[go: up one dir, main page]

WO2003105267A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2003105267A1
WO2003105267A1 PCT/JP2003/007187 JP0307187W WO03105267A1 WO 2003105267 A1 WO2003105267 A1 WO 2003105267A1 JP 0307187 W JP0307187 W JP 0307187W WO 03105267 A1 WO03105267 A1 WO 03105267A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
electrode active
positive electrode
solvent
Prior art date
Application number
PCT/JP2003/007187
Other languages
English (en)
French (fr)
Inventor
野口 健宏
山崎 伊紀子
川崎 大輔
沼田 達治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2003105267A1 publication Critical patent/WO2003105267A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, and more particularly to a secondary battery including a positive electrode active material having an average discharge potential of 4.5 V or more with respect to Li metal.
  • Lithium-ion secondary batteries are widely used for applications such as portable electronic devices and personal computers. It is also expected to be applied to automotive applications in the future. In these applications, there has been a demand for smaller and lighter batteries, but increasing the energy density of batteries has become an important technical issue. There are several possible ways to increase the energy density of lithium ion secondary batteries, and among them, raising the operating potential of the batteries is an effective means.
  • the lithium ion secondary battery using a conventional lithium cobaltate (L i Co0 2) and lithium manganese acid (L i Mn 2 0 4) as a positive electrode active material, nothing Re also 4 V-class operating potential (average operating potential 3.6 to 3.8 V: potential with respect to lithium metal).
  • Mn exists in a tetravalent state, and the operating potential is regulated by the oxidation-reduction of Ni 2 + - ⁇ Ni 4 + instead of the oxidation-reduction of Mn 3+ ⁇ Mn 4+ Becomes However, L i N i. . In 5 Mn x.
  • 5 0 cells had use a 5 V class positive electrode material 4 such as an active material, compared with the battery having a 4 V Kyukatsu substances such as L i Co0 2, L i Mn 2 ⁇ 4
  • the positive electrode has a higher potential, a decomposition reaction of the electrolytic solution occurs, and there is a problem that a significant deterioration of the electrolytic solution accompanied by a decrease in capacity occurs in a charge / discharge cycle or when left in a charged state.
  • the above phenomena tended to be remarkable.
  • an object of the present invention is to provide a secondary battery that realizes a high operating voltage while suppressing a decrease in capacity due to a cycle and a decrease in reliability at a high temperature.
  • the present invention achieves the above object by using a 5 V class spinel-type lithium manganese composite oxide as a positive electrode to improve the reduction in capacity that occurs in a battery using amorphous carbon as a negative electrode.
  • the present invention relates to a secondary battery including a positive electrode active material having an average discharge potential of 4.5 V or more with respect to Li metal and an electrolyte, wherein the electrolyte is a high dielectric constant solvent (component a) and another solvent (component b) comprising at least one of dimethyl carbonate and ethyl methyl carbonate.
  • component a a high dielectric constant solvent
  • component b another solvent
  • the absolute amount of decomposition products of the electrolytic solution is small. Therefore, it is possible to suppress the deposition of the decomposition product on the negative electrode surface, which is the cause of the capacity reduction accompanying the cycle.
  • dimethyl carbonate and ethyl methyl carbonate are considered to have an effect of forming a film on the surface of the negative electrode during initial charge and discharge, and suppressing the decomposition products from being deposited on the surface of the negative electrode.
  • high dielectric constant solvent used at the beginning of this book refers to a solvent having a relative dielectric constant of 40 or more, such as, for example, ethylene glycol, propylene carbonate, and butylene carbonate.
  • JP-A-2000-133263 and JP-A-2001-357848 disclose, as a positive electrode active material, a compound in which part of Mn of spinel lithium manganate is substituted with another element such as A1.
  • a secondary battery using a mixed solvent of ethylene monoponate and dimethyl carbonate as a solvent for an electrolytic solution is disclosed.
  • these are techniques relating to a battery using a 4 V-class positive electrode active material, and are essentially different from the present invention using a 5 V-class positive electrode active material.
  • this point will be described.
  • the 4 V-class spinel lithium manganate and the compound in which a part of Mn is substituted by another element such as A1 described in the above publication use the oxidation-reduction potential of Mn 3+ - ⁇ Mn 4+ Therefore, it is essential to include Mn 3 + .
  • This Mn 3+ generates Mn 2+ by a reaction as shown in the following formula.
  • Mn elution and a decrease in crystal structure stability caused by 4 V class spinel-type lithium manganate and the like are not so much a problem.
  • the decomposition of the electrolyte that occurs when a voltage is applied becomes a problem.
  • Ni 2+ — ⁇ N i 4+ , Co 3+ — ⁇ which has a higher potential than the redox potential of Mn 3+ —— Mn 4 + Redox potential such as Co 4+ is mainly used.
  • Mn 3 + is usually a trace amount.
  • the elution of Mn and a decrease in the stability of the crystal structure caused by 4 V-class spinel lithium manganate and the like do not cause much problems, and the electrolysis caused by another mechanism is not a problem. Preventing liquid deterioration is an important technical issue.
  • the present invention solves such a problem, and suppresses deterioration of an electrolytic solution caused by high voltage in a battery. Further, depending on the selection of the positive electrode active material and the negative electrode active material, the interaction between the active material and the electrolyte may occur, and the electrolyte may be significantly deteriorated. Is effectively suppressed. That is, the present invention is to solve a problem peculiar to the case where a 5 V class positive electrode active material is used, and to provide a long-life battery while realizing a high battery voltage.
  • the secondary battery may be configured to further include a negative electrode active material containing amorphous carbon.
  • a volume ratio of the component a to the electrolytic solution is in a range of 10 to 70%.
  • the component b is preferably a solvent having a low relative dielectric constant, contrary to the component a.
  • a mixture containing dimethyl carbonate: 3.1 and ethyl methyl carbonate: 2.9 can be mentioned.
  • high dielectric constant solvents have high viscosity and low dielectric constant solvents have low viscosity.
  • the relative dielectric constant and viscosity of the entire electrolytic solution are appropriately maintained. Thereby, it is possible to further suppress the deposition of the decomposition product on the surface of the negative electrode while securing the conductivity of the electrolyte solution.
  • the high dielectric constant solvent may be ethylene carbonate or propylene carbonate.
  • the positive electrode active material may be a spinel-type lithium manganese composite oxide. According to this configuration, a high-capacity secondary battery having a stable and high operating voltage can be obtained.
  • the spinel-type lithium manganese composite oxide is represented by the following general formula (I):
  • M is L i, A l , Mg, Ti, Si, and Ge.
  • Z is at least one of F or C1.
  • Such a spinel-type lithium manganese composite oxide has a charge / discharge region in the range of 4.5 V to 4.8 V with respect to Li metal, and a discharge capacity of 4.5 V or more has a discharge capacity of 11 OmAh / g and very high capacity.
  • the deterioration of the electrolytic solution in a battery using the spinel-type lithium manganese composite oxide represented by the general formula (I) as a positive electrode active material is inferior due to high voltage. It has been found that considerable deterioration exceeding the degree of the dagger occurs. This is considered to be due to some unfavorable interaction between the positive electrode active material and the electrolyte.
  • the present inventors further studied and, when using a spinel-type lithium manganese composite oxide represented by the formula (I) and an electrolytic solution containing at least one of dimethyl carbonate and ethyl methyl carbonate, It has been found that the synergistic effect of the spinel-type lithium manganese composite oxide represented by the formula (I) and the electrolyte solution can effectively suppress the deterioration of the electrolyte solution.
  • the secondary battery of the present invention can maintain the excellent performance of the spinel-type lithium manganese composite oxide represented by the general formula (I) for a long time even after many cycles. .
