WO2005029566A1 - 半導体装置の製造方法および基板処理装置 - Google Patents
半導体装置の製造方法および基板処理装置 Download PDFInfo
- Publication number
- WO2005029566A1 WO2005029566A1 PCT/JP2004/013678 JP2004013678W WO2005029566A1 WO 2005029566 A1 WO2005029566 A1 WO 2005029566A1 JP 2004013678 W JP2004013678 W JP 2004013678W WO 2005029566 A1 WO2005029566 A1 WO 2005029566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- substrate
- temperature
- semiconductor device
- manufacturing
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
- C23C16/463—Cooling of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4408—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4411—Cooling of the reaction chamber walls
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S414/00—Material or article handling
- Y10S414/135—Associated with semiconductor wafer handling
- Y10S414/136—Associated with semiconductor wafer handling including wafer orienting means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S414/00—Material or article handling
- Y10S414/135—Associated with semiconductor wafer handling
- Y10S414/137—Associated with semiconductor wafer handling including means for charging or discharging wafer cassette
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S414/00—Material or article handling
- Y10S414/135—Associated with semiconductor wafer handling
- Y10S414/139—Associated with semiconductor wafer handling including wafer charging or discharging means for vacuum chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/905—Cleaning of reaction chamber
Definitions
- the present invention relates to a method for manufacturing a semiconductor device and a substrate processing apparatus, and more particularly to a method for manufacturing a semiconductor device and a substrate processing apparatus by chemical vapor deposition (CVD) processing, wherein fine particles generated in a manufacturing process are removed.
- the present invention relates to a semiconductor device manufacturing method and a substrate processing apparatus for the purpose of reduction.
- a substrate to be processed such as a wafer is subjected to a film forming process by a chemical vapor deposition (CVD) method.
- CVD chemical vapor deposition
- the film forming process is performed, for example, as follows. That is, a predetermined number of wafers are loaded on the boat. The wafer loaded on the boat is loaded into the reactor. The inside of the reaction furnace is evacuated, a reaction gas is introduced into the reaction furnace, and a film is formed on the wafer.
- the inside of the reaction furnace is returned to the atmospheric pressure, and the boat is unloaded. Cool the boat with the boat completely pulled out of the furnace. At the same time, the temperature inside the reactor is lowered and a gas purge (reduced pressure N2 purge) is performed. As a result, the stress of the deposited film attached to the inner wall of the reactor is increased to cause a crack in the deposited film, and fine particles generated when the crack occurs are discharged by a gas purge (see Japanese Patent Laid-Open Publication No. 2000-306904). ).
- a main object of the present invention is to provide a method of manufacturing a semiconductor device and a substrate processing apparatus which are excellent in particle reduction effect and can improve productivity.
- a method for manufacturing a semiconductor device comprising:
- a method for manufacturing a semiconductor device comprising:
- the temperature in the furnace is increased without the substrate in the reaction furnace. Lowering the temperature to a temperature lower than the film temperature, supplying gas into the furnace, and evacuating using a gas exhaust line different from the gas exhaust line used in the film forming process;
- a method for manufacturing a semiconductor device comprising:
- a method for manufacturing a semiconductor device comprising:
- a film forming gas supply line for supplying a film forming gas into the reaction furnace
- Transfer means for loading and unloading the substrate into and from the reaction furnace; forced cooling means for forcibly cooling the reaction furnace;
- control means for controlling a forced cooling means so as to forcibly cool the inside of the reaction furnace in a state where the substrate is not present in the reaction furnace.
- a substrate processing apparatus is provided.
- FIG. 1 is a schematic longitudinal sectional view illustrating a substrate processing apparatus according to a preferred embodiment of the present invention.
- FIG. 2 is a schematic longitudinal sectional view illustrating a substrate processing apparatus according to a preferred embodiment of the present invention.
- FIG. 3 is a view showing a wafer processing flow according to a preferred embodiment of the present invention.
- FIG. 4 is a graph showing a relationship between a temperature drop width and particles during LTP according to the first embodiment of the present invention.
- FIG. 5 is a diagram showing a relationship between a temperature drop rate and particles when performing LTP according to a second embodiment of the present invention.
- FIG. 6 is a diagram illustrating a relationship between a cumulative film thickness and particles when performing LTP according to a third embodiment of the present invention.
- the temperature of the inside of the reaction furnace is reduced by 10 ° C./min or more, preferably 20 ° C./min or more by a heater equipped with a quenching mechanism with the substrate taken out of the reaction furnace.
- a heater equipped with a quenching mechanism with the substrate taken out of the reaction furnace By rapidly cooling at a rate, cracks are forcibly generated in the deposited film formed in the reactor during the semiconductor manufacturing process, and fine particles generated when the cracks are generated are forcibly discharged by an atmospheric pressure gas purge.
- the frequency of cleaning the reactor is reduced to improve the productivity.
- FIGS. 1 and 2 is a hot-type batch processing type vertical semiconductor manufacturing apparatus.
- FIG. 1 shows a state in which a boat 9 loaded with a wafer 10 is loaded into the reaction furnace 1 and the lower opening of the furnace flange 2 is closed with a furnace seal seal 12.
- FIG. 2 shows a state where the wafer 10 is loaded. The unloaded boat 9 is unloaded from the reaction furnace 1 to the transfer chamber 11, and the lower opening of the furnace flange 2 is closed by the furnace gate valve 13.
- the reaction furnace 1 is made of a metal furnace flange 2, a quartz flange tube 3 airtightly mounted on the furnace flange 2, a quartz inner tube 4 concentrically arranged in a quartz radius tube 3, and a stone radius tube.
- a hot wall type reaction furnace is constituted by a heater 5 and the like provided outside the quartz outer tube 3 so as to surround the quartz outer tube 3.
- a forced cooling mechanism 40 is provided so as to cover the quartz outer tube 3 and the heater 5.
- the forced cooling mechanism 40 includes a heat insulating nozzle 41 provided to cover the quartz water tube 3 and the heater 5, a supply line 42 provided in communication with the inner space of the heat insulating cover 41, and a ceiling part of the heat insulating bar 41. Is provided in communication with the internal space of the heat insulating cover 41 through the exhaust hole 44 of Exhaust line 43 provided.
- the supply line 42 is provided with an introduction blower 45 and a shirt 46.
- the exhaust line 43 is provided with a shirt 47, a radiator 48, and an exhaust blower 49.
- gas introduction lines 6, 7 for introducing a reaction gas are connected, and an exhaust line 30 is also connected.
- the gas introduction lines 6 and 7 are connected to a part of the furnace flange 2 below the lower end of the quartz inner tube 4.
- the exhaust line 30 is connected to a portion of the furnace flange 2 below the lower end of the quartz outer tube 3 and above the lower end of the quartz inner tube 4.
- the exhaust line 30 is connected to a main exhaust line 31 communicating with an exhaust device 8 such as a vacuum pump, a high flow vent (HFV: High Flow Vent) line 32 branched from the main exhaust line 31, and a branch from the main exhaust line 31.
- HV High Flow Vent
- APC knob as a main knob is provided downstream of the branch point of the main exhaust line 31 with the high flow vent line 32.
- a slow exhaust line is provided to bypass this APC valve!
- No-flow vent line 32 communicates with the exhaust system of the facilities accompanying the building.
- the vent flow line 32 is set so that the exhaust flow rate is larger than that of the main exhaust line 31, the slow exhaust line (not shown), and the over-pressurization prevention line 33. It can flow.
