[go: up one dir, main page]

WO2004052962A1 - 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向処理剤 - Google Patents

新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向処理剤 Download PDF

Info

Publication number
WO2004052962A1
WO2004052962A1 PCT/JP2003/015800 JP0315800W WO2004052962A1 WO 2004052962 A1 WO2004052962 A1 WO 2004052962A1 JP 0315800 W JP0315800 W JP 0315800W WO 2004052962 A1 WO2004052962 A1 WO 2004052962A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
carbon atoms
polyimide
fluorine
diamine
Prior art date
Application number
PCT/JP2003/015800
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Hosaka
Hirotsugu Taki
Hideyuki Nawata
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to AU2003289305A priority Critical patent/AU2003289305A1/en
Priority to US10/538,060 priority patent/US7303792B2/en
Priority to JP2004558459A priority patent/JP4466373B2/ja
Publication of WO2004052962A1 publication Critical patent/WO2004052962A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/76Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/025Polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition

Definitions

  • the present invention relates to a novel diaminobenzene derivative, a polyimide precursor and a polyimide synthesized by using the compound as a part of a raw material, and a liquid crystal alignment treating agent containing these polymers.
  • polyimide has been widely used as a protective material in the electrical and electronic fields, an insulating material, and a liquid crystal alignment film of liquid crystal display devices due to its high mechanical strength, heat resistance, and solvent resistance.
  • most liquid crystal alignment films are coated with polyimide or a polyimide precursor, polyamide acid, because of the uniformity and durability of the coating film surface.
  • the development of the electric and electronic fields has been remarkable, and correspondingly, the materials used have been required to have higher and higher properties. There is no need to add new characteristics.
  • a simple and effective means is to introduce a new structure into the tetracarboxylic acid derivative diazamine, which is a raw material for polyimide, and use it in combination with several types of raw materials.
  • diamine is easier to synthesize a compound having a target structure than a tetracarboxylic acid derivative, so that diamine having a specific structure is used as a polyimide raw material for the purpose of imparting new properties. This has been done conventionally.
  • one of the characteristics required for a liquid crystal alignment film is to give a high pretilt angle to liquid crystal.
  • a high pretilt angle can be obtained in a polyimide liquid crystal alignment film using a diamine having a long-chain alkyl group or a fluoroalkyl group in a side chain site as a raw material (for example, 2 — See Japanese Patent Publication No. 2827/26. ).
  • a high pretilt angle can be similarly obtained when a diamine having an aromatic group, an aliphatic ring group, a heterocyclic group, or the like in a side chain site is used as a raw material (for example, See 3-1 7 9 3 2 3 gazette.)
  • a diamine having an aromatic group, an aliphatic ring group, a heterocyclic group, or the like in a side chain site is used as a raw material (for example, See 3-1 7 9 3 2 3 gazette.)
  • the density and performance of the liquid crystal display have been increased, not only can a high pretilt angle be obtained, but also the stability of the pretilt angle with respect to the manufacturing process of the liquid crystal display element, and the usage environment of the liquid crystal display element The stability of the pretilt angle with respect to is becoming important.
  • the pretilt angle may decrease. This is especially true when the pretilt angle is high or when the curing temperature at the time of forming the liquid crystal alignment film is low. Further, when the curing temperature at the time of forming the liquid crystal alignment film is high, a high pretilt angle may not be obtained, or the pretilt angle may vary.
  • the applicant of the present invention has a structure comprising a cyclic substituent selected from an aromatic ring, an aliphatic ring, and a heterocyclic ring, an aliphatic ring, and a long-chain alkyl group.
  • a polyimide liquid crystal alignment film using diamine having a side chain moiety as a raw material has already been reported (see Japanese Patent Application Laid-Open No. Hei 9-287824).
  • the present invention has been made in view of the above circumstances, and a problem thereof is a novel diamine which is particularly useful when used as a raw material of a resin for a liquid crystal alignment film, and more specifically, has an effect of increasing a pretilt angle. Large, plus excellent pre-tilt angle thermal stability, To provide a novel diamine which is a raw material of a liquid crystal alignment film having a small dependence of a tilt angle on a lapping pressure, and to provide a polyimide precursor or a polyimide synthesized using this diamine as a part of the raw material.
  • liquid crystal alignment film that contains these polymers and has a high liquid crystal pretilt angle, excellent thermal stability of the pretilt angle, and a liquid crystal alignment film having a small dependence of the pretilt angle on the rubbing pressure. It is to provide a processing agent.
  • the present inventors have conducted intensive studies on the above problems and as a result, have found a diaminobenzene derivative having a specific structure.
  • x t and x 2 are a benzene ring independently represent a cyclohexane ring, and heterocyclic or we chosen cyclic group cycloheteroalkyl, any hydrogen atoms on these cyclic groups, 1 to carbon atoms 3 From an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, and a cyano group.
  • n is an integer of 0 'or 1
  • X 3 is an alkyl group having 1 to 32 carbon atoms, an alkoxy group having 1 to 32 carbon atoms, and 1 to 3 carbon atoms. 2
  • a fluorine-containing alkyl group having 1 to 32 carbon atoms, a fluorine-containing alkoxy group having 1 to 32 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, and a cyano group is an integer of 0 'or 1
  • X 3 is an alkyl group having 1 to 32 carbon atoms, an alkoxy group having 1 to 32 carbon atoms, and 1 to 3 carbon atoms. 2
  • a fluorine-containing alkyl group having 1 to 32 carbon atoms a fluorine-containing alkoxy group having 1 to 32 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, and a cyano group.
  • a liquid crystal alignment treatment agent containing: BEST MODE FOR CARRYING OUT THE INVENTION BEST MODE FOR CARRYING OUT THE INVENTION
  • the diaminobenzene derivative of the present invention has a structure represented by the general formula [1], and can be used as a raw material for various polymers, like ordinary primary diamine.
  • it is a novel diamine useful when used as a raw material for a resin for a liquid crystal alignment film.
  • the diaminobenzene derivative of the present invention represented by the general formula [1] has a 3,5-diaminobenzyl ether moiety [1a] constituting a main skeleton and —X, — (X 2 ) constituting a side chain. consisting of n- X 3 Metropolitan.
  • the most important aspect of the diaminobenzene derivative of the present invention is that a methylene ether bond (—CH 20 —) is used to bond a benzene ring, which is a part of the main chain of the polymer, to a cyclic group in a side chain.
  • a diaminobenzyl cyclic group ether structure when a polymer is used as a liquid crystal orientation film, it has stability against rubbing pressure in addition to thermal stability at a pretilt angle.
  • X! And X 2 are independently a cyclic group selected from a benzene ring, a cyclohexane ring, and a heterocyclic ring.
  • the heterocycle include a pyrroyl ring, a furan ring, a thiophene ring, an imidazole ring, an oxazolyl ring, a thiazole ring, a pyrazole ring, a pyrroline ring, a pyrrolidine ring, a pyridine ring, and a pyrimidine ring.
  • Can be Arbitrary hydrogen atoms on these cyclic groups are an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms.
  • a fluorine atom, a chlorine atom, a bromine atom, and a cyano group are most preferable.
  • a hydrogen atom, a bromine atom or a cyano group is preferred.
  • a benzene ring or a cyclohexane ring is preferable from the viewpoints of availability of raw materials, ease of synthesis reaction, and liquid crystal alignment when used for liquid crystal alignment films. Furthermore, from the viewpoint of the orientation of the liquid crystal when used for liquid crystal alignment films, these benzene or cyclohexane rings may be bonded at positions 1 and 4 of the 6-membered ring. preferable.
  • n is 0 or 1
  • n is 1 in the effect of increasing the pretilt angle and the effect of increasing the thermal stability of the pretilt angle. Is preferred.
  • X 3 described below is a fluorine-containing alkyl group having 1 to 32 carbon atoms or a fluorine-containing alkoxy group having 1 to 32 carbon atoms, the above effect is supplemented by these X 3, and thus n May be 0.
  • X 3 is an alkyl group having 1 to 32 carbon atoms, an alkoxy group having 1 to 32 carbon atoms, a fluorine-containing alkyl group having 1 to 32 carbon atoms, and 1 to 32 carbon atoms. And a fluorine-containing alkoxy group, a fluorine atom, a chlorine atom, a bromine atom, and a cyano group.
  • the alkyl group, the alkoxy group, the fluorine-containing alkyl group, and the fluorine-containing alkoxy group may be linear or have a branched structure.
  • X 3 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group having 1 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 12 carbon atoms, and a carbon atom having 1 to 12 carbon atoms. Preferred are 12 fluorine-containing alkoxy groups, fluorine atoms, chlorine atoms, bromine atoms, or cyano groups.
  • X 3 represents an alkyl group having 5 to 22 carbon atoms, and 5 to 22 carbon atoms.
  • An alkoxy group of 5 to 12 carbon atoms A kill group or a fluorine-containing alkoxy group having 512 carbon atoms is preferable, and more preferably, an alkyl group having 512 carbon atoms, an alkoxy group having 512 carbon atoms, a fluorine-containing alkyl group having 58 carbon atoms, Or a fluorine-containing alkoxy group having 58 carbon atoms.
  • ⁇ 3 is an alkyl group having 5 1 2 carbon atoms, an alkoxy group having a carbon number of 5 1 2, fluorine-containing alkyl group having 5 8 atoms, and a fluorine-containing carbon atoms 5 8 An organic group selected from an alkoxy group.
  • the method for synthesizing the diaminobenzene derivative represented by the general formula [1] of the present invention is not particularly limited, but for example, it can be synthesized by the method described below.
  • the diamine compound represented by the general formula [1] of the present invention is represented by the corresponding general formula [6]. It can be obtained by synthesizing a dinitoid body and further reducing the dinitro group to convert it to an amino group.
  • the method for reducing the dinitro compound is not particularly limited. Usually, palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide, and the like are used as catalysts, and ethyl acetate, toluene, tetrahydrofuran, There is a method in which the reaction is performed by using hydrogen gas, hydrazine, hydrogen chloride, or the like in a solvent such as dioxane or alcohol.
  • the dinitro compound represented by the general formula [6] is synthesized by bonding a substituent X 3 to a substituent and X 2 , and then bonding a dinitro moiety via a methylene ether group (1-CH 2 ⁇ —). can do.
  • connection of methylene ether groups can Rukoto is formed by conventional organic synthesis techniques. Specifically, either by reaction of the corresponding hydroxy-substituted derivatives of the above substituents X [and X 2 include a dinitro group-containing base Njiruharogen derivative substituents X 3 in the presence of Al force Li, or the corresponding dinitro group-containing base down benzyl alcohol derivative with a substituent X includes a substituent group X 3, and a method of reacting a halogen-substituted derivatives of X 2 in the presence of Al force Li is common.
  • Examples of the above-mentioned dinitro-group-containing benzyl halide derivative or dinitto-mouth group-containing benzyl alcohol derivative include 3,5-dinitrobenzyl chloride, 3,5-dinitrobenzyl promide, and 3,5-dinitrobenzyl alcohol. is there. These combinations are appropriately selected depending on the purpose in view of availability of raw materials and reaction.
  • the compounds shown here are examples.
  • the method for bonding X 3 to X 2 is not particularly limited. Specifically, when X 3 is an alkyl group or a fluorine-containing alkyl group, it can be obtained by using a general organic synthesis technique such as a Grignard reaction, a Friedel-Craftsacylation method of an aromatic ring, or a Kishner reduction method. It is.
  • a general organic synthesis technique such as a Grignard reaction, a Friedel-Craftsacylation method of an aromatic ring, or a Kishner reduction method. It is.
  • the halogen derivative of X 2 is reacted with the hydroxyl-substituted derivative of X 3 in the presence of alcohol, or the hydroxyl-substituted derivative of X 2 is reacted with X, Al-Halogen derivatives
  • the reaction is carried out in the presence of a metal.
  • the polyimide precursor and the polyimide of the present invention are obtained by using a diaminobenzene derivative represented by the general formula [1] as a part of a raw material, and using a synthesized polyimide precursor or a polyimide (hereinafter, “specific weight”). To be united).
  • This specific polymer can be used as a resin material for a coating film having surface characteristics such as water repellency, and is particularly useful when used as a resin for a liquid crystal alignment film of a liquid crystal display element requiring a high pretilt angle. It is.
  • the method for synthesizing the specific polymer of the present invention is not particularly limited, but the diamine component, tetracarbonic acid or tetracarboxylic acid dihalide, tetrahalide, etc. are used in the same manner as a general method for synthesizing a polyimide precursor or polyimide.
  • a method of reacting with a tetracarboxylic acid derivative such as lacarboxylic dianhydride can be used.
  • a diaminobenzene derivative represented by the general formula [1] as this diamine component, the specific polymer of the present invention can be synthesized.
  • the tetracarboxylic acid and its derivative used for obtaining the specific polymer of the present invention are not particularly limited.
  • the specific examples are pyromellitic acid, 1,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthylenetetracarboxylic acid, 1,4,5,8-naphthylene Lentetracarboxylic acid, 2, 3, 6, 7-anthracenetetracarboxylic acid, 1, 2, 5, 6-anthracenetetracarboxylic acid, 3, 3 ', 4, 4'-biphenyltetracarboxylic acid, 2, 3,3 ', 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3'4,4'-benzophenonetetracarboxylic acid, bis (3,4 -Dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane
  • alicyclic tetracarboxylic acids or their dianhydrides or dicarboxylic acid diacid halides are preferred from the viewpoint of the transparency of the coating film.
  • 3,4-cyclobutanetetracarboxylic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydronaphthalenesuccinic dianhydride, picocyclo [3,3,0] -octane-tetra Carboxylic acids or 3,5,6-tricarpoxynorporanan-2: 3,5: 6 dianhydride are preferred.
  • one kind of these tetracarboxylic acids or derivatives thereof or a mixture of two or more kinds can be used.
  • the specific polymer of the present invention comprises, as a diamine component, a diaminobenzene derivative represented by the general formula [1] (hereinafter referred to as diamine [1]) and another general diamine (hereinafter referred to as general diamine). ) May be used.
  • the general diamine used at this time is a general primary diamine used for synthesis of a polyimide precursor or a polyimide, and is not particularly limited.
  • m represents an integer of 1 to 10.
  • diamines can be used alone or in combination of two or more.
  • the ratio of the number of moles of diamine [1] to the total number of moles of diamine used can be arbitrarily adjusted, and depends on the content ratio of diamine [1].
  • the surface properties (for example, water repellency) of the obtained specific polymer can be modified.
  • a specific polymer is used as a liquid crystal alignment film, it is possible to change the wettability with the liquid crystal or to increase the pretilt angle of the liquid crystal.
  • the ratio of the number of moles of diamine [1] to the total number of moles of diamine used is 1 mol% or more. If the content of diamine [1] is less than 1 mol%, the effect of modifying the surface properties cannot be expected very much.
  • the pretilt angle of the liquid crystal increases as the content of diamine [1] increases, and the content of diamine [1] may be adjusted according to the required pretilt angle. .