  • y in the general formula (I) may satisfy a relation of 0 ⁇ y.
  • w in the above general formula (I) may satisfy a relationship of 0 ⁇ w ⁇ 1. L i N i x Mn 2 - by replacing x 0 4 Mn or ⁇ some other elements in the crystal structure of the compound makes it possible to stabilize I spoon. Therefore, since the decomposition reaction of the electrolyte solution can be reduced, the cycle characteristics are improved for the same reason as described above.
  • FIG. 1 is a sectional view of a secondary battery according to one embodiment of the present invention.
  • the secondary battery of the present invention includes a positive electrode using a lithium-containing metal composite oxide as a positive electrode active material, and a negative electrode having a negative electrode active material capable of inserting and extracting lithium. Separation is performed between the positive electrode and the negative electrode so as not to cause electrical contact.
  • the positive electrode and the negative electrode are in a state of being immersed in an electrolyte having lithium ion conductivity, and are in a state of being sealed in a battery case.
  • a positive electrode active material having an average discharge potential of 4.5 V or more with respect to Li metal is used.
  • a lithium-containing composite oxide is preferably used.
  • the positive electrode active material 130 mA h / g or more high capacity can be obtained, using L i N i x Mn 2 _ x ⁇ 4 is a spinel-type lithium manganese complex oxide having a stable crystal structure Is preferred.
  • the composition ratio X of Ni in this active material is in the range of 0.4 to 0.6. By doing so, a sufficient discharge region at 4.5 V or more can be secured and the energy density can be improved.
  • the positive electrode active material L i N i x Mn 2 x ⁇ part of Mn in 4 L i, A 1, Mg , T i, S, improved further cycle characteristics when used as substituted by the Ge I do.
  • the reason for this is that by substituting a part of Mn with the above element, the crystal structure of the active material is further stabilized. For this reason, the amount of electrolyte Since the solution is suppressed, the amount of decomposition products generated from the electrolytic solution is reduced. Therefore, it is presumed that the deposition of decomposition products of the electrolytic solution on the negative electrode is reduced.
  • the crystal structure is further stabilized, so that better cycle characteristics are realized.
  • the capacity decreases with the replacement amount as the Ni valence increases.
  • substitution of O by halogens such as F and C1 has the advantage that high capacity can be maintained because the increase in Ni valence is offset.
  • amorphous carbon is used as the negative electrode active material.
  • the accumulation of decomposition products of the electrolytic solution on the negative electrode surface is reduced compared to when other materials such as Li metal and natural graphite are used, and the cycle characteristics are improved.
  • the amorphous carbon in the present invention refers to a carbon material having a broad scattering band having an apex at 15 to 40 degrees in 20 value of X-ray diffraction using Cu K ⁇ ray.
  • a solvent obtained by combining a high-dielectric solvent and a low-dielectric solvent is used.
  • the low-dielectric solvent dimethyl carbonate (DMC) or ethyl methyl carbonate (EMC) is used. Is used.
  • the volume ratio between the high dielectric constant solvent and the low dielectric constant solvent is preferably in the range of 10:90 to 70:30. With such a range, the relative dielectric constant and viscosity of the entire electrolytic solution can be made appropriate, and sufficient conductivity can be ensured.
  • the volume ratio between the high dielectric constant solvent and the low dielectric constant solvent should be in the range of 20:80 to 60:40. More preferably, it is more preferably in the range of 30:70 to 50:50. This is presumed to be because it is possible to enhance the effect of inhibiting the decomposition products of the electrolytic solution on the negative electrode surface and suppress the decomposition reaction of the electrolytic solution.
  • lithium ion secondary battery of the present invention When a voltage is applied to the positive electrode and the negative electrode, lithium ions are released from the positive electrode active material, and the negative electrode active material absorbs lithium ions to be charged. On the other hand, contrary to charging, electrical contact between the positive electrode and the negative electrode occurs outside the battery, so that lithium ions are released from the negative electrode active material and lithium ions are occluded in the positive electrode active material, thereby causing discharge. Occur.
  • a manufacturing raw material of the positive electrode active material, the L i feedstock, L i 2 C0 3, L i OH, L i 2 0, L i 2 S0 4 and the like can be used, such as L i 2 C0 3, L I_ ⁇ _H are suitable.
  • the N i raw material such as N i 0, N i (OH ) 2, N i S0 4, N i (N0 3) 2 can be used.
  • Oxides, carbonates, hydroxides, sulfides, nitrates and the like of the substitution element are used as the raw material of the substitution element.
  • Ni raw material, Mn raw material, and substitution element raw material element diffusion may not easily occur during firing, and after the raw material firing, Ni oxide, Mn oxide, and substitution element oxide remain as different phases. Sometimes. For this reason, the Ni raw material, the Mn raw material, and the substitute element raw material are dissolved and mixed in an aqueous solution, and then the hydroxide, sulfate, carbonate, nitrate, etc. It is possible to use a mixture of Ni and Mn precipitated in the above or a mixture of Ni and Mn containing a substitution element as a raw material. It is also possible to use a Ni, Mn oxide or a mixed oxide of Ni, Mn and a substitution element obtained by firing such a mixture.
  • haptic compounds such as LiF and LiC1 are used as a raw material.
  • the raw materials are weighed and mixed so as to have a target metal composition ratio.
  • the mixture is pulverized and mixed by a pole mill or the like.
  • the mixed powder is calcined at a temperature of 600 ° C. to 1000 ° C. in air or oxygen to obtain a positive electrode active material. It is desirable that the firing temperature be high in order to diffuse each element. However, if the firing temperature is too high, oxygen deficiency occurs, which adversely affects battery characteristics. For this reason, it is desirable that the temperature is about 500 ° C. to 800 ° C. in the final firing step.
  • an olivine-type lithium-containing composite oxide or an inverse spinel-type lithium-containing composite oxide is used as the positive electrode active material, it can be obtained by mixing and diffusing the necessary elemental materials and firing as described above. it can.
  • the specific surface area of the obtained lithium metal composite oxide is, for example, desirably 3 m 2 / g or less, and preferably lm 2 / g or less.
  • the obtained positive electrode active material is mixed with a conductivity-imparting agent, and formed on a current collector with a binder.
  • the conductivity-imparting agent include, in addition to a carbon material, a metal substance such as A1, a conductive oxide powder, and the like.
  • the binder polyvinylidene fluoride (PVDF) or the like is used.
  • PVDF polyvinylidene fluoride
  • a metal thin film mainly composed of A1 or the like is used as the current collector.
  • the added amount of the conductivity-imparting agent is about 1 to 10% by weight.
  • the amount is also about 1 to 10% by weight. This is because the larger the proportion of the active material weight, the larger the capacity per weight) ⁇ . If the ratio between the conductivity-imparting agent and the binder is too small, the conductivity may not be maintained or a problem of electrode peeling may occur.
  • the solvent used for the electrolytic solution in the present invention is as described above.
  • cyclic solvents such as vinylene carbonate (VC), methyl carbonate (DEC), dipropyl carbonate ( Chain forces such as DPC), aliphatic force esters such as methyl formate, methyl acetate, ethyl ethyl propionate, and other lactones such as arptyrolactone, 1,2-ethoxyethane ( Chain ethers such as DEE) and ethoxymethoxyethane (EME); cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; dimethylsulfoxide; 1,3-dioxolane; formamide; Methylformamide, dioxolan, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid Ester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl
  • a lithium salt is dissolved in these organic solvents.
  • the lithium salt For example L i PF 6, L iAs F 6, L i A 1 C 1 4, L i C 10 4, L i BF 4, L i SbF 6, L i CF3SO3, L i C 4 F 9 C ⁇ 3 , L i C (CF 3 S ⁇ 2 ) 2 , L i N (CF 3 S 0 2 ) 2 , L i N (C 2 F 5 S0 2 ) 2 , L i B 10 C 1 10 , lower Lithium aliphatic carboxylate, lithium chloroporan, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides and the like.