- the inner diameter of the high flow vent line 32 is smaller than the inner diameter of the main exhaust line 31 and is larger than the inner diameter of the slow exhaust line (not shown) and the overpressurization prevention line 33.
- the high flow vent line 32 has a valve 35. By switching this valve 35 and the APC valve, the exhaust route can be switched between the main exhaust line 31 and the high flow vent line 32! / ⁇ You.
- the over-pressurization prevention line 33 includes a valve 36 and a check valve 37.
- the check valve 37 is opened and the main valve 37 is opened via the check valve 37. Since the atmosphere in the exhaust line 31 is exhausted, it is possible to prevent the inside of the main exhaust line 31, that is, the inside of the reaction furnace 1 from being over-pressurized to the atmospheric pressure or more.
- a boat elevator 15 is provided as a boat transfer (elevation) means, and the boat 9 is moved up and down to load and unload the boat 9 into the reactor 1. Mr It has become. Wafers 10 as substrates to be processed are loaded into a boat 9 in a horizontal position in multiple stages with a gap therebetween.
- the boat 9 can be made of, for example, quartz.
- the control device 20 controls heating by the heater 5, cooling by the forced cooling device 40, gas introduction by the gas introduction lines 6 and 7, selection of an exhaust line by switching valves, exhaust by the exhaust line, and the like.
- a substrate transfer chamber 11 is provided below the reaction furnace 1, and in a state where the boat 9 is lowered into the substrate transfer chamber 11, the substrate transfer machine 11 (not shown) transfers the substrate 9 to the boat 9 in a predetermined manner.
- a number of wafers 10 are loaded (Wafer Charge).
- the atmosphere in the reaction furnace 1 is maintained at the atmospheric pressure, and an inert gas, for example, N is introduced into the reaction furnace 1 in parallel with the loading of the wafer 10 into the boat 9.
- the temperature inside the reactor 1 was set to 600 ° C.
- the boat 9 is lifted by the boat elevator 15, and the boat 9 is loaded into the reactor 1 set at a temperature of 600 ° C (Boat Load).
- the inside of the reactor 1 is gently evacuated by the exhaust device 8 via the slow exhaust line (Slow Pump).
- the APC valve is opened and the inside of the reactor 1 is evacuated by the exhaust device 8 through the main exhaust line 31 to reach the predetermined pressure.
- the temperature in the reactor 1 was raised from 600 ° C to 730 ° C-800 ° C, for example, to a film forming temperature of 760 ° C (Ramp Up), and the wafer temperature reached the film forming temperature and was stabilized.
- the reaction gas is introduced into the reaction furnace 1 from the gas introduction lines 6 and 7, and the film is formed on the wafer 10.
- a SiN film silicon nitride film, hereinafter referred to as SiN
- the inside of the reactor 1 is kept at a film forming temperature of 730 ° C. to 800 ° C.
- the force of reducing the furnace temperature from 760 ° C to 700 ° C before unloading the boat 9 This is to increase the boat unloading speed. That is, when the temperature in the reaction furnace 1 at the time of boat unloading is lower than the film forming temperature (760 ° C) and the temperature (700 ° C) is set, the temperature difference in the wafer surface at the time of boat unloading is reduced. It can be reduced, and the amount of wafer deflection is also reduced. In such a state, the boat can be downed to a certain speed without adversely affecting the wafer. In addition, the temperature is slightly lowered to reduce the thermal effect on peripheral members when the boat is unloaded.
- the opening of the reactor (boat entrance / exit), that is, the opening of the furnace flange 2 is hermetically closed by the furnace rogate valve 13 (see FIG. 2).
- the wafer 10 after the film forming process is cooled in the substrate transfer chamber 11 (Wafer Cool).
- the wafer 10 is discharged from the boat 9 by a substrate transfer machine (not shown) (WZF Discharge).
- the inside of the hermetically closed reactor 1 is purged with an inert gas at atmospheric pressure using an inert gas. For example, perform N purge.
- an inert gas For example, perform N purge.
- the temperature in the reaction furnace 1 is increased by the forced cooling mechanism 40 to a cooling rate higher than the cooling rate during natural air cooling ( ⁇ 3 ° C / min). Descent ) To rapidly change the furnace temperature.
- the response of the deposited film adhered to the inside of the reactor 1 is increased more than in the case of the natural air cooling, and a thermal stress is actively generated, so that the deposited film is forcibly cracked more than in the natural air cooling.
- the fine particles scattered due to the cracks are forcibly and efficiently discharged out of the reactor by purging the furnace at atmospheric pressure.
- the furnace temperature is lowered by the forced cooling mechanism 40, the shirts 46 and 47 are opened, the exhaust gas blower 49 exhausts the high-temperature atmosphere gas in the heat insulating cover 41, and the introduction blower 45 air and N A cooling medium such as is introduced into the heat insulating cover 41.
- the temperature lowering rate is at least 10 ° CZmin or more, preferably 20 ° CZmin or more.
- the temperature in the furnace is set so that the temperature in the reactor 1 is reduced to at least about 1Z2 (50%) or less of the film forming temperature. That is, the temperature drop width (amount) is at least about 1Z2 (50%) or more of the film forming temperature. For example, when the film forming temperature is about 730 to 800 ° C, the temperature in the reactor 1 is set to decrease to 800 ° C even to 400 ° C.
- the temperature in the reaction furnace 1 is once increased to a temperature higher than the film formation temperature, and then increased to a temperature lower than the film formation temperature. You may.
- the temperature in the reactor 1 is higher than the furnace temperature (700 ° C.) at the time of boat down and higher than the film forming temperature (760 ° C.).
- the temperature is raised to 40 ° C at a rate of 40 ° CZ min, and then lowered to a temperature of 400 ° C, which is lower than the deposition temperature, at a rate of 20 ° CZmin.
- the temperature drop temperature difference
- the heating time can be shortened.
- the temperature rise before the furnace temperature drop is performed in order to increase the temperature difference (temperature drop width) without lowering the temperature drop end point temperature so much. It can be omitted, but in this case, the temperature difference (temperature drop width) becomes small, and the particle reduction effect decreases.
- it is necessary to lower the temperature drop end temperature in order to increase the temperature difference (temperature drop width) in order to increase the temperature difference (temperature drop width), but this will increase the temperature rise time after the temperature drop and increase the throughput. becomes worse.
- Gas purging using an inert gas in the reactor 1 at the same time as forced cooling in the furnace is said to have a greater particle removing effect when performed at atmospheric pressure than when performed under reduced pressure.
- This can be said to be due to the fact that the energy for transporting a foreign substance containing many molecules and atoms is larger in the atmospheric pressure state than in the depressurized state.
- N molecules are exhausted under reduced pressure by a vacuum pump such as a turbo molecular pump, the N
- the gas flow rate is slow, for example, about 10 cmZ, but N molecules are densely present in the gas flow and collide with particles.
- the generated particles will fall onto the furnace port gate valve 13.
- the particles that have fallen onto the furnace rogate valve 13 are retracted to the retreat position 14 outside the furnace while being held on the furnace rogate valve 13 when performing the next film formation. That is, at the time of performing the next film formation, the particles can be made not to exist in the furnace, and the next processing is not affected.
- a groove is provided on the upper surface of the furnace rogate valve 13, and the dropped particle can be stored in the groove so that when the furnace rogate valve 13 is moved to the evacuation position 14, the particle is prevented from falling. can do.
- a particle removing mechanism may be provided at the retreat position 14 to retreat the furnace port gate valve 13 so that particles on the furnace port gate valve can be removed in the meantime! ,.
