 and the electrode members 13 and 14 is also reduced, heat (temperature difference) for obtaining electric power can be efficiently transmitted to the thermoelectric elements 11 and 12. As a result, the thermoelectric conversion efficiency of the thermoelectric conversion module 10 can be improved.
  • At least one selected from Ti, Zr, Hf, Ta, V, and Nb is used for the joint 17 that joins the thermoelectric elements 11, 12 having half-Heusler material force to the electrode members 13, 14
  • a bonding material containing any active metal it is possible to realize a bonding structure with low electrical contact resistance and thermal resistance as well as a mechanically strong bonding structure.
  • the module performance such as mechanical strength, reliability, and thermoelectric conversion efficiency of the thermoelectric conversion module 10 using the thermoelectric elements 11 and 12 also having a half-Heusler material force.
  • the joint 17 that joins the thermoelectric elements 11, 12 and the electrode members 13, 14 is mainly composed of at least one selected from Ag, Cu, and N, and Ti, Zr
  • a bonding material containing at least one active metal selected from Hf, Ta, V and Nb in the range of 1% by mass to 10% by mass is used. If the content of the active metal is less than 1% by mass, the effect of improving the wettability with respect to the half-Heusler material and the effect of improving the bonding state cannot be obtained sufficiently. On the other hand, when the content of the active metal exceeds 10% by mass, the original characteristics as the bonding material (characteristics as the brazing material) are deteriorated, and the reliability against thermal stress is reduced.
  • the active metal content in the bonding material is more preferably in the range of 1 to 6% by mass.
  • the main material of the bonding material containing the active metal is at least selected from Ag, Cu and Ni.
  • a brazing material mainly composed of one kind is used.
  • a joining material mainly composed of such a brazing material it is possible to improve the reliability of the joint 17 at a high temperature.
  • the brazing material applied to the joint 17 is mainly composed of at least one selected from Ag, Cu and N.
  • an Ag—Cu alloy Ag-Cu brazing material is preferred.
  • the active metal-containing bonding material may contain Sn, In, Zn, Cd, C, or the like as the third component.
  • the content of the third component is appropriately selected from the range of 40% by mass or less. 3rd component If the content of Cu exceeds 40% by mass, the amount of brazing filler metal component, which is the main component of the active metal-containing bonding material, is relatively reduced, which may lead to a decrease in bonding strength.
  • the content of the third component is more preferably 30% by mass or less.
  • the lower limit of the content of the third component is not particularly limited, and is set from the range of effective amounts according to each element. For example, it is practically effective to set it to 10% by mass or more. is there.
  • thermoelectric elements 11, 12 using the active metal-containing bonding material and the electrode members 13, 14 are bonded by arranging an active metal-containing bonding material on the electrode members 13, 14, and further on the thermoelectric element After arranging 11 and 12, these are carried out by heat treatment in vacuum or in an inert atmosphere.
  • the active metal-containing bonding material By using the active metal-containing bonding material, the percentage of pores existing at the bonding interface and the like can be reduced to 10% or less as described above.
  • the pressure that is obtained when the thermoelectric elements 11, 12 and the electrode members 13, 14 are bonded is 40 kPa or more.
  • heat treatment for bonding is performed in a vacuum atmosphere of 7 X 10_1 Pa or less or in an Ar gas atmosphere, and the bonding surface of the thermoelectric elements 11, 12 is smoothed. It is also effective to set the range of 10 to 30 m. According to these, the proportion of pores existing at the bonding interface or the like can be set to 3% or less, for example.
  • the above-mentioned active metal-containing bonding material is not limited to bonding the thermoelectric elements 11 and 12 and the electrode members 13 and 14, but the electrode members 13 and 14 are bonded to the upper and lower insulating heat conducting plates 15 and 16. It is also effective as a bonding material. That is, the first and second electrode members 13, 14 are joined to the upper and lower insulating heat conducting plates 15, 16 via the joint 18, respectively. It is preferable to apply the above-described active metal-containing bonding material to the bonding portion 18 as well. As a result, the bonding strength and bonding reliability between the electrode members 13 and 14 and the insulating heat conducting plates 15 and 16 can be increased, and the thermal resistance can be reduced. These also contribute to improving the module performance of the thermoelectric module 10.
  • the thermoelectric conversion module 10 can be composed of the above-described elements. Further, for example, as shown in FIG. 3, the electrode portion is further outside the upper and lower insulating heat conducting plates 15 and 16. Metal plates 19 and 20 made of the same material as the materials 13 and 14 may be arranged. These metal plates 19 and 20 are connected to the insulating heat conducting plates 15 and 16 through the joint 21 to which the active metal-containing joining material is applied, in the same manner as the joining of the electrode members 13 and 14 and the insulating heat conducting plates 15 and 16. Be joined.
  • thermoelectric conversion module 10 shown in FIG. 1 or FIG. 3, the upper insulating heat conductive plate 15 is arranged on the low temperature side (L) so as to give a temperature difference between the upper and lower insulating heat conductive plates 15 and 16, for example.
  • the lower insulating heat conducting plate 16 is used on the high temperature side (H). Based on this temperature difference, a potential difference is generated between the first electrode member 13 and the second electrode member 14, and electric power can be taken out by connecting a load to the end of the electrode.
  • the thermoelectric conversion module 10 is effectively used as a power generation module.
  • the thermoelectric elements 11 and 12 made of half-Heusler material can be used at high temperatures (for example, 300 ° C or higher) and have high thermoelectric conversion performance. Therefore, it is possible to realize a highly efficient power generator using a high-temperature heat source.
  • thermoelectric conversion module 10 is not limited to a power generation application for converting heat into electric power, but can also be used for a heating or cooling application for converting electricity into heat. That is, when a direct current is passed through the p-type thermoelectric element 11 and the n-type thermoelectric element 12 connected in series, heat is dissipated on one insulating heat conducting plate side, and heat is absorbed on the other insulating heat conducting plate side. . Accordingly, the object to be processed can be heated by disposing the object to be processed on the insulating heat conducting plate on the heat radiation side.
  • the power of the object to be processed can also be deprived of heat and cooled.
  • a semiconductor manufacturing apparatus performs temperature control of a semiconductor wafer, and the thermoelectric conversion module 10 can be applied to such temperature control.
  • the heat exchange according to the embodiment of the present invention includes the thermoelectric conversion module 10 according to the above-described embodiment.
  • the heat exchanger basically has a heating surface (endothermic surface) on one side of the thermoelectric conversion module 10, and It has a structure in which a cooling surface (heat radiation surface) is arranged on the opposite side.
  • the endothermic surface has a passage through which a high-temperature medium from a heat source passes
  • the opposite heat radiation surface has a passage through which a low-temperature heat medium such as cooling water or air passes.
  • a fin, a baffle plate, or the like may be disposed in the passage through which the heat medium passes or outside thereof. Instead of water passages and gas passages, heat sinks, fins, heat sinks, etc. may be used.
  • FIG. 4 is a perspective view showing a schematic structure of a heat exchanger according to an embodiment of the present invention.
  • a gas passage 31 is disposed so as to contact one surface of the thermoelectric conversion module 10, and a water passage 32 is disposed so as to contact the other surface.
  • the gas passage 31 for example, high-temperature exhaust gas having the power of a waste incinerator is introduced.
  • cooling water is introduced into the water channel 32.
  • One surface of the thermoelectric conversion module 10 becomes a high temperature side due to high temperature exhaust gas flowing in the gas passage 31, and the other side becomes a low temperature side due to cooling water flowing in the water passage 32.
  • thermoelectric conversion module 10 By generating a temperature difference between both ends of the thermoelectric conversion module 10, electric power is taken out from the thermoelectric conversion module 10 constituting the heat exchanger 30.
  • the heat absorption surface is not limited to high-temperature exhaust gas from combustion furnace power, but can be applied to, for example, automobile engine exhaust gas, boiler internal water pipes, and the like, and may also be a combustion section itself that burns various fuels.
  • thermoelectric power generation system includes the heat exchanger 30 of the above-described embodiment.
  • the thermoelectric generator basically has means for supplying heat for power generation to the heat exchanger 30, and the heat supplied by this heat supply means is converted into electric power by the thermoelectric conversion module 10 in heat exchange to generate electric power. .
  • FIG. 5 shows a configuration of a waste heat utilization power generation system that uses waste heat of a waste incinerator as an example of a thermoelectric power generation apparatus to which the heat exchanger 30 according to an embodiment of the present invention is applied.
  • the exhaust heat power generation system 40 shown in FIG. 5 includes an incinerator 41 that incinerates combustible waste, a blower fan 44 that absorbs the exhaust gas 42 and blows it to the flue gas treatment device 43, and the exhaust gas 42 in the atmosphere.
  • a waste incinerator having a chimney 45 to be diffused is added with the heat exchanger 30 according to the above-described embodiment.
  • thermoelectric power generation system to which the heat exchanger of the present invention is applied is not limited to a waste incinerator, and can be applied to facilities having various incinerators, heating furnaces, melting furnaces, and the like. It is also possible to use the exhaust pipe of an automobile engine as a gas passage for high-temperature exhaust gas, or use the water pipe in the boiler of a brackish hydrothermal power generation facility as a heat supply means.
  • the heat exchanger of the present invention is installed on the surface of the water pipe or water pipe fin in the steam power plant, and the hot side is inside the boiler and the low temperature side is the water pipe side. Steam can be obtained at the same time, and the efficiency of the brackish water thermal power plant can be improved.
  • the means for supplying heat to the heat exchanger may be the combustion section itself for burning various fuels such as the combustion section of the combustion heating device.
  • thermoelectric conversion module shown in Fig. 1 was manufactured as follows. First, an example of manufacturing a thermoelectric element is described.
  • Ti, Zr, Ni and Sn are weighed and mixed so as to have the composition of (Ti Zr) NiSn
  • This mixed raw material was loaded into a water-cooled copper nose in an arc furnace and arc-melted in a reduced Ar atmosphere.
  • This alloy was pulverized using a mortar and then pressure sintered in an Ar atmosphere of 80 MPa at 1200 ° C. for 1 hour to obtain a disk-shaped sintered body having a diameter of 20 mm.
  • the sintered body strength thus obtained was cut into a desired shape to obtain a thermoelectric element.
  • Ti, Zr, Fe, Co and Sb are weighed to have the composition of (Ti Zr) (Fe Co) Sb
  • This mixed material was loaded into a water-cooled copper nose in an arc furnace and arc-melted in a reduced Ar atmosphere.
  • This alloy was pulverized using a mortar and then pressure-sintered at 1200 ° C. for 1 hour in an Ar atmosphere of 80 MPa to obtain a disk-shaped sintered body having a diameter of 20 mm.
  • the sintered body strength thus obtained is cut into a desired shape to obtain a thermoelectric element. It was.
  • thermoelectric conversion module was produced as follows.
  • Si N plate and a Cu electrode plate were joined by heat treatment at 800 ° C. for 20 minutes.
  • the Cu plate was also bonded to the entire surface using the brazing material described above on the opposite side of the Cu electrode plate.
  • thermoelectric module substrate Two thermoelectric module substrates were used and laminated so that a thermoelectric element was sandwiched between them.
  • Thermoelectric elements were arranged on a brazing material printed on a Cu electrode plate by alternately arranging p-type and n-type thermoelectric elements in a total of 32 squares, 4 sets in length and 8 rows in width.
  • This laminate was placed in an electric furnace and heat-treated at 800 ° C. for 20 minutes in a vacuum of 0.1 lPa to bond each thermoelectric element and the Cu electrode plate. When the laminate was removed from the furnace after cooling, all thermoelectric elements were bonded to the Cu electrode plate with sufficient strength.
  • FIG. 6A, FIG. 6B, and FIG. 6C show the state of the joint interface between the n-type thermoelectric element 12 and the Cu electrode material 13.
  • Fig. 6A is a SEM observation image (SEM secondary electron image)
  • Fig. 6B is an element mapping diagram of Ti by EPMA at the same location
  • Fig. 6C is an explanatory diagram of Fig. 6B. These are shown separately. As can be seen from Fig. 6C, a layer with a particularly high Ti concentration is formed at the joint interface.
  • This Ti is a prayer of Ti in the active metal-containing bonding material 17, and this layer coincides with a portion having a high Ni concentration or Sn concentration.
