[go: up one dir, main page]

WO2003084300A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2003084300A1
WO2003084300A1 PCT/JP2003/003516 JP0303516W WO03084300A1 WO 2003084300 A1 WO2003084300 A1 WO 2003084300A1 JP 0303516 W JP0303516 W JP 0303516W WO 03084300 A1 WO03084300 A1 WO 03084300A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling device
temperature
cooling
housing
Prior art date
Application number
PCT/JP2003/003516
Other languages
English (en)
French (fr)
Inventor
Susumu Kameyama
Yu Seshimo
Yasufumi Hatamura
Masaoki Ino
Hiroyuki Kobayakawa
Toshihiko Enomoto
Makoto Saitou
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to KR1020037014168A priority Critical patent/KR100546150B1/ko
Priority to EP03710461.9A priority patent/EP1489894B1/en
Priority to US10/478,215 priority patent/US6997006B2/en
Publication of WO2003084300A1 publication Critical patent/WO2003084300A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20609Air circulating in closed loop within cabinets wherein heat is removed through air-to-liquid heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/02Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors plug-in type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the present invention relates to a cooling device, and more particularly, to a cooling device in a housing of a storage box in which a heat generating device including a sensible heat generator such as a substrate is stored.
  • the storage box to be cooled contains heat-generating equipment in a sealed enclosure.
  • some enclosures are too small to allow humans to enter, and the internal equipment has heat-generating components so that it can be appropriately cooled.
  • Fig. 9 shows this cooling device.
  • the housing cooling system 51 of the storage box 52 is provided with a natural circulation refrigerant circuit.
  • Indoor unit 6 1 and main cooling unit outdoor unit 6 2 Enclosed space 5 to form closed space Inside housing 5 3 Is configured to cool.
  • a heat generating device 54 including a heat generating component is housed in the housing 53.
  • a fan (not shown) is provided in a device case 56 in which a heating component 55 is built-in, and an air intake port 57 on the side of the case or the bottom of the case is provided inside the case. Air is taken into the chamber and hot air is blown out from the exhaust port 58 at the top of the case.
  • the casing 53 is provided with a ventilation fan 63 for sucking outside air and an exhaust damper 64 so that the temperature inside the casing does not exceed a predetermined temperature when the casing cooling system is abnormal.
  • the cooling capacity is determined according to the maximum load of the heat generating component 55. Since the housing 53 generally has a structure with very little heat flow, the housing 53 There is almost no change in the internal cooling load.
  • the fan (not shown) in the heat-generating device 54 is driven to draw cool air from the air inlet 57 into the case at the side of the device case 56.
  • the taken-in cool air cools the heat-generating component 55 and becomes hot air, and is blown out from the exhaust port 58 at the upper part of the case to the position ⁇ in the housing 53.
  • the hot air blown out in this way is blown into the auxiliary cooling device indoor unit 59 through the hot air suction port 70 by the air blown by the main cooling device indoor unit fan 67, and the natural circulation refrigerant circuit 65
  • Primary cooling is achieved by heat exchange with the refrigerant.
  • the air at the position of (1) is sucked into the main cooling unit indoor unit fan (67) and the whole amount passes through the main cooling unit indoor unit evaporator (72). Heat exchange and cooling.
  • the air thus cooled is blown out as cool air from the cool air outlet 71 to a position a in the housing 53. That is, the air circulates in the order of key ⁇ key ⁇ key ⁇ key to cool the inside of the housing 53.
  • a temperature detecting means 73 for detecting an abnormality is installed in the housing 53.
  • a ventilation fan 63 and an exhaust damper 64 are provided. Operates to suck outside air and exhaust air inside the housing 53 at the same time. Nevertheless, if the temperature of the temperature detecting means 73 continues to rise (for example, 45), a two-stage operation is issued to the management center.
  • the conventional cooling device as described above is composed of a main cooling device, an auxiliary cooling device, a ventilation fan, an exhaust damper, and four parts.
  • the auxiliary cooling unit indoor unit is a device that enhances energy savings, and it is more effective to install it near the outlet of the heat-generating device, but there are problems in terms of space.
  • Ventilation fans are used to protect heat-generating equipment in the event of a malfunction in the cooling system. Therefore, it is desirable to install it near the heat-generating equipment as in the auxiliary cooling unit indoor unit. As described above, since it is desirable to install devices in the same location, it takes time to arrange the locations when considering how the installation is systemically effective. Furthermore, since many devices are installed outside the housing, there is a problem that unevenness is formed and the appearance is poor.
  • the installation work is complicated due to the large number of components that make up the conventional cooling device.
  • the auxiliary cooling device is based on the natural refrigerant circulation system, the refrigerant piping connecting the outdoor unit and the indoor unit has a forward gradient. There was a problem that the cooling capacity would not be exerted unless the piping work was performed properly.
  • the present invention has been made to solve the above-described conventional problems, and a plurality of heat exchange units constituting a cooling device are housed in a single housing to be operable.
  • the purpose of the present invention is to provide a cooling device that simplifies equipment design and installation work, saves energy by optimally controlling a plurality of heat exchange means, and prevents cooling failure due to installation work failure.
  • the cooling device is a cooling device configured to cool the inside of a housing of a storage box containing a device including a heating element, comprising: a heat exchange unit configured by a plurality of heat exchange systems; Are housed in one housing.
  • the plurality of heat exchange systems include a refrigerant forced circulation system, a refrigerant natural circulation system, and a ventilation system.
  • the cooling device body is attached to a side surface of the housing of the storage box.
  • the cooling device comprises a refrigerant forced circulation circuit using a refrigerant forced circulation system and a refrigerant natural circulation circuit using a refrigerant natural circulation system in one refrigerant circuit.
  • the cooling device comprises a refrigerant forced circulation circuit based on a refrigerant forced circulation system and a refrigerant natural circulation circuit based on a refrigerant natural circulation system in separate refrigerant circuits. It has been achieved.
  • the cooling device includes a first temperature detecting means for detecting an outside air temperature, and a second temperature detecting means for detecting a temperature inside the housing of the storage box, wherein the first and second temperature detecting means are provided. It switches the refrigerant forced circulation circuit and the refrigerant natural circulation circuit based on the temperature from the temperature detecting means and a preset correction value.
  • the cooling device controls the temperature by adjusting the flow rate of the refrigerant flowing through the refrigerant natural circulation circuit during the cooling operation by the refrigerant natural circulation system. Further, the cooling device according to the present invention controls the stop of the outside air side fan when the temperature inside the housing of the storage box is lowered and the natural circulation cooling operation is unnecessary during the cooling operation by the refrigerant natural circulation method. .
  • the cooling device includes control means for stopping the ventilation operation based on the temperatures from the first and second temperature detecting means. Further, in the cooling device according to the present invention, the control means operates / stops the ventilation operation based on an externally input signal.
  • the cooling device includes a fire prevention damper having a detection function of opening and closing according to the condition of the installation environment.
  • the cooling device has a battery mounted in a housing, and performs a cooling operation using the battery when a power failure occurs.
  • the cooling device according to the present invention is provided with a hood on the outside air side of the cooling device main body such that the direction of the exhaust heat air flow is orthogonal to the direction of the intake air flow.
  • the space for installing equipment required as a cooling device can be reduced, the number of installed equipment can be reduced, installation work can be simplified, and equipment that needs to be installed in the vicinity of internal heating equipment can be installed. Position review time can be reduced. Further, the appearance can be improved with less irregularities.
  • the power consumption required for cooling can be reduced.
  • the ventilation equipment cools down
  • the condenser, evaporator, and refrigerant piping connecting them are assembled in the cooling system in advance. It is possible to prevent a problem in which the slope of the piping does not become downgraded due to poor construction work during installation work.
  • FIG. 1 is a schematic configuration diagram showing a storage box cooling device in a cooling operation during a non-ventilation operation according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram showing the storage box cooling device during the ventilation operation according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic configuration diagram illustrating a cooling device in a cooling operation during a non-ventilation operation according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic configuration diagram illustrating a cooling device during ventilation operation according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram illustrating a control method of the cooling device according to the second embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a control method of the cooling device according to the second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram illustrating a cooling device according to Embodiment 3 of the present invention.
  • FIG. 8 is a diagram illustrating a control method of the cooling device according to the third embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram showing a conventional cabinet cooling device for a storage box. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 and 2 are schematic configuration diagrams showing a cooling device according to Embodiment 1 of the present invention.
  • FIG. 1 shows an operation state during forced refrigerant circulation and a refrigerant natural circulation, that is, an operation state during non-ventilation, and FIG. It shows the operating state at the time.
