[go: up one dir, main page]

WO2005095117A2 - Verwendung von hydroxypropylierter hochamylosehaltiger kartoffelstärke zur erzielung hoher kit-zahlen - Google Patents

Verwendung von hydroxypropylierter hochamylosehaltiger kartoffelstärke zur erzielung hoher kit-zahlen Download PDF

Info

Publication number
WO2005095117A2
WO2005095117A2 PCT/EP2005/003220 EP2005003220W WO2005095117A2 WO 2005095117 A2 WO2005095117 A2 WO 2005095117A2 EP 2005003220 W EP2005003220 W EP 2005003220W WO 2005095117 A2 WO2005095117 A2 WO 2005095117A2
Authority
WO
WIPO (PCT)
Prior art keywords
packaging
layer
starch
starch derivative
agents
Prior art date
Application number
PCT/EP2005/003220
Other languages
English (en)
French (fr)
Other versions
WO2005095117A3 (de
Inventor
Uwe Robben
Thomas Luck
Hermann Seyffer
Wolfgang Alois Hormuth
Original Assignee
Basf Plant Science Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Plant Science Gmbh filed Critical Basf Plant Science Gmbh
Priority to US10/593,989 priority Critical patent/US20080171213A1/en
Priority to EP05716393A priority patent/EP1732996A2/de
Priority to BRPI0509311-2A priority patent/BRPI0509311A/pt
Priority to JP2007505471A priority patent/JP2007532339A/ja
Publication of WO2005095117A2 publication Critical patent/WO2005095117A2/de
Publication of WO2005095117A3 publication Critical patent/WO2005095117A3/de
Priority to NO20064885A priority patent/NO20064885L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/08Ethers
    • C08B31/12Ethers having alkyl or cycloalkyl radicals substituted by heteroatoms, e.g. hydroxyalkyl or carboxyalkyl starch
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/04Starch derivatives
    • C09D103/08Ethers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2565/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D2565/38Packaging materials of special type or form
    • B65D2565/381Details of packaging materials of special type or form
    • B65D2565/385Details of packaging materials of special type or form especially suited for or with means facilitating recycling
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/80Paper comprising more than one coating
    • D21H19/82Paper comprising more than one coating superposed
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate

Definitions

  • the invention relates to multilayer, fat-tight packaging materials with a carrier layer, which consist of paper / cardboard or other suitable, polymer-based substances.
  • Another object of the invention is a process for the production of fat-tight packaging material with a KIT number greater than 21 by using hydroxypropylated high-amylose potato starch with an amylose content of greater than 70%.
  • Patent application DE 41 09 983 A1 describes a flexible packaging container with a composite of a paper layer and a thermoplastic layer or film.
  • the thermoplastic layer or film material consists of starch, a synthetic, non-polyolefinic, hydroxyl-containing polymer, e.g. an oxygenated polymer, as well as plasticizers of natural origin, e.g. starch-derived polyalcohols. This material can be melted by applying heat and is therefore extrudable.
  • patent application DE 41 37 802 A1 it is proposed to laminate a cardboard with a coated paper web in order to obtain a rotten, liquid-repellent product.
  • Patent application DE 42 94 110 discloses a coating dispersion which is produced from copolymers of oxidized starch and styrene, butadiene, acrylic acid or similar polymerizable molecules. This dispersion reduces the gas and water permeability of cardboard or paper.
  • Corresponding paper / cardboard packaging commercially available has usually been subjected to a grease-repellent surface and / or bulk treatment.
  • Fluoropolymers in particular are currently used for this bulk treatment or surface treatment, with up to 5% by weight of coating material reaching the material.
  • Already fat densities> 6 to 8 can only be achieved by combinations of Layer and mass treatment can be achieved, fat densities with KIT numbers> 12 cannot be guaranteed with the current systems.
  • the packaging of dry animal feed with a low fat content ( ⁇ 10%) requires a treatment of the back in bulk, with a higher fat content a barrier is created by bulk treatment in combination with a surface coating.
  • Paper, cardboard and cardboard packaging is properly disposed of via the waste paper cycle.
  • the halogen polymers used as a fat barrier thus get either into the new paper or into the process waste water via the paper preparation.
  • Starch ethers are known as auxiliaries and feedstocks in the paper industry. Properties used here are described in detail in the relevant literature. They are used in surface coating and coating as well as in pigmented paper coatings. According to the BGW, papers, boxes and cardboards approved for food contact may also contain starch ethers (e.g. hydroxyethyl and hydroxypropyl ether). Starch ethers are also used as a component of adhesives because of their good film-forming properties and their water-binding capacity. Literature on this can be found, for example, in Ulimann's encyclopedia of industrial chemistry; W. Baumann / B. Herbe, ⁇ g: Paper chemicals - Facts about environmental protection (Springer-Verlag); O.B: Würzburg:
  • WO 02/02412 describes multilayer packaging for greasy goods based on native, modified starch.
  • starch ether derivatives can be processed into foils or films, primarily using a casting technique from an aqueous solution.
  • the aqueous starch suspension is derivatized in alkaline at temperatures up to 50 ° C.
  • the degree of derivatization is usually around 0.2.
  • the preferred derivatization on the C2 atom is characteristic of these processes.
  • Another method which is known primarily from scientific studies (autoclave method), is based on alkaline-activated starch and, at lower dry substance concentrations, leads to more homogeneous derivatizations, although the degree of derivatization is set similarly.
  • a procedure according to this strategy is described in patent application DE 4223471 A1, the starch ethers obtained in this way being used for film production, in particular for use as overhead, copier and printer films or for the surface finishing of specialty paper. as well as packaging material.
  • the ether derivative films mentioned can also be used in combination with other materials.
  • the object of the present invention is to provide fat-tight packaging materials with a very high number of KITs that are permitted under food law.
  • substrates which themselves do not have sufficient fat resistance such as paper, cardboard, cardboard or other materials made from or with cellulose, are fat-tight if they are coated with alkylene oxide-derivatized starch with an amylose content of greater than 70% ,
  • the present invention therefore provides multilayer packaging for greasy goods or parts of such packaging, which have a carrier layer made of a polymeric material as the main component and at least one layer applied to the carrier layer that does not form the outside of the packaging, the layer applied to the carrier layer having one contains alkylene oxide-derived starch with an amylose content of greater than 70% as the main component.
  • the alkylene oxide used for this can very suitably be a C 2 -C 6 alkylene oxide. C 2 -C 4 alkylene oxides are preferred.
  • HA starch high amylose
  • the coating of a carrier material with the functional layer "high amylose (HA) - starch derivative” realizes a fat-tight composite system.
  • the HA starch component is responsible for the fat tightness and also has the property of biodegradability.
  • Such a starch can also be incorporated well into coating compositions for the stated purpose since, in contrast to native starch, it does not tend to re-aggregate (retrogradation).
  • the packaging of the present invention is not limited to specific configurations.
  • An exemplary, preferred area of application is packaging of food and animal feed with low water contents and at the same time high fat contents, in particular folding boxes. Examples of this are packaging for biscuits, chocolates, other confectionery, dry animal feed, in which a particularly good barrier against the passage of water vapor is not necessary.
  • packaging for fatty non-food e.g. cosmetics, oil-based color pigments or the like
  • fatty non-food can also be designed according to the invention.
  • packagings according to the invention are that their manufacture is compatible with customary paper or cardboard manufacturing processes and that they are biodegradable, and they are particularly advantageous in terms of economic and / or ecological assessments compared to conventional systems, in particular if the factors price of the coating including process costs and the compatibility with the paper recycling process are to be considered.
  • the packaging coated according to the invention ensures good compatibility with the treatment and waste water purification options of waste paper disposal systems.
  • the degradation behavior in the paper cycle is a decisive advantage in terms of avoiding further entry of contaminants.
  • Suitable materials for the backing layer are, in particular, paper, cardboard or cardboard, possibly in a mixture with other suitable substances or substances normally used in food packaging technology such as binders or dyes.
  • other materials or plastics preferably based on natural polymers such as cellulose or the like, can also be used.
  • HA starch derivatives suitable according to the invention are those which have been derivatized with an alkylene oxide such as ethylene oxide or propylene oxide or a longer-chain alkylene oxide.
  • the attached groups increase the distances between the molecular chains and thus increase their mobility. The inner softening effect thus given can only be reversed by destroying the chemical bond.
  • the HA starch derivative should preferably form a closed film on the carrier layer. If this is the case, even very thin layers from about 6 g / m 2 basis weight can be fat-tight, provided the carrier material has a relatively high smoothness.
  • the coating can be provided as a surface layer on the inside of the packaging and / or as an intermediate layer, possibly also with the function of an adhesive layer between paper or cardboard layers or the like.
  • a so-called primer e.g. with conventional paper coating agents such as kaolin or starch, which has the purpose of pre-smoothing the surface.
  • the layer containing the HA starch derivative can optionally be applied to the carrier layer by applying a self-supporting layer made of this material.
  • a solution or suspension of the HA starch derivative with a suitable amount of dry substance is preferably produced and applied to the carrier material, preferably from an aqueous solution or suspension.
  • a very suitable amount of dry substance (TS) of the HA starch derivative is in the range from about 5 to about
  • 50% by weight preferably in the range from about 10 to about 40% by weight, the amount actually to be selected depending on the application method provided. In some cases, an amount down to 4% by weight may be sufficient.
  • the application can be carried out, for example, with a doctor blade, spraying or roller application, as well as by "die casting” a more concentrated solution and by applying a thermoplastic melt ("extrusion") over the surface.
  • the water content of the HA starch derivative should preferably be reduced to ⁇ 25% by weight after application to the carrier material (for example by drying with IR or convective).
  • the layer to be applied to the carrier layer can also contain other additives.
  • the addition of pigments lends itself
  • the KIT number can also be positively influenced in some cases by adding such substances, e.g. by adding glycerin or crosslinker (e.g. Glyoxal).
  • the proportion of high amylose starch derivative should preferably always be so high that the formation of a defect-free film is ensured.
  • Potato starch with an amylose content of greater than 70% is preferably used as the starting material.
  • a potato starch with an amylose content of over 70% can, for example, be isolated from genetically modified potato plants in which the enzymatic activity of the starch branching enzymes SBE I and II is reduced compared to the non-genetically modified starting plant.
