[go: up one dir, main page]

WO2004111626A1 - A mass amplified piezoelectric biochip - Google Patents

A mass amplified piezoelectric biochip Download PDF

Info

Publication number
WO2004111626A1
WO2004111626A1 PCT/CN2004/000641 CN2004000641W WO2004111626A1 WO 2004111626 A1 WO2004111626 A1 WO 2004111626A1 CN 2004000641 W CN2004000641 W CN 2004000641W WO 2004111626 A1 WO2004111626 A1 WO 2004111626A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrode
piezoelectric
labeling
array
Prior art date
Application number
PCT/CN2004/000641
Other languages
English (en)
French (fr)
Inventor
Shizheng Chen
Original Assignee
Shizheng Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizheng Chen filed Critical Shizheng Chen
Publication of WO2004111626A1 publication Critical patent/WO2004111626A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • G01N2291/0224Mixtures of three or more liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves

Definitions

  • the invention relates to a manufacturing technology of a piezoelectric electric sensing biochip, a nano material marking technology, a biomaterial marking technology, and a signal reading technology of the electric sensing chip.
  • Biochip is a high-tech developed in the field of life sciences in recent years. It mainly refers to a micro-biochemical analysis system constructed on the surface of a solid chip by micro-processing technology and micro-electronic technology to achieve accurate, fast, and large-information detection of cells, proteins, DNA, and other biological components.
  • gene chips can be divided into cDNA chips and oligonucleotide microarray chips.
  • the cDNA chip is used to obtain the probes needed for chip preparation by PCR amplification based on the existing cDNA library. Oligonucleotides are immobilized on the chip by terminal modification groups.
  • Gene chip preparation technology continues to develop with the maturity of gene chip technology.
  • Commonly used preparation techniques are: contact point method (Stanford University), photolithographic in situ synthesis method (affymetrix company), inkjet method, molecular seal synthesis method Wait.
  • Gene chip targets are often labeled with fluorescent dyes.
  • the commonly used chip signal detection is to place the chip in a chip scanner, collect the fluorescence position of each reaction point, the intensity of the fluorescence, and analyze the image through relevant software to obtain relevant biological information.
  • the shortcomings of optical technology are its large read system size, high cost and short service life.
  • fluorescent dyes have weak points such as instability, easy decomposition, and background fluorescence interference. Therefore, it is necessary to find a new detection method, which can further improve the specificity, accuracy and sensitivity of detection, and develop a new generation of chips that can overcome the aforementioned shortcomings. .
  • Electro-sensing refers to the technology that converts external signals into electrical signals. Compared with photo-sensing, they are applied late in the biological field. It was not until after the 1950s that precision electrical measuring instruments became widespread and began to show advantages. Microelectronics brings everything closer to electronics, and sensors are no exception. Only by directly converting biological signals into electrical signals, and then directly transmitting them into the data system, is it natural. All other methods have become relatively less direct. In terms of inductivity, it is entirely possible for electrical sensing to reach light sensitivity, even higher than light. A good example is that all living things have liquid and gas phase chemical sensors: such as the tongue and nose of an animal, the antennae of an insect. These natural sensors are connected in many ways
  • the effect of external mechanical pressure on a crystal to generate a charge on its surface is called the piezoelectric effect.
  • the more commonly used piezoelectric materials are quartz, yttrium niobate, PZT, barium titanate, etc., and also include some synthetic and natural polymers. It was found that when an alternating excitation voltage was applied across the piezoelectric crystal electrode, the crystal would oscillate mechanically. When the frequency of the alternating voltage reaches the natural frequency of the crystal, the amplitude increases and a piezoelectric resonance is formed. This specific frequency is called the resonance frequency.
  • a piezoelectric crystal is used to make a resonant structure, and it can be found that its output signal is closely related to the physical size and properties of the crystal.
  • the frequency of vibration is inversely related to the mass of the resonator device.
  • the resonant frequency moves accordingly. If we cure a material with a special chemical identity on the surface of the device, it will increase or decrease the total mass of the surface of the device due to the presence of a particular sample substance. We can rely on the movement of the resonance frequency to determine this chemistry. Affinity or stripping process. As a result, chemical or bioelectric sensors are implemented.
  • BAW piezoelectric bulk acoustic wave
  • SAW Surface Acoustic Wave
  • Piezoelectric sound waves are emitted from the emitter and propagate through the surface of the wafer to the receiver.
  • the delay time from transmission to reception is determined by the delay distance and the load on the delay surface ( Figure).
  • Figure the same with BAW is that we can also use a time domain (frequency inverse is time) signal to detect the total additional material mass on the surface of the device to increase or decrease.
  • quartz is the most widely used due to its comprehensive mechanical, electrochemical, and temperature properties. It is the material of choice for piezoelectric electrochemical and piezoelectric biosensors.
  • QCM Quadrat-Crystal-Microbalance
  • k f the frequency constant (usually 0.168Mhz.cm).
  • the frequency shift ⁇ / has a linear relationship with the mass change Am.
  • p q is the density of quartz (2.648g-cm— 3 )
  • ⁇ 3 ⁇ 4 is stone Density Shear Modulus (2.947Xl ⁇ r u dyn- C m- 2 ).
  • a shift of the resonance frequency of 1 Hz is equivalent to a mass change of 17 ng / cm 2 .
  • Piezoelectric bulk acoustic wave is a relatively mature technology. It is widely used in chemical or biological detection. However, its signal intensity is directly proportional to the mass change of the surface attached substance. For DNA fragments (after slicing), amino acids, peptidases, and other low and medium molecular weight biomolecules, the frequency shift is small. The signal is unstable and it is greatly affected by environmental interference. Taking DNA containing 20 to 40 bases as an example, at a surface density of 10 14 / cm 2 (which is the highest value that has been reported), only a 1HZ frequency shift can be generated for a 5MHZ quartz BAW device. SAW devices have similar problems in sensitivity. This makes its application on such biosensors very limited.
  • This invention uses nano or bio-macromolecule materials to mark the sample biomolecules, thereby increasing the effective mass of the detected molecules and greatly enhancing the piezoelectric acoustic wave signal. Since this marker focuses on the effective mass of the sample biomolecule, it is called a mass marker. For this reason, it has a wide selection of marking materials. Calculations show that the amplification effect is very considerable. Taking the commonly used nano-gold as an example, in an ideal state,
  • the invention provides a biochip manufactured by using the principle of piezoelectric acoustic waves, and a method for detecting by using nano-gold or other quality marking materials.
  • a piezoelectric bulk acoustic wave (BAW) sensor (steps 1 to 4 of Figures 3 and 4), which includes a piezoelectric crystal substrate and sensing electrodes on the upper and lower surfaces.
  • Piezoelectric crystal substrates generally use quartz wafers cut in the AT direction, but also include other possible piezoelectric crystal substrates.
  • the upper and lower surface sensing electrodes are formed by the technology of a semiconductor electronic chip. Electrodes can be made directly from gold, silver, and all other biocompatible conductive materials; or from other metal conductive materials, and then covered with biocompatible conductive or insulating materials (gold plating or deposition of silicon dioxide film, etc.).
  • a piezoelectric surface acoustic wave (SAW) sensor ( Figure 10), which differs from BAW in that the electrodes An emitter substrate and a receiver electrode are provided on one surface of the transistor substrate, and they are installed in a comb shape with the ground electrode. Piezoelectric sound waves are emitted from the emitter and propagate along the surface of the wafer to the receiver. The delay time is determined by the delay distance of the transmitting and receiving electrodes and the load on the delay surface. Piezoelectric crystal substrates are generally quartz wafers, but other possible piezoelectric crystal substrates are also included.
  • the surface sensing electrodes are formed by the technology of a semiconductor electronic chip. The electrodes can be made directly from gold, silver, and all other biocompatible conductive materials; or made of other metal conductive materials, and then covered with biocompatible conductive or insulating materials (gold plating or deposited silicon dioxide film, etc.).
  • A Fix the biological probe on the upper surface, the lower surface, or the upper and lower surfaces of the sensor described in A.
  • the bioprobe is fixed on the delayed surface on the same side of the sensor electrode as described in B.
  • Fixed biological probes generally refer to single-stranded DNA, RNA, antibodies, and proteins; they also include all other substances that may form a biological, chemical affinity, or exfoliation reaction with the analyte.
  • the affinity reactions referred to here include: single-stranded DNA and single-stranded DNA hybridization, mRNA and DNA, mRNA and tRNA, antibody and antigen binding, protein and hormone binding, protein and vitamin binding, and protein under enzyme-catalyzed conditions Form or expand and so on.
  • the stripping reactions referred to here include: DNA is broken by enzymes, and proteins are broken down by enzymes, as well as the reverse process of the above-mentioned affinity reaction (produced after changes in concentration, temperature, acidity, and mechanical vibration). This chemical affinity or stripping reaction can be measured by shifting the resonant frequency of the sensor as described in A and B.
  • the BAW unit sensors described in D and A can be used alone; passive or active array designs can also be used. Passive arrays can use either the child-independent connection method (see Figure 8) or the cross-connection method (see Figure 9). There is no insulation problem at the intersection of the cross-connected upper and lower electrode through wires (BUS). Because the through line is thin, the parasitic piezoelectric effect and parasitic capacitance at the intersection are all secondary effects.