  • the electrolyte concentration is For example, from 0.5 mo 1 Z 1 to 1.5 mo 1 Z l. If the concentration is too high, the density and viscosity will increase. If the concentration is too low, the electric conductivity may decrease.
  • the negative electrode active material various carbon materials such as natural graphite and artificial graphite can be used as main components, and among them, amorphous carbon is preferable. By doing so, the deposition of decomposition products of the electrolytic solution on the negative electrode surface can be reduced, which can contribute to the improvement of cycle characteristics.
  • the negative electrode active material may include a material capable of inserting and extracting lithium as an auxiliary component.
  • a material capable of occluding and releasing lithium a mixture of carbon material, Li metal, Si, Sn, A1, Sio, Sn ⁇ and the like can be used.
  • the negative electrode active material is formed on the current collector with the conductivity imparting agent and the binder.
  • the conductivity-imparting agent include, in addition to a carbon material, a powder of a conductive oxide. Polyvinylidene fluoride or the like is used as the binder.
  • a metal thin film mainly composed of Cu or the like is used as the current collector.
  • the lithium secondary battery according to the present invention has a structure in which the negative electrode and the positive electrode are laminated via a separator in a dry air or an inert gas atmosphere, or the laminated product is wound, and then housed in a battery can or a synthetic resin.
  • the battery can be manufactured by sealing with a flexible film or the like made of a laminate of metal and metal foil.
  • FIG. 1 shows a form of a coin type cell as an embodiment of a battery.
  • the present invention has no limitation on the shape of the battery, and can take a form such as a wound type, a laminated type, or the like, with the positive electrode and the negative electrode opposed to each other with the separator interposed therebetween. , Square cells and cylindrical cells can be used.
  • Example 1 shows a form of a coin type cell as an embodiment of a battery.
  • the present invention has no limitation on the shape of the battery, and can take a form such as a wound type, a laminated type, or the like, with the positive electrode and the negative
  • FIG. 1 a form of a coin type cell as shown in FIG. 1 is shown.
  • the 22 types of batteries shown in Tables 1 to 4 were manufactured by the following procedure.
  • the prepared positive electrode active material and carbon as a conductivity-imparting agent were mixed and dispersed in a solution in which polyvinylidene fluoride (PVDF) was dissolved in N-methylpyrrolidone as a binder to form a slurry.
  • PVDF polyvinylidene fluoride
  • the weight ratio of the positive electrode active material, the conductivity-imparting agent, and the binder was set to 88: 6: 6.
  • the slurry was applied on the A1 current collector. Then, it was dried in a vacuum for 12 hours to obtain an electrode material.
  • the electrode material was cut into a circle having a diameter of 12 mm. Thereafter, pressure molding was performed at 3 tZcm 2 to obtain a positive electrode current collector 3 and a positive electrode active material layer 1.
  • natural graphite In the case of a battery using natural graphite as the negative electrode active material, natural graphite is mixed with carbon, a conductivity-imparting agent, and dissolved in N-methylpyrrolidone with polyfukkabinidene (PVDF). It was dispersed to form a slurry. The weight ratio of natural graphite, conductivity-imparting agent, and binder was set to 91: 1: 8. A slurry was applied on the Cu current collector. Then, it was dried in a vacuum for 12 hours to obtain an electrode material. The electrode material was cut into a circle with a diameter of 13 mm. Thereafter, pressure molding was performed at 1 t / cm 2 to form a negative electrode current collector 4 and a negative electrode active material layer 2.
  • PVDF N-methylpyrrolidone with polyfukkabinidene
  • the battery was manufactured in the same manner as the battery using natural graphite. Note that Rikiichi Potron (registered trademark) P manufactured by Kureha Chemical Co., Ltd. was used as the amorphous carbon.
  • a polypropylene film was used for Separation 5.
  • the positive and negative electrodes were placed facing each other with no electrical contact across the separator, and this was covered with a positive electrode outer can 6 and negative electrode outer can 7 as shown in Fig. 1. It was filled with the electrolyte solution in the ratio (volume ratio), and sealed with insulating packing 8.
  • Li PF 6 was used as the electrolyte supporting salt, and the concentration was 1 mo 1ZL.
  • the cycle characteristics of the batteries 1 to 16 fabricated as described above were evaluated. In the evaluation, the battery was charged to 4.8 V at a charge rate of 1 C and discharged to 2.5 V at a rate of 1 C.
  • “charging at a charging rate of 1 C” refers to charging in which the capacity of the battery is used as the current value of the charging current in amps and hours. Means the number 1Z10. The test temperature was 45. The results are as shown in Table 1.
  • a L i N i 0. 5 Mn 5 0 4 as a positive electrode active material to study the effect of the solvent by comparing the cell 4-9 using the amorphous carbon as an anode active material.
  • a solvent constituting an electrolytic solution a combination of an electrolytic solution having a high viscosity and a high dielectric constant and a solvent having a low viscosity and a low dielectric constant is used.
  • a study was made using EC or PC as a solvent having a high viscosity and a high dielectric constant, and using DEC, EMC or DMC as a solvent having a low viscosity and a low dielectric constant.
  • EMC or DMC is preferably used as the solvent having low viscosity and low dielectric constant.
  • L IMN 2 0 4 is a 4V class cathode active material, or a 5V-grade positive electrode active material L i N i ⁇ sMn ⁇ sT i. .
  • i 5 ⁇ 4 illustrates a battery 17 to 19 using a solvent of low viscosity 'low dielectric constant indicated respectively, and the sub Ikuru characteristics of the battery 1 5, 20, 21.
  • Nen] 2 Referring to the capacity retention after 500 cycles for batteries 17 to 19 equipped with a 4 V-class cathode active material in Table 2, batteries using EMC or DMC as solvents with low viscosity and low dielectric constant18, It can be seen that the result of 19 is about 2 to 6% better than that of the battery 17 using DEC. On the other hand, referring to the capacity retention rates after 500 cycles for batteries 15, 20, and 21 equipped with a 5 V-class positive electrode active material, batteries 15 and 21 using EMC or DMC are the same as batteries using DEC. It was about 10-40% higher than the above, and a remarkable effect was recognized. Regarding batteries 15, 20, and 21, even when comparing the capacity retention rates at the time after 300 cycles, a remarkable effect was observed when EMC or DMC was used.
  • the amorphous carbon used as the anode active substance, ECZDEC as a solvent, EC / EMC, battery 20 using EC ZDMC, 21, relates to 15, (1C charge and discharge capacity) after 300 cycles Z (0.1 C charge / discharge capacity).
  • the value of (1 C charge / discharge capacity) / ⁇ (0.1 C charge / discharge capacity) after 300 cycles differs depending on the solvent used, and in battery 20 using DEC,
  • the value of (1 C charge / discharge capacity) Z (0.1 C charge / discharge capacity) is lower than that of batteries 21 and 15 using EMC or DMC. From this, it can be said that the battery 20 has a larger difference in capacity value between the high rate and the low rate as compared to the battery 21 or 15. Therefore, it is considered that the impedance of the battery 20 increased more with the cycle than the batteries 21 or 15. It is considered that such an increase in impedance is mainly caused by the deposition of decomposition products of the electrolytic solution on the negative electrode surface.
  • the volume ratio of a solvent having a high viscosity and a high dielectric constant and a solvent having a low viscosity and a low dielectric constant is the above (1C charge / discharge capacity) / (
  • the batteries shown in Table 4 were evaluated.
  • Battery 9 has the same configuration as battery 9 shown in Table 1, and battery 22 has the same configuration as battery 9 except that the volume ratio of EC, which is a high-viscosity, high-dielectric constant solvent, was set to 50%. Battery.
  • Batteries 11 and 13 are batteries using a positive electrode active material in which part of 0 in the positive electrode active materials of batteries 10 and 12 was replaced with F, respectively. As is apparent from a comparison between the batteries 10 and 11 or the batteries 12 and 13, the cycle characteristics are further improved by substituting a part of 0 with F.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 Liに対して4.5V以上の平均放電電位を有する正極活物質を用い、かつ電解液を構成する溶媒として、エチレンカーボネートなどの高誘電率溶媒とジメチルカーボネートまたはエチルメチルカーボネートの少なくとも一種とを組み合わせたもの使用する。サイクルに伴う容量低下や、高温での信頼性の低下を抑えつつ、高い動作電圧を実現する。