  • the effect of increasing the pretilt angle differs depending on the selection of the side chain structure, so it cannot be said unconditionally. For example, if the required pretilt angle is several degrees to several tens degrees, the content ratio of diamine [1] Is preferably in the range of 1 mol% to 49 mol%, and if vertical alignment is required, the content ratio of diamine [1] is preferably 25 mol% to 100 mol%.
  • a known synthesis technique can be used.
  • a general synthesis method uses tetracarboxylic dianhydride as a derivative of tetracarboxylic acid, and is reacted with a diamine component in an organic solvent to obtain a polyimide precursor polyamido.
  • a method for obtaining a polyimide by dehydrating and cyclizing the polyamic acid is advantageous in that it proceeds relatively easily in an organic solvent and that no by-products are generated, and the obtained polyamide acid is converted into polyimide. Water is the by-product of the conversion, which is advantageous in terms of environmental safety. Therefore, the polyimide precursor of the present invention is also preferably polyamic acid.
  • the organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the generated polyamic acid can be dissolved.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-12-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, and dimethyl.
  • Sulfone, hexamethyl sulfoxide, aptyrolactone and the like can be mentioned. These may be used alone or as a mixture.
  • a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the generated polyamic acid does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated organic solvent as much as possible.
  • a solution obtained by dispersing or dissolving a diamine component in an organic solvent is stirred and the tetracarboxylic dianhydride is directly used, or
  • a method of alternately adding them may be mentioned, and any of these methods may be used.
  • the tetracarboxylic dianhydride or diamine component When the tetracarboxylic dianhydride or diamine component is composed of a plurality of compounds, they may be reacted in a pre-mixed state, may be reacted individually sequentially, or may be individually reacted in low molecular weight. It may be used as a high molecular weight product by mixing and reacting the products.
  • the temperature at the time of synthesizing the polyamic acid can be selected from any temperature in the range of 120 to 150, but is preferably in the range of 150 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer. If the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. Therefore, the concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight.
  • the reaction may be performed at a high concentration at the beginning of the reaction, and then an organic solvent may be added.
  • the ratio of the number of moles of the diamine component (the total number of moles of diamine [1] and general diamine) to the number of moles of tetracarboxylic dianhydride is 0.8 to 1.2. Is preferred.
  • the molecular weight of the generated polyamic acid increases as the molar ratio approaches 1.0.
  • the molecular weight of the specific polymer in the present invention is preferably 10,000 to 100,000 as a weight average molecular weight measured by a GPC (gel permeation ion chromatography) method.
  • a thermal imidization in which a solution of a polyamic acid is directly heated or a catalyst imidization in which a catalyst is added to a polyamic acid solution are generally used.
  • the temperature at which the polyamic acid is thermally imidized in the solution is from 100 to 400, preferably from 120 to 250. It is preferable to carry out while removing.
  • Catalytic imidization of polyamidic acid is performed by adding a basic catalyst such as pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. to a solution of polyamidic acid, acetic anhydride, trimellitic anhydride,
  • the reaction can be carried out by adding an acid anhydride such as pyromellitic anhydride and the like, followed by stirring at 120 to 250, preferably at 0 to 180X.
  • the amount of the basic catalyst is 0.5 to 30 mole times, preferably 2 to 20 mole times the amide acid group, and the amount of the acid anhydride is 1 to 50 mole times the amide acid group. It is preferably 3 to 30 mole times.
  • the reaction does not proceed sufficiently. If the amount is too large, it is difficult to completely remove the reaction after the reaction is completed. Even among basic catalysts, pyridine is preferable because it has an appropriate basicity for the reaction to proceed.Use of acetic anhydride also among acid anhydrides facilitates purification after the reaction is completed. preferable.
  • the imidization rate by catalyst imidization can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a poor solvent to cause precipitation.
  • the poor solvent used for the precipitation and recovery of the specific polymer is not particularly limited, and examples thereof include methanol, acetone, hexane, butylcellosolve, heptane, methylethylketone, methylisobutylketone, ethanol, toluene, and benzene.
  • the specific polymer precipitated by being introduced into a poor solvent can be recovered by filtration and then dried at normal temperature or under reduced pressure at normal temperature or under heat to obtain a powder.
  • the impurities in the specific polymer can be reduced.
  • the liquid crystal alignment treatment agent of the present invention is a composition for forming a liquid crystal alignment film, and is synthesized using the specific polymer described above (that is, the diaminobenzene derivative represented by the general formula [1] as a part of the raw material). (Polyimide precursor or polyimide) to be used.
  • the form is not particularly limited. However, when used as a liquid crystal alignment film, it is necessary to form a uniform thin film of 0.01 to 1.0 O ⁇ m on a substrate.
  • the coating solution is preferably dissolved in a solvent.
  • the coating liquid as the liquid crystal alignment treatment agent of the present invention a method of diluting a reaction solution of a specific polymer with an organic solvent, a method of dissolving a specific polymer recovered by precipitation in an organic solvent, and the like can be mentioned.
  • the solid content concentration of the coating solution can be appropriately changed depending on the thickness of the liquid crystal alignment film to be obtained, but is preferably 1 to 10% by weight. If it is less than 1% by weight, it may be difficult to form a uniform and defect-free coating film, and if it is more than 10% by weight, it may be difficult to form a thin film of 1 m or less.
  • the liquid crystal aligning agent of the present invention can be used in the form of It is acceptable to use the recovered catalyst, but in the case of a catalyst-imidized polyimide solution, when the basic catalyst or acid anhydride remaining in the solution adversely affects the liquid crystal display device Therefore, it is preferable to recover the precipitate before use.
  • the organic solvent for dissolving the specific polymer is not particularly limited as long as it can dissolve the specific polymer.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactone, 2-pyrrolidone, N-ethylpyrrolidone, —Vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, arptyrolactone, etc., and these may be used alone or in combination of two or more. These organic solvents can also be used for diluting a coating solution.
  • the liquid crystal alignment treatment agent of the present invention includes, in addition to the specific polymer and the solvent that dissolves the specific polymer, a solvent or a compound that improves the uniformity of the film thickness when forming a coating film, and improves the adhesion between the coating film and the substrate. It is preferable to appropriately include a compound to be made. These components may be added later to the previously prepared solution of the specific polymer. '
  • the solvent for improving the film thickness uniformity at the time of forming a coating film include the following. Ethylcet mouth solv, butyl sebit solv, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, triethoxy-2-propanol, tributoxy-2-propanol, triphenoxy -2-propanol, propylene glycol monoacetate, propylene daricol diacetate, propylene daricol-trimethyl ether 2-acetate, propylene glycol-trimonoethyl ether-2-acetate, dipropylene Solvents with low surface tension, such as Recol, 1- (2-ethoxypropoxy) propanol, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, and isoamyl lactate.
  • solvents may be used alone or in combination of two or more.
  • the total amount of the solvent is preferably 5 to 80% by weight, more preferably 20 to 60% by weight, based on the total solvent. Less than 5% by weight is not expected to be very effective, and these solvents generally have a low ability to dissolve specific polymers. If it is larger than this, the specific polymer may be precipitated.
  • the compound that improves the adhesion between the coating film and the substrate include the following. 3-aminopropyl trimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane , N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-peridopropyltriethoxysilane, N-ethoxycarbonyl, 3-aminopropyltrimethoxysilane, N-ethoxycarbo Nyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine
  • the amount is preferably 0.1 to 30% by weight, more preferably 1 to 20% by weight, based on the total polymer weight. If it is less than 0.1% by weight, the effect of improving the adhesion cannot be expected, and if it is more than 30% by weight, the orientation of the liquid crystal may be deteriorated.
  • the liquid crystal alignment treatment agent of the present invention may contain a polymer component or compound other than the specific polymer as long as the effects of the present invention are not impaired.
  • a dielectric or a conductive substance may be added for the purpose of changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal orientation film.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate, and then subjected to an alignment treatment such as rubbing treatment or light irradiation, or without an alignment treatment for vertical alignment use. It is particularly useful in applications where a liquid crystal alignment film is obtained by rubbing.
  • the method of applying the liquid crystal alignment treatment agent of the present invention is not particularly limited.
  • the film thickness, the dimensional accuracy of the coating film, and the uniformity of the surface are particularly important.
  • a method of using a coating solution of a treating agent by a printing machine such as screen printing, offset printing, and ink jet printing is used.
  • a method using a coating solution there are a dip, a roll coater, a spinner, and the like, and these may be used according to the purpose.
  • the solvent is evaporated at 50 to 150, preferably 80 to 120 by a heating means such as a hot plate to form a coating film. .
  • a polyimide coating film can be obtained by forming a coating film on a substrate and then baking it. This calcination can be performed at an arbitrary temperature of 100 to 350, but is preferably 150 to 300, and more preferably 200 to 250. The higher the sintering temperature, the higher the rate of change to polyimide.However, when used as a liquid crystal alignment film, it is not always necessary to use perfect polyimide, even when the polyimide precursor and polyimide are mixed. I do not care. However, it is preferable to perform firing at a temperature higher than the heat treatment temperature required in the subsequent liquid crystal cell manufacturing process by 10 DC or more.
  • the firing step is not necessarily required. However, it is preferable to perform firing at a temperature higher than the heat treatment temperature required in the subsequent liquid crystal cell manufacturing process by 10 or more.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention can be used to form a liquid crystal cell by a known method. It can be formed and used as a liquid crystal display element.
  • a pair of substrates on which a liquid crystal alignment film is formed is sandwiched by a spacer of 130 m, preferably 210 tm, and the alignment processing direction is 0 27 It is a common practice to install the device at an arbitrary angle of 0 °, fix the periphery with a sealant, and inject and seal the liquid crystal.
  • the method of sealing liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure in the manufactured liquid crystal cell, and a dropping method in which liquid crystal is dropped and then sealed.
  • the liquid crystal display device manufactured using the liquid crystal alignment treatment agent of the present invention can obtain a high and stable liquid crystal pretilt angle, and is therefore suitably used for a liquid crystal display device requiring a high pretilt angle. .
  • Biphenyl (100.00g, 0.538raol), topromotan (103.90g 0.538mol), potassium carbonate (111.54g, 0.807mol), and ⁇ , ⁇ '-dimethylacetamide (DMA c ) (400 ml) and stirred at a reaction temperature of 110 ° C for 10 hours. After completion of the reaction, potassium carbonate was removed by filtration. The filtrate was evaporated under reduced pressure, a 1N-sodium hydroxide (NaOH) solution was added to the residue, and the precipitated solid was taken out by filtration. The obtained solid was recrystallized from methanol to give colorless crystals ⁇ 1 ⁇ (76.55 g, 48%, immediately: 149-154).
  • 1H-NMR (CDC13, ⁇ 5 ⁇ ): 7.41-7.46 (4H, m), 6.94 (2H, d), 6.88 (2H, d),
  • a phenylcyclohexyl derivative (50.OOg, 0.182 mol) and THF (300 ml) were placed in a 1000 ml four-necked flask and stirred until homogeneous. After leaving the reaction solution to room temperature, 3,5-dinitrobenzyl chloride (41.39 g, 0.191 mol) was added. After that, N a OH solution (N a OH (29. 12g) / H 2 O (200ml)) Oyutsukuri dropwise. After the dropwise addition, the mixture was slowly refluxed for 8 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure. After filtration, the filter was washed with water, methanol and acetonitrile. After that, recrystallization from acetonitrile gave 54.32 g (66%, mp: 113-114) of yellow crystal ⁇ 4 ⁇ .
  • the polyimide precursor solutions ([A], [B], and [C]) obtained in Examples 3, 4, and 5 were diluted with NMP and a petroleum-containing solution, respectively.
  • a liquid crystal alignment treating agent having 20 wt% and NMP of 75 wt% was obtained. Creating a liquid crystal cell
  • the above liquid crystal alignment agent is spin-coated on the ITO surface of the glass substrate with an ITO electrode and heat-treated at 80 for 5 minutes and at 220 for 1 hour, and coated with a polyimide film with a thickness of 0.1 m.
  • a film was formed.
  • the coating film surface was rubbed with a rayon cloth rubbing machine at a rotational speed of 300 rpm, Rubbing was performed under the conditions of a moving speed of 20 mmZ sec and a pushing amount of 0.3 mm. Then, a pair of these substrates was applied, a 6 im spacer was sprayed, and the film surface was on the inside. The rubbing direction was almost perpendicular, and the substrates were bonded together.
  • a nematic liquid crystal (Merck, MLC-203) Into a 90 ° twist liquid crystal cell. Observation of the alignment state of the liquid crystal cell confirmed that the liquid crystal cell had a uniform alignment without any defects.
  • the cells were heated at 95 ° C for 5 minutes, and further heated at 12 Ot for 1 hour, and the pretilt angle was measured by the crystal rotation method. Also, the pretilt angle was measured immediately after cell creation (25 ° C) when the rubbing depth was 0.3 mm, 0-5 mm, and 0.7 mm, respectively. The results are shown in Tables 1 and 2 below.
  • the polyimide precursor [D ⁇ was synthesized using diamine ⁇ 6 ⁇ .
  • Diamine ⁇ 7 ⁇ was synthesized by the following route.
  • Polyimide precursor [E] was synthesized using diamine ⁇ 7 ⁇ .
  • the diamines ⁇ 3 ⁇ and ⁇ 5 ⁇ are excellent in increasing the pretilt angle. Furthermore, the diamines ⁇ 3 ⁇ and ⁇ 5 ⁇ of the present invention show that the pretilt angle of the diamines ⁇ 3 ⁇ and ⁇ 5 ⁇ of the present invention is higher than that of the diamine ⁇ 6 ⁇ .
  • the thermal stability of the corners is excellent, and in addition, the comparison with the evaluation of the rubbing pressure dependence of diamin ⁇ 7 ⁇ shows that the diamins ⁇ 3 ⁇ and ⁇ 5 ⁇ of the present invention have a low rubbing pressure dependence.
  • the diaminobenzene derivative of the present invention can be easily synthesized by a known reaction route and has high reactivity, so that it can be used as a raw material for various polymers.
  • the effect of increasing the pretilt angle of the liquid crystal is great, and a high and stable pretilt angle can be imparted to the liquid crystal.
  • the polyimide precursor or polyimide of the present invention can be used as a resin material for a coating film having surface characteristics such as water repellency. Particularly when used as a liquid crystal alignment film, a high and stable pretilt angle can be imparted to the liquid crystal.
  • the liquid crystal alignment treating agent of the present invention can provide a liquid crystal alignment film having a high pretilt angle of the liquid crystal, excellent thermal stability of the pretilt angle, and a small dependence of the pretilt angle on the rubbing pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