  • the cross-connect method avoids the problem of crowded connections. It can realize medium and high-density array chips, and make tens of thousands of sub-element sensor arrays on a substrate of several square centimeters in size. In the designs of Figures 8 and 9, in some cases, all or all of the electrodes on one side of the surface can be connected together on the chip and then connected to the circuit board.
  • the SAW unit sensors described in E and B can be used alone; passive or active array designs can also be used.
  • the passive array can adopt the sub-element independent connection method (the figure is omitted, similar to FIG. 8, and each sub-element electrode wiring is independently drawn from the periphery), or the cross-connection method (see FIG. 10).
  • the problem of insulation at the intersections of ground, hair, and receive three-pole through wires (BUS) of the cross connection method can be accomplished by a common double-layer metal three-dimensional connection method in semiconductor electronic chip manufacturing technology. This method can realize the chip of high-density array. Sensor arrays with thousands or even tens of thousands of sub-elements are fabricated on a substrate of several square centimeters.
  • the electrodes can be connected together on the chip and then connected to the circuit board.
  • F In the case of the sensor array chip described in D and E, the bioprobe described in C is fixed in position with the sensor array to form a bioprobe array that matches the sensor array. It can be realized by exposing the sensor point elements one by one by photolithography. This method has the highest geometric accuracy. We can also use contact point sampling, photolithographic in situ synthesis, inkjet, and molecular seal synthesis to complete. The sensors of each daughter element can independently measure specific biological signals on the biological probes that are matched with the sensors.
  • the chip described in A and D can be etched with a flat groove on the lower surface by MEMS etching; or the lower surface can be encapsulated; In some cases, these steps can be omitted.
  • a method for performing biological detection using a BAW or SAW biochip comprising labeling a sample biomaterial with a nanoparticle material and hybridizing the probe with a probe on the biochip to obtain an amplified piezoelectric bulk acoustic wave effect, which is convenient for signals. Acquisition and analysis. This method is called "direct notation”.
  • a method for performing biological detection using a BAW or SAW biochip comprising hybridizing a sample biomaterial with a probe on the biochip, and then labeling the sample biomaterial with a labeling material to obtain a pressure generated by the quality labeling material.
  • Electric bulk acoustic effect It is convenient to eliminate the interference of the previous steps and perform signal collection and analysis. This method is called "additional notation".
  • J, nano-gold, and silver are the commonly used quality marking materials for H and I.
  • the present invention includes all other nanoparticle marking materials with mass amplification of the piezoelectric acoustic wave effect, or other biological (such as macromolecule) marking materials with mass amplification.
  • a method for bonding a marker material of a biological material The biological material and the marker material are directly bonded. This method is applicable to the marking method described in 11.1.
  • a method for bonding a biomaterial's marker material The biomaterial and the marker material are first attached to two parts of an affinity pair, and then when these pretreated biomaterials are combined with the marker material, the marker material and Biomaterials are achieved by bonding of affinity pairs.
  • This method simplifies the preparation of quality marking materials, so a pre-processed quality marking material can be used to mark various biological materials.
  • This method is applicable to the marking methods described in H and I. However, it plays a greater role in the labeling method described in I.
  • the bio-affinity pairs described in M and Content L may use an avidin-biotin system, a streptavidin-biotin system, or other bio-affinity pair systems.
  • Avidin is composed of four identical subunits. Each subunit can be connected to a biotin molecule. This pairing has by far the highest affinity coefficient ⁇ IO ⁇ M " 1 ), which is almost 1,000 times its closest competitor.
  • Avidin has four sites, So that attachment It is possible to develop a variety of nano-particles to develop multifunctional sensing devices.
  • Avidin can also be used to connect multiple biological affinity systems in an induction system, or to achieve multiple amplifications through multi-point bridging and recombination of avidin-biotin to further increase detection sensitivity.
  • N Signal reading method (see Figure 12).
  • the cross-connected passive array circuit topology described in D and E is similar to the memory, and signals are read on the children whose rows and columns address cross. Therefore, many general-purpose ICs can be used to read the entire array signal. If you want to make a small portable test system, you can use a digital signal processor (DSP) or a palm-sized computer. This method is of course also suitable for reading signals from an array implemented by a single sensor and an independent connection method. The difference is only a slight change in the multiplexer wiring.
  • DSP digital signal processor
  • This method is of course also suitable for reading signals from an array implemented by a single sensor and an independent connection method. The difference is only a slight change in the multiplexer wiring.
  • the invention has the following innovations ⁇
  • Nano-gold is widely used for light detection.
  • the present invention uses it for the first time in an electrical array biochip, which expands the application range of nano-gold and other nano-particle labels in bio-chip detection.
  • the biological signal is converted into an electrical signal detection, which avoids the disadvantages of other detection methods and expensive and complicated detection equipment.
  • the benefit of electricity is low cost and can be scaled up.
  • the present invention provides a method for combining a biometric identification system with a nanoparticle and a sensor system, which has universal significance and is widely used. Its significance lies in transforming many current photo-mechanical biochips into motor-based biochips. In terms of biological probes, it is completely consistent with the light mechanism chip, and can be carried out by the same principle. See Unique array connection method: Array connection can be achieved using as many process steps as a single sensor.
  • the circuit topology is similar to memory, so many common electrical components can be used to implement chip signal reading.
  • the biochip is completely consistent with the existing semiconductor technology in the processing part of the electrical sensor, and has found a production platform for large-scale production, thereby ensuring product quality monitoring. Our solution broke the bottleneck of the biochip project in the process of commercialization.
  • FIG. 1 is a flowchart of the production of the gene chip and its direct labeling method according to the present invention
  • FIG. 2 is a flowchart of the production of the gene chip and its additional labeling method according to the present invention
  • FIG. 3 is a BAW basic sensor Sectional schematic diagram of the hybridization process of making and direct labeling method
  • Figure 4 is a schematic sectional diagram of the BAW basic sensor production and additional labeling hybridization process
  • Figure 5 is a schematic sectional view of the process of forming electrodes by photolithography and lift-off;
  • Figure 6 is a schematic diagram of the principle of the direct labeling method.
  • Fig. 7 is a schematic diagram of the principle of the additional marking method.
  • Figure 8 is a schematic diagram of the passive array design of the BAW independent connection method (only 3X3 arrays are shown);
  • Figure 9 is a schematic diagram of the passive array design of the BAW cross connection method (only 4X4 arrays are shown);
  • Figure 10 is SAW Schematic diagram of passive array design of the cross connection method (only 2X2 arrays are shown);
  • Figure 11 is a schematic diagram of the connection between the upper and lower electrodes of the BAW and the test circuit;
  • Figure 12 is a schematic diagram of a signal detection system. Examples
  • the manufacturing process of the gene chip according to the present invention mainly includes the processing of a quartz chip, and the manufacturing of gold electrodes on the upper and lower surfaces of the stone chip.
  • the designed probe is cured in situ with the upper electrode to complete the preparation of the entire chip.
  • the above-mentioned detection process of the gene chip includes PCR amplification of the sample DNA according to a conventional method, and labeling the sample DNA with nano-gold (the direct labeling method described in the invention content H). After hybridization of the nano-gold labeled sample DNA with the probe on the chip, the frequency shift of the BAW sensor before and after the hybridization was detected. After data analysis, judge the DNA hybridization status of each array element. It can be used for data analysis and medical conclusions.
  • the chip shown in Figure 2 is exactly the same as the chip shown in Figure 1.
  • Detection process Describe the additional notation described in Content I.
  • the DNA-terminus of the sample is bound to biotin. After hybridization with the probe on the chip, it is then labeled with nanogold combined with avidin, and then the frequency shift of the BAW sensor before and after the nanogold labeling is detected.
  • Figure 3 shows a cross-sectional view of the biochip manufacturing process of the present invention, and DNA hybridization by direct labeling.
  • the method includes etching the lower surface of the quartz wafer 300 to form a flat groove 301, and then forming gold electrodes 302 and 303 on the upper and lower surfaces.
  • the upper surface electrode 303 is immobilized with the DNA probe 304 on the surface of the gold film, and hybridizes with the sample DNA 305 labeled with the nano-labeled 306 material to generate a final product 307.
  • Piezoelectric bulk acoustic testing is usually performed after the wafer is dried.
  • Zero frequency signal detection is performed after step 5.
  • Post-hybrid frequency signal detection is performed after step 7.
  • the amplification effect of nanomarkers can be theoretically handled very easily, and the maximum sensitivity of piezoelectric bulk acoustic waves can be achieved.
  • Moisture and other residues on the surface may cause interference, but after the nano-gold labeling, this weakness can be greatly reduced because water molecules and gases adsorbed in the air are all small-mass molecules.
  • the magnification effect of nanoparticles can reduce the effect of these small molecules to less than one millionth. But if there is no enhancement of nano-gold particles, their effect is an order of magnitude the same as the analyte.
  • the chip part can also be tested in an aqueous solution. In this case, the BAW resonance has a damping effect.
  • the frequency shift can reach a range suitable for detection.
