WO2005041818A2 - Artificial disc device - Google Patents
Artificial disc device Download PDFInfo
- Publication number
- WO2005041818A2 WO2005041818A2 PCT/US2004/035004 US2004035004W WO2005041818A2 WO 2005041818 A2 WO2005041818 A2 WO 2005041818A2 US 2004035004 W US2004035004 W US 2004035004W WO 2005041818 A2 WO2005041818 A2 WO 2005041818A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ofthe
- annulus
- implant
- shell
- disc
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 47
- 239000007943 implant Substances 0.000 claims description 324
- 125000006850 spacer group Chemical group 0.000 claims description 176
- 238000003780 insertion Methods 0.000 claims description 113
- 230000037431 insertion Effects 0.000 claims description 113
- 239000000463 material Substances 0.000 claims description 48
- 230000033001 locomotion Effects 0.000 claims description 36
- 238000002513 implantation Methods 0.000 claims description 23
- 230000009969 flowable effect Effects 0.000 claims description 7
- 238000004513 sizing Methods 0.000 claims 1
- 230000000717 retained effect Effects 0.000 abstract description 4
- 241000237983 Trochidae Species 0.000 description 41
- 238000005452 bending Methods 0.000 description 17
- 230000013011 mating Effects 0.000 description 17
- 238000001356 surgical procedure Methods 0.000 description 17
- 230000036961 partial effect Effects 0.000 description 12
- 208000002193 Pain Diseases 0.000 description 9
- 230000006378 damage Effects 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 210000000988 bone and bone Anatomy 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000035939 shock Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 230000003278 mimic effect Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 206010061246 Intervertebral disc degeneration Diseases 0.000 description 3
- 238000011882 arthroplasty Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000001045 lordotic effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011824 nuclear material Substances 0.000 description 3
- 230000000399 orthopedic effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 210000000278 spinal cord Anatomy 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 208000008930 Low Back Pain Diseases 0.000 description 2
- 208000004550 Postoperative Pain Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 208000034347 Faecal incontinence Diseases 0.000 description 1
- 208000003618 Intervertebral Disc Displacement Diseases 0.000 description 1
- 206010050296 Intervertebral disc protrusion Diseases 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000008765 Sciatica Diseases 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4684—Trial or dummy prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4603—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2/4611—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30721—Accessories
- A61F2/30742—Bellows or hose-like seals; Sealing membranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30965—Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/48—Operating or control means, e.g. from outside the body, control of sphincters
- A61F2/484—Fluid means, i.e. hydraulic or pneumatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
- A61F2002/30014—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
- A61F2002/30016—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/3008—Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30113—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30113—Rounded shapes, e.g. with rounded corners circular
- A61F2002/30121—Rounded shapes, e.g. with rounded corners circular with lobes
- A61F2002/30123—Rounded shapes, e.g. with rounded corners circular with lobes with two diametrically opposed lobes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30125—Rounded shapes, e.g. with rounded corners elliptical or oval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30133—Rounded shapes, e.g. with rounded corners kidney-shaped or bean-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30138—Convex polygonal shapes
- A61F2002/30158—Convex polygonal shapes trapezoidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/302—Three-dimensional shapes toroidal, e.g. rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30224—Three-dimensional shapes cylindrical
- A61F2002/3023—Three-dimensional shapes cylindrical wedge-shaped cylinders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30242—Three-dimensional shapes spherical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30242—Three-dimensional shapes spherical
- A61F2002/30245—Partial spheres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30299—Three-dimensional shapes umbrella-shaped or mushroom-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30317—The prosthesis having different structural features at different locations within the same prosthesis
- A61F2002/30327—The prosthesis having different structural features at different locations within the same prosthesis differing in diameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/30369—Limited lateral translation of the protrusion within a larger recess
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30383—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
- A61F2002/30387—Dovetail connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30383—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
- A61F2002/3039—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove with possibility of relative movement of the rib within the groove
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30428—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by inserting a protrusion into a slot
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30448—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30462—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30471—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30485—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism plastically deformable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/305—Snap connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30507—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30518—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
- A61F2002/3052—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts unrestrained in only one direction, e.g. moving unidirectionally
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30518—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
- A61F2002/30528—Means for limiting said movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30537—Special structural features of bone or joint prostheses not otherwise provided for adjustable
- A61F2002/30538—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30537—Special structural features of bone or joint prostheses not otherwise provided for adjustable
- A61F2002/30538—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation
- A61F2002/3054—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation about a connection axis or implantation axis for selecting any one of a plurality of radial orientations between two modular parts, e.g. Morse taper connections, at discrete positions, angular positions or continuous positions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30537—Special structural features of bone or joint prostheses not otherwise provided for adjustable
- A61F2002/3055—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30537—Special structural features of bone or joint prostheses not otherwise provided for adjustable
- A61F2002/30556—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting thickness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30563—Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30565—Special structural features of bone or joint prostheses not otherwise provided for having spring elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30574—Special structural features of bone or joint prostheses not otherwise provided for with an integral complete or partial collar or flange
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30581—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30581—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
- A61F2002/30583—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid filled with hardenable fluid, e.g. curable in-situ
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30581—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
- A61F2002/30586—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid having two or more inflatable pockets or chambers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30581—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
- A61F2002/30588—Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid filled with solid particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
- A61F2002/30616—Sets comprising a plurality of prosthetic parts of different sizes or orientations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
- A61F2002/30662—Ball-and-socket joints with rotation-limiting means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30673—Lubricating means, e.g. synovial pocket
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30682—Means for preventing migration of particles released by the joint, e.g. wear debris or cement particles
- A61F2002/30685—Means for reducing or preventing the generation of wear particulates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30721—Accessories
- A61F2/30734—Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
- A61F2002/30738—Sleeves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30772—Apertures or holes, e.g. of circular cross section
- A61F2002/30784—Plurality of holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30841—Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30907—Nets or sleeves applied to surface of prostheses or in cement
- A61F2002/30919—Sleeves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30934—Special articulating surfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30934—Special articulating surfaces
- A61F2002/30935—Concave articulating surface composed of a central conforming area surrounded by a peripheral annular non-conforming area
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
- A61F2002/443—Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2002/444—Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4603—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2002/4625—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
- A61F2002/4627—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4603—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2002/4625—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
- A61F2002/4628—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about an axis transverse to the instrument axis or to the implantation direction, e.g. clamping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2002/4681—Special tools for implanting artificial joints by applying mechanical shocks, e.g. by hammering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0085—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof hardenable in situ, e.g. epoxy resins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/005—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0075—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0091—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0008—Rounded shapes, e.g. with rounded corners elliptical or oval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0015—Kidney-shaped, e.g. bean-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0017—Angular shapes
- A61F2230/0026—Angular shapes trapezoidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0065—Three-dimensional shapes toroidal, e.g. ring-shaped, doughnut-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0071—Three-dimensional shapes spherical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0093—Umbrella-shaped, e.g. mushroom-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0004—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
- A61F2250/0006—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting angular orientation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0004—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
- A61F2250/0009—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting thickness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0018—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0019—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0039—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00017—Iron- or Fe-based alloys, e.g. stainless steel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00203—Ceramics or ceramic-like structures based on metal oxides containing alumina or aluminium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00239—Ceramics or ceramic-like structures based on metal oxides containing zirconia or zirconium oxide ZrO2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00574—Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
Definitions
- the invention relates to artificial intervertebral implants and, in particular, to a multiple piece implant that permits relative articulation and/or translation of the multiple pieces.
- Damage to or degeneration of a spinal disc can result from a number of factors such as abuse or age.
- the disc itself is composed primarily of an annulus and a nucleus contained therein.
- the annulus is a fibrous annular piece that attaches to the adjacent vertebrae and contains the nucleus, which is in turn a gel-like viscous material capable of shock absorption and flowable to permit poly-axial rotation and resilient compression of the vertebrae and spine.
- disc degeneration results from damage occurring to the annulus such that the flowable nucleus material may leak or seep out of the annulus.
- Disc degeneration also can occur in other ways, such as by being deprived of nutrient flow leading to a dried and susceptible to damage disc. Because the nuclear material is flowable, extensive damage to the annulus is not necessary for leakage to occur.
- disc arthroplasty for restoring or reconstructing the disc using aprosthesis to replace a portion or entirety of the damaged disc.
- the primary objective of disc arthroplasty is to restore or maintain the normal disc anatomy and functions, while addressing and treating the causes of the pain.
- prosthetic disc implants due to the complexity of the natural disc structure and biomechanical properties of a natural spinal disc.
- the term natural refers to normal tissue including portions of the spine and the disc.
- TDP total disc prosthesis
- the other type is a disc nucleus prosthesis, or DNP, that is used to replace only the nucleus of a spinal disc after a nucleotomy while retaining the annulus of the disc and, possibly, the end plates intact.
- DNP disc nucleus prosthesis
- failure of the natural disc does not require extensive damage to the annulus, and the annulus would often be capable of retaining a non- flowing prosthetic nucleus.
- Implantation of an DNP involves clearing of the natural nucleus from the annulus through the procedure known as nucleotomy, and inserting the DNP within the annulus. Accordingly, disc nuclear prostheses (DNPs) are typically smaller and require less extensive surgery than TDPs do.
- implant extrusion defined as the tendencies for an implant not to remain seated, and for the implant to back out of its intended seat.
- many designs for disc implants attempt to secure to the end plates of the vertebrae by providing securement features on the implant.
- the securement features are usually a system of prongs or spikes or other physical protrusions designed to embed in the vertebrae. This, alone, violates the integrity of the end plates to a degree where revision surgery is limited, possibly to spinal fusion for immobilizing the spinal segment and fusing the vertebrae with posterior pedicle instrumentation.
- Violation of the vertebrae by the securement may cause bleeding, or calcification of the end plate, either of which can result in pain, loss of mobility, necrosis, or deterioration of any implant device.
- stress concentrations may result due to contour mismatch, such as occur with the above-described implant ball.
- positioning of the implant, particularly an implant which utilizes such protrusions must be performed carefully.
- the implant will often have top and bottom plates that cover respective vertebra and often have securement features found on the plates to fix the plates to the vertebrae. In this manner, the stress or forces are distributed thereacross.
- vertebrae must be sufficiently distracted for the effective size of the implant including the top and bottom plates, which can be significantly increased when fastening protrusions are included.
- This requires greater invasiveness, which complicates surgery and leads to greater time for recovery and post-surgical pain.
- this often destroys any remaining utility for the annulus as a large incision must be made, in the event it is even retained.
- the annulus does not heal well and suturing the annulus is difficult due to its tissue properties, the ability of the annulus to retain the implant is diminished if not eliminated, and implant extrusion often is not prevented by the annulus.
- Some implants that are inserted as a whole utilize a bladder or balloon-like structure. These implants may be inserted in a collapsed state, and then inflated once in situ. However, these implants typically rely on a structure that is entirely resiliently deformable. Therefore, these implants typically are limited to providing shock absorption, while not providing range of motion with high-cyclic loading or sufficient support.
- spinal disc procedures require an anterio-lateral approach to the surgical site. More specifically, spinal disc implants typically have a size roughly that of the natural spinal disc. In order to evacuate the disc space and implant the prosthetic device, space is required. Because of the geometry and structure of a vertebra, a natural disc, and an artificial disc implant, posterior surgical procedures do not typically permit the access required for evacuation of the disc space and implantation of the prosthetic device. Furthermore, for an anterior-lateral approach to the surgical site, a general surgeon's service must be employed, typically in conjunction with an orthopedic surgeon or neurosurgeon, or both. Therefore, an implant device that may be implanted in multiple surgical approaches is desirable.
- DNP replaces only part of the disc.
- Implantation of most DNPs with pre-formed dimensions requires a 5-6mm, or larger, incision in the annulus for implantation.
- Some DNPs, such as those utilizing in situ curable polymers, may be performed percutaneously.
- implantation of a DNP requires minimal disc tissue resection, and can avoid violating the end plates of the vertebrae for securing.
- recovery and post-surgical pain are minimal due to the minimal invasiveness of the procedure, and interbody fusion remains a viable revision surgery,
- the implant device for replacing a nucleus removed by a nucleotomy.
- the implant may include at least a first shell or plate member, a second shell or plate member, and a bearing member providing at least one direction of movement between the two shells, and preferably being a polyaxial articulating bearing member.
- the articulating bearing member provides for the natural movement of the spine including flexion/extension, lateral bending, and rotation.
- Each of the plate members and the articulating bearing member are generally formed to be rigid. Therefore, the implant is capable of supporting the compressive and cyclic loads required of a natural disc.
- the implant may also provide for relative sliding and/or translation between the shells and the articulating bearing member.
- the surfaces between the shells and the articulating bearing member are able to slide relative to each other.
- the bend of the spine in one direction forces the fluid in an opposite direction.
- the shells of the implant rotate relatively in a particular manner due to bending forces on the implant.
- the shells need not rotate around a fixed pivot point.
- the articulating bearing member permits the components of the implant to shift relative to each other.
- some forms of the implant allow a center insert or spacer member that may shift away or by sliding and/or translating from the direction of bending to more closely mimic the behavior of a natural disc, as will be discussed below.
- One aspect of the present invention is providing a polyaxial articulating device utilizing a concave recess and a dome member formed between the shells.
- the dome member and recess form an articulating bearing member permitting polyaxial movement of the shells relative to each other, and the dome surface and recess may slide or translate relative tp each other.
- the stiffness of the polyaxial rotation of the articulating bearing member maybe controlled and varied.
- the respective radii of curvature for, and hence the fit between, the recess and dome surface may be varied to produce a different stiffness.
- the stiffness is lowered.
- the radius of curvature of the recess is lower than that of the dome surface, there is a more restricted condition, and the stiffness is increased.
- the outer surfaces of the implant that contact the end plates of adjacent vertebrae may be provided with a convexity selected according to the natural, overall concavity of the end plate.
- a convexity of the outer surfaces of the implant match the concavity of the end plate, forces will be generally evenly distributed across the end plate and high stress points are avoided.
- the construction of the implant then, avoids bone subsidence issues and the integrity of the end plates is maintained. If revision surgery is necessary, this permits the surgery to employ arange of desired methods.
- the convexity of the outer surfaces of the implant may be slightly
- the bone of the end plate is slightly elastically deformable. A slight mismatch between the outer surfaces and the end plate allows residual stresses to develop between the outer periphery of the outer surface shell and the end plate, stresses which serve to hold the generally convex outer surface of the implant in proper position. Any such alteration should be restricted to the degree that bone subsidence does not occur.
- the implant has a generally oval or racetrack shape.
- a natural disc and nucleus are kidney-shaped, having a smaller dimension in the anterior-posterior direction than in the lateral direction. Therefore, the space provided by the removal of the nucleus has a similar shape.
- the kidney-shape may or may not be replicated, implant performance has been found herein to benefit from having a wider lateral dimension than anterior-posterior dimension, such as a generally oval, racetrack, or trapezoidal shape, for the shells.
- an embodiment of the invention includes a post for gripping, inserting, and rotating one or more of the shells.
- the post may have a flat portion and a round portion so that a tool may grip the post in a first position such that the post may not rotate relative to the tool during insertion.
- the tool may partially release the post so that the tool no longer abuts the flat, and the post may rotate relative to the tool without being fully released. The tool may then direct the rotation of the shell within the nuclear space.
- the shells of the implant do not necessarily replicate the shape of the natural nucleus, i the event the shape of the implant may not match that of the natural nucleus, the outer periphery of the implant may engage and stretch portions of the annulus, thereby providing tension to those portions of the annulus.
- an outer curtain or sheath in the form of, for instance, a pleated bellows may be provided spanning between and generally sealing the compartment between the shells.
- the bellows may then be injected with a material, such as gas or liquid, such that the bellows or curtain distends to apply pressure on the interior of the annulus. Additionally, the injected material may expand slightly in situ the nucleus implant.
- the bellows prevents foreign material from entering the implant device which otherwise may hinder or deteriorate the performance of the implant, particularly the articulating bearing member.
- the shells include a short wall extending towards the opposing shells that physically abut when the 15° bend is reached.
- a spacer member may be an annular ring extending from its periphery and between the shells such that the shells contact the ring when the 15° angle is reached, hi another form, the shells may be provided secured together by a cable that connects the shells to prevents the shells from bending beyond 15° and to prevent the spacer member from escaping from between the shells.
- each shell may provide for rotational, sliding, or translational movement, and an insert or spacer member may be located between the two shells and may have two surfaces moving against the respective shells. It is believed multiple wear surfaces interfacing increases the life expectancy of the implant with respect to wear, hi some forms, each shell may have a concave recess, and the spacer has two dome surface portions, each facing a respective shell, and forms an articulating bearing member with each concave recess.
- the spacer member may have a dome surface on one side meeting a concave recess in a shell thereby providing for polyaxial rotation, translation, and sliding, and may have a flat on another side engaging a flat surface in a recess in a shell thereby providing for linear translation and planar rotation.
- a multi-piece implant where the pieces may be sequentially inserted through an incision in the annulus for assembly within the disc nucleus space.
- the incision need not provide space for the entire implant to be inserted, and the invasiveness of the procedure is minimized, which in turn diminishes post-surgical recovery and pain.
- any distraction of the adjacent vertebrae that need occur is minimized by inserting the implant in portions.
- the incision does not allow the entire implant to be inserted, the remaining integrity of the annulus may be utilized.
- the annulus may be used to retain the implant in place within the annulus and in the nucleus space. Therefore, protrusions for securing the implant to end plates of adjacent vertebrae are unnecessary to prevent the implant from escaping from between the vertebrae.
- each shell may include a concave recess and a double-domed spacer member.
- a dome surface for each of the recesses, the wear upon the surfaces therebetween is reduced, as described.
- the pieces are sequentially inserted in any order through the incision of the annulus, though it is preferred that the shells are inserted first to prevent injury to the end plates.
- the shells may include aligned ramps, or a similar structures, to the side of their respective concave recesses to allow the spacer member to be inserted therebetween.
- the members may be inserted, and then one or more may be rotated or translated so that the spacer member is prevented ⁇ from backing out through the incision in the annulus and/or to further expand the implant.
- This embodiment then provides for polyaxial movement and allows the shells each to slide and/or translate relative to the spacer member, and the spacer member may slide or translate away from the direction of bending. It should be noted that the maximum clearance provided by the incision in the annulus need be that required by the largest of the three pieces.
- a further form of the multi-piece implant includes a shell with a concave recess, as described above, a shell with steps or ramps rising towards its center, and a spacer member having one side stepped or ramped and the other side domed.
- the shells may be inserted through the incision in the annulus so that the stepped portion of the shell is facing the incision.
- the spacer member may be then forced between the shells such that the stepped spacer member cams up the steps of the stepped shell until the dome surface is received in the concave recess of the other shell.
- the stepped portion of the shell may include sidewalls to direct generally the path of the stepped spacer member.
- the sidewalls may be positioned so that the spacer member may slide or translate a short distance along the steps, while also preventing overtranslation.
- the steps of the shell extend from a lateral side of the shell, ha one form, the stepped shell is rotated after expansion, while in another the stepped shell may be rotated and then the implant is expanded.
- a multi-piece implant device where the entire implant is inserted through an incision in the annulus.
- the implant is inserted in a compressed or collapsed state as a unit and then expanded after implantation.
- the size of the incision in the annulus need only provide for the size of the unexpanded implant.
- the implant maybe inserted with an end having a shorter, lateral dimension leading first and then may be rotated once the trailing portion of the implant is inserted in the incision. Alternatively, rotation can begin before the implant is entirely inserted through the incision so that rotation occurs as the implant is being pushed through the incision.
- an implant with ahelically stepped spacer member that may be inserted in a collapsed state and then expanded is provided.
- the stepped spacer member allows the implant to be expanded step by step to the desired vertical height.
- At least one shell has a concave recess into which a dome surface of a spacer member is received.
- the spacer member has two opposing parts, one of which may be integral with a second shell or may have a dome surface received into a concave recess in the second shell.
- the opposing spacer member parts have helically oriented steps, and the spacer member and/or implant may be inserted or assembled within the nucleus space in a compressed or collapsed state or arrangement. Once implanted, the opposing parts of the spacer member may be rotated relative to each other such that the steps ratchet up, thereby expanding the spacer member to an expanded arrangement.
- Each dome surface and recess provide for polyaxial movement of the implant, translation, and arcuate sliding, as described above.
- a spacer member maybe provided with a member rotating
- the rotating member is turned to pull or push any wedges from a first, compressed position to a second, expanded arrangement.
- the wedges are forced between two portions of the spacer member to expand the spacer member and, therefore, to expand the implant.
- At least a portion of the spacer member has a dome surface that is received in a concave recess of a shell.
- the spacer member may include cam surfaces which cam against mating cam surfaces of another portion of the spacer member or of one of the shells.
- the cam surfaces may rotate relative to each other, thus camming the portions to expand, thereby expanding the implant.
- at least a portion of the spacer member has a dome surface that is received in a concave recess of a shell.
- the spacer member may form an internal cavity or cannister.
- the cavity may be formed by the spacer member and a portion integral with one shell such that the spacer member and shell expand relative to each other, thereby expanding the implant.
- the cavity may be formed by two portions of the spacer member that expand relative to each other, thereby expanding the implant.
- the cavity may be formed by two end pieces and a cylindrical wall of the spacer member such that the end pieces expand along the cylindrical wall to expand the implant, hi any of these embodiments, the spacer member may include an internal balloon for receiving an injected material so that the injected material is captured within the cavity.
- inj ected material may be forced into the cavity such that the portions of the cavity are sealed.
- Curable material may be used such that the expanded spacer member is rigid.
- the spacer member may be filled with an elastomeric or flowable material that provides some shock absorption.
- Various forms of the present invention may be implanted in an anterior, anterior- lateral, or a posterior surgical procedure.
- the size of each implant component or a collapsed implant may be such that each may be inserted with only a small incision in the annulus.
- the spinal structure permits the components or collapsed implant to be inserted through the posterior of the spine.
- a posterior approach to the surgical site reduces the invasiveness of the procedure, and may often be performed by a single orthopedic surgeon or neurosurgeon without a need for a general surgeon, and thus substantially decreases the cost and complexity of the procedure.
- an embodiment of the invention includes structures located on multiple portions of the implant for being gripped and manipulated by an inserter tool.
- the implant structure may include a recess and/or a post for being gripped by the inserter tool.
- the inserter tool may grip the implant in a predetermined insertion orientation such that rotation of the implant relative to the inserter tool is generally avoided.
- the grip of the inserter tool may be adjusted during the implantation procedure such that the implant may be rotated by the inserter tool within the nuclear space to an implanted position.
- the procedure may include inserting the implant with a minor dimension oriented to pass through the incision in the annulus, and the implanted position may include orienting a major dimension to extend at least partially along the incision in the annulus, such as at an oblique angle, to minimize likelihood of the implant backing out through the smaller incision.
- the implanted position may include orienting a major dimension to extend at least partially along the incision in the annulus, such as at an oblique angle, to minimize likelihood of the implant backing out through the smaller incision.
- the implant may be provided with structure to secure implant pieces in a particular orientation for implantation as a unit.
- the implant may be configured as a wedge to provide an insertion configuration to ease insertion of the implant into and through the annulus.
- a first implant piece may be provided with a recess and a second implant piece may be provided with a projection received within the recess such that the recess and projection are releasably connected with each other.
- the implant has an insertion configuration, and the insertion configuration may include having an insertion or leading end smaller than a trailing end.