Description

二次電池 技術分野
本発明は、 二次電池に関し、 特に、 L i金属に対して 4. 5V以上の平均放 電電位を有する正極活物質を備えた二次電池に関する。 背景技術
リチウムイオン二次電池は、 携帯型電子機器やパソコン等の用途に広く利用 されている。 また、 今後は自動車用途への適応も期待されている。 これらの用 途においては、 従来から電池の小型化、 軽量化が求められているが、 その一方 で、 電池のエネルギー密度を高めることが重要な技術的課題となっている。 リチウムィオン二次電池のエネルギー密度を高める方法としては幾つか考え られるが、 その中でも電池の動作電位を上昇させることが有効な手段である。 従来のコバルト酸リチウム (L i Co02) やマンガン酸リチウム (L i Mn2 04) を正極活物質として用いたリチウムイオン二次電池では、 動作電位は何 れも 4 V級 (平均動作電位 =3. 6〜3. 8 V:対リチウム金属電位) となる。 これは、 C oイオンもしくは Mnイオンの酸化還元反応 (Co3+—→Co4 + もしくは Mn3+—→Mn4+) によって発現電位が規定されるためである。 これ に対し、 たとえばマンガン酸リチウムの Mnを N i等により置換したスピネル 化合物を活物質として用いることにより、 5 V級の動作電位を実現できること が知られている。 具体的には、 L i N i 0. sMri!.504等のスピネル化合物を 用いることにより、 4. 5 V以上の領域に電位プラトーを示すことが知られて いる (J.Electrochem. So , vol.144,204(1997))。 こうしたスピネル化合物に おいては、 Mnは 4価の状態で存在し、 Mn3+ ~~Mn 4+の酸化還元に代わつ て N i 2+—→N i 4 +の酸化還元によって動作電位が規定されることとなる。 ところが、 L i N i。.5Mnx.504等の 5 V級の正極材料を活物質として用 いた電池においては、 L i Co02、 L i Mn24などの 4 V級活物質を備え た電池に比べ、 正極がさらに高電位であるため、 電解液の分解反応が発生し、 充放電サイクルや、 充電状態で放置した場合に、 容量の低下を伴う著しい電解 液の劣化が生じるという課題を有していた。 さらに、 50°Cのような高温環境 下での動作においては、 上記のような現象が顕著になる傾向があった。
また、 特に 5 V級スピネル型リチウムマンガン複合酸化物を正極に用い、 非 晶質炭素を負極に用いた電池においては、 電解液の分解生成物が負極表面に堆 積することによる容量低下が生じるという課題があつた。 発明の開示
上記した事情に鑑み、 本発明は、 サイクルに伴う容量低下や、 高温での信頼 性の低下を抑えつつ、 高い動作電圧を実現する二次電池を提供することを目的 とする。 本発明は、 5 V級スピネル型リチウムマンガン複合酸化物を正極に用 レ 非晶質炭素を負極に用いた電池において生じる容量の低下を改善すること により上記目的を達成する。
本発明は、 L i金属に対して 4. 5 V以上の平均放電電位を有する正極活物 質と、 電解液とを含む二次電池であって、 該電解液が、 高誘電率溶媒(成分 a) と、 ジメチルカーポネート及びェチルメチルカーボネートの少なくとも一方か ら成る別の溶媒 (成分 b) とを含む二次電池を提供する。
上記したように、 5 V級正極活物質を備える二次電池においては、 電池内が 高電圧となり電解液の劣化が顕著となっていた。 本発明者らが鋭意検討を行つ た結果、 電解液を構成する溶媒として上記のような溶媒を選択した場合に、 高 電圧条件においても劣化が少なく、 耐久性に優れた電解液を実現できることが 判明した。
本発明の二次電池においては、 電解液の分解反応が低減されるため、 電解液 の分解生成物の絶対量が少ない。 そのため、 サイクルに伴う容量低下の原因で ある当該分解生成物の負極表面への堆積を抑制することができる。
また、 ジメチルカーポネートやェチルメチルカーボネートは、 初期の充放電 時に負極表面に被膜を生成し、 上記分解生成物が負極表面に析出することを抑 制する効果があると考えられる。 なお、 本命最初で使用する用語 「高誘電率溶 媒」 とは、 例えば、 エチレン力一ポネート、 プロピレンカーポネ一ト、 ブチレ ンカ一ポネートなどのような比誘電率が 40以上の溶媒をいう。
ここで、 特開 2000— 133263号公報、 特開 2001— 357848 号公報には、 正極活物質としてスピネル系マンガン酸リチウムの M nの一部が A 1などの他元素により置換された化合物を用い、 電解液に用いる溶媒として エチレン力一ポネートおよびジメチルカーポネートの混合溶媒を採用した二次 電池が開示されている。 しかしながら、 これらは 4 V級正極活物質を用いた電 池に関する技術であり、 5 V級正極活物質を用いる本発明とは本質的に相違す る。 以下、 この点について説明する。
上記公報に記載された、 4 V級のスピネル系マンガン酸リチウムおよび Mn の一部が A 1などの他元素により置換された化合物は、 Mn3+—→Mn4+の酸 化還元電位を利用することから、 Mn3 +を含むことが必須となる。
この Mn3+は、 下記式のような反応により Mn2 +を生じる。
2 M n 3+→M n 2 + + M n 4 + これにより生じた Mn 2+が電解液に溶解すること力、ら、上記正極活物質を用い る場合、 Mn溶出を抑制することが重要な課題となる。
また、 Mn3 +を含む 4 V級正極活物質においては、 Mnイオンの平均価数が 3価と 4価との間で変化する際に、 ヤーン 'テラ一歪みが結晶中に生じ、 結晶 構造の安定性が低下することからサイクルに伴う容量劣化などが生じるとい う課題を有していた。
上記公報は、 こうした課題を解決するために正極活物質の組成を調整する、 あるいは活物質層の製造条件を調整するといつた対策がなされている。
一方、 5 V級正極活物質を用いる本発明においては、 4 V級のスピネル系マ ンガン酸リチウムなどで生じる Mn溶出、 結晶構造の安定性の低下はあまり問 題にならず、 むしろ、 高電界が印加されたときに生じる電解液の分解が問題と なる。 5 V級正極活物質を用いた電池では、 Mn3+—— Mn4 +の酸化還元電位 よりも、 むしろ、 より高電位である N i 2+—→N i 4+、 Co3+—→Co4+な どの酸化還元電位が主として利用される。 このため、 当該正極活物質中の Mn の多くは Mn4 +の形で存在し、 Mn3+は通常、 微量である。 したがって、 本発 明においては、 4 V級のスピネル系マンガン酸リチウムなどで生じる M n溶出、 結晶構造の安定性の低下はあまり問題とならず、 これとは別の機構によって引 き起こされる電解液の劣化を防止することが重要な技術的課題となる。
本発明はこうした課題を解決するものであり、 電池内が高電圧になることに より生じる電解液の劣化を抑制するものである。 また、 正極活物質および負極 活物質の選択によっては、 それら活物質と電解液との相互作用が発現し、 著し い電解液の劣化が生じることがあるところ、 本発明によれば、 こうした電解質 の劣化が有効に抑制される。 すなわち本発明は、 5 V級正極活物質を用いた場 合に特有の課題を解決し、 高い電池電圧を実現しつつ高寿命の電池を提供する ものである。
上記二次電池は、 非晶質炭素を含む負極活物質をさらに備えた構成としても よい。
負極活物質として非晶質炭素を用いた場合、 上記分解生成物の負極表面への 堆積がさらに低減されるため、 さらにサイクル特性が向上する。
本発明の二次電池の好ましい態様では、 上記電解液に対する上記成分 aの 体積比率が、 10〜70 %の範囲である。
ここで、 成分 bは、 成分 aとは逆に低い比誘電率を有する溶媒であることが 好ましい。例えばジメチルカーポネート: 3. 1、ェチルメチルカ一ポネ一ト: 2. 9を含む混合物が挙げられる。 一般に、 高誘電率溶媒は粘性が高く、 低誘 電率溶媒は粘性が低い。 本発明においては、 成分 aの体積比率を上記のように することにより、電解液全体の比誘電率および粘性を適度に保つ。 これにより、 上記電解液の導電性を確保しつつ、 上記分解生成物の負極表面への堆積をより 一層抑えることが可能となる。
また、 上記二次電池では、 上記高誘電率溶媒が、 エチレンカーボネートまた はプロピレン力一ポネ一トであるとしてもよい。 高誘電率溶媒として上記のよ うな溶媒を選択することにより、 良好なサイクル特性を持つ二次電池が実現す る。
また、 上記二次電池では、 上記正極活物質が、 スピネル型リチウムマンガン 複合酸化物であるとしてもよい。 この構成によると、動作電圧が安定して高く、 高容量の二次電池を得ることができる。
また、 記二次電池では、 上記スピネル型リチウムマンガン複合酸化物が、 下 記一般式 ( I ):
L i a (N i xMn2x_yMy) (04_WZW) (I)
(式中、 0. 4く xく 0. 6、 0≤y 0≤z、 x + yく 2、 0≤ ≤ 1 , 0 ≤a≤l. 2である。 Mは、 L i、 A l、 Mg、 T i、 S iおよび Geからな る群より選ばれる少なくとも一種である。 Zは、 Fまたは C 1の少なくとも一 種である。)
で表されるスピネル型リチウムマンガン複合酸化物であるとしてもよい。 この ようなスピネル型リチウムマンガン複合酸化物は、 L i金属に対して 4. 5 V 〜4. 8 Vの範囲に充放電領域が存在し、 かつ 4. 5 V以上の放電容量は 1 1 OmAh/gと非常に高容量である。
本発明者らの検討によれば、 上記一般式 (I) で表されるスピネル型リチウ ムマンガン複合酸化物を正極活物質として用いた電池における電解液の劣化は、 高電圧であることにより生じる劣ィ匕の程度を越えるかなりな劣化が生じること が判明した。 これは、 正極活物質と電解液との間に何らかの好ましくない相互 作用が生じていることによると考えられる。
そこで本発明者らは、 さらに検討を進め、 (I)式で表されるスピネル型リチ ゥムマンガン複合酸化物と、 ジメチルカーボネートまたはェチルメチルカ一ポ ネートの少なくとも一種を含む電解液とを使用した場合に、 ( I )式で表される スピネル型リチウムマンガン複合酸化物と当該電解液との相乗効果により電解 液の劣化を効果的に抑制することができることを見出した。