  • Detection in aqueous solution can observe the dynamic process of DNA hybridization. After step 5 in Figure 3, the test system is turned on, and the frequency signals are continuously collected, or the array is scanned periodically, recorded, and then analyzed and processed. Testing in aqueous solution can also observe the different mechanical properties of biomolecules in the aqueous solution from the dry state.
  • BAW is an acoustic-based sensor that is ideally suited for this type of test.
  • FIG. 4 shows the DNA hybridization of the additional method of the present invention.
  • the biochip manufacturing process is the same as the direct labeling method in FIG. 3. Different from FIG. 3, the sample DNA 400 is hybridized with the probe 304 on the biochip to form a double-stranded DNA 402, and then labeled with the nanoparticle material 401. The final product is also 307. This method can obtain the piezoelectric bulk acoustic wave effect produced by nanoparticle materials. If the test is performed after the crystal plate is dried, the zero frequency signal detection is performed after the DNA probe is hybridized with the sample in step 6. The additional nano-labeling is performed in step 7, and the frequency signal detection after hybridization is performed in step 8.
  • the test system can be connected after step 5 or the test system can be connected after step 6. Continuous acquisition of frequency signals. In both cases, a strong signal is observed during the nanolabeling step 7.
  • the upper and lower surface electrodes shown in FIG. 3 and FIG. 4 are formed by a general metal process in a semiconductor electronic chip manufacturing technology.
  • FIG. 5 is a flowchart illustrating one type of this general metal process: the process of forming electrodes by photolithography and lift-off.
  • the substrate 500 is covered with a layer of photoresist 501.
  • the photoresist 501 is then exposed through a mask 502 (generally made of a Cr film on a transparent substrate). After processing, the exposed portion is removed, and the state shown in step 4 is formed. Then, in step 5, a gold film 503 is covered on the photoresist by evaporation; finally, all photoresist is removed by a photoresist solvent. The shape corresponding to the blank space of the mask is copied on the gold film to form a state of 504 (equivalent to 302 or 303). Electrode formation can also be accomplished using a variety of other processes. Such as: seed layer / lithography / gold plating, gold plating / lithography / gold etching, etc. Both silicon dioxide and gold have good biocompatibility.
  • the sensor surface to be used is the upper electrode surface. In biomedical experiments, less attention is paid to the lower surface. But the table below is equally sensitive to BAW devices. To mitigate this effect, a flat groove 301 can be etched on the lower surface using MEMS processing (see Figures 3 and 4). The flat-groove process can be integrated with the process in Figure 5 to complete it. Special treatment can also be performed during the packaging process to completely seal the lower surface.
  • the direct labeling method is to perform nano-gold labeling on the sample before hybridization
  • the additional labeling method is to perform nano-gold labeling after hybridization.
  • the purpose of the labeling is to connect the nanoparticles to the sample DNA.
  • connection method we can either achieve it by bonding molecules that are effective for biomaterials and nanoparticles, or formulate a universal bonding scheme that can be used for most biomaterials.
  • Nanogold has a mature technology for directly labeling DNA or protein. When nanoparticles and biological materials have been identified, direct bonding methods can be found in many public sources. Do not discuss too much here (figure omitted).
  • Figures 6 and 7 are all general bonding schemes. Biomaterials and nanoparticles are first attached to the two parts of an affinity pair, and then these pretreated biomaterials are combined with the pretreated nanoparticles to finally achieve the bonding of biomaterials and nanoparticles.
  • Bioaffinity pairs There are many options for bioaffinity pairs, but the avidin-biotin system is the most promising.
  • Avidin also known as avidin, is a glycoprotein (molecular weight 68kD) extracted from protein; biotin, also known as vitamin H, is a small molecular substance extracted from yolk and liver ( Molecular weight 244.31).
  • Biotin is able to bind to many low molecular weight or high molecular weight biomolecules, such as DNA, through chemical reactions. Protein, hormones, etc.
  • a biological material 601 (here, DNA) is combined with a first portion 602 (here, a biotin) of an affinity pair into a pre-treated sample biological material 603.
  • the nanoparticles are combined with the second part 604 (here, avidin) in the affinity pair to form a pre-treated nano-labeling material 605.
  • 605 is then combined with 603 to become a complete nano-labeled sample biological material 606.
  • 606 further hybridizes with the solidified biological probe 607 (equivalent to 304) to form a nano-labeled hybridization product 608 (here, double-stranded DNA, equivalent to 307).
  • This nanoparticle bonding method is very suitable for the additional labeling method.
  • FIG. 7 the process of preparing the affinity-pretreated sample biological material 603 and the pre-treated nano-labeled material 605 is exactly the same as that of FIG. 6. The difference is that 603 first hybridizes with the solidified bioprobe 607 to form a 701 state. Then, a label 605 is added to form a nano-labeled hybrid product 608 identical to FIG. 6.
  • the advantages of this method are: First, the nanoparticles can be much larger than DNA, amino acids, and other low-to-medium biomolecules. When these analytes are attached to the nanoparticles, they will be affected by the reaction kinetics, which is related to the biological probes on the substrate.
  • Hybridization is affected; at the same time, there is an effect of the chemical reaction rate when the analyte is bound to the nanoparticles.
  • the direct labeling method during the labeling process, some sample DNA is affected by chemical reactions and fails to bind to the nanoparticles and dissociates in the solution, causing waste of sample analytes; but all these effects can be reduced to a minimum in the additional labeling .
  • the binding of unlabeled analytes on the surface to the DNA probe will be very smooth.
  • Another advantage is that many biological materials have an effect on the electrical signals being detected. As the last step of the whole biometrics labeling process, the additional labeling method can distinguish the net effect produced by the nanoparticles.
  • Nanoparticles have the properties of colloidal particles in solution. An electric double layer is formed on the particle surface, and the stability of the colloidal solution is maintained by the charge repulsion of the outer electric layer. The ionic strength in the solution has a great influence on the dispersion and stability of the nanoparticles. Large ionic strength will destroy the electric double layer on the surface of the nanoparticle, cause the particle to condense and settle, and cause its absorption spectrum to drift. In order to eliminate the noise caused by non-specific adsorption during the hybridization process, the binding force between the nanoparticles and avidin should be such that no signal is lost during elution.
  • the particle size of the nanoparticles is not only related to the nano-preparation technology, but also related to the precise positioning of the nanoparticles and the synergistic effect on hybridization and signal detection.
  • the nanometer particle size affects hybridization and labeling through reaction kinetics and steric hindrance, and the particle size is used to control the mass size. And affect its amplification effect, thereby determining the sensitivity of the chip system. All these influencing factors can be optimized with direct measurements using basic sensors to obtain the best conditions.
  • FIG. 8 shows the BAW passive array of the independent connection method described in Summary D of the present invention.
  • 800 is a substrate
  • 801 is an upper electrode
  • 802 is a lower electrode
  • 803 is a flat groove on the lower surface of the substrate (equivalent to 301).
  • This design avoids design jumps for unit sensors and arrays.
  • the fabrication of the sensor array is the same as the unit sensor except for the mask.
  • This process step is relatively simple and minimizes costs.
  • the size of each point element and the thickness of the quartz should be determined jointly according to the requirements of the sensor and the bioprobe.
  • This wiring scheme can be made into an array of at least 50 to 100, so it is sufficient for small and medium applications.
  • the multiplexer switch circuit can be used to detect the point elements one by one.
  • FIG. 9 shows a BAW passive array of the cross-connect method described in Summary D of the present invention.
  • 900 is a substrate
  • 901 is a lower surface electrode
  • 902 is an upper surface electrode
  • 903 is a through line
  • 904 is an external terminal
  • 905 is a flat groove on the lower surface of the substrate (equivalent to 301).
  • the biggest benefit of this design is to avoid congestion in the independent connection method. Can be made into high-throughput chips with tens of thousands of array elements.
  • the manufacturing process steps and unit sensors are the same except for the mask.
  • FIG. 10 shows the SAW passive array of the cross-connect method according to the invention.
  • 1000 is a piezoelectric substrate.
  • 1001 is a through line.
  • 1002 is a retarded surface.
  • the bioprobe is usually placed here.
  • 1003 is the delay distance, which together with the surface load of 1002 determines the SAW delay time.
  • Another aspect of array fabrication is the co-location of bioprobes.
  • the two sides of the upper and lower electrodes can be contacted using a circuit board (Method 1 in the figure), and the upper and lower electrodes are directly connected to the circuit board.
  • the two sides of the upper and lower surface electrodes can also be contacted by using a micro-electromechanical system (MEMS) through penetration etching and then using a T-junction (Method 2 in the figure), where 1101 is a T-junction and 1102 is a through-hole.
  • MEMS micro-electromechanical system
  • the electronic circuit design shown in Figure 12 can be used to measure the resonance frequency of BAW. All IC chips are universal, and the front-end circuit of the oscillator has certain analog components. Everything else is digital. The operating frequency is between 1 and 100 MHz. IC selection range is wide. After entering productization, the entire signal collection and analysis The analysis system can be concentrated on one board. One solution is to add a digital signal processor (DSP) to the counter. Array address can be realized by parallel interface, and it can be completed by the matching liquid crystal display system. Another solution is to replace the computer part in the figure with a palmtop computer, and its interface and software are compatible with the PC. In this way, all the computing and display parts can be used, but the cost is slightly higher. The test of SAW is the same as that of BAW. The measurement of the delay time also needs to add some PLL ICs and circuits.
  • DSP digital signal processor