- the wafer 10 is unloaded from the reaction furnace 1 and the temperature in the reaction furnace 1 is kept at least 10 ° CZmin or more, preferably 20 ° CZmin or more in a state where the reaction furnace 1 is airtightly closed.
- a series of operations for purging an inert gas in the reactor 1 at atmospheric pressure while lowering the film forming temperature by about 1Z2 or more at the temperature lowering rate is performed by the control means 20 by the heater 5, the forced cooling device 40, the gas supply system, This is performed by controlling the exhaust system and the like.
- the furnace purge performed in this way is called low temperature purge or LTP (Low Temperature Purge).
- a preferred rate of temperature rise in the LTP before the temperature in the furnace is increased is 3 ° CZmin or more, more preferably 10-100 ° CZmin, and even more preferably 30-100 ° CZmin. Further, a preferable cooling rate when the temperature in the furnace is lowered is 3 ° CZmin or more, more preferably 10-100 ° CZmin, further preferably 20-100 ° CZmin.
- the wafer 10 of the next batch is a predetermined number loaded into the boat 9 by the substrate transfer machine (Wafer charge) 0 This At the same time, the furnace temperature is raised to a standby temperature, for example, 600 ° C.
- the boat 10 is loaded with the wafer 10
- the boat 9 is lifted by the boat elevator 15, the boat 9 is loaded into the reactor 1 (Boat Load), and the processing of the next batch is continued.
- the temperature in the furnace is raised from 400 ° C to 600 ° C in the next film formation. This is to shorten the furnace heating time after loading the boat and shorten the total film formation time. If the furnace temperature is kept at 400 ° C, the end point temperature of LTP, after the LTP, the boat is loaded at 400 ° C for the next film formation, and then the furnace temperature is increased from 400 ° C to 760 ° C. It is necessary to raise the temperature by 360 ° C, and the temperature rise time becomes longer.
- furnace temperature is raised to 600 ° C and maintained after LTP, boat loading is performed at 600 ° C for the next film formation, and then the furnace temperature is increased from 600 ° C to 760 ° C by only 160 ° C. If the temperature is raised, the time required to raise the temperature can be shortened. Note that if the furnace temperature during boat loading is too high, there is a problem of wafer bouncing, and the furnace temperature is maintained at 600 ° C. in consideration of such a problem.
- the furnace temperature is lowered (reduced) by 800 ° C to 400 ° C at a cooling rate of 20 ° CZmin or more by the forced cooling mechanism 40.
- the stress of the reaction by-product deposited film adhered to the inner surface of the reactor 1 is increased from that of natural air cooling (cooling rate ⁇ 3 ° C / min), and the thermal stress is positively increased.
- forced cracks in the deposited film beyond natural air cooling. Further, by purging the inside of the reactor 1 with atmospheric pressure gas, fine particles scattered due to the generation of cracks are forcibly and efficiently discharged out of the reactor 1.
- the temperature in the furnace during film formation is several hundred degrees higher than the temperature-falling end temperature (400 ° C) in LTP.
- the deposited film that has been once cooled (400 ° C) has been subjected to stress relaxation. New cracks are avoided during the next batch processing of SiN deposition. Further, it is a component that the stress of the deposited film is reduced when the temperature is increased, and the stress of the deposited film is reduced at the time of the film forming process, so that a new crack may be generated at the time of the film forming process. Is even lower.
- cracks in the deposited film are generated in advance, and fine particles accompanying the cracks are forcibly discharged out of the reaction furnace 1 before the ball loading, so that wafer processing can be performed without fine particles. Done. Further, since particles generated by the cracks in the deposited film can be efficiently removed, the reactor 1 may be cleaned before the deposited film is peeled off. In addition, according to the present invention, the period until the deposited film is separated can be greatly extended. Therefore, the interval between cleaning times of the reactor 1 can be greatly extended (until the thickness of the deposited film becomes 25 m).
- SiC has a coefficient of thermal expansion close to that of SiN, there is little stress difference between SiC and SiN. Therefore, when the reaction tubes such as the outer tube 3 and the inner tube 4 are made of SiC, the effect of LTP cannot be expected much. In contrast, SiO (quartz) has a coefficient of thermal expansion of SiN
- the SiN film is formed on a silicon wafer of ⁇ 300mm by the wafer processing method in the above embodiment.
- FIG. 4 shows the measurement results (relationship between temperature drop width and particles in LTP).
- the horizontal axis indicates the temperature drop width (° C) in LTP, and the vertical axis indicates the number of particles (Zwafer) of 0.13 / zm or more attached to the wafer.
- T indicates a TOP (top) wafer
- B indicates a B OTTOM (bottom) wafer.
- Fig. 4 when the temperature drop width is 300 ° C, the number of particles is about 60-70, whereas when the temperature drop width is 400 ° C or less, the number of particles is 40 or less. It turns out that it becomes.
- the particles will be significantly reduced (at least 40 particles or less). be able to.
- a SiN film is formed on a silicon wafer of ⁇ 300 mm.
- the temperature drop width was fixed at 400 ° C.
- the treatment was performed by changing the cooling rate in three ways: 0 ° CZmin, 4 ° C / min, and 20 ° C / min, and the number of particles after the treatment in each case was measured.
- FIG. 5 shows the measurement results (the relationship between the temperature drop rate and particles in LTP).
- the horizontal axis shows the temperature drop rate (° CZmin) in LTP, and the vertical axis shows the number of particles (Zwafer) of 0.13 / zm or more attached to the wafer.
- T indicates a wafer at the top (top)
- B indicates a wafer at the bottom (bottom).
- the cooling rate is 0 ° C / min (that is, when the temperature is not lowered)
- the number of particles is about 460 for TOP and about 60 for BOTTOM.
- the cooling rate was 4 ° C / min, the number of particles was more than 100 for TOP and about 70 for BOTTOM.
- the cooling rate was 20 ° CZmin
- the number of particles was less than 30 for both TOP and BOTTOM. That is, if the temperature drop rate in LTP is set to 20 ° CZmin or more, the number of particles can be significantly reduced (at least 30 or less).
- the cooling route was set to at least 10 ° CZmin or more, the number of parts could be significantly reduced as compared with the case of natural air cooling.
- the SiN film was formed on a silicon wafer of ⁇ 300 mm by the wafer processing method in the above embodiment.
- DCS (SiH CI) and NH were used as the reactive gas, and the deposition temperature was 730 ° C-800 ° C.
- the temperature drop width at LTP was fixed at 400 ° C and the temperature drop rate was fixed at 20 ° CZmin. Since the wafer cooling time is 15 minutes and the wafer collection time is 15 minutes, LTP was performed in parallel with these events within this total time (30 minutes) so that the throughput would not decrease. In this embodiment, the total time of the LTP was 30 minutes (the heating time before the cooling was 10 minutes, and the cooling time was 20 minutes). Under these conditions, continuous batch processing is performed on the wafer, and each notch After the treatment, the number of particles attached to the wafer was measured.
- FIG. 6 shows the measurement results (the relationship between the accumulated film thickness and the particles).
- the horizontal axis indicates the number of continuous batch processing (Run No.)
- the left vertical axis indicates the number of particles (0.1was or more) that adhered to the wafer (pieces of Zwafer)
- the right vertical axis indicates the accumulated film thickness (nm). Is shown.
- TOP indicates the top wafer
- BOTTOM indicates the bottom wafer.
- the bar graph shows the number of particles
- the line graph shows the cumulative film thickness. From Fig. 5, it can be seen that the number of particles is about 50 or less until Run No. 119 (119th batch processing), that is, until the cumulative film thickness becomes 23 m (23000 nm). As a result of further experiments by the present inventors, it was confirmed that the number of particles was 50 or less even when the cumulative film thickness exceeded 25 m (25000 nm).