  • a method for producing plants of this type is described by way of example in Example 1.
  • Starches with an amylose content of greater than 70% from other crops such as, for example, maize, wheat, peas or tapioca can also be used as starting materials. Plants with an amylose content of greater than 70% can be produced by genetic modification using molecular biological methods and / or by breeding and selection.
  • HA starch means a starch with an amylose content of at least 70%.
  • the amylose content is preferably at least 80%, particularly preferably at least 90%.
  • the chemical modification of the potato starch with an amylose content of greater than 70% takes place, for example, with a C 2 or C 3 alkylene oxide. Propylene oxide is preferred.
  • the HA starch is suitably modified in the presence of base, but the mass intended for the coating should react favorably in about 3 neutral, so that normally neutralization with acid must take place, the modified HA starch is in the Usually heavily contaminated with salts. It is an advantage if this salinity is not too high. It is therefore recommended that the coating composition in the concentration provided for the application has a conductivity of no more than 4,000 - 5,000 pS / cm, preferably of ⁇ 2,000 pS / cm.
  • acids and alkalis should be carried out from the point of view that the salt formed is harmless to food law.
  • Suitable acids are phosphoric acids, a suitable base is sodium hydroxide solution. Desalination can be done, for example, by dialysis.
  • Coatings with higher derivatized HA starch show more favorable KIT numbers than those with lower degrees of derivatization. However, it is not necessary to achieve high levels of substitution, since even low levels can lead to positive effects. However, these also depend on the origin of the HA starch used. While a degree of derivatization of 0.05 to 1.5 may be suitable in general, ranges between 0.1 to 1.0, very particularly preferably between 0.1 and 0.3, are preferred.
  • a HA starch ether solution suitable as a coating composition or casting solution for the present invention can be prepared, for example, as follows: the starch with an amylose content of greater than 70% (for example wheat, corn, tapioca, Potato or HA pea starch) is stirred in approximately twice its weight in water for a few hours and then roughly freed from the water, for example by suction filtering. It absorbs about its own weight of water, so that it has about 40 to 60% dry matter. Then it is resuspended in about 1.5 times its wet weight and disintegrated by adding the same amount of about 10% base or lye.
  • the starch with an amylose content of greater than 70% for example wheat, corn, tapioca, Potato or HA pea starch
  • alkylene oxide preferably propylene oxide
  • HA starch a few minutes to about 1 hour, with mild temperatures being maintained. Room temperature is well suited.
  • the mixture is allowed to stir for several hours and then left to rest for about 20 hours; then it is neutralized with acid. If desalination is to take place, this is done, for example, by dialysis against water. The desalted solution is gently concentrated if necessary.
  • the degree of derivatization of the HA starch is about 0.2 when using about 50% by weight of propylene oxide, in other cases correspondingly above or below.
  • Desalination or separation of disruptive inhomogeneities can also be carried out, for example, by means of ultrafiltration. If the product is too concentrated, it can be diluted with deionized water.
  • a mechanical separation can be carried out using a filter or centrifuge if necessary, and at the same time degassing of the solution to be processed can be achieved.
  • additives e.g. preservatives, fillers, antistatic agents, agents to improve elasticity, crosslinking agents
  • a coating solution which is particularly suitable for the purposes of the invention has the following rheological properties:
  • the method also offers the advantage that the HA starch is reacted and processed particularly gently and in particular continuously at relatively low temperatures ( ⁇ 60 ° C.) or completely at room temperature, which has positive effects for the coating of the carrier material. Due to the cold water solubility after neutralization, separation, salt separation and concentration, the starch with an amylose content of 70% can be processed gently so that no or only insignificant degradation reactions occur.
  • the aqueous casting solution can preferably be applied to the material web (paper) to be coated using a suitable application system (for example a doctor blade) at room temperature or slightly elevated temperatures.
  • hydroxypropyl ether starches produced by the autoclave process in particular from potato starch with an amylose content of greater than 70%, which have been found to be solutions with dry matter contents of 12 to 20% by weight and preferably with derivatization (DS) ) Degrees of 0.1 to 1.0, more preferably to 0.4, are used.
  • DS derivatization
  • these show significantly better grease-tightness, especially in areas with kinks, which are particularly critical in folding box applications.
  • the basis weights used for coating with these starches can be reduced.
  • Potato plants with an amylose content greater than 70% can be produced using antisense or RNAi technology with the aim of. To reduce or eliminate the enzymatic activity of the starch branching enzymes SBE I and SBE II.
  • the HA starch producing transgenic potato line Solanum tuberosum AM99-2003 was produced in which the activity of the starch branching enzymes is inhibited.
  • the genetic transformation of the starting variety Dinamo was carried out using a gene construct which contains gene fragments under the control of a GBSS promoter of SBE I and SBE II in an antisense orientation.
  • PBIuescript contains a 1620 base pair fragment of the 3 'end of the SBE I gene between EcoRV and Spei is cut with Spei and Xbal and ligated with a 1243 base pair Sstl-Xbal fragment of the 3' end of SBE II.
  • SBE I and SBE 2 Complex is cut out with the help of EcoRV and Xbal and ligated into the binary vector pHo3.1 opened with Smal and Xbal.
  • the resulting vector is designated pHabe12A, see Figure 1 and nucleic acid sequence SEQ-ID No. 1.
  • PHo3.1 is based on pGPTVKan (Becker, D. et al., Plant Molecular Biology 20 (1992), 1195-1197) and additionally contains the 987 base pairs GBSS promoter (see EP 0 563 189) of the Hindill site of pGPTVKan cloned and its uidA gene was removed with the help of Smal and Sstl.
  • the parent line Dinamo is transformed with the construct pHAbe12A using the method described in US Pat. No. 6,169,226, and the transgenic lines on kanamycin-containing ones Media selected.
  • the analysis of the amylose content of the transgenic plants was carried out according to the method described in (Morrison, WR and Laignelet, B., J. Cereal. Sci. 1 (1983), 9-20).
  • transgenic potato plants with an amylose content of at least 70% were selected and grown.
  • the high amylose starch was isolated by conventional methods.
  • Potato starch containing high amylose obtained from genetically modified potato plants - see Example 1 - was hydroxypropylated on a laboratory scale.
  • the potato starch with an amylose content of 70% was modified in accordance with an autoclave or homogeneous process.
  • the solution was prepared for the subsequent coating of cardboard by desalting and concentration.
  • the end product should have a degree of derivatization of approx. 0.2, a dry content (w / w) of approx. 18% 20 and a conductivity of approx. 600 // S / cm.
  • the HA starch was heated to 40 ° C.
  • the HA starch solution was applied (once or twice) to the coated and uncoated side of the box.
  • Example 4 Starting from 713 g HA starch from potato plants with an amylose content of 70% - produced according to the method described in Example 1 - became 1770 g hydroxyproply HA starch with a dry weight of 27 (w / w)% and a conductivity made from 880 // S / cm. The conductivity could not be reduced further by diafiltration.
  • Example 4 Starting from 713 g HA starch from potato plants with an amylose content of 70% - produced according to the method described in Example 1 - became 1770 g hydroxyproply HA starch with a dry weight of 27 (w / w)% and a conductivity made from 880 // S / cm. The conductivity could not be reduced further by diafiltration.
  • Example 4 Example 4
  • the coating is tested for tightness against mixtures with 2 I test solutions of different concentrations of castor oil, toluene and n-heptane.
  • the coating with a KIT number> 21 turned out to be fat-tight according to the KIT test according to 3M.
  • the HA starch ether obtained has a degree of derivatization of about 0.2.
  • the conductivity of the coating material is around 1100 pS / cm.
  • the coating compositions below are produced analogously to this example and applied with a 20 // m doctor blade onto chromo duplex cardboard (GD2), 310 g / m 2 , thickness approx. 420 // m, coated on one side. After drying the first a second layer is applied slowly (dry to the touch, approx. 2 h duration) and dried at room temperature and about 50% room humidity for about 1 week, possibly even longer.
  • GD2 chromo duplex cardboard
  • the KIT number for non-polar substances is determined according to the 3M KIT test. Solvent mixtures of castor oil, toluene and heptane are used as test liquids. The KIT solution with the highest number, which is on the sample for 15 seconds without causing a breakdown or discoloration, is the characteristic KIT number.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Nutrition Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Materials Engineering (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Paper (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von fettdichtem Verpackungsmaterial mit einer KIT-Zahl von grösser 21 durch Verwendung von hydroxypropylierter hochamylosehaltiger Kartoffelstärke.