新規なジアミノベンゼン誘導体、 それを用いたポリイミド前駆体およびポリイミ ド、 並びに液晶配向処理剤 技術分野
本発明は、 新規なジァミノベンゼン誘導体、 該化合物を原料の一部として使用 し合成されるポリイミド前駆体およ明びポリイミ ド、 並びにこれら重合体を含有し てなる液晶配向処理剤に関するものであ田る。 背景技術
従来、 ポリイミ ドはその特徴である高い機械的強度、 耐熱性、 耐溶剤性のため に、 電気 ·電子分野における保護材料、 絶縁材料、 液晶表示素子の液晶配向膜と して広く用いられている。 特に液晶配向膜においては、 塗膜表面の均質性と耐久 性ゆえに、 ポリイミ ドまたはポリイミド前駆体であるポリアミ ド酸を塗布して用 いるものが殆どである。 しかし、 近年、 電気 ·電子分野の発展は目覚ましく、 そ れに対応して、 用いられる材料に対してもますます高度な特性が要求されるよう になってきており、 ポリイミドに関しても、 従来にはない新たな特性の付与が必 要になってきている。
ポリイミ ドに新たな特性を付与する場合は、 ポリイミ ドの原料となるテトラ力 ルボン酸誘導体ゃジァミンに新たな構造を導入し、 数種類の原料と組み合わせて 用いる手段が簡便かつ有効である。 特にジァミンは、 テトラカルボン酸誘導体と 比較すると、 目的とする構造を導入した化合物の合成が容易なことから、 新たな 特性の付与を目的として、 特定構造を有するジァミンをポリイミドの原料として 用いることが従来から行われている。
ところで、 液晶配向膜に求められる特性のひとつとして、 液晶に高いプレチル ト角を付与することが挙げられる。 この課題に対し、 長鎖アルキル基やフルォロ アルキル基を側鎖部位に有するジァミンを原料に用いたポリイミド液晶配向膜に おいて、 高いプレチルト角を得られることが知られている (例えば、 特開平 2 — 2 8 2 7 2 6号公報参照。 ) 。 また、 芳香族基、 脂肪族環基、 複素環基などを側 鎖部位に有するジァミンを原料に用いた場合にも、 同様に高いプレチルト角が得 られる事が知られている (例えば、 特開平 3 - 1 7 9 3 2 3号公報参照。 ) 。 しかしながら、 液晶表示の高密度化、 高性能化が図られる中で、 単に高いプレ チルト角が得られるだけでなく、 液晶表示素子の製造プロセスに対するプレチル ト角の安定性、 液晶表示素子の使用環境に対するプレチルト角の安定性といった ものが重要となってきている。 例えば、 液晶表示素子を液晶のァイソトロピック 温度以上に加熱 (以下ァイソトロピック処理と称す) した際に、 プレチルト角が 低下してしまう場合があった。 これは、 特にプレチルト角が高い場合、 あるいは 液晶配向膜形成時の硬化温度が低い場合などにはプレチルト角の低下が一層顕著 となる。 また、 液晶配向膜形成時の硬化温度が高い場合には、 高いプレチルト角 が得られなかったり、 プレチルト角にバラツキを生じたりする場合があった。 こ れらの課題に対して、 本発明の出願人は、 芳香環、 脂肪族環、 および複素環から 選ばれる環状置換基と、 脂肪族環と、 長鎖アルキル基と、 からなる構造を、 側鎖 部位に有するジァミンを原料に用いたポリィミ ド液晶配向膜を既に報告している (特開平 9 一 2 7 8 7 2 4号公報参照。 ) 。
その他、 液晶のプレチルト角に関連する課題としては、 ラビング処理における プレチルト角の安定性が挙げられ、 特に、 ラビング圧力に対してプレチルト角の 大きさの依存性が大きい場合には、 液晶表示素子を安定製造する上で問題となる。 ところが、 従来から提案されているプレチルト角を高める為のジァミンだけでは、 特性的に不十分な場合があり、 同時に用いるポリイミ ド原料を適宜選択する必要 があった。 即ち、 熱に対するプレチルト角の安定性だけでなく、 ラビング処理条 件に対する安定性も兼ね備えた、 プレチルト角を高める為のジアミンの開発が望 まれていた。 発明の開示
本発明は、 上記の事情に鑑みなされたものであって、 その課題は、 液晶配向膜 用樹脂の原料として用いた場合に特に有用な新規なジアミンであり、 詳しくはプ レチルト角を高める効果が大きく、 加えてプレチルト角の熱安定性に優れ、 プレ チルト角のラピング圧力に対する依存性が小さい液晶配向膜の原料となる新規な ジァミンを提供すること、 および、 このジァミンを原料の一部として使用し合成 されるポリイミド前駆体またはポリイミ ドを提供すること、 並びにこれら重合体 を含有してなる、 液晶のプレチルト角が高く、 プレチルト角の熱安定性に優れ、 加えてプレチルト角のラビング圧力に対する依存性が小さい液晶配向膜を得るこ とができる液晶配向処理剤を提供することにある。
本発明者らは上記課題に対し鋭意検討した結果、 特定構造のジァミノベンゼン 誘導体を見いだした。
すなわち、 上記の課題は、 一般式 [ 1 ]
Figure imgf000005_0001
(式中、 x tおよび x 2は独立してベンゼン環、 シクロへキサン環、 および複素環か ら選ばれる環状基を表し、 これらの環状基上の任意の水素原子は、 炭素数 1〜 3 のアルキル基、 炭素数 1〜 3のアルコキシ基、 炭素数 1〜 3のフッ素含有アルキ ル基、 炭素数 1〜 3のフッ素含有アルコキシ基、 フッ素原子、 塩素原子、 臭素原 子、 およびシァノ基から選ばれるもので置換されていても良く、 nは 0'または 1 の整数であり、 X 3は炭素数 1〜 3 2のアルキル基、 炭素数 1〜 3 2のアルコキシ 基、 炭素数 1〜 3 2のフッ素含有アルキル基、 炭素数 1〜 3 2のフッ素含有アル コキシ基、 フッ素原子、 塩素原子、 臭素原子、 およびシァノ基から選ばれるもの である) で表されるジァミノベンゼン誘導体、 一般式 [ 1 ] で表されるジアミノ ベンゼン誘導体を原料の一部として使用し合成されるポリィミド前駆体またはポ リイミ ド、 一般式 [ 1 ] で表されるジァミノベンゼン誘導体を原料の一部として 使用し合成されるポリイミ ド前駆体またはポリイミ ドの少なくとも一種を含有す る液晶配向処理剤、 により達成される。 発明を実施するための最良の形態 以下、 本発明を詳細に説明する。
本発明のジァミノベンゼン誘導体は、 一般式 [ 1 ] で表される構造からなるも のであり、 通常の 1級ジァミンと同様に、 様々な高分子の原料として用いること ができる。 特に、 液晶配向膜用樹脂の原料として用いた場合に有用な、 新規なジ アミンである。
一般式 [ 1 ] で表される本発明のジァミノベンゼン誘導体は、 主骨格を構成す る 3 , 5—ジァミノべンジルエーテル部 [ 1 a ] と、 側鎖を構成する—X ,— ( X 2) n— X 3とからなる。
Figure imgf000006_0001
上記 [ l a ] は、 ジァミノベンゼン骨格であることにより、 重合体としたとき の側鎖密度を高くすることができ、 さらに、 側鎖との結合基としてメチレンェ一 テル結合 (一 C H 20— ) を有し、 これに対しアミノ基を 3, 5—の位置とするこ とにより、 ァミノ基の重合反応性を高める効果がある。 また、 側鎖の結合位置が ァミノ基から離れることで、 重合体としたときに側鎖が重合体主鎖から離れ、 液 晶配向膜においてはプレチルト角を高める効果が高くなる。 一方、 側鎖は、 環状 構造を有することにより、 側鎖の熱安定性を高める効果がある。 本発明のジアミ ノベンゼン誘導体で最も重要なのは、 重合体の主鎖の一部となるベンゼン環と、 側鎖の環状基との結合に、 メチレンエーテル結合 (― C H 20— ) を用いたことに あり、 ジァミノべンジル環状基エーテル構造とすることにより、 重合体を液晶配 向膜として用いた際に、 プレチルト角の熱安定性に加え、 ラビング圧力に対する 安定性も有するようになる。
一般式 [ 1 ]において、 X!および X 2は独立してベンゼン環、シクロへキサン環、 および複素環から選ばれる環状基である。複素環の具体例としては、 ピロ一ル環、 フラン環、 チォフェン環、 イミダゾ一ル環、 ォキサゾ一ル環、 チアゾール環、 ピ ラゾール環、 ピロリン環、 ピロリジン環、 ピリジン環、 ピリミジン環などが挙げ られる。 これら環状基上の任意の水素原子は、 炭素数 1〜 3のアルキル基、 炭素 数 1〜 3のアルコキシ基、 炭素数 1〜 3のフッ素含有アルキル基、 炭素数 1〜 3 のフッ素含有アルコキシ基、 フッ素原子、 塩素原子、 臭素原子、 およびシァノ基 から選ばれるもので置換されていても良い。 しかし、 原料の入手性、 および合成 反応の容易性の観点からは、無置換であるものが最も好ましく、次いでメチル基、 メトキシ基、 トリフルォロメチル基、 トリフルォロメトキシ基、 フッ素原子、 塩 素原子、 臭素原子、 またはシァノ基が好ましい。
上記環状基のうち、 原料の入手性、 合成反応の容易性、 および液晶配向膜用途 に用いた場合の、 液晶の配向性の観点から、 ベンゼン環またはシクロへキサン環 が好ましい。 さらには、 液晶配向膜用途に用いた場合の、 液晶の配向性の観点か ら、 これらベンゼン環またはシクロへキサン環の結合は、 6員環の 1および 4の 位置で結合されている事が好ましい。
一般式 [ 1 ] において、 nは 0または 1であるが、 液晶配向膜用途に用いた場 合に、 プレチルト角を高める効果、 およびプレチルト角の熱安定性を高める効果 において、 nは 1であることが好ましい。 ただし、 後述する X 3が、 炭素数 1〜 3 2のフッ素含有アルキル基、 または炭素数 1〜 3 2のフッ素含有アルコキシ基で ある場合は、上記効果が、これら X 3により補われるので、 nが 0であっても良い。
—般式 [ 1 ] において、 X 3は、 炭素数 1〜 3 2のアルキル基、 炭素数 1〜 3 2 のアルコキシ基、 炭素数 1〜 3 2のフッ素含有アルキル基、 炭素数 1〜 3 2のフ ッ素含有アルコキシ基、 フッ素原子、 塩素原子、 臭素原子、 およびシァノ基から 選ばれるものである。 アルキル基、 アルコキシ基、 フッ素含有アルキル基、 およ びフッ素含有アルコキシ基は、 直鎖状であっても分岐構造を持つものであっても 良い。
上記 X 3は、 原料の入手性の観点からは、 炭素数 1〜 2 2のアルキル基、 炭素数 1〜 2 2のアルコキシ基、 炭素数 1〜 1 2のフッ素含有アルキル基、 炭素数 1〜 1 2のフッ素含有アルコキシ基、 フッ素原子、 塩素原子、 臭素原子、 またはシァ ノ基が好ましい。 また、 液晶配向膜用途に用いた場合に、 液晶のプレチルト角を 高める効果およびプレチルト角の安定性の観点からは、 X 3は、 炭素数 5 ~ 2 2の アルキル基、 炭素数 5〜 2 2のアルコキシ基、 炭素数 5〜 1 2のフッ素含有アル キル基、 または炭素数 5 1 2のフッ素含有アルコキシ基が好ましく、 より好ま しくは、 炭素数 5 1 2のアルキル基、 炭素数 5 1 2のアルコキシ基、 炭素数 5 8のフッ素含有アルキル基、 または炭素数 5 8のフッ素含有アルコキシ基 である。 炭素数が大きいほど、 ポリイミ ド前駆体およびポリイミ ドの撥水性を高 める効果が大きくなる。 また、 液晶配向膜用途に用いた場合に、 X 3は、 炭素数が 大きいほど、 液晶のプレチルト角を高める効果が大きくなるが、 炭素数が大きす ぎると、 プレチルト角の安定性が低下する傾向にある。
以上に述べた観点より、 本発明のジァミノベンゼン誘導体の中で、 より好まし い形態を下記に示す。
Figure imgf000008_0001
上記、 構造 [ 2 ] [ 5 ] において、 Χ 3は炭素数 5 1 2のアルキル基、 炭素 数 5 1 2のアルコキシ基、 炭素数 5 8のフッ素含有アルキル基、 および炭素 数 5 8のフッ素含有アルコキシ基から選ばれる有機基である。 ジアミノベンゼン誘導体の合成
本発明の一般式 [ 1 ] で表されるジァミノベンゼン誘導体の合成方法は、 特に 限定されるものではないが、 例えば以下に述べる方法で合成することができる。
Figure imgf000008_0002
本発明の一般式 [ 1 ] で表されるジァミン化合物は、 対応する一般式 [ 6 ]で示 すジニト口体を合成し、 さらに二トロ基を還元してァミノ基に変換することで得 られる。 ジニトロ化合物を還元する方法には、 特に制限はなく、 通常、 パラジゥ ム-炭素、 酸化白金、 ラネーニッケル、 白金黒、 ロジウム-アルミナ、 硫化白金炭 素などを触媒として用い、 酢酸ェチル、 トルエン、 テトラヒドロフラン、 ジォキ サン、 アルコール系などの溶媒中、 水素ガス、 ヒドラジン、 塩化水素などを用い た反応によって行う方法がある。
一般式 [ 6 ]で示すジニトロ体は、 置換基 および X 2に置換基 X 3を結合させ、 その後にジニトロ部を連結部メチレンエーテル基 (一 C H 2〇—) を介して結合さ せ、 合成することができる。
連結部メチレンエーテル基 (― C H 20—) は通常の有機合成的手法で形成させ ることができる。 具体的には、 対応するジニトロ基含有べンジルハロゲン誘導体 と置換基 X 3を含む置換基 X【および X 2の水酸基置換誘導体をアル力リ存在下で反 応させるか、 または、 対応するジニトロ基含有べンジルアルコール誘導体と置換 基 X 3を含む置換基 X ,および X 2のハロゲン置換誘導体をアル力リ存在下で反応さ せる方法が一般的である。