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Acoustics & Sound (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

质量放大的压电生物芯片
本发明所属技术领域
本发明涉及压电电传感生物芯片的制作技术, 纳米材料标记技术, 生物 材料标记技术及电传感芯片信号的读取技术。
在本发明之前的现有技术
生物芯片是近年来在生命科学领域中发展起来的一项高新技术。 它主要是指 通过微加工技术和微电子技术在固体芯片表面构建的微型生物化学分析系统, 以 实现对细胞、 蛋白质、 DNA以及其它生物组分的准确、 快速、 大信息量的检测。 按所固定的探针, 基因芯片可分为 cDNA芯片和寡核苷酸微阵列芯片。 cDNA芯 片根据已有的 cDNA文库, 通过 PCR扩增获得制备芯片所需的探针。 寡核苷酸通 过末端修饰集团固化在芯片上。 基因芯片制备技术随着基因芯片技术的不断成熟 而不断发展, 常用的制备技术有: 接触点样法 (Stanford大学)、 光刻原位合成法 (affymetrix 公司)、 喷墨法、 分子印章合成法等。 基因芯片靶标常用荧光染料标 记。 杂交后, 常用的芯片信号检测是将芯片置入芯片扫描仪中, 通过采集各反应 点的荧光位置、 荧光强弱、 再经相关软件分析图像, 即可获得有关生物信息。
综观所有生物传感机制, 光技术是占主导地位的。 光谱分析法无疑是敏感度 最高的化学分析手段。 附着的荧光标记乃至一些生物分子本身都拥有特征性强、 方便的能级来进行光分子吸收与放射, 从而使光在频谱 (等价于能量, E=hv。 h是 普朗克常数, V是光波频率)中容易被分辩出来。光技术的不足之处是其读入系统体 积大,造价高, 使用寿命短。 另外, 荧光染料有不稳定, 易分解, 背景荧光干扰等 弱点。 因此, 有必要找到一种新的检测方法, 能够进一步提高检测的特异性、 准 确度和灵敏度, 开发出能克服前述缺点的新一代芯片。 .
电致传感指的是将外界信号转换成电信号的技术。 与光致传感相比, 它们在 生物领域应用较晚。 直至上世纪五十年代后, 精密电测量仪器普遍应用之后才开 始显示出优势。 微电子技术使所有技术都朝电子方向靠拢, 传感器也不例外。 只 有直接将生物信号转换成电信号, 然后直接传入数据系统, 才顺理成章。 而其它 所有的方式都变得相对不那么直接了。 在感应性方面, 电传感完全有可能达到光 的敏感度, 甚至比光更高。 一个很好的例子就是, 所有生物都具有液相和气相化 学传感器: 如动物的舌头与鼻子, 昆虫的触角。 这些天然的传感器在许多方面连
1
确 认 本 我们最好的仪器都望尘莫及。 它们都是以电传导为基础的: 化学信号直接激发细 胞的电激感, 并通过中枢神经回传至大脑 (当然也是电方式)。 光系统通常都比较昂 贵, 诊所很难拥有, 更不用说患者个人了。 相比之下, 电子系统价格低廉。 而且, 同样功能的电子芯片价格继续以每 1 8个月 5 0 %的速度下降 (摩尔定律)。随着时 间推移, 我们必将看到生物芯片越来越向电致传感方向发展。
晶体受外界机械压力的作用, 在其表面产生电荷的现象, 称为压电效应。 比 较常用的压电材料有石英、 铌酸钇、 PZT、 钛酸钡等, 还包括一些合成和天然的聚 合物。 研究发现, 当交变激励电压施加于压电晶体电极两端时, 晶体会产生机械 变形振荡。 当交变电压频率达到晶体固有频率时, 振幅加大, 形成压电谐振。 此 特定频率称为谐振频率。 根据压电传感机理, 用压电晶体制成谐振结构, 可以发 现其输出信号与晶体的物理尺寸和性质密切相关。 一般来讲, 振动频率与谐振器 件的质量成相反的函数关系。 当有附加物质结合在谐振器件表面, 其质量改变时, 共振频率便随之移动。 如果我们在器件表面固化有特别化学识别性的材料, 它会 因某种特别样品物质的存在而使器件表面总的附加物质量增加或减少, 我们便可 依靠共振频率的移动来测定这种化学亲和或剥离过程。 由此实现化学或生物电传 感器。这就是压电体声波 (Bulk Acoustic Wave: BAW)传感器的原理。压电表面声 波 (Surface Acoustic Wave: SAW)工作原理稍有改变。压电声波由发射极发出, 经过 晶片表面传播到接收极。 从发射到接收的延迟时间由延迟距离和延迟表面的负载 决定 (图 )。 但与 BAW—致之处是我们同样可以借助一个时间域 (频率倒数便为 时间)信号检测器件表面总的附加物质质量增加或减少。 这是本项发明的基本原理 之一。
在压电体中, 石英因其良好的机械、 电化学和温度等综合性能, 应用最广。 是压电化学和压电生物传感器的首选材料。以石英晶体制成的 BAW器件又叫做石 英晶微天平 QCM (Quartz-Crystal-Microbalance) a 对于 AT方向切割的石英晶体, 其振动频率 fo反比于晶体厚度 d, 关系式为 =kf/d。 其中 kf为频率常数 (一般取 0.168Mhz.cm)。 当有物质结合在具有化学敏感性的上表面时, 晶体的质量 变化为 Am,所产生的频移 Δ/由 Sauerbrey方程 给 出 :
Δ/= - [2/ο 2Διη] / [Α (pq μ¾ )1/2 ]
频移 Δ/与质量变化为 Am呈线性关系。这里 pq是石英的密度 (2.648g-cm—3), μ¾是石 英的密度剪切模量 (2.947Xl{rudyn-Cm— 2)。对于共振频率为 5MHz的石英谐振器件, 1Hz的共振频率移动相当于 17ng/cm2的质量变化。
压电体声波是比较成熟的技术。 在化学或生物检测上应用很广。 但由於其信 号强度与表面附加物质质量变化成正比。 对于 DNA片段 (切片之后的), 氨基酸, 多肽酶等这样的低中分子量的的生物分子, 频率移动较小。 信号不稳定, 受环境 干扰大。以含 20至 40个碱基的 DNA为例,在 1014/cm2表面密度 (这是已经报道的 最高值)情况下, 只能对 5MHZ的石英 BAW器件产生 1HZ的频率移动。 SAW器 件在灵敏度上也有类似问题。 这就使其在这类生物传感器上的应用非常有限。 尤 其是在生物芯片上, 传感器要做成信号重复性很高的阵列就更不可能了。 本项发 明利用纳米或生物大分子材料, 对样品生物分子进行标记, 从而增大了被探测分 子的有效质量, 使压电声波信号大大增强。 由于这种标记侧重的是样品生物分子 的有效质量, 因此称之为质量标记。 出於这一原理, 它的标记材料选择范围甚广。 计算表明, 放大效应是非常可观的。 以常用的纳米金为例, 在理想状态下, 它对
20至 40个碱基 DNA放大作用为一百万倍。 即使考虑到不太理想的反应率、 以及 纳米颗粒表面沉积等因素, 我们预计仍有一万倍的放大效果。 显而易见, 质量标 记对压电体声波效应的放大作用完全改变了 BAW固有的缺陷。使其在中小分子的 化学、生物检测、尤其是阵列 BAW传感生物芯片的实用化成为可能。质量标记对 SAW的意义与 BAW基本相同。 这是本项发明的基本原理之二。
发明目的
本发明提供一种利用压电声波原理制作的生物芯片, 以及利用纳米金或其它 质量标记材料进行检测的方法。
本发明采用的技术方案
A、 一种压电体声波 (BAW)传感器 (图 3、 图 4的第一到第 4步), 包括压电晶 体基片和上下表面的传感电极。 压电晶体基片一般采用 AT方向切割的石英晶片, 但亦包括其他可能的压电晶体基片。 上下表面传感电极藉由半导体电子芯片的技 术形成。 电极可用金、 银以及其它一切与生物兼容的导电材料直接制成; 或以其 他金属导电材料制成, 然后再覆盖与生物兼容的导电或绝缘材 (鍍金层或沉积二氧 化硅薄膜等)。
B、 一种压电表面声波 (SAW)传感器 (图 10), 与 BAW不同处在于电极只在压 电晶体基片的一侧表面, 设有发射极和接收极, 它们与地极呈梳形安装。 压电声 波由发射极发出, 沿晶片表面传播到接收极。 延迟时间由发收电极的延迟距离和 延迟表面的负载决定。 压电晶体基片一般采用石英晶片, 但亦包括其他可能的压 电晶体基片。 同样, 表面传感电极藉由半导体电子芯片的技术形成。 电极可用金、 银以及其它一切与生物兼容的导电材料直接制成; 或以其它金属导电材料制成, 然后再覆盖与生物兼容的导电或绝缘材 (镀金层或沉积二氧化硅薄膜等)。
C、在 A所述的传感器上表面、下表面、或上下二表面上固定生物探针。在 B 所述的传感器电极同侧延迟表面上固定生物探针。 固定的生物探针一般是指 单链 DNA, RNA, 抗体, 蛋白; 亦包括其它一切 可能与分析物形成生物、 化学亲和或 剥离反应的物质。这里所指的亲和反应包括:单链 DNA与单链 DNA的杂交, mRNA 与 DNA, mRNA与 tRNA, 抗体与抗原的结合, 蛋白质与荷尔蒙的结合, 蛋白质 与维生素的结合, 蛋白质在酶催化条件下形成或扩展等等。 这里所指的剥离反应 包括: DNA在酶切割下断链, 蛋白质在酶催化分解, 以及上述亲和反应的逆过程 (在浓度、 温度、 酸硷度改变后及机械振动条件下而产生)。 这种化学亲和或剥离 反应可依靠 A、 B所述的传感器共振频率移动来测定。