  • 1 is a cooling device
  • 2 is a compressor
  • 3 is a condenser
  • 4 is an outdoor fan
  • 5 is an expansion valve, for example, an electronic expansion valve
  • 6 is a liquid pipe
  • 7 is an evaporator
  • 8 is an indoor fan.
  • Reference numeral 9 denotes a gas pipe
  • 10 denotes an on-off valve, for example, a check valve
  • 11 denotes a compressor bypass pipe.
  • Reference numeral 12 denotes an indoor air intake
  • 13 denotes an outside air intake
  • 14 denotes an indoor air intake at the time of ventilation
  • 15 denotes an outside air intake at the time of ventilation
  • 16 denotes a guide plate.
  • the cooling device 1 is attached to the side of the housing 31 of the storage box (or storage box) 30.
  • arrows indicate the flow direction of the refrigerant and the flow direction of the air.
  • 32 is a heat generating device
  • 33 is a heat generating component
  • 34 is a case
  • 35 is an air intake
  • 36 is an exhaust outlet.
  • the electronic expansion valve 5 is an expansion valve that can be controlled from the outside so that its opening can be set by an electric current to be supplied.In the present embodiment, the opening differs depending on the forced refrigerant circulation operation and the refrigerant natural circulation operation. Set and switch.
  • the gas pipe 9 is a pipe from the outlet of the evaporator 7 to the inlet of the condenser 3, and the liquid pipe 6 is a pipe from the outlet of the condenser 3 to the inlet of the evaporator 7.
  • the diameter of the gas pipe 9 is set to be about 1.5 to 2 times the diameter of the liquid pipe 6, and the gas pipe 9 is configured to be thicker than the liquid pipe 6.
  • a refrigerant such as R22 or R407C is used as a refrigerant
  • a scroll compressor is used as a compressor
  • an alkylbenzene oil or an ester oil is used as a refrigerating machine oil.
  • the present invention is not limited to this, and other refrigerants, other compressors, and other refrigerating machine oils may be used.
  • the cooling device 1 has a refrigerant circuit that switches between forced refrigerant circulation operation and refrigerant natural circulation operation, and air that switches between ventilation operation and non-ventilation operation. It is composed of a channel.
  • the refrigerant circuit includes a compressor 2 for compressing the refrigerant gas, a condenser 3 for cooling and liquefying the refrigerant gas, an outdoor fan 4 for forcibly blowing outside air to the outer surface of the condenser 3, and a condenser.
  • An electronic expansion valve (5) that decompresses the high-temperature and high-pressure refrigerant liquid that has exited and turns it into two-phase wet steam, and a compressor via a check valve (10) that bypasses the compressor (2) during natural circulation operation.
  • Evaporator 7 that evaporates the wet steam flowing in from the bypass pipe 11 and the liquid pipe 6 by the cooling load in the room, which is the space to be cooled, to produce refrigerant gas. It comprises an indoor fan 8 for forcibly blowing air to the outer surface of the evaporator 7.
  • the condenser 3 is located higher than the evaporator 7.
  • the air flow path can be switched between ventilation operation and non-ventilation operation. It has an indoor air inlet 12 and an outside air inlet 13.
  • This cooling device is used, for example, in a place where cooling is required throughout the year, and when the indoor temperature is lower than the outside air temperature, performs the forced circulation operation of the refrigerant with the compressor 2 in an operating state, and the indoor temperature is lower than the outside air temperature. When the temperature is high, the compressor 2 is stopped, and the refrigerant is naturally circulated using the cold of the outside air.
  • the opening degree of the electronic expansion valve 5 is set to an appropriate opening degree for reducing the refrigerant liquid flowing out of the condenser 3 into wet vapor in a two-phase state, for example, an electron having a full opening of 200 O pu 1 se.
  • the opening degree is set to about 15%, for example, 30 O pu 1 se, and when the compressor 2 is operated, the check valve 10 is operated with the discharge pressure of the compressor 2 and the suction pressure. Closed by the pressure difference from the input pressure, a cycle of forced circulation operation is formed.
  • the refrigerant gas in the pipe is adiabatically compressed by the compressor 2 to be in a superheated state, and is radiated to the outside air by the condenser 3 to be liquefied to be a refrigerant liquid.
  • the high-pressure refrigerant liquid passes through the electronic expansion valve 5 and is decompressed by the electronic expansion valve 5 to become a low-temperature low-pressure wet vapor in a gas-liquid mixed state.
  • the refrigerant passes through the liquid pipe 6, absorbs the heat of vaporization in the evaporator 7, becomes refrigerant gas, and returns to the compressor 2 through the gas pipe 9.
  • the check valve 10 is opened by the flow of the refrigerant, and a cycle of natural circulation operation is formed. Then, the liquid refrigerant condensed in the condenser 3 descends in the liquid pipe 6 by gravity and flows into the evaporator 7. The liquid refrigerant flowing into the evaporator 7 receives the heat load in the room and evaporates. Then, the liquid refrigerant rises in the gas pipe 9 and returns to the condenser 3 through the check valve 10 of the compressor bypass pipe 11. Here, the refrigerant also flows into the flow path through the compressor 2. However, since the flow resistance inside the compressor 2 is much larger than the flow resistance of the compressor bypass pipe 1 1, the refrigerant flow rate through the compressor 2 is smaller than the refrigerant flow rate through the compressor bypass pipe 11. On the other hand, it becomes negligibly small.
  • the indoor air inlet for ventilation 14 and the external air inlet 15 for ventilation are closed, and the indoor air inlet 12 and external air inlet 13 are open.
  • the outside air enters the casing of the cooling device 1 from the outside air inlet 13, takes heat of the refrigerant in the condenser 3, and is discharged from the outdoor fan 4 to the outside air.
  • the air inside the housing 31 of the storage box 30 is heated by the guide plate 16 so that the high-temperature air above the housing 31 enters the housing of the cooling device 1 from the indoor air inlet 12 and evaporates.
  • the air is cooled by applying heat to the refrigerant through the heat sink 7 and blown out from the indoor fan 8 into the housing 31.
  • the cooling device when the temperature inside the storage box abnormally rises due to a compressor failure or the like, the inside of the storage box is cooled by introducing outside air by the ventilation operation to generate heat inside the storage box.
  • Protect equipment when the temperature inside the storage box abnormally rises due to a compressor failure or the like, the inside of the storage box is cooled by introducing outside air by the ventilation operation to generate heat inside the storage box.
  • the ventilation indoor air inlet 14 and the ventilation external air inlet 15 are kept open, and the indoor air inlet 12 and the outside air intake 13 are kept closed.
  • the air in the housing 31 of the storage box 30 enters the housing of the cooling device 1 through the indoor air suction port 14 during ventilation, and is discharged from the outdoor fan 4 to the outside air.
  • the outside air enters the casing of the cooling device 1 from the outside air inlet 15 during ventilation, and is blown out from the indoor fan 8 into the casing 31.
  • the air blown out of the cooling device 1 is taken into the case 3 4 from the air inlet 3 5 of the heat generating device 3 2, cools the heat generating component 3 3, and becomes hot air, and is discharged from the case 3 through the exhaust port 3 6 at the top of the case. 3 1 It is blown out inside. In this way, the air in the housing 31 circulates in the order of ⁇ ⁇ ⁇ ⁇ ⁇ to cool the heat generating device 32.
  • the refrigerant forced circulation operation, the refrigerant natural circulation operation, and the ventilation operation are provided, and the refrigerant circulation system is switched according to the outside air temperature and the indoor temperature. Ventilation operation is performed when it rises abnormally.
  • the only power required for natural circulation operation is the input of the outdoor fan 4 and the indoor fan 8, so that the annual power consumption can be significantly reduced.
  • the ventilating operation suppresses the rise in the ambient temperature of the heat-generating equipment in the storage box, the cooling system has redundancy that can be used in the event of a compressor failure in the cooling system.
  • the installation space for a plurality of devices that was conventionally required is empty.
  • the installation work is simplified, the appearance is less uneven and the appearance is better.
  • FIG. 3 and 4 are schematic configuration diagrams showing a cooling device according to Embodiment 2 of the present invention, and FIG. 3 shows an operation state in a refrigerant natural circulation operation and a refrigerant forced circulation operation, that is, in a non-ventilation operation.
  • Fig. 4 shows the operating state during ventilation operation. 3 and 4, the same or corresponding parts as in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • 17 is a control device
  • 18 is an outside air temperature sensor as first temperature detecting means
  • 19 is an indoor temperature sensor as second temperature detecting means
  • 20 is temperature detecting means
  • 21 Is a fire damper
  • 22 is a fire damper
  • 23 is an inlet hood
  • 24 is an outlet hood
  • 25 is a battery.
  • the cooling device 1 is provided with a control device 17 constituted by, for example, a microcomputer.
  • the control device 17 uses the outside air temperature sensor 18 that detects the outside air temperature and the indoor temperature sensor 19 that detects the air temperature inside the housing of the storage box, and the compressor 2, the outdoor fan 4, the indoor fan 8, and the indoor fan Control means are provided to control the air inlet 12, the outside air inlet 13, the room air inlet 14 during ventilation, and the outside air inlet 15 during ventilation.
  • the contents of the charts shown in FIGS. 5 and 6 are set and stored in the memory of the controller 17.
  • the outside air temperature sensor 18 detects the outside air temperature
  • the indoor temperature sensor 19 is inside the housing of the storage box.
  • control is performed based on Figs. 5 and 6 based on the relationship between the outside air temperature and the indoor temperature.
  • T1 for example, 20
  • T2 for example, 30
  • T3 for example, 35
  • the outside temperature is equal to the room temperature
  • the outside temperature is equal to the sum of the room temperature and the correction value.
  • the correction value when comparing the outside air temperature and the indoor temperature is the outside air temperature when the calorific value of the heating equipment housed in the storage box and the cooling capacity of the cooling device during natural circulation of the refrigerant are balanced.
