[go: up one dir, main page]

WO2005050674A1 - 超電導線材、それを用いる超電導多芯線およびそれらの製造方法 - Google Patents

超電導線材、それを用いる超電導多芯線およびそれらの製造方法 Download PDF

Info

Publication number
WO2005050674A1
WO2005050674A1 PCT/JP2004/015905 JP2004015905W WO2005050674A1 WO 2005050674 A1 WO2005050674 A1 WO 2005050674A1 JP 2004015905 W JP2004015905 W JP 2004015905W WO 2005050674 A1 WO2005050674 A1 WO 2005050674A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
wire
metal
oxide superconductor
superconducting wire
Prior art date
Application number
PCT/JP2004/015905
Other languages
English (en)
French (fr)
Inventor
Munetsugu Ueyama
Jun Fujikami
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP04793017A priority Critical patent/EP1686594A4/en
Priority to HK06109809.6A priority patent/HK1089549B/xx
Priority to JP2005515568A priority patent/JPWO2005050674A1/ja
Priority to CA002522049A priority patent/CA2522049A1/en
Publication of WO2005050674A1 publication Critical patent/WO2005050674A1/ja
Priority to US10/553,171 priority patent/US20070184984A2/en
Priority to NO20062882A priority patent/NO20062882L/no

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a superconducting wire, a superconducting multi-core wire using the same, and a method for producing them
  • the present invention relates to a superconducting wire. More specifically, the present invention relates to a superconducting wire comprising an oxide superconductor and a metal to be covered. Further, the present invention relates to a superconducting multi-core wire including a plurality of the above-described superconducting wires and a second covering metal.
  • the present invention relates to a method for producing the above-described superconducting wire. Further, the present invention relates to a method for producing the above-described superconducting multi-core wire.
  • bismuth-based multifilamentary wires have been developed as oxide high-temperature superconducting wires.
  • Bismuth-based multifilamentary wires are manufactured by the powder-in-tube method using (BiPb) Sr Ca
  • a raw material powder of a superconducting phase is first filled in a metal pipe.
  • the metal pipe is drawn to form a clad wire.
  • Multiple clad wires are bundled, reinserted into a metal pipe, and drawn to form a multi-core wire.
  • the multifilamentary wire is drawn into a tape wire having a large number of superconducting filaments in a metal sheath.
  • a primary heat treatment is further performed on the tape wire to generate a target superconducting phase.
  • the tape wire is rolled again and subjected to a second heat treatment to join the superconducting phase crystal grains.
  • these two rounds of heat treatment and heat treatment are performed once and not performed.
  • bismuth-based oxide superconductors including the Bi-2223 phase tend to be brittle and have poor flexibility because they are ceramics, and therefore are generally covered with a metal sheath. is there.
  • the type of metal used for the metal sheath adversely affects the superconducting performance of the bismuth-based oxide superconductor. From that point of view, it is known that the above-mentioned metal sheath does not affect the superconducting performance of the bismuth-based oxidized superconductor, and silver is used in many cases.
  • a step of filling a raw material powder of the superconducting phase into a metal pipe and subjecting the metal pipe to at least one plastic kneading and heat treatment to obtain a wire is performed at a temperature lower than the heat treatment temperature and at a temperature lower than the atmospheric pressure.
  • a method for producing a superconducting wire including a low-oxygen heat treatment step of heating the wire in a low-oxygen atmosphere see Patent Document 1.
  • a step of filling the raw material powder of the superconducting phase into a metal pipe a step of drawing this metal pipe to form a clad wire, and a step of bundling a plurality of clad wires to form a polygon inside the metal pipe again.
  • a method for producing a superconducting multifilamentary wire which is a method of rolling a multifilamentary wire when the rolling direction is the diagonal direction or the opposite side direction of the clad wire arranged in a polygonal shape, is disclosed! Reference 2).
  • Patent Document 1 JP 2003-203532
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-242847
  • an object of the present invention is to provide a superconducting wire having a high critical current density due to a large occupancy of an oxide superconductor and a low tendency to cause vertical cracks and disconnections in a manufacturing process. is there.
  • Another object of the present invention is to provide a superconducting multi-core wire having a high critical current density due to a large occupancy of an oxide superconductor and a low tendency to cause vertical cracks and disconnections in a manufacturing process. It is to provide.
  • another object of the present invention is to provide a superconducting wire capable of producing a superconducting wire having an excellent occupation ratio of an oxide superconductor and having an excellent critical current density without causing vertical cracks and disconnection. Is to provide a manufacturing method.
  • Another object of the present invention is to produce a superconducting multifilamentary wire having an excellent critical current density due to a large occupancy of an oxide superconductor without causing vertical cracks and disconnections. It is an object of the present invention to provide a method for manufacturing a superconducting multi-core wire.
  • the inventor of the present invention should consider the mechanical properties of coated metal such as silver pipe, which has been the focus of attention in the past! Based on the idea of, superconducting wires and superconducting multi-core wires having various materials and structures were prototyped, and superconducting multi-wires and superconducting multi-core wires with a large occupation ratio of oxide superconductor and excellent critical current density were developed. The materials and conditions of the coated metal that can be manufactured without causing vertical cracks and disconnections were studied.
  • the present inventor has found that the cause of the above-described vertical cracks and disconnections is that when the occupation ratio of the oxide superconductor increases, the superconducting wire and the structural material of the superconducting multi-core wire substantially become. It has been found that there is a problem that the structural material cannot withstand the stress or strain in the processing because the ratio of the material of the coated metal used is low.
  • the present inventor adjusted the strain rate at break in the stress-strain property test of the material of the coated metal to a specific range, so that the occupation rate of the oxide superconductor was large, so that the critical current density was low.
  • the present inventors have found that excellent superconducting multifilaments and superconducting multifilamentary wires can be manufactured without causing vertical cracks and disconnections, and overcome the above-mentioned problems to achieve the present invention.
  • the present invention relates to an oxidized superconducting wire comprising an oxide superconductor and a coating metal covering the oxide superconductor, wherein a stress-strain characteristic test of the material of the coated metal is performed. Is a superconducting wire having a strain rate at break of 30% or more.
  • the strain rate at break is in the range of 30% to 58%.
  • the strain rate at break is more preferably in the range of 45% to 58%.
  • the occupancy of the oxide superconductor is preferably in the range of 25% to 70%.
  • the maximum point stress in the stress-strain characteristic test of the material of the coated metal is preferably 180 MPa or more.
  • the material of the coating metal contains silver and Z or a silver alloy.
  • the material of the oxide superconductor preferably contains a bismuth-based oxide superconductor.
  • the material of the coating metal is preferably silver having an impurity concentration of 10 ppm to 500 ppm.
  • the impurity concentration is also a barometer for the occurrence of work cracks, and by controlling the impurity concentration of the coated metal, the frequency of occurrence of work cracks can be further reduced.
  • the superconducting multifilamentary wire of the present invention is a superconducting multifilamentary wire comprising a plurality of the above-described superconducting wires and a second coated metal covering the superconducting wires.
  • the superconducting multifilamentary wire preferably has a tape-like shape.
  • a raw material powder containing a material to be a material of an oxide superconductor is prepared by setting a strain rate at break in a stress-strain characteristic test within a range of 30% to 58%.
  • a method for producing a superconducting wire comprising: a step of filling a metal cylinder made of a coated metal material; and a step of performing one or more plastic workings and heat treatments on the metal cylinder filled with the raw material powder. .
  • silver having an impurity concentration of lOppm to 500ppm is preferable.
  • the raw material powder containing the material to be used as the material of the oxide superconductor is obtained by setting the strain at break point in the stress-strain characteristic test within the range of 30% to 58%.
  • a step of filling a metal cylinder made of a coated metal material a step of performing one or more times of plastic kneading on the metal cylinder filled with the raw material powder to obtain a wire, Filling a metal cylinder to be a coated metal material, and performing one or more times of plastic working and heat treatment on the metal cylinder filled with the plurality of wires to obtain a superconducting multifilamentary wire.
  • the material of the coated metal is preferably silver with an impurity concentration of lOppm-500ppm.