D、 A所述的 BAW单元传感器可单独使用; 也可采用无源式或有源式形成阵 列设计。无源式阵列可釆用子元独立连接法 (见图 8), 或交叉连接法 (见图 9)。交叉 连接的上下电极贯穿线 (BUS)交叉处不存在绝缘问题。 由於贯穿线较细, 交叉处的 寄生压电效应和寄生电容都属於二级效应。 交叉连接法避免了连线拥挤的问题。 可实现中高密度阵列芯片, 在数平方厘米大的基片上制作数万子元的传感器阵列。 在图 8、 图 9的设计中, 某些情况下一侧表面的诸个或所有电极可以在芯片上连通 在一起, 再与线路板连接。
E、 B所述的 SAW单元传感器可单独使用;也可采用无源式或有源式形成阵列 设计。 无源式阵列可采用子元独立连接法 (图略, 与图 8类似, 把每个子元电极接 线独立从周边引出), 或交叉连接法 (见图 10)。 交叉连接法的地、 发、 收三极贯穿 线 (BUS)交叉处绝缘问题可藉由半导体电子芯片制作技术中的通用的双层金属立 体连接法完成。 此法可实现中高密度阵列的芯片。 在数平方厘米大的基片上制作 数千乃至数万子元的传感器阵列。 在 (图 10) 某些情况下诸个或所有的电极可以 在芯片上连通在一起, 再与线路板连接。 F、 在 D、 E所述的传感阵列芯片的情况下, C所述的生物探针釆用与传感器 阵列同位固定, 形成与传感器阵列相匹配的生物探针阵列。 可用光刻法逐一暴露 传感器点元实现, 这个方法几何精度是最高的。 我们也可以釆用接触点样法、 光 刻原位合成法、 喷墨法、 及分子印章合成法来完成。 每个子元的传感器可独立地 测定与其相配的生物探针上的特异的生物信号。
G、 为了减轻 A所述传感器下表面的影响, A、 D所述的芯片可用 MEMS刻蚀 方法在下表面蚀刻一个平槽; 或者把下表面进行封装; 或者在下表面蚀刻平槽后 再进行封装。 但在某些情况下, 这些步骤可以免去。
H、 一种利用 BAW或 SAW生物芯片进行生物检测的方法, 包括把样品生物材 料用纳米粒子材料标记后, 与生物芯片上的探针杂交, 以获得放大的压电体声波 效应, 便于进行信号采集和分析处理。 此法称为 "直接标记法"。
I、 一种利用 BAW或 SAW生物芯片进行生物检测的方法, 包括把样品生物材 料与生物芯片上的探针杂交后, 再用标记材料标记样品生物材料, 以获得由质量 标记材料所产生的压电体声波效应。 便於排除前面各步反应的干扰, 进行信号釆 集和分析处理。 此法称为 "追加标记法"。
J、 纳米金、 银是 H、 I常用的质量标记材料。 但本发明包括其它一切对压电声 波效应有质量放大的纳米粒子标记材料,或其它有质量放大的生物性(如大分子) 标记材料。
K、 一种生物材料的标记材料的键合方法: 生物材料与标记材料直接键合。 此 法适用于11、 I所述的标记方法。
L、 一种生物材料的标记材料的键合方法: 生物材料与标记材料首先被分别附 着于一个亲和对的两部分, 然后当这些经过预处理的生物材料与标记材料结合时, 标记材料与生物材料藉由亲和对的键合得以实现。 这种方法使质量标记材料的制 备过程更加简单, 因此一种预处理的质量标记材料能够用来标记各种生物材料。 此法适用于 H、 I所述的标记方法。 但在 I所述的标记方法中作用更大。
M、 内容 L 所述生物亲和对, 可以使用卵白素-生物素体系、 链球卵白素 (streptavidin)-生物素体系、或者其它生物亲和对体系。卵白素由四个相同的亚基组 成。 每个亚基能够连接一个生物素分子, 这种配对拥有目前为止最髙的亲和系数 ^IO^M"1), 几乎是其最接近竞争者的 1000倍。 卵白素有四个位点, 从而使附着 多种纳米粒子以发展多功能感应装置成为可能。 卵白素同样也可用来连接一种感 应系统里的多种生物亲和系统, 或通过亲和素-生物素的多点桥连和再次复合达到 多次放大, 进一步提高检测灵敏度。
N、 信号读取方法 (见图 12)。 D、 E中所述交叉连接法无源式阵列电路拓扑学与 存储器类似, 在行列地址交叉的子元上读取信号。 故可借用许多通用 IC实现整个 阵列信号读取。 如果要制作小型便携式测试系统, 可利用数字信号处理器 (DSP)或 掌中型电脑实现。 此法当然也适合于对单个传感器和独立连接法所实现的阵列的 信号读取。 区别只在复用器的连线上稍有改动。 本发明具有以下创新点-
• 用纳米粒子质量特性, 放大原较微弱的 BAW、 SAW生物信号, 尤其是中小分 子量的分析物, 扩大效率至少上万倍, '完全可使压电型传感器投入实用。 将压 电体声波技术应用于生物芯片, 开辟了除荧光检测, 放射性标记捡测, 金标银 染等常规检测方法以外的生物芯片检测新领域。 压电体声波技术对质量变化的 高敏感性成为生物芯片高敏感度和高准确率的有力保障。
• 纳米金用于光检测较多, 本发明首次将它用于电学性阵列生物芯片, 拓展了纳 米金及其它纳米粒子标记在生物芯片检测中的应用范围。 将生物信号转化为电 信号检测, 避免了其它检测方法、 检测设备昂贵复杂的缺点。 电的好处是成本 低, 可大规模推广。
· 本发明提供了将生物识别系统与纳米颗粒、 传感器系统结合起来的方法, 它具 有普遍意义并应用广泛。 它的意义在于将许多目前光机制生物芯片转化为电机 制生物芯片。 在生物探针方面与光机制芯片完全一致, 可借助相同原理进行。 參 独特的阵列连接法: 使用与单个传感器一样多的工艺步骤便可实现阵列连接。
电路拓扑学与存储器类似, 故可借用许多通用电器元件实现芯片信号读出。 · 生物芯片在电传感器加工部分与现有半导体工艺完全一致, 为大规模生产找到 了生产平台, 从而使产品的质量监控得到保证。 我们的方案突破了生物芯片项 目在产品化过程中的瓶颈。
• 这一设计在检测信号处理上都可通过商业化 IC芯片完成。 最终小型化的检测 系统接近于手机或更小。 附图说明
图 1为本发明所述的基因芯片的制作及其直接标记法检测的流程图; 图 2为本发明所述的基因芯片的制作及其追加标记法检测的流程图; 图 3为 BAW基础传感器制作和直接标记法杂交过程的切面示意图; 图 4为 BAW基础传感器制作和追加标记法杂交过程的切面示意图; 图 5为用光刻和提剥 (Lift-off)形成电极的流程切面 示意图;
图 6为直接标记法的原理示意图。 用通用键合法 (L、 M);
图 7为追加标记法的原理示意图。 用通用键合法 (L、 M);
图 8为 BAW的独立连接法的无源式阵列设计示意图 (只显示了 3X3阵列); 图 9为 BAW的交叉连接法的无源式阵列设计示意图 (只显示了 4X4阵列); 图 10为 SAW的交叉连接法的无源式阵列设计示意图 (只显示了 2X2阵列); 图 11为 BAW上下电极与测试电路连接示意图;
图 12为信号检测系统示意图。 实施例
下面以石英压电体声波 (BAW)无源阵列的设计制作,以及在 DNA芯片生物探 测框架下利用纳米金的 BAW放大效应实现电致传感芯片为主干,对本发明的具体 实施方式加以说明。 本文对属於前述发明内容所圈定的, 并涉及公共知识领域和 通用制作工艺的内容不一一赘述。 但这不等於我们不了解这些可能性和它们的具 体实施方式。 我们对前述发明内容所直接限定或明确引伸限定的知识产权保留一 切应享有的权力。
如图 1所示, 本发明所述的基因芯片的制作流程主要包括石英片的处理, 石 英片上下表面金电极的制作。 将设计好的探针与上电极同位固化, 完成整个芯片 的制备。 而上述基因芯片用于检测的流程则包括按照常规方法采用 PCR扩增样品 DNA, 并用纳米金标记样品 DNA (即发明内容 H所述的直接标记法)。 在纳米金标 记样品 DNA与芯片上的探针进行杂交后, 检测杂交前后 BAW传感器的频移。 数 据分析后对每个阵元 DNA杂交状态作出判断。 并可藉此进行数据分析, 得出医学 结论。
图 2所示的流程在芯片的制备与图 1所示流程完全一样。 检测的流程釆用发 明内容 I所述的追加标记法。 样品 DNA—端与生物素结合。 与芯片上的探针进行 杂交后, 再用结合有卵白素的纳米金进行标记, 然后检测纳米金标记前后 BAW传 感器的频移。
以上各过程和原理详述如下:
(l) BAW基础传感器制作
图 3展示本发明生物芯片制作过程的截面图, 以及直接标记法的 DNA杂交 情况。 包括对石英片 300下表面进行蚀刻处理, 形成一平槽 301后, 在上下表面制 作金电极 302、 303。上表面电极 303同位固定 DNA探针 304于金膜表面后, 与纳 米标记 306材料标记过的样品 DNA305杂交,生成最终产物 307。压电体声波测试 通常在晶体片干燥后进行。 零点频率信号检测在第 5 步后进行。 杂交后频率信号 检测在第 7步后进行。 在干燥情况下, 可极简单地理论处理纳米标记的放大效应, 并能实现压电体声波的最大灵敏度。 潮湿和表面上的其它残余物可能引起干扰, 但在纳米金标记后, 这一弱点可大大减小, 因为水分子以及空气中吸附的气体全 都是小质量分子。 纳米颗粒的放大效应可使这些小分子的影响能减少到小于百万 分之一。 但如果没有纳米金粒子增强时, 它们的影响就是同分析物一个数量级。 也可将芯片部分放在水溶液中进行检测。这种情况下, BAW谐振会产生阻尼效应。 通过纳米标记放大后, 即算考虑阻尼, 频率移动也可达到一个很适于检测的范围。 在水溶液中检测可以对 DNA杂交的动态过程进行观察。在图 3第 5步后即接通测 试系统, 连续采集频率信号, 或对阵列进行定时扫描, 加以记录, 然后进行分析 处理。 在水溶液中检测还可以观察到生物分子在水溶液中与干燥状态不同的力学 特性。 BAW是声学基础 的传感器, 非常 适合 此类测试 。