- the cumulative (deposited) film thickness exceeds: L m (100 nm)
- the number of the parts rapidly increases, and the value far exceeds 200.
- the number of particles is 50 or less even when the cumulative film thickness exceeds 25 m (25000 nm).
- the film thickness deposited in one batch process is 0.15 m (150 nm), and therefore, the number of continuous batch processes capable of forming a film while suppressing the number of particles to 50 or less.
- the force is about 167 times by implementing the present invention, which is about 7 times in the conventional example. That is, according to the present invention, the interval of the cleaning (cleaning) time of the reactor can be greatly extended, and the frequency of cleaning the reactor can be greatly reduced.
- a crack is forcibly generated in a deposited film formed in a reaction furnace before a film forming process, and fine particles accompanying the crack generation are discharged. Therefore, the generation of fine particles can be suppressed during the film forming process, and the high quality film forming process can be performed. And clean the reactor before the deposited film peels off! Therefore, the cleaning time interval becomes longer, the maintainability is improved, the operation rate is improved, and the processing time is not longer than in the past.
- the present invention can be particularly suitably applied to a method of manufacturing a semiconductor device having a film forming step by a CVD method and a substrate processing apparatus capable of suitably performing the film forming step.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005514067A JPWO2005029566A1 (ja) | 2003-09-19 | 2004-09-17 | 半導体装置の製造方法および基板処理装置 |
CN2004800203975A CN1823404B (zh) | 2003-09-19 | 2004-09-17 | 半导体装置的制造方法及衬底处理装置 |
US10/572,396 US7955991B2 (en) | 2003-09-19 | 2004-09-17 | Producing method of a semiconductor device using CVD processing |
US12/404,915 US8636882B2 (en) | 2003-09-19 | 2009-03-16 | Producing method of semiconductor device and substrate processing apparatus |
US13/098,993 US8231731B2 (en) | 2003-09-19 | 2011-05-02 | Substrate processing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-327358 | 2003-09-19 | ||
JP2003327358 | 2003-09-19 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/572,396 A-371-Of-International US7955991B2 (en) | 2003-09-19 | 2004-09-17 | Producing method of a semiconductor device using CVD processing |
US12/404,915 Division US8636882B2 (en) | 2003-09-19 | 2009-03-16 | Producing method of semiconductor device and substrate processing apparatus |
US13/098,993 Division US8231731B2 (en) | 2003-09-19 | 2011-05-02 | Substrate processing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005029566A1 true WO2005029566A1 (ja) | 2005-03-31 |
Family
ID=34372869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/013678 WO2005029566A1 (ja) | 2003-09-19 | 2004-09-17 | 半導体装置の製造方法および基板処理装置 |
Country Status (6)
Country | Link |
---|---|
US (3) | US7955991B2 (ja) |
JP (4) | JPWO2005029566A1 (ja) |
KR (3) | KR100943588B1 (ja) |
CN (3) | CN1823404B (ja) |
TW (3) | TWI360179B (ja) |
WO (1) | WO2005029566A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201422A (ja) * | 2005-12-28 | 2007-08-09 | Tokyo Electron Ltd | 成膜方法及び成膜装置並びに記憶媒体 |
JP2008010685A (ja) * | 2006-06-29 | 2008-01-17 | Tokyo Electron Ltd | 成膜方法及び成膜装置並びに記憶媒体 |
JP2009272367A (ja) * | 2008-05-01 | 2009-11-19 | Hitachi Kokusai Electric Inc | 基板処理装置 |
JP2010093023A (ja) * | 2008-10-07 | 2010-04-22 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法 |
JP2011066106A (ja) * | 2009-09-16 | 2011-03-31 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
JP2013026504A (ja) * | 2011-07-22 | 2013-02-04 | Tokyo Electron Ltd | 熱処理装置 |
JP2013138217A (ja) * | 2013-02-01 | 2013-07-11 | Hitachi Kokusai Electric Inc | 基板処理装置、半導体製造方法、基板処理方法、及び異物除去方法 |
JP2014143421A (ja) * | 2014-02-12 | 2014-08-07 | Hitachi Kokusai Electric Inc | 基板処理装置、半導体製造方法、基板処理方法 |
US9644265B2 (en) | 2013-12-27 | 2017-05-09 | Hitachi Kokusai Electric, Inc. | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer readable recording medium |
US9776202B2 (en) | 2013-03-29 | 2017-10-03 | Tokyo Electron Limited | Driving method of vertical heat treatment apparatus, storage medium and vertical heat treatment apparatus |
Families Citing this family (410)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100943588B1 (ko) * | 2003-09-19 | 2010-02-23 | 가부시키가이샤 히다치 고쿠사이 덴키 | 반도체 장치의 제조 방법 및 기판 처리 장치 |
US8986456B2 (en) | 2006-10-10 | 2015-03-24 | Asm America, Inc. | Precursor delivery system |
WO2008100917A1 (en) * | 2007-02-16 | 2008-08-21 | Caracal, Inc. | Epitaxial growth system for fast heating and cooling |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
JP2010140947A (ja) * | 2008-12-09 | 2010-06-24 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
US8115235B2 (en) * | 2009-02-20 | 2012-02-14 | Intel Corporation | Modulation-doped halo in quantum well field-effect transistors, apparatus made therewith, and methods of using same |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8883270B2 (en) | 2009-08-14 | 2014-11-11 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US8877655B2 (en) | 2010-05-07 | 2014-11-04 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US9793148B2 (en) | 2011-06-22 | 2017-10-17 | Asm Japan K.K. | Method for positioning wafers in multiple wafer transport |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9096931B2 (en) | 2011-10-27 | 2015-08-04 | Asm America, Inc | Deposition valve assembly and method of heating the same |
US9341296B2 (en) | 2011-10-27 | 2016-05-17 | Asm America, Inc. | Heater jacket for a fluid line |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9005539B2 (en) | 2011-11-23 | 2015-04-14 | Asm Ip Holding B.V. | Chamber sealing member |
US9167625B2 (en) | 2011-11-23 | 2015-10-20 | Asm Ip Holding B.V. | Radiation shielding for a substrate holder |
US9202727B2 (en) | 2012-03-02 | 2015-12-01 | ASM IP Holding | Susceptor heater shim |
US8946830B2 (en) | 2012-04-04 | 2015-02-03 | Asm Ip Holdings B.V. | Metal oxide protective layer for a semiconductor device |
TWI622664B (zh) | 2012-05-02 | 2018-05-01 | Asm智慧財產控股公司 | 相穩定薄膜,包括該薄膜之結構及裝置,及其形成方法 |
US8728832B2 (en) | 2012-05-07 | 2014-05-20 | Asm Ip Holdings B.V. | Semiconductor device dielectric interface layer |
US8933375B2 (en) | 2012-06-27 | 2015-01-13 | Asm Ip Holding B.V. | Susceptor heater and method of heating a substrate |
US9558931B2 (en) | 2012-07-27 | 2017-01-31 | Asm Ip Holding B.V. | System and method for gas-phase sulfur passivation of a semiconductor surface |