  • the superconducting wire of the present invention has a high critical current density due to a large occupancy of the oxide superconductor, and has a specified strain rate at break in a stress-strain property test of a coated metal material. Therefore, it is a superconducting wire having a low tendency to generate vertical cracks and disconnections in the manufacturing process, and having excellent critical current density and workability.
  • the superconducting multifilamentary wire of the present invention has a high critical current density due to the large occupancy of the oxide superconductor, and has a specific strain rate at break in the stress-strain characteristic test of the material of the coated metal.
  • the superconducting multifilamentary wire which has a low tendency to cause vertical cracks and breaks in the manufacturing process, has excellent critical current density and excellent workability.
  • the method for producing a superconducting wire of the present invention is capable of producing a superconducting wire having an excellent critical current density due to a large occupancy of an oxide superconductor without causing longitudinal cracks and disconnections. This is a method for manufacturing a wire.
  • the method for producing a superconducting multifilamentary wire of the present invention is to produce a superconducting multifilamentary wire having an excellent occupancy rate of oxide superconductor and a high critical current density without causing longitudinal cracks and disconnections. This is a method for producing a superconducting multi-core wire.
  • FIG. 1 is a flowchart showing an example of a method for manufacturing a superconducting wire according to the present invention.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing a superconducting multi-core wire according to the present invention.
  • -It is a photograph figure which shows a mode of a distortion characteristic test.
  • a superconducting wire refers to a wire having a superconducting phase and a covering material that covers the superconducting phase.
  • this superconducting phase may or may not be included in one superconducting wire, but a plurality of superconducting phases may be included in one superconducting wire.
  • a superconducting multi-core wire means a wire having a plurality of superconducting phases and a covering material covering the superconducting phases.
  • the coating material may be a single layer, or may be a multilayer.
  • a superconducting multifilamentary wire means a broader concept including a superconducting multifilamentary wire. Therefore, according to the above definition, a superconducting multifilamentary wire may include a plurality of superconducting wires, but even in this case, it is assumed that this superconducting multifilamentary wire is a superconducting wire. .
  • a method for manufacturing a superconducting wire includes a step of adjusting a raw material powder of an oxide superconductor, a step of filling a raw material powder into a metal pipe, and a plastic working of the metal pipe filled with the raw material powder. It is preferable to include a step and a step of heat-treating the metal pipe filled with the plastically processed raw material powder.
  • the step of performing the plastic working includes a step of manufacturing a clad wire and a step of manufacturing a clad wire. It is preferable to include a step of manufacturing a core wire and a step of manufacturing a tape wire by rolling a multi-core wire. Further, the step of performing the plastic working and the step of performing the heat treatment may be performed twice or more each.
  • the method for producing a superconducting wire is a method for producing a bismuth-based multifilamentary wire, (BiPb) Sr Ca Cu O phase (Bi-2223 phase) by powder-in-tube method
  • a raw material powder of a superconducting phase is filled in a metal pipe.
  • the metal pipe is drawn into a clad wire.
  • Multiple clad wires are bundled, reinserted into a metal pipe, and drawn to form a multi-core wire.
  • the multifilamentary wire is rolled to form a tape wire having a large number of superconducting filaments in a metal sheet.
  • a primary heat treatment is further performed on the tape wire to generate a target superconducting phase.
  • the tape wire is rolled again and subjected to a second heat treatment to join the superconducting phase crystal grains. In some cases, these two rounds of heat treatment and heat treatment are performed once and not performed.
  • FIG. 1 is a flowchart showing an example of the method for producing a superconducting wire of the present invention.
  • the same manufacturing method as the above-described method for manufacturing a normal superconducting wire can be used, but as shown in FIG.
  • a raw material powder containing a material to be a material of the material into a metal cylinder to be a material of a coated metal including a material having a strain rate at break in a stress-strain characteristic test within a specific range (S101); It is particularly preferable to use a method for producing a superconducting wire, comprising a step (S103) of subjecting the metal cylinder filled with the raw material powder to at least one plastic working and heat treatment (S103).
  • FIG. 2 is a flowchart showing an example of the method for producing a superconducting multi-core wire according to the present invention. Also, in the method for manufacturing a superconducting multi-core wire of the present invention, the same manufacturing method as the above-described method for manufacturing a normal superconducting multi-core wire can be used, but as shown in FIG.
  • the raw material powder for the oxide superconductor used in the present invention a raw material powder blended so as to obtain a superconducting phase capable of finally having a critical temperature of 77 K or more is suitable.
  • the raw material powder includes not only a powder obtained by mixing the composite oxide to have a predetermined composition ratio, but also a powder obtained by sintering the mixed powder and pulverizing the sintered powder.
  • a bismuth-based material for example, Bi2
  • the starting raw material powder is Bi 2 O 3
  • a mixed raw material powder including PbO, SrCO, CaCO, CuO powder
  • Bi is preferably around 1.8
  • Pb is around 0.3-0.4
  • Sr is around 2
  • Ca is around 2.2
  • Cu is around 3.0.
  • the raw material powder to be filled in the metal cylinder used in the present invention preferably has a maximum particle size of 2.0 m or less, and an average particle size of 1.0 / zm or less. This is because the use of such a fine powder facilitates the generation of a high-temperature oxide superconductor.
  • the material of the metal tube (metal pipe) used in the present invention is selected from the group consisting of Ag, Cu, Fe, Ni, Cr, Ti, Mo, W, Pt, Pd, Rh, Ir, Ru, and Os. It is preferred to use more than one metal and Z or alloys based on these metals. Among them, it is particularly preferable to use silver, Z or a silver alloy in view of reactivity with the oxide superconductor and workability.
  • a material having sufficiently large strain at break can be used, such as rolling. Vertical cracks and disconnections that occur during the processing of the above can be suppressed.
  • a large strain at break means that the material elongates well, and a material with a high elongation has a high deformability, so it is considered that it is difficult to cause a vertical crack or a disconnection.
  • the strain rate at break in the stress-strain characteristic test of the material of the metal cylinder used in the present invention is preferably 30% or more, more preferably 45% or more. Further, the strain rate at break is preferably 58% or less in silver or silver alloy.
  • the strain rate at break is, the better, but on the other hand, since the maximum stress value tends to be low, the workability and the performance of the superconductor are both satisfied. This is because it is preferable that When the material of the metal cylinder is silver, Z or a silver alloy, the strain rate at break when the following maximum stress is 180 MPa is about 58%. It is desirable to do.
  • the higher the maximum stress in the stress-strain characteristic test which is not limited to the strain at the breaking point, the more effective the superconducting oxide and the uniform the internal cross-sectional shape of the superconductor.
  • the higher the maximum point stress (especially 0.2% resistance) of the cladding the greater the force applied to the oxide superconductor during subsequent processing, including the cladding. This is because the maximum force applied to the oxide superconductor during processing is determined by the maximum stress of the coated metal material. And it is considered that the greater the applied force, the more advantageous in this respect.
  • the maximum point stress in the stress-strain characteristic test of the material of the metal cylinder used in the present invention is preferably 180 MPa or more, and the higher the maximum point stress (maximum stress value), the higher the superconducting wire and the superconducting wire. Since the force applied to the oxide superconductor during the processing of the multifilamentary wire can be increased, and the oxide superconductor can be densified and the internal cross-sectional shape can be made uniform, the maximum point stress is 180 MPa or more. Preferably, there is.
  • the maximum point stress of a metal cylinder made of silver, Z or a silver alloy is about 180 MPa, and good superconducting wires and superconducting multi-core wires can be obtained by using a metal cylinder with a maximum point stress of 180 MPa or more. Power.
  • the use of a material having the above characteristics as the material of the metal cylinder used in the present invention is more effective when the occupation ratio of the oxide superconductor in the superconducting wire and the superconducting multi-core wire is 30% or more. It is.