- the first and second implant pieces are positioned as to form a wedge shape or angle for facilitating insertion into and through the annulus, as well as between the vertebrae and within the nuclear space.
- connection providing the insertion configuration may be released once
- the orientation providing the wedge shape for insertion may be a releasable connection which may include an interference fit between the connecting structures.
- the interference fit may be formed on a leading end and cooperate in the direction that the pivoting ends of the implant member shift when shifting toward and away from each other between the insertion and operable configurations.
- the releasable connection may be a snap-fit connection having a projection received within a recess to hold the members in a pre-determined general relative orientation during insertion, and until the force of insertion against the implant members by the vertebrae forces the projection and recess to release. Thus, the implant may be shifted from the insertion configuration to an operable configuration, particularly by release of the snap-fit connection.
- the releasable connection may be such as a dove-tail joint such that the projection is a dove-tail that is received within the recess having a complementary geometry.
- the dove-tail j oint maybe formed by snapping the dove-tail proj ection into the recess, to form a snap-fit, and also be provided by sliding the dove-tail projection into the recess through an opening at one end thereof such that the dove-tail projection has an interference fit with the recess and is released by snapping out thereof.
- first and second implant members may be provided with structure at the leading end that forms a catch such that the vertebrae contacting outer surfaces of the implant members act in fulcrum-like manner to release the catch to shift the implant members from the insertion configuration to the operable configuration.
- the catch may be formed by a proj ection from the first implant member that is received in a hook or barb on the second implant member.
- the proj ection maybe a tongue received in an opening angled from the plane of the members and generally so the tongue and opening form a butt-joint. Upon a threshold of force from insertion, the tongue slips and releases from the opening to shift the implant members from the insertion configuration to the operable configuration.
- a plurality of trial spacers may be provided for removable insertion such that one or more trial spacers may be sequentially inserted and removed until a proper fit is determined.
- the trial spacers may be shaped to parallel the shape of the implant in the operable configuration, and maybe shaped to facilitate insertion into and through the annulus.
- a trial spacer instrument may be provided.
- the trial spacer instrument may secure the trial spacer thereto so that the trial spacer is generally in a fixed orientation during insertion, while also adjusting the securement to the trial spacer so that the trial spacer may be rotated within the nuclear cavity in like manner to the implant.
- the trial spacer instrument may be adjustable and may be provided with a securable member, such as a screw-like member, for adjusting the securement of the trial spacer thereto, and a knob for securing that position.
- the trial spacer instrument may include a plurality of predetermined positions for the securement of the trial spacer.
- F IG. 1 is a first perspective view of a shell of an implant of an embodiment of the present invention
- FIG. 2 is a second perspective view of the shell of FlG. 1;
- FlG. 3 is a first perspective view of a shell including a dome surface
- FIG. 4 is a second perspective view of the shell of FIG. 3;
- FlG. 5 is a side elevational view of the shell of FlG. 3;
- FIG. 6 is a perspective view of an implant of an embodiment of the present invention.
- FlG. 7 is a top plan view of an implant with a spacer member in phantom
- FlG. 8 is a side elevational view of the implant of FlG. 7;
- FlG. 9 is a cross-sectional view of the implant of FiG. 7;
- FlG. 10 is a top plan view of a shell and an insertion implement in a locked
- FiG. 11 is a top plan view of the shell and the insertion implement of FiG. 10 in an
- FlG. 12 is a top plan view of the shell and the insertion implement of FiG. 10 in an unlocked position;
- FiG. 13 is a perspective view of the insertion implement of FIG. 10;
- FiG. 14 is a perspective view of an implant including a curtain
- FiG. 15 is a side elevation cross-sectional view of the implant of FiG. 14;
- FiG. 16 is a cross-sectional view of an implant with walls to restrict motion of the
- FlG. 17 is a perspective view of the implant of FIG. 17;
- FlG. 18 is a cross-sectional view of an implant with a spacer member having a peripheral structure for restricting motion of the shells in the anterior-posterior direction;
- FlG. 19 is a perspective view of the implant of FlG. 18;
- FIG. 20 is a perspective view of an implant having channels for a cable to restrict
- FlG. 21 is a top plan view of the implant of FIG. 20;
- FIG. 22 is a side elevational view of the implant of FlG. 20;
- FlG.23 is a perspective view ofan implant and a spacer member in partial phantom
- FIG. 24 is a cross-sectional view of the implant of FlG. 23;
- FIG. 25 is a top plan view of the implant of FIG. 23 in partial phantom
- FlG. 26 is a perspective view of an implant having a helical insert
- FlG. 27 is a perspective view of the helical insert of FlG. 26;
- FIG.28 is a perspective view ofan implant having a rotational member for directing wedges
- FIG. 29 is a cross-sectional view of the implant of FlG. 28;
- FIG. 30 is a top plan view of the implant of FIG. 28 in partial phantom
- FIG.31 is a partial phantom perspective view ofan implant with a camming spacer member
- FIG. 32 is a cross-sectional view of the implant of FIG. 31 ;
- FIG. 33 is a cross-sectional view of a first implant with an expandable cannister;
- FIG.34 is a cross-sectional view of a second implant with an expandable cannister;
- FIG.35 is a side elevational view ofan artificial disc device in accordance with the present invention showing upper and lower members releasably connected in an insertion configuration;
- FlG. 36 is a side elevational view similar to F IG. 36 except with the connection between the members released with the members in an operable configuration;
- FlG. 37 is a partial cross-sectional view corresponding to F IG. 35 showing the members connected in the insertion configuration and an inserter tool for implanting the artificial disc device;
- FlG. 38 is a partial cross-sectional view corresponding to F IG. 37 showing a grip member of the inserter tool extended relative to a grip shaft to grip the artificial disc device for implantation;
- FlG. 39 is a partial cross-sectional view corresponding to F IG. 38 showing the inserter tool secured to the artificial disc device for implantation with the grip member advanced to hold the lower member;
- FIG. 40 is a partial cross-sectional view taken through the line 40-40 of F IG. 39 showing a grip post of the upper member secured in a yoke grip;
- FIG. 41 is a top plan view of the lower member of the artificial disc device of FIGS. 35 and 36 showing a generally racetrack peripheral configuration and a recess at the leading edge of the lower member;
- FlG. 42 is a side elevational view of the lower member showing a dome bearing
- FlG. 43 is a fragmentary bottom plan view of the lower member showing the wall
- FlG. 44 is a bottom plan view of a grip member of the inserter tool secured to the lower member in the insertion orientation
- FiG.45 is a bottom plan view of the grip member and lower member corresponding to FiG.44 showing the lower member rotated relative to the grip member for positioning the lower member within the annulus;
- FiG. 46 is a top plan view of the upper member of the artificial disc device of FlGs.35 and 36 showing a generally racetrack peripheral configuration and a proj ection at the leading end of the upper member;
- FIG. 47 is a side elevational view of the upper member showing an arcuate recess and a grip post for securing with the inserter tool during implantation;
- FIG. 48 is a side elevational view of the upper member showing the dove-tail configuration of the projection of the trailing end of the upper member;
- FlG. 49 is a view of the artificial disc device secured to the inserter tool in the insertion configuration and a spinal section including an annulus of a spinal disc having an incision made therein;
- FIG. 50 is a partial cross-sectional view of the spinal section of FiG.49 showing the
- FIG. 51 is a partial cross-sectional view corresponding to F IG. 50 showing the members released and in the operable configuration in the nuclear space;
- FIG. 52 is a cross-sectional view taken along the line 52-52 of FiG. 51 showing the
- FIG. 53 is a side elevational view of the inserter tool in accordance with the present invention.
- FIG.54 is an exploded perspective view of the inserter tool of FlG. 53 showing grip members for securing the inserter tool to the artificial disc device;
- FIG. 55 is a cross-sectional view of an alternative artificial disc device showing a dome member that is distinct from the upper and lower members;
- FIG. 56 is a cross-sectional view of an alternative artificial disc device having an alternate connection between the upper and lower members
- FIGS. 57-60 are plan and elevational views showing alternate structure of the respective ends of the lower member (FIGS. 57 and 58) and upper member (FlG. 59 and 60) for forming a releasable connection therebetween;
- FIG. 61 is a side cross-sectional view of a trial spacer instrument holding a trial spacer at a distal end thereof in accordance with the present invention
- FIG. 62 is an exploded, perspective view of the trial spacer instrument of FIG. 61 ;
- FIG. 63 is a perspective view of the trial spacer of FiG. 61;
- FIG. 64 is a side elevational view of the trial spacer of FlG. 63;
- FlG. 65 is a side elevational view of an alternative trial spacer instrument having
- FIG. 66 is an exploded perspective view of the trial spacer instrument of FlG. 64;
- FlG.67 is a flowchart illustrating a method of preparing to implant an artificial disc device within a spine in accordance with the present invention
- FlG. 68 is a flowchart illustrating a method of implanting an artificial disc device
- FlG. 69 is a side elevational view of a trailing end of an artificial disc device have an operable lordotic angle
- FIG. 70 is a side elevational view ofan insertion end of the artificial disc device of FlG. 61 showing the operable lordotic angle
- FlG. 71 is an exploded view of the artificial disc device of FiG. 69 showing upper
- an implant device 10 including atop shell 12 and a bottom shell 14.
- the implant 10 is a prosthetic nucleus implant for replacing the nucleus of a damaged natural spinal disc.
- the nucleus of the natural spinal disc is generally cleared by a procedure known as a nucleotomoy where an incision is made in an annulus surrounding the nucleus, whereupon the nucleus is substantially removed.
- a small amount of the viscous nuclear material remains in the disc space, and this material can be used to provide an interface for reducing possible stress points due to incongruities between the implant 10 and end plates of the adjacent vertebrae.
- One embodiment of the implant 10 is inserted through the incision in the annulus such that the annulus remains attached to adjacent vertebra and holds the implant 10 in an intervertebral position in the nucleus space, hi order to utilize the annulus in this manner, the implant 10 may be inserted either in components or pieces, or may be inserted in a compressed or unexpanded state or arrangement.
- the implant 10 maybe assembled, expanded, or both, as will be described below. Accordingly, the incision in the annulus is smaller than a typical nuclear implant requires, and the surgery is minimally invasive. Because the size or arrangement of the implant 10 is altered after being inserted through the annulus, the expanded or assembled implant 10 cannot escape from the annulus.
- Eachshell 12, 14 has an outer surface 20 for engaging and mating with an adjacent vertebra (not shown), specifically with an end plate of a vertebra.
- the outer surface 20 of each shell 12, 14 is preferably smooth to avoid disturbing the surface of the end plates.
- the end plates of the adj acent vertebrae have naturally occurring concave surfaces mating with the outer surfaces 20 of the shells 12, 14.
- the vertebra above the implant 10 has a slightly different concavity from that of the vertebra below the implant 10.
- the outer surface 20 of each shell 12, 14 is contoured with a convexity 18 (see, e.g., FIGS. 26, 33, 34) corresponding to the concavity of its respective adjacent vertebra.
- the radius of curvature of the convexity 18 of the outer surface 20 of each shell 12, 14 matches the radius of curvature of the concavity of the adjacent vertebra.
- the radius of curvature of the convexity 18 of the outer surface 20 of each shell 12, 14 is slightly less than the radius of curvature of the concavity of the adjacent vertebra.
- each shell 12, 14 has a peripheral shape 26 of an oval or a racetrack
- each shell 12, 14 may have a trapezoidal, round, or kidney shape (see, e.g., FIGS. 31-32).
- the peripheral shape 26 may be rounded or radiused.
- the size and shape 26 of the shells 12, 14 preferably cover as much of the end plate in the nuclear space as possible, hi addition, the periphery 26 of the shells 12, 14 preferably contacts and places in tension at least a portion of the inner surface of the annulus in which they are implanted, as will be discussed below.
- Each implant 10 is provided with at least one polyaxial articulating bearing member 30 formed between a concave recess 40 formed in the top shell 12 and a dome surface 50.
- the dome surface 50 and the surface of recess 40 mating with the dome surface 50, as well as another sliding surfaces as described herein, are preferably smooth for low friction engagement.
- the recess 40 is formed in a face 42 (FlG. 2) that opposes the bottom shell 14, and the dome surface 50 is formed on a face 52 (FiG. 4) of the bottom shell 14 that opposes the top shell 12.
- FlG. 2 face 42
- the dome surface 50 is formed on a face 52 (FiG. 4) of the bottom shell 14 that opposes the top shell 12.
- an implant 10 may be provided with a pair of polyaxial articulating bearing members 30, where a spacer member or insert 60 is provided with opposite faces 62, 4 each including a dome surface 50 for being received in a concave recess 40 in each of the confronting shells 12, 14.
- FIGS.7-9 depict a spacer member 70 having opposite faces 72, 74, where the face 72 includes a dome surface 50 and the face 74 includes a flat 76.
- the dome surface 50 is received in a recess 40, and the flat 76 is received in a similarly shaped, though slightly larger, recess 78 with a flat surface in the bottom shell 14 such that the flat 76 may slide or translate in the recess 78.
- Two wear surfaces reduce the overall wear experienced in comparison to a single wear surface, and as such two such surfaces are preferred. It should be noted that the radius of curvature of opposing sides of a spacer 60 providing two wear surfaces need not be identical.
- Each articulating bearing member 30 between a dome surface 50 and a recess 40 provides polyaxial motion of the concave recess 40 relative to the dome surface 50.
- the bearing member 30 permits flexion/extension, lateral bending, and rotational movement of the recess 40 relative to the dome surface 50.
- mating surfaces between the spacer member 60 and the shells 12, 14 each provide for relative sliding or translation, as will be discussed below.
- the stiffness of the articulating bearing member 30 maybe varied or controlled.
- the concave recess 40 and the dome surface 50 each have respective radii of curvature. When the radius of curvature of the recess 40 is greater than the radius of curvature of the dome surface 50, the stiffness is decreased. When the radius of curvature of the recess 40 is smaller than the radius of curvature of the dome surface 50, the stiffness is increased.
- the shells 12, 14 and any spacer member such as but not limited to the spacer members 60, 70, may slide or translate relative to each other.
- the recess 40 and dome surface 50 may pivot or rotate relative to each other, as well as slide along their mating surfaces.
- the sliding is translational.
- a natural disc includes a nucleus of viscous fluid, and the fluid moves away from the direction of bending or compression of the nucleus.
- the shells 12, 14 of the implant 10 are moved in a manner that follows the movement of the vertebrae.
- the spacer member 60 cannot enlarge in the opposite direction of the bending and compress in the direction of bending, as the natural disc can.
- the spacer member 60 may shift away from the direction of bending, thereby more accurately mimicking the compression of a natural nucleus, hi addition, due to the small height of the implant 12, the pivot point of the top shell 12 relative to the bottom shell 14 is below the bottom shell 14. Accordingly, the recess 40 of the top shell 12 preferably may shift across the dome surface 50 such that the pivot point moves along with the top shell 12.
- the center of rotation changes slightly during flexion/extension motion.
- the radius of curvature of the recess 40 may be larger than the radius of curvature of the dome surface 50 in the anterior- posterior direction. Therefore, the dome surface 50 may slide relative to the recess 40 in a manner that allows the shifting of the center of rotation.
- the implant 10 maybe inserted in pieces, specifically inserted sequentially or serially.
- the implant 10 has two principal pieces, namely the top shell 12 and bottom shell 14 where the top shell 12 has the concave recess 40 for receiving the dome surface 50 of the bottom shell 14.
- the implant 10 has three principal pieces, namely the top and bottom shells 12, 14, and the spacer member 60 where the shells 12, 14 have concave recesses 40 for receiving the dome surfaces 50 of the opposite faces 62, 64 of the spacer member 60.
- at least one of the shells 12, 14 includes a ramp 90 adjacent to each recess 40.
- the ramp 90 may have an arcuately shaped profile against which the dome surface 50 may cam. Regardless of the order in which the shells 12, 14, or spacer member 60 are inserted through the incision in the annulus, the ramps 90 allow the pieces to be forced together by pushing any dome surface 50 against and over an aligned ramp 90 in a camming action during insertion such that the dome surface 50 cams against the aligned ramp 90. In this manner, the size of the incision made in the annulus may be minimized, as it need only provide for the largest piece to be inserted, and the annulus may be utilized for retaining the implant 10 in the nucleus space.
- the shells 12, 14 having a smaller anterior-posterior dimension D2 than lateral dimension DI maybe inserted with a shorter, lateral end 16 leading first through a posterior incision in the annulus.
- the maximum clearance necessarily provided by the incision in the annulus need only be that required by the largest of the three pieces.
- the incision forms a deformable hole or bounded loop, and each component or piece of the implant 10 has a minimal encirclement required that the incision must permit to pass therethrough.
- Part of the instrumentation may include a device for cutting a precision incision into the annulus that is just large enough to insert the implant.
- the incision need only be large enough for the largest of the minimal encirclements of the individual pieces.
- the shells 12, 14 and/or any spacer such as spacer member 60 may be rotated within the nuclear space so that the short dimension D2 is no longer aligned with the incision in the annulus.
- the shells 12, 14, and the implant 10 in general, maybe rotated by an insertion tool 110 either during insertion or after assembly within the nuclear space (see FIGS. 1-6, and 10- 13).
- the shells 12, 14, may include a post 100 including a generally circular outer surface 102 and at least one flat 104 formed on the outer surface 102.
- the tool has several positions and has an upper, stationary jaw 112 and a lower jaw 114 which may reciprocate along the longitudinal axis of the tool 110. Referring to FlG.
- the lower j aw 114 of the tool 110 abuts or confronts the flat 104 so that the post 100 is secured in the jaws 112, 114 so that the tool 110 and post 100 are in a locked position for insertion of the shell 12, 14.
- the lower jaw 114 is in an intermediate position so that the lower jaw 114 is drawn a short distance away from the post 100 so that the lower jaw 114 does not abut or confront the flat 104.
- the post 100 remains captured in the jaws 112, 114.
- the post 100 may rotate relatively within the jaws 112, 114 so that the shell 12, 14 maybe rotated during or after insertion in the annulus. FiG.
- the 12 further shows a released position wherein the lower j aw 114 is drawn away from the post 100 so that the tool 110 may be removed from the post 100 and the tool 110 may be extracted from the implantation site.
- the post 100 enlarges in a direction away from the shell 12, 14 to which it is attached.
- the j aws 112, 114 each have opposed walls 115, 116, respectively.
- the walls 115, 116 are shaped as to follow the contour of the jaws 112, 114 while providing recesses 117, 118 between the walls 115, 116.
- the jaws 112, 114 may simultaneously encircle and manipulate a pair of posts 100 on a pair of shells 12, 14 in the manner described.
- the recess 118 between the walls 116 of the jaw 114 has an open terminal end 119 such that the lower jaw 114 may pass along an edge of the post 100 in a line so as to reciprocate between the locked, intermediate, or unlocked positions.
- the shells 12, 14 of the implant 10 do not necessarily replicate the shape of the natural nucleus so that the periphery 26 of the implant 10 may abut and stretch portions of the annulus, thereby providing tension to those portions of the annulus. It has been found that tension on the annulus alleviates pain and improves stability of the intervertebral joint.
- an outer curtain in the form of, for instance, a pleated bellows 120 is secured to the shells 12, 14.
- the bellows 120 may form a seal between the shells 12, 14 and extend thereabout so that the implant 10 maybe injected with a material.
- the material may be gas or liquid or other flowable material, such that the bellows 120 distends to apply pressure on the interior of the annulus.
- the bellows is filled with saline or other non-curable material.
- the injected material may slightly expand the implant 10 to provide some shock absorption and additional distraction if so desired.
- the bellows 120 prevents foreign material from entering the implant 10 which otherwise may hinder or deteriorate the performance of an articulating bearing member 30.
- the material maybe hydrogel pellets and the bellows 120 may include a permeable or semi-permeable portion to allow fluid absorption. By using pellets, the material may move within the implant 10 as any bearing member 30 articulates between the shells 12, 14. By inflating or expanding the bellows 120, or a similar structure, pressure is applied radially to the annulus to place the annulus in tension.
- the bellows 120 may be attached to the shells 12, 14 by several methods. For instance, heat bonding, adhesive bonding, or a compression seal may be used to make the bellows firmly and permanently bonded to the shells 12, 14. As the bellows 120 is compressed, a portion may deflect outward. Accordingly, the compliance of the bellows 120 is preferably less in the posterior direction than in anterior and lateral directions so that, in the event the bellows 120 deflects outward, the deflection is minimized in the direction of the spinal cord. As used herein, the term compliance refers the ability for a material to stretch.
- the bellows 120 may be provided with a portal 122 to which a catheter or needle can be attached for injecting the bellows 120, and the portal 122 includes a sealing mechanism.
- the greatest angle of deflection between vertebrae in a natural disc is approximately 15°.
- the extended lateral dimension DI of the shells 12, 14 restricts the lateral bending to 15°.
- the shells 12, 14 include short walls 130 that oppose and extend toward each other such that the walls 130 abut when a 15° bend is reached.
- a spacer member 140 may include an annular ring 142 extending from its periphery and between the shells 12, 14 such that the faces 42, 52 of the top and bottom shells 12, 14 contact the ring 142 when the 15° angle is reached.
- the ring 142 may be made of a softer material than that of the shells 12, 14 to minimize wear, and may be resiliently compressible.
- the short walls 130 and the dimension of the ring 142 may be sized to provide or restrict motion of the shells 12, 14 to an angle, such as 15° or another angle, as desired.
- each shell 12, 14 includes two pairs of ports 150, each port 150 generally aligned with aport 150 of the opposing shell 12, 14 and each pair including a channel 152 recessed in the outer surface 20 of the shell 12, 14 to connect the pair.
- a cable or cable segments may be threaded through the ports 150 and through the channels 152 so as to be recessed from the outer surfaces 20 of the shells such that the cable forms a closed loop. In this manner, the sides of the shells 12, 14 opposite the direction of bending can only be separated to a degree provided by the length of the cable.
- the cable is provided with length such that the degree of separation between the shells 12, 14 does not exceed 15°, or any other angle, in the anterior-posterior direction. Furthermore, the cable arrangement prevents the shells 12, 14 from separating from each other and blocks the space between the shells 12, 14 so that the spacer member 60 therebetween cannot come loose and escape from between the shells 12, 14.
- an implant 10 is depicted having top and bottom
- the bottom shell 14 includes an inclined stepped ramp 162 with, preferably, steps 164 aligned in the anterior-posterior direction and sidewalls 166 to the sides of the steps 164.
- the steps 164 rise toward the center of the shell 14, and a dome surface 50 on the opposite side of the spacer member 160 contacts and is received in a recess 40.
- the shells 12, 14 may be inserted in the nucleus space with the stepped ramp 162 aligned with the incision in the annulus. h one form, the dome surface 50 of the spacer member 160 may cam against the top shell 12 while being forced between the shells 12, 14 and into the nuclear space.
- the stepped spacer member 160 may be forced between the shells 12, 14 so that the stepped spacer member 160 cams against and ratchets up the steps 164.
- the sidewalls 166 are positioned so that the spacer member 160 may slide or translate a short distance in the anterior-posterior direction along the steps, while also preventing overtranslation.
- the stepped shell 14 may be rotated so the ramp 162 is no longer aligned with the incision of the annulus.
- a stop (not shown) may be provided, or the steps 164 may be canted such that each step 164 is angled downward toward the inboard edge of the step 164, and the steps 164 and the bottom surface of the stepped spacer member 160 interlock, as is depicted.