  • the cooling is performed by performing the forced circulation operation of the refrigerant.
  • the indoor temperature is high and there is a possibility that the heat-generating equipment may fail, it is determined that the cooling device is abnormal, and the ventilation operation with intake of outside air is performed to suppress the rise in the indoor temperature and prevent the heat-generating equipment from failing. I do. This determination is made based on the room temperature and the outside air temperature. However, the control state may be switched by receiving a contact signal from an outside to notify an abnormal state.
  • a buffer band may be provided at the temperature threshold at which the control state switches, so that the control chasing may be prevented.
  • the opening degree of the electronic expansion valve 5 is adjusted to adjust the flow rate of the refrigerant in the natural circulation of the refrigerant to adjust the room temperature. You may make it. By doing so, it is possible to prevent control chatter between the refrigerant natural circulation operation and the stop.
  • the outdoor fan 4 may be stopped and the indoor fan 8 may be continuously operated. This allows the indoor temperature to be detected by the indoor temperature sensor 19 while keeping the indoor temperature from dropping, stirring the air inside the storage box and making the temperature uniform, and suppressing the rise in the ambient temperature of the heating equipment. Can be.
  • a temperature detecting means 20 such as a temperature fuse is provided, and in the event of a fire inside the housing of the storage box, a temperature rise is detected by the temperature detecting means 20.
  • the structure is such that the fire dampers 21 and 22 operate based on the detected temperature. That is, in the present embodiment, even if a fire should occur, the fire damper operates, so that the fire does not spread from the inside of the housing to the outside through the opening of the cooling device.
  • an inlet hood 23 and an outlet hood 24 are provided on the outside air side of the cooling device.
  • a hood is installed so that the direction of the air flow in which outside air is sucked in from the intake hood 23 and the direction of the air flow blown out to the outside air from the outlet hood 24 are orthogonal to each other.
  • the structure prevents the short cycle in which the heat exchanged heat is sucked and does not impair the cooling capacity of the cooling device.
  • a battery for supplying power to heat-generating equipment in the event of a power failure If provided, the heat-generating equipment is still generating heat even during a power outage, and it is necessary to cool the heat-generating components.
  • the battery is driven by a DC power supply, and a battery 25 is provided in the casing of the cooling device.
  • the cooling device is operated by the power supply that is converted from the commercial power supply to the DC power supply, and the cooling operation can be performed by switching the power supply to the built-in battery 25 even during a power failure.
  • the cooling device is driven by a DC power supply, even when the battery 25 is not provided, the cooling operation can be performed by the power supply from the battery in the storage box prepared for the heat-generating device.
  • FIG. 7 is a schematic configuration diagram showing a cooling device according to Embodiment 3 of the present invention.
  • the same or corresponding portions as in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the cooling device includes a refrigerant circuit for forced refrigerant circulation operation and a refrigerant circuit for refrigerant natural circulation operation separately.
  • the two refrigerant circuits are provided in common.
  • this cooling device controls based on the temperatures obtained from the outside air temperature sensor (not shown) and the indoor temperature sensor (not shown). That is, if the outside air temperature is higher than the indoor temperature, the compressor 2 is operated to perform cooling by forced circulation of the refrigerant, and if the outside air temperature is lower than the indoor temperature; By fully opening the expansion valve 5, cooling by natural refrigerant circulation is also performed to reduce the power consumption of the compressor 2.
  • the compressor 2 and the outdoor fan 4 are stopped to prevent overcooling.
  • the air inside the storage box is agitated to suppress the local rise in The room temperature can be detected by the temperature sensor.
  • the compressor 2 is stopped, the indoor air intakes 12 and 13 are closed, and the indoor air intake during ventilation is closed. Open the ventilation inlet for air ventilation at 1 and 4 and perform ventilation operation.
  • a buffer band may be provided at the temperature threshold at which the control state switches, so that the control change may not occur.
  • the cooling device in a cooling device configured to cool the inside of a housing of a storage box containing a device including a heating element, the cooling device includes a heat exchange unit configured by a plurality of heat exchange methods, Since the heat exchange means is housed in one housing, the space required for installing equipment as a cooling device can be reduced, the number of installed equipment can be reduced and installation work can be simplified, This is useful as a cooling device that can reduce the time required to determine the installation location of equipment that needed to be installed.
  • the plurality of heat exchange methods include the refrigerant forced circulation method, the refrigerant natural circulation method, and the ventilation method
  • the power consumption required for cooling can be reduced by appropriately switching the cooling method.
  • the internal equipment can be protected by cooling with a ventilator when the air temperature in the storage box rises abnormally, etc.
  • a cooling device with a built-in natural circulation circuit Since the condenser, evaporator and refrigerant piping connecting them are pre-assembled in the cooling device, it is possible to prevent the problem that the piping gradient does not fall down due to poor construction work when installing the cooling device Useful as a cooling device.
  • the cooling device main body is attached to the side surface of the housing of the storage box, it is useful as a cooling device that can simplify installation work.
  • the forced refrigerant circulation circuit based on the forced refrigerant circulation system and the natural refrigerant circulation circuit based on the above-described natural refrigerant circulation system are configured as one refrigerant circuit, the refrigerant circuit for forced circulation by the compressor is provided. If the cooling operation can be performed by switching the refrigerant circuit by natural circulation, cooling is performed by natural circulation at low outside temperatures. However, in natural circulation operation, cooling is performed by compressor operation when the cooling capacity is insufficient, which is useful as a cooling device that can reduce power consumption and extend compressor life.
  • the refrigerant circuit for forced circulation by the compressor includes: When the indoor temperature is higher than the outside air temperature, the cooling operation is performed simultaneously with the refrigerant natural circulation operation and the forced refrigerant circulation operation, and when the indoor temperature is lower than the outside air temperature, the refrigerant is cooled simultaneously. Since cooling is performed by forced circulation of refrigerant by the compressor, it is useful as a cooling device that can reduce power consumption and extend compressor life.
  • first temperature detecting means for detecting an outside air temperature
  • second temperature detecting means for detecting a temperature inside the housing of the storage box, wherein the first and second temperature detecting means are provided. Since the refrigerant forced circulation circuit and the refrigerant natural circulation circuit are switched based on the temperature from the temperature detecting means and a preset correction value, the natural refrigerant circulation operation is performed based on the detected temperatures of the room temperature and the outside air temperature. When it is determined that the cooling capacity cannot be exerted, by performing control not to perform cooling by the refrigerant natural circulation operation, it is useful as a cooling device capable of avoiding unnecessary operation cost expenditure. Further, according to the present invention, during the cooling operation by the refrigerant natural circulation method, the flow rate of the refrigerant flowing in the refrigerant natural circulation circuit is adjusted to control the temperature, so that the cooling device can prevent overcooling. Useful.
  • the external air side fan is controlled to be stopped. This is useful as a cooling device that can prevent overcooling and reduce unnecessary operating costs.
  • the control means for stopping the operation of the ventilation operation based on the temperature from the first and second temperature detecting means since the control means for stopping the operation of the ventilation operation based on the temperature from the first and second temperature detecting means is provided, the abnormal rise of the temperature in the housing of the storage box is prevented. Switching to the cooling operation by the ventilation method when it is detected is useful as a cooling device that can protect internal equipment. Further, according to the present invention, the control means may be configured to perform the control based on an external input signal. Since the ventilation operation is started / stopped by switching to the cooling operation by the ventilation method according to the input signal from the outside, it is useful as a cooling device that can protect the equipment inside the storage box.
  • the fire protection damper having a detection function that opens and closes according to the installation environment condition is provided, when a fire occurs in the housing, an abnormality in the temperature inside the housing is detected to detect the fire. This is useful as a cooling device that closes the damper and prevents the spread of fire to the outside.
  • a battery is mounted in the casing, and the battery performs a cooling operation at the time of a power failure, so that the battery is driven by a DC power supply.
  • Equipment inside the storage box can be protected. If the battery is installed in the cooling device case, cooling operation can be performed with the built-in battery during a power outage. This is useful as a cooling device that can perform cooling.
  • a hood is provided on the outside air side of the cooling device main body so that the direction of the exhaust heat air blowout and the direction of the air intake air flow are orthogonal to each other, so that the short cycle for sucking the heat exchanged heat during the cooling operation is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Control Of Temperature (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