  • the plastic working in the method for producing a superconducting wire and a superconducting multifilamentary wire of the present invention includes various surface reducing forces. Specific examples include wire drawing, rolling, pressing force, and stage.
  • the method of manufacturing a superconducting multifilamentary wire when the plastic working is performed only once, and when not performed, the specific contents of the plastic working are a metal cylinder filled with the raw material powder, and the metal cylinder is reduced in surface area.
  • the method includes forming a clad wire, manufacturing a multi-core wire by reducing the surface area of a metal tube in which the clad wire is bundled and inserted, and processing the multi-core wire into a tape shape.
  • the reason why the multifilamentary wire is processed into a tape shape is to make the crystal orientation of the superconducting multifilamentary wire finally formed uniform.
  • an oxide-based superconducting multifilamentary wire has a large difference in the current density that can flow depending on the direction of the crystal, and a higher current density can be obtained by aligning the crystal directions.
  • the heat treatment is performed twice or more, typically a primary heat treatment and a secondary heat treatment.
  • the primary heat treatment is performed mainly for the purpose of generating an oxide superconductor such as a Bi2223 phase.
  • the secondary heat treatment mainly binds the crystal grains of the oxide superconductor such as Bi2223 firmly. Perform to match.
  • the treatment temperature during the heat treatment is preferably 815 ° C or more for both the primary heat treatment and the secondary heat treatment, especially 830 ° C or more. Is more preferable. Further, the treatment temperature is preferably 860 ° C or lower, and more preferably 850 ° C or lower.
  • the primary heat treatment be in the range of 840 ° C to 850 ° C and the secondary heat treatment be in the range of 830 ° C to 840 ° C.
  • the secondary heat treatment may be performed at different temperatures within the above temperature range and in multiple stages (especially two stages).
  • the treatment temperature during the heat treatment is preferably 50 hours or more for both the first heat treatment and the second heat treatment. Further, the processing temperature is preferably 250 hours or less. Among the above treatment times, it is particularly preferable to set the treatment time of the secondary heat treatment to 100 hours or more.
  • the atmosphere during the heat treatment can be performed in the air atmosphere for both the first heat treatment and the second heat treatment.
  • the superconducting wire of the present invention is an oxidized superconducting wire comprising an oxide superconductor and a coated metal covering the oxide superconductor, wherein the coated metal is broken in a stress-strain characteristic test.
  • the above-mentioned strain rate at break is preferably 30% or more, more preferably 45% or more. Further, the strain rate at break is preferably 58% or less. This is based on the same reason as described above for the method of manufacturing a superconducting wire of the present invention.
  • the maximum point stress in the stress-strain characteristic test of the material of the coated metal used in the present invention is preferably 180 MPa or more. This is based on the same reason as described above for the method of manufacturing a superconducting wire of the present invention.
  • the use of a material having the above properties as the coating metal used in the present invention It is more effective when the occupation ratio of the oxide superconductor in the superconducting wire of the present invention is 30% or more. More specifically, it is preferable that the occupation ratio of the oxide superconductor in the superconducting wire and the superconducting multi-core wire in which a material having the above-mentioned properties is preferably used is 30% or more. This is based on the same reason as described above for the method of manufacturing a superconducting wire of the present invention.
  • the material of the coated metal used in the present invention is selected from the group consisting of Ag, Cu, Fe, Ni, Cr, Ti, Mo, W, Pt, Pd, Rh, Ir, Ru, and Os. It is preferred to use more than one metal and Z or alloys based on these metals. Among them, it is particularly preferable to use silver, Z or a silver alloy in view of reactivity with the oxide superconductor and workability. This is based on the same reason as described above for the method of manufacturing a superconducting wire of the present invention.
  • the material of the oxide superconductor used in the present invention preferably contains a bismuth-based oxide superconductor.
  • a powder obtained from a mixed raw material powder including powders of BiO, PbO, SrCO, CaCO, and CuO is used.
  • a bismuth-based oxide superconductor If manufactured by an appropriate manufacturing method such as the manufacturing method of the superconducting wire of the present invention, a superconducting phase which can have a critical temperature of 77K or higher is finally obtained.
  • the superconducting multifilamentary wire of the present invention is a superconducting multifilamentary wire comprising a plurality of the above superconducting wires and a second coated metal covering the superconducting wires.
  • the superconducting multifilamentary wire of the present invention preferably has a tape-like shape. This is based on the same reason as described above for the method of manufacturing a superconducting multifilamentary wire of the present invention.
  • the properties of the coated metal and the oxide superconductor used for the superconducting multifilamentary wire of the present invention are preferably the same as those of the above-described coated metal and oxide superconductor used for the superconducting wire of the present invention. This is based on the same reason as described above for the superconducting wire of the present invention.
  • the mixture was mixed at a ratio of 0. Next, the mixed powder was heat-treated in the air at 700 ° C for 8 hours, 800 ° C for 10 hours, and 840 ° C for 8 hours. After each heat treatment, grinding was performed.
  • This raw material powder was inserted into a silver pipe having an outer diameter of 36mm, an inner diameter of 33.5mm, a length of 1000mm, an oxygen content of 50ppm, a carbon content of 20ppm, and a silver purity of 4N, and was drawn to a diameter of 3.7mm.
  • a clad wire was produced.
  • 55 clad wires are bundled and arranged in a hexagonal shape, inserted into a silver alloy pipe with an outer diameter of 36 mm, an inner diameter of 28 mm, and a length of 1000 mm, and drawn to a diameter of 1.6 mm to obtain a multi-core wire.
  • this multifilamentary wire was rolled (primary rolling) and processed into a tape-shaped multifilamentary wire.
  • the obtained tape-shaped multifilamentary wire was subjected to primary heat treatment at 840 ° C to 850 ° C for 50 hours in an air atmosphere.
  • the tape-shaped multifilamentary wire after the primary heat treatment was re-rolled (secondarily rolled) so as to have a width of 4. Omm and a thickness of 0.2 mm.
  • the tape-shaped multifilamentary wire after re-rolling was subjected to a secondary heat treatment at 840 ° C to 850 ° C for 50 hours and 150 hours in an air atmosphere to obtain a superconducting multifilamentary wire.
  • the number of wire drawing cracks generated during the manufacturing process of the obtained superconducting multicore wire was visually confirmed. Table 1 shows the results of the number of wire drawing cracks.
  • Example 2-5 and Comparative Example 1-5 the occupation ratio of the oxide superconductor was set to the ratio shown in Table 1 above by using a coated metal having the characteristics shown in Table 1 above.
  • a superconducting multifilamentary wire was obtained in the same manner as in Example 1 except for.
  • Example 115 and Comparative Example 115 The stress-strain characteristic test of silver and Z or silver alloy pipes used in Example 115 and Comparative Example 115 was performed using a tensile tester at a test speed of 3 mmZmin and a distance between grips of 110 mm. Under the conditions, the strain rate at break (%) and the maximum point stress (MPa) were determined for each silver and Z or silver alloy pipe. Table 1 shows the measurement results of the strain rate at break (%) and the maximum point stress (MPa).
  • FIG. 3 is a photographic diagram showing a stress-strain characteristic test of silver and Z or a silver alloy pipe used in Examples and Comparative Examples of the present invention.
  • the superconducting multifilamentary wires of Examples 1 to 5 have a high strain rate at the breaking point of the coated metal material, and thus are unlikely to cause wire drawing cracks during the manufacturing process. It was found that the superconducting multifilamentary wire was superior to the superconducting multifilamentary wire.
  • Example 1 a silver pipe having a silver purity of 4N (99.99%) was used.
  • the impurity concentration of silver pipe with a silver purity of 4N is equivalent to 100 ppm.
  • the impurity concentrations were 5 ppm (Example 6), 10 ppm (Example 7), 50 ppm (Example 8), 500 ppm (Example A superconducting multi-core wire was manufactured in the same manner as in Example 1 except that a silver pipe of Example 9) and 100 ppm (Example 10) was used.
  • the impurities were Al, Fe, Cu, Ni, Si and Zn.
  • the impurity concentration is also a parameter of the occurrence of machining cracks. It was found that the frequency of occurrence can be reduced, and that the coated metal is preferably silver having an impurity concentration of 10 ppm to 500 ppm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 臨界電流密度が高く、かつ製造工程において縦割れおよび断線が発生する傾向が低い、超電導線材を提供する。このため、本発明の超電導線材は、酸化物超電導体と、この酸化物超電導体を被覆する被覆金属と、を備える酸化物超電導線材であって、この被覆金属の材料の応力−歪み特性試験における破断点歪み率が30%以上であることを特徴とする。