  • Ni and Sn in thermoelectric element 12 and Ti in bonding material Accordingly, an alloy layer 22 having a Ti—Ni or Ti—Sn composition is formed, and the interface has an intricate structure. It is considered that strong bonding is performed by the presence of the alloy layer 22 and the complicated structure of the bonding interface. It was confirmed that an alloy layer having a Ti—Co composition or a Ti—Sb composition was formed at the bonding interface between the p-type thermoelectric element 11 and the Cu electrode material 13.
  • thermoelectric conversion module For the thermoelectric conversion module fabricated in this way, the high temperature side is set to 500 ° C, the low temperature side is set to 50 ° C, and a load having the same resistance value as the internal resistance of the module is connected as a load.
  • the thermoelectric properties were measured. As a result, the generated voltage was 3.0V and the power was 7.0W. After 1000 hours of continuous operation under these conditions, the temperature was returned to room temperature, and operation was performed again under the same conditions. This was repeated 10 times, and when the total operating time reached 10,000 hours, the thermoelectric characteristics were measured, and it was confirmed that the initial performance was maintained. In addition, the joint between the thermoelectric element and the Cu electrode plate remained in a good state, and the joint did not show any damage or change in shape of the thermoelectric element.
  • Table 1 shows combinations of thermoelectric elements, electrodes, and bonding materials, and evaluation results of each module.
  • the evaluation results in Table 1 show that the high-temperature side of the thermoelectric module is 500 ° C and the low-temperature side is 50 ° C, each of which is held for 10 minutes and then returned to room temperature. The number of times that etc. does not occur is shown. The number of times was 30 times or more was a, 1 to less than 30 times was b, 0 times was c, and the one peeled before raising the temperature to 500 ° C was d.
  • thermoelectric conversion modules were prepared, except that the combination of thermoelectric elements, electrodes, and bonding materials was changed.
  • the performance of these thermoelectric conversion modules was evaluated in the same manner as in Example 1.
  • Table 1 shows the combinations of thermoelectric elements, electrodes, and bonding materials, and the evaluation results for each module. In any combination of Examples 2 to 9, even if holding at 500 ° C. for 10 minutes was repeated 30 times or more, peeling or cracking did not occur at the joint.
  • thermoelectric conversion modules as in Example 1 were prepared, except that the combination of thermoelectric elements, electrodes, and bonding materials was changed.
  • the performance of the thermoelectric conversion modules of these comparative examples was also evaluated in the same manner as in Example 1.
  • Table 1 shows the combination of thermoelectric elements, electrodes, and bonding materials and the module evaluation results for each comparative example. [0069] [Table 1]
  • Comparative Example 1 Ag brazing (BAg-8 foil having a thickness of 20 / m) was used instead of the bonding material used in Example 1. Ag brazing was extremely poor in wettability with thermoelectric elements that have MgAgAs type intermetallic compound force, and the module was able to obtain only a joining strength that could be peeled off by hand.
  • Comparative Example 2 boric acid dissolved in water as a flux was applied to the surface of the thermoelectric element in order to improve wettability and dried, and then bonded using BAg-8 foil under the same conditions as in Example 1. This thermoelectric conversion module was held at 500 ° C for 10 minutes, and when the operation of lowering to room temperature was repeated twice, the electrode and the thermoelectric element peeled off.
  • FIG. 7B and FIG. 7C show the state of the bonding interface between the n-type thermoelectric element 12 and the Cu electrode material 13 of Comparative Example 1 using Ag brazing as the bonding material.
  • Fig. 7A is an SEM observation image
  • Fig. 7B is an element mapping diagram of Ti by EPMA at the same location
  • Fig. 7C is an explanatory diagram of Fig. 7B. It is divided into four levels from the highest Ti concentration.
  • Comparative Example 1 the Ti segregation layer and the like as observed in FIG. 6 were not observed, and the joint interface was flat. There is no reaction between the thermoelectric element 12 and the bonding material 23, and no alloy layer is formed.
  • thermoelectric elements 11 and 12 of the module and the Cu electrode material 13 contains an active metal that is weak and strong bonding is possible with a small bonding material. You can see that it is not possible to obtain
  • Comparative Example 3 an Ag plate having a thickness of 200 ⁇ m was used as the electrode material, and the electrode material and the thermoelectric element were directly joined at 800 ° C under a load of 0.5 MPa. However, when the joined module was heated to 500 ° C on the high temperature side and lowered to room temperature, the joint part was peeled off.
  • Comparative Example 4 an Ag plate was used as the electrode material, and in Comparative Example 5, a SUS430 plate was used as the electrode material, and bonding was performed using BAg-8 foil as the bonding material. None of these materials were bonded well, and only a bonding strength that could be peeled by hand was obtained.
  • thermoelectric conversion modules of the respective examples have excellent thermal cycle characteristics at the joints and excellent practicality.
  • thermoelectric conversion module was used in the same manner as in Example 1 except that the bonding materials having the respective compositions shown in Table 2 and Table 3 were used and a 2 mm thick Si N plate was applied to the insulating heat conductive plate.
  • a thermoelectric module was manufactured in the same manner as in Example 2 except that the bonding material having the composition shown in Table 3 was changed to 1030 ° C and the electrode material was changed to SUS430.
  • the output and module resistance were measured from the IV characteristics of each thermoelectric conversion module thus obtained, and the resistance value at the joint interface was determined.
  • the resistance value at the junction interface was obtained from the formula: [(module resistance) one (total of 64 element resistance values)].
  • the element resistance value was a value measured in advance by the direct current four-terminal method using only a thermoelectric element.
  • each of the p-type and n-type thermoelectric elements is 3 mm long x 4 mm wide x 40 mm long so that the joint surface of the element Z electrode is centered from the joint of the element Z electrode Z insulating heat conduction plate of each module.
  • Four bending specimens were cut out. For each specimen, the joint strength was measured according to the 4-point bending test method. Table 4 shows the measurement results. Table 4 also shows the measurement results of each thermoelectric module according to Examples 1-9.
  • thermoelectric element and the electrode member are firmly bonded, and the contact resistance between them is reduced, resulting in high output.
  • Comparative Examples 7 to 9 use a bonding material that does not contain an active metal. In this case, it is apparent that the electrode and the thermoelectric element cannot be bonded. Karu.
  • thermoelectric element having a composition was prepared.
  • Surface roughness Ra of the joint surface of each thermoelectric element is 4 ⁇ m
  • a paste containing a Ti-containing Ag—Cu brazing material having a composition ratio (mass ratio) of 2 was screen printed. After drying it, 6 Cu electrode plates were placed on the paste layer, 12 in length, and a total of 50 Cu electrode plates were placed on the Si N plate. After that, vacuum below 0.8 Pa
  • thermoelectric module substrate Two thermoelectric module substrates were used and laminated so that a thermoelectric element was sandwiched between them.
  • Thermoelectric elements were arranged on a brazing material printed on a Cu electrode plate by alternately arranging p-type and n-type thermoelectric elements in a total of 50 sets, 10 rows in a row, and a total of 50 sets.
  • a 4.5 kg weight is placed on this laminated body in an electric furnace so that the pressure applied to the joint surface between the Cu electrode plate and the thermoelectric element is 50 kPa, and it is placed in a vacuum of 0.8 Pa or less.
  • the heat treatment was performed at 800 ° CX for 20 minutes to perform bonding.
  • thermoelectric elements When the laminate was taken out of the furnace after cooling, all the thermoelectric elements were bonded to the Cu electrode plate with sufficient strength. Further, when the interface between the thermoelectric element and the joint and the state in the joint were examined, the ratio of pores was 2%. The ratio of porosity (porosity) was measured as follows. Furthermore, the voltage (at maximum output), interface resistance, and maximum output of the thermoelectric conversion module were measured. The measuring method is as described above. Table 5 shows the measurement results.
  • the porosity porosity
  • an arbitrary cross section is selected from the bonding layer (brazing material layer) between the thermoelectric element and the electrode plate, and the brazing material layer side of the bonding cross section of the bonding cross section is selected.
  • thermoelectric conversion module was produced in the same manner as in Example 35 except that the pressure applied to the joining surface when joining the thermoelectric element and the Cou electrode plate was changed as shown in Table 5. For each of these thermoelectric conversion modules, the ratio of pores present at the bonding interface, voltage (at maximum output), interface resistance, and maximum output were measured. Table 5 shows the measurement results.
  • thermoelectric conversion modules were produced in the same manner as in Example 35 except that the composition of the bonding material (brazing material) for bonding the thermoelectric element and the Cu electrode plate was changed as shown in Table 6.
  • the proportion of pores present at the bonding interface, voltage (at maximum output), interface resistance, and maximum output were measured. Table 6 shows the measurement results.
  • Thermoelectric conversion modules were produced in the same manner as in Example 35 except that the conditions for joining the thermoelectric element and the Cu electrode plate were changed as shown in Table 7.
  • a bonding material (brazing material) having the same composition as Example 43 was used.
  • the proportion of pores present at the bonding interface, voltage (at maximum output), interface resistance, and maximum output were measured. Table 7 shows the measurement results.
  • the thermal resistance is reduced by reducing the proportion of pores present at the interface between the thermoelectric element and the bonding material. Can be communicated well and efficiently. Accordingly, the temperature difference between both ends of the thermoelectric element becomes substantially high, so that the output and energy conversion efficiency can be improved.
  • the proportion of pores present at the bonding interface or the like can be reduced by increasing the bonding pressure, increasing the degree of decompression of the bonding atmosphere, or smoothing the bonding surface.
  • the bonding material (brazing material) contains a small amount of carbon (for example, 0.5 to 5% by mass) to improve the coating property S, and in order to reduce the porosity, for example, the amount of carbon is 1%. It is preferable to reduce to less than mass% (including 0).
  • the heat exchanger shown in Fig. 4 was manufactured as follows. A gas passage for high-temperature exhaust gas was made using heat-resistant steel. In addition, a water flow path for cooling water is produced using corrosion-resistant steel. did. A heat exchanger with a thermoelectric conversion module was obtained by arranging the thermoelectric conversion modules of Example 1 connected in series between the gas passage and the water passage. By installing such a heat exchanger with a thermoelectric conversion module in a waste incinerator as shown in Fig. 5, for example, general waste and combustible wastes are incinerated and released into the atmosphere. The waste heat from the waste incinerator can be used.
  • thermoelectric power generation system DC power is extracted from the heat energy of the exhaust gas by a thermoelectric conversion module and regenerated to a storage battery installed in the automobile.
  • the drive energy of the alternator installed in the car is reduced and the fuel consumption rate of the car can be improved.
  • the heat exchanger of the above-described embodiment employs water cooling, it is also possible to cool by air cooling by providing fins on the cooling side.
  • air cooling By applying such an air-cooled heat exchanger to, for example, a combustion heating system, it is not necessary to supply electric energy from the outside! ⁇
  • a combustion heating system can be realized. That is, a combustion part that burns fuel such as petroleum liquid fuel and gas fuel, and an opening part that accommodates the combustion part and discharges air containing heat generated in the combustion part are formed, and heat is generated.
  • An air-cooled heat exchanger is installed above the combustion section in the combustion heating apparatus having a blower section that sends the air to the front of the apparatus. According to such a combustion heating apparatus, it is possible to drive the blower fan in the blower section by obtaining DC power with the partial force of the combustion gas heat thermoelectric conversion module.
  • the thermoelectric conversion module of the present invention includes a thermoelectric element made of a thermoelectric material mainly composed of an intermetallic compound having an MgAgAs-type crystal structure and an electrode member from Ti, Zr, Hf, Ta, V, and Nb. Bonded with a bonding material containing at least one selected active metal. As a result, the strength, reliability, conductivity, thermal conductivity, etc. of the joint can be increased.
  • a thermoelectric conversion module that exhibits a good thermoelectric conversion function at a high temperature of, for example, 300 ° C. or higher, and a heat exchange thermoelectric power generation system using such a thermoelectric conversion module are provided. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