Description

Verwendung von hydroxypropylierter hochamyiosehaltiger Kartoffelstärke zur Erzielung hoher KIT-Zahlen
Beschreibung
Gegenstand der Erfindung sind mehrschichtige, fettdichte Verpackungsmaterialien mit einer Trägerschicht, die aus Papier/Karton oder anderen geeigneten, auf Polymeren basierenden Stoffen bestehen.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von fettdichtem Verpackungsmaterial mit einer KIT-Zahl von größer 21 durch Verwendung von hydroxypropylierter hochamyiosehaltiger Kartoffelstärke mit einem Amylosegehalt von größer 70 %.
Es ist seit langem bekannt, Papier- und Kartonbehälter mit Beschichtungen zu versehen, die eine Sperrwirkung für Aromen oder Feuchtigkeit/Flüssigkeiten besitzen. So beschreibt die Patentanmeldung DE 41 09 983 A 1 ein flexibles Verpackungsbehältnis mit einem Verbund aus einer Papierschicht und einer thermoplastischen Schicht oder Folie. Das thermoplastische Schicht- oder Folienmaterial besteht aus Stärke, einem synthetischen, nicht- polyolefinischen, hydroxylgruppenhaltigen Polymeren, z.B. einem oxygenierten Polymeren, sowie Weichmachern natürlichen Ursprungs, z.B. stärkeabgeleiteten Polyalkoholen. Dieses Material kann durch Wärmezufuhr aufgeschmolzen werden und ist daher extrudierbar. In der Patentanmeldung DE 41 37 802 A1 wird vorgeschlagen, einen Karton mit einer beschichteten Papierbahn zu kaschieren, um ein verrottbares, flüssigkeitsabweisendes Produkt zu erhalten. Die Beschichtung der Papierbahn soll auf Stärkebasis erfolgen. Die Patentanmeldung DE 42 94 110 offenbart eine Beschichtungsdispersion, die aus Cöpolymerisaten von oxidierter Stärke und Sty- rol, Butadien, Acrylsäure oder ähnlichen polymerisierbaren Molekülen erzeugt wird. Diese Dispersion vermindert die Gas- und Wasserdurchlässigkeit von Karton oder Pa- pier.
Allerdings ist es häufig notwendig, Verpackungsmaterialien mit hoher Fettdichtigkeit bereitzustellen. So fordern Tiernahrung, Backwaren, Konfekt und Schokolade von der Verpackung eine besonders hohe Fettdichtigkeit, die beispielsweise durch die KIT- Zahlen mit Werten zwischen 8 und 12 angegeben werden. Hohe KIT-Zahlen stehen dabei für hohe Fettdichtigkeiten.
Entsprechende im Handel angebotene Papier-/Kartonverpackungen sind üblicherweise einer fettabweisenden Oberflächen- und/oder Massebehandlung unterzogen worden. Für diese Massebehandlung bzw. Oberflächenbehandlung werden derzeit vor allem Fluorpolymere eingesetzt, wobei etwa bis zu 5 Gew.-% Beschichtungsmaterial auf das Material gelangen. Bereits Fettdichten > 6 bis 8 können nur durch Kombinationen von Schicht- und Massebehandlung erreicht werden, Fettdichten mit KIT-Zahlen > 12 können mit den gegenwärtigen Systemen nicht garantiert werden. Beispielsweise erfordert das Verpacken von trockenem Tierfutter mit niedrigem Fettgehalt (< 10 % ) eine Behandlung der Rückseite in der Masse, bei höheren Fettgehalten wird eine Barriere durch Massebehandlung in Kombination mit einer Oberflächenbeschichtung durchgeführt.
Papier-, Papp- und Kartonverpackungen werden ordnungsgemäß über den Altpapierkreislauf entsorgt. Die als Fettbarriere eingesetzten Halogenpolymere gelangen somit über die Papieraufbereitung entweder in die Papiemeuware oder in das Prozessabwasser.
Stärkeether sind als Hilfsstoffe und Einsatzstoffe in der Papierindustrie bekannt. Dabei genutzte Eigenschaften sind in der einschlägigen Literatur ausführlich beschrieben. Sie werden eingesetzt in der Oberflächenbeschichtung bzw. dem Strich sowie in pigmentierten Papierbeschichtungen. Auch für den Lebensmittelkontakt zugelassene Papiere, Kartons und Pappen dürfen nach dem BGW Stärkeether (z.B. Hydroxyethyl- und Hydroxypropylether) enthalten. Stärkeether werden wegen ihrer guten Filmbildungseigenschaft und ihrem Wasserbindevermögen außerdem als Bestandteil von Klebstoffen verwendet. Literatur hierzu findet sich beispielsweise in Ulimanns Enzyklopädie der technischen Chemie; W. Baumann/B. Herbe,τg: Papierchemikalien - Fakten zum Umweltschutz (Springer-Verlag); O.B: Würzburg:
Modified Starches: Properties and Uses (CRC Press).
WO 02/02412 beschreibt mehrschichtige Verpackungen für fettende Güter basierend auf nativer, modifizierter Stärke.
Weiterhin ist bekannt, dass Stärkeether-Derivate zu Folien bzw. Filmen verarbeitet werden können, vornehmlich in Gießtechnik aus einer wässrigen Lösung.
Wenn die Herstellung der Stärkeether nach dem Slurry-Verfahren erfolgt, wird die wä- ssrige Stärkesuspension im Alkalischen bei Temperaturen bis zu 50°C derivatisiert. Der Derivatisierungsgrad liegt dabei meist um 0,2. Charakteristisch für diese Verfahren ist die bevorzugte Derivatisierung am C2-Atom. Ein anderes, vornehmlich aus wissenschaftlichen Untersuchungen bekanntes Verfahren (Autoklav-Verfahren) geht von alkalisch aktivierter Stärke aus und kommt bei geringeren Trockensubstanz- Konzentrationen zu homogeneren Derivatisierungen, wobei der Derivatisierungsgrad allerdings ähnlich eingestellt wird. Ein Vorgehen nach dieser Strategie ist in der Patentanmeldung DE 4223471 A1 beschrieben, wobei die so erhaltenen Stärkeether zur Folienherstellung eingesetzt werden sollen, und zwar insbesondere für die Anwendung als Over- head-, Kopier- und Druckerfolien oder für die Oberflächenveredlung von Spezialpapie- ren sowie als Verpackungsmaterial. Darüber hinaus wird in dieser Druckschrift erwähnt, dass die genannten Etherderivat-Folien auch im Verbund mit anderen Materialien verwendet werden können.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von lebensmittelrechtlich zulässigen, fettdichten Verpackungsmaterialien mit sehr hoher KIT-Zahl.
Überraschenderweise hat sich herausgestellt, dass Substrate, die selbst keine ausreichende Fettbeständigkeit aufweisen, wie Papier, Karton, Pappe oder andere aus oder mit Cellulose hergestellte Materialien, dann fettdicht sind, wenn sie mit alkylenoxidderi- vatisierter Stärke mit einem Amylosegehalt von größer 70% beschichtet sind.
Die vorliegende Erfindung stellt daher mehrschichtige Verpackungen für fettende Güter oder Teile solcher Verpackungen bereit, die eine Trägerschicht aus einem polymeren Material als Hauptkomponente sowie mindestens eine auf die Trägerschicht aufgebrachte, nicht die Außenseite der Verpackung bildende Schicht aufweisen, wobei die auf die Trägerschicht aufgebrachte Schicht eine alkylenoxidderivatisierte Stärke mit einem Amylosegehalt von größer 70% als Hauptkomponente enthält. Das hierfür verwendete Alkylenoxid kann in gut geeigneter Weise ein C2-C6-Alkylenoxid sein., C2-C4- Alkylenoxide sind bevorzugt.
Die Beschichtung eines Trägermaterials mit der Funktionsschicht "Hochamylose(HA)- Stärkederivat" realisiert ein fettdichtes Verbundsystem. Die HA-Stärkekomponente ist dabei verantwortlich für die Fettdichtigkeit und weist zudem die Eigenschaft der biolo- gischen Abbaubarkeit auf. Außerdem lässt sich eine solche Stärke gut in Beschich- tungsmassen für den angegebenen Zweck einarbeiten, da sie - im Gegensatz zu nati- ver Stärke - nicht zum Re-Agreggieren (Retrogradation) neigt.
Die Verpackungen der vorliegenden Erfindung sind nicht auf spezifische Ausgestaltun- gen beschränkt. Ein beispielhafter, bevorzugter Anwendungsbereich sind Verpackungen von Lebens- und Tierfuttermitteln mit geringen Wassergehalten und gleichzeitig hohen Fettgehalten, insbesondere Faltschachteln. Beispiele hierfür sind Verpackungen für Kekse, Schokoladen, sonstige Süßwaren, trockenes Tierfutter, bei denen eine besonders gute Barriere gegen den Durchtritt von Wasserdampf nicht erforderlich ist. Aber auch Verpackungen für fetthaltige Nicht-Lebensmittel (z.B. Kosmetika, ölhaltige Farbpigmente oder dergleichen) können erfindungsgemäß gestaltet werden.
Weitere Anwendungsmöglichkeiten liegen in der Beschichtung von anderen Polymeren als Cellulose mit dem erfindungsgemäß vorgeschlagenen Material (z.B. andere Verpa- ckungskunststoffe) für ähnliche Verpackungsaufgaben. Auch die Beschichtung von Papier im Sinne eines Einschlagpapieres ist eine mögliche Anwendung. Mit den Verpackungsmaterialien der vorliegenden Erfindung lassen sich hohe Fettdichtigkeiten erzielen, die im Bereich ab einer KIT-Zahl von 10, vorzugsweise von mindestens 17, in der Regel aber wesentlich höher liegen. So können Dichtigkeiten einer KIT- Zahl von über 21 erreicht werden, die mit den bisherigen, nicht biokompatiblen bzw. - abbaubaren Systemen nicht garantiert werden können.
Weitere Vorteile der erfindungsgemäßen Verpackungen sind, dass ihre Herstellung mit üblichen Verfahren der Papier- bzw. Kartonherstellung kompatibel ist und dass sie biologisch abbaubar sind, wobei sie hinsichtlich der ökonomischen und/oder ökologischen Bewertungen im Vergleich zu üblichen Systemen als besonders vorteilhaft einzustufen sind, insbesondere wenn die Faktoren Preis der Beschichtung einschließlich Verfahrenskosten und die Verträglichkeit mit dem Papierrecyclingprozess berücksichtigt wer- den sollen.
Aufgrund ihrer Bioabbaubarkeit gewährleisten die erfindungsgemäß beschichteten Verpackungen eine gute Verträglichkeit mit den Aufbereitungs- und Abwasserreinigungsmöglichkeiten von Altpapierentsorgungsanlagen. Hier stellt das Abbauverhalten im Papierkreislauf im Sinne der Vermeidung eines weiteren Störstoffeintrags einen entscheidenden Vorteil dar. Geeignete Materialien für die Trägerschicht sind insbeson- dere Papier, Pappe oder Karton, ggf. in Mischung mit anderen geeigneten oder in der Verpackungstechnologie von Lebensmitteln üblichen ocjer zulässigen Stoffen wie Bindemitteln oder Farbstoffen. Aber auch andere, bevorzugt auf natürlichen Polymeren wie Cellulose oder dergleichen basierende Materialien oder Kunststoffe können eingesetzt werden.
Erfindungsgemäß geeignete HA-Stärkederivate sind solche, die mit einem Alkylenoxid wie Ethylenoxid oder Propylenoxid oder einem längerkettigen Alkylenoxid derivatisiert wurden. Die angelagerten Gruppen vergrößern die Abstände zwischen den Molekülketten und steigern damit deren Beweglichkeit. Der damit gegebene innere Weichma- chungseffekt kann nur durch eine Zerstörung der chemischen Bindung rückgängig gemacht werden.
Das HA-Stärkederivat sollte auf der Trägerschicht vorzugsweise einen geschlossenen Film bilden. Sofern dies der Fall ist, können bereits sehr dünne Schichten ab etwa 6 g/m2 Flächengewicht fettdicht sein, sofern das Trägermaterial eine relativ hohe Glätte aufweist.
Die Beschichtung kann als Oberflächenschicht der Innenseite der Verpackung und/oder als Zwischenschicht, ggf. auch mit der Funktion einer verklebenden Schicht zwischen Papier oder Kartonagelagen oder dergleichen vorgesehen sein. Auch mehrere direkt aufeinander aufgebrachte Beschichtungen können vorteilhaft sein. Ebenso kann vor der Beschichtung mit dem HA-Stärkederivat ein sogenannter Vorstrich (z.B. mit üblichen Papierbeschichtungsmitteln wie Kaolin oder Stärke) zur Anwendung kommen, der den Zweck einer Vorglättung der Oberflache hat. Flächengewichte zum
Erzielen einer fehlstellenfreien Schicht können so ggf. reduziert werden.
Die das HA-Stärkederivat enthaltende Schicht kann ggf. durch Aufbringen einer selbsttragenden Schicht aus diesem Material auf die Trägerschicht gelangen. Vorzugsweise wird jedoch eine Lösung oder Suspension des HA-Stärkederivats mit einer geeigneten Menge an Trockensubstanz erzeugt und auf dem Trägermaterial aufgetragen, vorzugsweise aus wässriger Lösung oder Suspension. Eine gut geeignete Menge an Tro- ckensubstanz (TS) des HA-Stärkederivates liegt im Bereich von etwa 5 bis etwa
50 Gew.-%, bevorzugt im Bereich von etwa 10 bis etwa 40 Gew.-%, wobei die tatsächlich zu wählende Menge v o m vorgesehenen Auftragsverfahren abhängt. So kann in manchen Fällen eine Menge von bis hinunter zu 4 Gew.-% ausreichend sein.
Das Auftragen kann beispielsweise mit einem Rakel, Sprühen oder per Walzenauftrag erfolgen, ebenso durch "Druckgießen" einer konzentrierteren Lösung sowie durch das flächige Aufbringen einer thermoplastifizierten Schmelze ("Extrusion"). In allen Fällen sollte der Wassergehalt des HA-Stärkederivates nach dem Aufbringen auf dem Trägermaterial vorzugsweise auf < 25 Gew.-% reduziert werden (z^B. durch Trocknen mit IR oder konvektiv).
Neben dem HA-Stärkederivat kann die auf der Trägerschicht aufzubringende Schicht auch weitere Additive enthalten. Zum einen bietet sich die Zugabe von Pigmenten (wie generell in der Papierindustrie üblich) an, andererseits die Zugabe von Glycerin, Harn- stoff, Borax, Glyoxal oder anderen Zusatzstoffen mit ähnlichen Eigenschaften und Effekten, um gewünschte Werte bezüglich der Elastizität und der Wasser- und Langzeitstabilität zu erzielen. Auch die KIT-Zahl lässt sich in manchen Fällen durch Zusatz solcher Stoffe positiv beeinflussen, z.B. durch Zusatz von Glycerin oder Vernetzer (z.B. Glyoxal). Der Anteil an Hochamylose-Stärkederivat sollte vorzugsweise aber immer so hoch sein, dass die Ausbildung eines fehlstellenfreien Films gewährleistet ist.
Als Ausgangsmaterial wird vorzugsweise Kartoffelstärke mit einem Amylose Anteil von größer 70 % verwendet. Eine Kartoffelstärke mit einem Amyloseanteil von über 70 % kann beispielsweise aus genetisch modifizierten Kartoffelpflanzen isoliert werden, in denen die enzymatische Aktivität der Stärkeverzweigungsenzyme SBE I und II gegenüber der nicht genetisch modifizierten Ausgangspflanze reduziert ist. Ein Verfahren zur Herstellung derartiger Pflanzen ist beispielhaft in Beispiel 1 beschrieben. Weitere Beschreibungen zur Herstellungen von gentechnisch modifizierten Kartoffelpflanzen mit einem Amyloseanteil von größer 70 % sind in den Patentanmeldungen WO 92/11375, WO 97/20040, WO 92/14827, WO 95/26407 und WO 96/34968 und den Patenten US 5,856,467 US 6,169,226, US 6,469,231, US 6,215,042, US 6,570,066 und US 6,103,893 beschrieben. Kartoffelpflanzen mit einer reduzierten enzymatischen Aktivität der Stärkeverzweigungsenzyme SBE I und SBE II können alternativ auch durch Selektion von geeigneten mutagenisierten Kartoffelpflanzen gewonnen werden.
Als Ausgangsmaterialien können auch Stärken mit einem Amyloseanteil von größer 70 % aus anderen Kulturpflanzen wie beispielsweise aus Mais, Weizen, Erbsen oder Tapioca eingesetzt werden. Pflanzen mit einem Amylose Gehalt von größer 70 % können durch genetische Modifikation unter Verwendung molekularbiologischer Methoden und/oder durch Züchtung und Selektion hergestellt werden.
Unter HA-Stärke wird eine Stärke mit einem Amylosegehalt von mindestens 70 % verstanden. Vorzugsweise liegt der Amylosegehalt bei mindestens 80 %, besonders bevorzugt bei mindestens 90 %.
Die chemische Modifizierung der Kartoffelstärke mit einem Amylosegehalt von größer 70 % erfolgt beispielsweise mit einem C2- oder C3-AkyIenoxid. Propylenoxid ist bevorzugt.
Da die HA-Stärke in geeigneter Weise in Gegenwart von Base modifiziert wird, die für die Beschichtung vorgesehene Masse jedoch günstigerweise in etw.3 neutral reagieren sollte, so dass im Normalfall eine Neutralisierung mit Säure erfolgen muss, ist die modifizierte HA-Stärke in der Regel stark mit Salzen behaftet. Es ist von Vorteil, wenn dieser Salzgehalt nicht zu hoch ist. So empfiehlt es sich, dass die Beschichtungsmasse in der für den Auftrag vorgesehenen Konzentration eine Leitfähigkeit von nicht mehr als 4.000 - 5.000 pS/cm, vorzugsweise von < 2.000 pS/cm besitzt.
Die Zugabe von Säuren und Laugen sollte unter dem Gesichtspunkt erfolgen, dass das entstehende Salz lebensmittelrechtlich unbedenklich ist. Geeignete Säuren sind Phos- phorsäuren, eine geeignete Base ist Natronlauge. Die Entsalzung kann beispielsweise durch Dialyse erfolgen.
Beschichtungen mit höher derivatisierter HA-Stärke zeigen günstigere KIT-Zahlen als solche mit geringeren Derivatisierungsgraden. Es ist aber nicht erforderlich, hohe Sub- stitutionsgrade zu erreichen, denn bereits geringe Grade können zu positiven Effekten führen. Diese hängen aber auch von der Herkunft der eingesetzten HA-Stärke ab. Während ganz allgemein ein Derivatisierungsgrad von 0,05 bis 1 ,5 geeignet sein kann, sind Bereiche zwischen 0,1 bis 1,0, ganz besonders zwischen 0,1 und 0,3 bevorzugt.
Die Herstellung einer als Beschichtungsmasse oder Gießlösung für die vorliegende Erfindung geeigneten HA-Stärkeetherlösung kann beispielsweise wie folgt erfolgen: Die Stärke mit einem Amylosegehalt von größer 70 % (z.B. Weizen-, Mais-, Tapioka, Kartoffel- oder HA-Erbsenstärke) wird in annähernd dem Doppelten ihres Gewichts an Wasser einige Stunden gerührt und anschließend grob vom Wasser befreit, z.B. durch Abnutschen. Sie nimmt dabei etwa ihr eigenes Gewicht an Wasser auf, so dass sie ungefähr 40 bis 60% Trockenmasse besitzt. Anschließend wird sie in etwa dem 1 ,5- fachen ihres Feuchtgewichts resuspendiert und durch Zugabe der gleichen Menge etwa 10%iger Base oder Lauge desintegriert. Sofort darauf werden innerhalb weniger Minuten bis ca. 1 Stunde etwa 25 - 75 Gew.-% Alkylenoxid, vorzugsweise Propyleno- xid, bezogen auf das Ausgangsgewicht der trockenen HA-Stärke, zugeführt, wobei milde Temperaturen eingehalten werden sollten. Raumtemperatur ist gut geeignet. Man lässt die Mischung mehrere Stunden rühren und anschließend etwa 20 Stunden ruhen; anschließend wird sie mit Säure neutralisiert. Soll eine Entsalzung erfolgen, geschieht dies z.B. durch Dialyse gegen Wasser. Die entsalzte Lösung wird ggf. schonend aufkonzentriert. Der Derivatisierungsgrad der HA-Stärke liegt bei Anwendung von etwa 50 Gew.-% Propylenoxid bei etwa 0,2, in anderen Fällen entsprechend darüber oder darunter.