图 4展示本发明追加法记法的 DNA杂交情况。 生物芯片制作过程与图 3直 接标记法一样。 与图 3不同的是把样品 DNA400与生物芯片上的探针 304杂交后 形成双链 DNA402, 再用纳米粒子材料 401标记, 最终产物也是 307。 此法可获得 由纳米粒子材料所产生的压电体声波效应。 如果测试在晶体片干燥后进行, 零点 频率信号检测在第 6步 DNA探针与样品杂交后进行。 第 7步进行追加纳米标记, 而杂交后频率信号检测在第 8步进行。 可以看出, 由於频率移动直接来自于最后 一步的纳米标记质量增加效应, 别的干扰因素被降到最低。 此法更适合在水溶液 中进行检测, 可以在第 5步后即接通测试系统, 也可在第 6步后接通测试系统, 连续采集频率信号。 但两种情况都会在第 7步纳米标记过程中观察到强烈信号。 图 3、 图 4所展示的上下表面电极是藉由半导体电子芯片制作技术中的通用 金属工艺形成。 图 5流程说明了这种通用金属工艺的一种: 用光刻和提剥 (Lift-off) 形成电极的过程。 在基片 500上覆盖一层光刻胶 501。 然后通过掩膜 502(—般用 Cr膜在透明基片上制成)对光刻胶 501曝光。 经过冲洗后, 曝光部分被去掉, 形成 步骤 4所示状态。然后在步骤 5中用蒸鍍法在光刻胶上覆盖金膜 503 ; 最后, 用光 刻胶溶剂去掉所有光刻胶。 与掩膜空白处一致的形状便被复制在金膜上形成 504 的状态 (相当于 302或 303)。 电极形成也可以用其它多种工艺完成。如: 种层 /光刻 /镀金法, 镀金 /光刻 /金刻蚀法等等。 二氧化硅和金都具有 良好的生物兼容性。
需要使用的传感器表面是上电极表面。在生物医学实验中,较少注重下表面。 但下表面对 BAW装置同样敏感。 为减轻这种影响, 可用 MEMS处理在下表面蚀 刻一条平槽 301(见图 3、图 4)。平槽工艺可与图 5流程集成一体完成。也可在封装 过程中进行特别处理将下表面完全封闭。
(2)样品的纳米金标记
样品的纳米金标记有两种方法: 直接标记法和追加标记法。 直接标记法是在 杂交前先对样品进行纳米金标记, 而追加标记法则是在杂交后才进行纳米金标记。 这两种标记方法将在下面进行详细说明。
标记的目的是将纳米粒子与样品 DNA连接。 对于连接办法, 我们既可以通 过对生物材料和纳米粒子有效的键合分子来实现, 也可以制订一个可以用于大多 数生物材料的通用键合方案。纳米金直接标记 DNA或蛋白质已有成熟的技术。 当 纳米粒子与生物材料已经确定时, 直接键合方法可以从很多公开资料中找到。 这 里不作过多讨论 (图略)。 图 6、 图 7所示都是通用键合方案。 生物材料与纳米粒子 首先被分别附着于一个亲和对的两部分, 然后使这些经过预处理的生物材料与经 过预处理的纳米粒子结合, 最终实现生物材料与纳米粒子的键合。 这种方案使纳 米粒子的制备过程更加简单, 因为一种预处理的纳米粒子能够用来标记各种生物 材料。 对于生物亲和对, 可以有多种选择, 但亲和素-生物素体系最有发展前景。 亲和素 (avidin)又称卵白素, 是从蛋白中提取的一种糖蛋白 (分子量 68kD ) ; 生 物素 (biotin)又称维生素 H,是从卵黄和肝中提取的一种小分子物质 (分子量 244.31)。 生物素能够通过化学反应与多种低分子量或高分子量的生物分子结合,比如 DNA, 蛋白质、 荷尔蒙等。
在图 6中, 生物材料 601(此处为 DNA)与亲和对中的第一部分 602(此处为生 物素)结合成预处理的样品生物材料 603。 纳米粒子与亲和对中的第二部分 604(此 处为卵白素)结合, 形成预处理的纳米标记材料 605。 然后 605与 603结合, 成为 完整的纳米标记的样品生物材料 606。 606进而与固化的生物探针 607(相当于 304) 杂交, 形成带有纳米标记的杂交产物 608(此处为双链 DNA, 相当于 307) 。
这种纳米粒子的键合方法很适合追加标记法。 在图 7中, 制备亲和对预处理 的样品生物材料 603、 以及预处理的纳米标记材料 605的过程与图 6完全相同。 区 别在于 603先与固化的生物探针 607杂交, 形成 701状态。 然后追加标记 605, 形 成与图 6完全相同的带有纳米标记的杂交产物 608。 这种方法的优势在于: 首先, 纳米粒子可以比 DNA、 氨基酸和其它低中生物分子尺寸大很多, 当这些分析物附 着纳米粒子后, 会受到反应动力学影响, 与基片上的生物探针的杂交会受到影响; 同时, 分析物与纳米粒子结合时也存在一个化学反应率的影响。 直接标记法中, 在标记过程中有些样本 DNA受化学反应影响未能与纳米颗粒结合而游离于溶液 中, 造成样本分析物的浪费; 但所有这些影响都可以在追加标记法中降低到最小 程度。没有结合纳米粒子时,表面未标记的分析物与 DNA探针的结合将非常顺利。 另一优势是许多生物材料对被探测的电信号都会有作用。 作为整个生物识别最后 一步的标记过程, 追加标记法可以区分纳米粒子所产生的净作用。 同时, 在这种 方法中, 可以通过足量使用与卵白素结合的纳米粒子来确保纳米标记不是反应全 过程的限制环节。 在纳米颗粒饱和状态下, 所有已杂交的 DNA将被充分标记。
纳米颗粒在溶液中具有胶体粒子的性质。 颗粒表面形成双电层, 依靠外电层 的电荷排斥保持胶体溶液的稳定。 溶液中的离子强度对纳米颗粒的分散和稳定影 响很大。 离子强度大, 将破坏纳米颗粒表面的双电层, 造成粒子凝聚沉降, 使其 吸收光谱发生漂移。 为消除杂交过程中的非特异性吸附造成的噪音, 纳米粒子与 卵白素之间的结合力要满足洗脱时不丢失信号。 为使纳米颗粒与卵白素达到最佳 结合, 孵育方式、 孵育温度及时间、 单点或多点结合条件的控制, 都是优化的内 容。 纳米颗粒的粒径不仅与纳米制备技术有关, 同时关系到纳米粒子的精确定位, 以及对杂交和信号检测的协同作用。 在直接标记法和追加标记法中, 纳米粒径通 过反应动力学和空间位阻而影响杂交及标记, 通过颗粒尺寸大小来控制质量大小 并影响其放大作用, 从而决定芯片系统的灵敏性。 所有这些影响因素都可以利用 基本传感器进行直接测量加以优化, 获得最佳条件。
(3 ) 生物芯片阵列的设计与制作。
图 8所示的是在发明内容 D所述的独立连接法的 BAW无源式阵列。其中 800 为基片, 801为上电极, 802为下电极, 803为基片下表面平槽 (相当于 301)。 这种 设计避免了单元传感器与阵列的设计跳跃。 这个设计中, 传感器阵列的制作与单 元传感器除掩膜不同外, 其它完全相同。 此工艺步骤相对简单, 可以把成本降到 最低。 每个点元的大小及石英的厚度 (决定振动基本频率) 应根据传感器与生物 探针的要求共同决定。 这种连线方案至少可制成 50到 100的阵列, 因而对于中小 型的应用已经足够了。 在测试上可用复用器开关电路对点元逐一检测。
图 9所示的是发明内容 D所述的交叉连接法的 BAW无源式阵列。 其中 900 为基片, 901为下表面电极、 902为上表面电极、 903为贯穿线、 904为对外接线 端, 905为基片下表面平槽 (相当于 301)。 这种设计的最大好处是避免了独立连接 法中的连线拥挤问题。 可制成上万个阵元的高通量芯片。 与图 8 —样, 其制作工 艺步骤与单元传感器除掩膜不同外, 其它完全相同。
图 10所示的是发明内容 E所述的交叉连接法的 SAW无源式阵列。图中, 1000 为压电体基片。 1001为贯穿线。 1002为延迟表面。 生物探针一般放在这里。 1003 为延迟距离, 它与 1002的表面负载共同决定 SAW的延迟时间。
在阵列制作中的另一方面是生物探针的同位连接, 我们可用光刻法逐一暴露 传感器点元实现, 这个方法几何精度是最高的。 我们也可以采用接触点样法、 光 刻原位合成法、 喷墨法、 及分子印章合成法来完成。
(4) 信号检测系统
如图 11所示, 上下表面电极的两侧接触可以用电路版实现 (图中方法 1), 上 下电极直接与电路板连接。 上下表面电极的两侧接触也可以采用微电机系统 (MEMS)通过穿透蚀刻后再用 T接头实现 (图中方法 2), 其中 1101为 T形接头、 1102为贯穿孔。
采用如图 12电子线路设计, 可测出 BAW的谐振频率, 所有 IC芯片都是通用 型的, 震荡器前端线路有一定模拟成分。 除此之外的其它部分都是数字线路。 工 作频率在 1到 100兆赫之间。 IC选择范围大。 进入产品化后, 整个信号釆集及分 析系统可以集中在一个板子上。 一种方案是计数仪后加数字信号处理器 (DSP)。 阵 列地址可用平行接口实现, 加上配合的液晶显示系统便可完成。 另一种方案是将 图中计算机部分用掌上型电脑代替, 其接口和软件都有与 PC兼容的, 这样运算与 显示部分可全部搬用, 但成本稍高一些。 SAW的测试与 BAW相同。延迟时间的测定 还需增加一些索相环 (PLL) IC及线路。