明細書 冷却装置 技術分野
この発明は、 冷却装置に関し、 特に、 基板などの顕熱発熱体を内蔵した発 熱機器を収納した収納箱筐体内の冷却装置に関するものである。 背景技術
冷却対象の収納箱は、 一般には密閉さ lた筐体内に発熱機器が収納されて いる。 但し、 筐体は人が入れない程に狭いスペースのものもあり、 内部の機 器が発熱部品を有しているために適度に冷却されるようになっている。
このような筐体内を冷却する冷却装置としては、 日本公開特許公報、 特開
2 0 0 1 - 0 4 1 5 0 3号公報に記載されたようなものがある。 この冷却装 置を図 9に示す。
図 9において、 収納箱 5 2の筐体冷却システム 5 1は、 自然循環冷媒回路
6 5で閉じた補助冷却装置室内機 5 9、 補助冷却装置室外機 6 0と、 圧縮機
7 4により冷媒を強制循環させる強制循環冷媒回路 6 6で閉じた主冷却装置 室内機 6 1、 主冷却装置室外機 6 2とによって、 密閉空間を形成する収納箱 5 2の筐体 5 3内を冷却するように構成されている。 筐体 5 3内には発熱部 品を含む発熱機器 5 4が収納されている。
一般の発熱機器 5 4では、 発熱部品 5 5を内蔵する機器ケース 5 6内にフ アン (図示省略) が配設されていて、 ケース側面またはケース底面の空気取 り入れ口 5 7からケース内へ空気を取り込み、 ケース上部の排気口 5 8から 熱気を吹出すようになつている。 また、 筐体 5 3には、 前記筐体冷却システ ム異常時に、 筐体内温度が一定温度以上にならないように外気吸込み用換気 扇 6 3と排気用ダンパ 6 4が設置されている。尚、従来の冷却システムでは、 発熱部品 5 5の最大負荷に合わせて冷却容量が決定されている。筐体 5 3は、 一般に熱貫流の極めて少ない構造であるため、 外気温の変化による筐体 5 3 内部の冷却負荷の変動はほとんどない。
次に、 動作について説明する。
通常運転時は、 発熱機器 5 4内のファン (図示省略) の駆動により、 機器 ケース 5 6の側方でィの位置にある冷気が空気取入口 5 7からケース内に取 り込まれる。 取り込まれた冷気は発熱部品 5 5を冷却して熱気となり、 ケー ス上部の排気口 5 8から筐体 5 3内のゥの位置へ吹き出される。 このように 吹き出された熱気は、 主冷却装置室内機ファン 6 7の送風によりェの位置か ら熱気吸込口 7 0を経て補助冷却装置室内機 5 9に吸込まれ、 自然循環冷媒 回路 6 5の冷媒と熱交換されることにより 1次冷却される。 ォの位置にある 1次冷却後の空気は、 主冷却装置室内機ファン 6 7に吸引されたのち全量が 主冷却装置室内機蒸発器 7 2を通過し、 強制循環冷媒回路 6 6の冷媒と熱交 換されて冷却される。 このように冷却されて空気は冷気として冷気吹出口 7 1から筐体 5 3内のァの位置へ吹出される。 すなわち、 空気はァ→ィ→ゥ— ェ→ォの位置を順に循環して筐体 5 3内を冷却する。
主冷却装置室内機ファン 6 7が故障で動作しない場合や停電で電力が供給 されない場合、 発熱機器 5 4はバックアップ用電源 (図示省略) で常時動作 するが、 冷却機器がなくなるため、 筐体 5 3内温度が上昇する。 筐体 5 3内 には、 異常を検知する温度検出手段 7 3が設置されており、 この温度検出手 段 7 3がある温度を越えると (例えば 4 0で) 換気扇 6 3と排気ダンバ 6 4 が動作して、外気を吸込むと同時に筐体 5 3内の空気を排気する。それでも、 温度検出手段 7 3の温度が上昇し続けると (例えば 4 5 ) 管理センタに発 報する 2段階の運用になっている。
ところで、 上記のような従来の冷却装置においては、 主冷却装置、 補助冷 却装置、 換気扇、 排気ダンパと 4つの部品で構成されている。 しかも、 筐体 の寸法は決っているため、 それぞれの機器をどの位置に設置するか詳細な検 討が必要となる。 特に補助冷却装置室内機は省エネ性を高める機器であり、 発熱機器の吹出口近傍に設置する方が効果大であるが、 スペース的に問題が あつ 7こ。
また、 換気扇は、 冷却装置の異常の際、 発熱機器を保護するためのもので あるから、 補助冷却装置室内機同様に、 発熱機器近傍に設置することが望ま しい。 このように、 同じような位置に設置することが望ましい機器があるた め、どのように設置するのがシステム的に効果があるか検討するにあたって、 設置位置の取り合いに時間がかかってしまう。 さらに、 筐体外部に多数の機 器を設置するために、 凸凹ができ、 見栄えが悪いという問題があった。
また、従来の冷却装置は構成する機器が多いために設置工事が煩雑であり、 特に補助冷却装置は冷媒自然循環方式によるものであるため、 室外機と室内 機を接続する冷媒配管は順勾配となるように配管工事を適切に行わないと、 冷却能力を発揮しないという問題があつた。
この発明は、 上記のような従来の問題点を解消するためになされたもので あり、 冷却装置を構^する複数の熱交換手段を一つの筐体内に収納して動作 可能とすることにより、 設備設計と設置工事の簡素化を図るとともに、 複数 の熱交換手段の最適な制御によって省エネルギーを図り、 かつ設置工事不具 合に伴う冷却不良を防止する冷却装置を提供することを目的とする。 発明の概要
この発明に係る冷却装置は、 発熱体を含む機器を収納した収納箱の筐体内 を冷却するようにした冷却装置において、 複数の熱交換方式により構成され た熱交換手段を備え、 この熱交換手段が一つの筐体に収納されているもので ある。
また、 この発明に係る冷却装置は、 上記複数の熱交換方式が、 冷媒強制循 環方式と冷媒自然循環方式と換気方式とからなるものである。
また、 この発明に係る冷却装置は、 冷却装置本体が、 収納箱の筐体側面に 取り付けられているものである。
また、 この発明に係る冷却装置は、 冷媒強制循環方式による冷媒強制循環 回路と、 冷媒自然循環方式による冷媒自然循環回路とを一つの冷媒回路で構 成したものである。
また、 この発明に係る冷却装置は、 冷媒強制循環方式による冷媒強制循環 回路と、 冷媒自然循環方式による冷媒自然循環回路とを別々の冷媒回路で構 成したものである。
また、 この発明に係る冷却装置は、 外気温度を検出する第 1の温度検出手 段と、 収納箱の筐体内部温度を検出する第 2の温度検出手段とを備え、 第 1 および第 2の温度検出手段からの温度と予め設定された補正値に基づいて冷 媒強制循環回路と冷媒自然循環回路を切り換えるものである。
また、この発明に係る冷却装置は、冷媒自然循環方式による冷却運転時に、 冷媒自然循環回路を流れる冷媒の流量を調節して温度制御するものである。 また、この発明に係る冷却装置は、冷媒自然循環方式による冷却運転時に、 収納箱の筐体内部温度が低下して自然循環冷却運転が不要の場合に、 外気側 ファンを停止制御するものである。
また、 この発明に係る冷却装置は、 第 1および第 2の温度検出手段からの 温度に基づいて、換気運転の運転 停止を行う制御手段を備えたものである。 また、 この発明に係る冷却装置は、 制御手段が、 外部からの入力信号に基 づいて換気運転の運転/停止を行うものである。
また、 この発明に係る冷却装置は、 設置環境の状況に応じて開閉する検知 機能を有する防火ダンバを備えたものである。
また、 この発明に係る冷却装置は、 筐体内にバッテリを搭載し、 停電時に はこのバッテリにより冷却運転を行うものである。
また、 この発明に係る冷却装置は、 冷却装置本体の外気側に排熱気流吹出 方向と吸気気流方向が直交するようにしたフードを設けたものである。
以上のような本発明によれば、 冷却装置として必要な機器設置スペースが 少なくてすみ、 また、 設置機器数の削減と設置工事の簡素化、 内部発熱機器 近傍の設置が必要だった機器の設置位置の検討時間を削減できる。 さらに、 外観的にも凸凹が少なくなり見栄えをよくすることができる。
また、 適切な制御により冷却方式を切り換えることで冷却に必要な消費電 力を削減できることに加え、 収納箱内の空気温度が異常上昇した場合などに 換気装置による冷却を行うことで、内部機器の保護を行うことができ、また、 自然循環回路を内蔵した冷却装置の場合には、 凝縮器と蒸発器とそれらをつ なぐ冷媒配管があらかじめ冷却装置内で組み立てられて,いるため、 冷却装置 の設置工事の際の工事不良によって配管勾配が下り勾配とならない不具合を 防ぐことができる。 図面の簡単な説明
図 1は、 この発明の実施の形態 1における非換気運転時の冷却運転での収 納箱の冷却装置を示す概略構成図である。
図 2は、 この発明の実施の形態 1における換気運転時の収納箱の冷却装置 を示す概略構成図である。
図 3は、 この発明の実施の形態 2における非換気運転時の冷却運転での冷 却装置を示す概略構成図である。
図 4は、 この発明の実施の形態 2における換気運転時の冷却装置を示す概 略構成図である。
図 5は、 この発明の実施の形態 2における冷却装置の制御方法を示す図で ある。
図 6は、 この発明の実施の形態 2における冷却装置の制御方法を示す図で ある。
図 7は、 この発明の実施の形態 3における冷却装置を示す概略構成図であ る。
図 8は、 この発明の実施の形態 3における冷却装置の制御方法を示す図で ある。
図 9は、 従来の収納箱の筐体冷却装置を示す概略構成図である。 発明を実施するための最良の形態
以下、 この発明の実施の形態を、 発熱 を含む機器を収納する収納箱の筐 体内を冷却する冷却装置の一例として、 図面に基づいて説明する。
実施の形態 1 .
図 1、 図 2は、 この発明の実施の形態 1による冷却装置を示す概略構成図 であり、 図 1が冷媒強制循環時と冷媒自然循環時、 すなわち非換気時の運転 状態、 図 2が換気時の運転状態を示す。 各図において、 1は冷却装置、 2は圧縮機、 3は凝縮器、 4は室外ファン、 5は膨張弁で例えば電子式膨張弁、 6は液配管、 7は蒸発器、 8は室内ファ ン、 9はガス配管、 1 0は開閉弁で例えば逆止弁、 1 1は圧縮機バイパス配 管である。 また、 1 2は室内空気吸込口、 1 3は外気吸込口、 1 4は換気時 室内空気吸込口、 1 5は換気時外気導入口、 1 6は案内板である。 冷却装置 1は収納箱 (もしくは収容箱) 3 0の筐体 3 1の側面に取り付けてある。 図 中、 矢印は冷媒の流れ方向と空気の流れ方向を示している。 また、 3 2は発 熱機器、 3 3は発熱部品、 3 4はケース、 3 5は空気取入口、 3 6は排気口 である。