US9117866B2 (en) | 2012-07-31 | 2015-08-25 | Asm Ip Holding B.V. | Apparatus and method for calculating a wafer position in a processing chamber under process conditions |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9169975B2 (en) | 2012-08-28 | 2015-10-27 | Asm Ip Holding B.V. | Systems and methods for mass flow controller verification |
US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US9324811B2 (en) | 2012-09-26 | 2016-04-26 | Asm Ip Holding B.V. | Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US9640416B2 (en) | 2012-12-26 | 2017-05-02 | Asm Ip Holding B.V. | Single-and dual-chamber module-attachable wafer-handling chamber |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US8894870B2 (en) | 2013-02-01 | 2014-11-25 | Asm Ip Holding B.V. | Multi-step method and apparatus for etching compounds containing a metal |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
KR101552496B1 (ko) * | 2013-04-19 | 2015-09-11 | 도쿄엘렉트론가부시키가이샤 | 기판 처리 장치 및 기판 처리 방법 |
US8993054B2 (en) | 2013-07-12 | 2015-03-31 | Asm Ip Holding B.V. | Method and system to reduce outgassing in a reaction chamber |
US9018111B2 (en) | 2013-07-22 | 2015-04-28 | Asm Ip Holding B.V. | Semiconductor reaction chamber with plasma capabilities |
US9396934B2 (en) | 2013-08-14 | 2016-07-19 | Asm Ip Holding B.V. | Methods of forming films including germanium tin and structures and devices including the films |
US9793115B2 (en) | 2013-08-14 | 2017-10-17 | Asm Ip Holding B.V. | Structures and devices including germanium-tin films and methods of forming same |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US9556516B2 (en) | 2013-10-09 | 2017-01-31 | ASM IP Holding B.V | Method for forming Ti-containing film by PEALD using TDMAT or TDEAT |
US9605343B2 (en) | 2013-11-13 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming conformal carbon films, structures conformal carbon film, and system of forming same |
US10179947B2 (en) | 2013-11-26 | 2019-01-15 | Asm Ip Holding B.V. | Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US9447498B2 (en) | 2014-03-18 | 2016-09-20 | Asm Ip Holding B.V. | Method for performing uniform processing in gas system-sharing multiple reaction chambers |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US9404587B2 (en) | 2014-04-24 | 2016-08-02 | ASM IP Holding B.V | Lockout tagout for semiconductor vacuum valve |
CN104296529B (zh) * | 2014-06-27 | 2016-06-15 | 长沙矿冶研究院有限责任公司 | 可用于ito靶材烧结的气氛钟罩炉 |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9543180B2 (en) | 2014-08-01 | 2017-01-10 | Asm Ip Holding B.V. | Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
KR102300403B1 (ko) | 2014-11-19 | 2021-09-09 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
GB201421151D0 (en) * | 2014-11-28 | 2015-01-14 | Spts Technologies Ltd | Method of degassing |
US10375901B2 (en) | 2014-12-09 | 2019-08-13 | Mtd Products Inc | Blower/vacuum |
KR102263121B1 (ko) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 및 그 제조 방법 |
US9478415B2 (en) | 2015-02-13 | 2016-10-25 | Asm Ip Holding B.V. | Method for forming film having low resistance and shallow junction depth |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US9899291B2 (en) | 2015-07-13 | 2018-02-20 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10087525B2 (en) | 2015-08-04 | 2018-10-02 | Asm Ip Holding B.V. | Variable gap hard stop design |
US9647114B2 (en) | 2015-08-14 | 2017-05-09 | Asm Ip Holding B.V. | Methods of forming highly p-type doped germanium tin films and structures and devices including the films |
US9711345B2 (en) | 2015-08-25 | 2017-07-18 | Asm Ip Holding B.V. | Method for forming aluminum nitride-based film by PEALD |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US9909214B2 (en) | 2015-10-15 | 2018-03-06 | Asm Ip Holding B.V. | Method for depositing dielectric film in trenches by PEALD |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US9455138B1 (en) | 2015-11-10 | 2016-09-27 | Asm Ip Holding B.V. | Method for forming dielectric film in trenches by PEALD using H-containing gas |
US9905420B2 (en) | 2015-12-01 | 2018-02-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium tin films and structures and devices including the films |
US9607837B1 (en) | 2015-12-21 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming silicon oxide cap layer for solid state diffusion process |
US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US9735024B2 (en) | 2015-12-28 | 2017-08-15 | Asm Ip Holding B.V. | Method of atomic layer etching using functional group-containing fluorocarbon |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US9754779B1 (en) | 2016-02-19 | 2017-09-05 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
KR102592471B1 (ko) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법 |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR102762543B1 (ko) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
TWI815813B (zh) | 2017-08-04 | 2023-09-21 | 荷蘭商Asm智慧財產控股公司 | 用於分配反應腔內氣體的噴頭總成 |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
JP7214724B2 (ja) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | バッチ炉で利用されるウェハカセットを収納するための収納装置 |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (ja) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | 周期的堆積プロセスにより基材上にルテニウム含有膜を堆積させる方法 |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
WO2019163295A1 (ja) * | 2018-02-23 | 2019-08-29 | 株式会社Kokusai Electric | クリーニング方法、半導体装置の製造方法、基板処理装置、及びプログラム |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
KR102600229B1 (ko) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
TWI816783B (zh) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
KR20210027265A (ko) | 2018-06-27 | 2021-03-10 | 에이에스엠 아이피 홀딩 비.브이. | 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 막 및 구조체 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
KR102349037B1 (ko) * | 2018-09-17 | 2022-01-10 | 주식회사 원익아이피에스 | 웨이퍼 공정용 리액터의 가스 제어 장치 |
CN110970344B (zh) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | 衬底保持设备、包含所述设备的系统及其使用方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (ko) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TWI866480B (zh) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR102727227B1 (ko) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
TWI838458B (zh) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | 用於3d nand應用中之插塞填充沉積之設備及方法 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
JP7603377B2 (ja) | 2019-02-20 | 2024-12-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