したがって本発明の二次電池は、多くのサイクルを経ても、上記一般式(I) で表されるスピネル型リチウムマンガン複合酸化物の優れた性能を長期間にわ たり維持することが可能となる。
また、 上記二次電池において、 上記一般式 (I) の yは、 0<yの関係を満 足してもよい。 さらに、 上記二次電池において、 上記一般式 (I) の wは、 0 <w≤ 1の関係を満足してもよい。 L i N i xMn2x04中の Mnまたは〇の 一部を他の元素により置換することにより、 当該化合物の結晶構造を安定ィ匕さ せることが可能となる。 そのため、 電解液の分解反応を低減ずることができる ことから、 上記と同様の理由によりサイクル特性が向上する。
充分な容量を確保する観点からは、 上記一般式 (I) の yが、 0<yく 0. 3の関係を満足することが好ましい。 図面の簡単な説明
図 1は、 本発明の一実施形態例に係る二次電池の断面図である。 発明を実施するための最良の形態
本発明の二次電池は、 リチウム含有金属複合酸化物を正極活物質とした正極 と、 リチウムを吸蔵 ·放出可能な負極活物質を持つ負極とを備えている。 上記 正極と負極の間には、電気的接触を生じさせないようなセパレ一夕が挟まれる。 また、 上記正極と負極はリチウムイオン伝導性を有する電解液に浸された状態 であり、 これらが電池ケ一スの中に密閉された状態となっている。
本発明の二次電池においては、 L i金属に対して 4. 5 V以上の平均放電電 位を有する正極活物質を用いる。 例えば、 リチウム含有複合酸化物が好適に用 いられる。 リチウム含有複合酸化物としては、 L
Figure imgf000008_0001
(M=N i、 Co、 C r、 Cu、 F e) で表されるスピネル型リチウムマンガン複合酸化物、 L iMP〇4 (M=Co、 N i、 F e) で表されるオリビン型リチウム含有複 合酸化物、 L i N i V04などの逆スピネル型リチウム含有複合酸化物などが 例示される。
上記の正極活物質のなかでも、 130mA h/g以上の高容量が得られ、 安 定な結晶構造を持つスピネル型リチウムマンガン複合酸化物である L i N i x Mn2_x4を用いることが好ましい。この活物質における N iの組成比 Xは 0. 4〜0. 6の範囲とする。 このようにすることによって、 4. 5V以上での放 電領域を充分に確保し、 エネルギー密度を向上させることができる。
また正極活物質として、 L i N i xMn2 x4中の Mnの一部を L i、 A 1、 Mg、 T i、 S i、 Geにより置換したものを用いるとさらにサイクル特性が 向上する。 この理由としては、 Mnの一部を上記のような元素により置換する ことにより、 活物質の結晶構造がさらに安定化される。 このため、 電解液の分 解が抑制されることから電解液の分解生成物の生成量が減る。 したがって、 電 解液の分解生成物の負極への堆積が低減されると推定される。
さらに、 上記活物質中の〇の一部を Fや C 1などにより置換した活物質にお いては、 より一層、 結晶構造が安定化されることから、 さらに良好なサイクル 特性が実現する。 また、 M nの一部を L i、 A l、 M gのような 1〜3価の元 素により置換した系では、 N i価数の増加に伴い、 置換量とともに容量低下し てしまう。 F、 C 1といったハロゲンによる Oの置換は、 この N i価数の増加 を相殺するため高容量を保つことが可能となるメリットを併有する。
また本発明の二次電池において、 負極活物質としては非晶質炭素を用いる。 非晶質炭素を用いた場合、 L i金属や天然黒鉛など他の材料を用いた場合と比 較して電解液の分解生成物の負極表面への堆積が低減され、 サイクル特性が向 上するからである。 ここで、 本発明における非晶質炭素とは、 C u K «線を用 いた X線回折法の 2 0値で 1 5〜4 0度に頂点を有するブロードな散乱帯を有 する炭素材料をいう。
本発明の二次電池においては、 高誘電率溶媒および低誘電率溶媒を組み合わ せた溶媒を用いるが、低誘電率溶媒としては、 ジメチルカ一ポネート (DM C) またはェチルメチルカーボネート (EM C ) を用いる。 このような溶媒を選択 することにより、 高電圧条件下においても分解が生じにくく、 耐久性に優れた 電解液を得ることが可能となる。 したがって、 電解液の分解生成物の生成量を 減らすことができるため、負極表面への当該分解物の堆積が顕著に抑制される。 このため、 サイクルに伴う容量低下をより一層低減することが可能となる。 こ れは、 ジメチルカーポネートゃェチルメチルカ一ポネートを用いる場合、 初期 の充放電時において、 リン酸塩やフッ化物を含む被膜が負極表面に生成し、 正 極側で発生した分解生成物が負極表面に析出することを抑制する効果があるも のと推定される。 さらに、 正極活物質として上記一般式 (I) で表される 5 V級スピネル型リ チウムマンガン複合酸化物を選択し、 負極活物質として非晶質炭素を選択し た場合、 次の ( i) および (i i) より優れたサイクル特性を有する二次電池 を得ることができる。
(i) 正極活物質として上記一般式 (I) で表される 5 V級スピネル型リチ ゥムマンガン複合酸化物を用い、 DMCまたは EMCを含有する電解液を用い ると、 これらの活物質と DMCまたは EMCとの相乗効果が生じることから、 電解 ί夜分解反応物の絶対量を顕著に小さくすることができる。
(i i) 非晶質炭素と DMCまたは EMCとの相乗効果により、 絶対量の小 さい電解液分解反応物に関しても、 非晶質炭素を用いた負極表面への堆積が効 果的に抑制される。
なお、 4 V級正極活物質を用いた二次電池に対し、 DMCまたは EMCを含 有する電解液を適用した場合、 上記のような効果は生じず、 顕著なサイクル特 性の向上は認められない。 4 V級正極活物質を用いた二次電池においては、 電 圧が低いことから、 サイクル特性に影響を与えるほどの電解液の分解は生じな い。 したがって、 4 V級正極活物質を用いた二次電池においては、 DMCまた は EMCを含有する電解液を用いた場合と、 他の低誘電率溶媒、 例えば DEC を含有する電解液を用いた場合とでは、 サイクル特性に顕著な差は生じない。 一方、 高誘電率溶媒としては、 エチレン力一ポネート (EC)、 プロピレン力 ーボネート (PC)、 ブチレンカーボネー卜 (BC)、 ァ—プチロラクトン (G BL) などを用いることができる。
また、 導電性を確保する観点からは、 上記高誘電率溶媒と低誘電率溶媒との 体積比は 10 : 90〜70 : 30の範囲とすることが好ましい。 このような範 囲とすることにより、 電解液全体の比誘電率および粘度を適度にすることがで き、 充分な導電性を確保することが可能となるからである。 さらに、 電解液の分解生成物の負極表面への堆積を低減する観点からは、 上 記高誘電率溶媒と低誘電率溶媒との体積比は 20 : 80〜60 : 40の範囲 とすることが好ましく、 30 : 70〜 50 : 50の範囲とすることがさらに好 ましい。 このようにすることにより、 電解液の分解生成物の負極表面への吸着 を阻害する効果を高めることができるとともに、 電解液の分解反応を抑制する ことができることによると推察される。
次に、 本発明のリチウムイオン二次電池の動作について説明する。 正極と負 極に電圧を印加することにより、 正極活物質からリチウムイオンが放出し、 負 極活物質にリチウムイオンが吸蔵され、 充電状態となる。 一方、 充電時とは逆 に、 正極と負極の電気的接触を電池外部で起こすことにより、 負極活物質から リチウムイオンが放出され、 正極活物質にリチウムイオンが吸蔵されることに より、 放電が起こる。
次に正極活物質の作製方法について説明する。
正極活物質としてスピネル型リチウムマンガン複合酸化物を用いる場合には、 正極活物質の作製原料として、 L i原料には、 L i 2C03、 L i OH、 L i 2 0、 L i 2S04などを用いることができるが、 L i 2C03、 L i〇Hなどが適 している。 Mn原料としては、 電解二酸化マンガン (EMD) * Mn23、 M n304、 化学合成二酸化マンガン (CMD) 等の種々の Mn酸化物、 MnC〇 3> Mn S〇4などを用いることができる。 N i原料としては、 N i 0、 N i (O H) 2、 N i S04、 N i (N03) 2などが使用可能である。 置換元素の原料と して置換元素の酸化物、 炭酸塩、 水酸化物、 硫化物、 硝酸塩などが用いられる。
N i原料や、 Mn原料、 置換元素原料は、 焼成時に元素拡散が起こり難くい場 合があり、 原料焼成後、 N i酸化物、 Mn酸化物、 置換元素酸化物が異相とし て残留してしまうことがある。 このため、 N i原料と Mn原料、 置換元素原料 を水溶液中に溶解混合させた後、 水酸化物、 硫酸塩、 炭酸塩、 硝酸塩などの形 で析出させた N i、 M n混合物や置換元素を含む N i、 M n混合物を原料とし て用いることが可能である。 また、 このような混合物を焼成させた N i、 M n酸化物や N i、 M n、 置換元素混合酸化物を用いることも可能である。 この ような混合物を原料として用いた場合、 M n、 N i、 置換元素が原子レベルで 良く拡散しており、 スピネル構造の 1 6 dサイトへの N iや置換元素の導入が 容易となる。 また、 正極活物質のハロゲン原料としては、 L i F、 L i C 1な どのハ口ゲン化物などが用いられる。
これらの原料を目的の金属組成比となるように秤量して混合する。 混合は、 ポールミルなどにより粉砕混合する。 混合粉を 6 0 0 °Cから 1 0 0 0 °Cの温度 で、 空気中または酸素中で焼成することによって正極活物質を得る。 焼成温度 は、 それぞれの元素の拡散させるためには高温である方が望ましいが、 焼成温 度が高すぎると酸素欠損を生じ、 電池特性に悪影響がある。 このことから、 最 終焼成過程では 5 0 0 °Cから 8 0 0 °C程度であることが望ましい。