電子式膨張弁 5は、 通電する電流によってその開度を設定できるというよ うに外部から制御が可能な膨張弁であり、 本実施の形態では冷媒強制循環運 転と冷媒自然循環運転で異なる開度を設定して切り換える。 また、 ガス配管 9は蒸発器 7出口から凝縮器 3入口までの配管とし、 液配管 6は凝縮器 3出 口から蒸発器 7入口までの配管とする。 そして、 ガス配管 9の径を液配管 6 の径の 1 . 5〜2倍程度とし、 液配管 6に比べてガス配管 9が太くなるよう に構成している。 また、 本実施の形態では、 冷媒として例えば R 2 2や R 4 0 7 Cなどのフロン系の冷媒を用い、 圧縮機としては例えばスクロール圧縮 機、 冷凍機油としては例えばアルキルベンゼン油やエステル油などを用いて いるが、 これに限るものではなく、 他の冷媒、 他の圧縮機、 他の冷凍機油を 用いてもよい。
図 1、 図 2に示すように、 冷却装置 1は、 冷媒強制循環運転と冷媒自然循 環運転が切り換わるようになつた冷媒回路と、 換気運転と非換気運転が切り 換わるようになった空気流路から構成されている。 冷媒回路は、 冷媒ガスを 圧縮するための圧縮機 2、 この冷媒ガスを冷却液化させるための凝縮器 3、 外気を強制的に凝縮器 3の外表面に送風するための室外ファン 4、 凝縮器 3 を出た高温高圧の冷媒液を減圧して二相状態の湿り蒸気とする電子式膨張弁 5、 自然循環運転時に圧縮機 2をバイパスするための逆止弁 1 0を介した圧 縮機バイパス配管 1 1、 液配管 6から流入した湿り蒸気を冷却対象空間であ る室内の冷却負荷によって蒸発させて冷媒ガスとする蒸発器 7、 室内空気を 強制的に蒸発器 7の外表面に送風するための室内ファン 8より構成されてい る。 凝縮器 3は蒸発器 7よりも高い位置に配置されている。
また、 空気流路は換気運転時と非換気運転時とで切り替えられるように、 換気時に開状態となる換気時室内空気吸込口 1 4と換気時外気導入口 1 5と、 非換気時に開状態となる室内空気吸込口 1 2と外気吸込口 1 3を備えている。 この冷却装置は、 例えば年間を通して冷房が必要な場所に利用され、 室内 温度が外気温度よりも低いときには、 圧縮機 2を運転状態とした冷媒強制循 環運転を行い、 室内温度が外気温度よりも高い時には、 圧縮機 2を停止状態 として外気の冷熱を利用した冷媒自然循環運転を行う。
次に、 動作について説明する。
ここでは、 まず、 室内温度より外気温度が高い場合の冷媒強制循環運転に ついて説明する。
電子式膨張弁 5の開度を、 凝縮器 3から流出した冷媒液を減圧して二相状 態の湿り蒸気とするための適切な開度、 例えば全開が 2 0 0 O p u 1 s eの 電子式膨張弁 5を用いた場合には、 1 5 %程度の開度、 例えば 3 0 O p u 1 s eに設定し、 圧縮機 2を運転すると逆止弁 1 0は圧縮機 2の吐出圧力と吸 入圧力との圧力差で閉止されて強制循環運転のサイクルが形成される。即ち、 この配管内の冷媒ガスが圧縮機 2で断熱的に圧縮されて過熱状態となり、 凝 縮器 3で外気へ放熱して液化し冷媒液となる。 この後、 高圧の冷媒液は電子 式膨張弁 5を通り、 この電子式膨張弁 5で減圧されて気液混合状態の低温低 圧の湿り蒸気となる。 さらに冷媒は液配管 6を通って蒸発器 7で気化熱を吸 収して冷媒ガスとなり、 ガス配管 9を通って圧縮機 2へ戻る。
次に、室内温度より外気温度が低い場合の自然循環運転について説明する。 電子式膨張弁 5の開度を、 冷媒回路内の圧力損失を低減するために全開に すると、 逆止弁 1 0は冷媒の流れにより開放され、 自然循環運転のサイクル が形成される。 そして、 凝縮器 3で凝縮した液冷媒は、 液配管 6内を重力に より下降して蒸発器 7に流入する。 蒸発器 7に流入した液冷媒は室内の熱負 荷を受けて蒸発した後、 ガス配管 9を上昇し圧縮機バイパス配管 1 1の逆止 弁 1 0を通って凝縮器 3へ戻る。 ここで、 冷媒は圧縮機 2を通る流路にも流 れようとするが、 圧縮機 2内部の流動抵抗が圧縮機バイパス配管 1 1の流動 抵抗に比べて非常に大きいため、 圧縮機 2を通る冷媒流量は圧縮機バイパス 配管 1 1を通る冷媒流量に対して無視できるほど小さくなる。
次に、 上記の冷媒強制循環運転と冷媒自然循環運転時、 すなわち非換気運 転時の空気流路について、 図 1を参照して説明する。
換気時室内空気吸込口 1 4と換気時外気導入口 1 5は閉状態とし、 室内空 気吸込口 1 2と外気吸込口 1 3は開状態とする。 これにより、 外気は外気吸 込口 1 3から冷却装置 1の筐体内に入り、 凝縮器 3で冷媒の熱を奪って室外 ファン 4から外気へ放出される。また、収納箱 3 0の筐体 3 1内部の空気は、 案内板 1 6によって筐体 3 1上方の温度の高い空気が室内空気吸込口 1 2か ら冷却装置 1の筐体内に入り、 蒸発器 7を通って冷媒に熱を与えて空気は冷 却されて、 室内ファン 8から筐体 3 1内部へ吹き出される。
次に、 換気運転時の空気流路について、 図 2を参照して説明する。
本実施の形態による冷却装置では、 圧縮機の故障などによって収納箱内の 温度が異常に上昇した場合などに、 換気運転によって外気を導入して収納箱 内の冷却を行い、 収納箱内の発熱機器を保護する。
この換気運転時には、 換気時室内空気吸込口 1 4と換気時外気導入口 1 5 は開状態とし、 室内空気吸込口 1 2と外気吸込口 1 3は閉状態とする。 これ により、 収納箱 3 0の筐体 3 1内の空気は換気時室内空気吸込口 1 4から冷 却装置 1の筐体内に入り、 室外ファン 4から外気へ放出される。 また、 外気 は換気時外気導入口 1 5から冷却装置 1の筐体内に入り、 室内ファン 8から 筐体 3 1内部へ吹き出される。
次に、 冷媒強制循環時と冷媒自然循環時と換気運転時に冷却装置 1から吹 き出された空気がどのように収納箱内を冷却するかを説明する。
冷却装置 1から吹き出された空気は、 発熱機器 3 2の空気取入口 3 5から ケース 3 4内部に取り込まれ、 発熱部品 3 3を冷却して熱気となり、 ケース 上部の排気口 3 6から筐体 3 1内部へ吹き出される。 このようにして、 筐体 3 1内の空気はァ→ィ→ゥ→ェ→ォの位置を順に循環して発熱機器 3 2を冷 却する。 このように、 本実施の形態では、 冷媒強制循環運転と冷媒自然循環運転と 換気運転を備え、 外気温度と室内温度に応じて冷媒循環方式を切換える構成 であり、 また、 収納箱内の温度が異常に上昇した場合などに換気運転を行う ようになっている。 自然循環運転の必要動力としては室外フアン 4と室内フ アン 8の入力だけとなるため、年間消費電力の大幅削減が可能となる。また、 換気運転によって収納箱内の発熱機器の周囲温度上昇を抑制するため、 冷却 装置の圧縮機故障などの場合にも対応した冗長性を持った冷却装置となって いる。
また、 本実施の形態では、 冷媒強制循環回路、 冷媒自然循環回路、 換気装 置の機能を一台にまとめた構造にしてあるため、 従来必要であった複数の機 器の設置スペースが空き、 設置工事が簡素化され、 外観的にも凸凹が少なく なり見栄えがよくなる。
また、 あらかじめ凝縮器 3と蒸発器 7と液配管 6とガス配管 9の位置が製 造時に固定されているため、 収納箱 3 0への冷却装置 1の取付時に冷媒配管 工事を行う必要が無く、 不適切な配管工事による冷媒自然循環運転の不具合 を避けることができる。
ところで、 冷却装置 1の冷媒自然循環運転時と換気運転時には筐体 3 1内 に空気を吸い込む際の筐体 3 1内の空気温度と外気温度との温度差が大きい ほど高い冷却能力を発揮する。 このため、 可能な限り発熱部品 3 3の近くの 熱気を吸い込むことが効率的である。 そのためには、 案内板 1 6を設置して 熱気を誘引するのが望ましい。 これにより発熱機器 3 2の排気口 3 6から吹 き出されたゥの位置の熱気温度をほぼ維持したまま、 冷却装置 1へ吸込まれ るォの位置の空気とすることができる。
実施の形態 2 .
図 3および図 4は、 この発明の実施の形態 2による冷却装置を示す概略構 成図であって、 図 3は冷媒自然循環運転と冷媒強制循環運転時の運転状態、 つまり非換気運転時の運転状態を示し、図 4は換気運転時の運転状態を示す。 なお、 図 3および図 4において、 図 1と同一または相当する部分には同一符 号を付し、 その詳細説明を省略する。 各図において、 1 7は制御装置、 1 8は第 1の温度検出手段としての外気 温度センサ、 1 9は第 2の温度検出手段としての室内温度センサ、 2 0は温 度検出手段、 2 1は防火ダンパ、 2 2は防火ダンバ、 2 3は吸込口フード、 2 4は吹出口フード、 2 5はバッテリである。
冷却装置 1には、 例えばマイクロコンピュータなどで構成される制御装置 1 7が配備されている。 この例において、 制御装置 1 7は外気温度を検出す る外気温度センサ 1 8と収納箱の筐体内空気温度を検出する室内温度センサ 1 9により圧縮機 2、 室外ファン 4、 室内ファン 8、 室内空気吸込口 1 2、 外気吸込口 1 3、 換気時室内空気吸込口 1 4、 換気時外気導入口 1 5を制御 する制御手段を備えている。
次に、 動作について、 図 5および図 6を参照して説明する。
制御装置 1 7のメモリには、 図 5と図 6に示すチャート内容が設定され記 憶されていて、 外気温度センサ 1 8が外気温度を検出し、 室内温度センサ 1 9が収納箱の筐体内空気温度 (室内温度) を検出すると、 外気温度と室内温 度との関係から図 5と図 6を元に制御を行う。 図 5で制御状態を判断する閾 値としては、 室内温度が T 1 (例えば 2 0 :) の時、 室内温度が T 2 (例え ば 3 0 ) の時、 室内温度が T 3 (例えば 3 5で) の時、 外気温が室内温度 と等しいとき、 外気温が室内温度と補正値の合計に等しいときがある。
ここで、 外気温と室内温度を比較する際の補正値は、 収納箱内に収容され た発熱機器の発熱量と、 冷却装置の冷媒自然循環時の冷却能力がパランスす るときの、 外気温と室内温度との温度差から設定する。 すなわち、 この実施 の形態 2では、 室内温度と外気温度の差が小さく、 冷媒自然循環による冷却 能力が発揮できない場合には、 冷媒強制循環運転を行って冷却をする。