KR102782593B1 (ko) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
KR102809999B1 (ko) | 2019-04-01 | 2025-05-19 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP7598201B2 (ja) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP7612342B2 (ja) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141002A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법 |
KR20200141931A (ko) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | 석영 에피택셜 챔버를 세정하는 방법 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
CN110310909B (zh) * | 2019-07-15 | 2021-12-17 | 北京北方华创微电子装备有限公司 | 冷却装置及热处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
KR20210018761A (ko) | 2019-08-09 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | 냉각 장치를 포함한 히터 어셈블리 및 이를 사용하는 방법 |
EP4207244A1 (en) | 2019-08-12 | 2023-07-05 | Kurt J. Lesker Company | Ultra high purity conditions for atomic scale processing |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
KR102806450B1 (ko) | 2019-09-04 | 2025-05-12 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR102733104B1 (ko) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN110643961B (zh) * | 2019-09-20 | 2024-02-06 | 深圳市晶相技术有限公司 | 一种半导体设备的使用方法 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
TWI846966B (zh) | 2019-10-10 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成光阻底層之方法及包括光阻底層之結構 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885693B (zh) | 2019-11-29 | 2025-06-10 | Asmip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN112992667A (zh) | 2019-12-17 | 2021-06-18 | Asm Ip私人控股有限公司 | 形成氮化钒层的方法和包括氮化钒层的结构 |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
JP7636892B2 (ja) | 2020-01-06 | 2025-02-27 | エーエスエム・アイピー・ホールディング・ベー・フェー | チャネル付きリフトピン |
TW202140135A (zh) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體供應總成以及閥板總成 |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (ko) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | 고 종횡비 피처를 형성하는 방법 |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202513845A (zh) | 2020-02-03 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 半導體裝置結構及其形成方法 |
KR20210100010A (ko) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 대형 물품의 투과율 측정을 위한 방법 및 장치 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
KR20210103956A (ko) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법 |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210113043A (ko) | 2020-03-04 | 2021-09-15 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 정렬 고정구 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (ko) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
KR102719377B1 (ko) | 2020-04-03 | 2024-10-17 | 에이에스엠 아이피 홀딩 비.브이. | 배리어층 형성 방법 및 반도체 장치의 제조 방법 |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
KR102783207B1 (ko) * | 2020-04-14 | 2025-03-19 | 주식회사 원익아이피에스 | 기판 처리 장치 |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210130646A (ko) | 2020-04-21 | 2021-11-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 방법 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
CN113555279A (zh) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | 形成含氮化钒的层的方法及包含其的结构 |
TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
TW202208671A (zh) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括硼化釩及磷化釩層的結構之方法 |
KR20210132612A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 화합물들을 안정화하기 위한 방법들 및 장치 |
KR102783898B1 (ko) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR102788543B1 (ko) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145079A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 플랜지 및 장치 |
KR102795476B1 (ko) | 2020-05-21 | 2025-04-11 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
TWI876048B (zh) | 2020-05-29 | 2025-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
KR20210156219A (ko) | 2020-06-16 | 2021-12-24 | 에이에스엠 아이피 홀딩 비.브이. | 붕소를 함유한 실리콘 게르마늄 층을 증착하는 방법 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TWI873359B (zh) | 2020-06-30 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202202649A (zh) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TWI864307B (zh) | 2020-07-17 | 2024-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構、方法與系統 |
TWI878570B (zh) | 2020-07-20 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
KR20220011092A (ko) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템 |
TW202219303A (zh) | 2020-07-27 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 薄膜沉積製程 |
KR20220021863A (ko) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (zh) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 清潔基板的方法、選擇性沉積的方法、及反應器系統 |
TWI874701B (zh) | 2020-08-26 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成金屬氧化矽層及金屬氮氧化矽層的方法 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
TW202217045A (zh) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積間隙填充流體之方法及相關系統和裝置 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (ko) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 산화물 증착 방법 |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
KR20220041751A (ko) | 2020-09-25 | 2022-04-01 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 처리 방법 |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
KR20220050048A (ko) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치 |
TW202217037A (zh) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積釩金屬的方法、結構、裝置及沉積總成 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202229620A (zh) | 2020-11-12 | 2022-08-01 | 特文特大學 | 沉積系統、用於控制反應條件之方法、沉積方法 |
TW202229795A (zh) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 具注入器之基板處理設備 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
TW202233884A (zh) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成臨限電壓控制用之結構的方法 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202232639A (zh) | 2020-12-18 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 具有可旋轉台的晶圓處理設備 |
TW202226899A (zh) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 具匹配器的電漿處理裝置 |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
TW202242184A (zh) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法 |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63181313A (ja) * | 1987-01-22 | 1988-07-26 | Mitsubishi Electric Corp | 気相結晶成長装置 |
JPH01243515A (ja) * | 1988-03-25 | 1989-09-28 | Hitachi Ltd | 熱処理装置 |
JPH0547681A (ja) * | 1991-08-14 | 1993-02-26 | Nikko Kyodo Co Ltd | 気相成長方法 |
JPH07263370A (ja) * | 1994-03-17 | 1995-10-13 | Tokyo Electron Ltd | 熱処理装置 |
JP2000306904A (ja) * | 1999-04-21 | 2000-11-02 | Kokusai Electric Co Ltd | 半導体素子の製造方法及びその装置 |
JP2002212730A (ja) * | 2001-01-12 | 2002-07-31 | Shimadzu Corp | 成膜装置 |