Eine Entsalzung oder Abtrennung störender Inhomogenitäten kann auch beispielsweise mittels Ultrafiltration erfolgen. Sollte das Produkt zu konzentriert sein, kann eine Verdünnung mit entionisiertem Wasser vorgenommen werden.
Nach Zusatz der möglicherweise gewünschten Additive (z.B. Konservierurgsstoffe, Füllstoffe, Antistatika, Mittel zur Verbesserung der Elastizität, Vernetzungsmittel) kann bei Bedarf mittels Filter oder Zentrifuge eine mechanische Separation durchgeführt und dabei gleichzeitig eine Entgasung der zu verarbeitenden Lösung erreicht werden.
Eine für die Zwecke der Erfindung besonders geeignete Beschichtungslösung besitzt die folgenden rheologischen Eigenschaften:
Eine dynamische Viskosität von 0,1 Pas bis 40 Pas bei einer Temperatur von 25°C und einer Schergeschwindigkeit von 30,7 s"1. Viskoelastische Eigenschaften der Polymerlösung, wobei das Verhältnis zwischen viskosem und elastischem Anteil Tan K Werte zwischen 1 und 10 (max. 50) bei einer Temperatur von 25°C und einer Schergeschwindigkeit von 30,7 s'1 annimmt. Mit dem beispielhaft genannten Verfahren lassen sich solche Werte ohne weiteres erhalten.
Das Verfahren bietet ferner den Vorteil, dass die HA-Stärke besonders schonend und insbesondere durchgängig bei relativ niedrigen Temperaturen (< 60CC) oder vollständig bei Raumtemperatur umgesetzt und verarbeitet wird, was positive Effekte für die Beschichtung des Trägermaterials bewirkt. Durch die Kaltwasserlöslichkeit nach der Neut- ralisation, Separation, Salzabtrennung und dem Aufkonzentrieren kann die Stärke mit einem Amylose Gehalt von 70 % derart schonend verarbeitet werden, dass keine oder nur unbedeutende Abbaureaktionen einsetzen. Die wässrige Gießlösung kann vorzugsweise bei Raumtemperatur oder leicht erhöhten Temperaturen mit einem geeigneten Auftragssystem (z.B. Rakel) auf die zu beschichtende Materialbahn (Papier) aufgebracht werden.
Besonders günstig hat sich die Verwendung von nach dem Autoklav-Verfahren hergestellten Hydroxypropyletherstärken, insbesondere aus Kartoffelstärke mit einem Amylosegehalt von größer 70 % erwiesen, die als Lösungen mit Trockensubstanz-Gehalten von 12 bis 20 Gew.-% und vorzugsweise mit Derivatisierungs-(DS-)Graden von 0,1 bis 1 ,0, stärker bevorzugt bis 0,4, eingesetzt werden. Diese zeigen im Vergleich mit Handelsmustern (mit Fluorcarbonsäuren beschichtet) deutlich bessere Fettdichtigkeiten, insbesondere auch in Knickstellenbereichen, die bei Faltschachtelanwendungen besonders kritisch sind. Im Vergleich zu den zuvor genannten erfindungsgemäßen Beschichtungen mit handelsüblichen Stärkederivaten können die für die Beschichtung mit diesen Stärken eingesetzten Flächengewichte reduziert werden.
Beispiel 1
Herstellung von transgenen Kartoffelpflanzen mit hohem Amylosegehalt
Kartoffelpflanzen mit einem Amylosegehalt von größer 70 % können hergestellt werden unter Verwendung der Antisense- oder der RNAi-Technologie mit dem Ziel die. enzymatische Aktivität der Stärkeverzweigungsenzyme SBE I und SBE II zu reduzieren bzw. zu eliminieren.
Beispielsweise wurde die HA-Stärke produzierende transgene Kartoffellinie Solanum tuberosum AM99-2003 hergestellt in der die Aktivität der Stärkeverzweigungsenzyme inhibiert ist. Die genetische Transformation der Ausgangssorte Dinamo wurde durchgeführt mit einem Genkonstrukt, welches Genfragmente unter Kontrolle eines GBSS- Promoters von SBE I und SBE II in antisense-Orientierung enthält. PBIuescript enthalt tend ein 1620 Basenpaare langes Fragment des 3' Endes des SBE I Genes zwischen EcoRV und Spei wird mit Spei und Xbal geschnitten und ligiert mit einem 1243 Basenpaare Sstl -Xbal Fragment des 3' Endes von SBE II. Der SBE I und der SBE 2 Komplex wird mit Hilfe von EcoRV und Xbal herausgeschnitten und in den mit Smal und Xbal geöffneten Binärvektor pHo3.1 ligiert. Der entstandene Vektor wird mit pHabe12A bezeichnet, siehe Abbildung 1 und Nukleinsäuresequenz SEQ-ID No. 1.
PHo3.1 basiert auf pGPTVKan ( Becker, D. et al., Plant Molecular Biology 20 (1992), 1195-1197) und enthält zusätzlich den 987 Basenpaare umfassenden GBSS-Promotor ( siehe EP 0 563 189 ) der in die Hindill Stelle von pGPTVKan kloniert und dessen uidA Gen mit Hilfe von Smal und Sstl entfernt wurde.
Die Elternlinie Dinamo wird mit dem Konstrukt pHAbe12A mit der in US 6,169,226 beschriebenen Methode transformiert und die transgenen Linien auf Kanamycin-haltigen Medien selektioniert. Die Analyse des Amylosegehaltes der transgenen Pflanzen erfolgte nach der bei (Morrison, W.R. and Laignelet, B., J. Cereal. Sei. 1 (1983), 9-20) beschriebenen Methode.
5 Transgene Kartoffelpflanzen mit einem Amylosegehalt von mindestens 70 % wurden selektioniert und angebaut. Die hochamylosehaltige Stärke wurde nach herkömmlichen Methoden isoliert.
Beispiel 2 10 Hydroxypropylierung von hochamyiosehaltiger Kartoffelstärke
Hochamylosehaltige Kartoffelstärke gewonnen aus genetisch modifizierenten Kartoffelpflanzen - siehe Beispiel 1 -wurde im Labormaßstab hydroxypropyliert. Die Modifizierung der Kartoffelstärke mit einem Amylosegehalt von 70 % erfolgte gemäß eines Au- 15 toklav- bzw. Homogenverfahrens.
Nach der Hydroxypropylierungsreaktion wurde die Lösung für die spätere Beschichtung von Karton durch Entsalzung und Aufkonzentrierung aufbereitet. Das Endprodukt sollte einen Derivatisierungsgrad von ca. 0,2, einen Trockengehalt (w/w) von ca. 18% 20 sowie eine Leitfähigkeit von ca. 600 //S/cm aufweisen.
Im Rahmen der Versuche zur Kartonbeschichtung wurden mit der hydroxypropylierten HA-Stärke mittels Handrakelauftrag verschiedene Auftragsgewichte erzeugt.
25. Zur Beschichtung des Kartons (Firma Cupforma) wurde die HA-Stärke auf 40°C erwärmt. Die HA-Stärkelösung wurde (einmal bzw. zweimal) auf die gestrichene sowie ungestrichene Seite des Kartons aufgetragen.
Beispiel 3 30 Charakterisierung des Endproduktes
Ausgehend von 713 g HA-Stärke aus Kartoffelpflanzen mit einem Amylosegehalt von 70 % - hergestellt nach der in Beispiel 1 beschriebenen Methode - wurden 1770 g Hydroxyproply-HA-Stärke mit einem Trockengewicht von 27 (w/w) % und einer Leitfä- 35 higkeit von 880 //S/cm hergestellt. Die Leitfähigkeit konnte durch Diafiltration nicht weiter gesenkt werden. Beispiel 4
Prüfung der Fettdichtigkeit anhand des 3M-KIT-Tests
Für die Überprüfung auf die Resistenz gegenüber nicht polaren Substanzen, wird die Beschichtung auf die Dichtigkeit gegenüber Gemischen mit 2 I Prüflösungen unterschiedlicher Konzentrationen an Rizinusöl, Toluol und n-Heptan getestet. Die KIT- Lösung mit der höchsten Zahl, die 15 Sekunden auf der Probe stand ohne einen Durchschlag bzw. eine Verfärbung zu bewirken, ist die kennzeichnende KIT-Zahl.
Es wurden Kartons der Firma Cupforma verwendet.
Die Tabelle fasst die Ergebnisse zusammen.
Figure imgf000012_0001
Irr-allen drei Fallen erwies sich die Beschichtung mit einer KIT-Zahl > 21 als fettdicht gemäß KIT-Test nach 3M.
Beispiel 5
713 g Kartoffelstärke mit einem Amylosegehalt von 70 % werden in 1,3 I destilliertem Wasser 4 Stunden lang gerührt und dann abgenutscht Die feuchte Stärke wird mit 1,824 I Wasser aufgerührt und mit 1.811 g 10%iger Natronlauge, gewonnen durch Mischen von 376 g 50%iger NaOH mit 1.505 g Wasser versetzt. Die Derivatisierung erfolgt mit 323 g Proylenoxid bei 23°C , das innerhalb von 20 min unter Rühren zugesetzt wird. Man lässt die Mischung noch weitere 4 h rühren und 20 h ruhen. Neutralisiert wird mit 40%iger Phosphorsäure (ca. 700 g ) . Danach wird die Lösung in Dialyseschläuche gefüllt und ca. 4 Tage bei täglichem Wasserwechsel dialysiert. Das Produkt wird mit Hilfe eines Vacuum-Rotationsverdampfers auf über 20% Trockenmasse aufkonzentriert..
Der erhaltene HA-Stärkeether besitzt einen Derivatisierungsgrad von etwa 0,2. Die Leitfähigkeit der Beschichtungsmasse liegt bei etwa 1100 pS/cm.
Analog zu diesem Beispiel werden die nachstehenden Beschichtungsmassen hergestellt und mit einer 20 //m Rakel auf einseitig gestrichenen Chromo Duplexkarton (GD2), 310 g/m2, Dicke ca. 420 //m aufgetragen. Nach der Trocknung des ersten Auf- trags (fingertrocken, ca. 2 h Dauer) wird eine zweite Schicht aufgetragen und bei Raumtemperatur und etwa 50% Raumfeuchte über etwa 1 Woche, ggf. auch länger, getrocknet.
An drei Kartonbögen der beschichteten Muster erfolgt die Bestimmung der Auftragsmasse durch Wägung (nach DIN 53 104: Prüfung von Papier und Pappe, Bestimmung des Flächengewichts, Sept. 1971) und der Dicke mit einem Dickenmessgerät (Taster: plan/ballig, 30 SKT, MB = I μm). Außerdem wird die KIT- Zahl für unpolare Substanzen nach dem 3M KIT-Test bestimmt. Dabei dienen Lösemittelgemische aus Rizinusöl, Toluol und Heptan als Testflüssigkeiten. Die KIT-Lösung mit der höchsten Zahl, die 15 sec. auf der Probe steht, ohne einen Durchschlag oder eine Verfärbung zu bewirken, ist die kennzeichnende KIT-Zahl.