上述のジニトロ基含有べンジルハロゲン誘導体またはジニト口基含有べンジル アルコール誘導体には、 3, 5-ジニトロべンジルクロリ ド、 3, 5-ジニトロべンジル プロミ ド、 3, 5-ジニトロべンジルアルコールなどがある。 原料の入手性、 反応の 点からこれらの組み合わせは目的に応じ適宜選択される。 なお、 ここに示した化 合物は一例である。
X!と X 2との結合は単結合であり、 これを形成する方法は種々あるが、 グリニャ 反応、 芳香環のフリ一デルクラフツァシル化法などの一般的有機合成手法を用い ることで適宜連結することが可能である。
X 2に X 3を結合させる方法は特に限定されるものではない。 具体的には、 X 3が アルキル基またはフッ素含有アルキル基の場合、 グリニャ反応、 芳香環のフリー デルクラフツァシル化法、 キシュナー還元法などの一般的有機合成手法を用いる ことで得ることが可能である。 また、 X 3がアルコキシ基またはフッ素含有アルコ キシ基の場合、 X 2のハロゲン誘導体と X 3の水酸基置換誘導体をアル力リ存在下で 反応させるか、 または、 X 2の水酸基置換誘導体と X ,のハロンゲン誘導体をアル力 リ存在下で反応させる方法が一般的である。 ポリイミド前駆体およびポリイミ ド
本発明のポリイミ ド前駆体およびポリイミ ドは、 一般式 [ 1 ] で表されるジァ ミノベンゼン誘導体を原料の一部として使用し、 合成されたポリイミド前駆体ま たはポリイミ ド (以下、 特定重合体とする) である。 この特定重合体は、 撥水性 等の表面特性を有する塗膜用の樹脂材料として用いることができ、 特に高いプレ チルト角を必要とする液晶表示素子の液晶配向膜用樹脂として用いた場合に有用 である。
本発明の特定重合体を合成する方法は特に限定されないが、 一般的なポリィミ ド前駆体またはポリイミ ドの合成方法と同様に、 ジァミン成分と、 テトラカルボ ン酸またはテ卜ラカルボン酸ジハライ ド、 テ卜ラカルボン酸二無水物などのテ卜 ラカルボン酸誘導体とを反応させる方法を用いることができる。 このジァミン成 分として一般式 [ 1 ] で表されるジァミノベンゼン誘導体を用いることにより、 本発明の特定重合体を合成することができる。
本発明の特定重合体を得るために使用されるテトラカルボン酸およびその誘導 体は特に限定されない。あえて、その具体例を挙げると、ピロメリット酸、 1 3, 6, 7- ナフタレンテトラカルボン酸、 1, 2, 5, 6-ナフ夕レンテトラカルボン酸、 1, 4, 5, 8- ナフ夕レンテトラカルボン酸、 2, 3, 6, 7-アントラセンテトラカルボン酸、 1, 2, 5, 6- アントラセンテトラカルボン酸、 3, 3' , 4, 4' -ビフエ二ルテトラカルボン酸、 2, 3, 3' , 4-ビフエ二ルテトラカルボン酸、 ビス (3, 4-ジカルポキシフエニル) ェ一 テル、 3, 3' 4, 4' -ベンゾフエノンテトラカルボン酸、 ビス (3, 4-ジカルポキシフエ ニル) スルホン、 ビス (3, 4-ジカルポキシフエニル) メタン、 2, 2-ビス (3, 4-ジ カルポキシフエニル) プロパン、 1, 1, 1, 3, 3, 3 -へキサフルォロ- 2, 2-ビス (3, 4-ジ カルポキシフエニル) プロパン、 ビス (3, 4-ジカルボキシフエニル) ジメチルシ ラン、 ビス ( 3, 4-ジカルポキシフエニル) ジフエニルシラン、 2, 3, 4, 5 -ピリジン テトラカルボン酸、 2, 6 -ビス (3, 4-ジカルポキシフエニル) ピリジンなどの芳香 族テトラカルボン酸若しくはこれらの二無水物、 またはこれらのジカルポン酸ジ 酸ハロゲン化物、 1, 2, 3, 4 -シクロブ夕ンテトラカルボン酸、 1, 2, 3, 4 -シクロペン タンテトラカルボン酸、 1, 2, 4, 5 -シクロへキサンテトラカルボン酸、 2, 3, 5 -トリ 力ルポキシシクロペンチル酢酸、 3, 4 -ジカルポキシ- 1, 2, 3, 4-テトラヒド口-卜ナ フタレンコハク酸などの脂環式テトラカルボン酸およびこれらの二無水物並びに これらのジカルポン酸ジ酸八ロゲン化物、 1, 2, 3, 4 -ブタンテトラカルボン酸など の脂肪族テトラカルボン酸若しくはこれらの二無水物、 またはこれらのジカルポ ン酸ジ酸ハ口ゲン化物などが挙げられる。
液晶配向膜用途としては、 塗膜の透明性の点から脂環式テトラカルボン酸若し くはこれらの二無水物、 またはこれらのジカルボン酸ジ酸ハロゲン化物が好まし く、 特に 1, 2, 3, 4-シクロブタンテトラカルボン酸二無水物、 3, 4-ジカルポキシ - 1, 2, 3, 4-テトラヒ ドロ-卜ナフタレンコハク酸二無水物、 ピシクロ [3, 3, 0] -ォ クタン-テトラカルボン酸、 または 3, 5, 6 -トリカルポキシノルポルナン- 2 : 3, 5 : 6二 無水物が好ましい。 また、 これらのテトラカルボン酸若しくはその誘導体の 1種 類または 2種類以上を混合して使用することもできる。
本発明の特定重合体は、 ジァミン成分として、 一般式 [ 1 ] で表されるジアミ ノベンゼン誘導体 (以下、 ジァミン [ 1 ] とする) と、 それ以外の一般のジアミ ン (以下、 一般ジァミンとする) とを用いた共重合体であっても良い。
この際用いられる一般ジァミンは、 ポリイミ ド前駆体またはポリイミ ドの合成 に使用される一般的な 1級ジァミンであって、 特に限定されるものではない。 あ えて、 その具体例を挙げれば、 P-フエ二レンジァミン、 m-フエ二レンジァミン、 2, 5-ジアミノ トルエン、 2, 6-ジアミノ トルエン、 4, 4' -ジアミノビフエニル、 3, 3' - ジメチル -4, 4' -ジアミノビフエニル、 3, 3' -ジメ トキシ- 4, 4' -ジアミノビフエ二ル、 ジアミノジフエ二ルメタン、 ジアミノジフエ二ルエーテル、 2, 2' -ジアミノジフエ ニルプロパン、 ビス ( 3, 5 -ジェチル -4 -アミノフエニル) メタン、 ジアミノジフエ ニルスルホン、 ジァミノべンゾフエノン、 ジァミノナフタレン、 1, 4-ビス (4 -ァ ミノフエノキシ) ベンゼン、 1, 4-ビス (4 -ァミノフエニル) ベンゼン、 9, 10-ビス (4 -アミノフエニル) アントラセン、 1, 3 -ビス (4 -ァミノフエノキシ) ベンゼン、 4, 4' -ビス (4-アミノフエノキシ) ジフエニルスルホン、 2, 2-ビス [4- (4-ァミノ フエノキシ) フエニル] プロパン、 2, 2 -ビス [4- (4 -アミノフエノキシ) フエ二 ル] へキサフルォロプロパンなどの芳香族ジァミン、 ビス (4 -アミノシクロへキ シル) メタン、 ビス (4-ァミノ- 3-メチルシクロへキシル) メタンなどの脂環式ジ ァミンおよびテトラメチレンジァミン、 へキサメチレンジアミンなどの脂肪族ジ ァミン、 さらには、 レ CH3
H2N— (CH2)3— (SiO)m—Si—— (CH2)3— H2
CH3 CH3
(式中、 mは 1〜 1 0の整数を表す)
で示されるようなジァミノシロキサン等が挙げられる。 また、 れらのジァミン は 1種類または 2種類以上を混合して使用することもできる。
本発明の特定重合体を合成する際に、 使用するジアミンの総モル数に対するジ ァミン [ 1 ] のモル数の割合は任意に調節することができ、 ジァミン [ 1 ] の含 有割合に応じて、 得られた特定重合体の表面特性 (例えば撥水性など) を改質で きる。 特に、 特定重合体を液晶配向膜として用いる場合には、 液晶との塗れ性を 変化させたり、 液晶のプレチルト角を高めることが可能である。 この際、 使用す るジァミンの総モル数に対するジァミン [ 1 ] のモル数の割合は 1モル%以上で ある。 ジァミン [ 1 ] が 1モル%未満であると、 表面特性の改質効果はあまり期 待できない。
また、 液晶配向膜として用いる場合、 ジァミン [ 1 ] の含有割合が多いほど液 晶のプレチルト角は高くなり、必要とされるプレチルト角に応じて、ジァミン [ 1 ] の含有割合を調節すれば良い。 側鎖構造の選択により、 プレチルト角を高める効 果が異なるので一概には言えないが、 例えば、 必要とするプレチルト角が数度か ら数十度程度であれば、 ジァミン [ 1 ] の含有割合は 1モル%〜4 9モル%の範 囲が好ましく、 また、 垂直配向を必要とするならば、 ジァミン [ 1 ] の含有割合 は 2 5モル%〜 1 0 0モル%が好ましい。
テトラカルボン酸またはその誘導体とジアミン成分との反応により、 本発明の 特定重合体を得るにあたっては、 公知の合成手法を用いることができる。 一般的 な合成方法は、 テトラカルボン酸の誘導体としてテトラカルボン酸二無水物を用 い、 有機溶媒中でジァミン成分と反応させて、 ポリイミド前駆体であるポリアミ ド酸を得る方法、 及び、 このポリアミ ド酸を脱水閉環させてポリイミ ドを得る方 法である。 テトラカルボン酸二無水物とジァミンとの反応は、 有機溶媒中で比較 的容易に進行し、 かつ副生成物が発生しない点で有利であり、 また得られたポリ アミ ド酸は、 ポリイミ ドに転化させる際の副生成物が水なので環境安全面で有利 である。 よって、 本発明のポリイミ ド前駆体もポリアミ ド酸が好ましい。
テトラカルボン酸二無水物とジアミン成分との反応に用いる有機溶媒としては、 生成したポリアミ ド酸が溶解するものであれば特に限定されない。 あえてその具 体例を挙げるならば、 N, N—ジメチルホルムアミ ド、 N, N—ジメチルァセト アミ ド、 N—メチル一 2—ピロリ ドン、 N—メチルカプロラクタム、 ジメチルス ルホキシド、 テトラメチル尿素、 ピリジン、 ジメチルスルホン、 へキサメチルス ルホキシド、 ァ一プチロラクトン等を挙げることができる。 これらは単独でも、 また混合して使用してもよい。 さらに、 ポリアミド酸を溶解させない溶媒であつ ても、 生成したポリアミド酸が析出しない範囲で、 上記溶媒に混合して使用して もよい。 また、 有機溶媒中の水分は重合反応を阻害し、 さらには生成したポリア ミ ド酸を加水分解させる原因となるので、 有機溶媒はなるべく脱水乾燥させたも のを用いることが好ましい。
テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法と しては、 ジァミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、 テ トラカルボン酸二無水物をそのまま、 または有機溶媒に分散あるいは溶解させて 添加する方法、 逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解さ せた溶液にジァミン成分を添加する方法、 テトラカルボン酸二無水物とジアミン 成分とを交互に添加する方法などが挙げられ、 これらのいずれの方法であっても 良い。 また、 テトラカルボン酸二無水物またはジァミン成分が複数種の化合物か らなる場合は、 あらかじめ混合した状態で反応させても良く、 個別に順次反応さ せても良く、 個別に反応させた低分子量体を混合反応させ高分子量体としても良 い。
上記のポリアミ ド酸合成時の温度は一 2 0〜 1 5 0 の任意の温度を選択する ことができるが、 好ましくは一 5〜 1 0 0 °Cの範囲である。 また、 反応は任意の 濃度で行うことができるが、 濃度が低すぎると高分子量の重合体を得ることが難 しくなり、 濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難と なるので、 好ましくは 1 ~ 5 0重量%、 より好ましくは 5〜 3 0重量%である。 反応初期は高濃度で行い、 その後、 有機溶媒を追加しても構わない。
ポリアミド酸の合成反応において、 テトラカルボン酸二無水物のモル数に対す る、 ジァミン成分のモル数 (ジァミン [ 1 ] と一般ジァミンの総モル数) の比は 0 . 8 ~ 1 . 2であることが好ましい。 通常の重縮合反応同様、 このモル比が 1 . 0に近いほど生成するポリアミ ド酸の分子量は大きくなる。
本発明において特定重合体の分子量が小さすぎると、 そこから得られる塗膜の 強度が不十分となる場合があり、 逆に特定重合体の分子量が大きすぎると、 塗膜 形成時の作業性、 塗膜の均一性が悪くなる場合がある。 従って、 本発明における 特定重合体の分子量は、 G P C (Ge l Permeat ion Chroma tography) 法で測定した 重量平均分子量で 1万〜 1 0 0万とするのが好ましい。
ポリアミド酸を脱水閉環させてポリイミ ドを得る方法としては、 ポリアミ ド酸 の溶液をそのまま加熱する熱ィミ ド化、 またはポリアミド酸の溶液に触媒を添加 する触媒イミド化が一般的である。 比較的低温でイミ ド化反応が進行する触媒ィ ミ ド化の方が、 得られるポリイミ ドの分子量低下が起こりにくく好ましい。
ポリアミ ド酸を溶液中で熱ィミ ド化させる場合の温度は、 1 0 0〜4 0 0で、 好ましくは 1 2 0〜 2 5 0 であり、 脱水閉環反応により生成する水を、 系外に 除きながら行う方が好ましい。
ポリアミ ド酸の触媒イミ ド化は、 ポリアミ ド酸の溶液に、 ピリジン、 トリェチ ルァミン、 トリメチルァミン、 卜リブチルアミン、 トリオクチルァミン等の塩基 性触媒と、 無水酢酸、 無水卜リメリット酸、 無水ピロメリット酸等の酸無水物と を添加し、 一 2 0〜 2 5 0で、 好ましくは 0〜 1 8 0 Xで攪拌することにより行 うことができる。 塩基性触媒の量はアミ ド酸基の 0 . 5〜 3 0モル倍、 好ましく は 2〜 2 0モル倍であり、 酸無水物の量はアミ ド酸基の 1〜 5 0モル倍、 好まし くは 3 ~ 3 0モル倍である。 塩基性触媒や酸無水物の量が少ないと反応が十分に 進行せず、 また多すぎると反応終了後に完全に除去することが困難となる。 塩基 性触媒中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましく、 また、 酸無水物の中でも無水酢酸を用いると反応終了後の精製が容易となるので 好ましい。 触媒イミ ド化によるイミ ド化率は、 触媒量と反応温度、 反応時間を調 節することにより制御することができる。