JP2002317269A (ja) * | 2001-04-18 | 2002-10-31 | Hitachi Ltd | 半導体装置の製造方法 |
JP2003158080A (ja) * | 2001-11-22 | 2003-05-30 | Mitsubishi Electric Corp | 半導体製造装置、半導体製造装置における堆積物除去方法、および半導体装置の製造方法 |
JP2003203868A (ja) * | 2002-01-07 | 2003-07-18 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3973762A (en) * | 1974-05-17 | 1976-08-10 | Dravo Corporation | Sintering process and apparatus |
JPS61191015A (ja) * | 1985-02-20 | 1986-08-25 | Hitachi Ltd | 半導体の気相成長方法及びその装置 |
US4706011A (en) | 1986-07-07 | 1987-11-10 | Texas Instruments Incorporated | High voltage pulse detector with controllable current consumption |
US4874464A (en) * | 1988-03-14 | 1989-10-17 | Epsilon Limited Partnership | Process for epitaxial deposition of silicon |
JPH03111552A (ja) * | 1989-09-26 | 1991-05-13 | Osaka Oxygen Ind Ltd | 金属管酸化処理装置 |
CH676500A5 (ja) * | 1990-05-18 | 1991-01-31 | Werner Kunz | |
US5275976A (en) * | 1990-12-27 | 1994-01-04 | Texas Instruments Incorporated | Process chamber purge module for semiconductor processing equipment |
KR0155572B1 (ko) * | 1991-05-28 | 1998-12-01 | 이노우에 아키라 | 감압처리 시스템 및 감압처리 방법 |
JP3098093B2 (ja) | 1992-02-20 | 2000-10-10 | 三菱電機株式会社 | 化学気相成長装置 |
KR100251873B1 (ko) * | 1993-01-21 | 2000-04-15 | 마쓰바 구니유키 | 종형 열처리 장치 |
US5637153A (en) * | 1993-04-30 | 1997-06-10 | Tokyo Electron Limited | Method of cleaning reaction tube and exhaustion piping system in heat processing apparatus |
US5484484A (en) * | 1993-07-03 | 1996-01-16 | Tokyo Electron Kabushiki | Thermal processing method and apparatus therefor |
JP3583467B2 (ja) | 1994-05-30 | 2004-11-04 | 株式会社東芝 | 半導体装置の製造装置及び製造方法 |
US5783046A (en) * | 1994-11-28 | 1998-07-21 | Gentech, Inc. | Process and apparatus for the destructive distillation of rubber |
JPH0982720A (ja) | 1995-09-14 | 1997-03-28 | Tokyo Electron Ltd | 縦型熱処理装置 |
US6159300A (en) * | 1996-12-17 | 2000-12-12 | Canon Kabushiki Kaisha | Apparatus for forming non-single-crystal semiconductor thin film, method for forming non-single-crystal semiconductor thin film, and method for producing photovoltaic device |
JP3476638B2 (ja) * | 1996-12-20 | 2003-12-10 | 東京エレクトロン株式会社 | Cvd成膜方法 |
US5872017A (en) * | 1997-01-24 | 1999-02-16 | Seh America, Inc. | In-situ epitaxial passivation for resistivity measurement |
JPH10280153A (ja) * | 1997-04-11 | 1998-10-20 | Toshiba Mach Co Ltd | プラズマcvd装置 |
US6042654A (en) | 1998-01-13 | 2000-03-28 | Applied Materials, Inc. | Method of cleaning CVD cold-wall chamber and exhaust lines |
US20030164225A1 (en) * | 1998-04-20 | 2003-09-04 | Tadashi Sawayama | Processing apparatus, exhaust processing process and plasma processing |
US6086362A (en) * | 1998-05-20 | 2000-07-11 | Applied Komatsu Technology, Inc. | Multi-function chamber for a substrate processing system |
KR20000003915A (ko) * | 1998-06-30 | 2000-01-25 | 김영환 | 반도체 소자의 게이트 절연막 형성방법 |
JP3396431B2 (ja) * | 1998-08-10 | 2003-04-14 | 東京エレクトロン株式会社 | 酸化処理方法および酸化処理装置 |
JP2000138168A (ja) | 1998-10-29 | 2000-05-16 | Shin Etsu Handotai Co Ltd | 半導体ウェーハ及び気相成長装置 |
JP3159187B2 (ja) | 1998-11-04 | 2001-04-23 | 日本電気株式会社 | 薄膜成膜方法 |
KR100480904B1 (ko) | 1998-12-24 | 2005-08-30 | 주식회사 하이닉스반도체 | 반응로및이를이용한단결정실리콘층형성방법 |
US6235651B1 (en) * | 1999-09-14 | 2001-05-22 | Infineon Technologies North America | Process for improving the thickness uniformity of a thin layer in semiconductor wafer fabrication |
JP4437851B2 (ja) | 1999-10-28 | 2010-03-24 | 東京エレクトロン株式会社 | 処理装置 |
US20010005553A1 (en) * | 1999-11-10 | 2001-06-28 | Witzman Matthew R. | Linear aperture deposition apparatus and coating process |
JP2001140054A (ja) * | 1999-11-15 | 2001-05-22 | Nec Kagoshima Ltd | 真空成膜装置のクリーニング方法及び真空成膜装置 |
US6547922B2 (en) * | 2000-01-31 | 2003-04-15 | Canon Kabushiki Kaisha | Vacuum-processing apparatus using a movable cooling plate during processing |
EP1124252A2 (en) * | 2000-02-10 | 2001-08-16 | Applied Materials, Inc. | Apparatus and process for processing substrates |
JP2001257172A (ja) | 2000-03-09 | 2001-09-21 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
US6884295B2 (en) * | 2000-05-29 | 2005-04-26 | Tokyo Electron Limited | Method of forming oxynitride film or the like and system for carrying out the same |
JP3644880B2 (ja) * | 2000-06-20 | 2005-05-11 | 東京エレクトロン株式会社 | 縦型熱処理装置 |
JP4079582B2 (ja) | 2000-09-28 | 2008-04-23 | 株式会社日立国際電気 | 熱処理装置および熱処理方法 |
KR100345304B1 (ko) * | 2000-10-12 | 2002-07-25 | 한국전자통신연구원 | 수직형 초고진공 화학증착장치 |
US6413844B1 (en) * | 2001-01-10 | 2002-07-02 | Asm International N.V. | Safe arsenic gas phase doping |
JP4644943B2 (ja) * | 2001-01-23 | 2011-03-09 | 東京エレクトロン株式会社 | 処理装置 |
US6844273B2 (en) * | 2001-02-07 | 2005-01-18 | Tokyo Electron Limited | Precleaning method of precleaning a silicon nitride film forming system |
CN100552956C (zh) * | 2001-03-12 | 2009-10-21 | 株式会社日立制作所 | 半导体集成电路器件和用于制造半导体集成电路器件的方法 |
JP2002280374A (ja) * | 2001-03-19 | 2002-09-27 | Hitachi Kokusai Electric Inc | 基板処理装置及び半導体装置の製造方法 |
JP2002299269A (ja) | 2001-03-29 | 2002-10-11 | Tokyo Electron Ltd | 熱処理装置、および熱処理方法 |
JP4610771B2 (ja) | 2001-04-05 | 2011-01-12 | 東京エレクトロン株式会社 | 縦型熱処理装置およびその強制空冷方法 |
JP2002334868A (ja) * | 2001-05-10 | 2002-11-22 | Hitachi Kokusai Electric Inc | 基板処理装置および半導体装置の製造方法 |
JP3421329B2 (ja) * | 2001-06-08 | 2003-06-30 | 東京エレクトロン株式会社 | 薄膜形成装置の洗浄方法 |
JP4149687B2 (ja) | 2001-07-19 | 2008-09-10 | シャープ株式会社 | 熱処理方法 |
JP3660897B2 (ja) * | 2001-09-03 | 2005-06-15 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
KR100431657B1 (ko) * | 2001-09-25 | 2004-05-17 | 삼성전자주식회사 | 웨이퍼의 처리 방법 및 처리 장치, 그리고 웨이퍼의 식각방법 및 식각 장치 |
KR100438946B1 (ko) * | 2001-10-12 | 2004-07-03 | 주식회사 엘지이아이 | 플라즈마 증착장비의 가열된 냉각수를 이용한 가스주입관응축방지장치 |
KR100499211B1 (ko) * | 2001-11-13 | 2005-07-07 | 가부시키가이샤 히다치 고쿠사이 덴키 | 반도체 장치의 제조 방법 및 기판 처리 장치 |
JP2003188115A (ja) * | 2001-12-17 | 2003-07-04 | Shin Meiwa Ind Co Ltd | 半導体配線形成方法及び装置、半導体デバイス製造方法及び装置、並びにウエハ |
JP4086146B2 (ja) * | 2002-03-26 | 2008-05-14 | 株式会社日立国際電気 | 半導体装置の製造方法および基板処理装置 |
KR101023364B1 (ko) * | 2002-06-27 | 2011-03-18 | 가부시키가이샤 히다치 고쿠사이 덴키 | 기판 처리 장치, 기판 지지체 및 반도체 장치의 제조 방법 |
JP4699675B2 (ja) * | 2002-10-08 | 2011-06-15 | 信越半導体株式会社 | アニールウェーハの製造方法 |
KR100771800B1 (ko) * | 2003-01-24 | 2007-10-30 | 도쿄 엘렉트론 가부시키가이샤 | 피처리 기판 상에 실리콘 질화막을 형성하는 cvd 방법 |
JP4264084B2 (ja) * | 2003-03-03 | 2009-05-13 | 株式会社日立国際電気 | 基板処理装置および半導体装置の製造方法 |
JP4315420B2 (ja) * | 2003-04-18 | 2009-08-19 | キヤノン株式会社 | 露光装置及び露光方法 |
KR100527047B1 (ko) * | 2003-07-01 | 2005-11-09 | 주식회사 아이피에스 | 박막증착방법 |
KR100943588B1 (ko) * | 2003-09-19 | 2010-02-23 | 가부시키가이샤 히다치 고쿠사이 덴키 | 반도체 장치의 제조 방법 및 기판 처리 장치 |