Claims

Patentansprüche
1. Mehrschichtige Verpackung für fettende Güter oder Teil einer solchen Verpackung, umfassend eine Trägerschicht aus einem polymeren Material als Hauptkomponente und mindestens eine auf die Trägerschicht aufgebrachte, nicht die Außenseite der Verpackung bildende Schicht, die ein Hochamylose-Stärkederivat mit einem Amylosegehalt von mindestens 70% als Hauptkomponente enthält, dadurch gekennzeichnet, dass das Hochamylose-Stärkederivat ein mit einem C2-C6-Alkylenoxid modifiziertes Stärkederivat ist.
2. Mehrschichtige Verpackung nach Anspruch 1 , dadurch gekennzeichnet, dass das Hochamylose-Stärkederivat ein mit einem C2-C4-Alkylenoxid modifiziertes Stärkederivat ist.
3. Mehrschichtige Verpackung oder Teil einer solchen Verpackung nach Anspruch 1 , dadurch gekennzeichnet, dass das C2-C6-Alkylenoxid Propylenoxid ist.
4. Mehrschichtige Nerpackung oder Teil einer solchen Verpackung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Hochamylose- Stärkederivat durch Modifizierung ggf. teilabgebauter Mais-, Weizen-, Kartoffel-, HA Erbsen- oder Tapiokastärke erhalten wird.
5. Mehrschichtige Verpackung oder Teil einer solchen Verpackung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Derivatisierungsgrad des Stärkederivats 0,1 bis 1, stärker bevorzugt 0,1 bis 0,4 beträgt.
6. Mehrschichtige Verpackung oder Teil einer solchen Verpackung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das polymere Material der Trägerschicht ein natürlich vorkommendes Polymer, vorzugsweise Cellulose, ist.
7. Mehrschichtige Verpackung oder Teil einer solchen Verpackung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die ein Hochamylose-Stärkederivat als Hauptkomponente enthaltende Schicht zusätzliche Bestandteile, ausgewählt unter Pigmenten, Weichmachern, die Langzeitstabilität erhöhenden Mitteln, die Wasserstabilität erhöhenden Mitteln und die Elastizität beein- Aussenden Mitteln, enthält.
8. Verwendung einer mit einem C2-C6-Alkylenoxid derivatisierten Hochamylose- Stärke als Hauptkomponente einer Schicht einer mehrschichtigen Verpackung, die auf einer Trägerschicht dieser Verpackung aus einem polymeren Material aufgebracht ist, zur Erzeugung von Fettdichtigkeit der mehrschichtigen Verpa- ckung.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass das C2-C6-Alky- lenoxid Propylenoxid ist .
10. Verwendung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass das Stärkederivat durch Modifizierung von Hochamylose-Kartoffelstärke erhalten wird und ggf. einen Derivatisierungsgrad von 0,1 bis 1, stärker bevorzugt von 0,1 bis 0,4 aufweist.
11. Verwendung nach einem der Ansprüche 8, 9 oder 10 dadurch gekennzeichnet, dass zur Modifizierung eine Hochamylose-Kartoffelstärke mit einem Amylosegehalt von mindestens 70 % verwendet wird.
12. Verwendung nach einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, dass die genannte Schicht zusätzliche Bestandteile, ausgewählt unter Pigmenten, Weichmachern, die Langzeitstabilität erhöhenden Mitteln, die Wasserstabilität erhöhenden Mitteln, den KIT-Wert erhöhenden Mitteln und die Elastizität beeinflussenden Mitteln, bevorzugt ausgewählt unter Glycerin, Harnstoff, Borax oder Glyoxal, enthält.
1/1
Figur 1
Figure imgf000016_0001
pHAbe12A 7756 bp
PCT/EP2005/003220 2004-03-31 2005-03-26 Verwendung von hydroxypropylierter hochamylosehaltiger kartoffelstärke zur erzielung hoher kit-zahlen WO2005095117A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/593,989 US20080171213A1 (en) 2004-03-31 2005-03-26 Use of Hydroxypropylated High Amylose Content Potato Starches to Achieve High Kit Numbers
EP05716393A EP1732996A2 (de) 2004-03-31 2005-03-26 Verwendung von hydroxypropylierter hochamylosehaltiger kartoffelstärke zur erzielung hoher kit-zahlen
BRPI0509311-2A BRPI0509311A (pt) 2004-03-31 2005-03-26 embalagem de camada múltipla para produtos gordurosos ou parte de uma tal embalagem, e, uso de um amido com alto teor de amilose
JP2007505471A JP2007532339A (ja) 2004-03-31 2005-03-26 高キット数を得るためのヒドロキシプロピル化高アミロース含量ジャガイモデンプンの使用
NO20064885A NO20064885L (no) 2004-03-31 2006-10-26 Anvendelse av hydroksypropylert hoy amylose potet stivelse for a oppna hoye kit-nummer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016653 2004-03-31
DE102004016653.6 2004-03-31