- the bottom shell 14 including the stepped ramp 162 may be inserted, and then the spacer member 160 and the top shell 12 may be inserted together with the dome surface 50 received in the concave recess 40. Accordingly, both the spacer member 160 and the top shell 12 are forced into the nuclear cavity such that the spacer member 160 ratchets up the steps 164 ofthe bottom shell 14.
- the top and bottom shells 12, 14 and the stepped spacer member 160 may be inserted together with the spacer member 160 positioned at the lower steps 164 so the implant has a reduced size or thickness during insertion into the nuclear cavity.
- an implant 10 inserted in a collapsed or compressed state or arrangement and then expanded is depicted having top and bottom shells 12, 14 and a helically stepped spacer member 170.
- Both shells 12, 14, but preferably one shell 12, 14, have a concave recess 40 into which a dome surface 50 formed on the spacer member 170 is received.
- the spacer member 170 has two opposing stepped helical wall sections 172.
- one ofthe helical walls sections 172 is integral with one ofthe shells 12, 14, while in other forms both helical wall sections 172 include a dome surface 50 received by a concave recess 40 in the respective mating shells 12, 14.
- the helical wall sections 172 have opposing helically arranged steps 174.
- the implant 10 is inserted into or assembled within the nucleus in a compressed arrangement with the helical wall sections 172 fully intermeshed with each other. Once inserted, the helical wall sections 172 maybe rotated relative to each other such that the opposing steps 174 ofthe helical wall sections 172 ratchet against each other and thereby expand the implant 10 to an expanded arrangement.
- the implant 10 may be constructed to prevent undesired repositioning ofthe helical wall sections 172.
- the steps 174 ofthe helical wall sections 172 may be canted forward in the direction of rotation for expansion to prevent or impede repositioning, or a stop (not shown) may be provided.
- the implant 10 may be provided with a compression and/or torsional spring (not shown) so that, once implanted, the helical wall sections 172 are automatically forced open and rotated to an expanded arrangement, and the helical wall sections 172 may then hold the shells 12, 14 in the expanded arrangement.
- FlGS. 28-30 depict an implant 10 having top and bottom shells 12, 14, and a spacer member 180 which includes a rotating member 182 that rotates around its longitudinal axis connected to a pair of opposed wedges 184 and a pair of hemispherical members 186.
- Each hemispherical member 186 includes a dome surface 50 received within a recess 40 in the respective shell 12, 14.
- the rotating member 182 is threaded within the wedges 184. Turning the rotating member 182 in a particular direction forces the wedges 184 from a compressed arrangement where the wedges 184 are separated to an expanded arrangement with the wedges 184 closer together or abutting each other.
- the wedges 184 in the compressed arrangement are generally positioned laterally to a space 186 between the hemispherical members 186. Turning the rotating member 182 to draw the wedges 184 closer pulls the wedges 184 to a position within the space 186. In doing so, wedge surfaces 188 abut the hemispherical " members 186, thereby forcing the hemispherical members 186 away from each other and forcing the implant to the expanded arrangement.
- the implant 10 may be inserted in the compressed arrangement, and then expanded as described.
- asingle wedge may be utilized with a rotating member rotationally secured (not shown) to either a shell or a hemispherical member, or the wedges may expand the implant by being forced outward, away from each other, as opposed to being forced inward, as described. It is preferred that an end ofthe rotating member 182 used to effect its rotation is positioned to face the incision during its rotation.
- an implant 10 having a spacer in the form of cam member 200 with cam surfaces 202 such that the implant 10 may be in inserted in a compressed arrangement, and the cam surfaces 202 may then rotate to expand the implant 10.
- the cam member 200 includes a camming dome 204 having a dome surface 50 received in a recess 40 in the top shell 12.
- the camming dome 204 preferably has three or more cam surfaces 202 mating with opposed cam surfaces 202 of the bottom shell 14. In the compressed or unexpanded arrangement, the cam surfaces 202 ofthe camming dome 204 and bottom shell 14 are fully interlocked and intermeshed.
- the camming dome 204 may be rotated relative to the bottom shell 14 such that the mating cam surfaces 202 cam against each other, thereby forcing the camming dome 204 up and expanding the implant 10 from a compressed arrangement to an expanded arrangement.
- a pair of camming domes 204 may be provided with cam surfaces 202 therebetween such that the camming domes 204 may be rotated relative to each other to expand the implant 10.
- a cannister 220 has a top cap 222, a bottom cap 224, and a sidewall 226.
- the top cap 222 and bottom cap 224 each have a dome surface 50 mating with a recess 40 on respective shells 12, 14.
- the implant 10 is inserted in the nucleus space in a compressed or unexpanded arrangement, and the shells 12, 14 have annular recesses 230 for receiving the sidewall 226 when the implant 10 is in the compressed arrangement.
- the sidewall 226 includes an inlet 232 so that the cannister 220 may be expanded by inj ecting the cannister 220 with a flowable material, thereby expanding the implant 10 to the expanded arrangement.
- the sidewall 226 has an inwardly extending lip 234 on its top and bottom edge which interferes with an outwardly extending lip 236 on each of the caps 222, 224 when the cannister 220 is fully expanded.
- an alternative cannister 240 is depicted where the bottom cap 224 is integral with the sidewall 226.
- the cannister 220 may preferably be filled with a curable material so that the material does not leak from the expanded cannister 220.
- the caps 222, 224 should form a sufficient seal with the sidewall 226 so that the material is retained within the cannister 220, 240.
- one ofthe caps 222, 224 maybe integral with one ofthe shells 12, 14.
- the cannister 220 may be filled with fluid, or may be filled with elastomeric material so that the cannister 220, 240 provides some degree of shock absorption.
- a balloon 250 may be used instead ofthe cannister 220, 240. If only a balloon is used, a deflated balloon may be pre-positioned within the shells 12, 14 when the implant 10 is inserted in the nuclear space, or a deflated balloon may be inserted after the shells are implanted. In order to fill the balloon 250, it should have a port or inlet aligned with the inlet 232 in the sidewall 226 for receiving the injected material from, for instance, a catheter.
- the balloon or cannister When the catheter, for instance, is removed after filling the implant, the balloon or cannister should be sealed. Accordingly, it is prefened that a self-sealing valve or valve-less connection is made between the injection device and the balloon or cannister. Alternatively, the injected material may seal the balloon or cannister, such as when the material is curable.
- the function ofthe sidewall 226 is to limit or reduce the lateral deformation of the balloon so that the height of the implant 10 is maintained.
- a non-compliant or minimally compliant balloon maybe used to maintain rigidity during physiological loading.
- the balloon may be filled with, as examples, saline, silicone oil, or PEG solution.
- the balloon may be formed of both compliant and non-compliant material. Suitable curable materials include but are not limited to, as examples, PMMA, calcium phosphate, polyurethane, and silicone.
- the wall sections 172 of the helical stepped spacer member 170 maybe rotated to a desired height, or the expansion ofthe cannister 220 maybe controlled by controlling the amount of injected material. Both the height or expansion ofthe implant 10 and the distraction force on the vertebrae may be monitored and controlled. However, it is preferred from a clinical standpoint to expand the implant 10 to a pre- determined distraction force so the expansion is performed with respect to contact pressure
- Each polyaxial bearing member 30 as described herein has an outer contour mating with a similar shaped recess.
- the outer contour ofthe dome surface maybe a partial spheroid, hemispherical, or similar structure, it should be noted that other shapes, such as oblong or parabolic, may offer greater function. Alteration ofthe shape ofthe dome surface maybe utilized to provide different ranges of motion to the polyaxial bearing member 30.
- the spacers have one or two arcuate dome surfaces with radii of curvature that, if they were to form a complete spheroid, would be prohibitively large for use in the intervertebral space.
- a spacer member may be provided as a rigid ball or semirigid arcuate ball.
- the dome surface and recess bearing member 30 produces an interface between the shell and the spacer member that allows greater freedom for the shells to be relatively oriented when implanted.
- the shells may orient in an angle appropriate for various intervertebral disc levels, as discussed above. For instance, at different levels, such as the L5/S1 level, the vertebrae are oriented in the angle for maintaining a lordotic shape in the spine. With the free rotation ofthe shells against the bearing member portion, the shells may angularly adjust in accordance with the natural curvature ofthe spine without creating uneven stress distributions on the end plates ofthe vertebrae.
- Materials for the shells 12, 14, and any spacer such as spacer member 60 may be selected to provide certain properties.
- the components ofthe implants may be coated with polyurethane to reduce damage to surrounding tissues during implantation and to reduce abrasiveness during micromotion between the components and surrounding tissues when in situ. Materials may be selected to provide desirable wear characteristics between sliding surfaces, and may be selected to provide radiotranslucency.
- the materials for the shells 12, 14, and any components ofthe articulating bearing member 30 are generally rigid so that the implant 10 is capable of supporting the cyclic compressive loads experienced by the implant 10, as a natural disc would experience.
- Some examples of materials are metals, ceramics, plastics, composite materials and elastomers.
- Metals may include surgical grade stainless steel, Co-Cr alloys, liquid metal, titanium, and titanium alloys. Ceramics may include alumina, and zirconia. Plastics may include polyethylene, polypropylene, pyrolytic carbon, PEEKTM, and BioPEKKTM . Composites may include carbon fiber PEEK and carbon fiber BioPEKK. Elastomers may include polyurethane.
- Non-metallic materials benefit from being radiolucent and from not causing artifact during imaging, such as radiographic, magnetic resonance, or CAT scan. With non-metallic materials, it may be beneficial to include radio opaque markers in the device to assist in identification in an image.
- each shell may be provided with one or more markers such that the orientation and position of each may be seen, and the markers maybe of different sizes so that the marks of each shell maybe distinguished and recognized.
- each discrete member of the implant may be provided with a marker of non-uniform shape, or two transverse markers of different size or shape, such that when viewed on an image the markers clearly present the position and orientation of each member. It should be realized that the above- named materials are only examples, and this is not an attempt to catalog a complete list of materials which may be used. [0143]
- the spacer member and the shells may be made from matching material, or may
- a non-metallic material for the shell would benefit from using a non-metallic material for the spacer member to avoid artifact during imaging.
- use of a metallic material on the wear surfaces may improve the wear resistance on the articulating and sliding surfaces.
- the implant 300 has a body 301 that can be formed from two pieces including a lower member or shell 312 and an upper member or shell 314 having respective outer surfaces 320, 322 for contacting the endplates of adjacent vertebrae.
- the convexity or concavity ofthe outer surfaces 320, 322 ofthe implant members 312, 314 may match or slightly mismatch the contours of the adjacent vertebrae.
- the outer surfaces 320, 322 may also be flat, and one or the other may be either flat, convex, or concave while the other is not.
- the surfaces 320, 322 preferably need not have protrusions or the like for securing the implant to the endplates, though these may be provided.
- the lower member 312 has an arcuate or dome bearing portion 319 which can have a substantially matching configuration to the recessed bearing portion 317 ofthe upper member 314.
- the recess 317 and dome portion 319 could be reversed to be formed on the lower member 312 and upper member 314, respectively, fn addition, the dome bearing portin 319 may have a mismatched configuration relative to the recessed bearing portion 317, such as has been described above to provide a desired articulation stiffness.
- the motion could be limited to a single axis, two axes, or be polyaxial.
- motion limiters may be located on the members 312, 314, or a single axis joint may be formed with bearing members having an elongated concave or convex surface.
- the dome bearing portion 319 fits into the arcuate recess 317 so that the respective surface 319a and 317a thereof are in preferably substantially flush, sliding contact with each other to allow the shell members 312, 314 to turn or pivot and arcuately slide or translate relative to each other.
- This relative shifting between the shell members 312, 314 is similar to that previously described for the other implants herein.
- the term bearing member can be a bearing portion ofthe lower member 312, the upper member 314, or both, or a separate piece disposed between lower and upper shell members, as previously indicated.
- the implant 300 is inserted between adjacent lower and upper vertebrae with the shell members 312 and 314 preferably connected to each other as will be described hereinafter.
- the implant 300 and the shells 312, 314 have the above-described racetrack shape having an anterior-posterior dimension D2 that is smaller than a lateral dimension DI including sides 303 a and 303b.
- the implant 300 is inserted advantageously utilizing a narrower, leading or forward end 304 having the minor dimension D2.
- the implant 300 has a longitudinal axis extending from the leading ends 304a, 304b to respective trailing ends 306a, 306b, and a lateral axis extending between the substantially longer sides 303a, 303b.
- the longitudinal and lateral axes ofthe implant members 312, 314 define general planes of each thereof. Consequently, the incision 308 in the annulus 309 need only have a length sufficient to fit the lateral width D2 therethrough.
- the implant 300 maybe rotated so that the smaller, lateral dimension D2 is no longer exactly aligned with the incision 308 and inserted to bring the larger, lateral dimension DI into at least partial alignment with the incision 308 after implantation.
- the size ofthe incision 308 made in the annulus 309 for insertion is minimized, hi addition, by turning the implant 300 in the nuclear space, it is captured in the space by the annulus 309 and is unlikely to back out ofthe smaller incision 308 generally aligned with one ofthe longer sides 303a, 303b ofthe implant 300 adjacent thereto.
- the implant 300 and specifically the ends 304a, 304b of the disc shell members 312, 314 are curved in the general plane ofthe members to ease insertion through the incision 308.
- the substantially longer sides 303 a, 303b ofthe implant 300, and particularly the members 312 and 314 thereof, are aligned with the incision make it highly unlikely that the disc members 312, 314 will back out through the incision 308 after implantation.
- the substantially longer sides 303a, 303b are generally straight, further contributing to the resistance to backing out by the implant members 312, 314.
- an optional ramp 90 could be provided to facilitate alignment ofthe implant members as the members are preferably sequentially inserted with one member already inserted in the nuclear space between adjacent vertebrae 321 and the other member inserted into an operable configuration relative to akeady inserted member via the ramp 90.
- the preferred disc device 300 is inserted as a single unit so that the members 312, 314 are inserted together through the annulus incision 308. Accordingly, alignment structure such as the aforedescribed ramp for bringing the shell members together in an operable configuration in the vertebral disc space need not be provided.
- the upper member 314 can have flats 390 in the general plane ofthe upper member on either side of arcuate recess 317.
- the artificial disc members 312, 314 are preferably connected to each other so that
- the disc device 300 can be inserted as a single unit or disc assembly, as previously mentioned.
- the disc members 312, 314 are connected so that they assume an insertion configuration that enables efficient implantation ofthe disc assembly 300 while minimizing the invasiveness thereof in terms of he incision size required therefor in the annulus 309.
- the insertion configuration of the disc unit 300 is preferably a wedge configuration so that a low profile, leading end 304 ofthe unit 300 is formed.
- the disc members 312, 314 taper away from each other so that the trailing end 306 has a larger profile than the leading end 304.
- the insertion configuration for the artificial disc assembly 300 allows a surgeon to initially insert the leading end 304 through the narrow, slit incision 308 formed in the fibrous annulus material with resistance to the initial stage ofthe implant insertion kept to a minimum.
- Continued insertion ofthe unit 300 spreads the incision 308 apart to allow the entire implant 300 including the enlarged trailing end 305 to be fit therethrough and into the nuclear space 311.
- the bearing portion or interface 315 between the implant members 312, 314 acts as a fulcrum between the members 312, 314.
- the force exerted on the top and bottom surfaces 322, 320 is on the fore ofthe fulcrum ofthe bearing portion 315.
- the force will increase on the fore, as well as act upon a greater portion ofthe surfaces 320, 322 as they enter the annulus 309.
- the force exerted on the aft portion ofthe fulcrum ofthe implant members 312, 314 will exceed that on the fore ofthe fulcrum to a sufficient extent that the implant members 312, 314 are shifted to the operable configuration, as will be described below.
- the wedge insertion configuration assists both in inserting the leading end 304 ofthe implant 300 and in enabling efficient shifting of the disc device 300 to the operable configuration in the nuclear space 311 between the adjacent upper and lower vertebrae 321 and, specifically, the end plates 313 thereof.
- the respective axes 312a and 314a ofthe disc members 312 and 314 form an insertion wedge angle ⁇ which, along with the length the disc members 312, 314, dictates the extent ofthe separation ofthe trailing member ends 306a and 306b.
- the disc members 312, 314 have a releasable connection 340 formed between the respective leading ends 304a and 304b thereof. The releasable connection 340 sets the disc members 312, 314 in their insertion configuration with the predetermined insertion wedge angle ⁇ formed therebetween.
- the releasable connection 340 cooperates with the dome bearing portion 319 and the recess portion 317 ofthe respective members 312, 314 to form the insertion wedge angle ⁇ of a particular disc unit 300.
- the lower member 312 includes a recess 344 formed at the end 304a thereof with the recess 344 extending at an incline upwardly in a direction extending from the front end 304a toward the rear end 306a relative to the general plane ofthe disc member 312.
- a projection 342 that fits in the recess 344 is provided on the upper member 314, and it is configured to extend in or parallel to the general plane ofthe member 314.
- the upper member 314 will be inclined or tilted upwardly relative to the plane ofthe lower member 312.
- the bearing portions 317 and 319 cooperate so that the upper member 314 is engaged with and supported by the lower member 312 with the members 312, 314 releasably attached.
- rearward ofthe releasable connection 340 the recess bearing portion 317 ofthe upper member 314 will rest on the front side ofthe upper member bearing portion 319, as can be seen in FIG. 35.
- the releasable connection 340 is of sufficient strength to keep the disc members
- the shells 312, 314 are preferably provided with cooperating structure such as a projection 342 and recess 344 that releasably secures the shells 312, 314 in the desired wedge-angle orientation.
- the releasable connection 340 is in the form of an interference or snap-fit connection such as a dove-tail joint 340 located at the leading end portions 304a, 304b ofthe shells 312, 314.
- the top shell 314 includes the projection in the form of a dove-tail projection 342, and the bottom shell 312 includes a mating recess 344 configured to substantially match the configuration of the dove-tail
- leading and trailing ends 304a, 304b, 306a, 306b ofthe upper and lower members 312, 314 are provided with an extent that, when implanted, provides the desired maximum physiological movement between the implant members 312, 314.
- the leading ends 304a, 304b may also include abutment surfaces 352, 354 so that the members 312, 314 may contact and abut along surfaces 352, 354 when in the insertion configuration.
- the members 312, 314 maybe oriented so that the surfaces 352, 354 are in flush contact when the projection 342 and recess 344 are secured or snap-fit together.
- the upper shell member 314 includes a flat surface 352 from which the dove-tail projection 342 extends that abuts the raised flat surfaces 354 on either side ofthe recess 344 ofthe bottom member 312.
- the flat surfaces 354 are inclined upward in a direction from the front, or leading edge, toward the rear of the lower member 312.
- the top member surface 352 is not inclined, and the wedge-angle ⁇ may conespond to the angle provided between the surfaces 354, 352 by the inclination of the surfaces 354 ofthe lower member 312.
- the angle ofthe surfaces 354, 352 maybe reversed such that the surface 352 is angled inwardly from respective leading edges 304a, 304b, or the angle ofthe surfaces 354, 352 may each be angled inwardly, each configuration being such that the surfaces 354, 352 may be in a flush abutting relationship at the wedge- angle ⁇ .
- the shells 312, 314 may be placed together such that the recess 344 is positioned in a confronting relationship to the dove-tail projection 342.
- the dove-tail projection 342 includes wings 343 angled outwardly from a base 345 ofthe projection 342 such that the projection 342 has a leading surface 342a with a dimension D3 greater than a dimension D4 at the base 345.
- the recess 344 is provided with a geometry for receiving the angled wings 343 ofthe proj ection 342 such that an upper portion 344a of the recess 344 is smaller in dimension than a lower portion 344b.
- the dove-tail 342 may be secured in the recess 344 simply by aligning the dove-tail 342 with an opening 346 at the forward end ofthe recess 344 and sliding the dove-tail projection 342 therein.
- connection 340 is formed of material that is resiliently deformable such that either the proj ection 342, the surfaces about the recess 344, or both may resiliently deform to permit the projection 342 to be received with the recess 344 in the snap-fit or interference fit.
- resiliently deformable material permits the connection 340 to be released during insertion due to the force of implantation and constraint of adjacent vertebrae, as will be discussed hereinafter.
- Surfaces ofthe projection 342 and recess 344 may be coated with a material that facilitates joining the projection 342 and recess to form the connection, and/or material that resists the separation of the connection 340 during implantation, as will be discussed below.
- the interference fit provided between the connecting portions 342 and 344 provides a predetermined level of resistance against pivoting ofthe disc members 312, 314 relative to each other and, in particular, the upper member 314 at the forward end 304b thereof away from the lower member forward end 304a.
- the interference fit of the dove-tail connection 340 is overcome so that the disc members 312, 314 can assume an operable configuration where the members 312, 314 can shift relative to each other, as shown in FlG. 36.
- the disc device 300 is selected relative to the size ofthe vertebral or nuclear space into which it is to be inserted.
- the distance between the trailing or rearward end portions 306a and 306b ofthe respective members 312, 314 in their attached insertion configuration should be slightly greater than the distance between the adjacent vertebrae 321, and specifically the end plates 313 thereof between which the disc device 300 is to be inserted.
- the lower and upper trailing ends 306a, 306b will be brought into engagement with the conesponding end plates 313. Accordingly, in the prefened form herein, it is the top and bottom surfaces 322, 320 that serve as engagement portions ofthe disc body 301 during the implantation procedure. Continued pushing ofthe disc unit 300 into the vertebral disc space 311 causes the surfaces 322, 320 to engage or cam initially against the annulus, which becomes compressed, and then against the vertebrae and end plates 313 with progressively greater force.
- connection 340 This allows the strength ofthe attachment between the members 312, 314 as provided by the connection 340 to be maximized to ensure that the disc unit 300 maintains its connected insertion configuration during insertion until it is inserted into the annulus 309 a sufficient amount.
- this wedge anangement and utilizing the members as lever arms 312, 314 allows for relatively low force insertion of the disc assembly 300 into the vertebral disc space 311 and to achieve the operable configuration ofthe disc assembly 300.
- the small configuration ofthe leading end allows the assembly 300 to be easily aligned with the incision for initial insertion.
- the separation force can be applied to the ends 306a and 306b as the disc unit 300 is being turned or rotated, as previously described, toward its fully seated position between the vertebrae in the nuclear space therebetween.
- the members 312, 314 In shifting between the insertion configuration and the operable configuration, the members 312, 314 have a pivoting direction, as represented by anow P in FIGS.35 and 36.
- the inserter 400 may grip or releasably secure the shells 312, 314 of the implant 300 for insertion and rotation into and within the nuclear cavity 311.
- the inserter 400 is provided with grip members 410 for retaining the shells 312, 314 on a distal end 400a ofthe inserter 400 while a surgeon, for instance, holds a handle 412 on a proximal end 400b.
- a first grip member in the form ofan elongate, rod-like base grip 420 is generally fixed relative to the handle 412 and includes structure in the form of a boss 422 extending from the grip member 420, and the bottom shell 312 has engaging structure in the form of a recess 424 formed in a surface 426 thereof.
- the recess 424 is formed proximal a trailing end 306a ofthe bottom shell 312.
- the surface 426 is generally oriented towards and facing the top shell 314 when the implant 300 is assembled. Therefore, the boss 422 extends in a direction generally away from the top shell 314 when attached to the bottom shell 312.
- the inserter 400 is further provided with a second grip member which may
- the second grip member is in the form of a cylindrical grip shaft 432 generally sunounding the base grip 420, and the grip shaft 432 is biased towards the distal end 400a ofthe inserter 400 by, for instance, a spring 435.