KR100923263B1 (ko) * | 2003-09-25 | 2009-10-23 | 가부시키가이샤 히다치 고쿠사이 덴키 | 기판 처리 장치, 반도체 디바이스의 제조 방법 및 기판의 이동 적재 방법 |
CN1868042A (zh) * | 2003-11-20 | 2006-11-22 | 株式会社日立国际电气 | 半导体器件的制造方法和衬底处理装置 |
JP4371425B2 (ja) * | 2004-03-29 | 2009-11-25 | 株式会社日立国際電気 | 半導体装置の製造方法及び基板処理装置 |
JP4498362B2 (ja) * | 2004-11-01 | 2010-07-07 | 株式会社日立国際電気 | 基板処理装置および半導体デバイスの製造方法 |
JP4225998B2 (ja) * | 2004-12-09 | 2009-02-18 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置並びに記憶媒体 |
US8176871B2 (en) * | 2006-03-28 | 2012-05-15 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus |
US7910494B2 (en) * | 2006-03-29 | 2011-03-22 | Tokyo Electron Limited | Thermal processing furnace, gas delivery system therefor, and methods for delivering a process gas thereto |
JP4809175B2 (ja) * | 2006-09-28 | 2011-11-09 | 株式会社日立国際電気 | 半導体装置の製造方法 |
JP2008218984A (ja) * | 2007-02-06 | 2008-09-18 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
JP5047681B2 (ja) | 2007-04-27 | 2012-10-10 | シャープ株式会社 | 液体材料吐出装置のクリーニング装置、及び該クリーニング装置にて実行されるローラー回転制御方法 |
JP2009123795A (ja) * | 2007-11-13 | 2009-06-04 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
JP4531833B2 (ja) * | 2007-12-05 | 2010-08-25 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及びクリーニング方法 |
JP5697849B2 (ja) * | 2009-01-28 | 2015-04-08 | 株式会社日立国際電気 | 半導体装置の製造方法及び基板処理装置 |
-
2004
- 2004-09-17 KR KR1020097008212A patent/KR100943588B1/ko not_active Expired - Fee Related
- 2004-09-17 CN CN2004800203975A patent/CN1823404B/zh not_active Expired - Lifetime
- 2004-09-17 JP JP2005514067A patent/JPWO2005029566A1/ja active Pending
- 2004-09-17 US US10/572,396 patent/US7955991B2/en active Active
- 2004-09-17 TW TW093128418A patent/TWI360179B/zh not_active IP Right Cessation
- 2004-09-17 WO PCT/JP2004/013678 patent/WO2005029566A1/ja active Application Filing
- 2004-09-17 CN CN2010102382197A patent/CN101914760B/zh not_active Expired - Lifetime
- 2004-09-17 KR KR1020077017727A patent/KR100938534B1/ko not_active Expired - Fee Related
- 2004-09-17 TW TW101140713A patent/TWI449104B/zh not_active IP Right Cessation
- 2004-09-17 TW TW100123298A patent/TWI389204B/zh not_active IP Right Cessation
- 2004-09-17 KR KR1020067000174A patent/KR100765681B1/ko not_active Expired - Lifetime
- 2004-09-17 CN CN2008101823180A patent/CN101429649B/zh not_active Expired - Lifetime
-
2009
- 2009-03-16 US US12/404,915 patent/US8636882B2/en active Active
- 2009-03-17 JP JP2009064091A patent/JP5452043B2/ja not_active Expired - Fee Related
-
2010
- 2010-01-21 JP JP2010010966A patent/JP5199286B2/ja not_active Expired - Fee Related
- 2010-01-21 JP JP2010010961A patent/JP5190077B2/ja not_active Expired - Fee Related
-
2011
- 2011-05-02 US US13/098,993 patent/US8231731B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63181313A (ja) * | 1987-01-22 | 1988-07-26 | Mitsubishi Electric Corp | 気相結晶成長装置 |
JPH01243515A (ja) * | 1988-03-25 | 1989-09-28 | Hitachi Ltd | 熱処理装置 |
JPH0547681A (ja) * | 1991-08-14 | 1993-02-26 | Nikko Kyodo Co Ltd | 気相成長方法 |
JPH07263370A (ja) * | 1994-03-17 | 1995-10-13 | Tokyo Electron Ltd | 熱処理装置 |
JP2000306904A (ja) * | 1999-04-21 | 2000-11-02 | Kokusai Electric Co Ltd | 半導体素子の製造方法及びその装置 |
JP2002212730A (ja) * | 2001-01-12 | 2002-07-31 | Shimadzu Corp | 成膜装置 |
JP2002317269A (ja) * | 2001-04-18 | 2002-10-31 | Hitachi Ltd | 半導体装置の製造方法 |
JP2003158080A (ja) * | 2001-11-22 | 2003-05-30 | Mitsubishi Electric Corp | 半導体製造装置、半導体製造装置における堆積物除去方法、および半導体装置の製造方法 |
JP2003203868A (ja) * | 2002-01-07 | 2003-07-18 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201422A (ja) * | 2005-12-28 | 2007-08-09 | Tokyo Electron Ltd | 成膜方法及び成膜装置並びに記憶媒体 |
JP2008010685A (ja) * | 2006-06-29 | 2008-01-17 | Tokyo Electron Ltd | 成膜方法及び成膜装置並びに記憶媒体 |
JP2009272367A (ja) * | 2008-05-01 | 2009-11-19 | Hitachi Kokusai Electric Inc | 基板処理装置 |
JP2010093023A (ja) * | 2008-10-07 | 2010-04-22 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法 |
JP2011066106A (ja) * | 2009-09-16 | 2011-03-31 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
JP2013026504A (ja) * | 2011-07-22 | 2013-02-04 | Tokyo Electron Ltd | 熱処理装置 |
KR101509858B1 (ko) * | 2011-07-22 | 2015-04-07 | 도쿄엘렉트론가부시키가이샤 | 열처리 장치 |
JP2013138217A (ja) * | 2013-02-01 | 2013-07-11 | Hitachi Kokusai Electric Inc | 基板処理装置、半導体製造方法、基板処理方法、及び異物除去方法 |
US9776202B2 (en) | 2013-03-29 | 2017-10-03 | Tokyo Electron Limited | Driving method of vertical heat treatment apparatus, storage medium and vertical heat treatment apparatus |
US9644265B2 (en) | 2013-12-27 | 2017-05-09 | Hitachi Kokusai Electric, Inc. | Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer readable recording medium |
JP2014143421A (ja) * | 2014-02-12 | 2014-08-07 | Hitachi Kokusai Electric Inc | 基板処理装置、半導体製造方法、基板処理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5190077B2 (ja) | 2013-04-24 |
CN101914760B (zh) | 2012-08-29 |
US7955991B2 (en) | 2011-06-07 |
TWI360179B (en) | 2012-03-11 |
JP5452043B2 (ja) | 2014-03-26 |
CN1823404B (zh) | 2012-08-29 |
CN101429649A (zh) | 2009-05-13 |
US20090239386A1 (en) | 2009-09-24 |
TW200514162A (en) | 2005-04-16 |
JP5199286B2 (ja) | 2013-05-15 |
TWI389204B (zh) | 2013-03-11 |
JP2009135541A (ja) | 2009-06-18 |
CN101914760A (zh) | 2010-12-15 |
CN101429649B (zh) | 2012-06-13 |
JP2010109387A (ja) | 2010-05-13 |
KR20070091229A (ko) | 2007-09-07 |
JPWO2005029566A1 (ja) | 2007-11-15 |
KR100765681B1 (ko) | 2007-10-12 |
US20070259532A1 (en) | 2007-11-08 |
TWI449104B (zh) | 2014-08-11 |
CN1823404A (zh) | 2006-08-23 |
KR20060066168A (ko) | 2006-06-15 |
TW201145390A (en) | 2011-12-16 |
US8636882B2 (en) | 2014-01-28 |
TW201310530A (zh) | 2013-03-01 |
US20110239936A1 (en) | 2011-10-06 |
JP2010098331A (ja) | 2010-04-30 |
KR100938534B1 (ko) | 2010-01-25 |
KR20090055650A (ko) | 2009-06-02 |
US8231731B2 (en) | 2012-07-31 |
KR100943588B1 (ko) | 2010-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005029566A1 (ja) | 半導体装置の製造方法および基板処理装置 | |
KR100802990B1 (ko) | 반도체장치의 제조 방법 및 기판처리장치 | |
JP3818480B2 (ja) | 半導体素子の製造方法及びその装置 | |
KR101291957B1 (ko) | 성막 장치, 그 운전 방법 및 상기 방법의 실행을 위한 기억 매체 | |
JP2011066106A (ja) | 半導体装置の製造方法及び基板処理装置 | |
JP3667038B2 (ja) | Cvd成膜方法 | |
JP4157508B2 (ja) | Cvd成膜方法 | |
WO2004057656A1 (ja) | 基板処理装置および半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480020397.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005514067 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067000174 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067000174 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10572396 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10572396 Country of ref document: US |