また、 室内温度が高く、 発熱機器が故障する可能性がある場合には、 冷却 装置の異常と判断して、 外気取り入れの換気運転にして室内温度の上昇を抑 え、 発熱機器の故障を防止する。 この判断は、 室内温度と外気温によって行 われるが、 外部から異常状態を知らせる接点信号の入力をもらって、 制御状 態を切り換えるものでもよい。
ちなみに、 換気風量が多いほど、 室内温度上昇は少なくできるので、 非換 気運転時は騒音問題のため風量を小さくしていることが多いが、 異常状態で ある換気運転時には、 冷却装置の室外ファン、 室内ファンの回転数を大きく するなどして大風量に切り換える制御をいれても構わない。 換気運転を行つ てもさらに室内温度が上昇する場合は、 あらかじめ制御装置に設定された条 件にもとづき収納箱の管理センタへ通報する制御にした方がより安全である。 また、 図 5において、 制御状態が切り換わる温度閾値に緩衝帯幅を設ける ことにより、 制御のチヤ夕リングが起きないようにしてもよい。
また、 冷媒き然循環運転の際に、 外気温度が低くて室内温度が冷えすぎる 場合に、電子式膨張弁 5の開度を調整して冷媒自然循環の冷媒流量を調節し、 室内温度を調節するようにしてもよい。 こうすることで、 冷媒自然循環運転 と停止の間での制御のチヤタリングを防止することができる。
また、 冷媒自然循環運転の際に室内温度が低下して冷媒自然循環運転によ る冷却を停止する際に、 室外フアン 4のみを停止し室内ファン 8を運転継続 してもよい。 これにより、 室内温度の低下を止めながら、 収納箱内の空気を 撹拌して温度の均一化を行い、 発熱機器周囲温度の上昇を抑えつつ、 室内温 度センサ 1 9で室内温度を検知することができる。
また、 本実施の形態では、 例えば温度ヒューズなどの温度検出手段 2 0を 備えており、 収納箱の筐体内が万一火災になった場合には、 温度検出手段 2 0で温度上昇を検出し、 検出した温度に基づいて防火ダンパ 2 1と 2 2が作 動する構造になっている。 すなわち、 本実施の形態では、 万一火災が発生し たとしても、 防火ダンバが作動するので筐体内から冷却装置の開口部を介し て外部へ延焼することはない。
また、 本実施の形態では、 冷却装置の外気側に吸込口フード 2 3と吹出口 フード 2 4を備えている。 非換気運転時に、 この吸込口フード 2 3から外気 が吸い込まれる気流方向と、 吹出口フード 2 4から外気へ吹き出される気流 方向は直交するようにフ一ドが取り付けられており、 冷却運転時に熱交換し た熱気を吸込むショートサイクルを防止して冷却装置の冷却能力を損なわな い構造となっている。
また、 収納箱に停電時に発熱機器に対し電源を供給するためのバッテリが 備えられている場合、 停電時にも発熱機器は発熱しており、 発熱部品を冷却 する必要がある。
また、 本実施の形態では、 直流電源で駆動するようにしてあり、 冷却装置 の筐体内にバッテリ 2 5を備えている。 通常時には商用電源を直流電源に変 換した電源により冷却装置は動作しており、 停電時にも内蔵のバッテリ 2 5 に電源を切り換えて冷却運転を行うことができる。
また、 冷却装置を直流電源駆動とすることで、 バッテリ 2 5を備えていな い場合でも、 発熱機器用に用意された収納箱のバッテリからの電源により冷 却運転を行うことが可能となる。
また、 バッテリ駆動時の冷却運転を換気運転になるよう制御することで、 冷却能力を確保しつつ冷却装置の消費電力を抑えて、 バッテリ寿命を延ばす ことも可能である。
実施の形態 3 .
図 7は、この発明の実施の形態 3による冷却装置を示す概略構成図である。 なお、 図 7において、 図 1と同一または相当する部分には同一符号を付し、 その詳細説明を省略する。
図 7に示すように、 本実施の形態の冷却装置は、 冷媒強制循環運転のため の冷媒回路と、 冷媒自然循環運転のための冷媒回路を別々に備えており、 室 外フアンと室内ファンは二つの冷媒回路で共通に備える構成となっている。 次に、 動作について、 図 8を参照して説明する。
この冷却装置は、 図 8に示したチャートに従い、 外気温度センサ (図示省 略) と室内温度センサ (図示省略) から得られた温度を元に制御を行う。 す なわち、 外気温が室内温度よりも高ければ圧縮機 2を運転して冷媒強制循環 による冷却を行い、外気温が室内温度より.低ければ冷媒強制循環運転に加え、 自然循環冷媒回路の電子式膨張弁 5を全開にして冷媒自然循環による冷却も 行って、 圧縮機 2の消費電力を削減する。
また、 室内温度が T 1以下になった場合には、 圧縮機 2、 室外ファン 4を 停止して、 冷やしすぎを防止する。 室内ファン 8を運転継続することで、 収 納箱内の空気を撹拌して発熱機器周囲温度の局所的な上昇を抑えつつ、 室内 温度センサで室内温度を検知することができる。
また、 室内温度が T 3以上でかつ外気温が室内温度より低い場合には、 圧 縮機 2を停止し、 室内空気吸込口 1 2と外気吸込口 1 3を閉じ、 換気時室内 空気吸込口 1 4と換気時外気導入口 1 5を開いて、 換気運転を行う。
また、 図 8において、 制御状態が切り換わる温度閾値に緩衝帯幅を設ける ことにより、 制御のチヤ夕リングが起きないようにしてもよい。 産業上の利用可能性
以上のように、 この発明によれば、 発熱体を含む機器を収納した収納箱の 筐体内を冷却するようにした冷却装置において、 複数の熱交換方式により構 成された熱交換手段を備え、 該熱交換手段が一つの筐体に収納されているの で、 冷却装置として必要な機器設置スペースが少なくてすみ、 また、 設置機 器数の削減と設置工事の簡素化、 内部発熱機器近傍の設置が必要だった機器 の設置位置の検討時間を削減できる冷却装置として有用である。
また、 この発明によれば、 上記複数の熱交換方式が、 冷媒強制循環方式と 冷媒自然循環方式と換気方式とからなるので、 適切な制御により冷却方式を 切り換えることで冷却に必要な消費電力を削減できることに加え、 収納箱内 の空気温度が異常上昇した場合などに換気装置による冷却を行うことで、 内 部機器の保護を行うことができ、 また、 自然循環回路を内蔵した冷却装置の 場合には、 凝縮器と蒸発器とそれらをつなぐ冷媒配管があらかじめ冷却装置 内で組み立てられているため、 冷却装置の設置工事の際の工事不良によって 配管勾配が下り勾配とならない不具合を防ぐことができる冷却装置として有 用である。
また、 この発明によれば、 冷却装置本体が、 上記収納箱の筐体側面に取り 付けられているので、設置工事の簡素化が図れる冷却装置として有用である。 また、 この発明によれば、 冷媒強制循環方式による冷媒強制循環回路と、 上記冷媒自然循環方式による冷媒自然循環回路とを一つの冷媒回路で構成し たので、 圧縮機による強制循環の冷媒回路と、 自然循環による冷媒回路を切 り換えて冷却運転できるものでは、 低外気温時には自然循環運転で冷却を行 レ 、 自然循環運転では冷却能力が足りない場合に圧縮機運転で冷却を行うた め、 消費電力の削減と圧縮機寿命を延ばすことができる冷却装置として有用 である。
また、 この発明によれば、 冷媒強制循環方式による冷媒強制循環回路と、 冷媒自然循環方式による冷媒自然循環回路とを別々の冷媒回路で構成したの で、 圧縮機による強制循環の冷媒回路と、 自然循環による冷媒回路を併せ持 つて同時に冷却運転できるものでは、 室内温度が外気温度より高い時には冷 媒自然循環運転と冷媒強制循環運転で同時に冷却を行い、 室内温度が外気温 度より低いときには圧縮機による冷媒強制循環運転で冷却を行うため、 消費 電力の削減と圧縮機寿命を延ばすことができる冷却装置として有用である。 また、 この発明によれば、 外気温度を検出する第 1の温度検出手段と、 上 記収納箱の筐体内部温度を検出する第 2の温度検出手段とを備え、 上記第 1 および第 2の温度検出手段からの温度と予め設定された補正値に基づいて上 記冷媒強制循環回路と上記冷媒自然循環回路を切り換えるので、 また、 室内 温度と外気温度の検出温度に基づいて冷媒自然循環運転の冷却能力が発揮で きないと判断したときに、 冷媒自然循環運転による冷却を行わない制御をす ることで、無用な運転コストの支出を回避できる冷却装置として有用である。 また、 この発明によれば、 上記冷媒自然循環方式による冷却運転時に、 上 記冷媒自然循環回路を流れる冷媒の流量を調節して温度制御するので、 冷や しすぎを防止することができる冷却装置として有用である。
また、 この発明によれば、 上記冷媒自然循環方式による冷却運転時に、 上 記収納箱の筐体内部温度が低下して自然循環冷却運転が不要の場合に、 外気 側ファンを停止制御するので、 冷やしすぎを防止するとともに無用な運転コ ストを削減できる冷却装置として有用である。
また、 この発明によれば、 上記第 1および第 2の温度検出手段からの温度 に基づいて、 換気運転の運転ノ停止を行う制御手段を備えたので、 収納箱の 筐体内温度の異常上昇を検知したときに、 換気方式による冷却運転に切り換 えることで、内部機器の保護をすることができる冷却装置として有用である。 また、 この発明によれば、 上記制御手段が、 外部からの入力信号に基づい て換気運転の運転/停止を行うので、 外部からの入力信号によって、 換気方 式による冷却運転に切り換えることで、 収納箱内部機器の保護をすることが できる冷却装置として有用である。
また、 この発明によれば、 設置環境の状況に応じて開閉する検知機能を有 する防火ダンパを備えたので、 筐体内が火災になった場合には、 筐体内温度 の異常を検知して防火ダンバが閉じ、 外部への延焼を防ぐことができる冷却 装置として有用である。
また、 この発明によれば、 上記筐体内にバッテリを搭載し、 停電時には該 バッテリにより冷却運転を行うので、直流電源で駆動するようにすることで、 停電時にバックアップ電源で冷却運転が行えるため、 収納箱内部機器の保護 をすることができ、 また、 冷却装置の筐体内にバッテリを搭載してあるもの では、 停電時に内蔵バッテリで冷却運転が行えるため、 収納箱内部機器の保 護をすることができる冷却装置として有用である。
また、 この発明によれば、 冷却装置本体の外気側に排熱気流吹出方向と吸 気気流方向が直交するようにしたフードを設けたので、 冷却運転時に熱交換 した熱気を吸込むショ一卜サイクルによる冷却能力の低下を防止することが できる冷却装置として有用である。