 熱電変換モジュール10は、第1および第2の電極部材13、14と、これら電極部材13、14間に配置される熱電素子11、12とを具備する。熱電素子11、12はハーフホイスラー材料からなり、かつ第1および第2の電極部材13、14に対して接合部17を介して電気的および機械的に接続されている。接合部17は、主成分としてAg、CuおよびNiから選ばれる少なくとも1種と、1質量%以上10質量%以下の範囲のTi、Zr、Hf、Ta、VおよびNbから選ばれる少なくとも1種の活性金属とを含有する接合材を有する。

Description

明 細 書
熱電変換モジュールとそれを用いた熱交換器および熱電発電装置 技術分野
[0001] 本発明は、 MgAgAs型結晶構造を有する金属間化合物を主相とする熱電材料を 用いた熱電変換モジュールとそれを用いた熱交換器および熱電発電装置に関する
背景技術
[0002] 資源の枯渴が予想される今日、如何にエネルギーを有効に利用するかは極めて重 要な課題となっており、種々のシステムが提案されている。その中でも、熱電素子はこ れまで排熱として無駄に環境中に捨てられて 、たエネルギーを回収する手段として 期待されて!ヽる。熱電素子は p型熱電素子 (p型熱電半導体)と n型熱電素子 (n型熱 電半導体)とを交互に直列接続した熱電変換モジュールとして使用される。
[0003] 例えば、従来の廃熱ボイラーは熱交換器を通して蒸気や温水を得るのみの目的で 設計されており、その運転に関わる電力は外部から導入されている。このような点に 対して、近年、廃熱ボイラーに熱電変換モジュールを組み込んで、廃熱から電力を 取り出すことが試みられている。このような場合において、より高温の熱源を利用し得 るという観点から、使用する熱電素子はその使用可能温度 (実用的な熱電変換効率 が得られる温度域)が高いほど望ましいものとなる。特に、廃熱ボイラー等における発 電用途には、 300°C以上の使用可能温度を有する熱電素子を適用することが好まし い。
[0004] ところで、従来の熱電変換モジュールに実用化されて 、る熱電材料は、 Bi— Te系( 第 3元素として Sbや Seが添加された系を含む)熱電半導体がほとんどであり、その他 の材料は特殊用途で作製された実績はあるものの、工業生産ベースには至って 、な V、。上記した Bi— Te系熱電半導体の使用可能温度はせ 、ぜ 、200°Cまでであり、 ペルチェ効果を利用した冷却装置等に対しては有効であるものの、廃熱ボイラー等 で利用される発電装置の熱電素子には使用することができない。
[0005] このような点に対して、 MgAgAs型結晶構造を有する金属間化合物を主相とする 熱電材料 (以下、ハーフホイスラー材料と呼ぶ)は半導体的性質を示し、新規の熱電 変換材料として注目されている。 MgAgAs型結晶構造を有する金属間化合物の一 部は室温下で高いゼーベック効果を示すことが報告されている(例えば非特許文献 1 参照)。また、ハーフホイスラー材料は使用可能温度が高ぐ熱電変換効率の向上が 見込まれることから、高温の熱源を利用する発電装置の熱電変換モジュールに対し て魅力的な材料である。
[0006] ハーフホイスラー材料を発電装置等に利用するにあたっては、高温に耐え得る信 頼性の高いモジュール構造を実現することが重要となる。なお、従来の Bi— Te系熱 電素子を利用した熱電変換モジュールに関しては、モジュール構造の信頼性を向上 させるための構造が提案されている。例えば特許文献 1には、電極面にスクリーン印 刷でクリーム半田を塗布し、このクリーム半田で電極と熱電素子とを接合する方法が 記載されている。特許文献 2には、熱電素子の接合面に予め導電性被膜 (無電解 Ni メツキ層等)を形成し、この導電性被膜を介して電極と半田接合する方法が記載され ている。特許文献 3には、電極を支持する絶縁基板に窒化珪素製セラミックス基板を 用いることが記載されている。
[0007] 熱電変換モジュールの実用性を高めるためには、ハーフホイスラー材料力 なる熱 電素子と電極との接合部の信頼性 (機械的応力や熱応力に対する信頼性等)の向 上、さらには接合部における導電性の向上等を図る必要がある。し力しながら、例え ば特許文献 1〜2に記載されている半田付けでは、高温熱源を利用する熱電変換モ ジュールに求められる耐熱性を満足させることができない。その結果として熱電素子 と電極との間の接合信頼性等が低下する。このように、ハーフホイスラー材料カゝらなる 熱電素子と電極との接合部の信頼性、導電性、熱伝導性等を向上させることが可能 な接合方法は見出されておらず、実用性に優れる熱電変換モジュールを得るまでに は至っていない。
非特許文献 l :J.Phys. Condens. Matter 11 1697-1709 (1999)
特許文献 1:特開 2001— 168402公報
特許文献 2 :特開 2001— 352107公報
特許文献 3:特開 2002— 203993公報 発明の開示
[0008] 本発明の目的は、ハーフホイスラー材料力 なる熱電素子と電極との接合部の信 頼性、導電性、熱伝導性等を高めることによって、モジュールとしての実用性を高め た熱電変換モジュール、およびそのような熱電変換モジュールを用いた熱交換器と 熱電発電装置を提供することにある。
[0009] 本発明の一態様に係る熱電変換モジュールは、高温側に配置される第 1の電極部 材と、前記第 1の電極部材と対向して低温側に配置される第 2の電極部材と、前記第 1の電極部材と前記第 2の電極部材との間に配置され、 MgAgAs型結晶構造を有す る金属間化合物を主相とする熱電材料からなる熱電素子と、前記熱電素子を前記第 1および第 2の電極部材に対して電気的および機械的に接続する接合部であって、 主成分として Ag、 Cuおよび Niから選ばれる少なくとも 1種と、 1質量%以上 10質量 %以下の範囲の Ti、 Zr、 Hf、 Ta、 Vおよび Nbから選ばれる少なくとも 1種の活性金 属とを含有する接合材を有する接合部とを具備することを特徴としている。
[0010] 本発明の他の態様に係る熱交換器は、加熱面と、冷却面と、これら加熱面と冷却面 との間に配置された、上記した本発明の態様に係る熱電変換モジュールとを具備す ることを特徴としている。本発明のさらに他の態様に係る熱電発電装置は、上記した 本発明の態様に係る熱交換器と、前記熱交換器に熱を供給する熱供給部とを具備 し、前記熱供給部により供給された熱を前記熱交^^における熱電変換モジュール で電力に変換して発電することを特徴として!ヽる。
図面の簡単な説明
[0011] [図 1]本発明の一実施形態による熱電変換モジュールの構造を模式的に示す断面 図である。
[図 2]MgAgAs型金属間化合物の結晶構造を示す図である。
[図 3]図 1に示す熱電変換モジュールの一変形例を示す断面図である。
[図 4]本発明の一実施形態による熱交換器の概略構造を示す断面図である。
[図 5]本発明の一実施形態による熱電発電システムを適用したごみ焼却設備の概略 構成を示す図である。
[図 6A]実施例 1の熱電変換モジュールにおける熱電素子と電極板との接合界面の 状態を示す SEM観察像である。
[図 6B]図 6Aと同一部分の EPMAによる Tiの元素マッピング図である。
[図 6C]図 6Bの説明図である。
[図 7A]比較例 1の熱電変換モジュールにおける熱電素子と電極板との接合界面を示 す SEM観察像である。
[図 7B]図 7Aと同一部分の EPMAによる Tiの元素マッピング図である。
[図 7C]図 7Bの説明図である。
[図 8]実施例 40の熱電変換モジュールにおける熱電素子と接合材との界面の状態を 示す SEM観察像である。
[図 9]実施例 48の熱電変換モジュールにおける熱電素子と接合材との界面の状態を 示す SEM観察像である。
符号の説明
[0012] 11· ··ρ型熱電素子、 12· ··η型熱電素子、 13· ··第 1の電極部材、 14· ··第 2の電極部 材、 15, 16· ··絶縁性導熱板、 17, 18, 21· ··接合部、 19, 20…裏打ち用金属板、 3 0…熱交換器、 40· ··排熱利用発電システム。
発明を実施するための形態
[0013] 以下、本発明を実施するための形態について、図面を参照して説明する。なお、以 下では本発明の実施形態を図面に基づいて説明するが、それらの図面は図解のた めに提供されるものであり、本発明はそれらの図面に限定されるものではない。
[0014] 図 1は本発明の一実施形態による熱電変換モジュールの構造を示す断面図である 。同図に示す熱電変換モジュール 10は、複数の ρ型熱電素子 11と複数の η型熱電 素子 12とを有している。これら ρ型熱電素子 11と η型熱電素子 12は同一平面上に交 互に配列されており、モジュール全体としてはマトリックス状に配置されて熱電素子群 を構成して ヽる。 1つの ρ型熱電素子 11には η型熱電素子 12が隣接して ヽる。
[0015] ρ型熱電素子 11および η型熱電素子 12は、 MgAgAs型結晶構造を有する金属間 化合物を主相とする熱電材料 (ハーフホイスラー材料)により形成されている。ここで、 主相とは構成される相の中で最も体積分率が高い相を指すものである。ハーフホイス ラー材料は新規の熱電変換材料として注目されており、高い熱電性能が報告されて いる。ハーフホイスラー化合物(MgAgAs型結晶構造を有する金属間化合物)は化 学式 ABXで表され、立方晶系の MgAgAs型結晶構造を持つ金属間化合物である。 ハーフホイスラー化合物は図 2に示すように、 A原子と X原子による NaCl型結晶格子 に B原子が挿入された結晶構造を有している。図 2において、 Zは空孔を示している。
[0016] 上述したノ、ーフホイスラー材料は、室温で高いゼーベック係数を有することが報告 されて 、る。前述した非特許文献 1はハーフホイスラー化合物の室温下でのゼ一べッ ク係数を報告しており、例えば TiNiSn化合物は 142 μ V/K, ZrNiSnは 176 μ V/K、 HfNiSnは一 124 μ V/Kであることが記載されている。ハーフホイスラー 化合物は図 2に示したような MgAgAs型結晶構造を有する化合物の総称であり、 ΑΒ Xを構成する各元素は多くの種類が知られて 、る。
[0017] ハーフホイスラー化合物の Aサイト元素としては、一般に 3族元素(Sc、 Yを含む希 土類元素等)、 4族元素 (Ti、 Zr、 Hf等)、および 5族元素 (V、 Nb、 Ta等)力 選ばれ る少なくとも 1種の元素が用いられる。また、 Bサイト元素としては 7族元素(Mn、 Tc、 Re等)、 8族元素(Fe、 Ru、 Os等)、 9族元素(Co、 Rh、 Ir等)、および 10族元素(Ni 、 Pd、 Pt等)から選ばれる少なくとも 1種の元素が用いられる。 Xサイト元素としては 13 族元素(B、 Al、 Ga、 In、 Tl)、 14族元素(C、 Si、 Ge、 Sn、 Pb等)、および 15族元素 (N、 P、 As、 Sb、 Bi)力 選ばれる少なくとも 1種の元素が用いられる。
[0018] ハーフホイスラー化合物としては、
一般式: A B X - " (1)
100
(式中、 Aは 3族元素、 4族元素および 5族元素力 選ばれる少なくとも 1種の元素を、 Bは 7族元素、 8族元素、 9族元素および 10族元素力 選ばれる少なくとも 1種の元 素を、 Xは 13族元素、 14族元素および 15族元素力も選ばれる少なくとも 1種の元素 を示し、 Xおよび yは 25≤x≤50原子0 /0、 25≤y≤50原子0 /0、 x+y≤75原子0 /0を満 足する数である)
で実質的に表される組成を有する化合物が例示される。
[0019] p型熱電素子 11および n型熱電素子 12には、(1)式で表されるハーフホイスラー化 合物を主相とする材料を適用することができる。そのようなハーフホイスラー化合物の うちでも、特に 一般式: A1 B1 X1 - -- (2)
x 100-x-y
(式中、 A1は Ti、 Zr、 Hfおよび希土類元素から選ばれる少なくとも 1種の元素を、 B1 は Ni、 Coおよび Feから選ばれる少なくとも 1種の元素を、 XIは Snおよび Sbから選ば れる少なくとも 1種の元素を示し、 Xおよび yは 30≤x≤35原子0 /0、 30≤y≤35原子 %を満足する数である)
で実質的に表される組成を有する化合物を適用することが好ましい。
[0020] さらに、 p型および n型熱電素子 11、 12に適用するハーフホイスラー化合物は、 一般式:(Ti Zr Hf ) B1 X1 · '· (3)
a b c x ΙΟΟ-χ-y
(式中、 a、 b、 c、 xおよび yは 0≤a≤l、 0≤b≤l, 0≤c≤l, a+b + c= l、 30≤x≤ 35原子%、 30≤y≤35原子%を満足する数である)
で実質的に表される組成を有することが望ま 、。
[0021] (2)式や(3)式で表されるハーフホイスラー化合物は、特に高 、ゼーベック効果を 示し、また使用可能温度が高い(具体的には 300°C以上)。このようなことから、高温 の熱源を利用する発電装置用途等の熱電変換モジュール 10の熱電素子 11、 12と して有効である。 (2)式および
Figure imgf000008_0001
、て、 Aサイト(または A1サイト)元素の量 (X )は高いゼーベック効果を得る上で 30〜35原子%の範囲とすることが好ましい。同 様に、 Bサイト(または B1サイト)元素の量 (y)も 30〜35原子%の範囲とすることが好 ましい。
[0022] なお、 Aサイト (または A1サイト)元素を構成する希土類元素としては、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu等を用! /、ること力 子まし!/、。(2) 式および(3)式における Aサイト(または A1サイト)元素の一部は、 V、 Nb、 Ta、 Cr、 Mo、 W等で置換してもよい。 Bサイト元素(または B1サイト)の一部は Mn、 Cu等で置 換してもよい。 Xサイト(または XIサイト)元素の一部は Si、 Mg、 As、 Bi、 Ge、 Pb、 Ga 、 In等で置換してもよい。
[0023] 1つの p型熱電素子 11とこれに隣接する 1つの n型熱電素子 12の上部には、これら 素子間を接続する第 1の電極部材 13が配置されている。他方、 1つの p型熱電素子 1 1とこれに隣接する 1つの n型熱電素子 12の下部には、これら素子間を接続する第 2 の電極部材 14が配置されている。第 1の電極部材 13と第 2の電極部材 14は素子 1 個分だけずれた状態で配置されている。このようにして、複数の p型熱電素子 11と n 型熱電素子 12とが電気的に直列に接続されている。すなわち、 p型熱電素子 11、 n 型熱電素子 12、 p型熱電素子 11、 n型熱電素子 12…の順に直流電流が流れるよう に、第 1および第 2の電極部材 13、 14が配置されている。
[0024] 第 1および第 2の電極部材 13、 14は、 Cu、 Agおよび Feから選ばれる少なくとも 1種 を主成分とする金属材料により構成することが好ましい。このような金属材料は柔らか いため、ハーフホイスラー材料力もなる熱電素子 11、 12と接合した際に、熱応力を緩 和する働きを示す。従って、第 1および第 2の電極部材 13、 14と熱電素子 11、 12と の接合部の熱応力に対する信頼性、例えば熱サイクル特性を高めることが可能とな る。さら〖こ、 Cu、 Ag、 Feを主成分とする金属材料は導電性に優れることから、例えば 熱電変換モジュール 10で発電した電力を効率よく取り出すことができる。
[0025] 第 1の電極部材 13の外側 (熱電素子 11、 12と接合される面とは反対側の面)には 、これら電極部材 13に共通に接合された上部絶縁性導熱板 15が配置されて 、る。 他方、第 2の電極部材 14の外側にも、これら電極部材 14に共通に接合された下部 絶縁性導熱板 16が配置されている。すなわち、第 1および第 2の電極部材 13、 14は それぞれ絶縁性導熱板 15、 16で支持されており、これらによってモジュール構造が 維持されている。
[0026] 絶縁性導熱板 15、 16は絶縁性セラミックス板で構成することが好ましい。絶縁性導 熱板 15、 16には熱伝導性に優れる窒化アルミニウム、窒化珪素、炭化珪素、アルミ ナおよびマグネシア力 選ばれる少なくとも 1種を主成分とする焼結体力 なるセラミ ックス板を使用することが望ましい。特に、前述した特開 2002— 203993公報に記 載されているような熱伝導率が 65WZm'K以上で 3点曲げ強度が 600MPa以上の 高熱伝導性窒化珪素基板 (窒化珪素基焼結体)を使用することが望まし 、。
[0027] 第 1および第 2の電極部材 13、 14と p型および n型熱電素子 11、 12とは、それぞれ 接合部 17を介して接合されている。言い換えると、 p型および n型熱電素子 11、 12は 接合部 17を介して第 1および第 2の電極部材 13、 14に対して電気的および機械的 に接続されている。接合部 17は Ag、 Cuおよび Mから選ばれる少なくとも 1種を主成 分とすると共に、 Ti、 Zr、 Hf、 Ta、 Vおよび Nbから選ばれる少なくとも 1種の活性金 属を 1質量%以上 10質量%以下の範囲で含有する接合材 (活性金属含有接合材) で構成されている。
[0028] 接合部 17を構成する活性金属含有接合材は、ハーフホイスラー材料からなる熱電 素子 11、 12に対して良好な濡れ性を示し、かつ強固な接合界面構造を形成する。さ らには、熱電素子 11、 12と接合部 17との界面や接合部 17内に生じる気孔 (空孔)の 量を少なくすることができる。このようなことから、活性金属含有接合材を用いた接合 部 17を適用することによって、熱電素子 11、 12と電極部材 13、 14とを機械的に強 固に接合することが可能であると共に、接合界面での電気的な損失や熱的損失等が 小さ 、接合部 17を実現することができる。
[0029] 活性金属含有接合材は以下に示すような経緯に基づ ヽて適用されたものである。
すなわち、ハーフホイスラー材料力もなる熱電素子 11、 12を用いて熱電変換モジュ ール 10を構成するためには、電極部材 13、 14と実用的な接合構造、すなわち電極 部材 13、 14と強固に接合されていると共に、これらの間の電気的な損失や熱的損失 力 S小さい接合構造を実現する必要がある。このような点に対して、ハーフホイスラー材 料は他材料との結合性が非常に悪ぐ一般的な電極部材との接合方法では良好な 接合状態を得ることが困難であることが明らかになった。
[0030] 例えば、接合材として高温で使用が可能な Agろうを用いて、 Agや Cu等力もなる電 極部材への接合性を調べたところ、ハーフホイスラー材料に対してろう材の濡れ性が 非常に悪いため、電極材と強固な接合を得ることができないことが判明した。また、ほ う酸等のフラックスを用いても接合状態を大きく改善することは困難であった。ハーフ ホイスラー材料は結合形態が主に共有結合であるために Agろうの濡れ性が悪ぐそ の結果として接合が困難であると考えられる。
[0031] 他の接合方法としてろう材を用いな 、拡散接合法にっ 、て検討したところ、中間材 として A1箔を挟んで SUS製電極部材と接合することによって、人力では剥がれな!/ヽ 程度の接合強度が得られることが分力つた。しかし、この接合方法においても接合体 の両端に 400°C程度の温度差をつけて数分間発電試験を行うと、電極部材とハーフ ホイスラー材料力もなる熱電素子との接合界面で剥離が生じた。このようなモジユー ルは接合が良好に行えていないために出力が不安定であり、モジュールのエネルギ 一変換効率も低い。
[0032] このように、ハーフホイスラー材料力 なる熱電素子は高温まで使用可能で、かつ 高 ヽ熱電変換性能を有する反面、他部材との接合性が悪!ヽためにモジュール化が 困難であると 、う難点を有して 、る。ハーフホイスラー材料力もなる熱電素子を電極 部材と良好に接合することができなければ、実用的に使用可能な熱電変換モジユー ルを実現することはできない。言い換えると、高い熱電性能を持つハーフホイスラー 材料とそれに対して良好な接合方法を同時に満たすことができれば、例えば 300°C 以上の高温で十分に機能する熱電変換モジュールを実現することが可能となる。
[0033] そこで、ハーフホイスラー材料に対して有効な接合方法を検討した結果、活性金属 として Ti、 Zr、 Hf、 Ta、 Vおよび Nbから選ばれる少なくとも 1種を含有する接合材を 用いることによって、特別な前処理なしにハーフホイスラー材料力もなる熱電素子 11 、 12と電極部材 13、 14とを強固に接合することが可能であることを見出した。接合材 が活性金属を含んで ヽること〖こよって、ハーフホイスラー材料に対する濡れ性が大幅 に改善され、電極部材 13、 14と強固に接合することが可能となる。
[0034] 活性金属含有接合材を用いた場合、ハーフホイスラー材料からなる熱電素子 11、 12と接合部 17との界面に、接合材中の活性金属と熱電素子 11、 12の構成元素との 合金層が形成されやすくなる。合金層を形成する熱電素子 11、 12の構成元素として は、例えば Niゝ Co、 Fe、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Y b、 Lu、 Snおよび Sbから選ばれる少なくとも 1種の元素が挙げられる。このような合金 層が接合界面に形成されることによって、熱電素子 11、 12中に接合材層 17が入り 組んだ構造になる。
[0035] このような界面構造を実現することによって、ハーフホイスラー材料力 なる熱電素 子 11、 12を接合部 17、ひいては電極部材 13、 14と強固に接合することが可能とな る。さらに、接合界面に形成される合金層は熱電素子 11、 12と接合部 17との密着性 を向上させるだけでなぐそれ自体が導電材として機能するため、熱電素子 11、 12と 電極部材 13、 14とを電気的に良好に接続することが可能となる。すなわち、ハーフ ホイスラー材料カゝらなる熱電素子 11、 12と電極部材 13、 14との間の電気的接触抵 抗を小さくすることができる。カロえて、熱伝導性も向上するため、熱電素子 11、 12と 電極部材 13、 14との間の熱抵抗を小さくすることができる。
[0036] さらに、活性金属含有接合材を用いた接合部 17は、熱電素子 11、 12との界面や 接合部 17内に存在する気孔量の減少に寄与する。すなわち、熱電素子 11、 12と接 合部 17との界面および接合部 17内に存在する気孔の割合を 10% (面積比)以下と することができる。接合界面や接合部 17内に存在する気孔量を低減することによつ て、熱電素子 11、 12と電極部材 13、 14との間の熱抵抗が小さくなる。従って、電力 を得るための熱 (温度差)を熱電素子 11、 12に効率よく伝えることができる。さらに、 電気的接触抵抗も低減されるため、熱電変換モジュール 10全体としての内部抵抗を /J、さくすることができる。
[0037] 上述したような界面構造を有する熱電変換モジュール 10によれば、熱電素子 11、 12と電極部材 13、 14との間の熱抵抗や電気的接触抵抗の低減等に基づいて、ェ ネルギー変換効率を向上させることが可能となる。接合界面や接合部 17内に存在す る気孔の割合は 5%以下とすることがより好ましぐさらに好ましくは 3%以下である。 なお、気孔の割合は後に詳述するように、熱電素子 11、 12と接合部 17との界面およ び接合部 17内に存在する気孔の総面積を求め、接合界面および接合部 17全体の 面積に対する気孔面積の割合として算出する。
[0038] 熱電変換モジュール 10における熱電素子 11、 12と電極部材 13、 14との接合部に は、組立て時や取付け時等における機械的な応力にカ卩えて、熱電変換モジュール 1 0のオン'オフ等に伴う熱的応力も付加される。上述した活性金属含有接合材によれ ば、機械的な応力や熱的な応力に対して信頼性に優れる接合部 17を得ることができ る。さらに、熱電素子 11、 12と電極部材 13、 14との接合部 17は、単にモジュールを 形成する際の機械的な接合部となるだけでなぐ直列接続された P型熱電素子 11と n 型熱電素子 12との間に生じる電位差を電力として取り出す際の電気的な接続部とな る。
[0039] このような電気的な接続部における接触抵抗が大きいと電力の取り出し効率、すな わち熱電変換効率の低下を招くことになる。上述したように、活性金属含有接合材に よれば、熱電素子 11、 12と電極部材 13、 14との間の電気的接触抵抗が低減される ため、熱電変換モジュール 10全体としての内部抵抗を小さくすることができる。さらに 、熱電素子 11、 12と電極部材 13、 14との間の熱抵抗も低減されるため、電力を得る ための熱 (温度差)を熱電素子 11、 12に効率よく伝えることができる。これらによって 、熱電変換モジュール 10の熱電変換効率を向上させることが可能となる。
[0040] 上述したように、ハーフホイスラー材料力 なる熱電素子 11、 12を電極部材 13、 1 4に接合する接合部 17に、 Ti、 Zr、 Hf、 Ta、 Vおよび Nbから選ばれる少なくとも 1種 の活性金属を含有する接合材を用いることによって、機械的に強固な接合構造が得 られるだけでなぐ電気的接触抵抗や熱抵抗が小さい接合構造を実現することがで きる。これらによって、ハーフホイスラー材料力もなる熱電素子 11、 12を用いた熱電 変換モジュール 10の機械的強度、信頼性、熱電変換効率等のモジュール性能を高 めることが可能となる。
[0041] 熱電素子 11、 12と電極部材 13、 14とを接合する接合部 17には、上述したように A g、 Cuおよび N も選ばれる少なくとも 1種を主成分とすると共に、 Ti、 Zr、 Hf、 Ta、 Vおよび Nbから選ばれる少なくとも 1種の活性金属を 1質量%以上 10質量%以下の 範囲で含有する接合材が用いられる。活性金属の含有量が 1質量%未満であると、 ハーフホイスラー材料に対する濡れ性の向上効果や接合状態の改善効果を十分に 得ることができない。一方、活性金属の含有量が 10質量%を超えると、接合材として の本来の特性 (ろう材としての特性)が低下したり、熱応力に対する信頼性等が低下 する。接合材中の活性金属の含有量は 1〜6質量%の範囲とすることがより好ましい
[0042] 活性金属を配合する接合材の主材には、 Ag、 Cuおよび Niから選ばれる少なくとも
1種を主成分とするろう材が用いられる。このようなろう材を主材とする接合材を用い ることによって、接合部 17の高温下における信頼性を高めることが可能となる。接合 部 17に適用するろう材は、 Ag、 Cuおよび N も選ばれる少なくとも 1種を主成分と するものであればょ ヽが、特に接合温度 (溶融温度)等の点から Ag— Cu合金 (Ag- Cuろう材)を使用することが好ま 、。
[0043] さらに、活性金属含有接合材は第 3成分として Sn、 In、 Zn、 Cd、 C等を含んでいて もよい。このような第 3成分を添加することによって、接合温度の低下等を図ることが できる。第 3成分の含有量は 40質量%以下の範囲から適宜に選択される。第 3成分 の含有量が 40質量%を超えると、活性金属含有接合材の主成分となるろう材成分量 が相対的に減少することから、接合強度の低下等を招くおそれがある。第 3成分の含 有量は 30質量%以下とすることがより好ましい。なお、第 3成分の含有量の下限値は 特に限定されるものではなぐ各元素に応じた有効量の範囲から設定されるが、例え ば 10質量%以上とすることが実用的には有効である。
[0044] 活性金属含有接合材を用いた熱電素子 11、 12と電極部材 13、 14との接合は、電 極部材 13、 14上に活性金属含有接合材を配置し、さらにその上に熱電素子 11、 12 を配置した後、これらを真空中や不活性雰囲気中で熱処理することにより実施される 。活性金属含有接合材を用いることによって、上述したように接合界面等に存在する 気孔の割合を 10%以下とすることができる。さらに、接合界面等に存在する気孔量を 低減する上で、加熱時に 20kPa以上の圧力をカ卩えることが好ましい。これによつて、 接合界面等に存在する気孔の割合を例えば 5%以下とすることができる。
[0045] さらに、接合界面等に存在する気孔量をより一層低減する上で、熱電素子 11、 12 と電極部材 13、 14との接合時にカ卩える圧力は 40kPa以上とすることがより好ましい。 これに加えて、接合のための熱処理を 7 X 10_1Pa以下の真空雰囲気中や Arガス雰 囲気中で実施する、熱電素子 11、 12の接合面を平滑化する、接合部 17の厚さを 10 〜30 mの範囲とすることも有効である。これらによれば、接合界面等に存在する気 孔の割合を例えば 3%以下とすることができる。
[0046] 上述した活性金属含有接合材は、熱電素子 11、 12と電極部材 13、 14との接合に 限らず、電極部材 13、 14を上部および下部絶縁性導熱板 15、 16に対して接合する 接合材としても有効である。すなわち、第 1および第 2の電極部材 13、 14はそれぞれ 接合部 18を介して上部および下部絶縁性導熱板 15、 16に接合されている。このよう な接合部 18にも上記した活性金属含有接合材を適用することが好ま ヽ。これによ つて、電極部材 13、 14と絶縁性導熱板 15、 16との接合強度や接合信頼性を高める ことができると共に、熱抵抗を低減することが可能となる。これらも熱電変換モジユー ル 10のモジュール性能の向上に寄与する。
[0047] 熱電変換モジュール 10は上述した各要素により構成することができる。さらに、例 えば図 3に示すように、上部および下部絶縁性導熱板 15、 16のさらに外側に電極部 材 13、 14と同じ材質の金属板 19、 20を配置するようにしてもよい。これら金属板 19 、 20は、電極部材 13、 14と絶縁性導熱板 15、 16との接合と同様に、活性金属含有 接合材を適用した接合部 21を介して絶縁性導熱板 15、 16に接合される。このように 、絶縁性導熱板 15、 16の両面に同材質の金属板 (電極部材 13、 14と金属板 19、 2 0)を貼り合わせることによって、絶縁性導熱板 15、 16と電極部材 13、 14との熱膨張 差に起因するクラックの発生等を抑制することができる。
[0048] 図 1または図 3に示した熱電変換モジュール 10は、例えば上下の絶縁性導熱板 15 、 16間に温度差を与えるように、上部絶縁性導熱板 15を低温側 (L)に配置し、かつ 下部絶縁性導熱板 16を高温側 (H)に配置して使用される。この温度差に基づいて 第 1の電極部材 13と第 2の電極部材 14との間に電位差が生じ、電極の終端に負荷 を接続すると電力を取り出すことができる。このように、熱電変換モジュール 10は発 電モジュールとして有効に利用されるものである。この際、ハーフホイスラー材料から なる熱電素子 11、 12は高温 (例えば 300°C以上)で使用可能であり、かつ高い熱電 変換性能を有することにカ卩えて、モジュール全体としての内部抵抗や熱抵抗が低減 されているため、高温の熱源を利用した高効率の発電装置を実現することが可能と なる。
[0049] なお、熱電変換モジュール 10は熱を電力に変換する発電用途に限らず、電気を熱 に変換する加熱もしくは冷却用途に使用することも可能である。すなわち、直列接続 された p型熱電素子 11および n型熱電素子 12に対して直流電流を流すと、一方の絶 縁性導熱板側では放熱が起こり、他方の絶縁性導熱板側では吸熱が起こる。従って 、放熱側の絶縁性導熱板上に被処理体を配置することによって、被処理体を加熱す ることができる。あるいは、吸熱側の絶縁性導熱板上に被処理体を配置することによ つて、被処理体力も熱を奪って冷却することができる。例えば、半導体製造装置では 半導体ウェハの温度制御を実施しており、このような温度制御に熱電変換モジユー ル 10を適用することができる。
[0050] 次に、本発明の熱交翻の実施形態について説明する。本発明の実施形態による 熱交 は、上述した実施形態による熱電変換モジュール 10を具備する。熱交換 器は基本的には熱電変換モジュール 10の片側に加熱面(吸熱面)が配置され、その 反対側に冷却面 (放熱面)が配置された構造を有する。例えば、吸熱面は熱源から の高熱の媒体が通過する通路を備え、その反対側の放熱面は冷却水や空気等の低 温の熱媒が通過する通路を備える。熱媒が通過する通路やその外側には、フィンや 邪魔板 (バッフル)等が配置されていてもよい。水通路やガス通路に代えて、放熱板、 フィン、吸熱板等を使用してもよい。
[0051] 図 4は本発明の一実施形態による熱交換器の概略構造を示す斜視図である。図 4 に示す熱交換器 30は熱電変換モジュール 10の片側の面に接触するようにガス通路 31が配置されており、その反対側の面には水流路 32が接触するように配置されてい る。ガス通路 31内には例えばごみ焼却炉力もの高温の排ガスが導入される。他方、 水流路 32内には冷却水が導入される。熱電変換モジュール 10の片側の面はガス通 路 31内を流れる高温排ガスにより高温側となり、他方は水流路 32内を流通する冷却 水により低温側となる。
[0052] このようにして、熱電変換モジュール 10の両端に温度差を生じさせることによって、 熱交換器 30を構成する熱電変換モジュール 10から電力が取り出される。吸熱面に ついては燃焼炉力もの高温排ガスに限らず、例えば自動車エンジンの排気ガス、ボ イラ一内水管等を適用するとこができ、さらには各種燃料を燃焼させる燃焼部自体で あってもよい。
[0053] 次に、本発明の熱電発電装置の実施形態について説明する。本発明の実施形態 による熱電発電システムは、上記した実施形態の熱交換器 30を具備する。熱電発電 装置は基本的には熱交換器 30に発電用の熱を供給する手段を有し、この熱供給手 段により供給した熱を熱交 における熱電変換モジュール 10で電力に変換し て発電する。
[0054] 図 5は本発明の一実施形態による熱交換器 30を適用した熱電発電装置の一例とし て、ごみ焼却炉の排熱を活用した排熱利用発電システムの構成を示している。図 5に 示す排熱利用発電システム 40は、可燃性ごみを焼却する焼却炉 41と、その排ガス 4 2を吸収して排煙処理装置 43に送風する送風ファン 44と、排ガス 42を大気中に放 散させる煙突 45とを具備するごみ焼却装置に、上述した実施形態による熱交 3 0を付加した構成を有している。焼却炉 41でごみを焼却することで、高温の排ガス 42 が発生する。熱交翻 30にはこの排ガス 42が導入されると同時に冷却水 46が導入 されることによって、熱交 内部の熱電変換モジュール 10の両端に温度差が 生じて電力が取り出される。また、冷却水 46は温水 47として取り出される。
[0055] なお、本発明の熱交換器を適用した熱電発電システムはごみ焼却装置に限らず、 各種の焼却炉、加熱炉、溶融炉等を有する設備に適用可能である。また、自動車ェ ンジンの排気管を高温排ガスのガス通路として利用したり、また汽水火力発電設備の ボイラー内水管を熱供給手段として利用することも可能である。例えば、本発明の熱 交換器を汽水火力発電設備のボイラー内水管もしくは水管フィンの表面に設置し、 高温側をボイラー内側、低温側を水管側とすることで、電力と蒸気タービンに送られ る蒸気とが同時に得られ、汽水火力発電設備の効率を改善することができる。さらに 、熱交換器に熱を供給する手段は、燃焼暖房装置の燃焼部のような各種燃料を燃焼 させる燃焼部自体であってもよ 、。
[0056] 次に、本発明の具体的な実施例およびその評価結果について述べる。
[0057] 実施例 1
ここでは図 1に示した熱電変換モジュールを以下の要領で製造した。まず、熱電素 子の作製例につ 、て述べる。
[0058] (n型熱電素子)
まず、 Ti、 Zr、 Niおよび Snを、(Ti Zr ) NiSnの組成となるように秤量して混合
0. 5 0. 5
した。この混合原料をアーク炉内の水冷されている銅製ノヽースに装填し、減圧した Ar 雰囲気中でアーク溶解した。この合金を乳鉢を用いて粉砕した後、 80MPaの Ar雰 囲気中にて 1200°C X 1時間の条件で加圧焼結して、直径 20mmの円盤状焼結体 を得た。このようにして得た焼結体力 所望の形状に切り出して熱電素子とした。
[0059] (p型熱電素子)
Ti、 Zr、 Fe、 Coおよび Sbを、(Ti Zr ) (Fe Co ) Sbの組成となるように秤量
0. 5 0. 5 0. 2 0. 8
して混合した。この混合原料をアーク炉内の水冷されている銅製ノヽースに装填し、減 圧した Ar雰囲気中でアーク溶解した。この合金を乳鉢を用いて粉砕した後、 80MPa の Ar雰囲気中にて 1200°C X 1時間の条件で加圧焼結して、直径 20mmの円盤状 焼結体を得た。このようにして得た焼結体力 所望の形状に切り出して熱電素子とし た。
[0060] 次に、上記した p型熱電素子と n型熱電素子を用いて、以下のようにして熱電変換 モジュールを作製した。
[0061] (熱電変換モジュール)
この実施例では、絶縁性導熱板として Si N製セラミックス板 (熱伝導率 =80WZm
3 4
•K、 3点曲げ強度 = 700MPa)を用い、電極材として Cu板を用いて熱電変換モジュ ールを作製した。まず、 Ag : Cu: Sn:Ti=61. 9 : 24. 1: 10 :4の組成比(質量比)を 有する Ti含有 Ag— Cuろう材を用意し、これをペーストイ匕して Si N板上にスクリーン
3 4
印刷した。これを乾燥させた後、ペースト層上に Cu電極板を縦 4枚、横 8枚ずつ配置 し、 Si N板上に合計 32個の Cu電極板を配置した。その後、 0. OlPa以下の真空中
3 4
にて 800°C X 20分間の熱処理を行って、 Si N板と Cu電極板とを接合した。 Si N
3 4 3 4 板の Cu電極板を配置した反対側の面にも、上記したろう材を用いて Cu板を全面に 接合した。
[0062] 次いで、 Cu電極板上に上記したペースト状の Ti含有 Ag— Cuろう材をスクリーン印 刷し、これを乾燥させたものを熱電モジュール用基板とした。この熱電モジュール基 板を 2枚用いて、その間に熱電素子を挟むように積層した。熱電素子は Cu電極板に 印刷されたろう材上に、 p型および n型熱電素子を交互に配置し、縦 4組、横 8列、計 32組の正方形に配列した。この積層体を電気炉に配置し、 0. lPaの真空中にて 80 0°C X 20分間の熱処理を実施して、各熱電素子と Cu電極板とを接合した。冷却後に 積層体を炉より取り出したところ、全ての熱電素子が Cu電極板と十分な強度で接合 されていた。
[0063] 図 6A、図 6Bおよび図 6Cは n型熱電素子 12と Cu電極材 13との接合界面の様子を 示している。図 6Aは SEM観察像(SEM二次電子像)、図 6Bは同じ箇所の EPMA による Tiの元素マッピング図、図 6Cは図 6Bの説明図であり、 Ti濃度の濃い順から 4 階調のレベルに分けて示している。図 6Cから分かるように、接合界面に Ti濃度が特 に高い層が形成されている。
[0064] この Tiは活性金属含有接合材 17中の Tiが偏祈したものであり、この層は Ni濃度や Sn濃度の高い箇所と一致している。熱電素子 12中の Niや Snと接合材中の Tiとが反 応し、 Ti— Niや Ti— Sn組成の合金層 22が形成され、界面は入り組んだ構造になつ ている。このような合金層 22の存在や接合界面の入り組んだ構造によって、強固な 接合が行われると考えられる。 p型熱電素子 11と Cu電極材 13との接合界面には、 Ti — Co組成や Ti— Sb組成の合金層が形成されていることが確認された。
[0065] このようにして作製した熱電変換モジュールにつ 、て、高温側を 500°C、低温側を 50°Cとし、負荷としてモジュールの内部抵抗と同抵抗値の負荷を繋ぎ、整合負荷条 件で熱電特性を測定した。その結果、発生した電圧は 3. 0V、電力は 7. 0Wであつ た。この条件で 1000時間連続運転した後に室温に戻し、再び同条件で運転を行つ た。この繰り返しを 10回行い、合計運転時間が 10000時間に達した時点で熱電特 性を測定したところ、初期の性能が維持されていることを確認した。さらに、熱電素子 と Cu電極板との接合部は良好な状態を維持しており、また接合部ゃ熱電素子の破 損や形状変化等も認められな力 た。
[0066] 表 1に熱電素子、電極、接合材の組合せと各モジュールの評価結果を示す。なお、 表 1の評価結果は、熱電変換モジュールの高温側を 500°C、低温側を 50°Cとし、そ れぞれ 10分間保持した後に室温に戻す操作を繰り返し、接合部に剥離やクラック等 が発生しない回数を示している。その回数が 30回以上のものを a、 1〜30回未満のも のを b、 0回のものを c、 500°Cに昇温する前に剥離したものを dとした。
[0067] 実施例 2〜9
熱電素子、電極、接合材の組合せをそれぞれ変える以外は、実施例 1と同一の熱 電変換モジュールをそれぞれ作製した。これら熱電変換モジュールの性能を実施例 1と同様にして評価した。表 1に熱電素子、電極、接合材の組合せと各モジュールの 評価結果を示す。実施例 2〜9のいずれの組合せにおいても、 500°Cで 10分間の保 持を 30回以上繰り返しても、接合部に剥離やクラックが生じることはな力つた。
[0068] 比較例 1〜6
熱電素子、電極、接合材の組合せをそれぞれ変える以外は、実施例 1と同一の熱 電変換モジュールをそれぞれ作製した。これら比較例の熱電変換モジュールの性能 も実施例 1と同様にして評価した。表 1に各比較例による熱電素子、電極、接合材の 組合せとモジュールの評価結果を併せて示す。 [0069] [表 1]
Figure imgf000020_0001
[0070] 比較例 1は実施例 1で用いた接合材に代えて Agろう (厚さ 20 / mの BAg— 8箔)を 用いたものである。 Agろうは MgAgAs型金属間化合物力もなる熱電素子と濡れ性が 非常に悪く、モジュールは手で剥がれる程度の接合強度しか得られな力 た。比較 例 2は濡れ性を改善するために熱電素子表面にフラックスとして水溶したほう酸を塗 布して乾燥させてから、 BAg— 8箔を用いて実施例 1と同条件で接合したものである 。この熱電変換モジュールは 500°Cで 10分間保持し、室温に下げる操作を 2回繰り 返すと電極と熱電素子とが剥離してしまった。 [0071] 図 7A、図 7Bおよび図 7Cは Agろうを接合材に使った比較例 1の n型熱電素子 12と Cu電極材 13との接合界面の様子を示している。図 7Aは SEM観察像、図 7Bは同じ 箇所の EPMAによる Tiの元素マッピング図、図 7Cは図 7Bの説明図であり、 Ti濃度 の濃い順から 4階調のレベルに分けて示している。比較例 1では図 6で観察されたよう な Ti偏析層等は見られず、接合界面はフラットであった。熱電素子 12と接合材 23と の反応は起こっておらず、合金層は形成されていない。このように、接合界面で合金 層が形成されて 、な 、モジュールの熱電素子 11、 12と Cu電極材 13との接合強度 は弱ぐ活性金属を含有して ヽな ヽ接合材では強固な接合が得られな ヽことが分か る。
[0072] 比較例 3は電極材として厚さ 200 μ mの Ag板を使用し、 0. 5MPaの荷重下にて 80 0°Cで電極材と熱電素子とを直接接合したものである。しかし、接合したモジュールを 、高温側を 500°Cに昇温して室温に下げると、接合部が剥離してしまった。比較例 4 は電極材として Ag板を、比較例 5では電極材として SUS430板を使用し、それぞれ BAg— 8箔を接合材として用いて接合を行ったものである。これらはいずれもうまく接 合されず、手で剥離できる程度の接合強度しか得られな力つた。比較例 6では電極 材に SUS430板を使用し、厚さ 0. 25mmの A1箔を介して 600°C (荷重 = 25MPa) で拡散接合を試みた。しかし、比較例 3と同様に接合したモジュールを、高温側を 50 0°Cに昇温して室温に下げると、接合部が剥離してしまった。
[0073] これら各比較例に対して、実施例 1のように活性金属として Ti、 Zr、 Hf、 Ta、 Vおよ び Nbから選ばれる少なくとも 1種を含む接合材を用いた場合には、特別な前処理な しに、電極材と熱電素子とを強固に接着することができる。上記したような活性金属が 含まれて ヽること〖こよって、ハーフホイスラー材料からなる熱電素子に対する濡れ性 が大幅に改善され、さらに接合界面に活性金属と熱電素子の構成元素との合金層 が形成される。これらによって、各実施例の熱電変換モジュールは接合部が熱サイク ル特性に優れており、実用性に優れることが分かる。
[0074] 実施例 10〜34、比較例 7〜9
表 2および表 3に示す各組成の接合材を用いると共に、絶縁性導熱板に厚さ 2mm の Si N板を適用する以外は、それぞれ実施例 1と同様にして熱電変換モジュール を作製した。表 3に組成を示す接合材を用いたものは、接合温度を 1030°Cに変更し 、また電極材を SUS430に変える以外は実施例 2と同様にして熱電モジュールを作 製した。このようにして得た各熱電変換モジュールの I—V特性から出力とモジュール 抵抗を測定し、接合界面における抵抗値を求めた。接合界面での抵抗値は、式: [ ( モジュール抵抗)一(64個の素子抵抗値の総和)]より求めた。
[0075] なお、素子抵抗値は予め熱電素子のみで直流 4端子法により測定した値を用いた 。さらに、各モジュールの素子 Z電極 Z絶縁性導熱板の接合部から素子 Z電極の 接合面が中心となるように、 p型および n型熱電素子それぞれについて、縦 3mm X 横 4mm X長さ 40mmの曲げ試験片を 4本ずつ切り出した。各試験片について、 4点 曲げ試験法に準じて接合強度を測定した。これらの測定結果を表 4に示す。なお、表 4には実施例 1〜9による各熱電モジュールの測定結果を併せて示す。
[0076] [表 2]
接合材組成(K量%)
Figure imgf000023_0001
[0077] [表 3]
Figure imgf000023_0002
[0078] [表 4]
Figure imgf000024_0001
表 4から明らかなように、活性金属を含有する接合材を用いることによって、熱電素 子と電極部材とが強固に接合されると共に、これらの間の接触抵抗が低減されて高 い出力が得られることが分かる。一方、比較例 7〜9は活性金属を含まない接合材を 用いたものであり、この場合には電極と熱電素子とを接合することができないことが分 かる。
[0080] 実施例 35
(Ti Zr Hf ) NiSn組成の n型熱電素子と、(Ti Zr Hf ) CoSb S
O. 3 0. 35 0. 35 0. 3 0. 35 0. 35 0. 85 n 組成の p型熱電素子とを用意した。各熱電素子の接合面の表面粗さ Raは 4 μ m
0. 15
であった。これらを用いて、以下のようにして熱電変換モジュールを作製した。まず、 厚さ 0. 7mmの Si N板上に、 Ag : Cu: Sn:Ti: C = 60. 5 : 23. 5 : 10. 0 :4. 0 : 2. 0
3 4
の組成比(質量比)を有する Ti含有 Ag— Cuろう材をペーストイ匕したものをスクリーン 印刷した。これを乾燥させた後、ペースト層上に Cu電極板を縦 6枚、横 12枚ずつ配 置し、 Si N板上に合計 50個の Cu電極板を配置した。その後、 0. 8Pa以下の真空
3 4
中にて 800°C X 20分間の熱処理を行って、 Si N板と Cu電極板とを接合した。 Si N
3 4 3 板の Cu電極板を配置した反対側の面にも、上記したろう材を用いて Cu板を全面に
4
接合した。
[0081] 次に、 Cu電極板上に上記したペースト状の Ti含有 Ag— Cuろう材をスクリーン印刷 し、これを乾燥させたものを熱電モジュール用基板とした。この熱電モジュール基板 を 2枚用いて、その間に熱電素子を挟むように積層した。熱電素子は Cu電極板に印 刷されたろう材上に、 p型および n型熱電素子を交互に配置し、縦 5組、横 10列、計 5 0組の正方形に配列した。この積層体に対して、 Cu電極板と熱電素子との接合面に かかる圧力が 50kPaとなるように 4. 5kgの重しを載せて電気炉に配置し、 0. 8Pa以 下の真空中にて 800°C X 20分間の熱処理を実施して接合した。
[0082] 冷却後に積層体を炉より取り出したところ、全ての熱電素子が Cu電極板と十分な 強度で接合されていた。さらに、熱電素子と接合部との界面や接合部内の状態を調 ベたところ、気孔の割合は 2%であった。気孔の割合 (気孔率)は以下のようにして測 定した。さらに、熱電変換モジュールの電圧 (最大出力時)、界面抵抗、最大出力を 測定した。測定方法は前述した通りである。これらの測定結果を表 5に示す。
[0083] 気孔の割合 (気孔率)の測定は、熱電素子と電極板との接合層(ろう材層)から任意 の接合断面を選び、その接合断面の熱電素子カゝらろう材層側に 30 mの幅で長さ 5 00 μ m以内に存在する気孔の総面積 (個々の気孔面積を合計した値)を測定し、こ れを測定面積で割って割合 (%)を求める。この作業を 3箇所について行い、その平 均値を気孔の割合 (気孔率)とした。気孔は SEM観察像 (SEM二次電子像)にお 、 て、他の接合部(ろう材成分)より黒く写るので識別可能である。参考のために、実施 例 40 (気孔率 = 11%)の SEM観察像を図 8に示す。
[0084] 実施例 36 40
熱電素子と C ou電極板とを接合する際の接合面にかかる圧力を、表 5に示すように 変更する以外は、実施例 35と同様にして熱電変換モジュールをそれぞれ作製した。 これら各熱電変換モジュールについて、接合界面等に存在する気孔の割合、電圧( 最大出力時)、界面抵抗、最大出力を測定した。これらの測定結果を表 5に示す。
[0085] [表 5]
o
Figure imgf000026_0001
[0086] 実施例 41 43
熱電素子と Cu電極板とを接合する接合材 (ろう材)の組成を、表 6に示すように変更 する以外は、実施例 35と同様にして熱電変換モジュールをそれぞれ作製した。これ ら各熱電変換モジュールについて、接合界面等に存在する気孔の割合、電圧 (最大 出力時)、界面抵抗、最大出力を測定した。これらの測定結果を表 6に示す。
[0087] [表 6] ろう材組成 (質量%) 気孔の 電圧 界面 最大
Ag Cu Sn In Ti C 害哈 (V) 抵抗 出力
(%) (Ω) (W)
61.2 23.8 10.0 ― 4.0 1.0 3 0.26 17.4
23.0 ― 14.0 4.0 1.0 3 4.31
61.9 24.1 10.0 ― 4.0 0 2 [0088] 実施例 44〜48
熱電素子と Cu電極板とを接合する際の条件を、表 7に示すように変更する以外は、 実施例 35と同様にして熱電変換モジュールをそれぞれ作製した。なお、実施例 47と 実施例 48については、実施例 43と同一組成の接合材 (ろう材)を用いた。これら各熱 電変換モジュールについて、接合界面等に存在する気孔の割合、電圧 (最大出力時 )、界面抵抗、最大出力を測定した。これらの測定結果を表 7に示す。参考のために 、実施例 48 (気孔率 =0%)の SEM観察像を図 9に示す。
[0089] [表 7]
Figure imgf000027_0001
[0090] 表 5、表 6および表 7から明ら力^ように、熱電素子と接合材との界面に存在する気 孔の割合を減少させることで熱抵抗が小さくなるため、熱電素子に熱を良好にかつ 効率よく伝えることができる。従って、熱電素子の両端における温度差が実質的に高 くなるため、出力やエネルギー変換効率を向上させることが可能となる。接合界面等 に存在する気孔の割合は、接合圧力を高くしたり、接合雰囲気の減圧度を高めたり、 また接合面を平滑ィ匕することで減少させることができる。なお、接合材 (ろう材)は微量 の炭素(例えば 0. 5〜5質量%)を含有させることで塗布性が向上する力 S、気孔の割 合を減少させるためには例えば炭素量を 1質量%以下 (0を含む)まで減らすことが 好ましい。
[0091] 実施例 49
図 4に示した熱交換器を以下の要領で製造した。耐熱用鋼材を使用して高温排ガ ス用のガス通路を作製した。また、耐食用鋼材を使用して冷却水用の水流路を作製 した。これらガス通路と水流路との間に実施例 1の熱電変換モジュールを直列に繋い で配置することによって、熱電変換モジュール付きの熱交換器を得た。このような熱 電変換モジュール付き熱交換器を、例えば図 5に示したようにごみ焼却装置中に組 込むことによって、一般ごみや可燃性の廃棄物等を焼却処理して大気中に放散して いるごみ焼却炉の排熱を活用することができる。
[0092] さらに、上記した熱電変換モジュール付き熱交換器を自動車エンジンの排気管 (排 気ガス流路)の途中に取り付けて熱電発電システムを構成した。このような熱電発電 システムにお 、ては、排気ガスの熱エネルギーから熱電変換モジュールで直流電力 を取り出し、自動車に装備されている蓄電池に回生する。これによつて、自動車に装 備されて!/ヽる交流発電機 (オルタネーター)の駆動エネルギーが軽減され、自動車の 燃料消費率を向上させることが可能となる。
[0093] 上記した実施例の熱交換器は水冷を適用しているが、冷却側にフィンを設けて空 冷で冷却することも可能である。このような空冷型熱交換器を例えば燃焼暖房装置に 適用することで、外部から電気工ネルギーを供給する必要がな!ヽ燃焼暖房装置を実 現することができる。すなわち、石油系液体燃料やガス燃料等の燃料を燃焼する燃 焼部と、この燃焼部を収納し、該燃焼部で発生した熱を含む空気を放出するための 開口部が形成され、熱を含む空気を装置前方に送る送風部とを備えた燃焼暖房装 置において、燃焼部の上方に空冷型熱交換器を設置する。このような燃焼暖房装置 によれば、燃焼ガスの熱の一部力 熱電変換モジュールで直流電力を得て、送風部 にある送風ファンを駆動させることができる。
産業上の利用可能性
[0094] 本発明の熱電変換モジュールは、 MgAgAs型結晶構造を有する金属間化合物を 主相とする熱電材料からなる熱電素子と電極部材とを、 Ti、 Zr、 Hf、 Ta、 Vおよび N bから選ばれる少なくとも 1種の活性金属を含有する接合材で接合している。これによ つて、接合部の強度、信頼性、導電性、熱伝導性等を高めることができる。本発明に よれば、例えば 300°C以上というような高温下で良好な熱電変換機能を発揮する熱 電変換モジュール、さらにそのような熱電変換モジュールを用いた熱交 ゃ熱電 発電システムを提供することが可能となる。

Claims

請求の範囲
[1] 高温側に配置される第 1の電極部材と、
前記第 1の電極部材と対向して低温側に配置される第 2の電極部材と、 前記第 1の電極部材と前記第 2の電極部材との間に配置され、 MgAgAs型結晶構 造を有する金属間化合物を主相とする熱電材料からなる熱電素子と、
前記熱電素子を前記第 1および第 2の電極部材に対して電気的および機械的に接 続する接合部であって、主成分として Ag、 Cuおよび Niから選ばれる少なくとも 1種と 、 1質量%以上 10質量%以下の範囲の Ti、 Zr、 Hf、 Ta、 Vおよび Nbから選ばれる 少なくとも 1種の活性金属とを含有する接合材を有する接合部と
を具備することを特徴とする熱電変換モジュール。
[2] 請求項 1記載の熱電変換モジュールにお 、て、
前記熱電材料は、
一般式: A B X
100
(式中、 Aは 3族元素、 4族元素および 5族元素力 選ばれる少なくとも 1種の元素を、 Bは 7族元素、 8族元素、 9族元素および 10族元素力 選ばれる少なくとも 1種の元 素を、 Xは 13族元素、 14族元素および 15族元素力も選ばれる少なくとも 1種の元素 を示し、 Xおよび yは 25≤x≤50原子0 /0、 25≤y≤50原子0 /0、 x+y≤75原子0 /0を満 足する数である)
で実質的に表される組成を有することを特徴とする熱電変換モジュール。
[3] 請求項 1記載の熱電変換モジュールにお 、て、
前記熱電材料は、
一般式: Al B1 X1
100
(式中、 A1は Ti、 Zr、 Hfおよび希土類元素力も選ばれる少なくとも 1種の元素を、 B1 は Ni、 Coおよび Feから選ばれる少なくとも 1種の元素を、 XIは Snおよび Sbから選ば れる少なくとも 1種の元素を示し、 Xおよび yは 30≤x≤35原子0 /0、 30≤y≤35原子 %を満足する数である)
で実質的に表される組成を有することを特徴とする熱電変換モジュール。
[4] 請求項 1記載の熱電変換モジュールにお 、て、 前記接合材は、 1質量%以上 10質量%以下の範囲の前記活性金属と、 40質量% 以下(ただし零を含む)の範囲の Sn、 In、 Zn、 Cdおよび C力 選ばれる少なくとも 1種 の元素とを含有し、残部が実質的に Ag— Cu合金からなることを特徴とする熱電変換 モジユーノレ。
[5] 請求項 1記載の熱電変換モジュールにお 、て、
前記熱電素子と前記接合部との界面および前記接合部内に存在する気孔の割合 が 10%以下であることを特徴とする熱電変換モジュール。
[6] 請求項 5記載の熱電変換モジュールにお 、て、
前記気孔の割合が 5%以下であることを特徴とする熱電変換モジュール。
[7] 請求項 1記載の熱電変換モジュールにお 、て、
前記第 1および第 2の電極部材は Cu、 Agおよび Feから選ばれる少なくとも 1種を 主成分とする金属材料からなることを特徴とする熱電変換モジュール。
[8] 請求項 1記載の熱電変換モジュールにお 、て、
前記熱電素子と前記接合部との界面に、前記活性金属と前記熱電素子の構成元 素との合金層が形成されていることを特徴とする熱電変換モジュール。
[9] 請求項 8記載の熱電変換モジュールにお 、て、
前記合金層は前記熱電素子の構成元素として Ni、 Co、 Fe、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho, Er、 Tm、 Yb、 Lu、 Snおよび Sb力ら選ば、れる少なくとも 1種 の元素を含むことを特徴とする熱電変換モジュール。
[10] 請求項 1記載の熱電変換モジュールにお 、て、
さらに、前記第 1および第 2の電極部材の前記熱電素子と接合される面とは反対側 の面にそれぞれ配置され、窒化珪素、窒化アルミニウム、炭化珪素、アルミナおよび マグシァ力 選ばれると少なくとも 1種を主成分とするセラミックス部材カ なる絶縁性 導熱板を具備することを特徴とする熱電変換モジュール。
[11] 請求項 10記載の熱電変換モジュールにおいて、
前記絶縁性導熱板は前記接合材を介して前記第 1および第 2の電極部材に対して それぞれ接合されていることを特徴とする熱電変換モジュール。
[12] 請求項 1記載の熱電変換モジュールにお 、て、 前記熱電素子は交互に配置された P型熱電素子と n型熱電素子とを具備し、かつ 前記 P型熱電素子と前記 n型熱電素子とは前記第 1および第 2の電極部材で直列に 接続されて ヽることを特徴とする熱電変換モジュール。
[13] 加熱面と、
冷却面と、
これら加熱面と冷却面との間に配置された、請求項 1ないし請求項 6のいずれか 1 項記載の熱電変換モジュールと
を具備することを特徴とする熱交^^。
[14] 請求項 13記載の熱交換器と、
前記熱交^^に熱を供給する手段とを具備し、
前記熱供給手段により供給された熱を、前記熱交換器における熱電変換モジユー ルで電力に変換して発電することを特徴とする熱電発電装置。
[15] 請求項 14記載の熱電発電装置において、
前記熱供給手段は、焼却炉の排ガスライン、ボイラーの内水管、自動車エンジンの 排気管、または燃焼暖房装置の燃焼部を有することを特徴とする熱電発電装置。
PCT/JP2005/022759 2004-12-20 2005-12-12 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置 WO2006067986A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200580043512A CN100595940C (zh) 2004-12-20 2005-12-12 热电转换模块和使用它的热交换器以及热电发电装置
EP05814548.3A EP1835551B1 (en) 2004-12-20 2005-12-12 Thermoelectric conversion module, heat exchanger using same, and thermoelectric power generating system
JP2006548821A JP4896742B2 (ja) 2004-12-20 2005-12-12 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置
US11/793,217 US20080135082A1 (en) 2004-12-20 2005-12-12 Thermoelectric Conversion Module, Heat Exchanger Using Same, and Thermoelectric Power Generating Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004367790 2004-12-20
JP2004-367790 2004-12-20

Publications (1)

Publication Number Publication Date
WO2006067986A1 true WO2006067986A1 (ja) 2006-06-29

Family

ID=36601588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022759 WO2006067986A1 (ja) 2004-12-20 2005-12-12 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置

Country Status (7)

Country Link
US (1) US20080135082A1 (ja)
EP (1) EP1835551B1 (ja)
JP (1) JP4896742B2 (ja)
KR (1) KR100926851B1 (ja)
CN (1) CN100595940C (ja)
TW (1) TW200625703A (ja)
WO (1) WO2006067986A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105361A1 (ja) * 2006-03-08 2007-09-20 Kabushiki Kaisha Toshiba 電子部品モジュール
JP2008053493A (ja) * 2006-08-25 2008-03-06 Toshiba Corp 熱電変換材料とそれを用いた熱電変換モジュール
US20090211619A1 (en) * 2008-02-26 2009-08-27 Marlow Industries, Inc. Thermoelectric Material and Device Incorporating Same
JP2010532652A (ja) * 2007-06-29 2010-10-07 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング エネルギー貯蔵器を充電する方法及び装置
JP2011114291A (ja) * 2009-11-30 2011-06-09 Furukawa Co Ltd 熱電変換モジュール、その接合部材
JP2013098494A (ja) * 2011-11-04 2013-05-20 Toshiba Corp 熱発電システム
US8623173B2 (en) 2007-09-14 2014-01-07 Advanced Display Process Engineering Co., Ltd. Substrate processing apparatus having electrode member
JP2014236109A (ja) * 2013-06-03 2014-12-15 ヤマハ株式会社 熱電変換部品
JP2017204550A (ja) * 2016-05-11 2017-11-16 積水化学工業株式会社 熱電変換材料、熱電変換素子及び熱電変換素子の製造方法
US9837593B2 (en) 2012-07-10 2017-12-05 Kabushiki Kaisha Toshiba Thermoelectric conversion material, thermoelectric conversion module using the same, and manufacturing method of the same

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908426B2 (ja) * 2005-11-29 2012-04-04 株式会社東芝 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置
US20100193001A1 (en) * 2007-07-09 2010-08-05 Kabushiki Kaisha Toshiba Thermoelectric conversion module, and heat exchanger, thermoelectric temperature control device and thermoelectric generator employing the same
TWI473310B (zh) 2008-05-09 2015-02-11 Ind Tech Res Inst 薄膜式熱電轉換元件及其製作方法
DE102008063701A1 (de) * 2008-12-19 2010-06-24 Behr Gmbh & Co. Kg Abgaskühler für einen Verbrennungsmotor
KR101195674B1 (ko) * 2009-01-29 2012-10-30 야마하 가부시키가이샤 열교환 유닛
TWI415314B (zh) * 2009-02-05 2013-11-11 Lg Chemical Ltd 熱電元件模組及製造方法
JP6029256B2 (ja) * 2009-06-30 2016-11-24 学校法人東京理科大学 マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
JP5066564B2 (ja) * 2009-07-06 2012-11-07 韓國電子通信研究院 熱電素子及びその製造方法
DE102009046102A1 (de) * 2009-10-28 2011-05-05 Robert Bosch Gmbh Verfahren zum Herstellen eines Seebeckschenkelmoduls
CN101770678B (zh) * 2010-01-05 2013-03-13 北京航空航天大学 一种采用热电材料制成的温度检测火灾报警装置
KR101153720B1 (ko) * 2010-09-16 2012-06-14 한국기계연구원 열전모듈 및 이의 제조방법
WO2012066788A2 (en) * 2010-11-18 2012-05-24 Panasonic Corporation Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing the same
US9048004B2 (en) 2010-12-20 2015-06-02 Gmz Energy, Inc. Half-heusler alloys with enhanced figure of merit and methods of making
JP5537402B2 (ja) * 2010-12-24 2014-07-02 株式会社日立製作所 熱電変換材料
TWI446603B (zh) * 2010-12-29 2014-07-21 Ind Tech Res Inst 熱電模組及其製造方法
US8730673B2 (en) * 2011-05-27 2014-05-20 Lockheed Martin Corporation Fluid-cooled module for integrated circuit devices
DE102011079467A1 (de) * 2011-07-20 2013-01-24 Behr Gmbh & Co. Kg Thermoelektrisches Modul, Verfahren zur Herstellung eines thermoelektrischen Moduls und Verwendung eines metallischen Glases oder eines gesinterten Werkstoffes
TWI457446B (zh) * 2011-10-06 2014-10-21 Ind Tech Res Inst 熱電合金材料與熱電元件
WO2013141938A1 (en) * 2011-12-30 2013-09-26 Rolls-Royce North American Technologies, Inc. Gas turbine engine tip clearance control
JP5979883B2 (ja) 2012-01-16 2016-08-31 株式会社Kelk 熱電素子およびこれを備えた熱電モジュール
JP5762633B2 (ja) * 2012-05-22 2015-08-12 株式会社日立製作所 熱電変換モジュール
US9722163B2 (en) * 2012-06-07 2017-08-01 California Institute Of Technology Compliant interfacial layers in thermoelectric devices
US10454013B2 (en) * 2012-11-16 2019-10-22 Micropower Global Limited Thermoelectric device
JP5720839B2 (ja) 2013-08-26 2015-05-20 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
US9685598B2 (en) 2014-11-05 2017-06-20 Novation Iq Llc Thermoelectric device
KR20160063000A (ko) * 2014-11-26 2016-06-03 현대자동차주식회사 열전 발전장치
CN104702153A (zh) * 2015-04-08 2015-06-10 南通理工学院 一种半导体温差发电装置
WO2016191577A1 (en) 2015-05-28 2016-12-01 Nike, Inc. Athletic activity monitoring device with energy capture
US9748463B2 (en) 2015-05-28 2017-08-29 Nike, Inc. Athletic activity monitoring device with energy capture
CN107921305B (zh) * 2015-05-28 2019-11-29 耐克创新有限合伙公司 能够捕获能量的体育运动监测设备
WO2016191573A1 (en) 2015-05-28 2016-12-01 Nike, Inc. Athletic activity monitoring device with energy capture
WO2016191580A1 (en) 2015-05-28 2016-12-01 Nike, Inc. Athletic activity monitoring device with energy capture
US9748464B2 (en) 2015-05-28 2017-08-29 Nike, Inc. Athletic activity monitoring device with energy capture
EP3302724B1 (en) 2015-05-28 2020-04-01 Nike Innovate C.V. Athletic activity monitoring device with energy capture
US10263168B2 (en) 2015-05-28 2019-04-16 Nike, Inc. Athletic activity monitoring device with energy capture
JP6668645B2 (ja) 2015-09-04 2020-03-18 ヤマハ株式会社 熱電変換モジュール及びその製造方法
TWI570972B (zh) * 2016-01-20 2017-02-11 財團法人工業技術研究院 熱電轉換裝置以及熱電轉換器
DE102016102893A1 (de) * 2016-02-18 2017-08-24 Webasto SE Wärmetauschersystem
JP6853436B2 (ja) 2016-03-17 2021-03-31 三菱マテリアル株式会社 マグネシウム系熱電変換素子、熱電変換装置
KR101806676B1 (ko) 2016-03-29 2017-12-07 현대자동차주식회사 열전발전시스템 및 이를 포함하는 차량용 배기매니폴드
CN105978404A (zh) * 2016-05-20 2016-09-28 梁山德圣新能设备制造有限公司 半导体发电机和发电装置
JP6256536B2 (ja) * 2016-07-04 2018-01-10 株式会社デンソー 熱流束センサモジュールおよびその製造方法
US20180014585A1 (en) * 2016-07-17 2018-01-18 David Requena Polonio Temperature controlled garment
KR102134378B1 (ko) * 2016-09-27 2020-07-15 주식회사 엘지화학 열전 모듈 및 그 제조 방법
KR102121439B1 (ko) * 2016-10-24 2020-06-10 주식회사 엘지화학 금속 페이스트 및 열전 모듈
JP7196432B2 (ja) * 2017-06-29 2022-12-27 三菱マテリアル株式会社 熱電変換モジュール、及び、熱電変換モジュールの製造方法
CN107464795B (zh) * 2017-06-30 2020-02-07 西安易朴通讯技术有限公司 热电转换装置及电子设备
WO2019009202A1 (ja) * 2017-07-05 2019-01-10 三菱マテリアル株式会社 熱電変換モジュール、及び、熱電変換モジュールの製造方法
KR102364931B1 (ko) * 2018-01-19 2022-02-17 주식회사 엘지화학 반도체 화합물 및 이를 포함하는 열전 소자
TWI651502B (zh) * 2018-06-27 2019-02-21 莊建勛 液體溫度調節系統和方法
CN109285940B (zh) * 2018-07-26 2019-11-15 深圳大学 与热电材料匹配的电极及其连接方法
WO2020097262A1 (en) * 2018-11-07 2020-05-14 Haifan Liang Thermoelectric systems and methods of applying the same
JP7584928B2 (ja) * 2020-07-03 2024-11-18 株式会社Kelk 熱電発電モジュール
CN113140665A (zh) * 2021-04-20 2021-07-20 哈尔滨工业大学(深圳) Fe或Fe基合金用于Zintl相热电器件接头的应用
KR20220151732A (ko) 2021-05-07 2022-11-15 한국전기연구원 하프 호이슬러계 열전 소재용 접합재 및 이를 포함하는 열전 소자
CN113530704A (zh) * 2021-06-04 2021-10-22 武汉理工大学 回收发动机冷却水及尾气中废热的热电转换系统
CN113531552A (zh) * 2021-06-04 2021-10-22 武汉理工大学 船舶焚烧炉废热回收利用系统
CN114686723B (zh) * 2022-03-22 2022-10-04 浙江大学 一类镁基半赫斯勒合金材料及其制备方法
KR102661776B1 (ko) 2022-04-08 2024-04-26 한국전기연구원 p형 하프-호이슬러 열전소재 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168172A (ja) * 1997-08-11 1999-03-09 Ngk Insulators Ltd シリコン−ゲルマニウム系材料の接合方法および熱電変換モジュールの製造方法ならびに熱電変換モジュール
JP2001028462A (ja) * 1999-07-13 2001-01-30 Yamaha Corp 熱電素子及び熱電素子の製造方法
JP2002203993A (ja) * 2000-12-27 2002-07-19 Toshiba Corp 熱電モジュール用基板およびそれを用いた熱電モジュール
JP2003282796A (ja) * 2002-03-27 2003-10-03 Kyocera Corp ペルチェ素子搭載用配線基板
WO2004095594A1 (ja) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. 熱電変換材料、この材料を用いた熱電変換素子、ならびにこの素子を用いた発電方法および冷却方法
JP2004356607A (ja) * 2002-11-12 2004-12-16 Toshiba Corp 熱電変換材料および熱電変換素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429680A (en) * 1993-11-19 1995-07-04 Fuschetti; Dean F. Thermoelectric heat pump
JP4077888B2 (ja) * 1995-07-21 2008-04-23 株式会社東芝 セラミックス回路基板
US6444893B1 (en) * 1999-06-15 2002-09-03 Yamaha Corporation High-converting efficiency large-mechanical strength thermoelectric module
US6347521B1 (en) * 1999-10-13 2002-02-19 Komatsu Ltd Temperature control device and method for manufacturing the same
JP3954291B2 (ja) * 2000-09-29 2007-08-08 株式会社東芝 熱電変換モデュールおよびそれを用いた熱交換器
JP2002238272A (ja) * 2001-02-06 2002-08-23 Tokyo Gas Co Ltd 高温排熱利用発電装置
US6759586B2 (en) * 2001-03-26 2004-07-06 Kabushiki Kaisha Toshiba Thermoelectric module and heat exchanger
JP4056382B2 (ja) * 2002-12-24 2008-03-05 学校法人立命館 熱電変換デバイス及びその製造方法
JP4255691B2 (ja) * 2002-12-27 2009-04-15 独立行政法人物質・材料研究機構 熱電変換材料を利用した電子部品の冷却装置
JP4468044B2 (ja) * 2004-03-30 2010-05-26 株式会社東芝 熱電材料および熱電変換素子
US20050268955A1 (en) * 2004-06-08 2005-12-08 Meyerkord Daniel J Diesel-electric locomotive engine waste heat recovery system
US7309830B2 (en) * 2005-05-03 2007-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168172A (ja) * 1997-08-11 1999-03-09 Ngk Insulators Ltd シリコン−ゲルマニウム系材料の接合方法および熱電変換モジュールの製造方法ならびに熱電変換モジュール
JP2001028462A (ja) * 1999-07-13 2001-01-30 Yamaha Corp 熱電素子及び熱電素子の製造方法
JP2002203993A (ja) * 2000-12-27 2002-07-19 Toshiba Corp 熱電モジュール用基板およびそれを用いた熱電モジュール
JP2003282796A (ja) * 2002-03-27 2003-10-03 Kyocera Corp ペルチェ素子搭載用配線基板
JP2004356607A (ja) * 2002-11-12 2004-12-16 Toshiba Corp 熱電変換材料および熱電変換素子
WO2004095594A1 (ja) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. 熱電変換材料、この材料を用いた熱電変換素子、ならびにこの素子を用いた発電方法および冷却方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1835551A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007105361A1 (ja) * 2006-03-08 2009-07-30 株式会社東芝 電子部品モジュール
WO2007105361A1 (ja) * 2006-03-08 2007-09-20 Kabushiki Kaisha Toshiba 電子部品モジュール
US9214617B2 (en) 2006-03-08 2015-12-15 Kabushiki Kaisha Toshiba Electronic component module
US8273993B2 (en) 2006-03-08 2012-09-25 Kabushiki Kaisha Toshiba Electronic component module
JP2008053493A (ja) * 2006-08-25 2008-03-06 Toshiba Corp 熱電変換材料とそれを用いた熱電変換モジュール
US7851692B2 (en) 2006-08-25 2010-12-14 Kabushiki Kaisha Toshiba Thermoelectric material, thermoelectric conversion module and thermoelectric power generating device using the same
JP2010532652A (ja) * 2007-06-29 2010-10-07 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング エネルギー貯蔵器を充電する方法及び装置
US8623173B2 (en) 2007-09-14 2014-01-07 Advanced Display Process Engineering Co., Ltd. Substrate processing apparatus having electrode member
US20090211619A1 (en) * 2008-02-26 2009-08-27 Marlow Industries, Inc. Thermoelectric Material and Device Incorporating Same
JP2011114291A (ja) * 2009-11-30 2011-06-09 Furukawa Co Ltd 熱電変換モジュール、その接合部材
JP2013098494A (ja) * 2011-11-04 2013-05-20 Toshiba Corp 熱発電システム
US9837593B2 (en) 2012-07-10 2017-12-05 Kabushiki Kaisha Toshiba Thermoelectric conversion material, thermoelectric conversion module using the same, and manufacturing method of the same
JP2014236109A (ja) * 2013-06-03 2014-12-15 ヤマハ株式会社 熱電変換部品
JP2017204550A (ja) * 2016-05-11 2017-11-16 積水化学工業株式会社 熱電変換材料、熱電変換素子及び熱電変換素子の製造方法

Also Published As

Publication number Publication date
US20080135082A1 (en) 2008-06-12
TWI293815B (ja) 2008-02-21
KR20070093111A (ko) 2007-09-17
JP4896742B2 (ja) 2012-03-14
EP1835551B1 (en) 2018-01-24
KR100926851B1 (ko) 2009-11-13
EP1835551A1 (en) 2007-09-19
TW200625703A (en) 2006-07-16
CN101080824A (zh) 2007-11-28
CN100595940C (zh) 2010-03-24
JPWO2006067986A1 (ja) 2008-06-12
EP1835551A4 (en) 2011-11-23

Similar Documents

Publication Publication Date Title
JP4896742B2 (ja) 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置
JP5422383B2 (ja) 熱電変換モジュールとそれを用いた熱交換器、熱電温度調節装置および熱電発電装置
CN101313421B (zh) 热电变换模块及使用热电变换模块的热交换器和热电发电装置
JP2009081287A (ja) 熱電変換モジュールとそれを用いた熱交換器、熱電温度調節装置および熱電発電装置
US6759586B2 (en) Thermoelectric module and heat exchanger
JP5212937B2 (ja) 熱電変換素子、当該熱電変換素子を備えた熱電モジュール及び熱電変換素子の製造方法
CN102449790B (zh) 涂覆有保护层的热电材料
Romanjek et al. High-performance silicon–germanium-based thermoelectric modules for gas exhaust energy scavenging
JP2002094131A (ja) 熱電変換素子
WO2008150007A1 (ja) 熱電変換モジュール及び熱電発電システム
JPH1197750A (ja) 熱電材料、その製造方法、および熱電発電システム
Nemoto et al. Improvement in the durability and heat conduction of uni-leg thermoelectric modules using n-type Mg2Si legs
JP2009081178A (ja) 熱電変換モジュールの製造方法
Nakamura et al. Power-generation performance of a π-structured thermoelectric module containing Mg2Si and MnSi1. 73
JPH09243201A (ja) 熱電変換装置およびその製造方法
CN104362249B (zh) 一种与Mg‑Si‑Sn基热电元件相匹配的分层电极及其连接工艺
JP2008124361A (ja) 熱電変換モジュール
JPH11330568A (ja) 熱電発電装置およびその製造方法
CN113016082A (zh) 锡基热电转换元件以及锡基热电转换模块
JP2003304006A (ja) 熱電変換モジュールおよびそれを用いた熱交換器
WO2006043402A1 (ja) 熱電変換モジュール
JP2002111076A (ja) 熱電変換モデュールおよびそれを用いた熱交換器
JPH1084140A (ja) 熱電変換装置およびその製造方法
JPH10209509A (ja) 熱電変換装置およびその製造方法
Arai et al. Development of high-durability substrates for thermoelectric modules

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548821

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580043512.5

Country of ref document: CN

Ref document number: 11793217

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005814548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077016291

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005814548

Country of ref document: EP