Claims

权 利 要 求
、 一种压电体声波 (BAW)传感器, 包括压电晶体基片和上下表面的传感电极, 其特征在于: 完整的 BAW传感器至少一个; 上下表面传感电极皆由半导体 电子芯片的金属工艺形成; 每个电极使用至少一次光刻工艺成形, 并与其 它部件密配; 电极可用金、 银以及其它一切与生物兼容的导电材料直接制 成; 或用其它金属导电材料制成, 然后再覆盖与生物兼容的导电或绝缘材 料实现生物兼容性; 覆盖绝缘材料的目的也可以是用来实现在液相检测时 的电极绝缘。
、 一种压电表面声波 (SAW)传感器,包括压电晶体基片, 在压电晶体基片的一 侧表面, 设有发射极和接收极, 它们与地极呈梳形安装; 其特征在于: 完 整的 SAW传感器至少一个; 传感器的地极、 发射极和接收极皆由半导体电 子芯片的金属工艺形成; 使用至少一次光刻工艺成形, 并与其它部件密配; 电极可用金、 银以及其它一切与生物兼容的导电材料直接制成; 或以其它 金属导电材料制成, 然后再覆盖与生物兼容的导电或绝缘材料实现生物兼 容性; 覆盖绝缘材料的目的也可以是用来实现在液相检测时的电极绝缘。 、 改进的按权利要求 1所述的压电体声波 (BAW)传感器,其特征在于:所述的 基片用 MEMS刻蚀方法在制作电极前在下表面蚀刻一个平槽; 或者把下表 面进行封装; 或者在下表面蚀刻平槽后, 再进行封装。
、 一种生物芯片, 包括权利要求 1所述的 BAW传感器, 其特征在于: 在所述 的传感器的上表面电极、 下表面电极、 或上下二表面电极上固定生物探针。 、 一种生物芯片, 包括权利要求 2所述的 SAW传感器, 其特征在于: 在所述 的传感器的电极同侧延迟表面上固定生物探针。
、 采用按权利要求 1所述的压电体声波 (BAW)传感器,按独立连接法形成的无 源式阵列; 其特征在于: 含完整传感器至少两个; 每个子元各电极的接线 独立向周边引出;工艺步骤与权利要求 1所述的压电体声波 (BAW)传感器相 同; 传感器电极和阵列连线的成形, 都根据相应的掩膜设计而实现。
、 采用按权利要求 1所述的压电体声波 (BAW)传感器,按交叉连接法形成的无 源式阵列, 其特征在于: 含完整 BAW传感器至少两个; 由 m和 n根电极 由贯穿线 (BUS)分别把上下表面的 mXn电极阵列连接成行和列的结构 (无所 谓上下表面哪个取行, 哪个取列连接); 对外接线口总共有 m+n个; 工艺步 骤与权利要求 1 所述的压电体声波传感器相同; 传感器电极和阵列连线的 成形, 都依靠相应的掩膜设计而实现。
8、 采用按权利要求 2所述的压电表面声波 (SAW)传感器,按独立连接法形成的 无源式阵列; 其特征在于: 含完整 SAW传感器至少两个; 每个子元各电极 的接线独立向周边引出; 工艺步骤与权利要求 2所述的压电表面声波传感 器相同; 传感器电极和阵列连线的成形, 都依靠相应的掩膜设计而实现。
9、 采用按权利要求 2所述的压电表面声波 (SAW)传感器,按交叉连接法形成的 无源式阵列, 其特征在于: 含完整传感器至少两个; 由 m和 n根电极由贯 穿线 (BUS)分别把 mXn个电极阵列连接成行和列的结构 (无所谓地、 发、 收 三极哪个取行, 哪个取列连接), 对外接线口总共有 m+2n或 2m+n个, 连 线 (BUS)交叉处绝缘问题可藉由半导体电子芯片制作技术中的通用的多层 金属立体连接法完成, 至少有两层金属; 工艺步骤与权利要求 2所述的压 电体声波传感器相同; 传感器电极和阵列连线的成形, 都依靠相应的掩膜 设计而实现。
10、 权利要求 6、 7、 8、 9所述的诸个阵列电极可以在芯片上连通在一起, 再与 测试系统连接。
11、 改进的按权利要求 6、 7所述的传感器阵列, 其特征在于: 所述的基片用 MEMS刻蚀方法在制作电极前, 在下表面蚀刻一个平槽; 或者把下表面进 行封装; 或者在下表面先蚀刻平槽再进行封装。
12、 一种生物芯片。其特征在于: 权利要求 6或 7所述的 BAW传感器阵列在所 述的传感器阵列的上表面电极、 下表面电极、 或上下二表面电极上同位固 定生物探针; 同位固定的方法包括: 光刻点元逐一暴露法、 接触点样法、 光刻原位合成法、 喷墨法、 及分子印章合成法等。
13、 一种生物芯片。 其特征在于: 权利要求 8或 9所述的 SAW传感器阵列在所 述的传感器阵列的电极同侧延迟表面上同位固定生物探针; 同位固定的方 法包括: 光刻点元逐一暴露法、 接触点样法、 光刻原位合成法、 喷墨法、 及分子印章合成法等。
14、 一种改进的按权利要求 12 所述的生物芯片, 其特征在于: 所述的基片用 MEMS刻蚀方法在制作电极前在下表面蚀刻一个平槽; 或者把下表面进行 封装; 或者在下表面蚀刻平槽后, 再进行封装。
、 诸种权利要求 4、 5、 12、 13任一所述的生物探针, 其特征在于以下单独一 种材料或多种材料混合阵元固化: 单链 DNA、 RNA、 抗体、 蛋白、 一切可 能与分析物形成生物、 化学亲和或剥离反应的物质; 这里所指的亲和反应 特征在于:单链 DNA与单链 DNA的杂交, mRNA与 DNA, mR A与 tRNA, 抗体与抗原的结合, 蛋白质与荷尔蒙的结合, 蛋白质与维生素的结合, 蛋 白质在酶催化条件下形成或扩展等等;这里所指的剥离反应特征在于: DNA 在酶切割下断链, 蛋白质在酶催化分解, 上述亲和反应的逆过程(在浓度、 温度、 酸硷度改变后及机械振动条件下而产生)。 在液相检测中, 亲和或剥 离反应也可由电化学反应引起, 手段是在生物探针下面或附近的电极上, 施加相对于溶液的电压。
、 一种利用质量标记进行生物检测的方法, 其特征在于: 把样品生物材料用 质量标记材料 (纳米粒子或其它生物分子)标记后与生物芯片上的探针杂交, 以获得放大的压电体声波效应; 此法称为直接标记法。 此权利要求适用于 权利要求 4、 5、 11、 12、 13所述的器件和芯片, 以及其它的质量传感器件 和芯片。
、 一种利用质量标记进行生物检测的方法, 其特征在于: 样品生物材料与生 物探针杂交后, 再用质量标记材料 (纳米粒子或其它生物分子)标记, 以便排 除前端各步反应的干扰, 此法称为追加标记法; 此权利要求适用于权利要 求 4、 5、 11、 12、 13所述的器件和芯片, 以及其它的质量传感器件和芯片。 、 一种生物材料的标记键合方法, 其特征在于: 生物材料与标记材料首先被 分别附着于一个亲和对的两部分, 然后当这些经过预处理的生物材料与标 记材料结合时, 生物材料与标记材料藉由亲和对的键合得以实现; 此权利 要求适用于权利要求 16、 17所述的质量标记方法, 以及其它标记方法, 如 荧光标记等。
、 一种生物材料的标记键合方法, 其特征在于: 使用卵白素-生物素体系、 链 球卵白素 -生物素体系实现权利要求 18所述的键合方法。
、 一种生物材料的标记键合方法, 其特征在于: 利用卵白素的四个相同的亚 基位点, 通过亲和素 -生物素的多点桥连和再次复合达到多次放大。
21、 一种生物材料的标记键合方法, 其特征在于: 利用卵白素的四个相同的亚 基位点, 附着多种标记材料以实现多属性标记。
22、 一种对压电生物芯片的信号读出方法, 其特征在于: 使用振荡器产生频率 信号, 再由计数器转成数字信号, 传入电脑或电脑网络进行分析处理。
23、 一种对 SAW压电生物芯片的信号读出方法, 其特征在于: 使用振荡器产生 频率信号, 再由计数器转成数字信号; 延迟时间的测定由索相环 (PLL)线路 完成; 信号传入电脑或电脑网络进行分析处理。
24、 一种对阵列电致生物芯片的电信号读出方法, 其特征在于: 使用复用器 (multiplexer)至少一个, 利用地址 0/1 设置, 对芯片阵元逐一读取; 适用于 至少两个阵元。
25、 一种对阵列电致生物芯片的电信号读出方法, 其特征在于: 使用行与列至 少两个复用器 (multiplexer), 利用它们地址 0/1 设置, 对交叉连接的阵元逐 一读取。
26、 一种由权利要求 22、 23、 24、 25所述原理制作的小型便携式测试系统, 可 利用上述线路加数字信号处理器 (DSP)或掌中型电脑实现。
PCT/CN2004/000641 2003-06-18 2004-06-15 A mass amplified piezoelectric biochip WO2004111626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN03126910.9 2003-06-18
CNB031269109A CN100495008C (zh) 2003-06-18 2003-06-18 压电体声波传感器无源式阵列及其生物芯片