Claims

請求 の 範囲
1 . 発熱体を含む機器を収納した収納箱の筐体内を冷却するようにした冷 却装置において、
複数の熱交換方式により構成された熱交換手段を備え、 該熱交換手段が一 つの筐体に収納されていることを特徴とする冷却装置。
2 . 上記複数の熱交換方式は、 冷媒強制循環方式と冷媒自然循環方式と換 気方式とからなることを特徴とする請求項 1記載の冷却装置。
3 . 冷却装置本体は、 上記収納箱の筐体側面に取り付けられていることを 特徴とする請求項 1記載の冷却装置。
4 . 上記冷媒強制循環方式による冷媒強制循環回路と、 上記冷媒自然循環 方式による冷媒自然循環回路とを一つの冷媒回路で構成したことを特徴とす る請求項 2に記載の冷却装置。
5 . 上記冷媒強制循環方式による冷媒強制循環回路と、 上記冷媒自然循環 方式による冷媒自然循環回路とを別々の冷媒回路で構成したことを特徴とす る請求項 2に記載の冷却装置。
6 . 外気温度を検出する第 1の温度検出手段と、 上記収納箱の筐体内部温 度を検出する第 2の温度検出手段とを備え、 上記第 1および第 2の温度検出 手段からの温度と予め設定された補正値に基づいて上記冷媒強制循環回路と 上記冷媒自然循環回路を切り換えるようにしたことを特徴とする請求項 4記 載の冷却装置。
7 . 上記冷媒自然循環方式による冷却運転時に、 上記冷媒自然循環回路を 流れる冷媒の流量を調節して温度制御するようにしたことを特徴とする請求 項 4記載の冷却装置。
8 . 上記冷媒自然循環方式による冷却運転時に、 上記収納箱の筐体内部温 度が低下して自然循環冷却運転が不要の場合に、 外気側ファンを停止制御す るようにしたことを特徴とする請求項 6記載の冷却装置。
9 . 上記第 1および第 2の温度検出手段からの温度に基づいて、 換気運転 の運転 Z停止を行う制御手段を備えたことを特徴とする請求項 6 ~ 8のいず れかに記載の冷却装置。
1 0 . 上記制御手段が、 外部からの入力信号に基づいて換気運転の運転ノ 停止を行うことを特徴とする請求項 9記載の冷却装置。
1 1 . 設置環境の状況に応じて開閉する検知機能を有する防火ダンパを備 えたことを特徴とする請求項 1〜 9のいずれかに記載の冷却装置。
1 2 . 上記筐体内にバッテリを搭載し、 停電時には該バッテリにより冷却 運転を行うようにしたことを特徴とする請求項 1〜 1 1のいずれかに記載の 冷却装置。
1 3 . 冷却装置本体の外気側に排熱気流吹出方向と吸気気流方向が直交す るようにしたフードを設けたことを特徴とする請求項 1〜 1 2のいずれかに 記載の冷却装置。
PCT/JP2003/003516 2002-03-28 2003-03-24 Cooling device WO2003084300A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020037014168A KR100546150B1 (ko) 2002-03-28 2003-03-24 냉각장치
EP03710461.9A EP1489894B1 (en) 2002-03-28 2003-03-24 Cooling system
US10/478,215 US6997006B2 (en) 2002-03-28 2003-03-24 Cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002092435A JP2003289195A (ja) 2002-03-28 2002-03-28 冷却装置
JP2002-092435 2002-03-28

Publications (1)

Publication Number Publication Date
WO2003084300A1 true WO2003084300A1 (en) 2003-10-09

Family

ID=28671709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003516 WO2003084300A1 (en) 2002-03-28 2003-03-24 Cooling device

Country Status (6)

Country Link
US (1) US6997006B2 (ja)
EP (2) EP2203038A3 (ja)
JP (1) JP2003289195A (ja)
KR (1) KR100546150B1 (ja)
CN (1) CN1511436A (ja)
WO (1) WO2003084300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596200A (zh) * 2015-01-30 2015-05-06 新乡市东海轻工机械有限公司 无氟自动控温冷藏罐

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539764B1 (ko) * 2004-05-21 2006-01-12 엘지전자 주식회사 유니터리 공기조화기 및 그의 제어방법
US7165412B1 (en) * 2004-11-19 2007-01-23 American Power Conversion Corporation IT equipment cooling
US7259963B2 (en) 2004-12-29 2007-08-21 American Power Conversion Corp. Rack height cooling
JP2007019256A (ja) * 2005-07-07 2007-01-25 Nec Saitama Ltd 自動開閉シャッタ付空冷熱交換器
US7788940B2 (en) * 2005-08-04 2010-09-07 Liebert Corporation Electronic equipment cabinet with integrated, high capacity, cooling system, and backup ventilation
FR2896307A1 (fr) * 2006-01-17 2007-07-20 Daniel Negroni Climatiseur a pompe a chaleur comportant une chambre de melange d'air
ITPD20060015U1 (it) 2006-02-07 2007-08-08 Liebert Hiross Spa Dispositivo di condizionamento perfezionato del tipo a raffreddamento libero
ITPD20060176A1 (it) * 2006-05-05 2007-11-06 Liebert Hiross Spa Apparecchiatura perfezionata per il condizionamento di racks per strumenti elettrici, elettronici, di telecomunicazioni e simili
ITPD20060177A1 (it) * 2006-05-05 2007-11-06 Liebert Hiross Spa Dispositivo di movimentazione per una serranda particolarmente per climatizzatori
JP4703539B2 (ja) * 2006-10-31 2011-06-15 三洋電機株式会社 プロジェクタ
US7457116B2 (en) * 2006-12-27 2008-11-25 Intel Corporation Method and system to cool memory
CN101568781B (zh) * 2006-12-28 2014-05-07 开利公司 一种制冷系统及其中的流体回路的流体泵供电的方法
BRPI0701548A2 (pt) * 2007-04-23 2008-12-09 Melquisedec Francisquini aperfeiÇoamento em màdulo climatizador para gabinetes
JP4956288B2 (ja) * 2007-06-06 2012-06-20 河村電器産業株式会社 盤用熱交換器
BRPI0704566A2 (pt) * 2007-09-18 2009-05-12 Whirlpool Sa estação de docagem para um computador
JP4940097B2 (ja) * 2007-10-22 2012-05-30 三洋電機株式会社 電子機器冷却システム
EP2053911B1 (en) 2007-10-22 2013-05-15 Sanyo Electric Co., Ltd. Electronic device cooling system
JP4821759B2 (ja) * 2007-10-25 2011-11-24 パナソニック株式会社 発熱機器収納装置
WO2009059262A2 (en) * 2007-11-02 2009-05-07 Ice Qube, Inc. Cooling apparatus and method
US8333083B2 (en) * 2008-03-14 2012-12-18 Techwing Co., Ltd. System to support testing of electronic devices, temperature control unit for the system, and method for controlling internal temperature of chamber of the system
CN101978319A (zh) * 2008-03-17 2011-02-16 三洋电机株式会社 投影仪
US20090310300A1 (en) * 2008-06-11 2009-12-17 Minebea Co., Ltd. Flow-Through Air Conditioning for Electronics Racks
US8313038B2 (en) * 2008-06-25 2012-11-20 Minebea Co., Ltd. Telecom shelter cooling and control system
RU2011117226A (ru) * 2008-10-03 2012-11-10 МакЛИН МИДВЕСТ КОРПОРЕЙШН (US) Кондиционер с узлом экономайзера и фильтра
DE102008054081B4 (de) * 2008-10-31 2011-02-03 Seifert Mtm Systems Malta Ltd. Verfahren zum Klimatisieren eines Schaltschrankes
US20110209863A1 (en) * 2008-11-03 2011-09-01 Telefonaktiebolaget Lm Ericsson (Publ) Climate Control in a Radio Network Node
US8621884B2 (en) * 2008-11-12 2014-01-07 Hoffman Enclosures, Inc. AC unit with economizer and sliding damper assembly
JP5017296B2 (ja) * 2009-03-03 2012-09-05 株式会社東芝 電子機器
WO2010104431A1 (en) * 2009-03-12 2010-09-16 Telefonaktiebolaget L M Ericsson (Publ) Heat transfer arrangement in a radio network node
JP5372572B2 (ja) * 2009-03-30 2013-12-18 三洋電機株式会社 電子機器冷却装置
DE202009006916U1 (de) * 2009-05-13 2009-09-17 Pfannenberg Gmbh Kühlgerät
KR100943285B1 (ko) * 2009-06-01 2010-02-23 (주)에이티이엔지 하이브리드 데시칸트 제습 장치 및 그 제어방법
WO2010145434A1 (zh) * 2009-06-15 2010-12-23 华为技术有限公司 一种热交换器、热交换器的散热方法以及通信设备
CN101963378A (zh) * 2009-11-04 2011-02-02 阿尔西制冷工程技术(北京)有限公司 一种数据中心热点空调制冷系统
JP5610839B2 (ja) * 2010-05-11 2014-10-22 株式会社日立製作所 冷却システム
CN102401437B (zh) * 2010-09-09 2016-01-20 上海航天汽车机电股份有限公司 一种基于热管技术的双冷源空调系统
CN102401438A (zh) * 2010-09-09 2012-04-04 上海航天汽车机电股份有限公司 一种双冷源一体化空调系统
US8274790B2 (en) 2010-11-16 2012-09-25 International Business Machines Corporation Automatically reconfigurable liquid-cooling apparatus for an electronics rack
US8514575B2 (en) 2010-11-16 2013-08-20 International Business Machines Corporation Multimodal cooling apparatus for an electronic system
CN103140718A (zh) * 2010-11-30 2013-06-05 富士电机株式会社 一体型空调系统、用于一体型空调系统的室内空气单元、用于一体型空调系统的室外空气单元和堆叠构件
CN103261801B (zh) * 2010-12-28 2015-11-25 富士电机株式会社 利用外气的空调系统、其内气单元、外气单元、层积体
US20120266619A1 (en) * 2011-04-21 2012-10-25 Bradley Douglas Shaw Cooling system for use in an appliance and method of assembling same
JP2012231645A (ja) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp パワーコンディショナ
CN102215662A (zh) * 2011-05-09 2011-10-12 海尔集团公司 冷却装置
JP5373018B2 (ja) * 2011-09-20 2013-12-18 株式会社日立製作所 風力発電システム
US8760863B2 (en) 2011-10-31 2014-06-24 International Business Machines Corporation Multi-rack assembly with shared cooling apparatus
US8817474B2 (en) 2011-10-31 2014-08-26 International Business Machines Corporation Multi-rack assembly with shared cooling unit
CN102611017A (zh) * 2012-03-31 2012-07-25 山东电力集团公司枣庄供电公司 电气设备屏、柜降温装置
JP5928199B2 (ja) * 2012-07-02 2016-06-01 富士通株式会社 情報処理装置とその制御方法
EP2685798B1 (en) * 2012-07-11 2019-02-13 ABB Schweiz AG An electrical room of an industrial equipment such as a container crane, the electrical room comprising a cooling device
CN103629780A (zh) * 2012-08-29 2014-03-12 鸿富锦精密工业(深圳)有限公司 散热系统及散热方法
DE102012108109B4 (de) * 2012-08-31 2014-04-10 Rittal Gmbh & Co. Kg Wärmetauscher für die Schaltschrankkühlung und eine entsprechende Kühlanordnung
US8925333B2 (en) 2012-09-13 2015-01-06 International Business Machines Corporation Thermoelectric-enhanced air and liquid cooling of an electronic system
CN102984924B (zh) * 2012-11-26 2016-03-02 北京德能恒信科技有限公司 一种数据中心散热方案
US10041743B2 (en) * 2013-01-07 2018-08-07 Carrier Corporation Energy recovery ventilator
EP2762796A1 (en) * 2013-02-04 2014-08-06 ABB Oy Cooling assembly
EP2762810A1 (en) * 2013-02-04 2014-08-06 ABB Oy Cooling assembly and dehumidification method
CA2808647C (en) * 2013-03-08 2014-08-26 Biochambers Incorporated A controlled environment enclosure with built-in sterilization/pasteurization functionality
CN103151719A (zh) * 2013-03-17 2013-06-12 安徽皖翔电力设备有限公司 欧式变电站散热装置
CN103974603A (zh) * 2014-04-17 2014-08-06 江苏省邮电规划设计院有限责任公司 一种用于中低功率密度电子信息机房的微功耗散热机柜
WO2016157818A1 (ja) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 冷却装置
DE102015105490B3 (de) 2015-04-10 2016-08-04 Rittal Gmbh & Co. Kg Kühlgerät für die Kühlung der im Innenraum eines Schaltschranks aufgenommenen Luft und eine entsprechende Schaltschrankanordnung
US9622388B1 (en) * 2016-02-10 2017-04-11 Ciena Corporation Multi-directional fans in an electronic chassis supporting extended range temperature operation
CN106782994B (zh) * 2016-12-29 2019-08-23 上海联影医疗科技有限公司 冷却系统及磁共振设备
US10636319B2 (en) * 2017-04-21 2020-04-28 Two Sparrows Learning Systems, Inc. Adaptive writing utensil
DE102019124005A1 (de) * 2019-09-06 2021-03-11 Andreas Hettich Gmbh & Co. Kg Wärmetauscheranordnung zur Befestigung an einer Gerätewand
WO2023186819A1 (en) 2022-03-29 2023-10-05 Illumina Cambridge Limited Chromenoquinoline dyes and uses in sequencing
WO2025006460A1 (en) 2023-06-30 2025-01-02 Illumina, Inc. Systems and methods of sequencing polynucleotides with modified bases
WO2025006464A1 (en) 2023-06-30 2025-01-02 Illumina, Inc. Systems and methods of sequencing polynucleotides with alternative scatterplots
WO2025006466A1 (en) 2023-06-30 2025-01-02 Illumina, Inc. Systems and methods of sequencing polynucleotides with four labeled nucleotides