本発明の特定重合体の反応溶液から、 特定重合体を回収するには、 反応液を貧 溶媒に投入して沈殿させれば良い。 特定重合体の沈殿回収に用いる貧溶媒として は特に限定されないが、 メタノール、 アセトン、 へキサン、 プチルセルソルブ、 ヘプタン、 メチルェチルケ卜ン、 メチルイソブチルケトン、 エタノール、 トルェ ン、 ベンゼンなどを挙げることができる。 貧溶媒に投入して沈殿させた特定重合 体は濾過して回収した後、 常圧あるいは減圧下で、 常温あるいは加熱乾燥して粉 末とすることが出来る。 また、 沈殿回収した特定重合体を、 有機溶媒に再溶解さ せ、 再沈殿回収する操作を 2〜 1 0回繰り返すと、 特定重合体中の不純物を少な くすることができる。 この際の貧溶媒として例えばアルコール類、 ケトン類、 炭 化水素など 3種類以上の貧溶媒を用いると、 より一層精製の効率が上がるので好 ましい。 液晶配向処理剤
本発明の液晶配向処理剤は、 液晶配向膜を形成するための組成物であり、 前述 した特定重合体 (即ち、 一般式 [ 1 ] で表されるジァミノベンゼン誘導体を原料 の一部として使用し合成されるポリイミ ド前駆体またはポリイミ ド) の、 少なく とも一種を含有することを特徴とする。 また、 その形態は特に限定されないが、 液晶配向膜として使用するに際して、 基板上に 0 . 0 1〜 1 . O ^ mの均一な薄 膜を形成する必要があることから、 特定重合体を有機溶媒に溶解させた塗布液で あることが好ましい。
本発明の液晶配向処理剤である塗布液を得るには、 特定重合体の反応溶液を有 機溶媒で希釈する方法、 沈殿回収した特定重合体を有機溶媒に溶解させる方法な どが挙げられる。 塗布液の固形分濃度は、 得ようとする液晶配向膜の膜厚によつ て適宜変更することができるが、 1〜 1 0重量%とすることが好ましい。 1重量% 未満では均一で欠陥のない塗膜を形成させることが困難となり、 1 0重量%より も多いと 1 m以下の薄膜を形成することが困難になる場合がある。
本発明の液晶配向処理剤には、 特定重合体の反応溶液をそのまま用いても、 沈 殿回収したものを用いても構わないが、 触媒イミ ド化をさせたポリイミ ド溶液の 場合には、 溶液中に残存する塩基性触媒や酸無水物が液晶表示素子に悪影響を及 ぼす場合があるので、 沈殿回収してから用いる方が好ましい。
特定重合体を溶解させる有機溶媒としては、 特定重合体が溶解するものであれ ば特に限定されない。 その具体例としては、 N, N—ジメチルホルムアミ ド、 N, N—ジメチルァセトアミド、 N—メチル -2-ピロリ ドン、 N—メチルカプロラク夕 ム、 2-ピロリ ドン、 N—ェチルピロリ ドン、 N—ビニルピロリ ドン、 ジメチルス ルホキシド、 テ卜ラメチル尿素、 ピリジン、 ジメチルスルホン、 へキサメチルス ルホキシド、 ァープチロラクトン等を挙げることができ、 これらは 1種類でも複 数種類を混合して用いても良い。 また、 これらの有機溶媒は、 塗布液の希釈にも 用いることができる。
本発明の液晶配向処理剤は、 特定重合体及び特定重合体を溶解させる溶媒の他、 塗膜形成時の膜厚均一性を向上させる溶媒や化合物、 塗膜と基板との密着性を向 上させる化合物などを適宜含有させることが好ましい。 これらの成分は、 あらか じめ準備した特定重合体の溶液に、 後から添加すれば良い。 '
塗膜形成時の膜厚均一性を向上させる溶媒の具体例としては、 次のものが挙げ られる。 ェチルセ口ソルブ、 プチルセ口ソルブ、 ェチルカルビトール、 プチルカ ルビトール、 ェチルカルビトールアセテート、 エチレングリコール、 1 -メ トキシ - 2-プロパノール、 卜エトキシ- 2 -プロパノール、 卜ブトキシ- 2 -プロパノール、 卜 フエノキシ - 2 -プロパノール、 プロピレングリコールモノアセテート、 プロピレン ダリコールジァセテート、 プロピレンダリコール-卜モノメチルェ一テル- 2-ァセ テート、 プロピレングリコ一ル-卜モノェチルエーテル- 2-アセテート、 ジプロピ レンダリコール、 1- ( 2-エトキシプロボキシ) プロパノ一ル、 乳酸メチルエステ ル、 乳酸ェチルエステル、 乳酸 n—プロピルエステル、 乳酸 n —プチルエステル、 乳酸ィソァミルエステルなどの低表面張力を有する溶媒。 これらの溶媒は 1種類 でも複数種類を混合して用いても良い。 上記のような溶媒を含有させる場合は、 その溶媒の合計量が全溶媒中の 5〜 8 0重量%であることが好ましく、 より好ま しくは 2 0〜6 0重量%である。 5重量%未満では効果があまり期待できず、 ま た、 これらの溶媒は一般的に特定重合体を溶解する能力が低いので、 8 0重量% よりも多くなると特定重合体が析出する場合がある。
塗膜と基板との密着性を向上させる化合物の具体例としては、 次に示すものが 挙げられる。 3-ァミノプロビルトリメ トキシシラン、 3 -ァミノプロピルトリエト キシシラン、 2-ァミノプロビルトリメ トキシシラン、 2-ァミノプロピルトリエト キシシラン、 N- ( 2-ァミノェチル) -3 -アミノプロピルトリメ トキシシラン、 N- ( 2- アミノエチル) -3 -ァミノプロピルメチルジメ トキシシラン、 3-ウレイ ドプロピル トリメ トキシシラン、 3-ゥレイ ドプロピルトリエトキシシラン、 N -エトキシカル ポニル- 3-アミノプロピルトリメ トキシシラン、 N-ェトキシカルポ二ル- 3-アミノ プロピルトリエ卜キシシラン、 N-トリエトキシシリルプロピルトリエチレン卜リ ァミン、 N-トリメ トキシシリルプロピルトリエチレントリァミン、 10-トリメ トキ シシリル- 1, 4, 7-トリァザデカン、 10-トリエトキシシリル- 1, 4, 7-トリァザデ力ン、 9-トリメ トキシシリル- 3, 6-ジァザノエルァセテ一ト、 9-トリエトキシシリル -3, 6 -ジァザノニルァセテ一ト、 N-ベンジル -3-アミノプロピルトリメ トキシシラ ン、 N -べンジル -3 -ァミノプロピルトリエトキシシラン、 N-フエニル -3-アミノブ 口ピルトリメ トキシシラン、 N-フエニル- 3-アミノプロピルトリエトキシシラン、 N -ビス (ォキシエチレン) -3-ァミノプロピルトリメ トキシシラン、 N -ビス (才キ シエチレン) -3-ァミノプロピルトリエトキシシラン、 エチレングリコ一ルジグリ シジルエーテル、 ポリエチレングリコールジグリシジルエーテル、 プロピレング リコールジグリシジルエーテル、 トリプロピレンダリコールジグリシジルェ一テ ル、 ポリプロピレングリコ一ルジグリシジルェ一テル、 ネオベンチルグリコール ジグリシジルエーテル、 1, 6-へキサンジォ一ルジグリシジルエーテル、 グリセリ ンジダリシジルエーテル、 2, 2 -ジブロモネオペンチルグリコールジグリシジルェ 一テル、 1, 3, 5, 6 -テトラグリシジル- 2, 4-へキサンジオール、 N, N, Ν' , Ν' -テトラグ リシジル- m-キシレンジァミン、 1, 3-ビス (N, N-ジグリシジルアミノメチル) シク 口へキサン、 Ν, Ν, Ν' , Ν' -テトラダリシジル -4, 4' -ジアミノジフエニルメタンなど の官能性シラン含有化合物やエポキシ基含有化合物。 これら化合物を添加する場 合は、 全ポリマー重量に対して 0 . 1〜 3 0重量%であることが好ましく、 より 好ましくは 1〜 2 0重量%である。 0 . 1重量%未満であると密着性向上の効果 は期待できず、 3 0重量%よりも多くなると液晶の配向性が悪くなる場合がある。 本発明の液晶配向処理剤には、 本発明の効果が損なわれない範囲であれば、 特 定重合体以外の重合体成分や化合物が含有されていても構わない。 また、 液晶配 向膜の誘電率や導電性などの電気特性を変化させる目的で、 誘電体や導電物質な どを添加しても構わない。
本発明の液晶配向処理剤は、 基板上に塗布、 焼成した後、 ラビング処理や光照 射などで配向処理をして、 または垂直配向用途などでは配向処理無しで液晶配向 膜として用いることができ、 特にラビングして液晶配向膜とする用途において有 用である。
本発明の液晶配向処理剤の塗布方法は特に限定されないが、 液晶配向膜の場合、 膜厚、 塗膜の寸法精度、 表面の均一性が特に重要となることから、 工業的には、 液晶配向処理剤の塗布液を用いて、 スクリーン印刷、 オフセット印刷、 インクジ エツト印刷等の印刷機により行う方法が一般的である。 その他、 塗布液を用いる 方法としては、 ディップ、 ロールコ一夕一、 スピンナーなどがあり、 目的に応じ てこれらを用いてもよい。 これらの方法により基板上に塗布した後、 ホットプレ 一トなどの加熱手段により 5 0〜1 5 0 、 好ましくは 8 0〜 1 2 0でで溶媒を 蒸発させて、 塗膜を形成させることができる。
本発明の液晶配向処理剤に含有される特定重合体が、 ポリイミ ド前駆体である 場合は、 基板上に塗膜を形成した後、 焼成することによりポリイミ ド塗膜とする ことができる。 この焼成は、 1 0 0〜 3 5 0 の任意の温度で行うことができる が、 好ましくは 1 5 0〜3 0 0でであり、 さらに好ましくは 2 0 0〜2 5 0でで ある。 この焼成温度が高いほど、 ポリイミ ドへの変化率は高くなるが、 液晶配向 膜として用いる際に、 必ずしも完全なポリイミ ドである必要はなく、 ポリイミ ド 前駆体とポリイミ ドが混在するの状態でも構わない。 ただし、 その後の液晶セル 製造行程で必要とされる熱処理温度よりも、 1 0 DC以上高い温度で焼成すること が好ましい。 また、 本発明の液晶配向処理剤に含有される特定重合体が、 ポリイ ミ ドである場合は、 必ずしも焼成工程は必要とされない。 ただし、 その後の液晶 セル製造行程で必要とされる熱処理温度よりも、 1 0 以上高い温度で焼成する ことが好ましい。
本発明の液晶配向処理剤から得られた液晶配向膜は、 公知の方法で液晶セルを 作成し、液晶表示素子とすることができる。液晶セル作成の一例を挙げるならば、 液晶配向膜の形成された 1対の基板を、 1 3 0 m、 好ましくは 2 1 0 tm のスぺーサ一を挟んで、 配向処理方向が 0 2 7 0 ° の任意の角度となるように 設置して周囲をシール剤で固定し、 液晶を注入して封止する方法が一般的である。 液晶封入の方法については特に制限されず、 作製した液晶セル内を減圧にした後 液晶を注入する真空法、 液晶を滴下した後封止を行う滴下法などが例示できる。 このようにして、 本発明の液晶配向処理剤を用いて作製した液晶表示素子は、 高くて安定した液晶のプレチルト角が得られるので、 高いプレチルト角を必要と する液晶表示素子に好適に用いられる。
以下に実施例を挙げ、 本発明を更に詳しく説明するが、 本発明はこれらに限定 されるものではない。 実施例
<実施例 1 >
ジァミン { 3 } の合成
Figure imgf000019_0001
1000mlの 4つ口フラスコにビフエノール ( 100.00g, 0.538raol) 、 卜プロモォク タン ( 103.90g 0.538mol) 、 炭酸カリウム (111.54g, 0.807mol) 、 および Ν, Ν'- ジメチルァセトアミ ド (DMA c ) (400ml) を入れ、 反応温度 110°Cで 1 0時間 攪拌した。 反応終了後、 濾過により炭酸カリウムを除いた。 濾液を減圧留去し、 残渣に 1N-水酸化ナトリウム (N a OH) 溶液を加え、 析出した固体を濾過により 取り出した。 得られた固体をメタノールで再結晶したところ、 無色結晶 { 1 } (76.55g, 48%, 即: 149-154で) を得た。 1H-NMR(CDC13, <5 ρρπι) : 7.41-7.46 (4H, m) , 6.94 (2H, d) , 6.88 (2H, d) ,
4.73 (1H, s), 3.98 (2H, t), 1.80 (2H, m) , 1.47 (2H, m) , 1.30 (8H, m) , 0.89 (3H, t).
300mlの 4つ口フラスコに 3, 5-ジニトロベンジルク口リ ド(13.04g, 60.21匪 ol)、 { 1 } (18.08g, 60.56腿 ol) 、 およびテトラヒドロフラン (THF) (200ml) を入れ、 室温で溶液が均一になるまで攪拌した。 その後、 N aOH水溶液 (Na OH (0.27g) /H2〇 (50ml) ) をゆっくり滴下した。 滴下後、 1 3時間緩やかに 還流した。 反応溶液を減圧留去し残渣に水を加え、 固体を濾別した。 得られた固 体をメタノールで洗浄し、 その後エタノールで再結晶したところ、 黄色結晶 {2 } (21.55g, 75%, nip: 111-112°C) を得た。
1H -画 R(CDC13, δρρι) : 9.01 (1H, S) , 8.67 (2Η, S) , 7.51 (2Η, d) , 7.46 (2H, d) , 7.04 (2Η, d) , 6.95 (2Η, d) , 5.28 (2Η, S) , 3.99 (2Η, t) , 1.80 (2Η, m) , 1.47 (2Η, m) , 1.32 (8Η, m) , 0.89 (3Η, t) .
500mlの 4つ口フラスコに { 2 } (10. OOg, 20.90腿 ol)、およびジォキサン(300ml) を入れ、 反応容器を窒素置換した後、 酸化白金 ( I V) (P t〇 2) (1.00g) を入れた。 反応容器中を水素雰囲気下にし、 60でで 7時間、 室温で 14時間攪 拌した。 反応終了後、 濾過により P t 02を除き、 濾液を減圧留去した。 残渣をメ 夕ノールで洗浄したところ、 薄肌色結晶であるジアミン { 3 } (6.33g, 72%, nip: 192-196で) を得た。
1H-NMR (CDC13, δ ppm) : 7.45 (4H, m) , 7.00 (2Η, d) , 6.94 (2H, d) , 4.92 (2H, s) , 3.98 (2H, t), 3.61 (4H, s) , 1.80 (2H, πι) , 1.47 (2Η, m) , 1.32 (8Η, m) , 0.89 (3Η, t).
<実施例 2 >
ジァミン { 5 } の合成
Figure imgf000020_0001
1000mlの 4つ口フラスコに、フエニルシクロへキシル誘導体(50. OOg, 0.182mol), および THF (300ml) を入れ、 均一になるまで攪拌した。 反応溶液を室温まで放 置した後、 3, 5-ジニトロべンジルクロリ ド (41.39g, 0. 191mol) を加えた。 その 後、 N a OH水溶液 (N a OH (29. 12g) /H 2 O (200ml) ) をゆつくり滴下した。 滴下後、 8時間緩やかに還流した。 反応終了後、 反応溶液を減圧留去した。 濾過 を行ない、 濾さいを水、 メタノール、 ァセトニトリルで洗浄した。 その後、 ァセ トニトリルで再結晶したところ、 黄色結晶 { 4 } 54.32g, 66%, mp: 113- 114で) を得た。
1H-NM (d-DMSO, δ ppm) : 8.99 (1H, s) , 8.65 (2H, d) , 7. 17 (2H, d) , 6.91 (2H, d) , 5.23 (2H, s), 2.43(1H, t) , 1.21-1.43 (16H, m) , 1.06 (2H, m) , 0.89 (3H, t) .
1000mlの 4つ口フラスコに { 4 Μ0· 00g, 88. OOmmol)、およびジォキサン(500ml) を入れ、 反応容器を窒素置換した後、 P t 02 (4.00g) を入れた。 反応容器中を 水素雰囲気下にし、 室温で 2 4時間攪拌した。 反応終了後、 濾過により P t〇2を 除いた。 濾液を減圧留去し、 残渣にメタノールを加えたところ'、 薄黄色固体が析 出した。 濾過を行い薄黄色固体であるジァミン { 5 } (26.55g, 76%, mp: 153-157°C) を得た。
1H-画 R(CDC13, δρρπι) : 7.09 (2Η, d) , 6.88 (2H, d) , 5.84 (2Η, s) , 5.74 (1Η, s) , 4.74 (4H, s) , 3.33 (2H, S) , 2.36 (1H, t) , 1.77 (4H, m) , 1. 17-1.41 (16H, m) ,
1.01 (2H, m) , 0.88 (3H, t).
<実施例 3 >
ポリイミド前駆体 [A〗の合成
実施例 1で得られたジァミン { 3 } (1· 64g, 5.21匪 ol) 、 1, 4-ジァミノべンゼ ン (2.25g, 20.81mmol) 、 3, 4-ジカルボキシ- 1, 2, 3, 4-テトラヒドロ-卜ナフタレン コハク酸二無水物 (7.81g, 26· Olmmol) 、 および N-メチル- 2-ピロリ ドン (NMP) (46.80g) を用い、 室温で攪拌し重縮合反応を行い、 固形分濃度 2 0w t %のポ リイミ ド前駆体溶液 [A]を得た。 この溶液の粘度は 3 4 8 1 mP a * s ( 2 5 : E型粘度計) であり、 GP C (Gel Permeation Chromatography) 法により測定し た重量平均分子量は 1 3 4 6 0 0であった。 <実施例 4>
ポリイミ ド前駆体 [B]の合成
実施例 2で得られたジァミン { 5 } (3· 39g, 8.59匪 ol) 、 1, 4-ジアミミノベン ゼン (3.72g, 34· 41匪 ol) 、 3, 4 -ジカルボキシ -1, 2, 3, 4-テトラヒドロ-卜ナフタレ ンコハク酸二無水物 (12.91g, 42.99顧 ol) 、 および NMP (80.08g) を用い、 室 温で攪拌し重縮合反応を行い、 固形分濃度 2 0 w t %のポリイミド前駆体溶液
[B]を得た。 この溶液の粘度は 3 5 3 2 mP a ' s ( 2 5°C E型粘度計) であ り、 G P C法により測定した重量平均分子量は 1 4 5 0 0 0であった。
<実施例 5 >
ポリイミド前駆体 [C]の合成
実施例 2で得られたジァミン { 5 } (1.70g, 4.30mmol) 、 1, 4-ジアミミノベン ゼン (4. 18g, 38.70匪 ol) 、 3, 4-ジカルポキシ- 1, 2, 3, 4-テトラヒドロ-卜ナフタレ ンコハク酸二無水物 (12.91g, 42.99mmol) 、 および NMP (80.08g) を用い、 室 温で攪拌し重縮合反応を行い、 固形分濃度 2 0 w t %のポリイミ ド前駆体溶液
[C]を得た。 この溶液の粘度は 4 1 2 0 mP a · s ( 2 5で : E型粘度計) であ り、 G P C法により測定した重量平均分子量は 1 8 5 0 0 0であった。
<実施例 6 , 7, 8 >
液晶配向処理剤の製造
実施例 3、 4, 5で得られたポリイミ ド前駆体溶液 ([A] , [B], [C]) を、 それぞれ NMPおよびプチロセル口ルブで希釈し、 樹脂濃度 5w t %、 プチルセ 口ソルブ 2 0 w t %、 NMP 7 5 w t %である液晶配向処理剤を得た。 液晶セルの作成
上記の液晶配向処理剤を I TO電極付ガラス基板の I TO面にスピンコートし 8 0でで 5分、 2 2 0でで 1時間加熱処理して、 膜厚 0. 1 mのポリイミ ド塗 膜を形成させた。塗膜面をレーヨン布のラビング装置にて、回転数 3 0 0 r pm、 移動速度 20 mmZ s e c、 押し込み量 0. 3 mmの条件でラビング処理した。 その後、 この基板 2枚を一組とし、 6 imのスぺーサーを散布後、 膜面を内側 にし、 ラビング方向をほぼ直行させて張り合わせ、 ネマチック液晶(メルク社製: ML C- 20 0 3) を注入して 90度ツイスト液晶セルとした。 この液晶セルの 配向状態を観察したところ欠陥のない均一な配向をしていることが確認された。 プレチルト角の測定
これらのセルについて、 セル作成直後 (2 5^C) 、 9 5 °C 5分加熱処理後、 さ らに 1 2 Ot 1時間加熱処理したものについて、 結晶回転法でプレチルト角を測 定した。 また、 ラビング押し込み量をそれぞれ、 0. 3mm、 0 - 5 mm, 0. 7mmにした際の, セル作成直後 (2 5°C) のプレチルト角の測定も行った。 結果は後述する表 1、 表 2に示す。
<比較例 1 >
プレチルト角の熱安定性評価の比較のために以下に示すジァミン { 6 } を用い た。
Figure imgf000023_0001
ジァミン { 6 } を用いて、 ポリイミ ド前駆体 [D〗の合成を行った。
ジァミン { 6 } (9.79g, 25.99匪 ol)、 1, 4-ジァミノベンゼン(11.25g, 104.03腿 ol)、
3, 4 -ジカルポキシ - 2, 3, 4-テトラヒドロ-卜ナフタレンコハク酸二無水物
(39.04g, 130.02imol) 、 および NMP (240.32g) を用い、 室温で攪拌し重縮合 反応を行い、 固形分濃度 2 Ow t %のポリイミ ド前駆体溶液 [D]を得た。 この溶 液の粘度は 7 3 0 mP a · s (2 5 °C : E型粘度計) であり、 G P C法により測 定した重量平均分子量は 6 6 0 0 0であった。
得られたポリイミ ド前駆体溶液 [D]を用いて、 実施例 6 , 7, 8と同様の製造 方法により液晶配向処理剤を製造し、 液晶セルを作成した際のプレチルト角の測 定を行った。 結果は後述する表 1に示す。
<比較例 2>
プレチルト角のラピング圧力依存性評価の比較のために以下に示すジァミン { 7 } を用いた。
Figure imgf000024_0001
ジァミン { 7 } を以下の経路で合成した。
Figure imgf000024_0002
1000mlの 4つ口フラスコに 2, 4-ジニト口フルォロベンゼン(42.06g, 0.226mol)、 { 1 } (56.20g, 0.188mol) 、 炭酸カリウム (52.00g, 0.376mol) 、 および N, N - ジメチルホルムアミ ド (DMF) (400ml) を入れ、 反応温度 110 で 6時間攪拌 した。 反応終了後、 濾過により炭酸カリウムを除いた。 濾液を減圧留去し、 残渣 にメタノールを加えたところ黄色固体が析出した。 得られた固体を T H Fで再結 晶したところ、 薄黄色結晶 { 8 } (65.33g, 75%, 即: 127-129 ) を得た。
1H-NMR(CDC13, 6 ppm) : 8.84 (1H, s) , 8.31 (1H, d) , 7.63 (2H, d) , 7.50 (2H, d) , 7.17 (2H, d), 7.10 (1H, d) , 6.98 (2H, d) , 4.00 (2H, t) , 1.81 (2H, m) , 1.48 (2H, m) , 1.31 (8H, i) , 0.89 (3H, t).
1000mlの 4つ口フラスコに { 8 } (35.45g, 75.35mniol) 、 ジォキサン (400ml) を入れ、 反応容器を窒素置換した後、 P d-C (3.55g) を入れた。 反応容器中を 水素雰囲気下に、 60°Cで 50時間、 室温で 1 2 0時間攪拌した。 反応終了後、 濾 過により P d- Cを除き、 濾液を減圧留去した。 残渣をァセトニトリルで再結晶し たところ薄赤茶色結晶であるジァミン { 7 } (23.55g, 77%, mp: 196- 198 ) を 得た。
1H-NMR(CDC13, <3 ppm) : 7.41-7.45 (4H, m) , 6.96 (2H, d) , 6.93 (2H, d) , 6.77 (1H, d), 6.18 (1H, s) , 6.10 (1H, d) , 3.98 (2H, t) , 3.54-3.70 (4H, broad), 1.79 (2H, m) , 1.46 (2H, m) , 1.31 (8H, m) , 0.89 (3H, t).
ジァミン { 7 } を用いて、 ポリイミ ド前駆体 [E]の合成を行った。
ジァミン { 7 } (2.53g, 6.25匪 ol)、 1, 4-ジアミノベンゼン(2· 03g, 18.77腿 ol)、 3, 4 -ジカルポキシ- 1, 2, 3, 4-テトラヒド口-卜ナフタレンコハク酸二無水物
(7.51g, 25. Olmmol) 、 及び NMP (48.28g) を用い、 室温で攪拌し重縮合反応を 行い、 固形分濃度 2 0 w t %のポリイミ ド前駆体溶液 [E]を得た。 この溶液の粘 度は 43 5 mP a - s (2 5^ : E型粘度計) であり、 G P C法により測定した 重量平均分子量は 4480 0であった。
得られたポリイミ ド前駆体溶液 [E]を用いて、 実施例 6 , 7, 8と同様の製造 方法により液晶配向処理剤を製造し、 液晶セルを作成した際のプレチルト角の測 定を行った。 結果は後述する表 2に示す。
評価結果
表 1 プレチルト角の測定① (プレチルト角の熱安定性評価)
Figure imgf000025_0001
*い のセル 欠 の い 一 表 2 プレチルト角の測定② (プレチルト角のラビング圧力依存性評価)
Figure imgf000026_0001
ジァミン { 3 } および { 5 } はプレチルト角を高める効果に優れ、 さらに、 ジ ァミン { 6 }のプレチルト角の熱安定性評価との比較から、本発明のジァミン { 3 } および { 5 } はプレチルト角の熱安定性に優れ、 加えて、 ジァミン { 7 } のラビ ング圧力依存性評価との比較から、 本発明のジァミン { 3 } および { 5 } はラビ ング圧力依存性が小さくなることがわかった。 産業上の利用可能性
本発明のジァミノベンゼン誘導体は、 公知の反応経路で容易に合成することが でき、 反応性が高いので、様々な高分子の原料として用いることができる。特に、 液晶配向膜樹脂の原料として用いた場合に、 液晶のプレチルト角を高める効果が 大きく、 液晶に高くて安定したプレチルト角を付与することができる。
本発明のポリイミ ド前駆体またはポリイミ ドは、 撥水性等の表面特性を有する 塗膜用の樹脂材料として用いることができる。 特に液晶配向膜として用いた場合 に、 液晶に高くて安定したプレチル卜角を付与することができる。
本発明の液晶配向処理剤は、 液晶のプレチルト角が高く、 プレチルト角の熱安 定性に優れ、 加えてプレチルト角のラビング圧力に対する依存性が小さい液晶配 向膜を得ることができる。

Claims

請求の範囲
1. 下記、 一般式 [1] で表されるジァミノベンゼン誘導体。
H2N
Figure imgf000027_0001
(式中、 X,および x2は独立してベンゼン環、 シクロへキサン環、 および複素環か ら選ばれる環状基を表し、 これらの環状基上の任意の水素原子は、 炭素数 1〜 3 のアルキル基、 炭素数 1〜 3のアルコキシ基、 炭素数 1〜 3のフッ素含有アルキ ル基、 炭素数 1〜 3のフッ素含有アルコキシ基、 フッ素原子、 塩素原子、 臭素原 子、 およびシァノ基から選ばれるもので置換されていても良く、 nは 0または 1 の整数であり、 X3は炭素数 1〜 3 2のアルキル基、 炭素数 1 ~ 32のアルコキシ 基、 炭素数 1〜 3 2のフッ素含有アルキル基、 炭素数 1〜 3 2のフッ素含有アル コキシ基、 フッ素原子、 塩素原子、 臭素原子、 およびシァノ基から選ばれるもの である)
2. —般式 [1] 中の X!がベンゼン環またはシクロへキサン環であり、 X2がベン ゼン環またはシクロへキサン環であり、 nが 1である請求項 1に記載のジアミノ ベンゼン誘導体。
3. —般式 [ 1] 中の X,がベンゼン環またはシクロへキ ン環であり、 X2がベン ゼン環であり、 nが, 1である請求項 1に記載のジァミノベンゼン誘導体。
4. 一般式 [1] 中の X,がベンゼン環またはシクロへキサン環であり、 X2がシク 口へキサン環であり、 nが 1である請求項 1に記載のジアミノベンゼン誘導体。
5. X3が、 炭素数 5〜 1 2のアルキル基、 炭素数 5〜 1 2のアルコキシ基、 炭素 数 5〜 8のフッ素含有アルキル基、 および炭素数 5〜 8のフッ素含有アルコキシ 基から選ばれる有機基である請求項 2、 3または 4に記載のジァミノベンゼン誘 導体。
6. 請求項 1〜 5のいずれかに記載のジァミノベンゼン誘導体を原料の一部とし て使用し合成されるポリイミ ド前駆体またはポリイミ ド。
7 . 請求項 6に記載のポリイミ ド前駆体またはポリイミ ドのうち、 少なくともど ちらか一方を含有する液晶配向処理剤。
PCT/JP2003/015800 2002-12-11 2003-12-10 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向処理剤 WO2004052962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003289305A AU2003289305A1 (en) 2002-12-11 2003-12-10 Novel diaminobenzene derivative, polyimide precursor and polyimide obtained therefrom, and aligning agent for liquid crystal
US10/538,060 US7303792B2 (en) 2002-12-11 2003-12-10 Diaminobenzene derivative, polyimide precursor and polyimide obtained therefrom, and aligning agent for liquid crystal
JP2004558459A JP4466373B2 (ja) 2002-12-11 2003-12-10 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002359224 2002-12-11
JP2002-359224 2002-12-11

Publications (1)

Publication Number Publication Date
WO2004052962A1 true WO2004052962A1 (ja) 2004-06-24

Family

ID=32500931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015800 WO2004052962A1 (ja) 2002-12-11 2003-12-10 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向処理剤

Country Status (7)

Country Link
US (1) US7303792B2 (ja)
JP (1) JP4466373B2 (ja)
KR (1) KR101077808B1 (ja)
CN (1) CN1318479C (ja)
AU (1) AU2003289305A1 (ja)
TW (1) TW200418761A (ja)
WO (1) WO2004052962A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143877A (ja) * 2006-12-13 2008-06-26 Chisso Corp 液晶類似構造を有するジアミン
WO2008117760A1 (ja) * 2007-03-23 2008-10-02 Nissan Chemical Industries, Ltd. ジアミン化合物、ポリアミック酸、ポリイミド及び液晶配向処理剤
WO2008117759A1 (ja) * 2007-03-23 2008-10-02 Nissan Chemical Industries, Ltd. ジアミン化合物、ポリアミック酸、ポリイミド及び液晶配向処理剤
WO2009088046A1 (ja) * 2008-01-11 2009-07-16 Nissan Chemical Industries, Ltd. 液晶配向処理剤、及びそれを用いた液晶表示素子
WO2012023570A1 (ja) * 2010-08-17 2012-02-23 日産化学工業株式会社 ジアミン前駆体化合物の製造方法
KR20140059219A (ko) 2011-09-08 2014-05-15 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
CN107531904A (zh) * 2015-03-04 2018-01-02 日产化学工业株式会社 聚酰亚胺前体、以及具有该前体的液晶取向剂、液晶取向膜及液晶表示元件
JP2018083943A (ja) * 2012-02-22 2018-05-31 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270066A1 (en) * 2005-04-25 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Organic transistor, manufacturing method of semiconductor device and organic transistor
KR20070035683A (ko) * 2005-09-28 2007-04-02 삼성전자주식회사 액정 표시 장치 및 그 제조 방법
KR101318953B1 (ko) * 2006-02-22 2013-10-17 주식회사 동진쎄미켐 수직배향모드의 액정표시소자의 배향재료 및 이의제조방법
KR100837788B1 (ko) * 2007-06-13 2008-06-13 한국화학연구원 광반응형 방향족 고리 측쇄기를 갖는 폴리아믹산광배향막의 제조방법 및 이를 이용한 액정 셀
CN101359128B (zh) * 2007-08-03 2010-11-24 群康科技(深圳)有限公司 液晶面板、液晶面板的配向膜及其制造方法
JP5532195B2 (ja) * 2008-06-10 2014-06-25 Jsr株式会社 液晶配向剤および液晶表示素子
RU2470965C1 (ru) * 2009-01-08 2012-12-27 Шарп Кабусики Кайся Состав для формирования выравнивающей жидкие кристаллы пленки и жидкокристаллическое устройство отображения
CN102959461B (zh) * 2010-06-30 2015-08-05 日产化学工业株式会社 液晶取向剂、液晶取向膜及液晶显示元件
JP5655507B2 (ja) * 2010-11-01 2015-01-21 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR101916976B1 (ko) * 2010-12-28 2018-11-08 닛산 가가쿠 가부시키가이샤 기능성 폴리머막 형성용 도포액 및 기능성 폴리머막 형성 방법
CN102559205B (zh) 2010-12-29 2014-07-30 第一毛织株式会社 液晶取向剂、使用其制造的液晶取向膜和液晶显示器
KR101333709B1 (ko) * 2011-01-24 2013-11-27 제일모직주식회사 액정 배향제, 이를 이용하여 제조한 액정 배향막 및 상기 액정 배향막을 포함하는 액정표시소자
WO2012161329A1 (ja) * 2011-05-26 2012-11-29 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
JP6183212B2 (ja) * 2011-11-01 2017-08-23 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
KR101444190B1 (ko) 2011-12-19 2014-09-26 제일모직 주식회사 액정 배향제, 이를 이용한 액정 배향막 및 상기 액정 배향막을 포함하는 액정표시소자
TWI628214B (zh) * 2012-02-13 2018-07-01 日產化學工業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
TWI522392B (zh) * 2013-05-22 2016-02-21 奇美實業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
TWI482801B (zh) * 2013-09-18 2015-05-01 Chi Mei Corp 液晶配向劑、液晶配向膜及液晶顯示元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527244A (ja) * 1991-07-19 1993-02-05 Japan Synthetic Rubber Co Ltd 液晶配向剤
EP0663391A1 (de) * 1994-01-14 1995-07-19 F. Hoffmann-La Roche Ag Schwefelsäureester von Zuckeralkoholen zur Behandlung von arteriosklerotischen Gefässwandveränderungen
WO1997030107A1 (fr) * 1996-02-15 1997-08-21 Nissan Chemical Industries, Ltd. Derives diaminobenzene, polyimides prepares a partir de ceux-ci, et film d'orientation pour cristaux liquides

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857779B2 (ja) 1988-12-19 1999-02-17 セイコーエプソン株式会社 液晶配向膜用組成物および液晶装置
JP2762551B2 (ja) 1989-04-25 1998-06-04 東レ株式会社 液晶配向膜および液晶表示素子
TW290558B (ja) * 1994-04-28 1996-11-11 Nissan Chemical Ind Ltd
JP4085206B2 (ja) 1996-02-15 2008-05-14 日産化学工業株式会社 ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜
WO1998038168A1 (en) * 1997-02-27 1998-09-03 Tanabe Seiyaku Co., Ltd. Isoquinolinone derivatives, process for preparing the same, and their use as phosphodiesterase inhibitors
US6656971B2 (en) * 2001-01-25 2003-12-02 Guilford Pharmaceuticals Inc. Trisubstituted carbocyclic cyclophilin binding compounds and their use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527244A (ja) * 1991-07-19 1993-02-05 Japan Synthetic Rubber Co Ltd 液晶配向剤
EP0663391A1 (de) * 1994-01-14 1995-07-19 F. Hoffmann-La Roche Ag Schwefelsäureester von Zuckeralkoholen zur Behandlung von arteriosklerotischen Gefässwandveränderungen
WO1997030107A1 (fr) * 1996-02-15 1997-08-21 Nissan Chemical Industries, Ltd. Derives diaminobenzene, polyimides prepares a partir de ceux-ci, et film d'orientation pour cristaux liquides

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143877A (ja) * 2006-12-13 2008-06-26 Chisso Corp 液晶類似構造を有するジアミン
WO2008117760A1 (ja) * 2007-03-23 2008-10-02 Nissan Chemical Industries, Ltd. ジアミン化合物、ポリアミック酸、ポリイミド及び液晶配向処理剤
WO2008117759A1 (ja) * 2007-03-23 2008-10-02 Nissan Chemical Industries, Ltd. ジアミン化合物、ポリアミック酸、ポリイミド及び液晶配向処理剤
JP5267454B2 (ja) * 2007-03-23 2013-08-21 日産化学工業株式会社 ジアミン化合物、ポリアミック酸、ポリイミド及び液晶配向処理剤
WO2009088046A1 (ja) * 2008-01-11 2009-07-16 Nissan Chemical Industries, Ltd. 液晶配向処理剤、及びそれを用いた液晶表示素子
JP5229236B2 (ja) * 2008-01-11 2013-07-03 日産化学工業株式会社 液晶配向処理剤、及びそれを用いた液晶表示素子
KR101832534B1 (ko) 2010-08-17 2018-02-26 닛산 가가쿠 고교 가부시키 가이샤 디아민 전구체 화합물의 제조 방법
WO2012023570A1 (ja) * 2010-08-17 2012-02-23 日産化学工業株式会社 ジアミン前駆体化合物の製造方法
JPWO2012023570A1 (ja) * 2010-08-17 2013-10-28 日産化学工業株式会社 ジアミン前駆体化合物の製造方法
JP5737291B2 (ja) * 2010-08-17 2015-06-17 日産化学工業株式会社 ジアミン前駆体化合物の製造方法
KR20140059219A (ko) 2011-09-08 2014-05-15 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
KR20180072830A (ko) 2011-09-08 2018-06-29 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
KR20190124815A (ko) 2011-09-08 2019-11-05 닛산 가가쿠 가부시키가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JP2018083943A (ja) * 2012-02-22 2018-05-31 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
JP2020056034A (ja) * 2012-02-22 2020-04-09 日産化学株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
CN107531904A (zh) * 2015-03-04 2018-01-02 日产化学工业株式会社 聚酰亚胺前体、以及具有该前体的液晶取向剂、液晶取向膜及液晶表示元件

Also Published As

Publication number Publication date
TWI318969B (ja) 2010-01-01
AU2003289305A1 (en) 2004-06-30
CN1720280A (zh) 2006-01-11
JP4466373B2 (ja) 2010-05-26
CN1318479C (zh) 2007-05-30
US7303792B2 (en) 2007-12-04
KR101077808B1 (ko) 2011-10-28
KR20050084995A (ko) 2005-08-29
TW200418761A (en) 2004-10-01
JPWO2004052962A1 (ja) 2006-04-13
US20060246230A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2004052962A1 (ja) 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向処理剤
EP0905167B1 (en) Diaminobenzene derivatives, polyimides prepared therefrom, and alignment film for liquid crystals
JP5120580B1 (ja) 液晶配向剤
JP4085206B2 (ja) ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜
KR100825698B1 (ko) 디아민 화합물, 이것을 사용한 폴리이미드 전구체 및폴리이미드, 그리고 액정 배향 처리제
EP1209185B1 (en) Diaminobenzene derivative, polyimide obtained therefrom, and liquid-crystal alignment film
WO2005105892A1 (ja) 液晶配向剤並びにそれを用いた液晶配向膜及び液晶表示素子
JP5660160B2 (ja) ジアミン化合物
US8318969B2 (en) Alignment material for liquid crystal display device of vertical alignment mode and method of preparing the same
WO2005052028A1 (ja) 垂直配向用液晶配向処理剤および液晶表示素子
CN106190177A (zh) 一种液晶取向剂、液晶取向膜以及液晶显示元件
JP4094027B2 (ja) トリアジン基を含むジアミン化合物、それにより製造されたポリアミック酸及び液晶配向膜
US20040048004A1 (en) Diaminobenzene derivative, polyimide precursor and polyimide employing it and treating agent for liquid crystal alignment
TW202227532A (zh) 液晶配向劑、液晶配向膜以及液晶顯示元件
TWI816022B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
JP2001072770A (ja) ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜
JP5919411B2 (ja) シロキサン含有三無水物、ポリマー、液晶配向剤、液晶配向膜、および液晶表示装置
JPWO2011105576A1 (ja) ジアミン化合物、液晶配向剤及び液晶表示素子
JP4092558B2 (ja) 新規な液晶配向処理剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057008741

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004558459

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A52056

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006246230

Country of ref document: US

Ref document number: 10538060

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057008741

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10538060

Country of ref document: US