Description

明 細 書
超電導線材、それを用いる超電導多芯線およびそれらの製造方法 技術分野
[0001] 本発明は、超電導線材に関する。さら〖こ詳しくは、本発明は、酸化物超電導体と被 覆金属とを備える超電導線材に関する。また、本発明は、複数の上記の超電導線材 と第 2の被覆金属とを備える超電導多芯線に関する。
[0002] さらに、本発明は、上記の超電導線材の製造方法に関する。また、本発明は、上記 の超電導多芯線の製造方法に関する。
背景技術
[0003] 従来、酸化物高温超電導線材としては、ビスマス系多芯線が開発されて ヽる。ビス マス系多芯線の製造方法としては、パウダーインチューブ法により、 (BiPb) Sr Ca
2 2 2
Cu O相(Bト 2223相)などの酸ィ匕物超電導体を長尺のテープ状線材に形成する
3
技術が知られている。この方法では、たとえば、まず超電導相の原料粉末を金属パイ プに充填する。次に、この金属パイプを伸線カ卩ェしてクラッド線とする。複数のクラッド 線を束ねて再度金属パイプに挿入し、伸線加工して多芯線とする。この多芯線を圧 延カ卩ェして、金属シース中に多数の超電導フィラメントが含まれるテープ線材とする。
[0004] この方法では、さらに、テープ線材に一次熱処理を施して目的の超電導相を生成さ せる。続いて、このテープ線材を再度圧延してから二次熱処理を施して、超電導相の 結晶粒同士を接合させる。これら 2回の塑性カ卩ェと熱処理は 1回しカゝ行わない場合も ある。
[0005] ここで、 Bi— 2223相をはじめとするビスマス系酸化物超電導体は、セラミックスであ るため脆く可とう性に乏しい傾向があるので、金属シースで覆う構造とすることが一般 的である。しかし、金属シースに用いる金属の種類によっては、ビスマス系酸化物超 電導体の超電導性能に悪影響を及ぼすことが知られている。その観点から、上記の 金属シースには、ビスマス系酸ィ匕物超電導体の超電導性能に影響がないことが知ら れて 、る銀が用いられて 、る場合が多 、。
[0006] そして、同じ断面積を有し、酸化物超電導体の臨界電流密度が等しい線材で比較 した場合、酸化物超電導相の占有率が高!ヽ超電導線材ほど臨界電流値が大きくな る。そのため、臨界電流特性の観点からは、できるだけ酸化物超電導体の占有率の 高い超電導線材を作製する方が好ましい。しかし、酸化物超電導体の占有率が高い 超電導線材を製造する場合、強度が低く脆い部分が増加するために、加工途中で 超電導線材に縦割れが発生したり、断線が発生する傾向があった。そして、超電導 線材の縦割れが発生した箇所をそのまま加工し続けた場合、縦割れが発生した箇所 の内部が乱れ臨界電流密度が大幅に低下する傾向がある。そのため、良好な特性 を有する超電導線材の製造が困難になる問題があった。
[0007] そこで、優れた特性を有する超電導線材の製造を可能とするために、超電導線材 の製造方法について多くの技術開発がなされている。たとえば、超電導相の原料粉 末を金属パイプに充填し、この金属パイプに少なくとも 1回の塑性カ卩ェおよび熱処理 を施して線材を得る工程と、前記熱処理温度よりも低い温度で、かつ大気よりも低酸 素雰囲気にて前記線材を加熱する低酸素熱処理工程とを含む、超電導線材の製造 方法が開示されている (特許文献 1参照)。この製造方法を用いれば、従来公知の製 造方法よりも、超電導線材の臨界電流を向上できる。
[0008] しかし、この製造方法によっても、酸化物超電導体の占有率が高!、超電導線材を 製造する場合、強度が低く脆い部分が増加するために、加工途中で超電導線材に 縦割れが発生したり、断線が発生する傾向を防ぐことは困難である。
[0009] また、超電導相の原料粉末を金属パイプに充填する工程と、この金属パイプを伸線 加工してクラッド線とする工程と、複数のクラッド線を束ねて再度金属パイプ内に多角 形に配置されるように挿入し、伸線加工して多芯線とする工程と、この多芯線を圧延 加工して、金属シース中に多数の超電導フィラメントが含まれるテープ線材とする、超 電導多芯線の製造方法であって、多芯線を圧延加工する際、圧延方向を多角形に 配置されたクラッド線の対角方向または対辺方向とする、超電導多芯線の製造方法 が開示されて!ヽる (特許文献 2参照)。
[0010] しかし、この製造方法によっても、酸化物超電導体の占有率が高!、超電導線材を 製造する場合、強度が低く脆い部分が増加するために、加工途中で超電導線材に 縦割れが発生したり、断線が発生する傾向を防ぐことは困難である。 特許文献 1:特開 2003— 203532号公報
特許文献 2:特開 2003— 242847号公報
発明の開示
発明が解決しょうとする課題
[0011] 上記のように、酸化物超電導体の占有率が高い超電導線材を製造する場合、強度 が低く脆い部分が増加するために、加工途中で超電導線材に縦割れが発生したり、 断線が発生する問題は、未だ完全に解決されたわけではな 、。
[0012] よって、本発明の課題は、酸化物超電導体の占有率が大きいため臨界電流密度が 高ぐかつ製造工程において縦割れおよび断線が発生する傾向が低い、超電導線 材を提供することである。
[0013] また、本発明の別の課題は、酸化物超電導体の占有率が大きいため臨界電流密 度が高ぐかつ製造工程において縦割れおよび断線が発生する傾向が低い、超電 導多芯線を提供することである。
[0014] さらに、本発明の他の課題は、酸化物超電導体の占有率が大きいため臨界電流密 度が優れる超電導線材を、縦割れおよび断線を発生させることなく製造することので きる、超電導線材の製造方法を提供することである。
[0015] そして、本発明のもう一つの課題は、酸ィ匕物超電導体の占有率が大きいため臨界 電流密度が優れる超電導多芯線を、縦割れおよび断線を発生させることなく製造す ることのできる、超電導多芯線の製造方法を提供することである。
課題を解決するための手段
[0016] 本発明者は、上記の課題を解決するためには、従来着目されてこなカゝつた銀パイ プなどの被覆金属の機械的特質につ!ヽて検討を加えればよ!ヽとの着想を得、各種 の材料や構造などを有する超電導線材および超電導多芯線を試作して、酸化物超 電導体の占有率が大き 、ため臨界電流密度が優れる超電導多線材および超電導 多芯線を、縦割れおよび断線を発生させることなく製造することのできる被覆金属の 材料や条件を検討した。
[0017] その結果、本発明者は、上記の縦割れおよび断線の発生の原因は、酸化物超電 導体の占有率が大きくなると、実質、超電導線材および超電導多芯線の構造材とな つている被覆金属の材料の占める割合が低くなるため、構造材が加工における応力 や歪みなどに耐えることができなくなる問題があるためであることを見出した。
[0018] そして、本発明者は、被覆金属の材料の応力 歪み特性試験における破断点歪み 率を特定の範囲に調整することにより、酸ィ匕物超電導体の占有率が大きいため臨界 電流密度が優れる超電導多線材および超電導多芯線を、縦割れおよび断線を発生 させることなく製造することができることを見出し、上記の問題を克服して、本発明を 兀成し 7こ。
[0019] すなわち、本発明は、酸化物超電導体と、この酸化物超電導体を被覆する被覆金 属と、を備える酸ィ匕物超電導線材であって、この被覆金属の材料の応力 歪み特性 試験における破断点歪み率が 30%以上である、超電導線材である。
[0020] ここで、この破断点歪み率は 30%— 58%の範囲内であることが好ましい。あるいは 、この破断点歪み率は 45%— 58%の範囲内であることがより好ましい。また、この酸 化物超電導体の占有率は 25%— 70%の範囲内であることが望ましい。そして、この 被覆金属の材料の応力 歪み特性試験における最大点応力は 180MPa以上である ことが好ましい。
[0021] また、この被覆金属の材料は、銀および Zまたは銀合金を含むことが望まし 、。さら に、この酸化物超電導体の材料は、ビスマス系酸化物超電導体を含むことが好まし い。特に、被覆金属の材料は、不純物濃度が lOppm— 500ppmの銀が好ましい。 不純物濃度も加工割れ発生のバロメータであり、被覆金属の不純物濃度を管理する ことにより、加工割れの発生する頻度をさらに低減することができる。
[0022] そして、本発明の超電導多芯線は、複数の上記の超電導線材と、この超電導線材 を被覆する第 2被覆金属と、を備える、超電導多芯線である。ここで、この超電導多芯 線はテープ状の形状を有することが好ま 、。
[0023] また、本発明の超電導線材の製造方法は、酸化物超電導体の材料となる材料を含 む原料粉末を、応力 歪み特性試験における破断点歪み率が 30%— 58%の範囲 内である被覆金属材料からなる金属筒に充填するステップと、この原料粉末を充填さ れたこの金属筒に 1回以上の塑性加工および熱処理を施すステップと、を備える、超 電導線材の製造方法である。
Figure imgf000006_0001
、て使用する被覆金属の材料 は、加工割れを低減する観点から、不純物濃度が lOppm— 500ppmの銀が好まし い。
[0024] そして、本発明の超電導多芯線の製造方法は、酸化物超電導体の材料となる材料 を含む原料粉末を、応力 歪み特性試験における破断点歪み率が 30%— 58%の 範囲内である被覆金属材料からなる金属筒に充填するステップと、この原料粉末を 充填されたこの金属筒に 1回以上の塑性カ卩ェを施して線材を得るステップと、複数の この線材を、第 2被覆金属材料となる金属筒に充填するステップと、この複数のこの 線材を充填されたこの金属筒に 1回以上の塑性加工および熱処理を施して超電導 多芯線を得るステップと、を備える、超電導多芯線の製造方法である。超電導多芯線 の製造においても、被覆金属の材料は、不純物濃度が lOppm— 500ppmの銀が好 ましい。
発明の効果
[0025] 本発明の超電導線材は、下記に示すように、酸化物超電導体の占有率が大きいた め臨界電流密度が高ぐかつ被覆金属の材料の応力 歪み特性試験における破断 点歪み率が特定の範囲にあるため、製造工程において縦割れおよび断線が発生す る傾向が低 、、優れた臨界電流密度および加工性を有する超電導線材である。
[0026] また、本発明の超電導多芯線は、酸ィ匕物超電導体の占有率が大きいため臨界電 流密度が高ぐかつ被覆金属の材料の応力 歪み特性試験における破断点歪み率 が特定の範囲にあるため、製造工程において縦割れおよび断線が発生する傾向が 低い、優れた臨界電流密度および加工性を有する、超電導多芯線である。 さらに、 本発明の超電導線材の製造方法は、酸ィ匕物超電導体の占有率が大きいため臨界 電流密度が優れる超電導線材を、縦割れおよび断線を発生させることなく製造するこ とのできる、超電導線材の製造方法である。