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4562955A (en) 1983-04-28 1986-01-07 U.S. Philips Corporation Air-conditioner
JPH0416588Y2 (ja) * 1987-08-10 1992-04-14
JPH0474491U (ja) * 1990-11-07 1992-06-30
JPH05145261A (ja) * 1991-11-20 1993-06-11 Nec Corp 電子機器の冷却構造
DE9218368U1 (de) 1992-12-16 1994-01-05 Hansa Ventilatoren Und Maschinenbau Neumann Gmbh & Co Kg, 26683 Saterland Klimagerät
JPH09116285A (ja) * 1995-10-23 1997-05-02 Hitachi Ltd 車両用電気機器装置
JP2694515B2 (ja) * 1995-03-01 1997-12-24 エス・ティエス株式会社 冷却装置
JPH10300128A (ja) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd 冷媒自然循環冷却除湿装置およびこの装置を併設した空気調和装置
JPH11182895A (ja) * 1997-12-17 1999-07-06 Mitsubishi Electric Corp 空気調和機
US6038879A (en) 1995-08-08 2000-03-21 Yvon Turcotte Combined air exchange and air conditioning unit
JP2000349478A (ja) * 1999-06-04 2000-12-15 Nec Gumma Ltd ファン制御装置
JP2001041503A (ja) * 1999-08-03 2001-02-16 Mitsubishi Electric Corp 通信基地局の筐体冷却システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295342A (en) * 1977-10-27 1981-10-20 James Parro Heat exchange method using natural flow of heat exchange medium
DE3405584A1 (de) * 1984-02-16 1985-08-22 Weiss Technik GmbH Umwelt-Klima-Messtechnik, 6301 Reiskirchen Klimaschrank
JPS63118546A (ja) * 1986-11-05 1988-05-23 Takenaka Komuten Co Ltd ビル空調システム
JPS63291717A (ja) * 1987-05-25 1988-11-29 Toshiba Corp 車両用空気調和機
GB8719345D0 (en) * 1987-08-14 1987-09-23 British Telecomm Cooling equipment
JPH01285725A (ja) * 1988-05-09 1989-11-16 Mitsubishi Electric Corp 空冷式冷却装置
JPH0416588A (ja) 1990-05-11 1992-01-21 Ishikawajima Harima Heavy Ind Co Ltd 単結晶の製造方法及びその装置
JPH0474491A (ja) 1990-07-17 1992-03-09 Mitsubishi Electric Corp 多層プリント配線板
US5406807A (en) * 1992-06-17 1995-04-18 Hitachi, Ltd. Apparatus for cooling semiconductor device and computer having the same
SE505455C2 (sv) * 1993-12-22 1997-09-01 Ericsson Telefon Ab L M Kylsystem för luft med två parallella kylkretsar
JPH08189713A (ja) * 1995-01-13 1996-07-23 Daikin Ind Ltd 二元冷凍装置
DE29500901U1 (de) * 1995-01-23 1995-03-09 Otto Pfannenberg Elektro-Spezialgerätebau GmbH, 21035 Hamburg K]hlger[t zur K]hlung von elektrischen und elektronischen Bauteilen und von Batterien in einem Schaltschrank
JP3956418B2 (ja) * 1997-03-04 2007-08-08 株式会社デンソー 筐体冷却装置
JP3327215B2 (ja) * 1998-07-22 2002-09-24 三菱電機株式会社 空気調和機の冷媒充填量決定方法
JP2000046423A (ja) * 1998-07-31 2000-02-18 Mitsubishi Electric Building Techno Service Co Ltd 自然循環式冷房装置
US6539736B1 (en) * 1999-08-03 2003-04-01 Mitsubishi Denki Kabushiki Kaisha Method for controlling to cool a communication station
JP2001099446A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp 空気調和機、非加湿型発熱体収納冷却施設
JP2001108275A (ja) * 1999-10-08 2001-04-20 Mitsubishi Electric Corp 冷媒自然循環併用形空調機の制御方式
AU2001270483A1 (en) * 2000-07-06 2002-01-21 Dantherm Hms A/S A cooling system for active and passive operation
IT1319610B1 (it) * 2000-12-22 2003-10-20 Siemens Inf & Comm Networks Procedimento e apparecchiatura per il condizionamento termico diarmadi contenenti apparecchiature elettroniche
KR100877335B1 (ko) * 2002-02-27 2009-01-07 한자 벤틸라토렌 운트 마쉬넨바우 노이만 게엠베하 운트 코. 카게 공기조화기

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4562955A (en) 1983-04-28 1986-01-07 U.S. Philips Corporation Air-conditioner
JPH0416588Y2 (ja) * 1987-08-10 1992-04-14
JPH0474491U (ja) * 1990-11-07 1992-06-30
JPH05145261A (ja) * 1991-11-20 1993-06-11 Nec Corp 電子機器の冷却構造
DE9218368U1 (de) 1992-12-16 1994-01-05 Hansa Ventilatoren Und Maschinenbau Neumann Gmbh & Co Kg, 26683 Saterland Klimagerät
JP2694515B2 (ja) * 1995-03-01 1997-12-24 エス・ティエス株式会社 冷却装置
US6038879A (en) 1995-08-08 2000-03-21 Yvon Turcotte Combined air exchange and air conditioning unit
JPH09116285A (ja) * 1995-10-23 1997-05-02 Hitachi Ltd 車両用電気機器装置
JPH10300128A (ja) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd 冷媒自然循環冷却除湿装置およびこの装置を併設した空気調和装置
JPH11182895A (ja) * 1997-12-17 1999-07-06 Mitsubishi Electric Corp 空気調和機
JP2000349478A (ja) * 1999-06-04 2000-12-15 Nec Gumma Ltd ファン制御装置
JP2001041503A (ja) * 1999-08-03 2001-02-16 Mitsubishi Electric Corp 通信基地局の筐体冷却システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1489894A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596200A (zh) * 2015-01-30 2015-05-06 新乡市东海轻工机械有限公司 无氟自动控温冷藏罐

Also Published As

Publication number Publication date
KR100546150B1 (ko) 2006-01-24
US20040148948A1 (en) 2004-08-05
EP1489894A4 (en) 2009-02-18
KR20030094373A (ko) 2003-12-11
JP2003289195A (ja) 2003-10-10
CN1511436A (zh) 2004-07-07
EP2203038A3 (en) 2013-02-27
US6997006B2 (en) 2006-02-14
EP2203038A2 (en) 2010-06-30
EP1489894A1 (en) 2004-12-22
EP1489894B1 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2003084300A1 (en) Cooling device
US9568206B2 (en) Method and apparatus for cooling
US8583289B2 (en) Climate control system for data centers
US7788940B2 (en) Electronic equipment cabinet with integrated, high capacity, cooling system, and backup ventilation
KR100367349B1 (ko) 통신중계기지국의 냉각제어방식
CN107906640B (zh) 一种用于数据中心的集成蓄冷空调系统及其控制方法
JPH1019305A (ja) 冷却システム
JP2009264715A (ja) ヒートポンプ温水システム
JP2010206055A (ja) 電子機器冷却装置
JPH0634208A (ja) 空気調和機の電気品箱冷却装置
JPH11287524A (ja) 自然循環併用式空気調和機
CN114198872A (zh) 一种机房空调、机房空调的运行控制方法及装置
JP2002277002A (ja) 筐体冷却システム
JPH05157372A (ja) 空気調和機の電気品箱冷却装置
KR100695252B1 (ko) 자연공조지열시스템
KR100671301B1 (ko) 공기조화기
JP2003287329A (ja) 冷却装置
KR101204443B1 (ko) 멀티형 공기조화기 및 그 제어방법
KR20060069714A (ko) 공기 조화기의 압축기 토출온도 상승 억제 방법
JP7590660B2 (ja) 熱源ユニット、熱源システム、および冷凍装置
JPH07151420A (ja) 空調給湯装置
KR100632023B1 (ko) 공기조화기의 핫가스 바이패스 밸브 제어 방법
CN116538590A (zh) 一种空调装置
KR100261809B1 (ko) 히트펌프에어컨의운전제어방법
JP2004125194A (ja) 冷却装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 1020037014168

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 038003139

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10478215

Country of ref document: US

Ref document number: 2003710461

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003710461

Country of ref document: EP