また、 正極活物質としてオリビン型リチウム含有複合酸化物、 逆スピネル型 リチウム含有複合酸化物を用いる場合においても、 上記同様、 必要な元素原料 を混合 ·拡散させたうえで焼成することにより得ることができる。
得られたリチウム金属複合酸化物の比表面積は、 例えば 3 m 2 / g以下であ ることが望ましく、 好ましくは l m2 / g以下である。 比表面積が大きいほど、 結着剤が多く必要であり、 正極の容量密度の点で不利になるからである。
得られた正極活物質を、 導電性付与剤と混合し、 結着剤によって集電体上に 形成する。 導電付与剤の例としては、 炭素材料の他、 A 1などの金属物質、 導 電性酸化物の粉末などを使用することができる。 結着剤としてはポリフッ化ビ 二リデン (P VD F) などが用いられる。 集電体としては A 1などを主体とす る金属薄膜を用いる。
好ましくは導電付与剤の添加量は 1〜 1 0重量%程度であり、 結着剤の添加 量も 1〜10重量%程度である。 これは、 活物質重量の割合が大きい方が重量 辺りの容量)^大きくなるためである。 導電付与剤と結着剤の割合が小さすぎ ると、導電性が保てなくなったり、電極剥離の問題が生じたりすることがある。 本発明における電解液に用いる溶媒については、 上記で説明したとおりであ るが、 さらに、 ビニレンカーボネート (VC) 等の環状力一ポネート類、 ジェ チルカーボネート (DEC)、 ジプロピルカーポネ一ト (DPC)等の鎖状力一 ポネート類、 ギ酸メチル、 酢酸メチル、 プロピオン酸ェチル等の脂肪族力ルポ ン酸エステル類、 ァープチロラクトン等のァ一ラクトン類、 1、 2—エトキシ ェタン (DEE)、 エトキシメトキシェタン (EME)等の鎖状エーテル類、 テ トラヒドロフラン、 2—メチルテトラヒドロフラン等の環状エーテル類、 ジメ チルスルホキシド、 1、 3—ジォキソラン、 ホルムアミド、 ァセ.トアミド、 ジ メチルホルムアミド、 ジォキソラン、 ァセトニトリル、 プロピル二トリル、 二 トロメタン、 ェチルモノグライム、 リン酸トリエステル、 トリメトキシメタン、 ジォキソラン誘導体、 スルホラン、 メチルスルホラン、 1、 3—ジメチル— 2 —イミダゾリジノン、 3—メチル _ 2—ォキサゾリジノン、 プロピレン力一ポ ネート誘導体、 テトラヒドロフラン誘導体、 ェチルエーテル、 1、 3—プロパ ンスルトン、 ァニソール、 N—メチルピロリドン、 フッ素化カルボン酸エステ ルなどの非プロトン性有機溶媒を一種または二種以上を混合して使用できる。 これらの有機溶媒にはリチウム塩を溶解させる。 リチウム塩としては、 例え ば L i PF6、 L iAs F6、 L i A 1 C 14、 L i C 104、 L i BF4、 L i SbF6、 L i CF3SO3, L i C4F9C〇3、 L i C (CF3S〇2) 2、 L i N (CF3S02) 2、 L i N (C2F5S02) 2、 L i B10C 110, 低級脂肪族 カルボン酸リチウム、 クロ口ポランリチウム、 四フエニルホウ酸リチウム、 L i B r、 L i I、 L i S CN、 L i C 1、 イミド類などがあげられる。
また、 電解液に代えてポリマー電解質を用いてもよい。 電解質濃度は、 たと えば 0 . 5 m o 1 Z 1から 1 . 5 m o 1 Z lとする。 濃度が高すぎると密度と 粘度が増加する。 濃度が低すぎると電気電導率が低下することがある。
負極活物質としては、 天然黒鉛、 人造黒鉛など各種の炭素材料を主成分とし て用いることができるが、なかでも非晶質炭素を主成分とすることが好ましい。 こうすることにより、 電解液の分解生成物の負極表面への堆積を低減すること ができ、 サイクル特性向上に資することができる。
また、 負極活物質には、 リチウムを吸蔵放出可能な材料が副成分として含ま れていても良い。 リチウムを吸蔵 ·放出可能な材料としては、 炭素材料、 L i 金属、 S i、 S n、 A 1、 S i 0、 S n〇などを混合して用いることができる。 負極活物質を導電性付与剤と結着剤によって集電体上に形成させる。 導電付 与剤の例としては、 炭素材料の他、 導電性酸化物の粉末などを使用することが できる。 結着剤としてはポリフッ化ビニリデンなどが用いられる。 集電体とし ては C uなどを主体とする金属薄膜を用いる。
本発明に係るリチウムニ次電池は、 乾燥空気または不活性ガス雰囲気におい て、 負極および正極を、 セパレー夕を介して積層、 あるいは積層したものを捲 回した後に、 電池缶に収容したり、 合成樹脂と金属箔との積層体からなる可と う性フィルム等によって封口することによって電池を製造することができる。 図 1に電池の実施例としてコインタイプのセルの形態を示す。 本発明は電池 形状には制限がなく、 セパレー夕を挟んで対向した正極、 負極を巻回型、.積層 型などの形態を取ることが可能であり、 セルにも、 コイン型、 ラミネートパッ ク、 角型セル、 円筒型セルを用いることができる。 実施例
以下に実施例を示すことにより本発明を詳細に説明する。 本実施例において は、 図 1に示されるようなコインタイプのセルの形態を示す。 表 1〜4に示される 22種類の電池は次の手順により作製した。
(正極の作製) Mn、 N i、 L i、 T i、 S i、 Aし Fの供給源とし てそれぞれ Mn〇2、 N i 0、 L i 2C〇3、 T i 02、 S i 02、 A l 23、 L i Fを目的の金属組成比になるように秤量し、 粉砕混合した。 なお、 L i Fに ついては、 L iの供給源を兼ねた。 次に、 原料混合後の粉末を 750 Cで 8時 間焼成した。 こうして得られた全ての結晶構造は、 ほぼ単相のスピネル構造を 有していることを確認した。 また、表 1に示されるとおり、作製した活物質は、 全て対 L i金属平均放電電位が 4. 5 V以上のものである。
作製した正極活物質と導電性付与剤である炭素を混合し、 結着剤としてポリ フッ化ビニリデン (PVDF) を N—メチルピロリドンに溶かしたものに分散 させ、スラリー状とした。正極活物質、導電性付与剤、結着剤の重量比は 88 : 6: 6とした。 A 1集電体上にスラリーを塗布した。 その後、 真空中で 12時 間乾燥させて、 電極材料とした。 電極材料は直径 12mmの円に切り出した。 その後、 3 tZcm2で加圧成形して、 正極集電体 3および正極活物質層 1を 得た。
(負極の作製) 負極活物質として L i金属を用いた電池の場合にあっては、 Cu製の集電体の上にリチウム金属ディスクを配置させ、 直径 13mmの円に 切り出すことにより、 負極集電体 4および負極活物質層 2を得た。
また、 負極活物質として天然黒鉛を用いた電池の場合にあっては、 天然黒鉛 と導電性付与剤である炭素とを混合し、 N—メチルピロリドンにポリフッカビ 二リデン(PVDF) を溶かしたものに分散させスラリー状とした。天然黒鉛、 導電性付与剤、 結着剤の重量比は 91 : 1 : 8とした。 Cu集電体上にスラリ 一を塗布した。 その後、 真空中で 12時間乾燥させて、 電極材料とした。 電極 材料は直径 13 mmの円に切り出した。 その後、 1 t /cm2で加圧成形して、 負極集電体 4および負極活物質層 2とした。 また、 負極活物質として非晶質炭素を用いた電池の場合は、 天然黒鉛を用い た電池の場合と同様に作製した。 なお非晶質炭素としては、 呉羽化学社製の 力一ポトロン (登録商標) Pを用いた。
セパレー夕 5にはポリプロピレンのフィルムを使用した。 正極と負極がセパ レ一夕を挟んで電気的接触がない状態に対向配置させ、 これを図 1のように正 極外装缶 6と負極外装缶 7とで覆い、表 1に示される組成および比率(体積比) の電解液により満たし、 絶縁パッキング 8を用いて密閉した。
電解液支持塩としては L i PF6を使用し、 濃度は 1 mo 1ZLとした。 以上のようにして作製した電池 1〜 16について電池のサイクル特性を評価 した。 その評価の際は、 1 Cの充電レートで 4. 8 Vまで充電を行い、 1 Cの レートで 2. 5Vまで放電を行った。 ここで、 " 1 Cの充電レ一トによる充電" とは、 電池の容量をアンペア,アワーで示したときの数字を充電電流の電流値 として採用する充電をいい、 従って例えば 0. 1 Cとはその数字の 1Z10を 意味する。 なお、試験温度は 45 とした。結果は表 1に示したとおりである。
Figure imgf000017_0001
¾】1 (負極活物質の検討)
表 1中、 電池 1、 2、 4を比較することにより、 負極として L i金属また は天然黒鉛を用いるよりも非晶質炭素を用いる場合にサイクル信頼性が高いこ とが分かる。 また電池 3および 9を比較することにより、 電解液として ECZ DMCを採用した電池の場合においても、 非晶質炭素を用いる方が天然黒鉛を 用いる場合よりもサイクル特性が優れることが判明した。 以上のことから、 5 V級の正極活物質を用いた電池においては、 負極として非晶質炭素を採用する ことが好ましいと思われた。 これは、 非晶質炭素を負極として用いる場合、 他 の材料を用いるときと比べて、 電解液の分解生成物の負極表面への堆積が少な いことと推察された。
(溶媒の検討)
以下、 正極活物質として L i N i 0. 5Mn 504を、 負極活物質として非晶 質炭素を使用した電池 4〜 9を比較することにより溶媒の効果を検討する。 一般に電解液を構成する溶媒としては、 高粘度 ·高誘電率の電解液と、 低粘 度 ·低誘電率の溶媒とを組み合わせたものを使用する。 本実施例においては、 高粘度 ·高誘電率の溶媒として ECあるいは PCを用い、 低粘度 ·低誘電率の 溶媒として DEC、 EMCまたは DMCを用いて検討を行った。
ここで、 低粘度 ·低誘電率の溶媒を固定して検討する。 すなわち、 電池 4と 5 (DECに固定)、 あるいは電池 6と 7 (EMCに固定)、 または電池 8と 9 (DMCに固定) を比較した場合、 高粘度,高誘電率の溶媒として、 ECを用 いた場合の方が P Cを用いた場合よりもサイクル特性が良くなる傾向が認めら れるものの、 顕著な差は生じなかった。