Publications (2)

Publication Number Publication Date
WO2005095117A2 true WO2005095117A2 (de) 2005-10-13
WO2005095117A3 WO2005095117A3 (de) 2006-06-22

Family

ID=35064442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003220 WO2005095117A2 (de) 2004-03-31 2005-03-26 Verwendung von hydroxypropylierter hochamylosehaltiger kartoffelstärke zur erzielung hoher kit-zahlen

Country Status (8)

Country Link
US (1) US20080171213A1 (de)
EP (1) EP1732996A2 (de)
JP (1) JP2007532339A (de)
KR (1) KR20070009657A (de)
CN (1) CN1938389A (de)
BR (1) BRPI0509311A (de)
NO (1) NO20064885L (de)
WO (1) WO2005095117A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768224B (zh) * 2010-01-22 2012-01-11 鲁郑全 一种羟丙基淀粉的制备方法
CN102746408A (zh) * 2012-06-18 2012-10-24 新疆光大山河化工科技有限公司 一种制备羟丙基淀粉醚的方法
CN106459497A (zh) * 2014-04-16 2017-02-22 普朗蒂克科技有限公司 淀粉组合物及其用途
CN105421144A (zh) * 2015-11-03 2016-03-23 广东志造生物科技有限公司 一种纸张的防油处理方法
CN111072791A (zh) * 2019-12-27 2020-04-28 河南新孚望新材料科技有限公司 一种包膜剂用高直链淀粉的制备方法
CN111100215A (zh) * 2019-12-30 2020-05-05 河南新孚望新材料科技有限公司 一种水性漆用羟丙基高直链淀粉的制备方法
US11549216B2 (en) 2020-11-11 2023-01-10 Sappi North America, Inc. Oil/grease resistant paper products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013344A1 (de) * 1989-04-29 1990-10-31 Battelle Institut E V Spezialamylosen und ihre verwendung zur herstellung biologisch abbaubarer kunststoffe
DE4223471A1 (de) * 1992-07-16 1994-01-27 Battelle Institut E V Stärkezwischenprodukt, Verfahren zu dessen Herstellung sowie Verfahren zu dessen Weiterverarbeitung
WO1997033934A1 (en) * 1996-03-15 1997-09-18 Orville Spence Biodegradable sheet and method of manufacture of same
WO2000036006A1 (en) * 1998-12-14 2000-06-22 Food & Packaging Centre Management Limited Biodegradable polymer
WO2002002412A2 (de) * 2000-07-03 2002-01-10 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mehrschichtige verpackung für fettende güter
US20040242732A1 (en) * 1998-12-14 2004-12-02 Plantic Technologies, Ltd. Biodegradable polymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374304A (en) * 1989-04-29 1994-12-20 Battelle-Institut E.V. Special amyloses and their use for producing biodegradable plastics
US5856467A (en) * 1990-12-21 1999-01-05 Amylogene Hb Genetically engineered modification of potato to form amylose-type starch
DE4104782B4 (de) * 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
CA2186399C (en) * 1994-03-25 2001-09-04 David Cooke Method for producing altered starch from potato plants
SE513209C2 (sv) * 1995-11-29 2000-07-31 Lars Rask Förfarande för produktion av transgena potatisar med ökad eller minskad grad av förgrening av amylopektinstärkelse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013344A1 (de) * 1989-04-29 1990-10-31 Battelle Institut E V Spezialamylosen und ihre verwendung zur herstellung biologisch abbaubarer kunststoffe
DE4223471A1 (de) * 1992-07-16 1994-01-27 Battelle Institut E V Stärkezwischenprodukt, Verfahren zu dessen Herstellung sowie Verfahren zu dessen Weiterverarbeitung
WO1997033934A1 (en) * 1996-03-15 1997-09-18 Orville Spence Biodegradable sheet and method of manufacture of same
WO2000036006A1 (en) * 1998-12-14 2000-06-22 Food & Packaging Centre Management Limited Biodegradable polymer
US20040242732A1 (en) * 1998-12-14 2004-12-02 Plantic Technologies, Ltd. Biodegradable polymer
WO2002002412A2 (de) * 2000-07-03 2002-01-10 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mehrschichtige verpackung für fettende güter

Also Published As

Publication number Publication date
NO20064885L (no) 2006-10-26
KR20070009657A (ko) 2007-01-18
US20080171213A1 (en) 2008-07-17
WO2005095117A3 (de) 2006-06-22
EP1732996A2 (de) 2006-12-20
CN1938389A (zh) 2007-03-28
JP2007532339A (ja) 2007-11-15
BRPI0509311A (pt) 2007-09-04

Similar Documents

Publication Publication Date Title
DE69807481T2 (de) Behälter für lebensmittel und verpackungen
do Lago et al. Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: Mechanical and barrier properties
DE19729273C2 (de) Thermoplastische Mischung auf 1,4-alpha-D-Polyglucanbasis, Verfahren zu deren Herstellung und Verwendung
EP2455436B1 (de) Klebstoffzusammensetzung auf Stärkebasis
DE60213080T2 (de) Umweltfreundliche biopolymere klebemittel und auf diesen basierende anwendungen
DE69518702T3 (de) Verfahren zum Leimen der Oberfläche und zum Streichen von Papier
EP3047068B1 (de) Verpackungsmaterial mit einer auf stärke basierenden barrierebeschichtung sowie beschichtungsmasse und verfahren zum herstellen desselben
DE1177129B (de) Verfahren zur Herstellung von Quellstaerkemischaethern und bzw. oder -estern
WO2019138022A1 (de) Thermoplastische stärke
DE2165897A1 (de) Herstellung von staerke/polyvinylalkohol-mischungen
DE69527083T2 (de) Stärkederivate gepfropft mit aliphatischen polyestern, verfahren zu deren herstellung und ihre verwendung
EP3044368A1 (de) Verpackungsmaterial mit einer auf stärke basierenden barrierebeschichtung, sowie beschichtungsmasse, verfahren und vorrichtung zum herstellen einer solchen barrierebeschichtung
DE60120642T2 (de) Verfahren zur Herstellung einer Wellpappe und die hergestellte Wellpappe
EP1296790B1 (de) Mehrschichtige verpackung für fettende güter
WO2005095117A2 (de) Verwendung von hydroxypropylierter hochamylosehaltiger kartoffelstärke zur erzielung hoher kit-zahlen
DE2431199A1 (de) Verfahren zur herstellung eines waessrigen filmbildenden und nicht-wandernden klebemittels
DE69213674T2 (de) Feuchtigkeitsbeständiger Sack
DE10049665B4 (de) Mehrschichtige Verpackung für fettende Güter und Verwendung eines Stärkederivats hierfür
EP1399486B1 (de) Verfahren zur herstellung von stärke oder stärkehaltigen produkten aus stärkehaltigen pflanzlichen rohstoffen
DE69621737T2 (de) Lebensmittelherstellung
DE2820320C2 (de)
DE60021672T2 (de) Isolierung und Verwendung von Pentosane aus Nebenprodukten der Stärke-Industrie
DE102013004923B4 (de) Verfahren zur Herstellung von Quellmehlen mit hydrokolloidalen Eigenschaften
WO1998011171A1 (de) Klebdispersion zum gummieren im kuvertieranlagen
DE69618223T2 (de) Modifizierte stärke und diese enthaltende streichmasse

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005716393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593989

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007505471

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580010038.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067022711

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005716393

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067022711

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0509311

Country of ref document: BR