- the grip shaft 432 includes a contoured tip 434 for contacting the trailing end 306a ofthe bottom shell 312.
- the trailing end 306a of the bottom shell 312 includes a wall
- the wall portion 436 extending from the bottom shell 312.
- the wall portion 436 forms a shoulder 440 at its base with the bottom shell 312 near the trailing end 306a.
- the shoulder 440 is scalloped to define a continuous surface including sequential, arcuate surfaces 444.
- a middle arcuate surface 444b is aligned with the longitudinal dimension DI ofthe shell 312.
- the grip shaft tip 434 is contoured to provide a surface 434a that matches the curve ofthe middle arcuate surface 444b. Accordingly, the shaft tip 434 and the middle arcuate surface 444b mate in a pre-determined orientation.
- the middle arcuate surface 444b To the sides ofthe middle arcuate surface 444b are side arcuate surfaces in the form of secondary arcuate surfaces 444a, 444c, which are generally identically curved to each other and are angled outward from the middle arcuate surface 444b, and of tertiary arcuate surfaces 444d, 444e which are also generally identically curved and are angled outward from the secondary arcuate surfaces 444a, 444c.
- the total angle between the middle arcuate surface 44b and the left side arcuate surfaces 444a, 444c, or right side arcuate surfaces 444d, 444e may be approximately 90-95°.
- the grip shaft 432 further includes a shell recess 446 located near the shaft tip 434 and in between the shaft tip 434 and the base grip 420 positioned within the grip shaft 432.
- the bottom shell 312 is secured to the inserter 400 by the grip shaft 432 and the base grip 420. To do so, the grip shaft 432 is partially retracted against the spring bias so that the shaft tip 434 is moved a distance away from the boss 422. The boss 422 is then inserted into recess 424 of the bottom shell 312, and the wall portion 436 is inserted into the shell recess 446. The grip shaft 432 is then allowed to shift towards the bottom shell 312 such that the shaft tip 434 mates with the middle arcuate surface trial spacer. In this manner, the bottom shell 312 is clamped by the bias force ofthe grip shaft 432, and its longitudinal dimension is aligned with the elongate base grip 420 and grip shaft 432.
- the grip shaft 432 may be mechanically tightened or secured so that accidental retraction against the bias does not occur, hi the present embodiment, this is achieved by including a biased-forward securement sleeve 470 having an internal bore 472 such that the securement sleeve 470 is positioned around the grip shaft 432, as well as partially within the handle 412.
- the grip shaft 432 has a widened portion 474 having external threads 475 forming a shoulder 477, while the securement sleeve 470 has a butt shoulder 478 at its proximal end, a shoulder 479 within its internal bore 472, and threads 471 within the bore 472.
- a spring 480 is located between the butt shoulder 478 and a shoulder 476 formed in the handle 412, while the shoulders 477, 479 are generally in contact by force ofthe spring 480. Therefore, retraction ofthe grip shaft 432 causes its shoulder 477 to press against the shoulder 479 ofthe securement sleeve 470 so that both retract together.
- the securement sleeve 470 may retract relative to the grip shaft 432 by compressing the spring 480, as well as may rotate independent of and relative to the grip shaft 432. More specifically, the securement sleeve threads 471 mate with the grip shaft threads 475. hi a normal position, the spring 480 biases the securement sleeve threads 471 away from the grip shaft threads 475. When the securement sleeve 470 is retracted against the spring 480, the securement sleeve threads 471 move to a position where they may engage the grip shaft threads 475.
- the securement sleeve 470 may be rotated by a knurled knob 490 so that the securement sleeve is threaded onto the grip shaft 432.
- the knob 490 comes into contact with the handle 412 such that the securement sleeve 470 is tightened thereagainst, along with the grip shaft 432 threaded into the securement sleeve 470. h this manner, the grip shaft 432 is unable to retract, and the bottom shell 312 is locked between the secured grip shaft 432 and the fixed base grip 420.
- the inserter 400 may also secure the top shell 314 for insertion.
- the inserter 400 includes a third grip member in the form of a yoke grip 450, and the top shell 314 is provided with a grip post 460 received by the yoke grip 450.
- the yoke grip 450 includes an elongate shaft 454 also generally positioned within the grip shaft 432, and a pair of yoke arms 452 at a distal end 450a.
- Each yoke arm 452 includes a cup- or hemispherical-shaped recess 456 on an interior surface such that the cup recesses 456 ofthe respective yoke arms 452 are generally oriented toward and facing each other.
- the grip post 460 ofthe top shell 314 includes an exterior surface 462 for engaging within the cup recesses 456.
- the yoke arms 452 may flex outwardly slightly, as well as the grip post 460 may compress slightly, hi this manner, the grip post 460 is snap or interference fit within the yoke arms 452 and releasably secured therein.
- the top shell 314 is allowed to pivot around its grip post 460 within the yoke arms 452, such as like a ball joint.
- the shells 312, 314 may be secured to form the dove-tail joint 340 prior to being secured to the inserter 400.
- the shells 312, 314 may be provided with the insertion orientation after being secured to the inserter 400.
- the inserter 400 may secure to the top shell 314 such that the top surface 322 is provided with a specific angle, and the shells 312, 314 then are provided with the wedge-angle ⁇ and the insertion configuration.
- the implant 300 is ready to be inserted into and through the annulus 309 and into the nuclear cavity 311.
- the force of insertion experience by the implant 300 causes the implant 300 to shift from the insertion configuration to the operable configuration.
- the inserter 400 may be used to rotate the implant 300 to orient and align the larger, longitudinal dimension DI with the incision 308 in the annulus 309.
- the implant 300 may contact an inner surface 309a ofthe annulus such that the contact guides the implant 300 into the nuclear cavity 311 and guides the rotation of the implant 300 therewithin.
- the implant 300 and inserter 400 maybe used in a variety of surgical approaches or techniques, including those from a direction other than posterior. For instance, in a lateral incision direction, the manipulation and cooperation ofthe inserter 400 and implant 300 would not require the same adjustments as those required for the posterior approach.
- the top shell 314 is generally not free to move. That is, despite being secured to the inserter 400 by a ball joint type securement in the form of the grip post 460 and yoke arms 452, the top shell 314 is constrained from significant movement by the annulus 309 and vertebral endplates 313, as well as the articulating bearing member 30 formed between the shells 312, 314. Accordingly, the top shell 314 generally follows the bottom shell 312.
- the bottom shell 312 remains generally fixed relative to the inserter 400 until the surgeon selects otherwise.
- the grip shaft 432 may permit the bottom shell 312 to shift or pivot around the boss 422 to one ofthe side arcuate surfaces 444a, 444c, 444d, 444e.
- the bias ofthe grip shaft 432 may then shift the grip shaft 432 into an abutting relationship with one of the 444a, 444c, 444d, 444e.
- the top shell 314 also pivots with the bottom shell 312 around the grip post 460.
- the surgeon may direct the implant 300 into the nuclear cavity 311 in the lateral direction (orthogonal to the anterior-posterior direction) when the shaft tip 434 is secured in one ofthe side arcuate surfaces 444a, 444c, 444d, 444e.
- the grip shaft 432 may be completely retracted. Because of the pressure and constraint provided by the superior and inferior endplates 313, coupled with the yoke arms 452 and the grip shaft boss 422, the bottom and top shells 312, 314 are generally unable to escape, though they are able to pivot. In this manner, the surgeon may pivot and manipulate the implant 300 within the nuclear cavity 311 , for instance, until a desired position is achieved while the grip shaft 432 is still biased by the spring in a confronting relationship with the surfaces 444.
- the implant 300 To withdraw the inserter 400, the implant 300 must be released therefrom.
- the yoke grip 450 is selectively reciprocable by a slide 490.
- the yoke grip 450 To secure the top shell 314 thereto, the yoke grip 450 is advanced relative to the grip shaft 432 by advancing the slide 490 relative to the handle 412.
- the slide 490 includes a post 492 received within a recess 494 in the yoke grip shaft 454 within the handle 412.
- the top shell 314 is released by retracting the slide 490, thereby retracting the yoke grip 450. As the shell members 312, 314 are mated, such retraction should allow the yoke arms 452 to separate from the top shell 314.
- such retraction may draw the yoke arms 452 towards and within the cylindrical grip shaft 432 such that a trailing end 306b ofthe top shell 314 contacts an edge 498 ofthe grip shaft 432.
- retraction ofthe yoke grip 450 forces the top shell 314 to be released from the yoke arms 452.
- retraction ofthe yoke grip 450 may force the top shell 314 against a portion, such as post 500, ofthe base grip 420, thereby causing the top shell 314 to be released from the yoke arms 452.
- the grip shaft 432 may then be retracted, and the boss 422 maybe lifted out ofthe recess 424.
- the proximal end 400b of the handle 412 includes an opening 510 in which a release 512 is secured and spring-biased in the proximal direction.
- a pin 514 is shifted from a secure position to a release position, hi the secure position, the pin 514 is received in a recess 516 of and secures the base grip 420 in a generally fixed position.
- the base grip 420 maybe removed, as well as the yoke grip 450 and the slide 490. In this manner, the inserter 400 may be disassembled for cleaning and sterilization post-procedure.
- an implant 600 having a bottom shell 612 and a top shell 614 forming an articulating bearing member 30.
- the top shell 614 has a recess 616 for receiving and articulating with a dome 618 on a spacer 620.
- the spacer 620 is secured in a stepped recess 630 such that the spacer 620 may move a slight amount within the stepped recess 630. More specifically, the spacer 620 has a depending post 622 with a lower flange 624 for securing in a lowermost recess portion 632 ofthe stepped recess 630.
- the spacer 620 has a intermediate post portion 626 connecting the lower flange 624 to the dome 618.
- the intermediate post portion 626 is located within, and slightly smaller than, a intermediate recess portion 634 ofthe stepped recess 630.
- the dome 618 includes a bottom surface 640 that forms a shoulder 642 with the intermediate post portion 626.
- the stepped recess 630 includes an upper recess portion 636 within which a low friction washer or bushing 638 is located for friction reduction. That is, the bushing 638 has a top surface 638a that abuts against the bottom surface 640 ofthe dome 618, and a bottom surface 638b that abuts a top surface 636a ofthe bottom shell 612 in the upper recess portion 636.
- the bushing 638 may be polymeric and, for instance, polyurethane.
- an alternative releasable connection is shown in phantom as a band 333 connected to the upper member 314 and lower member 312 at the insertion end ofthe implant 300.
- the band 333 retains the members 312, 314 in the insertion configuration during initial insertion to provide the wedge angle ⁇ , as discussed above.
- tension is increased on the band 333 until the band 333 is broken or otherwise disconnect from one of the members 312, 314, thus allowing the members 312, 314 to shift to the operable configuration.
- the band 333 maybe a bioabsorable material such that, after a period of time, the band 333 is absorbed.
- a further releasable connection is shown as a chemical bond 339.
- the chemical bond 339 may be placed on the flat surface 352 ofthe upper shell member 314, on the flat surfaces 354 on either side ofthe recess 344 ofthe bottom member 312, or both.
- the releasable connection ofthe chemical bond 339 holds the members 312, 314 in position during initial insertion until the bond 339 is broken, thereby allowing the members 312, 314 to shift to the operable configuration.
- the chemical bond 339 may also be bioabsorbable or biocompatible.
- an implant 650 in an insertion configuration and having a bottom shell 660 and top shell 662 forming an articulating bearing member 30.
- the implant 650 has a pivoting direction P.
- Cooperating structure is provided such that the implant has an insertion configuration.
- the cooperation structure includes a hook 670 on a leading end 672 ofthe top shell 662 and a prong 674 on a leading end 676 of the bottom shell 660.
- the force applied to the shells 660, 662 during insertion causes the hook 670 to release from the prong 674, thereby allowing the shells 660, 662 to pivot in the pivot direction P and to re-orient to an operable position.
- an implant 700 having a bottom shell 712 and top shell 714 forming a butt-joint with an interference fit.
- the bottom shell 712 has a leading end 712a and has a recess 720 proximately located to the leading end 712a.
- the recess 720 is angled downward so that it increases in depth towards the leading end 712a and forms an angled surface 722 therein.
- a lip 728 is formed at an outer periphery 724 ofthe recess 720 and near a top surface 726 ofthe bottom shell 712.
- the top shell 714 includes a surface 740 that tapers upward towards a leading end 714a.
- a tongue 742 with a lip 744 around an outer periphery 746 ofthe tongue 742 Extending from the surface 740 is a tongue 742 with a lip 744 around an outer periphery 746 ofthe tongue 742.
- the tongue 742 ofthe top shell 714 is received within the recess 720 such that the lip 744 of the top shell 714 is confronted by the lip 728 of the bottom shell 712.
- the confronting lips 744, 728 form an interference fit, thereby holding the implant 700 in the insertion configuration.
- the lips 744, 728 release from each other so that the shells pivot in the pivoting direction P and may re-orient themselves to
- various implants may be provided and selected from during a surgical procedure.
- the implants may vary by size depending on the size ofthe nuclear cavity.
- the vertebral endplates between which the implant is to be located may be other than generally parallel to each other.
- the implant 300 may be provided with a similar configuration in the operable configuration to provide for the natural curvature ofthe adjacent vertebrae.
- the operable configuration provides implant top and bottom surfaces 322a, 320a with an operable angle ⁇ conesponding to the angle ofthe endplates ofthe adjacent vertebrae.
- the operable angle ⁇ is the angle measured between the operable configuration top and bottom surfaces 322a, 320a measured in the anterior-posterior direction.
- the implant members 312, 314 of the implant unit 300 have respective general planes 300a, 300b, described earlier as being defined by the longitudinal and lateral axes ofthe implant members 312, 314. As can be seen, the planes 300a, 300b are generally parallel in the operable configuration.
- the operable angle ⁇ is formed by the top and bottom surfaces 322a, 320a when the planes 300a, 300b are generally parallel.
- the implants 300 may be provided with operable angles ⁇ of zero, 6 or 12 degrees.
- a trial spacer instrument 800 maybe provided, as illustrated in FIGS.61 and 62.
- the trial spacer instrument 800 is utilized with a series of trial spacers, a representative trial spacer 850 being depicted in FiGs.63 and 64.
- the trial spacer 850 has an operable angle ⁇ of zero, though it is preferably provided with an operable angle ⁇ of zero, 6, or 12 degrees, for instance, so that it can be matched with the proper implant 300.
- the trial spacer instrument 800 includes an elongate handle 810 with a brace 812 located on one side thereof.
- the brace 812 preferably includes two arms 814, each including a bore 816 aligned in the length- wise direction ofthe handle 810. Between the arms 814 is a nut 818 separated from the arms 814 by low friction washers (not shown).
- the nut 818 includes a central, internally threaded bore 820 aligned with the bores 816 ofthe arms 814.
- a screw 824 is located within the bores 816, 820 and includes threads mating with the threads ofthe nut bore 820.
- the nut 818 is positioned between the two arms 814 so that it is generally stationary, though it is free to rotate therebetween. As the nut 818 is rotated relative, the screw 824 located within the nut bore 820 is shifted axially relative to the arms 814, and to the handl 810.
- the screw 824 has a distal end non-rotatably connected to a slide arm 828. Therefore, the nut 818 may be rotated clockwise relative to the screw 824 to advance the screw 824, and the nut 818 maybe counter-rotated to retract the screw 824.
- the slide arm 828 As the slide arm 828 is connected to the screw 824, it is advanced or retracted along with the screw 824.
- the slide arm 828 is aligned with and rests adjacent to a rail arm 830 fixed to the handle 810. hi this manner, the screw 824 may be advanced or retracted to advance or retract the rail arm 830 relative to the rail arm 830 in the same direction.
- the trial spacer 850 is secured to a distal end 800a ofthe trial spacer instrument 800. More specifically, the trial spacer 850 includes a trial spacer body 852, a instrument port 854, and a securing pin 856.
- the instrument port 854 is a recess flanked by top and bottom walls 860 and a rear wall 862. The pin 856 is passed through each ofthe top and bottom walls 860 and through the instrument port 854 recess. The instrument port 854 receives the distal end 800a ofthe trial spacer instrument 800 so that the trial spacer 850 is generally secured thereto.
- the slide arm 828 and rail arm 830 each have respective distal ends 828a, 830a.
- the rail arm distal end 830a includes a barb or hook 840.
- the hook 840 is exposed so that the pin 856 maybe located therein.
- the slide arm 828 may then be advanced to that its distal end 828 passes over and beyond the hook 840. In this manner, the pin 856 located therein is captured and generally prevented from escaping the hook 840.
- the slide arm 828 may be advanced so that a terminal surface 828b ofthe distal end 828a abuts an interior wall 861 within the instrument port 854.
- the mating surface 828b and interior wall 861 are generally prevented from moving relative to each other such that the trial spacer 850 is generally locked in a particular orientation to the trial spacer instrument 800.
- the trial spacer 850 may be rotated as desirable for insertion into the nuclear space.
- the pin 856 may be released from the hook 840, and the trial spacer instrument 800 may be removed.
- the trial spacer 850 is generally fashioned to provide ease of insertion through the incision to determine the size ofthe nuclear cavity.
- the trial spacer 850 may have a leading end 870 that is flat, or that is tapered to ease with insertion.
- the trial spacer 850 may also be shaped such that a desired operable angle ⁇ maybe determined.
- the edges ofthe trial spacer 850 may be radiused or' smoothed to promote insertion and manipulation.
- Multiple trial spacers 850 of varying dimensional size maybe sequentially attached to the distal end 800a ofthe trial spacer instrument 800 and inserted within the incision in order to determine the proper size and operable angle ⁇ for the implant that is to be used in the operation.
- the leading end 870 may not be tapered.
- the handle 810 ofthe trial spacer instrument 800 may include structure allowing an additional tool to be utilized in insertion of the trial spacer instrument 800. More specifically, as illustrated in FIGS. 65 and 66, an alternative trial spacer instrument 900 may include a driving or tapping mechanism 910 for providing a controlled strike directly through the central, longitudinal axis ofthe instrument 900 for communication to the trial spacer 850.
- the tapping mechanism is in the form of a mass 910 located at a proximal end 900a ofthe instrument 900 slidingly received and supported by a mass support in the form of a cylindrical slide 922 connected at a first end 922a to a handle 920.
- the mass 910 may be positioned away from the handle 920 and then directed towards the handle 920 along the slide 922 to strike the handle 920.
- the momentum ofthe mass 910 is communicated to the handle 920 to direct the trial spacer 850 into and through the annulus and into the nuclear space.
- the mass 910 maybe accelerated towards the handle 920 by the surgeon, or by its own weight.
- a stub 915 is located on a second end 922b ofthe slide 922 to define the extent that the mass 910 maybe positioned away from the handle 920, and to retain the mass 910 on the instrument 900.
- the operation of the tapping mechanism 910 enables a more controlled force to be communicated to the trial spacer 850 than manual force, and serves to retard the possibility that the trial spacer 850 will be pushed too hard or too far by the surgeon.
- the trial spacer instrument 900 further includes an alternative advancement mechanism.
- the trial spacer instrument 900 has a slide arm 928 and a rail arm 930, similar to those described above for the trial spacer instrument 800.
- the slide arm 928 and rail arm 930 are slidingly secured to each other by a projection 932 extending from the slide arm 928 and received by a slot 934 in the rail arm 930.
- the projection 932 is permitted to reciprocate within the slot 934 while also guiding the slide arm928 and rail arm 930 in a linear translation.
- the slide arm 928 further includes a bracket 940 extending from sides 942 ofthe slide arm 928 and generally forming a C-shape with bracket arms 944 wrapping around sides 946 and bottom 948 of rail guides 949 formed on the rail arm 930.
- a capture bracket 950 is located at a more distal portion ofthe slide arm 928, the capture bracket 950 also extending from sides 952 ofthe slide arm 928 and generally forming a C-shape with capture arms 954 wrapping around the side portions 930a and bottom 930b ofthe rail arm 930.
- the bracket 940 further serves to attach and slidingly secure the rail arm 930 with the slide arm 928.
- the trial spacer instrument 900 is provided with
- the slide arm 928 may be slid relative to the rail arm 930 to and between predetermined discrete positions.
- the rail arm 930 includes a port 960 generally opening to and facing the slide arm 928.
- the port 960 includes a spring- biased member that is, in the illustrated embodiment, post 962, though it may be a ball or other structure.
- the post 962 is bias-forced against a surface 964 on the rail arm 930, and the surface 964 includes detent-like recesses 966.
- the recesses 966 include a first recess 966a, and the slide arm 928 may be retracted to a position where the post 962 is located within the first recess 966a and the slide arm 928 is clear of the hook 840. Moreover, in this retracted position, the bracket arms 944 are aligned with spaces 970 in the proximal end 949a ofthe rail guides 949 such that the slide arm 928 may be removed from the rail arm 930, such as for cleaning.
- a second recess 966b may be provided into which the post 962 may be located when the slide arm 928 is extended a short distance relative to the rail arm 930. hi this position, the slide arm 928 and rail arm 930 are generally secured to each other, and the slide arm 928 is clear ofthe hook 840 such that a trial spacer 850 may be removed or attached to the trial spacer instrument 900.
- a third recess 966c is provided when the slide arm 928 is extended such that the
- the trial spacer 840 attached to the trial spacer instrument 900 is permitted to rotate 0-45°.
- a fourth recess 966d may be provided.
- the slide arm 928 may be fully extended such that the trial spacer 940 is secured therein and generally locked in a particular orientation. As such, the post 962 is located within the recess 966d.
- a representative surgical technique is illustrated in FlGS. 67 and 68. Specifically, the technique includes resection ofthe tissue surrounding the damaged spinal disc to expose the annulus. A preliminary determination is made for the size ofthe artificial disc device to be implanted or, alternatively, a minimum incision size is selected. The annulus is then incised through to the interior ofthe disc to a depth sufficient to reach the nucleus. At least a portion ofthe nuclear material is then removed to provide a cavity within the annulus for receiving the artificial disc device. A trial spacer is then selected and secured to a trial spacer instrument, which is then guided into the incision.
- the cooperating structures ofthe implant are connected such that the leading end ofthe implant is relatively small and the implant forms a wedge-angle.
- a first member having a winged dove-tail may be positioned close to a second member having a recess with a structure mating with that of the dove-tail.
- Manual pressure is then be applied to the members to force the dove-tail within the recess.
- the dove-tail may be slid into an open end ofthe recess to join the recess and the dove-tail.
- other connecting or cooperating structures may be utilized to connected the members ofthe implant.
- the inserter instrument may connect to the first and second members of the implant.
- the inserter instrument may include a proj ection on a first grip member wherein the projection is pivotally received within a recess formed in the first implant member.
- a second grip member in the form ofthe above-described grip shaft is retracted, and the projection is inserted into the recess.
- the grip shaft is then released, and, having a forward spring-bias, the grip shaft shifts forward and contacts the first implant member.
- the first implant member is then aligned with the grip shaft so that an arcuate surface on the first implant member receives an arcuate shaft tip in a mating relationship.
- the securement sleeve is then shifted rearwardly and rotated so as to lock the grip shaft against the arcuate surface on the first implant member.
- the yoke grip ofthe inserter instrument is then extended.
- the yoke grip receives and secures on a post located on the second implant member.
- the post and/or opposed yoke arms flex to permit the post to be captured within the
- the implant is ready for implantation.
- the size of the incision in the annulus is examined to ensure it is large enough for the selected implant. If not, the incision is enlarged. Otherwise, the smaller, leading end ofthe implant is aligned with the incision in the annulus. Force is then applied to direct the implant into and through the incision and into the nuclear cavity.
- the outer surfaces ofthe first and second members contact the annulus and the vertebral endplates. As the force increases, this contact causes the cooperating structures providing the connection between the first and second implant members to release. This may occur at any point during the insertion, hi this manner, the implant members are shifted from the insertion configuration to the operable configuration where the members are free to pivot and rotate relatively to each other within the nuclear cavity.
- the implant is rotated. More specifically, the securement sleeve is unlocked so that the grip shaft may retract. The shaft tip is then permitted to cam from the arcuate surface in which it was initially aligned to side arcuate surfaces positioned adjacent to the initial arcuate surface. In this manner, the implant is movably secured to the inserter instrument such that the implant maybe rotated to be aligned in a proper orientation. Additionally, the inserter instrument may continue to insert and manipulate the implant. The implant is then adjusted to the desired position or orientation with the nuclear cavity. As described above, radio-opaque markers maybe utilized on the implant members to facilitate a surgeon using radiographic equipment
- the inserter tool may be removed. More specifically, the yoke grip is retracted so that the post is forced from the yoke arms, such as by contact with a relatively stationary structure on the base grip. The grip shaft is then retracted so that the shaft tip is retracted from the first implant member, and so that the grip shaft itself is clear ofthe first implant member. The projection on the base grip is then removed from the recess in the first implant member. At this point, the inserter tool may be removed from the annulus and from the surgical site in general.
- Natural discs is the lumbar area are presently reported as having a typical range of motion.
- the average range of motion for flexion/extension is 12-17 degrees
- the average for lateral bending is 6-16 degrees
- the average for axial rotation is 2-3 degrees.
- the flexion/extension range is 15-20 degrees
- the lateral bending is in the order of 7.5-8, and there is no restriction on axial rotation.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Transplantation (AREA)
- Neurology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0415676-5A BRPI0415676A (pt) | 2003-10-22 | 2004-10-22 | dispositivo de núcleo espinhal protético para substituir um núcleo de um disco espinhal e para ser implantado entre vértebras superiores e inferiores espaçadas axialmente adjacentes, método para substituir um núcleo de um disco espinhal, dispositivo de disco artificial para ser inserido entre vértebras superiores e inferiores, método para implantar um dispositivo de disco artificial entre vértebras superiores e inferiores, e, sistema para substituir um núcleo de um disco espinhal |
CA002543214A CA2543214A1 (en) | 2003-10-22 | 2004-10-22 | Artificial disc device |
EP04796064A EP1682035A4 (de) | 2003-10-22 | 2004-10-22 | Künstliche bandscheibe |
JP2006536812A JP2008502372A (ja) | 2003-10-22 | 2004-10-22 | 人工椎間板装置 |
CN2004800374555A CN101193607B (zh) | 2003-10-22 | 2004-10-22 | 人工脊椎盘装置 |
AU2004285471A AU2004285471B2 (en) | 2003-10-22 | 2004-10-22 | Artificial disc device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/692,468 | 2003-10-22 | ||
US10/692,468 US8388684B2 (en) | 2002-05-23 | 2003-10-22 | Artificial disc device |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005041818A2 true WO2005041818A2 (en) | 2005-05-12 |
WO2005041818A3 WO2005041818A3 (en) | 2007-11-15 |
Family
ID=34549902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/035004 WO2005041818A2 (en) | 2003-10-22 | 2004-10-22 | Artificial disc device |
Country Status (8)
Country | Link |
---|---|
US (3) | US8388684B2 (de) |
EP (1) | EP1682035A4 (de) |
JP (1) | JP2008502372A (de) |
CN (2) | CN101193607B (de) |
AU (1) | AU2004285471B2 (de) |
BR (1) | BRPI0415676A (de) |
CA (1) | CA2543214A1 (de) |
WO (1) | WO2005041818A2 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007127583A1 (en) * | 2006-04-27 | 2007-11-08 | Warsaw Orthopedic, Inc. | Expanadable intervertebral spacers and methods of use |
WO2008076181A2 (en) * | 2006-12-14 | 2008-06-26 | Depuy Spine, Inc. | Buckling disc replacement |
EP2063817A2 (de) * | 2006-09-15 | 2009-06-03 | Pioneer Surgical Technology, Inc. | Gelenkarthroplastie-vorrichtung mit beweglichen elementen |
WO2009071044A1 (de) * | 2007-12-04 | 2009-06-11 | Global Medical Consulting Gmbh | Bandscheibenprothese |
WO2011046459A1 (pt) * | 2009-10-14 | 2011-04-21 | Manuel Laranjeira Gomes | Dispositivo ajustável para substituição de discos intervertebrais da coluna |
EP2890332A4 (de) * | 2012-08-30 | 2016-04-20 | Interventional Spine Inc | Künstliche scheibe |
US9693872B2 (en) | 2006-09-15 | 2017-07-04 | Pioneer Surgical Technology, Inc. | Intervertebral disc implant |
US10159514B2 (en) | 2011-12-23 | 2018-12-25 | Pioneer Surgical Technology, Inc. | Method of implanting a bone plate |
USD907771S1 (en) | 2017-10-09 | 2021-01-12 | Pioneer Surgical Technology, Inc. | Intervertebral implant |
US11147682B2 (en) | 2017-09-08 | 2021-10-19 | Pioneer Surgical Technology, Inc. | Intervertebral implants, instruments, and methods |
Families Citing this family (249)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2594492A1 (en) | 1999-03-07 | 2000-09-14 | Active Implants Corporation | Method and apparatus for computerized surgery |
FR2824261B1 (fr) * | 2001-05-04 | 2004-05-28 | Ldr Medical | Prothese de disque intervertebral et procede et outils de mise en place |
US7011684B2 (en) * | 2002-01-17 | 2006-03-14 | Concept Matrix, Llc | Intervertebral disk prosthesis |
US7235102B2 (en) * | 2002-05-10 | 2007-06-26 | Ferree Bret A | Prosthetic components with contained compressible resilient members |
US7001433B2 (en) | 2002-05-23 | 2006-02-21 | Pioneer Laboratories, Inc. | Artificial intervertebral disc device |
US8388684B2 (en) | 2002-05-23 | 2013-03-05 | Pioneer Signal Technology, Inc. | Artificial disc device |
EP1531765B1 (de) * | 2002-08-15 | 2008-07-09 | Synthes GmbH | Bandscheibenimplantat |
CA2495373C (en) * | 2002-08-15 | 2012-07-24 | David Gerber | Controlled artificial intervertebral disc implant |
FR2846550B1 (fr) * | 2002-11-05 | 2006-01-13 | Ldr Medical | Prothese de disque intervertebral |
USD557417S1 (en) | 2003-01-16 | 2007-12-11 | Concept Matrix, Llc | Disk prosthesis |
US6981989B1 (en) * | 2003-04-22 | 2006-01-03 | X-Pantu-Flex Drd Limited Liability Company | Rotatable and reversibly expandable spinal hydraulic prosthetic device |
JP4410254B2 (ja) * | 2003-05-14 | 2010-02-03 | キリアン クラウス | 椎体間に挿入する高さ調整可能なインプラント、および対応する操作工具 |
US8603168B2 (en) * | 2003-08-05 | 2013-12-10 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7753958B2 (en) * | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
US7909869B2 (en) * | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
DE10357926B3 (de) | 2003-12-11 | 2005-09-01 | Deltacor Gmbh | Längenverstellbares Wirbelsäulen-Implantat |
US20050149196A1 (en) * | 2004-01-07 | 2005-07-07 | St. Francis Medical Technologies, Inc. | Artificial spinal disk replacement device with rotation limiter and lateral approach implantation method |
US7901459B2 (en) * | 2004-01-09 | 2011-03-08 | Warsaw Orthopedic, Inc. | Split spinal device and method |
US7875077B2 (en) * | 2004-01-09 | 2011-01-25 | Warsaw Orthopedic, Inc. | Support structure device and method |
US7550010B2 (en) | 2004-01-09 | 2009-06-23 | Warsaw Orthopedic, Inc. | Spinal arthroplasty device and method |
US7771479B2 (en) | 2004-01-09 | 2010-08-10 | Warsaw Orthopedic, Inc. | Dual articulating spinal device and method |
US20050154467A1 (en) * | 2004-01-09 | 2005-07-14 | Sdgi Holdings, Inc. | Interconnected spinal device and method |
BRPI0507468A (pt) | 2004-02-04 | 2007-07-10 | Ldr Medical | prótese de disco intervertebral |
FR2865629B1 (fr) | 2004-02-04 | 2007-01-26 | Ldr Medical | Prothese de disque intervertebral |
US20050209602A1 (en) * | 2004-03-22 | 2005-09-22 | Disc Dynamics, Inc. | Multi-stage biomaterial injection system for spinal implants |
FR2869528B1 (fr) * | 2004-04-28 | 2007-02-02 | Ldr Medical | Prothese de disque intervertebral |
US7585326B2 (en) * | 2004-08-06 | 2009-09-08 | Spinalmotion, Inc. | Methods and apparatus for intervertebral disc prosthesis insertion |
US20060036261A1 (en) * | 2004-08-13 | 2006-02-16 | Stryker Spine | Insertion guide for a spinal implant |
US8277488B2 (en) | 2004-10-20 | 2012-10-02 | Vertiflex, Inc. | Interspinous spacer |
US8317864B2 (en) | 2004-10-20 | 2012-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8409282B2 (en) | 2004-10-20 | 2013-04-02 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8425559B2 (en) | 2004-10-20 | 2013-04-23 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8167944B2 (en) | 2004-10-20 | 2012-05-01 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US9119680B2 (en) | 2004-10-20 | 2015-09-01 | Vertiflex, Inc. | Interspinous spacer |
US8292922B2 (en) | 2004-10-20 | 2012-10-23 | Vertiflex, Inc. | Interspinous spacer |
US8613747B2 (en) | 2004-10-20 | 2013-12-24 | Vertiflex, Inc. | Spacer insertion instrument |
US7763074B2 (en) | 2004-10-20 | 2010-07-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8152837B2 (en) | 2004-10-20 | 2012-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8273108B2 (en) | 2004-10-20 | 2012-09-25 | Vertiflex, Inc. | Interspinous spacer |
US8123782B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Interspinous spacer |
US8012207B2 (en) | 2004-10-20 | 2011-09-06 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US9161783B2 (en) | 2004-10-20 | 2015-10-20 | Vertiflex, Inc. | Interspinous spacer |
US8128662B2 (en) | 2004-10-20 | 2012-03-06 | Vertiflex, Inc. | Minimally invasive tooling for delivery of interspinous spacer |
US8945183B2 (en) | 2004-10-20 | 2015-02-03 | Vertiflex, Inc. | Interspinous process spacer instrument system with deployment indicator |
US9023084B2 (en) | 2004-10-20 | 2015-05-05 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilizing the motion or adjusting the position of the spine |
US8123807B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
EP1814474B1 (de) | 2004-11-24 | 2011-09-14 | Samy Abdou | Vorrichtungen zur platzierung eines orthopädischen intervertebralen implantats |
EP2219538B1 (de) | 2004-12-06 | 2022-07-06 | Vertiflex, Inc. | Instrument zum einsetzen von abstandsstücken |
US8597331B2 (en) * | 2004-12-10 | 2013-12-03 | Life Spine, Inc. | Prosthetic spinous process and method |
US20090264939A9 (en) * | 2004-12-16 | 2009-10-22 | Martz Erik O | Instrument set and method for performing spinal nuclectomy |
JP4601051B2 (ja) * | 2004-12-20 | 2010-12-22 | 株式会社ユニバーサルエンターテインメント | ゲーム用チップ |
FR2879436B1 (fr) * | 2004-12-22 | 2007-03-09 | Ldr Medical | Prothese de disque intervertebral |
CH697330B1 (de) * | 2004-12-28 | 2008-08-29 | Synthes Gmbh | Zwischenwirbelprothese. |
WO2006073402A1 (en) * | 2005-01-07 | 2006-07-13 | Blackstone Medical, Inc. | Vertebral body replacement apparatus and method |
US9801733B2 (en) | 2005-03-31 | 2017-10-31 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
EP1863415A4 (de) * | 2005-03-31 | 2012-04-04 | Life Spine Inc | Expandierbare interspinale und intravertebrale vorrichtungen |
US8940048B2 (en) | 2005-03-31 | 2015-01-27 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
US9034041B2 (en) | 2005-03-31 | 2015-05-19 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
US7575580B2 (en) * | 2005-04-15 | 2009-08-18 | Warsaw Orthopedic, Inc. | Instruments, implants and methods for positioning implants into a spinal disc space |
US20060235525A1 (en) * | 2005-04-19 | 2006-10-19 | Sdgi Holdings, Inc. | Composite structure for biomedical implants |
US20060235523A1 (en) * | 2005-04-19 | 2006-10-19 | Sdgi Holdings, Inc. | Implant having a sheath with a motion-limiting attribute |
MX2007013140A (es) * | 2005-05-02 | 2008-04-17 | Kinetic Spine Technologies Inc | Disco intervertebral artificial. |
US20060253198A1 (en) * | 2005-05-03 | 2006-11-09 | Disc Dynamics, Inc. | Multi-lumen mold for intervertebral prosthesis and method of using same |
US20060253199A1 (en) * | 2005-05-03 | 2006-11-09 | Disc Dynamics, Inc. | Lordosis creating nucleus replacement method and apparatus |
US20070049849A1 (en) * | 2005-05-24 | 2007-03-01 | Schwardt Jeffrey D | Bone probe apparatus and method of use |
DE102005025685B4 (de) * | 2005-06-03 | 2015-05-21 | Mathys Ag Bettlach | Bandscheibenimplantat |
FR2887762B1 (fr) | 2005-06-29 | 2007-10-12 | Ldr Medical Soc Par Actions Si | Instrumentation d'insertion de prothese de disque intervertebral entre des vertebres |
WO2007008983A2 (en) * | 2005-07-11 | 2007-01-18 | Kyphon, Inc. | Systems and methods for providing prostheses |
FR2891135B1 (fr) | 2005-09-23 | 2008-09-12 | Ldr Medical Sarl | Prothese de disque intervertebral |
US9028550B2 (en) | 2005-09-26 | 2015-05-12 | Coalign Innovations, Inc. | Selectively expanding spine cage with enhanced bone graft infusion |
US8435295B2 (en) * | 2005-09-26 | 2013-05-07 | Infinity Orthopaedics Company | System and method for intervertebral implant delivery and removal |
US7967862B2 (en) * | 2005-11-23 | 2011-06-28 | Warsaw Orthopedic, Inc. | Posterior articular disc and method for implantation |
FR2893838B1 (fr) * | 2005-11-30 | 2008-08-08 | Ldr Medical Soc Par Actions Si | Prothese de disque intervertebral et instrumentation d'insertion de la prothese entre les vertebres |
US20070142920A1 (en) * | 2005-12-20 | 2007-06-21 | Niemi Willard J | Metatarsal implant |
US20070173855A1 (en) * | 2006-01-17 | 2007-07-26 | Sdgi Holdings, Inc. | Devices and methods for spacing of vertebral members over multiple levels |
US7867279B2 (en) * | 2006-01-23 | 2011-01-11 | Depuy Spine, Inc. | Intervertebral disc prosthesis |
US20070173941A1 (en) * | 2006-01-25 | 2007-07-26 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc and method of installing same |
US7559930B2 (en) * | 2006-01-26 | 2009-07-14 | Warsaw Orthopedic, Inc. | Surgical tool and method with an actuation mechanism for controlling reciprocation and locking of an anti-rotation member relative to an engagement member for facilitating positioning of an intervertebral device |
US7635389B2 (en) | 2006-01-30 | 2009-12-22 | Warsaw Orthopedic, Inc. | Posterior joint replacement device |
US20070191861A1 (en) * | 2006-01-30 | 2007-08-16 | Sdgi Holdings, Inc. | Instruments and methods for implanting nucleus replacement material in an intervertebral disc nucleus space |
US20070191860A1 (en) * | 2006-01-30 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc inserter |
US7811326B2 (en) | 2006-01-30 | 2010-10-12 | Warsaw Orthopedic Inc. | Posterior joint replacement device |
US20070179614A1 (en) * | 2006-01-30 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc and method of installing same |
US20070179615A1 (en) * | 2006-01-31 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc |
US20070179618A1 (en) * | 2006-01-31 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc |
US8556973B2 (en) * | 2006-02-10 | 2013-10-15 | DePuy Synthes Products, LLC | Intervertebral disc prosthesis having multiple bearing surfaces |
EP1988854A2 (de) * | 2006-02-15 | 2008-11-12 | M. S. Abdou | Vorrichtungen und verfahren zur positionierung orthopädischer bandscheibenvorrichtungen |
GB0604061D0 (en) * | 2006-03-01 | 2006-04-12 | Invibio Ltd | Polymetric materials |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
US20070270970A1 (en) * | 2006-03-14 | 2007-11-22 | Sdgi Holdings, Inc. | Spinal implants with improved wear resistance |
US20070270971A1 (en) * | 2006-03-14 | 2007-11-22 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc with improved wear resistance |
KR20090007690A (ko) * | 2006-03-22 | 2009-01-20 | 알파스파인, 아이엔씨. | 피벗 회전 가능한 내부 몸통 스페이서 |
US8282641B2 (en) | 2006-03-28 | 2012-10-09 | Depuy Spine, Inc. | Methods and instrumentation for disc replacement |
US8137404B2 (en) * | 2006-03-28 | 2012-03-20 | Depuy Spine, Inc. | Artificial disc replacement using posterior approach |
US20070233244A1 (en) * | 2006-03-28 | 2007-10-04 | Depuy Spine, Inc. | Artificial Disc Replacement Using Posterior Approach |
US20070233246A1 (en) * | 2006-03-31 | 2007-10-04 | Sdgi Holdings, Inc. | Spinal implants with improved mechanical response |
US8303660B1 (en) | 2006-04-22 | 2012-11-06 | Samy Abdou | Inter-vertebral disc prosthesis with variable rotational stop and methods of use |
US7806900B2 (en) | 2006-04-26 | 2010-10-05 | Illuminoss Medical, Inc. | Apparatus and methods for delivery of reinforcing materials to bone |
US8252031B2 (en) | 2006-04-28 | 2012-08-28 | Warsaw Orthopedic, Inc. | Molding device for an expandable interspinous process implant |
US8348978B2 (en) * | 2006-04-28 | 2013-01-08 | Warsaw Orthopedic, Inc. | Interosteotic implant |
US7846185B2 (en) * | 2006-04-28 | 2010-12-07 | Warsaw Orthopedic, Inc. | Expandable interspinous process implant and method of installing same |
US8105357B2 (en) * | 2006-04-28 | 2012-01-31 | Warsaw Orthopedic, Inc. | Interspinous process brace |
US8048118B2 (en) * | 2006-04-28 | 2011-11-01 | Warsaw Orthopedic, Inc. | Adjustable interspinous process brace |
US20070270824A1 (en) * | 2006-04-28 | 2007-11-22 | Warsaw Orthopedic, Inc. | Interspinous process brace |
EP2032086A4 (de) * | 2006-05-26 | 2013-01-16 | Samy M Abdou | Bandscheibenbewegungsvorrichtungen und anwendungsverfahren |
US20070276369A1 (en) * | 2006-05-26 | 2007-11-29 | Sdgi Holdings, Inc. | In vivo-customizable implant |
US20080021457A1 (en) * | 2006-07-05 | 2008-01-24 | Warsaw Orthopedic Inc. | Zygapophysial joint repair system |
US20080021557A1 (en) * | 2006-07-24 | 2008-01-24 | Warsaw Orthopedic, Inc. | Spinal motion-preserving implants |
US20080021462A1 (en) * | 2006-07-24 | 2008-01-24 | Warsaw Orthopedic Inc. | Spinal stabilization implants |
US8409213B2 (en) * | 2006-08-10 | 2013-04-02 | Pioneer Surgical Technology, Inc. | Insertion instrument for artificial discs |
US7976550B2 (en) * | 2006-08-10 | 2011-07-12 | Pioneer Surgical Technology | Insertion instrument for artificial discs |
US8118872B2 (en) | 2006-08-10 | 2012-02-21 | Pioneer Surgical Technology, Inc. | System and methods for inserting a spinal disc device into an intervertebral space |
US8414616B2 (en) * | 2006-09-12 | 2013-04-09 | Pioneer Surgical Technology, Inc. | Mounting devices for fixation devices and insertion instruments used therewith |
EP2063819B1 (de) * | 2006-09-18 | 2021-05-19 | Beacon Biomedical, LLC | Schwenkbares wirbelabstandselement |
US8372084B2 (en) * | 2006-09-22 | 2013-02-12 | Pioneer Surgical Technology, Inc. | System and methods for inserting a spinal disc device into an intervertebral space |
US9381098B2 (en) * | 2006-09-28 | 2016-07-05 | Spinal Kinetics, Inc. | Tool systems for implanting prosthetic intervertebral discs |
US8845726B2 (en) | 2006-10-18 | 2014-09-30 | Vertiflex, Inc. | Dilator |
GB0621227D0 (en) * | 2006-10-25 | 2006-12-06 | Invibio Ltd | Polymeric material |
EP2091445B1 (de) | 2006-11-10 | 2015-03-11 | Illuminoss Medical, Inc. | Systeme zur inneren knochenfixierung |
US7879041B2 (en) | 2006-11-10 | 2011-02-01 | Illuminoss Medical, Inc. | Systems and methods for internal bone fixation |
US8029569B2 (en) * | 2006-11-20 | 2011-10-04 | International Spinal Innovations, Llc | Implantable spinal disk |
US20080140204A1 (en) * | 2006-12-07 | 2008-06-12 | Warsaw Orthopedic, Inc. | Vertebral Implant Systems and Methods of Use |
EP2111170A4 (de) * | 2006-12-22 | 2013-01-02 | Pioneer Surgical Technology Inc | Implantatfixierungsvorrichtung und entsprechende verfahren |
US7972382B2 (en) * | 2006-12-26 | 2011-07-05 | Warsaw Orthopedic, Inc. | Minimally invasive spinal distraction devices and methods |
US8075596B2 (en) | 2007-01-12 | 2011-12-13 | Warsaw Orthopedic, Inc. | Spinal prosthesis systems |
US8377098B2 (en) | 2007-01-19 | 2013-02-19 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8465546B2 (en) | 2007-02-16 | 2013-06-18 | Ldr Medical | Intervertebral disc prosthesis insertion assemblies |
US11298241B2 (en) | 2007-03-29 | 2022-04-12 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
US9610172B2 (en) | 2007-03-29 | 2017-04-04 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
US9138328B2 (en) | 2007-03-29 | 2015-09-22 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
US10251759B2 (en) | 2007-03-29 | 2019-04-09 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
US9687353B2 (en) * | 2007-03-31 | 2017-06-27 | Spinal Kinetics, Inc. | Prosthetic intervertebral discs having balloon-based fillable cores that are implantable by minimally invasive surgical techniques |
US8231656B2 (en) | 2007-04-10 | 2012-07-31 | Life Spine, Inc. | Adjustable spine distraction implant |
US8273124B2 (en) | 2007-05-17 | 2012-09-25 | Depuy Spine, Inc. | Self-distracting cage |
US8864832B2 (en) | 2007-06-20 | 2014-10-21 | Hh Spinal Llc | Posterior total joint replacement |
FR2916956B1 (fr) * | 2007-06-08 | 2012-12-14 | Ldr Medical | Cage intersomatique,prothese intervertebrale,dispositif d'ancrage et instrumentation d'implantation |
US10821003B2 (en) | 2007-06-20 | 2020-11-03 | 3Spline Sezc | Spinal osteotomy |
US8328818B1 (en) * | 2007-08-31 | 2012-12-11 | Globus Medical, Inc. | Devices and methods for treating bone |
US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
WO2009058736A1 (en) | 2007-10-29 | 2009-05-07 | Life Spine, Inc. | Foldable orthopedic implant |
WO2009059090A1 (en) | 2007-10-31 | 2009-05-07 | Illuminoss Medical, Inc. | Light source |
US8403968B2 (en) | 2007-12-26 | 2013-03-26 | Illuminoss Medical, Inc. | Apparatus and methods for repairing craniomaxillofacial bones using customized bone plates |
WO2009091922A2 (en) | 2008-01-15 | 2009-07-23 | Vertiflex, Inc. | Interspinous spacer |
US8118873B2 (en) * | 2008-01-16 | 2012-02-21 | Warsaw Orthopedic, Inc. | Total joint replacement |
WO2009094477A1 (en) * | 2008-01-25 | 2009-07-30 | Spinalmotion, Inc. | Compliant implantable prosthetic joint with preloaded spring |
US8216314B2 (en) * | 2008-02-13 | 2012-07-10 | Marc Richelsoph | Distractable spinal implant assembly |
US8932355B2 (en) | 2008-02-22 | 2015-01-13 | Coalign Innovations, Inc. | Spinal implant with expandable fixation |
US8992620B2 (en) | 2008-12-10 | 2015-03-31 | Coalign Innovations, Inc. | Adjustable distraction cage with linked locking mechanisms |
US20100145455A1 (en) | 2008-12-10 | 2010-06-10 | Innvotec Surgical, Inc. | Lockable spinal implant |
US12232975B2 (en) | 2008-02-22 | 2025-02-25 | Howmedica Osteonics Corp. | Lockable spinal implant |
US20090222098A1 (en) * | 2008-02-28 | 2009-09-03 | Warsaw Orthopedics, Inc. | Spinal nucleus replacement with varying modulus |
US9301788B2 (en) | 2008-04-10 | 2016-04-05 | Life Spine, Inc. | Adjustable spine distraction implant |
WO2010009153A1 (en) | 2008-07-18 | 2010-01-21 | Spinalmotion, Inc. | Posterior prosthetic intervertebral disc |
US9364338B2 (en) | 2008-07-23 | 2016-06-14 | Resspond Spinal Systems | Modular nucleus pulposus prosthesis |
KR101614561B1 (ko) * | 2008-07-23 | 2016-04-21 | 마르크 아이. 말베르크 | 모듈화된 수핵 보철기구 |
US8870924B2 (en) * | 2008-09-04 | 2014-10-28 | Zimmer Spine, Inc. | Dynamic vertebral fastener |
US8545566B2 (en) * | 2008-10-13 | 2013-10-01 | Globus Medical, Inc. | Articulating spacer |
WO2010048396A2 (en) * | 2008-10-23 | 2010-04-29 | Linares Maedical Devices, Llc | Support insert associated with spinal vertebrae |
US8210729B2 (en) | 2009-04-06 | 2012-07-03 | Illuminoss Medical, Inc. | Attachment system for light-conducting fibers |
US8512338B2 (en) | 2009-04-07 | 2013-08-20 | Illuminoss Medical, Inc. | Photodynamic bone stabilization systems and methods for reinforcing bone |
US9066809B2 (en) * | 2009-05-15 | 2015-06-30 | Globus Medical Inc. | Method for inserting and positioning an artificial disc |
EP2432429B1 (de) * | 2009-05-19 | 2016-03-30 | Synthes GmbH | Dynamische probeimplantate |
CA2706233C (en) | 2009-06-04 | 2015-05-05 | Howmedica Osteonics Corp. | Orthopedic peek-on-polymer bearings |
US20100324680A1 (en) * | 2009-06-18 | 2010-12-23 | Sean Suh | Intradiscal motion limiting member and method of installation thereof |
US9642722B2 (en) | 2009-07-02 | 2017-05-09 | Atlas Spine, Inc. | Intervertebral expandable spacer |
US8529627B2 (en) * | 2009-07-02 | 2013-09-10 | Atlas Spine, Inc. | Intervertebral spacer |
US8998954B2 (en) * | 2009-08-03 | 2015-04-07 | Life Spine, Inc. | Spinous process spacer |
US8870965B2 (en) | 2009-08-19 | 2014-10-28 | Illuminoss Medical, Inc. | Devices and methods for bone alignment, stabilization and distraction |
US8062375B2 (en) * | 2009-10-15 | 2011-11-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US20120283787A1 (en) * | 2009-10-28 | 2012-11-08 | Bonovo Orthopedics, Inc. | Pedicle screws and methods of use |
US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US8740948B2 (en) | 2009-12-15 | 2014-06-03 | Vertiflex, Inc. | Spinal spacer for cervical and other vertebra, and associated systems and methods |
CN102232879A (zh) * | 2010-04-23 | 2011-11-09 | 蒋秀英 | 一种人工椎间盘 |
US8535380B2 (en) * | 2010-05-13 | 2013-09-17 | Stout Medical Group, L.P. | Fixation device and method |
US8684965B2 (en) | 2010-06-21 | 2014-04-01 | Illuminoss Medical, Inc. | Photodynamic bone stabilization and drug delivery systems |
JP5450899B2 (ja) * | 2010-07-15 | 2014-03-26 | スパイン ウェイブ,インコーポレーテッド | 塑性的に変形可能な骨間装置 |
US8858637B2 (en) * | 2010-09-30 | 2014-10-14 | Stryker Spine | Surgical implant with guiding rail |
US8496713B2 (en) * | 2010-12-10 | 2013-07-30 | Globus Medical, Inc. | Spine stabilization device and methods |
US9179959B2 (en) | 2010-12-22 | 2015-11-10 | Illuminoss Medical, Inc. | Systems and methods for treating conditions and diseases of the spine |
DE112012000567B4 (de) * | 2011-01-25 | 2019-01-24 | Nuvasive, Inc. | Wirbelsäulenimplantate zur drehbaren Wirbelanpassung |
US8998991B2 (en) * | 2011-02-23 | 2015-04-07 | Globus Medical, Inc. | Six degree spine stabilization devices and methods |
US8388687B2 (en) | 2011-03-25 | 2013-03-05 | Flexuspine, Inc. | Interbody device insertion systems and methods |
US9775661B2 (en) | 2011-07-19 | 2017-10-03 | Illuminoss Medical, Inc. | Devices and methods for bone restructure and stabilization |
CA2841962A1 (en) * | 2011-07-19 | 2013-01-24 | Illuminoss Medical, Inc. | Devices and methods for bone restructure and stabilization |
US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
WO2013059609A1 (en) | 2011-10-19 | 2013-04-25 | Illuminoss Medical, Inc. | Systems and methods for joint stabilization |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
EP2628466B1 (de) * | 2012-02-17 | 2017-04-05 | Medacta International S.A. | Zwischenwirbelimplantat mit verbessertem Befestigungssystem für die Fixierungsplatte |
US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
GB2500918A (en) * | 2012-04-05 | 2013-10-09 | Biomet Uk Healthcare Ltd | A prosthetic ankle with sliding engaging components |
US9278008B2 (en) | 2012-05-30 | 2016-03-08 | Globus Medical, Inc. | Expandable interbody spacer |
US9044342B2 (en) | 2012-05-30 | 2015-06-02 | Globus Medical, Inc. | Expandable interbody spacer |
US8939977B2 (en) | 2012-07-10 | 2015-01-27 | Illuminoss Medical, Inc. | Systems and methods for separating bone fixation devices from introducer |
US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
WO2014063255A1 (en) * | 2012-10-25 | 2014-05-01 | The Royal Institution For The Advancement Of Learning/Mcgill University | Expandable prosthetic vertebral implant |
US9687281B2 (en) | 2012-12-20 | 2017-06-27 | Illuminoss Medical, Inc. | Distal tip for bone fixation devices |
JP6373878B2 (ja) | 2013-02-14 | 2018-08-15 | メダクタ・インターナショナル・ソシエテ・アノニム | 固定プレートの形状を改善した椎間インプラント |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US9282916B2 (en) * | 2013-03-01 | 2016-03-15 | Pacesetter, Inc. | Vascular branch characterization |
US12193948B2 (en) | 2013-03-13 | 2025-01-14 | Life Spine, Inc. | Expandable implant assembly |
US11304818B2 (en) | 2013-03-13 | 2022-04-19 | Life Spine, Inc. | Expandable spinal interbody assembly |
US10154911B2 (en) | 2013-03-13 | 2018-12-18 | Life Spine, Inc. | Expandable implant assembly |
US10426632B2 (en) | 2013-03-13 | 2019-10-01 | Life Spine, Inc. | Expandable spinal interbody assembly |
US10383741B2 (en) | 2013-03-13 | 2019-08-20 | Life Spine, Inc. | Expandable spinal interbody assembly |
US9675303B2 (en) | 2013-03-15 | 2017-06-13 | Vertiflex, Inc. | Visualization systems, instruments and methods of using the same in spinal decompression procedures |
FR3005569B1 (fr) | 2013-05-16 | 2021-09-03 | Ldr Medical | Implant vertebral, dispositif de fixation vertebrale d'implant et instrumentation d'implantation |
CN103479451A (zh) * | 2013-10-10 | 2014-01-01 | 北京贝思达生物技术有限公司 | 一种聚醚醚酮人工脊柱椎间盘 |
FR3016281A1 (fr) * | 2014-01-16 | 2015-07-17 | Tornier Sa | Systeme d'impaction de prothese, notamment pour des implants en pyrocarbone |
US10213231B2 (en) | 2014-01-28 | 2019-02-26 | Life Spine, Inc. | System and method for reducing and stabilizing a bone fracture |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
US10524772B2 (en) | 2014-05-07 | 2020-01-07 | Vertiflex, Inc. | Spinal nerve decompression systems, dilation systems, and methods of using the same |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US10617531B2 (en) * | 2015-10-26 | 2020-04-14 | K2M, Inc. | Cervical disc and instrumentation |
WO2017075079A1 (en) | 2015-10-26 | 2017-05-04 | Atlas Spine, Inc. | Intervertebral expandable spacer |
CN105708584B (zh) * | 2016-01-18 | 2018-08-10 | 无锡宝通医疗投资有限公司 | 一种一体式仿生型人工颈椎间盘 |
US10548738B2 (en) | 2016-04-07 | 2020-02-04 | Howmedica Osteonics Corp. | Expandable interbody implant |
WO2017189517A1 (en) | 2016-04-26 | 2017-11-02 | Alethea Spine, Llc | Orthopedic implant with integrated core |
JP2017205522A (ja) | 2016-05-20 | 2017-11-24 | ハウメディカ・オステオニクス・コーポレイション | 前弯矯正のための拡張可能な椎体間移植片 |
WO2018009725A1 (en) * | 2016-07-06 | 2018-01-11 | Amdt Holdings, Inc. | Bone defect bridging devices and related methods |
AU2017228529B2 (en) | 2016-09-12 | 2022-03-10 | Howmedica Osteonics Corp. | Interbody implant with independent control of expansion at multiple locations |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
AU2017251734B2 (en) | 2016-10-26 | 2022-10-20 | Howmedica Osteonics Corp. | Expandable interbody implant with lateral articulation |
US10195035B1 (en) | 2016-12-30 | 2019-02-05 | Newtonoid Technologies, L.L.C. | Responsive biomechanical implants and devices |
US11896494B2 (en) | 2017-07-10 | 2024-02-13 | Life Spine, Inc. | Expandable implant assembly |
US11033403B2 (en) | 2017-07-10 | 2021-06-15 | Life Spine, Inc. | Expandable implant assembly |
EP3456294B1 (de) | 2017-09-15 | 2024-06-05 | Stryker European Operations Holdings LLC | Mit aushärtendem material expandierte zwischenwirbelkörperfusionsvorrichtung |
US11013607B2 (en) | 2017-09-22 | 2021-05-25 | Encore Medical, L.P. | Talar ankle implant |
US11000296B2 (en) | 2017-12-20 | 2021-05-11 | Encore Medical, L.P. | Joint instrumentation and associated methods of use |
EP3813696B1 (de) | 2018-06-27 | 2024-09-18 | IlluminOss Medical, Inc. | Systeme zur knochenstabilisierung und -fixierung |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
EP3979951A1 (de) | 2019-06-10 | 2022-04-13 | Life Spine, Inc. | Expandierbare implantatanordnung mit kompressionsmerkmalen |
US12042395B2 (en) | 2019-06-11 | 2024-07-23 | Life Spine, Inc. | Expandable implant assembly |
US11197765B2 (en) | 2019-12-04 | 2021-12-14 | Robert S. Bray, Jr. | Artificial disc replacement device |
US11839554B2 (en) | 2020-01-23 | 2023-12-12 | Robert S. Bray, Jr. | Method of implanting an artificial disc replacement device |
US11857432B2 (en) | 2020-04-13 | 2024-01-02 | Life Spine, Inc. | Expandable implant assembly |
US11602439B2 (en) | 2020-04-16 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
US11602440B2 (en) | 2020-06-25 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
CN114376772A (zh) * | 2020-10-22 | 2022-04-22 | 上海三友医疗器械股份有限公司 | 椎间融合器及其使用方法 |
US11173044B1 (en) * | 2021-04-20 | 2021-11-16 | Zavation Medical Products, Llc | Expanding orthopedic implant |
US11389303B1 (en) | 2021-10-07 | 2022-07-19 | Zavation Medical Products, Llc | Externally threaded expandable orthopedic implant |
EP4426216A1 (de) | 2022-02-15 | 2024-09-11 | Boston Scientific Neuromodulation Corporation | Interspinöse abstandsvorrichtung und systeme mit der interspinösen abstandsvorrichtung |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5425773A (en) | 1992-01-06 | 1995-06-20 | Danek Medical, Inc. | Intervertebral disk arthroplasty device |
Family Cites Families (353)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US475976A (en) * | 1892-05-31 | Lawn-mower | ||
CA992255A (en) | 1971-01-25 | 1976-07-06 | Cutter Laboratories | Prosthesis for spinal repair |
CS164542B1 (de) | 1973-02-15 | 1975-11-07 | ||
GB1465519A (en) | 1973-07-31 | 1977-02-23 | Nat Patent Dev Corp | Sorbents coated with a synthetic solid water-insoluble hydro philic polymer |
US3875595A (en) | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
US4374523A (en) | 1974-10-29 | 1983-02-22 | Yoon In B | Occlusion ring applicator |
US4147764A (en) | 1975-02-19 | 1979-04-03 | National Patent Development Corporation | Hydrophilic absorbents |
US3975778A (en) | 1975-07-14 | 1976-08-24 | Newton Iii St Elmo | Total ankle arthroplasty |
FR2372622A1 (fr) | 1976-12-03 | 1978-06-30 | Fassio Bernard | Prothese pour disques intervertebraux |
US4454612A (en) | 1980-05-07 | 1984-06-19 | Biomet, Inc. | Prosthesis formation having solid and porous polymeric components |
CA1146301A (en) | 1980-06-13 | 1983-05-17 | J. David Kuntz | Intervertebral disc prosthesis |
US4309777A (en) | 1980-11-13 | 1982-01-12 | Patil Arun A | Artificial intervertebral disc |
US4566466A (en) | 1984-04-16 | 1986-01-28 | Ripple Dale B | Surgical instrument |
EP0176728B1 (de) * | 1984-09-04 | 1989-07-26 | Humboldt-Universität zu Berlin | Bandscheibenendoprothese |
FR2570594B1 (fr) | 1984-09-26 | 1989-02-24 | Kehr Pierre | Prothese vertebrale, en particulier pour vertebres cervicales |
GB8429771D0 (en) | 1984-11-26 | 1985-01-03 | Ici Plc | Coatings |
US4650490A (en) | 1985-01-22 | 1987-03-17 | Figgie International Inc. | Surgical implant process for a prosthetic knee |
GB8620937D0 (en) | 1986-08-29 | 1986-10-08 | Shepperd J A N | Spinal implant |
CH671691A5 (de) | 1987-01-08 | 1989-09-29 | Sulzer Ag | |
CA1283501C (en) | 1987-02-12 | 1991-04-30 | Thomas P. Hedman | Artificial spinal disc |
US4714469A (en) | 1987-02-26 | 1987-12-22 | Pfizer Hospital Products Group, Inc. | Spinal implant |
US5127920A (en) | 1987-03-27 | 1992-07-07 | Macarthur A Creig | Prosthesis and methods for subtotal dome arthroplasty of the hip joint |
US4863477A (en) | 1987-05-12 | 1989-09-05 | Monson Gary L | Synthetic intervertebral disc prosthesis |
US5542949A (en) | 1987-05-14 | 1996-08-06 | Yoon; Inbae | Multifunctional clip applier instrument |
JP2632850B2 (ja) | 1987-05-30 | 1997-07-23 | 京セラ株式会社 | 人工椎体 |
CH672589A5 (de) | 1987-07-09 | 1989-12-15 | Sulzer Ag | |
US5258043A (en) | 1987-07-20 | 1993-11-02 | Regen Corporation | Method for making a prosthetic intervertebral disc |
US5108438A (en) | 1989-03-02 | 1992-04-28 | Regen Corporation | Prosthetic intervertebral disc |
JPH01136655A (ja) | 1987-11-24 | 1989-05-29 | Asahi Optical Co Ltd | 人工椎間板 |
US4874389A (en) | 1987-12-07 | 1989-10-17 | Downey Ernest L | Replacement disc |
US5147404A (en) | 1987-12-07 | 1992-09-15 | Downey Ernest L | Vertebra prosthesis |
US5084057A (en) | 1989-07-18 | 1992-01-28 | United States Surgical Corporation | Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures |
DE3809793A1 (de) | 1988-03-23 | 1989-10-05 | Link Waldemar Gmbh Co | Chirurgischer instrumentensatz |
JPH01142293U (de) | 1988-03-23 | 1989-09-29 | ||
US4899761A (en) | 1988-03-31 | 1990-02-13 | Brown Mark D | Apparatus and method for measuring spinal instability |
DE8807485U1 (de) | 1988-06-06 | 1989-08-10 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Endoprothese der Zwischenwirbelscheibe |
US4911718A (en) | 1988-06-10 | 1990-03-27 | University Of Medicine & Dentistry Of N.J. | Functional and biocompatible intervertebral disc spacer |
CA1333209C (en) | 1988-06-28 | 1994-11-29 | Gary Karlin Michelson | Artificial spinal fusion implants |
AU624627B2 (en) | 1988-08-18 | 1992-06-18 | Johnson & Johnson Orthopaedics, Inc. | Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness |
CA1318469C (en) | 1989-02-15 | 1993-06-01 | Acromed Corporation | Artificial disc |
DE3911610A1 (de) | 1989-04-08 | 1990-10-18 | Bosch Gmbh Robert | Kuenstliche bandscheibe |
DE3922203C1 (de) | 1989-07-06 | 1990-10-25 | Martin Nolde | Chirurgisches Instrument zur Implantation einer Bandscheibenkernprothese |
US4936848A (en) | 1989-09-22 | 1990-06-26 | Bagby George W | Implant for vertebrae |
DE8912648U1 (de) | 1989-10-23 | 1990-11-22 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Wirbelkörperimplantat |
DE9000094U1 (de) | 1990-01-04 | 1991-01-31 | Mecron Medizinische Produkte Gmbh, 1000 Berlin | Endoprothese der Zwischenwirbelscheibe |
US5133772B1 (en) | 1990-01-17 | 1997-08-05 | Osteonics Corp | Femoral implant for hip arthroplasty |
FR2659226B1 (fr) | 1990-03-07 | 1992-05-29 | Jbs Sa | Prothese pour disques intervertebraux et ses instruments d'implantation. |
JPH084606B2 (ja) | 1990-03-23 | 1996-01-24 | 東海ゴム工業株式会社 | 人工椎間板 |
JPH084607B2 (ja) | 1990-03-23 | 1996-01-24 | 東海ゴム工業株式会社 | 人工椎間板 |
CA2366361C (en) | 1990-10-30 | 2003-01-14 | Bristol-Myers Squibb Company | Orthopaedic implant device |
US5047055A (en) | 1990-12-21 | 1991-09-10 | Pfizer Hospital Products Group, Inc. | Hydrogel intervertebral disc nucleus |
US5192326A (en) | 1990-12-21 | 1993-03-09 | Pfizer Hospital Products Group, Inc. | Hydrogel bead intervertebral disc nucleus |
US5176710A (en) | 1991-01-23 | 1993-01-05 | Orthopaedic Research Institute | Prosthesis with low stiffness factor |
AU1454192A (en) | 1991-02-22 | 1992-09-15 | Pisharodi Madhavan | Middle expandable intervertebral disk implant and method |
JP3007903B2 (ja) | 1991-03-29 | 2000-02-14 | 京セラ株式会社 | 人工椎間板 |
US5133759A (en) | 1991-05-24 | 1992-07-28 | Turner Richard H | Asymmetrical femoral condye total knee arthroplasty prosthesis |
US5320644A (en) | 1991-08-30 | 1994-06-14 | Sulzer Brothers Limited | Intervertebral disk prosthesis |
GB9125798D0 (en) | 1991-12-04 | 1992-02-05 | Customflex Limited | Improvements in or relating to spinal vertebrae implants |
US5273742A (en) | 1991-12-30 | 1993-12-28 | Tyndale Plains-Hunter Ltd. | Biomedical water soluble hydrophilic polyurethane polymers and method of use thereof |
US5258031A (en) | 1992-01-06 | 1993-11-02 | Danek Medical | Intervertebral disk arthroplasty |
GB9204263D0 (en) | 1992-02-28 | 1992-04-08 | Limbs & Things Ltd | Artificial spinal disc |
DE4208116C2 (de) | 1992-03-13 | 1995-08-03 | Link Waldemar Gmbh Co | Bandscheibenendoprothese |
DE4208115A1 (de) | 1992-03-13 | 1993-09-16 | Link Waldemar Gmbh Co | Bandscheibenendoprothese |
JPH05277141A (ja) | 1992-03-30 | 1993-10-26 | Tokai Rubber Ind Ltd | 人工椎間板 |