次に、 高粘度 ·高誘電率の溶媒を ECあるいは PCに固定して検討する。 電 池 4、 7、 9を比較した場合(ECに固定)、 EMCまたは DMCを用いた電池 7および 9は、 100サイクル後の容量維持率 75%以上と優れたサイクル特 性を示し、 DECを用いた電池 4よりも良好なサイクル特性を持つことが示さ れた。 また、 電池 5、 6、 8を比較した場合 (PCに固定) においても、 同 様な傾向が認められ、 EMCまたは DMCを用いた電池 6および 8は、 DEC を用いた電池 5よりも優れたサイクル特性を示した。
以上より、 低粘度 '低誘電率の溶媒としては、 EMCまたは DMCを採用す ることが好ましいことが分かった。
ここで、 4 V級正極活物質を備える電池において低粘度 ·低誘電率の溶媒と して EMCまたは DMCを使用した場合、 上記のような顕著な効果が現れるか 否かを検討した。
表 2は、 4V級正極活物質である L iMn204、 あるいは 5V級正極活物質 である L i N i ^sMn^sT i。. i 54を使用し、それぞれ示された低粘度' 低誘電率の溶媒を使用した電池 17〜 19、 および電池 1 5、 20、 21のサ ィクル特性を示したものである。
正極活物質の対 Ϊ持率 電池 正極活物質 L i金属平均放 溶媒組成および体積比 負極活物質 45°C300サ 45°C500サ
電電位 イクル後 イクル後
17 し i Μπ2θ4 4.03V PC/DEC = 40/60 非曰
ョ1½曰貝火 78%
18 L i Mn204 4.03V PC/EMC = 40/60 非晶質炭素 80¾
CD
19 し 'ι 2。4 4.03V PC/DMC = 40/60 曰 ,
ρ曰曰貝灰 S¾ 84%
20 LiNio.5Mn1.35Tio.15O 4.68V EC/DEC = 40/60 非晶質炭素 40% く 10%
2] LiNi0.5MnI.35Ti0.,50 4.68V EC/EMC = 40/60 非晶質炭素 47% 20%
15 し iNio.sMnusTio. 04 4.68V EC/DMC = 40/60 非晶 灰 74¾ . 53¾
:嫩】 2 表 2中、 4 V級正極活物質を備えた電池 17〜19についての 500サイク ル後の容量維持率を参照すると、 低粘度 ·低誘電率の溶媒として EMCまた は DMCを使用した電池 18、 19は、 DECを用いた電池 17よりも 2〜 6% 程度、 良好な結果となっていることが分かる。 一方、 5 V級正極活物質を備え た電池 15、 20、 21についての 500サイクル後の容量維持率を参照する と、 EMCまたは DMCを使用した電池 15と 21は、 DECを用いた電池 2 0よりも 10〜40%程度上回っており、 顕著な効果が認められた。 なお、 電 池 15、 20、 21については、 300サイクル後の時点の容量維持率で比較 しても、 EMCまたは DMCを使用した場合の顕著な効果が認められた。
上記の結果より、 低粘度 ·低誘電率の溶媒として EMCまたは DM Cを用い ることにより、 5 V級活物質を用いる電池において、 顕著なサイクル特性の向 上効果が現れることが明らかとなった。
次に、 低粘度 '低誘電率の溶媒として、 EMCまたは DMCを採用すること が好ましい理由を明らかにするため、 以下のような検討を行った。
サイクルを経て容量が低下した電池においては、 1 C (高レート) での充放 電容量値と 0. 1 C (低レート) での充放電容量値との差が大きくなる。 この ような現象は、 セル内のインピーダンス増加によっていると考えられる。
ここで、 インピーダンス増加分を R、 電流値を Iとした場合、 設計容量まで 充電させるためには、 I Rの分だけ高い電圧が必要になる。 しかしながら、 リ チウムイオン二次電池の充電においては、 あらかじめ設定された電圧に到達し た時点で充電を停止させるか、またはその後低電圧で一定時間充電を行うため、 本来の設計容量に満たない状態で充電が終了することとなる。 このため、 イン ピーダンス増加分 Rが大きいほど、 また電流値 Iが大きい場合ほど、 充放電容 量値が小さくなる。 このような現象により、 Rの増加とともに、 高レートでの 容量値と低レートでの容量値の差が顕著となる。 表 3は、 正極活物質として L i N i 0. sMn^ 35T i。. 154を、 負極活物 質として非晶質炭素を用い、 溶媒として ECZDEC、 EC/EMC, EC ZDMCを使用した電池 20、 21、 15に関し、 300サイクル後における (1C充放電容量) Z (0. 1 C充放電容量) の値を示したものである。
( 1 C充放電容量) /
電池 正極活物質 溶媒組成および体積比 負極活物質
(0. 1 C充放電容量)
20 LiNi0.5 n1.35Ti0.15O4 EC/DEC = 40/60 db B 中
§F曰曰 灰^ i 60%
21 40/60 b曰
Li i0.5 n1.35Tio.i50 EC/EMC = f÷iま
3F日曰 灰 67%
15 EC/DMC = 40/60 db Θ ffj? 中
灰 81%
¾】3 表 3に示されるように、 300サイクル後の (1 C充放電容量) / ^ (0. 1 C充放電容量) の値は、 使用する溶媒によって異なっており、 DECを使用 した電池 20においては、 EMCや DM Cを使用した電池 21や 15よりも(1 C充放電容量) Z (0. 1 C充放電容量) の値が低い。 このことから、 電池 2 0は、 電池 21あるいは 15と比較して高レートと低レートでの容量値の差が 大きいと言うことができる。 したがって、 電池 20は、 電池 21あるいは 15 と比較すると、 サイクルに伴ってインピ一ダンス増加がより進行したものと考 えられる。 このようなインピーダンス増加は、 負極表面への電解液の分解生成 物の堆積が主たる要因として考えられる。
以上まとめると、 低粘度 ·低誘電率の溶媒として EMCまたは DMCを使用 する場合は、 DECを使用する場合と比較して、 負極表面における電解液の分 解物の堆積量が少ない。 このことがサイクル特性向上に寄与していると考えら れる。
ここで、 低粘度 ·低誘電率の溶媒として DMCを使用した電池において、 高 粘度 ·高誘電率の溶媒および低粘度 ·低誘電率の溶媒の体積比が上記 ( 1 C充 放電容量) / (0. 1 C充放電容量) の値にどのような影響を与えるかを調べ るために、 表 4に示される電池で評価を行った。
Figure imgf000025_0001
¾】4 電池 9は表 1に示された電池 9と同様の構成であり、 電池 22は高粘度 · 高誘電率の溶媒である ECの体積比を 50%としたこと以外は電池 9と同様の 構成の電池である。
表 4に示されるように、 200サイクル後の (1 C充放電容量) / (0. 1
C充放電容量) の値については、 電池 9、 22ともに 90%程度の値で顕著な 差は認められず、 200サイクル後において負極表面への電解液の分解生成物 の堆積が少ないことが示唆された。 また、 200サイクル後の容量維持率につ いても、 電池 9と 22では顕著な差は認められなかった。 このことから、 高粘 度 ·高誘電率の溶媒である ECの体積比を 40〜50 %とすることは、 良好な サイクル特性を得るという観点からは適当であると考えられた。
(Mnの一部を他の元素で置換した正極活物質の検討)
再度、 表 1に戻り、 正極活物質についての検討を以下に示す。
電池 10、 12、 14、 15、 16は、 L i N i 0.5Mn 504中の Mnの 一部をそれぞれ A 1、 L i、 S i、 T i、 G eにより置換した正極活物質を使 用した電池である。 これらの電池と、 正極活物質として L i N i 0. 5Mn x_ 5 04を用いた電池 9とを比較すると、 L i N i。. sMn^ 504中の 1 のー部 を上記元素により置換することにより、 100サイクル後および 300サイク ル後における容量維持率がさらに向上することが明らかとなった。 中でも、 L i N i Q. sMn .54中の Mnの一部を T iにより置換した電池 15は、 非常 に優れたサイクル特性を有するとともに、 対 i金属に対する放電電位が他の 活物質よりも高い活物質を使用していること力 ^ら、 エネルギー密度の観点から も優れた電池であると言える。
上記のように、 L i N i。. sMn^ 504中の Mnの一部を上記元素により置 換することにより、 正極活物質の結晶構造が安定化され、 劣化が低減されるこ とによると推察される。
( Oの一部を Fで置換した活物質の検討)
電池 1 1および 1 3は、 それぞれ電池 1 0および 1 2の正極活物質中の 0の 一部を Fで置換した正極活物質を使用した電池である。 電池 1 0と 1 1、 ある いは電池 1 2と 1 3を比較して明らかなように、 0の一部を Fで置換すること により、 サイクル特性がさらに向上している。
L i N i 0. 5M n 5 04中の M nの一部を 1〜 3価の元素により置換した系 においては、 N iの価数が増加する。 この N iの価数の増加は、 結晶構造が不 安定化、 および容量減少を引き起こす。 そこで電池 1 1および 1 3の正極活物 質においては、 Oの一部を Fで置換して N iの価数上昇を相殺することにより、 結晶構造の不安定化を回避している。 このため、 サイクル特性が向上したもの と思われる。 なお、 同時に容量減少についても回避されることから、 電池 1 1 および 1 3の容量は、 それぞれ電池 1 0および 1 2と比べて改善されている。 以上の実施例において、 正極活物質としてスピネル型リチウムマンガン複合 酸化物を用いた電池について説明したが、 その他の活物質、 例えば、 L i C o P 04などのオリビン型リチウム含有複合酸化物、 L i N i V 04などの逆スピ ネル型リチウム含有複合酸化物を採用した電池においても、 上記実施例で説明 した効果が得られる。
以上説明したように本発明によれば、 高誘電率溶媒と、 ジメチルカ一ポネー トまたはェチルメチルカ一ポネートの少なくとも一種とを含む電解液とするこ とにより、 サイクルに伴う容量低下や、 高温での信頼性の低下を抑えつつ、 高 い動作電圧を実現する二次電池を提供することが可能となる。