[0027] そして、本発明の超電導多芯線の製造方法は、酸化物超電導体の占有率が大き Vヽため臨界電流密度が優れる超電導多芯線を、縦割れおよび断線を発生させること なく製造することのできる、超電導多芯線の製造方法である。
図面の簡単な説明
[0028] [図 1]本発明の超電導線材の製造方法の一例を示すフロー図である。 [図 2]本発明の超電導多芯線の製造方法の一例を示すフロー図である。
[図 3]本発明の実施例および比較例に用いた銀および Zまたは銀合金パイプの応力
-歪み特性試験の様子を示す写真図である。
発明を実施するための最良の形態
[0029] 以下、実施の形態を示して本発明をより詳細に説明する。
[0030] <定義 >
本明細書において、超電導線材とは、超電導相と、この超電導相を被覆する被覆 材と、を備える線材を意味するものとする。ここで、この超電導相は、 1本の超電導線 材内に 1本し力含まれて 、なくてもょ 、が、 1本の超電導線材内に複数本含まれて ヽ てもよい。
[0031] また、本明細書において、超電導多芯線とは、複数本の超電導相と、この超電導相 を被覆する被覆材と、を備える線材を意味するものとする。ここで、この被覆材は、単 層であってもよいが、複層であってもよい。
[0032] そして、本明細書にお!、て、超電導線材とは、超電導多芯線を含む、より広 、概念 を意味するものとする。よって、上記の定義によれば、超電導多芯線内には複数本の 超電導線材が含まれる場合があるが、この場合でも、この超電導多芯線は超電導線 材であることに変わりはないものとする。
[0033] <超電導線材および超電導多芯線の製造方法 >
通常、超電導線材の製造方法は、酸化物超電導体の原料粉末の調整をするステツ プと、原料粉末の金属パイプへの充填をするステップと、原料粉末の充填された金属 パイプの塑性加工を行うステップと、塑性加工された原料粉末の充填された金属パイ プを熱処理するステップと、を備えることが好ましい。
[0034] より詳しく説明すると、上記の超電導線材の製造方法が、超電導多芯線の製造方 法である場合には、上記の塑性加工を行うステップには、クラッド線を作製するステツ プと、多芯線を作製するステップと、多芯線を圧延してテープ線材を作製するステツ プと、が含まれることが好ましい。また、上記の塑性加工を行うステップと、熱処理する ステップとは、各々 2回以上行われてもよい。
[0035] 上記の超電導線材の製造方法が、ビスマス系多芯線の製造方法である場合には、 パウダーインチューブ法により、 (BiPb) Sr Ca Cu O相(Bi— 2223相)な
2 2 2 3
どの酸化物超電導体を長尺のテープ状線材に形成することが好ましい。
[0036] この方法では、たとえば、まず超電導相の原料粉末を金属パイプに充填する。次に 、この金属パイプを伸線カ卩ェしてクラッド線とする。複数のクラッド線を束ねて再度金 属パイプに挿入し、伸線加工して多芯線とする。この多芯線を圧延カ卩ェして、金属シ ース中に多数の超電導フィラメントが含まれるテープ線材とする。
[0037] この方法では、さらに、テープ線材に一次熱処理を施して目的の超電導相を生成さ せる。続いて、このテープ線材を再度圧延してから二次熱処理を施して、超電導相の 結晶粒同士を接合させる。これら 2回の塑性カ卩ェと熱処理は 1回しカゝ行わない場合も ある。
[0038] 図 1は、本発明の超電導線材の製造方法の一例を示すフロー図である。ここで、本 発明の超電導線材の製造方法にお!、ても、上記の通常の超電導線材の製造方法と 同様の製造方法を用いることができるが、図 1に示すように、酸化物超電導体の材料 となる材料を含む原料粉末を、応力 歪み特性試験における破断点歪み率が特定 の範囲内である材料を含む、被覆金属の材料となる金属筒に充填するステップ (S 1 01)と、この原料粉末を充填されたこの金属筒に 1回以上の塑性加工および熱処理 を施すステップ (S 103)と、を備える、超電導線材の製造方法を用いることが特に好 ましい。
[0039] 図 2は、本発明の超電導多芯線の製造方法の一例を示すフロー図である。また、本 発明の超電導多芯線の製造方法にお!、ても、上記の通常の超電導多芯線の製造 方法と同様の製造方法を用いることができるが、図 2に示すように、酸化物超電導体 の材料となる材料を含む原料粉末を、応力 -歪み特性試験における破断点歪み率 が特定の範囲内である材料を含む、被覆金属の材料となる金属筒に充填するステツ プ(S201)と、この原料粉末を充填されたこの金属筒に 1回以上の塑性カ卩ェを施して 線材を得るステップ (S203)と、複数のこの線材を、第 2被覆金属の材料となる金属 筒に充填するステップ(S205)と、この複数の線材を充填されたこの金属筒に 1回以 上の塑性加工および熱処理を施して超電導多芯線を得るステップ (S207)と、を備 える、超電導多芯線の製造方法を用いることが特に好ま ヽ。 [0040] <原料粉末 >
本発明に用いる酸化物超電導体の原料粉末としては、最終的に 77K以上の臨界 温度を持ち得る超電導相が得られるように配合した原料粉末が好適である。この原 料粉末には、複合酸化物を所定の組成比となるように混合した粉末のみならず、そ の混合粉末を焼結し、これを粉砕した粉末も含まれる。
[0041] また、本発明の酸化物超電導体の材料として、最終的にビスマス系(たとえば、 Bi2
223系)酸化物超電導体を含む材料を用いる場合には、出発原料粉末には、 Bi O
2 3
、 PbO、 SrCO、 CaCO、 CuOの粉末を含む混合原料粉末を用いることが好ましい
3 3
。これらの混合原料粉末を 700— 800°C、 10— 40時間、大気圧または減圧雰囲気 下にて少なくとも 1回熱処理することにより、 Bi2223相よりも Bi2212相が主体となつ た原料粉末を得ることができ、本発明の酸化物超電導体の原料粉末として好適に使 用可能である。
[0042] 上記の出発原料粉末の具体的な組成比は、 Bi Pb Sr Ca Cuで(a + b) : c : d: e = a b c d e
1. 7-2. 8 : 1. 7-2. 5 : 1. 7-2. 8 : 3を満たすこと力好まし!/、。これらの中でも、 ( Biまたは(Bi+Pb) ): Sr: Ca : Cu= 2 : 2 : 2 : 3を中心とする組成比が特に好適である 。とりわけ、 Biは 1. 8付近、 Pbは 0. 3—0. 4、 Srは 2付近、 Caは 2. 2付近、 Cuは 3. 0付近であることが好まし 、。
[0043] 本発明に用いる金属筒に充填する原料粉末は、最大粒径が 2. 0 m以下であり、 平均粒径が 1. O /z m以下であることが好ましい。このよう微粉末を用いることで、高温 酸化物超電導体を生成しやすくなるからである。
[0044] <金属筒>
本発明に用いる金属筒(金属パイプ)の材料としては、 Ag、 Cu、 Fe、 Ni、 Cr、 Ti、 Mo、 W、 Pt、 Pd、 Rh、 Ir、 Ru、 Osからなる群より選択される 1種以上の金属および Zまたはこれらの金属をベースとする合金を用いることが好まし 、。これらの中でも、 酸化物超電導体との反応性や加工性の面からは、銀および Zまたは銀合金を用い ることが特に好ましい。
[0045] ここで、本発明の超電導線材を製造する際に用いる被覆金属の材料となる金属筒 の材料としては、破断点歪みが十分に大きい材料を用いることにより、圧延加工など の加工途中で発生する縦割れや断線を抑制することができる。破断点歪みが大きい ということはその材料は良く伸びることになり、伸びが大きい材料ほど変形能が高いた め、縦割れや断線をしにくいと考えられるからである。
[0046] そして、本発明に用いる金属筒の材料の応力 歪み特性試験における破断点歪み 率は、 30%以上であることが好ましぐ特に 45%以上であることがより好ましい。また 、この破断点歪み率は、銀または銀合金においては、 58%以下であることが好ましい
[0047] 加工性の点では破断点歪み率は大きいほど良いが、一方で最大応力値が低くなる 傾向があるため、加工性と超電導体の性能を両立させる面から、上記の範囲内にあ ることが好ましいからである。なお、金属筒の材料が銀および Zまたは銀合金の場合 には、下記の最大点応力が 180MPaとなる際の破断点歪み率が約 58%であるため 、破断点歪み率 58%を上限とすることが望ましい。
[0048] また、破断点歪みだけでなぐ応力 歪み特性試験における最大点応力が高 ヽ方 が酸ィ匕物超電導体の緻密化および内部断面形状の均一化が進むため、より効果的 である。被覆材における最大点応力(特に 0. 2%耐カ)が高い方が被覆材を含め、 その後の加工時に、より大きな力を酸化物超電導体に加えられる。加工時に酸化物 超電導体に加えられる最大の力は被覆金属の材料の最大点応力で決まるからであ る。そして、加える力が大きければ大きいほど、この点で有利になると考えられる。
[0049] よって、本発明に用いる金属筒の材料の応力 歪み特性試験における最大点応力 は、 180MPa以上であることが好ましぐ最大点応力(最大応力値)が高いほど、超 電導線材および超電導多芯線の加工時に酸化物超電導体に加える力を大きくする ことができ、酸ィ匕物超電導体の緻密化および内部断面形状の均一化を達成できるた め、上記の最大点応力は 180MPa以上であることが好ましい。また、銀および Zまた は銀合金を材料とする金属筒の最大点応力が 180MPa程度であり、実際に最大点 応力が 180MPa以上の金属筒を使用して良好な超電導線材および超電導多芯線 が得られる力 である。
[0050] そして、一般的な金属および Zまたは合金では、破断点歪み率を大きくすると、最 大点応力は小さくなる傾向にある。しかし、酸化物超電導体の緻密化、均一化のため には、最大点応力(特に 0. 2%耐カ)を大きくした方が有利である。したがって、本発 明に用いる金属筒の材料としては、硬くて伸びる材料を用いるのが好ま 、。
[0051] 本発明に用いる金属筒の材料として、上記の特性を有する材料を用いることは、超 電導線材および超電導多芯線中の酸化物超電導体の占有率が 30%以上の場合に より効果的である。
[0052] 上記の特性を有する材料は、伸びが大きぐ加工時に縦割れや断線が生じにくい からである。また、超電導線材および超電導多芯線中の酸化物超電導体の占有率 力 S小さければ、被覆金属の占める割合が増えることになり、金属筒の材料の伸びが 小さくともボリュームが大きいため問題なく加工できる力 酸ィ匕物超電導体の占有率 を 30%以上に大きくしていくと、加工割れ問題が顕著になるため、伸びのよい金属筒 の材料を用いる必要性が大きくなるからである。
[0053] <塑性加工 >
本発明の超電導線材および超電導多芯線の製造方法における、塑性加工には、 種々の減面力卩ェが含まれる。具体的には、伸線加工、圧延加工、プレス力卩ェ、スゥェ ージなどが挙げられる。
[0054] 本発明の超電導多芯線の製造方法においては、塑性加工を一回し力、行わない場 合には、塑性加工の具体的内容としては、原料粉末を充填した金属筒を減面加工し てクラッド線を作製すること、クラッド線を束ねて挿入した金属筒を減面加工して多芯 線を製造すること、多芯線をテープ状に加工することが含まれることが好まし 、。
[0055] 多芯線をテープ状に加工する理由は、最終的に形成される超電導多芯線の結晶 の向きを揃えるためである。一般に、酸化物系の超電導多芯線は結晶の方向により 流すことができる電流密度に大きな違いがあり、結晶方向を揃えることでより大きな電 流密度を得ることができるからである。
[0056] <熱処理 >
本発明の超電導線材および超電導多芯線の製造方法における、熱処理は、代表 的には一次熱処理と二次熱処理の二回以上行われることが好ましい。一次熱処理は 、主として Bi2223相などの酸ィ匕物超電導体を生成させることを目的として行われる。 二次熱処理は、主として Bi2223相などの酸ィ匕物超電導体の結晶粒同士を強固に結 合させるために行う。
[0057] 本発明の超電導線材および超電導多芯線の製造方法における、熱処理の際の処 理温度は、一次熱処理および二次熱処理ともに、 815°C以上であることが好ましぐ 特に 830°C以上であることがより好ましい。また、この処理温度は、 860°C以下である ことが好ましぐ特に 850°C以下であることがより好ましい。
[0058] 上記の温度条件の中でも、特に一次熱処理を 840°C— 850°Cの範囲内とし、二次 熱処理を 830°C— 840°Cの範囲内とすることが非常に好適である。さらに、二次熱処 理を上記の温度範囲内の異なる温度で多段階 (特に二段階)にわたつて行ってもよ い。
[0059] 本発明の超電導線材および超電導多芯線の製造方法における、熱処理の際の処 理温度は、一次熱処理および二次熱処理ともに、 50時間以上であることが好ましい 。また、この処理温度は、 250時間以下であることが好ましい。上記の処理時間の中 でも、特に二次熱処理の処理時間を 100時間以上とすることが非常に好適である。
[0060] 本発明の超電導線材および超電導多芯線の製造方法における、熱処理の際の雰 囲気は、一次熱処理および二次熱処理ともに、大気雰囲気にて行うことができる。ま た、大気と同成分からなる気流中で熱処理を施すことがより好ましい。その際、熱処 理雰囲気における水分の含有率を低下させることが好ましい。
[0061] <超電導線材>
本発明の超電導線材は、酸化物超電導体と、この酸化物超電導体を被覆する被 覆金属と、を備える酸ィ匕物超電導線材であって、この被覆金属の材料の応力 歪み 特性試験における破断点歪み率が特定の範囲内である、超電導線材である。
[0062] ここで、上記の破断点歪み率は、 30%以上であることが好ましぐ特に 45%以上で あることがより好ましい。また、この破断点歪み率は、 58%以下であることが好ましい。 上記の本発明の超電導線材の製造方法の説明と同様の理由によるものである。
[0063] また、本発明に用いる被覆金属の材料の応力 歪み特性試験における最大点応 力は、 180MPa以上であることが好ましい。上記の本発明の超電導線材の製造方法 の説明と同様の理由によるものである。
[0064] さらに、本発明に用いる被覆金属として、上記の特性を有する材料を用いることは、 本発明の超電導線材の酸化物超電導体の占有率が 30%以上の場合により効果的 である。より詳細には、上記の特性を有する材料を用いることが好適な超電導線材ぉ よび超電導多芯線中の酸化物超電導体の占有率は、 30%以上であることが好まし い。上記の本発明の超電導線材の製造方法の説明と同様の理由によるものである。
[0065] そして、本発明に用いる被覆金属の材料は、 Ag、 Cu、 Fe、 Ni、 Cr、 Ti、 Mo、 W、 Pt、 Pd、 Rh、 Ir、 Ru、 Osからなる群より選択される 1種以上の金属および Zまたはこ れらの金属をベースとする合金を用いることが好ましい。これらの中でも、酸化物超電 導体との反応性や加工性の面からは、銀および Zまたは銀合金を用いることが特に 好ましい。上記の本発明の超電導線材の製造方法の説明と同様の理由によるもので ある。
[0066] また、本発明に用いる酸化物超電導体の材料は、ビスマス系酸化物超電導体を含 むことが好ましい。たとえば、上記の本発明の超電導線材の製造方法の説明と同様 に、 Bi O、 PbO、 SrCO、 CaCO、 CuOの粉末を含む混合原料粉末などから得ら
2 3 3 3
れるビスマス系酸化物超電導体を含むことが好ま ヽ。本発明の超電導線材の製造 方法などの適切な製造方法により製造されれば、最終的に 77K以上の高温の臨界 温度を持ち得る超電導相が得られるからである。
[0067] <超電導多芯線 >
本発明の超電導多芯線は、複数の上記の超電導線材と、この超電導線材を被覆 する第 2被覆金属と、を備える、超電導多芯線である。ここで、本発明の超電導多芯 線は、テープ状の形状を有することが好ましい。上記の本発明の超電導多芯線の製 造方法の説明と同様の理由によるものである。
[0068] また、本発明の超電導多芯線に用いる、被覆金属および酸化物超電導体の特性 は、上記の本発明の超電導線材に用いる被覆金属および酸化物超電導体と同様で あることが好ましい。上記の本発明の超電導線材の説明と同様の理由によるものであ る。
[0069] 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定され るものではない。
[0070] (実施例 1) まず、 Bi O、 PbO、 SrCO、 CaCO、 CuOの各粉末を 1. 8 : 0. 3 : 1. 9 : 2. 0 : 3.
2 3 3 3
0の割合で混合した。次いで、混合粉末を大気中にて 700°C X 8時間、 800°C X 10 時間、 840°C X 8時間の熱処理を順次行った。各熱処理後にはそれぞれ粉砕を行つ た。
[0071] この原料粉末を外径 36mm、内径 33. 5mm、長さ 1000mm、酸素含有量 50ppm 、炭素含有量 20ppm、銀純度 4Nの銀パイプに挿入して、これを直径 3. 7mmまで 伸線してクラッド線を作製した。このクラッド線を 55本束ねて六角形となるように配置 し、外径 36mm、内径 28mm、長さ 1000mmの銀合金パイプに挿入して、これを直 径 1. 6mmまで伸線して多芯線を得た。さらに、この多芯線を圧延(一次圧延)し、テ ープ状の多芯線に加工した。
[0072] そして、得られたテープ状の多芯線に大気雰囲気にて 840°C— 850°C X 50時間 の一次熱処理を施した。一次熱処理後のテープ状の多芯線を幅 4. Omm,厚さ 0. 2 mmになるように再圧延(二次圧延)した。次いで、再圧延後のテープ状の多芯線に 大気雰囲気にて 840°C— 850°C X 50時間一 150時間の二次熱処理を施して、超電 導多芯線を得た。続いて、得られた超電導多芯線の製造工程中に生じた伸線加工 割れ発生数を目視にて確認した。伸線加工割れ発生数の結果を表 1に示す。
[0073] [表 1]
Figure imgf000016_0001
[0074] (実施例 2— 5および比較例 1一 5)
実施例 2— 5および比較例 1一 5においては、上記の表 1に示す特性を有する被覆 金属を用いて、酸化物超電導体の占有率が上記の表 1に示す割合になるようにした 点を除いては、実施例 1と同様にして、超電導多芯線を得た。
[0075] <銀および Zまたは銀合金パイプの応力 歪み特性試験の方法 >
上記の実施例 1一 5および比較例 1一 5で用 、た銀および Zまたは銀合金パイプの 応力 歪み特性試験は、引張試験機を用いて、試験速度: 3mmZmin、掴み具間 距離: 110mmの条件にて行い、それぞれの銀および Zまたは銀合金パイプについ て破断点歪み率 (%)と最大点応力(MPa)とを求めた。破断点歪み率 (%)と最大点 応力(MPa)との測定結果を表 1に示す。
[0076] なお、図 3は、本発明の実施例および比較例に用いた銀および Zまたは銀合金パ イブの応力 -歪み特性試験の様子を示す写真図である。
[0077] 上記の結果力 分力るように、破断点歪み率が 30%未満の銀および Zまたは銀合 金パイプを用いた比較例 1一 5の超電導多芯線では、その製造工程において多くの 伸線加工割れが発生した。一方、破断点歪み率が 30%以上の銀および Zまたは銀 合金パイプを用いた実施例 1一 5の超電導多芯線では、その製造工程において全く 伸線加工割れが発生しな力つた。
[0078] よって、実施例 1一 5の超電導多芯線は、被覆金属材料の破断点歪み率が大きい ため、製造工程中における伸線カ卩ェ割れが発生しにくい点において、比較例 1一 5 の超電導多芯線よりも優れた超電導多芯線であることがわ力つた。
[0079] (実施例 6— 10)
実施例 1では、銀純度 4N (99. 99%)の銀パイプを使用した。銀純度 4Nの銀パイ プの不純物濃度は、 lOOppmに相当する。本実施例では、被覆金属の不純物濃度 と加工割れとの相関を調査するために、不純物濃度が、 5ppm (実施例 6)、 10ppm ( 実施例 7)、 50ppm (実施例 8)、 500ppm (実施例 9)と lOOOppm (実施例 10)である 銀パイプを使用し、他の条件は実施例 1と同様にして、超電導多芯線を製造した。な お、不純物は、 Al、 Fe、 Cu、 Ni、 Siと Znなどであった。
[0080] 製造工程中に発生した伸線加工割れを目視により確認すると、不純物濃度が、 5p pm (実施例 6)と lOOOppm (実施例 10)であるときに、加工割れが発生した。これら の結果と、銀パイプの不純物濃度が lOOppmであった実施例 1の結果とを併せて考 慮すると、不純物濃度も加工割れ発生のパロメータであり、不純物濃度を管理するこ とにより、加工割れ発生の頻度を低減できること、また、被覆金属は不純物濃度が 10 ppm— 500ppmである銀が好ましいことがわかった。
[0081] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。

Claims

請求の範囲
[I] 酸化物超電導体と、前記酸化物超電導体を被覆する被覆金属と、を備える酸化物 超電導線材であって、前記被覆金属の材料の応力 歪み特性試験における破断点 歪み率が 30%以上である、超電導線材。
[2] 前記破断点歪み率が 30%— 58%の範囲内である、請求の範囲第 1項に記載の超 電導線材。
[3] 前記破断点歪み率が 45%— 58%の範囲内である、請求の範囲第 1項に記載の超 電導線材。
[4] 前記酸ィ匕物超電導体の占有率が 25%— 70%の範囲内である、請求の範囲第 1項 に記載の超電導線材。
[5] 前記被覆金属の材料の応力 歪み特性試験における最大点応力が 180MPa以上 である、請求の範囲第 1項に記載の超電導線材。
[6] 前記被覆金属の材料は、銀および Zまたは銀合金を含む、請求の範囲第 1項に記 載の超電導線材。
[7] 前記酸化物超電導体の材料は、ビスマス系酸化物超電導体を含む、請求の範囲 第 1項に記載の超電導線材。
[8] 前記被覆金属の材料は、不純物濃度が lOppm— 500ppmの銀である、請求の範 囲第 1項に記載の超電導線材。
[9] 請求の範囲第 1項に記載の複数の超電導線材と、該超電導線材を被覆する第 2被 覆金属と、を備える、超電導多芯線。
[10] テープ状の形状を有する、請求の範囲第 9項に記載の超電導多芯線。
[II] 酸化物超電導体の材料となる材料を含む原料粉末を、応力 歪み特性試験におけ る破断点歪み率が 30%— 58%の範囲内である被覆金属材料力もなる金属筒に充 填するステップ (S 101)と、
前記原料粉末を充填された前記金属筒に 1回以上の塑性加工および熱処理を施 すステップ(S 103)と、
を備える、超電導線材の製造方法。
[12] 前記被覆金属の材料は、不純物濃度が lOppm— 500ppmの銀である、請求の範 囲第 11項に記載の超電導線材の製造方法。
[13] 酸化物超電導体の材料となる材料を含む原料粉末を、応力 -歪み特性試験におけ る破断点歪み率が 30%— 58%の範囲内である被覆金属材料力もなる金属筒に充 填するステップ (S201)と、
前記原料粉末を充填された前記金属筒に 1回以上の塑性加工を施して線材を得る ステップ(S203)と、
複数の前記線材を、第 2被覆金属材料となる金属筒に充填するステップ (S205)と 前記複数の前記線材を充填された前記金属筒に 1回以上の塑性加工および熱処 理を施して超電導多芯線を得るステップ(S207)と、
を備える、超電導多芯線の製造方法。
[14] 前記被覆金属の材料は、不純物濃度が lOppm— 500ppmの銀である、請求の範 囲第 13項に記載の超電導多芯線の製造方法。
PCT/JP2004/015905 2003-11-21 2004-10-27 超電導線材、それを用いる超電導多芯線およびそれらの製造方法 WO2005050674A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04793017A EP1686594A4 (en) 2003-11-21 2004-10-27 SUPERCONDUCTING WIRE MATERIAL, MULTICONDUCTIVE SUPERCONDUCTING WIRE USING THE SAME, AND PROCESS FOR THE PRODUCTION THEREOF
HK06109809.6A HK1089549B (en) 2003-11-21 2004-10-27 Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same
JP2005515568A JPWO2005050674A1 (ja) 2003-11-21 2004-10-27 超電導線材、それを用いる超電導多芯線およびそれらの製造方法
CA002522049A CA2522049A1 (en) 2003-11-21 2004-10-27 Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same
US10/553,171 US20070184984A2 (en) 2003-11-21 2005-10-17 Superconducting wire, superconducting mutifilamentary wire using the superconducting wire, and method of manufacturing the same
NO20062882A NO20062882L (no) 2003-11-21 2006-06-20 Superledende elektrisk ledning, saerlig flerleder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-392406 2003-11-21
JP2003392406 2003-11-21

Publications (1)

Publication Number Publication Date
WO2005050674A1 true WO2005050674A1 (ja) 2005-06-02

Family

ID=34616447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015905 WO2005050674A1 (ja) 2003-11-21 2004-10-27 超電導線材、それを用いる超電導多芯線およびそれらの製造方法

Country Status (9)

Country Link
US (1) US20070184984A2 (ja)
EP (1) EP1686594A4 (ja)
JP (1) JPWO2005050674A1 (ja)
KR (1) KR20060103509A (ja)
CN (1) CN100477019C (ja)
CA (1) CA2522049A1 (ja)
NO (1) NO20062882L (ja)
RU (1) RU2324246C2 (ja)
WO (1) WO2005050674A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516291C1 (ru) * 2012-09-17 2014-05-20 Открытое акционерное общество "Энергетический институт им. Г.М. Кржижановского" ОАО "ЭНИН" Сверхпроводящий многожильный ленточный провод для переменных и постоянных токов
JP7491780B2 (ja) 2020-09-01 2024-05-28 株式会社日立製作所 永久電流スイッチ用の超伝導線材、その製造方法および超伝導磁石装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2390064C1 (ru) * 2009-05-14 2010-05-20 Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") Сверхпроводящий многожильный провод для переменных и постоянных токов

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452337A (en) * 1987-08-21 1989-02-28 Mitsubishi Cable Ind Ltd Manufacture of superconductive wire
JPH08171822A (ja) * 1994-10-17 1996-07-02 Sumitomo Electric Ind Ltd 酸化物超電導線材およびその製造方法
JPH09115354A (ja) * 1995-10-20 1997-05-02 Hitachi Cable Ltd 酸化物超電導複合材及びその製造方法
JPH11111081A (ja) * 1997-09-30 1999-04-23 Kobe Steel Ltd 酸化物超電導線材
JP2000036221A (ja) * 1998-05-12 2000-02-02 Chubu Electric Power Co Inc 酸化物超電導圧縮成型導体およびその製造方法
JP2000222956A (ja) * 1999-02-03 2000-08-11 Sumitomo Electric Ind Ltd 酸化物多芯超電導線材の製造方法
JP2002528848A (ja) * 1998-02-10 2002-09-03 アメリカン スーパーコンダクター コーポレイション 高いシース抵抗率を有する超電導複合体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411959A (en) * 1981-08-17 1983-10-25 Westinghouse Electric Corp. Submicron-particle ductile superconductor
SU1590051A3 (ru) * 1987-05-20 1990-08-30 Кабельметал Электро Гмбх (Фирма) Способ изготовлени длинномерного сверхпроводника
RU2031463C1 (ru) * 1990-11-27 1995-03-20 Институт машиноведения Уральского отделения РАН Способ изготовления сверхпроводящей жилы
JP3253440B2 (ja) * 1993-12-28 2002-02-04 住友電気工業株式会社 酸化物超電導線材およびコイル
EP0756336A1 (en) * 1995-07-28 1997-01-29 American Superconductor Corporation Cryogenic deformation of high temperature superconductive composite structures
US6469253B1 (en) * 1995-10-17 2002-10-22 Sumitomo Electric Industries, Ltd Oxide superconducting wire with stabilizing metal have none noble component
US6294738B1 (en) * 1997-03-31 2001-09-25 American Superconductor Corporation Silver and silver alloy articles
US6370405B1 (en) * 1997-07-29 2002-04-09 American Superconductor Corporation Fine uniform filament superconductors
GB9805641D0 (en) * 1998-03-18 1998-05-13 Metal Manufactures Ltd Superconducting tapes
US6448501B1 (en) * 1998-03-30 2002-09-10 Mcintyre Peter M. Armored spring-core superconducting cable and method of construction
DE19933954A1 (de) * 1998-08-03 2000-02-10 Siemens Ag Verfahren zur Herstellung eines bandförmigen Multifilamentsupraleiters mit Bi-Cuprat-Leiterfilamenten sowie entsprechend hergestellter Supraleiter
JP4622020B2 (ja) * 1999-02-26 2011-02-02 住友電気工業株式会社 絶縁被膜を有する酸化物超電導線材およびその製造方法
US6339047B1 (en) * 2000-01-20 2002-01-15 American Semiconductor Corp. Composites having high wettability
JP4016601B2 (ja) * 2000-07-14 2007-12-05 住友電気工業株式会社 酸化物超電導線材の製造方法とその製造方法に用いられる加圧熱処理装置
US20030032560A1 (en) * 2000-09-15 2003-02-13 Alexander Otto Superconducting article having low AC loss

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452337A (en) * 1987-08-21 1989-02-28 Mitsubishi Cable Ind Ltd Manufacture of superconductive wire
JPH08171822A (ja) * 1994-10-17 1996-07-02 Sumitomo Electric Ind Ltd 酸化物超電導線材およびその製造方法
JPH09115354A (ja) * 1995-10-20 1997-05-02 Hitachi Cable Ltd 酸化物超電導複合材及びその製造方法
JPH11111081A (ja) * 1997-09-30 1999-04-23 Kobe Steel Ltd 酸化物超電導線材
JP2002528848A (ja) * 1998-02-10 2002-09-03 アメリカン スーパーコンダクター コーポレイション 高いシース抵抗率を有する超電導複合体
JP2000036221A (ja) * 1998-05-12 2000-02-02 Chubu Electric Power Co Inc 酸化物超電導圧縮成型導体およびその製造方法
JP2000222956A (ja) * 1999-02-03 2000-08-11 Sumitomo Electric Ind Ltd 酸化物多芯超電導線材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1686594A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516291C1 (ru) * 2012-09-17 2014-05-20 Открытое акционерное общество "Энергетический институт им. Г.М. Кржижановского" ОАО "ЭНИН" Сверхпроводящий многожильный ленточный провод для переменных и постоянных токов
JP7491780B2 (ja) 2020-09-01 2024-05-28 株式会社日立製作所 永久電流スイッチ用の超伝導線材、その製造方法および超伝導磁石装置

Also Published As

Publication number Publication date
US20070184984A2 (en) 2007-08-09
JPWO2005050674A1 (ja) 2007-12-06
EP1686594A4 (en) 2010-11-24
RU2006121975A (ru) 2007-12-27
CN1806298A (zh) 2006-07-19
US20060264331A1 (en) 2006-11-23
HK1089549A1 (zh) 2006-12-01
CN100477019C (zh) 2009-04-08
NO20062882L (no) 2006-06-20
EP1686594A1 (en) 2006-08-02
CA2522049A1 (en) 2005-06-02
KR20060103509A (ko) 2006-10-02
RU2324246C2 (ru) 2008-05-10

Similar Documents

Publication Publication Date Title
Haldar et al. Processing high critical current density Bi-2223 wires and tapes
RU2316837C2 (ru) Способ изготовления сверхпроводящего провода, способ модифицирования оксидного сверхпроводящего провода и оксидный сверхпроводящий провод
NZ310093A (en) Simplified deformation-sintering process for oxide superconducting articles
WO2005050674A1 (ja) 超電導線材、それを用いる超電導多芯線およびそれらの製造方法
CN100421187C (zh) 铋基氧化物超导线材及其制备方法
JP4038813B2 (ja) 超電導線材の製造方法
KR20070120497A (ko) 초전도 선재의 제조 방법
WO1997028557A2 (en) Superconducting wires for magnet applications
US5914297A (en) Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
JP4011358B2 (ja) 超電導線材の製造方法
JP3051867B2 (ja) 酸化物超電導線材の製造方法
JP3848449B2 (ja) 酸化物超電導線の製造方法
JP4016324B2 (ja) 超電導線材の製造方法
JPH08171822A (ja) 酸化物超電導線材およびその製造方法
JP2005158343A (ja) 超電導線材、それを用いる超電導多芯線およびそれらの製造方法
US20020111277A1 (en) Oxide superconductor composite having smooth filament-matrix interface
JP4720211B2 (ja) ビスマス系酸化物超電導線材の製造方法
AU1650500A (en) Method of producing superconducting tapes
JP2599138B2 (ja) 酸化物系超電導線の製造方法
AU742588B2 (en) Cryogenic deformation of ceramic superconductors
HK1089549B (en) Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same
Dou High Tc conductor processing techniques
Podtburg Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites
JPH09115354A (ja) 酸化物超電導複合材及びその製造方法
JPH10134651A (ja) 酸化物超電導複合材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2522049

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006264331

Country of ref document: US

Ref document number: 10553171

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005515568

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004793017

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048166800

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067009662

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006121975

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004793017

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009662

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10553171

Country of ref document: US