US5306309A (en) | 1992-05-04 | 1994-04-26 | Calcitek, Inc. | Spinal disk implant and implantation kit |
US5314492A (en) | 1992-05-11 | 1994-05-24 | Johnson & Johnson Orthopaedics, Inc. | Composite prosthesis |
US5676701A (en) | 1993-01-14 | 1997-10-14 | Smith & Nephew, Inc. | Low wear artificial spinal disc |
US5320625A (en) | 1993-01-21 | 1994-06-14 | Bertin Kim C | Apparatus and method for implanting a prosthetic acetabular cup and then testing the stability of the implant |
EP0610837B1 (de) | 1993-02-09 | 2001-09-05 | Acromed Corporation | Bandscheibe |
US5534028A (en) | 1993-04-20 | 1996-07-09 | Howmedica, Inc. | Hydrogel intervertebral disc nucleus with diminished lateral bulging |
EP0621020A1 (de) | 1993-04-21 | 1994-10-26 | SULZER Medizinaltechnik AG | Zwischenwirbelprothese und Verfahren zum Implantieren einer derartigen Prothese |
US5462362A (en) | 1993-04-30 | 1995-10-31 | Nsk Ltd. | Wear resisting slide member |
DE69434145T2 (de) | 1993-06-10 | 2005-10-27 | Karlin Technology, Inc., Saugus | Wirbeldistraktor |
FR2707480B1 (fr) | 1993-06-28 | 1995-10-20 | Bisserie Michel | Prothèse discale intervertébrale. |
US5645596A (en) | 1993-07-07 | 1997-07-08 | Asahi Kogaku Kogyo Kabushiki Kaisha | Ceramic vertebrae prosthesis |
EP0713364A4 (de) | 1993-08-13 | 1996-12-27 | Shalaby W Shalaby | Mikroporöse polymere schäume und mikrostrukturierte oberflächen |
US5514180A (en) | 1994-01-14 | 1996-05-07 | Heggeness; Michael H. | Prosthetic intervertebral devices |
US5458642A (en) | 1994-01-18 | 1995-10-17 | Beer; John C. | Synthetic intervertebral disc |
US7166121B2 (en) | 1994-01-26 | 2007-01-23 | Kyphon Inc. | Systems and methods using expandable bodies to push apart cortical bone surfaces |
US5658336A (en) | 1994-03-18 | 1997-08-19 | Pisharodi; Madhavan | Rotating, locking, middle-expanded intervertebral disk stabilizer |
US6093207A (en) | 1994-03-18 | 2000-07-25 | Pisharodi; Madhavan | Middle expanded, removable intervertebral disk stabilizer disk |
US5980513A (en) * | 1994-04-25 | 1999-11-09 | Autonomous Technologies Corp. | Laser beam delivery and eye tracking system |
US5571189A (en) | 1994-05-20 | 1996-11-05 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
WO1995031946A1 (en) | 1994-05-24 | 1995-11-30 | Smith & Nephew Plc | Intervertebral disc implant |
GB9413855D0 (en) | 1994-07-08 | 1994-08-24 | Smith & Nephew | Prosthetic devices |
FR2723841B1 (fr) | 1994-08-23 | 1998-11-06 | Fabien Gauchet | Prothese de disque intervertebral. |
EP0700671B1 (de) | 1994-09-08 | 2001-08-08 | Stryker Technologies Corporation | Bandscheibenkern aus Hydrogel |
JPH0898850A (ja) | 1994-09-30 | 1996-04-16 | Kyocera Corp | 人工椎間板 |
US5824093A (en) | 1994-10-17 | 1998-10-20 | Raymedica, Inc. | Prosthetic spinal disc nucleus |
ES2216021T3 (es) | 1994-10-17 | 2004-10-16 | Raymedica, Inc. | Nucleo del disco espinal protesico. |
US5562736A (en) | 1994-10-17 | 1996-10-08 | Raymedica, Inc. | Method for surgical implantation of a prosthetic spinal disc nucleus |
US5674296A (en) | 1994-11-14 | 1997-10-07 | Spinal Dynamics Corporation | Human spinal disc prosthesis |
US5563233A (en) | 1994-11-16 | 1996-10-08 | Tyndale Plains-Hunter, Ltd. | Polyether polyurethane polymers and gels having improved absorption and slip properties |
US5556433A (en) | 1994-12-01 | 1996-09-17 | Johnson & Johnson Professional, Inc. | Modular knee prosthesis |
FR2728159B1 (fr) | 1994-12-16 | 1997-06-27 | Tornier Sa | Prothese discale elastique |
US5665122A (en) | 1995-01-31 | 1997-09-09 | Kambin; Parviz | Expandable intervertebral cage and surgical method |
AU5188196A (en) | 1995-03-08 | 1996-09-23 | Advanced Microbotics Corporation | Spinal disc implant |
US5609643A (en) | 1995-03-13 | 1997-03-11 | Johnson & Johnson Professional, Inc. | Knee joint prosthesis |
US5571191A (en) | 1995-03-16 | 1996-11-05 | Fitz; William R. | Artificial facet joint |
FR2732841A1 (fr) | 1995-04-04 | 1996-10-11 | Souza Jean Jacques De | Casques phoniques permettant de communiquer avec port de protections respiratoires |
US5595563A (en) | 1995-09-05 | 1997-01-21 | Moisdon; Roger G. F. | Method and apparatus for maintaining the position of body parts |
JPH11513598A (ja) | 1995-10-20 | 1999-11-24 | ジンテーズ アクチエンゲゼルシャフト クール | 圧縮性成形中空部材を有する椎骨間移植体 |
DE19541114A1 (de) | 1995-10-26 | 1997-04-30 | Artos Med Produkte | Zwischenwirbelimplantat |
ATE259195T1 (de) | 1995-11-08 | 2004-02-15 | Ct Pulse Orthopedics Ltd | Zwischenwirbelprothese |
AU705598B2 (en) | 1995-12-08 | 1999-05-27 | Robert S. Bray Jr. | Anterior stabilization device |
US5645597A (en) | 1995-12-29 | 1997-07-08 | Krapiva; Pavel I. | Disc replacement method and apparatus |
US5865845A (en) | 1996-03-05 | 1999-02-02 | Thalgott; John S. | Prosthetic intervertebral disc |
US5683465A (en) | 1996-03-18 | 1997-11-04 | Shinn; Gary Lee | Artificial intervertebral disk prosthesis |
US5964807A (en) | 1996-08-08 | 1999-10-12 | Trustees Of The University Of Pennsylvania | Compositions and methods for intervertebral disc reformation |
US5895426A (en) | 1996-09-06 | 1999-04-20 | Osteotech, Inc. | Fusion implant device and method of use |
US5716416A (en) | 1996-09-10 | 1998-02-10 | Lin; Chih-I | Artificial intervertebral disk and method for implanting the same |
US5782832A (en) | 1996-10-01 | 1998-07-21 | Surgical Dynamics, Inc. | Spinal fusion implant and method of insertion thereof |
US6019793A (en) | 1996-10-21 | 2000-02-01 | Synthes | Surgical prosthetic device |
US6602293B1 (en) | 1996-11-01 | 2003-08-05 | The Johns Hopkins University | Polymeric composite orthopedic implant |
US5895428A (en) | 1996-11-01 | 1999-04-20 | Berry; Don | Load bearing spinal joint implant |
US7101375B2 (en) | 1997-01-02 | 2006-09-05 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US5836948A (en) | 1997-01-02 | 1998-11-17 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
US6068630A (en) | 1997-01-02 | 2000-05-30 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US8545569B2 (en) | 2001-05-25 | 2013-10-01 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
CN1057440C (zh) * | 1997-01-22 | 2000-10-18 | 上海长征医院 | 碳纤维增强聚醚醚酮螺柱状颈椎内固定器 |
AU745916B2 (en) | 1997-03-07 | 2002-04-11 | Kyphon Sarl | Systems for percutaneous bone and spinal stabilization, fixation and repair |
GB9704749D0 (en) | 1997-03-07 | 1997-04-23 | Univ London | Tissue Implant |
JP3887058B2 (ja) | 1997-04-15 | 2007-02-28 | ペンタックス株式会社 | 人工棘突起 |
EP1772119A3 (de) | 1997-04-25 | 2007-12-05 | Stryker France S.A. | Zweiteilige Zwischenkörperliche Implantate |
US5800549A (en) | 1997-04-30 | 1998-09-01 | Howmedica Inc. | Method and apparatus for injecting an elastic spinal implant |
US6022376A (en) | 1997-06-06 | 2000-02-08 | Raymedica, Inc. | Percutaneous prosthetic spinal disc nucleus and method of manufacture |
US5972015A (en) | 1997-08-15 | 1999-10-26 | Kyphon Inc. | Expandable, asymetric structures for deployment in interior body regions |
US5893889A (en) | 1997-06-20 | 1999-04-13 | Harrington; Michael | Artificial disc |
GB9713330D0 (en) | 1997-06-25 | 1997-08-27 | Bridport Gundry Plc | Surgical implant |
GB9714580D0 (en) | 1997-07-10 | 1997-09-17 | Wardlaw Douglas | Prosthetic intervertebral disc nucleus |
AT405237B (de) | 1997-08-28 | 1999-06-25 | Ronald J Dr Sabitzer | Wirbelsäulen-prothese |
US5860980A (en) | 1997-09-15 | 1999-01-19 | Axelson, Jr.; Stuart L. | Surgical apparatus for use in total knee arthroplasty and surgical methods for using said apparatus |
US5824094A (en) | 1997-10-17 | 1998-10-20 | Acromed Corporation | Spinal disc |
US20010016773A1 (en) | 1998-10-15 | 2001-08-23 | Hassan Serhan | Spinal disc |
US6139579A (en) | 1997-10-31 | 2000-10-31 | Depuy Motech Acromed, Inc. | Spinal disc |
JPH11137585A (ja) | 1997-11-05 | 1999-05-25 | Chubu Bearing Kk | 人工椎間板 |
US5888226A (en) | 1997-11-12 | 1999-03-30 | Rogozinski; Chaim | Intervertebral prosthetic disc |
US5899941A (en) | 1997-12-09 | 1999-05-04 | Chubu Bearing Kabushiki Kaisha | Artificial intervertebral disk |
US6090145A (en) | 1997-12-10 | 2000-07-18 | Societe Industrielle De Combustible Nucleaire S I C N | Partial scaphoid implant and method of treating ailments of the scaphoid |
US6162252A (en) | 1997-12-12 | 2000-12-19 | Depuy Acromed, Inc. | Artificial spinal disc |
US6019792A (en) | 1998-04-23 | 2000-02-01 | Cauthen Research Group, Inc. | Articulating spinal implant |
WO1999053871A1 (en) | 1998-04-23 | 1999-10-28 | Cauthen Research Group, Inc. | Articulating spinal implant |
US6679915B1 (en) | 1998-04-23 | 2004-01-20 | Sdgi Holdings, Inc. | Articulating spinal implant |
WO1999060956A1 (en) | 1998-05-27 | 1999-12-02 | Nuvasive, Inc. | Interlocking spinal inserts |
US6224630B1 (en) | 1998-05-29 | 2001-05-01 | Advanced Bio Surfaces, Inc. | Implantable tissue repair device |
US6132465A (en) | 1998-06-04 | 2000-10-17 | Raymedica, Inc. | Tapered prosthetic spinal disc nucleus |
US6296664B1 (en) | 1998-06-17 | 2001-10-02 | Surgical Dynamics, Inc. | Artificial intervertebral disc |
US6136031A (en) | 1998-06-17 | 2000-10-24 | Surgical Dynamics, Inc. | Artificial intervertebral disc |
US6428579B1 (en) | 1998-07-01 | 2002-08-06 | Brown University Research Foundation | Implantable prosthetic devices coated with bioactive molecules |
FR2782632B1 (fr) | 1998-08-28 | 2000-12-29 | Materiel Orthopedique En Abreg | Cage de fusion intersomatique expansible |
EP1109516A4 (de) | 1998-09-04 | 2005-04-27 | Sdgi Holdings Inc | Multidiskoide thorax-lumbar-scheibenprothese in der form einer erdnuss oder einer brille |
US6113637A (en) | 1998-10-22 | 2000-09-05 | Sofamor Danek Holdings, Inc. | Artificial intervertebral joint permitting translational and rotational motion |
FR2784891B1 (fr) | 1998-10-22 | 2001-01-26 | Hassan Razian | Cage intersomatique a dispositif de maintien |
US6039763A (en) | 1998-10-27 | 2000-03-21 | Disc Replacement Technologies, Inc. | Articulating spinal disc prosthesis |
FR2787018B1 (fr) | 1998-12-11 | 2001-03-02 | Dimso Sa | Prothese de disque intervertebral a enceinte de liquide |
FR2787019B1 (fr) | 1998-12-11 | 2001-03-02 | Dimso Sa | Prothese de disque intervertebral a comportement mecanique ameliore |
FR2787014B1 (fr) | 1998-12-11 | 2001-03-02 | Dimso Sa | Prothese de disque intervertebral a frottements reduits |
FR2787016B1 (fr) | 1998-12-11 | 2001-03-02 | Dimso Sa | Prothese de disque intervertebral |
BR9805340B1 (pt) | 1998-12-14 | 2009-01-13 | inserto de expansço variÁvel para estabilizaÇço de coluna vertebral. | |
US6206923B1 (en) | 1999-01-08 | 2001-03-27 | Sdgi Holdings, Inc. | Flexible implant using partially demineralized bone |
US6547823B2 (en) | 1999-01-22 | 2003-04-15 | Osteotech, Inc. | Intervertebral implant |
US6146422A (en) | 1999-01-25 | 2000-11-14 | Lawson; Kevin Jon | Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method |
US6183518B1 (en) | 1999-02-22 | 2001-02-06 | Anthony C. Ross | Method of replacing nucleus pulposus and repairing the intervertebral disk |
CA2594492A1 (en) | 1999-03-07 | 2000-09-14 | Active Implants Corporation | Method and apparatus for computerized surgery |
US6368350B1 (en) * | 1999-03-11 | 2002-04-09 | Sulzer Spine-Tech Inc. | Intervertebral disc prosthesis and method |
US6113639A (en) * | 1999-03-23 | 2000-09-05 | Raymedica, Inc. | Trial implant and trial implant kit for evaluating an intradiscal space |
US6602291B1 (en) * | 1999-04-05 | 2003-08-05 | Raymedica, Inc. | Prosthetic spinal disc nucleus having a shape change characteristic |
US6110210A (en) | 1999-04-08 | 2000-08-29 | Raymedica, Inc. | Prosthetic spinal disc nucleus having selectively coupled bodies |
US6533799B1 (en) | 1999-04-27 | 2003-03-18 | Ams Research Corporation | Cavity measurement device and method of assembly |
US6283998B1 (en) | 1999-05-13 | 2001-09-04 | Board Of Trustees Of The University Of Arkansas | Alloplastic vertebral disk replacement |
US6579321B1 (en) | 1999-05-17 | 2003-06-17 | Vanderbilt University | Intervertebral disc replacement prosthesis |
US6419704B1 (en) | 1999-10-08 | 2002-07-16 | Bret Ferree | Artificial intervertebral disc replacement methods and apparatus |
US6371990B1 (en) | 1999-10-08 | 2002-04-16 | Bret A. Ferree | Annulus fibrosis augmentation methods and apparatus |
WO2000074606A1 (en) | 1999-06-04 | 2000-12-14 | Sdgi Holdings, Inc. | Artificial disc implant |
WO2001001893A1 (de) | 1999-07-02 | 2001-01-11 | Spine Solutions Inc. | Zwischenwirbelimplantat |
AU5701200A (en) | 1999-07-02 | 2001-01-22 | Petrus Besselink | Reinforced expandable cage |
US6488716B1 (en) | 1999-07-30 | 2002-12-03 | Guofu Huang | Anatomic femoral prosthesis for total hip arthroplasty |
FR2797179B1 (fr) | 1999-08-03 | 2002-03-08 | Michel Gau | Prothese nucleaire intervertebrale et son procede chirurgical d'implantation |
US6352557B1 (en) | 1999-08-13 | 2002-03-05 | Bret A. Ferree | Treating degenerative disc disease through transplantion of extracellular nucleus pulposus matrix and autograft nucleus pulposus cells |
US7201776B2 (en) | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements with endplates |
US7094258B2 (en) | 1999-08-18 | 2006-08-22 | Intrinsic Therapeutics, Inc. | Methods of reinforcing an annulus fibrosis |
EP1328221B1 (de) | 1999-08-18 | 2009-03-25 | Intrinsic Therapeutics, Inc. | Vorrichtungen zur verstärkung und retention des nucleus pulposus |
US6508839B1 (en) | 1999-08-18 | 2003-01-21 | Intrinsic Orthopedics, Inc. | Devices and methods of vertebral disc augmentation |
US6371984B1 (en) | 1999-09-13 | 2002-04-16 | Keraplast Technologies, Ltd. | Implantable prosthetic or tissue expanding device |
US6783546B2 (en) | 1999-09-13 | 2004-08-31 | Keraplast Technologies, Ltd. | Implantable prosthetic or tissue expanding device |
FR2799116B1 (fr) | 1999-09-30 | 2002-03-01 | Euros Sa | Implant intervertebral |
US6264695B1 (en) | 1999-09-30 | 2001-07-24 | Replication Medical, Inc. | Spinal nucleus implant |
US6432107B1 (en) | 2000-01-15 | 2002-08-13 | Bret A. Ferree | Enhanced surface area spinal fusion devices |
US6436101B1 (en) | 1999-10-13 | 2002-08-20 | James S. Hamada | Rasp for use in spine surgery |
US6206924B1 (en) | 1999-10-20 | 2001-03-27 | Interpore Cross Internat | Three-dimensional geometric bio-compatible porous engineered structure for use as a bone mass replacement or fusion augmentation device |
CA2386504C (en) | 1999-10-22 | 2008-07-15 | Mark A. Reiley | Facet arthroplasty devices and methods |
DE60007656T2 (de) | 1999-10-29 | 2004-06-24 | Drexel University | Bindende hydrogele zum ersatz des nukleus pulposus |
US6592624B1 (en) | 1999-11-24 | 2003-07-15 | Depuy Acromed, Inc. | Prosthetic implant element |
US6432106B1 (en) | 1999-11-24 | 2002-08-13 | Depuy Acromed, Inc. | Anterior lumbar interbody fusion cage with locking plate |
JP4294901B2 (ja) | 1999-12-01 | 2009-07-15 | グラフ,アンリ | 椎間安定装置 |
FR2801782B3 (fr) * | 1999-12-01 | 2002-02-01 | Henry Graf | Dispositif de stabilisation intervertebral |
US6827740B1 (en) | 1999-12-08 | 2004-12-07 | Gary K. Michelson | Spinal implant surface configuration |
TW447286U (en) | 1999-12-10 | 2001-07-21 | Lin Jr Yi | Intervertebral restorer |
US7066957B2 (en) | 1999-12-29 | 2006-06-27 | Sdgi Holdings, Inc. | Device and assembly for intervertebral stabilization |
KR200188511Y1 (ko) | 2000-01-06 | 2000-07-15 | 구자교 | 척추용 보철 플러그 |
AU776571B2 (en) | 2000-02-04 | 2004-09-16 | Warsaw Orthopedic, Inc. | Expandable interbody spinal fusion implant |
WO2001078798A1 (en) | 2000-02-10 | 2001-10-25 | Regeneration Technologies, Inc. | Assembled implant |
US6899716B2 (en) | 2000-02-16 | 2005-05-31 | Trans1, Inc. | Method and apparatus for spinal augmentation |
US6342075B1 (en) | 2000-02-18 | 2002-01-29 | Macarthur A. Creig | Prosthesis and methods for total knee arthroplasty |
FR2805733B1 (fr) | 2000-03-03 | 2002-06-07 | Scient X | Prothese discale pour vertebre cervicale |
US6283968B1 (en) | 2000-03-07 | 2001-09-04 | Hamid M. Mehdizadeh | Posterior laminectomy procedure |
FR2805985B1 (fr) | 2000-03-10 | 2003-02-07 | Eurosurgical | Prothese de disque intervertebral |
DE50015060D1 (de) | 2000-04-04 | 2008-05-08 | Link Spine Group Inc | Zwischenwirbelkunststoffimplantat |
US6436141B2 (en) | 2000-04-07 | 2002-08-20 | Surgical Dynamics, Inc. | Apparatus for fusing adjacent bone structures |
AU2001259593A1 (en) | 2000-05-05 | 2001-11-20 | Osteotech, Inc. | Intervertebral distractor and implant insertion instrument |
US6579318B2 (en) * | 2000-06-12 | 2003-06-17 | Ortho Development Corporation | Intervertebral spacer |
US6991652B2 (en) | 2000-06-13 | 2006-01-31 | Burg Karen J L | Tissue engineering composite |
US7018416B2 (en) | 2000-07-06 | 2006-03-28 | Zimmer Spine, Inc. | Bone implants and methods |
US20020035400A1 (en) | 2000-08-08 | 2002-03-21 | Vincent Bryan | Implantable joint prosthesis |
US20020029082A1 (en) | 2000-08-29 | 2002-03-07 | Muhanna Nabil L. | Vertebral spacer and method of use |
US6824565B2 (en) | 2000-09-08 | 2004-11-30 | Nabil L. Muhanna | System and methods for inserting a vertebral spacer |
US20020026244A1 (en) | 2000-08-30 | 2002-02-28 | Trieu Hai H. | Intervertebral disc nucleus implants and methods |
US20050154463A1 (en) | 2000-08-30 | 2005-07-14 | Trieu Hal H. | Spinal nucleus replacement implants and methods |
US6620196B1 (en) | 2000-08-30 | 2003-09-16 | Sdgi Holdings, Inc. | Intervertebral disc nucleus implants and methods |
US7204851B2 (en) | 2000-08-30 | 2007-04-17 | Sdgi Holdings, Inc. | Method and apparatus for delivering an intervertebral disc implant |
US20020045942A1 (en) | 2000-10-16 | 2002-04-18 | Ham Michael J. | Procedure for repairing damaged discs |
AU1538702A (en) | 2000-10-24 | 2002-05-06 | Cryolife Inc | In situ bioprosthetic filler and methods, particularly for the in situ formationof vertebral disc bioprosthetics |
GB0027210D0 (en) | 2000-11-07 | 2000-12-27 | Benoist Girard & Cie | Prosthesis bearing component |
US6440170B1 (en) | 2000-12-04 | 2002-08-27 | Roger P. Jackson | Threaded interbody device |
US6743257B2 (en) | 2000-12-19 | 2004-06-01 | Cortek, Inc. | Dynamic implanted intervertebral spacer |
JP2002200103A (ja) * | 2000-12-28 | 2002-07-16 | Nobumasa Suzuki | 髄核補綴物 |
US20020087480A1 (en) | 2000-12-28 | 2002-07-04 | Nicholas Sauriol | Secure database for E-commerce |
US6468311B2 (en) | 2001-01-22 | 2002-10-22 | Sdgi Holdings, Inc. | Modular interbody fusion implant |
WO2002060356A1 (de) | 2001-01-30 | 2002-08-08 | Synthes Ag Chur | Knochenimplantat, insbesondere zwischenwirbelimplantat |
US6562073B2 (en) | 2001-02-06 | 2003-05-13 | Sdgi Holding, Inc. | Spinal bone implant |
US6576017B2 (en) | 2001-02-06 | 2003-06-10 | Sdgi Holdings, Inc. | Spinal implant with attached ligament and methods |
US7575576B2 (en) | 2001-07-16 | 2009-08-18 | Spinecore, Inc. | Wedge ramp distractor and related methods for use in implanting artificial intervertebral discs |
US6607559B2 (en) | 2001-07-16 | 2003-08-19 | Spine Care, Inc. | Trial intervertebral distraction spacers |
US20020111687A1 (en) | 2001-02-15 | 2002-08-15 | Ralph James D. | Intervertebral spacer device utilizing a belleville washer having radially extending grooves |
US6673113B2 (en) | 2001-10-18 | 2004-01-06 | Spinecore, Inc. | Intervertebral spacer device having arch shaped spring elements |
US6863689B2 (en) | 2001-07-16 | 2005-03-08 | Spinecore, Inc. | Intervertebral spacer having a flexible wire mesh vertebral body contact element |
US6669730B2 (en) | 2001-02-15 | 2003-12-30 | Spinecore, Inc. | Intervertebral spacer device utilizing a spirally slotted belleville washer having radially extending grooves |
US7235081B2 (en) | 2001-07-16 | 2007-06-26 | Spinecore, Inc. | Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc |
US7604664B2 (en) | 2001-07-16 | 2009-10-20 | Spinecore, Inc. | Spinal baseplates with ball joint coupling and a retaining member |
US7115132B2 (en) | 2001-07-16 | 2006-10-03 | Spinecore, Inc. | Static trials and related instruments and methods for use in implanting an artificial intervertebral disc |
US7563285B2 (en) | 2001-07-16 | 2009-07-21 | Spinecore, Inc. | Artificial intervertebral disc utilizing a ball joint coupling |
US7169182B2 (en) | 2001-07-16 | 2007-01-30 | Spinecore, Inc. | Implanting an artificial intervertebral disc |
US20030069642A1 (en) | 2001-10-04 | 2003-04-10 | Ralph James D. | Artificial intervertebral disc having a flexible wire mesh vertebral body contact element |
US6989032B2 (en) | 2001-07-16 | 2006-01-24 | Spinecore, Inc. | Artificial intervertebral disc |
US6673075B2 (en) | 2001-02-23 | 2004-01-06 | Albert N. Santilli | Porous intervertebral spacer |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
US7229441B2 (en) | 2001-02-28 | 2007-06-12 | Warsaw Orthopedic, Inc. | Flexible systems for spinal stabilization and fixation |
US6478822B1 (en) | 2001-03-20 | 2002-11-12 | Spineco, Inc. | Spherical spinal implant |
EP1250898A1 (de) | 2001-04-05 | 2002-10-23 | Waldemar Link (GmbH & Co.) | Sytem von Bandscheibenprothesen |
US20030149438A1 (en) | 2001-04-30 | 2003-08-07 | Howmedica Osteonics Corp. | Insertion instrument |
US6719794B2 (en) | 2001-05-03 | 2004-04-13 | Synthes (U.S.A.) | Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure |
US6974480B2 (en) * | 2001-05-03 | 2005-12-13 | Synthes (Usa) | Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure |
FR2824261B1 (fr) | 2001-05-04 | 2004-05-28 | Ldr Medical | Prothese de disque intervertebral et procede et outils de mise en place |
DE10130825A1 (de) | 2001-06-26 | 2002-03-07 | Helge Steffen | Zervikale Bandscheibenprothese nach STEFFEN (CIDPS) |
US6428544B1 (en) | 2001-07-16 | 2002-08-06 | Third Millennium Engineering, Llc | Insertion tool for use with trial intervertebral distraction spacers |
US6436102B1 (en) | 2001-07-16 | 2002-08-20 | Third Millennium Engineering, Llc | Method of distracting vertebral bones |
US8366775B2 (en) | 2001-07-16 | 2013-02-05 | Spinecore, Inc. | Intervertebral spacer device having an angled perimeter for manipulation using a surgical tool |
US7160327B2 (en) | 2001-07-16 | 2007-01-09 | Spinecore, Inc. | Axially compressible artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post |
US6562047B2 (en) | 2001-07-16 | 2003-05-13 | Spine Core, Inc. | Vertebral bone distraction instruments |
US7635368B2 (en) | 2001-07-16 | 2009-12-22 | Spinecore, Inc. | Intervertebral spacer device having simultaneously engageable angled perimeters for manipulation using a surgical tool |
US20030014115A1 (en) | 2001-07-16 | 2003-01-16 | Ralph James D. | Insertion tool for use with intervertebral spacers |
US6478801B1 (en) | 2001-07-16 | 2002-11-12 | Third Millennium Engineering, Llc | Insertion tool for use with tapered trial intervertebral distraction spacers |
US20030028251A1 (en) | 2001-07-30 | 2003-02-06 | Mathews Hallett H. | Methods and devices for interbody spinal stabilization |
US6375682B1 (en) | 2001-08-06 | 2002-04-23 | Lewis W. Fleischmann | Collapsible, rotatable and expandable spinal hydraulic prosthetic device |
ATE398431T1 (de) * | 2001-08-24 | 2008-07-15 | Zimmer Gmbh | Künstliche bandscheibe |
US6652533B2 (en) | 2001-09-20 | 2003-11-25 | Depuy Acromed, Inc. | Medical inserter tool with slaphammer |
ITRM20010628A1 (it) | 2001-10-23 | 2003-04-23 | Univ Roma | Protesi d'anca e relativo metodo di progettazione. |
US7025787B2 (en) | 2001-11-26 | 2006-04-11 | Sdgi Holdings, Inc. | Implantable joint prosthesis and associated instrumentation |
US20030171812A1 (en) | 2001-12-31 | 2003-09-11 | Ilan Grunberg | Minimally invasive modular support implant device and method |
US7105023B2 (en) | 2002-01-17 | 2006-09-12 | Concept Matrix, L.L.C. | Vertebral defect device |
US7011684B2 (en) * | 2002-01-17 | 2006-03-14 | Concept Matrix, Llc | Intervertebral disk prosthesis |
ATE363878T1 (de) | 2002-03-12 | 2007-06-15 | Cervitech Inc | Zwischenwirbelprothese, insbesondere für die halswirbelsäule |
AU2002346916B2 (en) | 2002-03-12 | 2008-08-07 | Cervitech, Inc. | Intravertebral prosthesis |
US20030176921A1 (en) | 2002-03-13 | 2003-09-18 | Lawson Kevin Jon | Two-part prosthetic nucleus replacement for surgical reconstruction of intervertebral discs |
EP2246012A2 (de) | 2002-03-30 | 2010-11-03 | Infinity Orthopaedics Company, Ltd. | Intervertebrale Vorrichtung |
CN100574728C (zh) | 2002-03-30 | 2009-12-30 | 无限整形外科有限公司 | 椎间盘置换装置及系统 |
US20080027548A9 (en) | 2002-04-12 | 2008-01-31 | Ferree Bret A | Spacerless artificial disc replacements |
US20040093082A1 (en) | 2002-04-19 | 2004-05-13 | Ferree Bret A. | Mobile-bearing artificial disc replacement |
US20040030390A1 (en) | 2002-04-23 | 2004-02-12 | Ferree Bret A. | Intradiscal component installation apparatus and methods |
US20040030391A1 (en) * | 2002-04-24 | 2004-02-12 | Bret Ferree | Artificial intervertebral disc spacers |
US20030204362A1 (en) | 2002-04-24 | 2003-10-30 | Leigh-Anne Beresford | Electronic vehicle log |
US7179294B2 (en) | 2002-04-25 | 2007-02-20 | Warsaw Orthopedic, Inc. | Articular disc prosthesis and method for implanting the same |
US7338525B2 (en) * | 2002-04-30 | 2008-03-04 | Ferree Bret A | Methods and apparatus for preventing the migration of intradiscal devices |
JP4388468B2 (ja) | 2002-05-06 | 2009-12-24 | ウォーソー・オーソペディック・インコーポレーテッド | 隣接する椎骨を離すための器具 |
US7572276B2 (en) * | 2002-05-06 | 2009-08-11 | Warsaw Orthopedic, Inc. | Minimally invasive instruments and methods for inserting implants |
US7235102B2 (en) | 2002-05-10 | 2007-06-26 | Ferree Bret A | Prosthetic components with contained compressible resilient members |
US7001433B2 (en) | 2002-05-23 | 2006-02-21 | Pioneer Laboratories, Inc. | Artificial intervertebral disc device |
US8388684B2 (en) * | 2002-05-23 | 2013-03-05 | Pioneer Signal Technology, Inc. | Artificial disc device |
US6770095B2 (en) | 2002-06-18 | 2004-08-03 | Depuy Acroned, Inc. | Intervertebral disc |
US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
US20040133132A1 (en) | 2002-09-19 | 2004-07-08 | Chappuis James L. | Interdiscal tensiometer apparatus and method of use |
US20040068321A1 (en) | 2002-10-04 | 2004-04-08 | Ferree Bret A. | Reduced-friction artificial disc replacements |
US7156876B2 (en) | 2002-10-09 | 2007-01-02 | Depuy Acromed, Inc. | Intervertebral motion disc having articulation and shock absorption |
US7063725B2 (en) | 2002-10-21 | 2006-06-20 | Sdgi Holdings, Inc. | Systems and techniques for restoring and maintaining intervertebral anatomy |
AU2003267215B2 (en) | 2002-10-29 | 2008-12-04 | Spinecore, Inc. | Instrumentation, methods, and features for use in implanting an artificial intervertebral disc |
CA2502292C (en) | 2002-10-31 | 2011-07-26 | Spinal Concepts, Inc. | Movable disc implant |
US20040133278A1 (en) | 2002-10-31 | 2004-07-08 | Marino James F. | Spinal disc implant |
US20040098129A1 (en) | 2002-11-13 | 2004-05-20 | Jo-Wen Lin | Spinal implant insertion adjustment instrument and implants for use therewith |
JP2006507090A (ja) | 2002-11-21 | 2006-03-02 | エスディージーアイ・ホールディングス・インコーポレーテッド | 椎骨内整復のためのシステム |
US7204852B2 (en) | 2002-12-13 | 2007-04-17 | Spine Solutions, Inc. | Intervertebral implant, insertion tool and method of inserting same |
US20040148028A1 (en) | 2002-12-19 | 2004-07-29 | Ferree Bret A. | Artificial disc replacement (ADR) extraction methods and apparatus |
US20040167626A1 (en) | 2003-01-23 | 2004-08-26 | Geremakis Perry A. | Expandable artificial disc prosthesis |
US20040186577A1 (en) | 2003-01-29 | 2004-09-23 | Ferree Bret A. | In situ artificaial disc replacements and other prosthetic components |
US7828849B2 (en) * | 2003-02-03 | 2010-11-09 | Warsaw Orthopedic, Inc. | Expanding interbody implant and articulating inserter and method |
US7235101B2 (en) | 2003-09-15 | 2007-06-26 | Warsaw Orthopedic, Inc. | Revisable prosthetic device |
US7364589B2 (en) * | 2003-02-12 | 2008-04-29 | Warsaw Orthopedic, Inc. | Mobile bearing articulating disc |
US6908484B2 (en) | 2003-03-06 | 2005-06-21 | Spinecore, Inc. | Cervical disc replacement |
US20050143824A1 (en) | 2003-05-06 | 2005-06-30 | Marc Richelsoph | Artificial intervertebral disc |
WO2004104838A1 (ja) | 2003-05-21 | 2004-12-02 | Fujitsu Limited | データアクセス応答システム、ストレージシステム、クライアント装置、キャッシュ装置、およびデータアクセス応答システムへのアクセス方法 |
US6984246B2 (en) | 2003-06-06 | 2006-01-10 | Tain-Yew Shi | Artificial intervertebral disc flexibly oriented by spring-reinforced bellows |
US7537612B2 (en) | 2003-06-20 | 2009-05-26 | Warsaw Orthopedic, Inc. | Lumbar composite nucleus |
ES2338886T3 (es) | 2003-06-27 | 2010-05-13 | Memometal Technologies Sas | Sistema de artroplastia de tobillo. |
DE20310433U1 (de) | 2003-07-08 | 2003-09-04 | Aesculap AG & Co. KG, 78532 Tuttlingen | Chirurgisches Instrument zum Handhaben eines Implantats |
DE10330698B4 (de) | 2003-07-08 | 2005-05-25 | Aesculap Ag & Co. Kg | Zwischenwirbelimplantat |
WO2005004756A2 (de) | 2003-07-12 | 2005-01-20 | Scolio Gmbh | Bandscheibenprothese |
CN1845713B (zh) | 2003-07-17 | 2010-06-02 | 精密技术公司 | 活动支承件膝盖假体 |
US7803162B2 (en) | 2003-07-21 | 2010-09-28 | Spine Solutions, Inc. | Instruments and method for inserting an intervertebral implant |
US7722673B2 (en) | 2003-07-22 | 2010-05-25 | Cervitech, Inc. | Intervertebral disc prosthesis |
US7806932B2 (en) | 2003-08-01 | 2010-10-05 | Zimmer Spine, Inc. | Spinal implant |
US20060229627A1 (en) | 2004-10-29 | 2006-10-12 | Hunt Margaret M | Variable angle spinal surgery instrument |
US20050038516A1 (en) * | 2003-08-14 | 2005-02-17 | Mark Spoonamore | Intervertebral disk prosthesis and method |
US20050048661A1 (en) | 2003-08-25 | 2005-03-03 | Droit Jimmy L. | Methods and apparatus for analyzing materials |
US20050071012A1 (en) | 2003-09-30 | 2005-03-31 | Hassan Serhan | Methods and devices to replace spinal disc nucleus pulposus |
US7628813B2 (en) | 2003-10-20 | 2009-12-08 | Cervitech, Inc. | Cervical intervertebral prosthesis system |
FR2861582B1 (fr) * | 2003-10-29 | 2006-02-10 | Eurosurgical | Cage intersomatique pour fusion lombaire par abord transforaminal et son dispositif porte cage |
US20050119752A1 (en) | 2003-11-19 | 2005-06-02 | Synecor Llc | Artificial intervertebral disc |
US7503935B2 (en) | 2003-12-02 | 2009-03-17 | Kyphon Sarl | Method of laterally inserting an artificial vertebral disk replacement with translating pivot point |
DE102004027986A1 (de) | 2003-12-22 | 2005-07-21 | Meisel, Hans Jörg, Dr. med. | Bauteilanordnung und Bauteil für eine Prothese |
DE10361166A1 (de) | 2003-12-22 | 2005-07-28 | Meisel, Jörg, Dr. | Bauteilanordnung für eine Prothese |
US7556651B2 (en) | 2004-01-09 | 2009-07-07 | Warsaw Orthopedic, Inc. | Posterior spinal device and method |
US7875077B2 (en) | 2004-01-09 | 2011-01-25 | Warsaw Orthopedic, Inc. | Support structure device and method |
US7235103B2 (en) | 2004-01-13 | 2007-06-26 | Rivin Evgeny I | Artificial intervertebral disc |
US7250060B2 (en) | 2004-01-27 | 2007-07-31 | Sdgi Holdings, Inc. | Hybrid intervertebral disc system |
US7214244B2 (en) | 2004-02-19 | 2007-05-08 | Spinecore, Inc. | Artificial intervertebral disc having an articulating joint |
US7811292B2 (en) | 2004-03-02 | 2010-10-12 | Aesculap Implant Systems, Inc. | Surgical instrument for implants |
US8021428B2 (en) | 2004-06-30 | 2011-09-20 | Depuy Spine, Inc. | Ceramic disc prosthesis |
US20060020342A1 (en) | 2004-07-21 | 2006-01-26 | Ferree Bret A | Facet-preserving artificial disc replacements |
WO2006016384A1 (en) | 2004-08-12 | 2006-02-16 | Sintea Biotech S.P.A. | Disc prosthesis |
US20060069436A1 (en) | 2004-09-30 | 2006-03-30 | Depuy Spine, Inc. | Trial disk implant |
WO2006042484A1 (de) | 2004-10-18 | 2006-04-27 | Buettner-Janz Karin | Gewinkelter gleitkern als teil einer bandscheibenendoprothese |
WO2006042487A1 (de) | 2004-10-18 | 2006-04-27 | Buettner-Janz Karin | Bandscheibenendoprothese mit zylindrischen artikulationsflächen |
WO2006042486A1 (de) | 2004-10-18 | 2006-04-27 | Buettner-Janz Karin | Bandscheibenendoprothese mit bewegungsadaptiertem rand für die lenden- und halswirbelsäule |
DE102004059298B3 (de) | 2004-12-09 | 2006-07-13 | Aesculap Ag & Co. Kg | Bausatz für ein Zwischenwirbelimplantat und Zwischenwirbelimplantat |
DE202005005405U1 (de) | 2005-03-31 | 2005-06-16 | Aesculap Ag & Co. Kg | Implantat |
US7959675B2 (en) | 2005-04-08 | 2011-06-14 | G&L Consulting, Llc | Spine implant insertion device and method |
US8202320B2 (en) | 2005-10-31 | 2012-06-19 | Depuy Spine, Inc. | Intervertebral disc prosthesis |
EP2295792B1 (de) | 2006-02-02 | 2016-11-02 | Minesto AB | Tauchfähige Anlage |
GB0604061D0 (en) | 2006-03-01 | 2006-04-12 | Invibio Ltd | Polymetric materials |
US7645832B2 (en) | 2006-03-08 | 2010-01-12 | Exxonmobil Chemical Patents Inc. | Use of metal oxides and salts to enhance adhesion to steels |
US7976549B2 (en) | 2006-03-23 | 2011-07-12 | Theken Spine, Llc | Instruments for delivering spinal implants |
US8118872B2 (en) | 2006-08-10 | 2012-02-21 | Pioneer Surgical Technology, Inc. | System and methods for inserting a spinal disc device into an intervertebral space |
US8641764B2 (en) | 2006-10-11 | 2014-02-04 | G&L Consulting, Llc | Spine implant insertion device and method |
US20080288081A1 (en) | 2007-05-16 | 2008-11-20 | Joel Scrafton | Implant articular surface wear reduction system |
-
2003
- 2003-10-22 US US10/692,468 patent/US8388684B2/en not_active Expired - Fee Related
-
2004
- 2004-10-22 BR BRPI0415676-5A patent/BRPI0415676A/pt not_active Application Discontinuation
- 2004-10-22 CA CA002543214A patent/CA2543214A1/en not_active Abandoned
- 2004-10-22 EP EP04796064A patent/EP1682035A4/de not_active Withdrawn
- 2004-10-22 CN CN2004800374555A patent/CN101193607B/zh not_active Expired - Fee Related
- 2004-10-22 AU AU2004285471A patent/AU2004285471B2/en not_active Ceased
- 2004-10-22 WO PCT/US2004/035004 patent/WO2005041818A2/en active Application Filing
- 2004-10-22 US US10/971,734 patent/US8241360B2/en not_active Expired - Fee Related
- 2004-10-22 CN CN2010105732900A patent/CN102038563A/zh active Pending
- 2004-10-22 JP JP2006536812A patent/JP2008502372A/ja active Pending
-
2012
- 2012-08-14 US US13/585,607 patent/US9351852B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5425773A (en) | 1992-01-06 | 1995-06-20 | Danek Medical, Inc. | Intervertebral disk arthroplasty device |
Non-Patent Citations (1)
Title |
---|
See also references of EP1682035A4 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007127583A1 (en) * | 2006-04-27 | 2007-11-08 | Warsaw Orthopedic, Inc. | Expanadable intervertebral spacers and methods of use |
US7794501B2 (en) | 2006-04-27 | 2010-09-14 | Wasaw Orthopedic, Inc. | Expandable intervertebral spacers and methods of use |
US9693872B2 (en) | 2006-09-15 | 2017-07-04 | Pioneer Surgical Technology, Inc. | Intervertebral disc implant |
EP2063817A2 (de) * | 2006-09-15 | 2009-06-03 | Pioneer Surgical Technology, Inc. | Gelenkarthroplastie-vorrichtung mit beweglichen elementen |
US10080667B2 (en) | 2006-09-15 | 2018-09-25 | Pioneer Surgical Technology, Inc. | Intervertebral disc implant |
EP2063817A4 (de) * | 2006-09-15 | 2012-04-18 | Pioneer Surgical Technology Inc | Gelenkarthroplastie-vorrichtung mit beweglichen elementen |
WO2008076181A2 (en) * | 2006-12-14 | 2008-06-26 | Depuy Spine, Inc. | Buckling disc replacement |
WO2008076181A3 (en) * | 2006-12-14 | 2009-04-30 | Depuy Spine Inc | Buckling disc replacement |
WO2009071044A1 (de) * | 2007-12-04 | 2009-06-11 | Global Medical Consulting Gmbh | Bandscheibenprothese |
US8764834B2 (en) | 2007-12-04 | 2014-07-01 | Global Medical Consulting Gmbh | Intervertebral disk prosthesis |
WO2011046459A1 (pt) * | 2009-10-14 | 2011-04-21 | Manuel Laranjeira Gomes | Dispositivo ajustável para substituição de discos intervertebrais da coluna |
US10159514B2 (en) | 2011-12-23 | 2018-12-25 | Pioneer Surgical Technology, Inc. | Method of implanting a bone plate |
US10980575B2 (en) | 2011-12-23 | 2021-04-20 | Pioneer Surgical Technology, Inc. | Instrument for inserting a spinal device |
US11696786B2 (en) | 2011-12-23 | 2023-07-11 | Pioneer Surgical Technology, Inc. | Instrument for inserting a spinal device |
EP2890332A4 (de) * | 2012-08-30 | 2016-04-20 | Interventional Spine Inc | Künstliche scheibe |
US9883951B2 (en) | 2012-08-30 | 2018-02-06 | Interventional Spine, Inc. | Artificial disc |
US11147682B2 (en) | 2017-09-08 | 2021-10-19 | Pioneer Surgical Technology, Inc. | Intervertebral implants, instruments, and methods |
USD907771S1 (en) | 2017-10-09 | 2021-01-12 | Pioneer Surgical Technology, Inc. | Intervertebral implant |
USD968613S1 (en) | 2017-10-09 | 2022-11-01 | Pioneer Surgical Technology, Inc. | Intervertebral implant |
Also Published As
Publication number | Publication date |
---|---|
JP2008502372A (ja) | 2008-01-31 |
CN102038563A (zh) | 2011-05-04 |
US20050033437A1 (en) | 2005-02-10 |
CN101193607A (zh) | 2008-06-04 |
WO2005041818A3 (en) | 2007-11-15 |
BRPI0415676A (pt) | 2006-12-19 |
US8241360B2 (en) | 2012-08-14 |
AU2004285471A1 (en) | 2005-05-12 |
US20120310287A1 (en) | 2012-12-06 |
EP1682035A2 (de) | 2006-07-26 |
CA2543214A1 (en) | 2005-05-12 |
AU2004285471B2 (en) | 2010-11-25 |
US9351852B2 (en) | 2016-05-31 |
US20050192671A1 (en) | 2005-09-01 |
CN101193607B (zh) | 2013-03-27 |
US8388684B2 (en) | 2013-03-05 |
EP1682035A4 (de) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8241360B2 (en) | Artificial disc device | |
US20220362033A1 (en) | Expandable vertebral prosthesis | |
US10993813B2 (en) | Prosthetic spinal disc replacement and methods thereof | |
US7887589B2 (en) | Minimally invasive spinal disc stabilizer and insertion tool | |
US10105233B2 (en) | Anterior prosthetic spinal disc replacement | |
US8715350B2 (en) | Systems and methods for securing an implant in intervertebral space | |
US9579124B2 (en) | Expandable articulating intervertebral implant with limited articulation | |
US8608752B2 (en) | Trial intervertebral distraction spacers | |
US20050075644A1 (en) | Methods and apparatuses for minimally invasive replacement of intervertebral discs | |
CA2731048A1 (en) | Modular nucleus pulposus prosthesis | |
EP1659993A2 (de) | Bandscheibenprothese und verfahren | |
NZ518892A (en) | Modular anatomic fusion device for promoting fusion of adjacent vertebral bodies. | |
EP3470022B1 (de) | Bandscheibenspacer und einführinstrument | |
JP6596026B2 (ja) | 人工脊椎円板置換及びその方法 | |
KR20070020385A (ko) | 인공 원반 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480037455.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2543214 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006536812 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004285471 Country of ref document: AU |
|
REEP | Request for entry into the european phase |
Ref document number: 2004796064 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004796064 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2004285471 Country of ref document: AU Date of ref document: 20041022 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004285471 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067009935 Country of ref document: KR Ref document number: 1790/CHENP/2006 Country of ref document: IN |
|
WWP | Wipo information: published in national office |
Ref document number: 2004796064 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0415676 Country of ref document: BR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067009935 Country of ref document: KR |