Publications (1)

Publication Number Publication Date
WO2004111626A1 true WO2004111626A1 (en) 2004-12-23

Family

ID=33546180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000641 WO2004111626A1 (en) 2003-06-18 2004-06-15 A mass amplified piezoelectric biochip

Country Status (2)

Country Link
CN (1) CN100495008C (zh)
WO (1) WO2004111626A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442048C (zh) * 2005-03-28 2008-12-10 湖南文理学院 农药对捕食性天敌体内消化酶活性的快速检测方法
CN100427924C (zh) * 2005-11-02 2008-10-22 天津科技大学 自发光生物芯片及其制作方法
CN101241125B (zh) * 2008-03-10 2013-02-13 施晓燕 一种用于液相测量的压电传感器及封装方法
CN102472742B (zh) * 2009-07-07 2015-07-22 西门子公司 作为生物芯片的传感器
CA2817283C (en) * 2010-10-05 2020-07-14 Anpac Bio-Medical Science Co., Ltd. Micro-devices for disease detection
US10234425B2 (en) 2013-03-15 2019-03-19 Qorvo Us, Inc. Thin film bulk acoustic resonator with signal enhancement
EP3919896B1 (en) 2013-05-23 2024-07-03 Zomedica Biotechnologies LLC Two part assembly
US9910015B2 (en) * 2014-04-14 2018-03-06 Texas Instruments Incorporated Sensor array chip with piezoelectric transducer including inkjet forming method
CN107250794B (zh) 2014-09-15 2020-09-15 Qorvo美国公司 具有信号增强的薄膜体声波谐振器
JP2021528664A (ja) 2018-07-06 2021-10-21 コーボ ユーエス,インコーポレイティド ダイナミックレンジが拡大されたバルク音響波共振器
CN111766415B (zh) * 2020-08-14 2020-12-25 强一半导体(苏州)有限公司 一种导引板mems探针结构模板烧刻方法
TWI818596B (zh) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 具有槽結構的剪切模式液相感測器、其製造方法及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321588B1 (en) * 1998-09-11 2001-11-27 Femtometrics, Inc. Chemical sensor array
CN1325026A (zh) * 2001-07-10 2001-12-05 重庆大学 压电生物芯片微流检测装置
EP1176422A1 (de) * 2000-07-27 2002-01-30 BioChip Technologies GmbH Sensor-Chips mit Polysiloxan-Mehrfachschichten
CN1361864A (zh) * 1999-07-13 2002-07-31 费希尔控制产品国际公司 用于改善谐振器信噪比的频率牵引

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321588B1 (en) * 1998-09-11 2001-11-27 Femtometrics, Inc. Chemical sensor array
CN1361864A (zh) * 1999-07-13 2002-07-31 费希尔控制产品国际公司 用于改善谐振器信噪比的频率牵引
EP1176422A1 (de) * 2000-07-27 2002-01-30 BioChip Technologies GmbH Sensor-Chips mit Polysiloxan-Mehrfachschichten
CN1325026A (zh) * 2001-07-10 2001-12-05 重庆大学 压电生物芯片微流检测装置

Also Published As

Publication number Publication date
CN1566933A (zh) 2005-01-19
CN100495008C (zh) 2009-06-03

Similar Documents

Publication Publication Date Title
CN111474365B (zh) 一种生物传感器及制备方法和病毒检测系统及方法
KR100975010B1 (ko) 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리센서 및 그 제작방법
US7655269B2 (en) Integrated nanomechanical sensor array chips
KR100407822B1 (ko) 전기화학식 면역 센서와 이를 이용한 생화학 시료검출장치 및 방법
JP4215717B2 (ja) 物質を検出する装置および物質を検出する方法
FI118829B (fi) Mikromekaaninen sensori, sensoriryhmä ja menetelmä sekä pitkittäisten akustisten aaltojen uusi käyttö
US20020115198A1 (en) Microfabricated ultrasound array for use as resonant sensors
WO2004111626A1 (en) A mass amplified piezoelectric biochip
Virzonis et al. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers
KR101213970B1 (ko) 금속 나노막대를 포함하는 박막 트랜스듀서용 멤브레인, 그 제조방법 및 이를 이용한 박막 트랜스듀서
Su et al. Development of novel piezoelectric biosensor using pzt ceramic resonator for detection of cancer markers
CN102937607B (zh) 一种串联柔性振动压电隔膜式生物传感器及其制备方法
JP4106274B2 (ja) マイクロメカニカルセンサ素子、電気回路構成および複数のマイクロメカニカルセンサ素子を有するセンサアレイ
Soltanabadi et al. Invention of a fast response biosensor based on Au-PolyPyrrole nanocomposite-modified quartz crystal to detect morphine concentration
JP4497903B2 (ja) タンパク質チップおよびそれを用いたバイオセンサー
Gupta et al. Piezoelectric biosensors: Principle, techniques, and their application in food analysis
TW200900696A (en) Streptavidin surface-acoustic-wave immunosensor apparatus
JP3892292B2 (ja) 生体高分子検出デバイス及び生体高分子検出方法、それに用いるカーボンナノチューブ構造体、並びに、疾病診断装置
JP2002527747A (ja) プローブと基質との間のカップリングを行う化学的又は生物学分析のための多重点を備えたマイクロシステム
Li et al. Development of an Integrated CMUTs-Based Resonant Biosensor for Label-Free Detection of DNA with Improved Selectivity by Ethylene-Glycol Alkanethiols
JP2004361269A (ja) マルチチャンネルセンサとその製造方法及びバイオセンサシステムとその製造方法
CN1296081A (zh) 微型石英谐振阵列基因传感器芯片
WO2004082363A2 (en) Sensor assembly and methods of making and using same
CN109668952A (zh) 压电传感芯片、压电传感器及其制备方法
KR102573785B1 (ko) 그래핀을 기반으로 한 fet 바이오 센서 및 그 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC - EPO FORM 1205A SENT ON 19-04-2006

122 Ep: pct application non-entry in european phase