Claims

請求の範囲
1. L i金属に対して 4. 5 V以上の平均放電電位を有する正極活物質と、 電解液とを含む二次電池であって、 該電解液が、 比誘電率が 40以上の高誘電 率溶媒と、 ジメチルカ一ポネ一ト及びェチルメチルカーボネートの少なくとも 一方から成る別の溶媒とを含むことを特徴とする二次電池。
2. 非晶質炭素を含む負極活物質をさらに備える、 請求項 1に記載の二次電 池。
3. 前記電解液に対する前記高誘電率溶媒の体積比率が、 10〜 70 %の範 囲である、 請求項 1または 2に記載の二次電池。
4. 前記高誘電率溶媒が、 エチレンカーボネートまたはプロピレン力一ポネ ートである、 請求項 1乃至 3いずれかに記載の二次電池。
5. 前記正極活物質が、 スピネル型リチウムマンガン複合酸^ i物である、 請 求項 1乃至 4いずれかに記載の二次電池。 6. 前記スピネル型リチウムマンガン複合酸化物が、 下記一般式 (I):
L i a (N i xMn2_x_yMy) (04_WZW) (I)
(式中、 0. 4く xく 0.
6、 0≤y、 0≤z、 x + yく 2、 0≤w≤ 1、 0 ≤a≤ 1. 2である。 Mは、 L i、 A l、 Mg、 T i、 S iおよび Geからな る群より選ばれる少なくとも一種である。 Zは、 Fまたは C 1の少なくとも一 種である。) で表されるスピネル型リチウムマンガン複合酸化物である、 請求項 5に記載の 二次電池。
7. 前記一般式 (I) の yが、 0<yの関係を満足する、 請求項 6に記載の 二次電池。
8. 前記一般式 (I) の wが、 0<w≤lの関係を満足する、 請求項 6また は Ίに記載の二次電池。
PCT/JP2003/007187 2002-06-06 2003-06-06 二次電池 WO2003105267A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002165651A JP4281297B2 (ja) 2002-06-06 2002-06-06 二次電池
JP2002-165651 2002-06-06

Publications (1)

Publication Number Publication Date
WO2003105267A1 true WO2003105267A1 (ja) 2003-12-18

Family

ID=29727604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007187 WO2003105267A1 (ja) 2002-06-06 2003-06-06 二次電池

Country Status (3)

Country Link
JP (1) JP4281297B2 (ja)
CN (1) CN100347902C (ja)
WO (1) WO2003105267A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078820A (ja) * 2003-08-28 2005-03-24 Japan Storage Battery Co Ltd 非水電解質二次電池
JP4245532B2 (ja) * 2004-08-30 2009-03-25 株式会社東芝 非水電解質二次電池
JP5068459B2 (ja) * 2006-01-25 2012-11-07 Necエナジーデバイス株式会社 リチウム二次電池
US20070259265A1 (en) * 2006-05-02 2007-11-08 Saidi M Yazid Secondary electrochemical cell having a novel electrode active material
KR100801637B1 (ko) * 2006-05-29 2008-02-11 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
TW200840121A (en) * 2007-03-30 2008-10-01 Nippon Chemical Ind Lithium transition metal complex oxide for lithium ion secondary battery cathode active material and method for producing the same, lithium ion secondary battery cathode active material, and lithium ion secondary battery
JP2008288049A (ja) * 2007-05-18 2008-11-27 Toyota Central R&D Labs Inc リチウムイオン二次電池
FR2933240B1 (fr) * 2008-06-25 2010-10-22 Commissariat Energie Atomique Electrolyte non-aqueux pour accumulateur au lithium a tension elevee
KR101272042B1 (ko) * 2010-11-08 2013-06-07 주식회사 포스코이에스엠 리튬 망간 복합 산화물 및 이의 제조 방법
WO2012132060A1 (ja) 2011-03-28 2012-10-04 日本電気株式会社 二次電池および電解液
JPWO2012141301A1 (ja) * 2011-04-13 2014-07-28 日本電気株式会社 リチウム二次電池
CN103415951B (zh) * 2011-09-20 2016-01-20 日立麦克赛尔株式会社 非水二次电池
WO2013157883A1 (ko) * 2012-04-20 2013-10-24 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
JPWO2014103893A1 (ja) * 2012-12-26 2017-01-12 日本電気株式会社 リチウム二次電池とその選別方法
CN104253272A (zh) * 2013-06-28 2014-12-31 江南大学 复合掺杂和磷酸盐包覆相结合的改性动力锂离子电池正极材料
JP5741970B2 (ja) * 2013-08-05 2015-07-01 戸田工業株式会社 リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
JPWO2016171276A1 (ja) * 2015-04-24 2017-11-24 日立化成株式会社 リチウムイオン電池
JP6825701B2 (ja) * 2016-10-06 2021-02-03 日本電気株式会社 スペーサ含有電極構造およびその高エネルギー密度および急速充電可能なリチウムイオン電池への応用
JP6874860B2 (ja) * 2017-01-27 2021-05-19 日本電気株式会社 シリコーンボールを含む電極及びそれを含むリチウムイオン電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021665A1 (en) * 1992-04-21 1993-10-28 Bell Communications Research, Inc. HIGH-VOLTAGE STABLE ELECTROLYTES FOR Li1+xMN2O4/CARBON SECONDARY BATTERIES
JPH07254434A (ja) * 1994-03-14 1995-10-03 Fuji Elelctrochem Co Ltd リチウム電池用非水電解液
JP2001148249A (ja) * 1999-11-19 2001-05-29 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質材料とリチウム二次電池
JP2001319653A (ja) * 2000-05-12 2001-11-16 Hitachi Maxell Ltd 非水二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021665A1 (en) * 1992-04-21 1993-10-28 Bell Communications Research, Inc. HIGH-VOLTAGE STABLE ELECTROLYTES FOR Li1+xMN2O4/CARBON SECONDARY BATTERIES
JPH07254434A (ja) * 1994-03-14 1995-10-03 Fuji Elelctrochem Co Ltd リチウム電池用非水電解液
JP2001148249A (ja) * 1999-11-19 2001-05-29 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質材料とリチウム二次電池
JP2001319653A (ja) * 2000-05-12 2001-11-16 Hitachi Maxell Ltd 非水二次電池

Also Published As

Publication number Publication date
JP4281297B2 (ja) 2009-06-17
JP2004014270A (ja) 2004-01-15
CN100347902C (zh) 2007-11-07
CN1701459A (zh) 2005-11-23

Similar Documents

Publication Publication Date Title
JP4698126B2 (ja) 非水電解液二次電池
CN1258241C (zh) 正电极活性材料、使用它的正电极和非水电解质二次电池
JP4539816B2 (ja) リチウム二次電池用正極及びリチウム二次電池
JP5068459B2 (ja) リチウム二次電池
JP5169850B2 (ja) 非水電解液二次電池
JP3675439B2 (ja) 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
WO2003105267A1 (ja) 二次電池
JP5999090B2 (ja) 二次電池用活物質
JP4192477B2 (ja) 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
JP4696557B2 (ja) リチウム二次電池用活物質材料、その製造方法及びこれに用いる原材料並びにリチウム二次電池
JP4288402B2 (ja) 二次電池用電解液、二次電池および二次電池の使用方法
WO2016021684A1 (ja) 正極及びそれを用いた二次電池
JP4853608B2 (ja) リチウム二次電池
JP4458232B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5459757B2 (ja) 二次電池用正極活物質およびそれを使用した二次電池
JP5958343B2 (ja) 二次電池用正極活物質及びそれを使用した二次電池
JP4639634B2 (ja) リチウム二次電池用正極活物質およびそれを使用したリチウム二次電池
US20050123834A1 (en) Secondary battery
JP6036811B2 (ja) 二次電池用正極活物質及びそれを使用した二次電池
JP4618404B2 (ja) 非水電解液二次電池
JP5447615B2 (ja) 電解液および非水電解液二次電池
JP4265171B2 (ja) 二次電池
JP4867153B2 (ja) 非水電解液二次電池用の正極活物質、二次電池用正極および非水電解液二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038127598

Country of ref document: CN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase