WO2002048219A1 - Polymere lamellaire organique/inorganique du type perovskite - Google Patents
Polymere lamellaire organique/inorganique du type perovskite Download PDFInfo
- Publication number
- WO2002048219A1 WO2002048219A1 PCT/JP2001/010090 JP0110090W WO0248219A1 WO 2002048219 A1 WO2002048219 A1 WO 2002048219A1 JP 0110090 W JP0110090 W JP 0110090W WO 0248219 A1 WO0248219 A1 WO 0248219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- perovskite
- inorganic
- layered perovskite
- irradiation
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 41
- 230000005855 radiation Effects 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 238000004132 cross linking Methods 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000000203 mixture Chemical group 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 abstract description 21
- 239000012044 organic layer Substances 0.000 abstract description 19
- 150000001412 amines Chemical class 0.000 abstract description 12
- 229910001507 metal halide Inorganic materials 0.000 abstract description 6
- 150000005309 metal halides Chemical class 0.000 abstract description 6
- 229910052736 halogen Inorganic materials 0.000 abstract description 5
- 150000002367 halogens Chemical class 0.000 abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 abstract 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract 1
- 229910052693 Europium Inorganic materials 0.000 abstract 1
- 229910052793 cadmium Inorganic materials 0.000 abstract 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 abstract 1
- 239000010949 copper Substances 0.000 abstract 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 abstract 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 21
- 238000010521 absorption reaction Methods 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 238000000862 absorption spectrum Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000005251 gamma ray Effects 0.000 description 4
- 229920000015 polydiacetylene Polymers 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- LLCSWKVOHICRDD-UHFFFAOYSA-N buta-1,3-diyne Chemical group C#CC#C LLCSWKVOHICRDD-UHFFFAOYSA-N 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- -1 halogen ion Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910001502 inorganic halide Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F38/00—Homopolymers and copolymers of compounds having one or more carbon-to-carbon triple bonds
- C08F38/02—Acetylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
Definitions
- the present invention relates to an organic / inorganic layered perovskite-type polymer conjugate which can be applied to an EL device, a time-space conversion device, and the like having excellent light emission characteristics and nonlinear characteristics.
- a of organic Anmoyuumu molecules, walk IV group element of M is represented by the general formula A 2 MX 4 transition metal, X as halogen, organic Anmoniumu partial child A layer and the inorganic Nono Ride Organic ammonium / inorganic halide layer forming a superlattice structure in which four layers of MX are alternately stacked (Fig. 1). It relates to a lobskite-type polymer compound.
- An object of the present invention is to improve the stability of a quantum well structure of a layered perovskite compound which has excellent optical characteristics and is expected to be applied to light emitting devices and the like.
- a compound having an unsaturated bond such as diacetylene is polymerized by applying external energy such as ultraviolet rays or radiation under a regular arrangement.
- the organic amines in the layered perovskite compound are arranged almost perpendicularly to the inorganic layer due to the halogen ion and hydrogen bond of the inorganic layer and the van der Waals force between organic molecules.
- the organic amines are regularly arranged according to the arrangement of the metals.
- perovskite-type compounds have high radiation resistance. Therefore, by introducing unsaturated bonds such as double bonds and triple bonds into the organic layer and irradiating it with radiation, solid-state polymerization can be performed with the structure controlled. It is considered that fluctuation of the organic layer can be reduced by polymerizing the layered perovskite compound in this way. Means to solve the challenge
- the present invention provides an organic layer of an organic-inorganic layered perovskite-type compound comprising a metal halide and an organic amine, into which an amine having an unsaturated bond is introduced, and by applying external energy to the organic layer by irradiation of ultraviolet rays or radiation. Has been polymerized, and the quantum well structure can be stabilized.
- the present invention is a general formula (RNH 3) organic-inorganic layered Perot Pusukaito polymerization compound produced by cross-linking unsaturated bonds of the organic-inorganic layered base ROPS kite-type compounds represented by 2 MX 4.
- R is a hydrogen atom having an unsaturated bond.
- the unsaturated bond may be a double bond or a triple bond, but polymerization of the triple bond is easy.
- the number of unsaturated bonds in R is not particularly limited, but is preferably an appropriate number of carbon atoms for polymerization, and specifically about 2 to 20.
- M is a group IVa metal, Eu, Cd, Cu, Fe, Mn or Pd, preferably an Iva group metal or Eu, more preferably an Iva group metal, more preferably Ge, SnX «Pb most preferably Is P b.
- X represents a halogen atom, preferably Cl, Br or I, most preferably Br. X may be a mixture of these halogens.
- any known means may be used, but irradiation of ultraviolet rays or radiation is simple and preferable.
- the extent to which this unsaturated bond is cross-linked depends on the application and the molecular structure having the unsaturated bond, and may be appropriately determined. It is not necessary to crosslink until the unsaturated bonds are completely eliminated, and if the polymerization is carried out to such an extent that the desired fluctuation is reduced to a desired level, the purpose can be achieved.
- the polymerization conditions for that are items that the polymerization engineer should appropriately design.
- the organic-inorganic layered perovskite-type polymer compound of the present invention has excellent light-emitting characteristics and nonlinear characteristics, it is expected to be applied to EL devices and time-space conversion devices, etc., using the same. Research into application to EL devices and the like has already been conducted. It is believed that the present invention promotes its application. Such polymerization not only stabilizes the organic layer but also has the potential to construct new superlattices. For example, when diacetylene is polymerized, it becomes polydiacetylene. However, since polydiacetylene is a semiconductor, it is possible to make a quantum well structure different from the conventional organic layer having an insulator.
- the organic layer also exhibits a semiconductor characteristic, thereby causing an interaction with the inorganic layer to form a new superlattice structure.
- a superlattice structure is an interesting structure that is expected to improve third-order nonlinear optical characteristics.
- the present invention not only has the effect of accelerating the progress of research on low-dimensional exciton physical properties, but also provides an important technology for developing new optical functional devices.
- Figure 1 shows a schematic diagram of the layered structure (low-dimensional quantum confinement structure) of an organic-inorganic perovskite compound.
- FIG. 2 is a schematic diagram showing a process in which diacetylene bonds are introduced into an organic-inorganic inorganic perovskite-type organic layer, and irradiation with ultraviolet rays and 0 / rays is performed to perform polymerization.
- FIG. 3 shows the change in the FT-IR spectrum of the spin-coated film of (CH 3 (CH 2 ) 2 C ⁇ CC ⁇ CCH 2 NH 3 ) 2 PbBr 4 with respect to the irradiation amount of ultraviolet light.
- the numbers in Katsuko indicate how many times to normalize the absorbance, how many times should the absorbance be equivalent to the one with the highest intensity (similar in Figs. 4 to 7).
- Figure 4 shows the change in X-ray diffraction of the (CH 3 (CH 2) 2 C ⁇ CC ⁇ CCH 2 NH 3) 2 Pb spin-coated film of B r 4 to ultraviolet light irradiation amount.
- FIG. 5 shows the change in the absorption spectrum of (CH 3 (CH 2 ) 2 C ⁇ CC ⁇ CCH 2 NH 3) 2 PbBr 4 Svincoat film with respect to the amount of ultraviolet light irradiation.
- Figure 6 shows the relationship between ⁇ / radiation dose and (CH 3. (CH 2 ) 2 C ⁇ CC ⁇ CCH 2 NH 3 )
- Fig. 7 shows (CH 3 (CH 2 ) 2 C ⁇ CC ⁇ CCH 2 NH 3 ) against ⁇ -ray irradiation dose.
- Fig. 8 shows (CH 3 (CH 2 ) 13 C ⁇ CC ⁇ CCH 2 NH 3 )
- FIG. 9 shows the change in X-ray diffraction of the (CH 3 (CH 2 ) 13 C ⁇ CC ⁇ CCH 2 NH 3 ) 2 PbBr 4 spin-coated film with respect to the ⁇ -ray irradiation amount.
- FIG. 10 shows a change in absorption spectrum of (CH 3 (CH 2 ) 13 C ⁇ CC ⁇ CCH 2 NH 3 ) 2 PbBr 4 powder before and after ⁇ -ray irradiation.
- FIG. 11 shows a change in absorption spectrum immediately after the preparation of the layered perovskite compound without irradiation with 0 rays and after storage for 7 months.
- FIG. 12 shows the change in absorption spectrum immediately after the preparation of the layered perovskite compound irradiated with ⁇ -rays and after storage for 7 months.
- the present invention will be illustrated by way of examples, but these are not intended to limit the present invention.
- This layered perovskite compound (CH 3 (CH 2 ) 2 C ⁇ C—C ⁇ C CH 2 NH 3 ) 2 PbBr 4 is dissolved in an organic solvent, N, N-dimethylformamide, and placed on a quartz substrate.
- a sample thin film was prepared by spin coating. The sample thin film was irradiated with 254 nm UV light for 30 to 350 minutes to polymerize it.
- Fig. 2 shows how the organic ammonium layer in the organic-inorganic layered perovskite compound becomes highly molecular.
- Figures 3 to 5 show the change in Fourier infrared spectral spectrum (Fig. 3), X-ray diffraction (Fig. 4), and absorption in the ultraviolet and visible region (Fig. 5) with the increase in irradiation dose due to the UV light irradiation time. . 3, the result of FT_ IR measurement after UV irradiation, 1650 cm one first peak derived from the polydiacetylene backbone is newly discovered, it can be seen that the polymerization proceeded. Although the exact mass density in this range is not clear, most of the acetylene is polymerized due to the change in the infrared absorption spectrum (FT-IR) in Fig. 3. It is estimated that
- Layered base perovskite type compound (CH 3 (CH 2) 2 C ⁇ CC ⁇ CCH 2 NH 3) the 2 PbB r 4 instead of the ultraviolet light used as an energy source for polymerizing, from 6 0 C o
- a thin film sample was prepared in the same manner as in Example 1 except that the y-ray (dose rate 22.3 kGy / h) was used as the energy source, and irradiation was performed at an irradiation amount of 8 to 37 Mrad.
- Figures 6 and 7 show the X-ray diffraction (Fig. 6) and the absorption of ultraviolet and visible light (Fig. 7) with the increase in the amount of y-ray irradiation.
- FIG. 7 shows that exciton absorption is retained after polymerization. That is, it was confirmed that the polymerization of the organic diacetylenamine layer proceeded in the same manner as in Example 1.
- FIGS. 8 and 9 show changes in ultraviolet-visible absorption and X-ray diffraction, respectively, with an increase in the amount of ⁇ -ray irradiation of the spin-coated film.
- the colorless and transparent perovskite thin film before irradiation showed an exciton absorption at 378 ⁇ m based on a two-dimensional quantum confinement structure. Irradiation of 19 Mr a gamma rays turns the perovskite thin film red.
- the powder of the layered perovskite compound (CH 3 (CH 2 ) 13 C CC—C CC H 2 NH 3 ) 2 PbBr 4 was irradiated with ⁇ -rays of 19 Mrad, and the powder before and after the irradiation was irradiated.
- FIG. 10 shows the absorption spectrum measured by dispersing the compound in KBr. From this spectrum, the absorption around 550 ⁇ m based on the ⁇ - ⁇ * transition of the polymer of the layered perovskite compound can be clearly seen.
- the layered perovskite compound prepared in Example 1 was stored at room temperature for 7 months in the dark, and the absorption spectrum was measured immediately after the preparation of this compound and after storage for 7 months.
- FIG. 11 shows the spectrum change.
- FIG. 12 shows the spectrum transformation.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Luminescent Compositions (AREA)
- Polymerisation Methods In General (AREA)
Description
明 細 書 有機無機層状べロブスカイト型重合化合物 技術分野
この発明は、 発光特性、 非線形特性に優れる E L素子や時間-空間変換素子等 へ応用可能な有機無機層状べロブスカイト型重合ィ匕合物に関する。
更に詳細には、 この発明は、 Aを有機アンモユウム分子、 Mを IV族元素あるい は遷移金属、 Xをハロゲンとして一般式 A 2MX 4で表され、 有機アンモニゥム分 子 A層と無機ノヽライド MX 4層が交互に積層した超格子構造 (図 1 ) を形成する 有機アンモニゥム ·無機ハラィド層状べロブスカイト型化合物の有機層を高分子 化することにより、 安定化された構造を有する有機無機層状べロブスカイト型重 合化合物に関する。 従来技術
一般式 (R NH3) 2MX4で表される層状ぺロブスカイト型化合物は、 図 1に 示すように、 八面体構造のハロゲン化金属 MX 6が頂点共有により、 二次元的に 連なった無機半導体層 (ハロゲン化金属(MX4 2— )層) と有機アンモニゥム R NH 3誘電体層とが交互に積層した量子井戸構造を自己組織的に形成する。 この有機 誘電体層のパンドギャップが無機半導体層のそれに比べて非常に大きいため、 電 子が無機半導体層に閉じこめられた構造を形成する。 この電子は無機半導体層二 次元平面に閉じこめられており (この構造を 「量子井戸構造」 という。) この量子 閉じこめ構造に基づ 、て、 この化合物は非常に強!/ヽ発光特性や高!/ヽ三次非線形光 学特性を示す。
特に、 (P b X4) 2一を無機半導体層とするものでは、 その低次元半導体構造に 基づき、数百 me Vの大きな束縛エネルギーを有する安定な励起子を形成し、室温 ■ でも強い励起子吸収、 及び発光を示すなどの興味深い励起子特†生を示す。 また、 1 0— 5 e s uオーダーの大きな 3次の非線形感受率を有すること等も確認され ており、 エレクト口ルミネッセンスや光励起レーザ発振など、 光学材料への応用
が期待されている。
特に、 (C nH 2 n + 1 NH 3) 2 P b I 4は励起子効果の最も顕著な物質である。 し力 し、 このような層状ぺロブスカイト型化合物は、 光、 熱、 湿度に対する安 定性が低いため、 応用化への問題がある。 この不安定性は光によって引き起こさ れるハロゲンの脱離と有機層中のァミンの揺らぎによるものと考えられる。 発明が解決しょうとする課題
本発明の目的は、 光学特性に優れ、 発光素子等の応用が期待される層状べロブ スカイト型化合物の量子井戸構造の安定性を高めることである。
即ち、 ジアセチレン等の不飽和結合を有する化合物は規則正しい配列下におい て、 紫外線や放射線等の外部エネルギーを加えられることにより、 高分子化する ことが知られている。 層状ぺロブスカイト型化合物中の有機アミンは、 無機層の ハロゲンイオンと水素結合、およぴ有機分子間のファンデルヮ一ルス力によって、 無機層にほぼ垂直に配列している。 また、 その有機アミンは、 金属の配列によつ て、規則正しく配列している。一方、ぺロプスカイト型化合物は耐放射線が高い。 そこで、 有機層に二重結合や三重結合などの不飽和結合を導入し、 放射線照射す ることで、 構造規制した状態で固相重合が可能である。 このようにして、 層状べ ロブスカイト型化合物を高分子化することにより有機層のゆらぎを減少させるこ とが可能になると考えられる。 難題を解決するための手段
本発明は、 ハロゲン化金属と有機ァミンからなる有機無機層状ぺロプスカイト 型化合物の有機層に不飽和結合を有するァミンを導入し、 これに紫外線や放射線 の照射等により外部エネルギーを加えることにより有機層が高分子化され、 その 量子井戸構造の安定化ができることを見出した。
特に、 後述の実施例においては、 より安定性の向上が期待できる臭化鉛 P b B r 2を無機脣に、 ジアセチレン結合等の不飽和結合を有するアミンを有機層に導 入し、 これを重合することにより、 安定性の高い有機'無機層状べロプスカイト 型化合物が得られることを明らかにした。
さらに、 この手法を応用すれば、 有機層を単なる障壁層ではなく、 共役系構造 を有する機能性を導入した能動的障壁層とした有機 ·無機超格子の構築も可能で ある。
即ち、 本発明は、 一般式 (RNH3) 2MX4で表される有機無機層状べロプス カイト型化合物の不飽和結合を架橋させることにより生成する有機無機層状ぺロ プスカイト型重合化合物である。
式中、 Rは不飽和結合を有する炭ィ匕水素基である。 この不飽和結合は二重結合 又は三重結合の何れでもよいが、 三重結合の重合は容易である。 R中の不飽和結 合の数にも特に制限は無い。 Rの炭素数に特に制限は無いが、 重合するために適 度な炭素数が好ましく、 具体的には 2〜 20程度である。 また、 Rは直鎖状又は 分枝状の何れでもよいが、 重合しやすさから直鎖が好ましい。 Rとしては、 例え ば、 CH3 (CH2) nC≡C— C≡CCH2で表される炭化水素基が挙げられる(好 ましくは n=2〜: 14)。 Mは I V a族金属、 Eu、 Cd、 Cu、 Fe、 Mn又は Pdであり、 好ましくは I Va族金属又は Eu、 より好ましくは I Va族金属、 更に好ましくは Ge、 S nX«P b 最も好ましくは P bである。 Xはハロゲン 原子を表し、 好ましくは C l、 B r又は Iであり、 最も好ましくは B rである。 また、 Xはこれらハロゲンの混合であってもよい。
また、 有機層を架橋させる手段、 特に有機層に含まれる不飽和結合を架橋させ る手段としては、 公知のいかなる手段を用いてもよいが、 紫外線や放射線の照射 等が簡便であり、好ましい。この不飽和結合をどの程度架橋させるかについては、 その用途や不飽和結合を有する分子構造により異なるため、適宜決められてよい。 完全に不飽和結合がなくなるまで架橋させる必要は必ずしも無く、 目的とする揺 らぎが所望の程度まで減少させる程度に重合させれば、 その目的を達することが 出来るであろう。 そのための重合条件は、 重合技術者が適宜設計すべき事項であ る。
本発明の有機無機層状ぺロブスカイト型重合化合物は、 発光特性、 非線形特性 に優れているため、 それを応用した E L素子や時間-空間変換素子などへの応用 が期待されており、 これまでにも E L素子等への応用はすでに研究が行われてい る。 この発明によって、 その応用化が促進されるものと考えられる。
このような重合は有機層の安定化のみならず、 新規超格子の構築の可能性を含 んでいる。 例えば、 ジアセチレンを重合すると、 ポリジアセチレンとなるが、 ポ リジアセチレンは半導体であるため、 これまでの絶縁体を有する有機層と異なつ た量子井戸構造を作ることが可能となる。 更に、 有機層も半導体特性を示すこと によって、 無機層との相互作用が生じ、 新たな超格子構造を形成すると考えられ る。 このような超格子構造は、 三次非線形光学特性の向上が期待される興味深い 構造である。
本発明は、 低次元励起子物性研究の進展を加速する効果をもつのみならず、 新 たな光機能性デバイス開発に向けての重要な技術を提供するものである。 図面の簡単な説明
第 1図は、 有機無機べロプスカイト型化合物の層状構造 (低次元系量子閉じ込 め構造) の模式図を示す。
第 2図は、 有機無機べロプスカイト型の有機層にジアセチレン結合を導入し、 紫外線、 0/線を照射し、 重合を行う過程を示す模式図を示す。
第 3図は、紫外光照射量に対する (CH3 (CH2) 2C≡C-C≡CCH2NH 3) 2P b B r 4のスピンコート膜の FT— I Rスペクトルの変化を示す。 カツコ 内の数字は、 吸光度を規格化するために、 何倍すれば、 一番強度の大きいものと 同等の吸光度になるかということ示す (図 4〜 7においても同様)。
第 4図は、紫外光照射量に対する (CH3 (CH2) 2C≡C-C≡CCH2NH 3) 2Pb B r 4のスピンコート膜の X線回折の変化を示す。
第 5図は、 紫外光照射量に対する (CH3 (CH2) 2C≡C-C≡CCH2NH 3) 2 P b B r 4スビンコ一ト膜の吸収スぺク トルの変化を示す。
第 6図は、 τ/線照射量に対する (CH3.(CH2) 2C≡C-C≡CCH2NH3)
2 PbB r 4のスピンコート膜の X線回折の変化を示す。
第 7図は、 γ線照射量に対する (CH3 (CH2) 2C≡C-C≡CCH2NH3).
2 P b B r 4スピンコート膜の吸収スぺクトルの変ィ匕を示す。
第 8図は、 線照射量に対する(CH3 (CH2) 13C≡C-C≡CCH2NH3)
2 P b B r 4スビンコ一ト膜の吸収スぺクトルの変化を示す。
第 9図は、 γ線照射量に対する(CH3 (CH2) 13C≡C-C≡CCH2NH3) 2 P b B r 4スピンコート膜の X線回折の変化を示す。
第 10図は、 γ線照射の前後における (CH3 (CH2) 13C≡C-C≡CCH 2NH3) 2Pb B r 4粉末の吸収スぺク トルの変化を示す。
第 11図は、 0線非照射の層状べロブスカイト型化合物の作成直後と 7ヶ月保 管後の吸収スぺク トルの変化を示す。
第 12図は、 γ線照射の層状べロブスカイト型化合物の作成直後と 7ヶ月保管 後の吸収スぺクトルの変化を示す。 以下、 実施例により本発明を例証するが、 これらは本発明を制限することを意 図したものではない。
実施例 1
ハロゲン化金属として臭化鈴 P b B r 2を、 有機アミンハロゲンィ匕水素酸塩と して CH3 (CH2) 2C≡C— C≡CCH2NH3B rを採用し、 両者を 1 : 2の モル比率で N, N—ジメチルホルムアミド (HCON (CH3) 2) 中で反応させ ることにより、 ジアセチレン結合を有するアミンを有機層に導入した層状ぺロブ スカイト型ィ匕合物 (CH3 (CH2) 2C≡C-C≡CCH2NH3) 2PbB r4を 合成した。 この層状ぺロブスカイト型化合物 (CH3 (CH2) 2C≡C— C≡C CH2NH3) 2PbB r4を有機溶媒である N, N—ジメチルホルムアミドに溶解 して、 石英基板上にスピンコートすることで、 試料薄膜を作製した。 254nm の紫外光を試料薄膜に照射時間を 30〜 350分間照射し、 高分子化を行った。 この有機無機層状べロプスカイト型化合物中における有機アンモニゥム層の高分 子化の様子を図 2に示す。
図 3〜 5に、 この紫外光照射時間による照射量の増加に伴うフーリェ赤外分光 スぺク トル変化 (図 3)、 X線回折 (図 4) 及び紫外可視部吸収 (図 5) を示す。 図 3において、 紫外線照射後の FT_ I R測定の結果、 ポリジアセチレン主鎖 に由来する 1650 cm一1のピークが新たに確認され、高分子化が進行したこと が分かる。また、この照射量の範囲における正確な重^ 1行度は明確ではないが、 図 3の赤外吸収スぺク トル(FT— I R)変化によりアセチレンの大部分は重合
していると推定される。
図 4においては、 照射時間が長くなるにつれ各ピークが入射角の大きい方ヘシ フトしているの力 S認められる。 照射により層間距離が減少していることから、 層 状ぺロブスカイト型化合物中において重合反応が進行し、 有機層の高分子化が起 こり、 新たな層構造が得られていることが分かる。
また、 図 5において、 重合後も励起子吸収 (380 nm) が保持されているこ とが認められる。 380 nmのピークは前述の量子井戸中に形成された励起子に よる吸収であり、 この吸収が確認されるということは、 重合後も量子井戸構造が 保持されていることがを示している。 実施例 2
層状べロブスカイト型化合物 (CH3 (CH2) 2C≡C-C≡CCH2NH3) 2 PbB r 4を高分子化するためのエネルギー源として用いた紫外光の代わりに、 6 0 C oからの y線 (線量率 22. 3 kGy/h) をエネルギー源とした他は、 実 施例 1と同様に、薄膜試料を作成し、 8〜37Mr a dの照射量で照射を行った。 図 6〜7に、 この y線照射量の増加に伴う X線回折 (図 6) 及び紫外可視部吸 収 (図 7) を示す。
図 6において、 照射により層間距離が変ィ匕していることから、 層状ぺロブス力 ィト型化合物中において重合反応が進行し、 有機層の高分子ィ匕が起こっているこ とがわかる。
図 7は、 重合後も励起子吸収が保持されていることを示している。 即ち、 実施 例 1と同様に有機ジアセチレンァミン層の高分子化が進行したことが確認できた。 実施例 3
ハロゲン化金属として臭化鉛 P b B r 2を、 有機ァミンハロゲンィ匕水素酸塩と して CH3 (CH2) 13C≡C— C≡CCH2NH3B rを採用し、両者を 1 : 2の モル比率で N, N—ジメチルホルムアミド中で反応させることにより、 ジァセチ レン結合を有するアミンを有機層に導入した層状べロブスカイト型化合物 (CH 3 (CH2) 13C≡C-C≡CCH2NH3) 2PbB r4を合成した。 こうして得
られた粉末試料を、 有機溶媒である N, N—ジメチルホルムアミドに溶解して、 石英基板上にスピンコートすることで、 薄膜を作製した。 この粉末、 薄膜、 両形 態の試料に対し、 6。 Coからの T/線(線量率 22. 3 kGy/h r)を 14〜2 7 Mr a dの線量範囲で照射した。
このスピンコート膜の γ線照射量の増加に伴う、 紫外可視部吸収及び X線回折 の変化をそれぞれ図 8及び 9示す。 図 8に示すように、 照射前の無色透明のぺロ ブスカイト薄膜は、 二次元系量子閉じ込め構造に基づく、 励起子吸収を 378 η mに示した。 1 9 Mr a dの γ線を照射すると、 当該ぺロブスカイト薄膜は赤 色化する。 このときの吸収スぺクトルでは、 380 nm付近の励起子吸収ととも にポリジアセチレンの π-π *遷移に基づく吸収が 5,50 nmに生じており、 ジ ァセチレンの重合によって π共役系が有機層中に形成されていることが示された。 また、 図 9に示す X線回折の結果から、 γ線照射による重合後も、 層状構造が保 たれ、 更にその層間距離が増大することも明らかとなった。 このような重合によ つて、 有機層に π共役系を導入した新規超格子構造の構築が可能となつた。
なお、 この層状ぺロブスカイト型化合物 (CH3 (CH2) 13C≡C— Cョ CC H2NH3) 2PbB r4の粉末に 19 Mr a dの γ線を照射し、 その照射前後の 粉末を KB rに分散させて測定した吸収スぺク トルを図 10に示す。 このスぺク トルから層状べロブスカイト型化合物の重合物の π-π *遷移に基づく 550 η m付近における吸収がはっきり見てとれる。 実施例 4
実施例 1で作成した層状べロプスカイト型化合物 線非照射) を遮光して室 温で 7ヶ月保存し、 この化合物の作成直後と 7ヶ月保管後の吸収スぺクトルを測 定した。 そのスぺクトル変化を図 11に示す。
一方、 実施例 2のように層状べロプスカイト型化合物に 19 Mr a dの γ線 を照射した後に、 遮光して室温で 7ヶ月保存し、 この化合物の照射直後と 7ヶ月 保管後の吸収スぺクトルを測定した。 そのスぺクトル変ィ匕を図 12に示す。
これらのスぺクトノレ;^ら、 重合していない層状べロブスカイト型化合物の 38 Onm付近の励起子吸収 (図 1 1) が 1. 0から 0. 45へ下がっているのに対
し、 重合した層状べロブスカイト型化合物の 380 nm付近の励起子吸収 (図 1 2) が 1. 0から 0. 69へしか下がっておらず、 重合した層状ぺロブスカイト 型ィ匕合物の量子井戸構造が安定になっていることが分かる。
Claims
1. 一般式 (RNH3) 2MX4で表される有機無機層状ぺロプスカイト型化合物 (式中、 Rは不飽和結合を有する炭化水素基、 Xはハロゲン原子又はその混合、
Mは IV a族金属、 Eu、 Cd、 Cu、 Fe、 Mn又は Pdを表す。) の該不飽和 結合を架橋させることにより生成する有機無機層状べロプスカイト型重合化合物。
2. 前記不飽和結合を紫外線又は放射線で架橋させた請求項 1に記載の有機無機 層状べロプスカイト型重合化合物。
3. 前記 Rが CH3 (CH2) nC≡C— C≡CCH2で表され (式中、 nは 2〜1 4を表す。)、 前記 Mが P bである請求項 1又は 2に記載の有機無機層状べロプス カイト型重合化合物。
4. 前記 Xが臭素原子である請求項 1〜 3のいずれ力—項に記載の有機無機層状 ぺロブスカイト型重合ィヒ合物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/182,611 US6716927B2 (en) | 2000-12-15 | 2001-11-19 | Perovskite-type organic/inorganic lamellar polymer |
CA002398371A CA2398371C (en) | 2000-12-15 | 2001-11-19 | Perovskite-type organic/inorganic lamellar polymer |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-382274 | 2000-12-15 | ||
JP2000382274 | 2000-12-15 | ||
JP2001036429A JP3529733B2 (ja) | 2000-12-15 | 2001-02-14 | 有機無機層状ペロブスカイト型重合化合物 |
JP2001-036429 | 2001-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002048219A1 true WO2002048219A1 (fr) | 2002-06-20 |
Family
ID=26605925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/010090 WO2002048219A1 (fr) | 2000-12-15 | 2001-11-19 | Polymere lamellaire organique/inorganique du type perovskite |
Country Status (4)
Country | Link |
---|---|
US (1) | US6716927B2 (ja) |
JP (1) | JP3529733B2 (ja) |
CA (1) | CA2398371C (ja) |
WO (1) | WO2002048219A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004090571A1 (ja) * | 2003-04-10 | 2004-10-21 | Japan Science And Technology Agency | 放射線検出装置 |
US9012891B2 (en) * | 2011-07-28 | 2015-04-21 | Industry-University Cooperation Foundation Hanyang University | Hybrid organic-inorganic thin film and producing method of the same |
JP2014229747A (ja) * | 2013-05-22 | 2014-12-08 | ペクセル・テクノロジーズ株式会社 | ペロブスカイト化合物を用いた光電変換素子およびその製造方法 |
WO2015035216A1 (en) * | 2013-09-06 | 2015-03-12 | The Board Of Trustees Of The Leland Stanford Junior University | Reversible and irreversible chemisorption in nonporous, crystalline hybrid structures |
WO2015061555A1 (en) * | 2013-10-23 | 2015-04-30 | The Board Of Trustees Of The Leland Stanford Junior University | Two-dimensional perovskite phosphor and method of formation |
JP2016082006A (ja) * | 2014-10-14 | 2016-05-16 | 積水化学工業株式会社 | 太陽電池の製造方法 |
CN104388089B (zh) * | 2014-11-04 | 2017-06-06 | 深圳Tcl新技术有限公司 | 一种杂化钙钛矿量子点材料的制备方法 |
JP6607381B2 (ja) * | 2015-08-28 | 2019-11-20 | 国立大学法人佐賀大学 | 層状ペロブスカイト薄膜の製造方法及びそれを用いたキャビティポラリトンレーザ |
CN106531889B (zh) * | 2016-12-26 | 2019-04-23 | 英利集团有限公司 | 基于聚乙二炔/钙钛矿纳米复合薄膜的太阳能电池及制备方法 |
CN110799626B (zh) * | 2017-06-23 | 2023-02-28 | 住友化学株式会社 | 组合物、膜、层叠结构体、发光装置、显示器及组合物的制造方法 |
JPWO2021039527A1 (ja) * | 2019-08-27 | 2021-03-04 | ||
CN111533842B (zh) * | 2020-05-25 | 2021-07-27 | 华中科技大学 | 一种聚合物/钙钛矿复合材料的制备方法 |
EP4032961A1 (en) | 2021-01-21 | 2022-07-27 | Universität für Bodenkultur Wien | Ligand-supported perovskite luminescent crystal composition and method for producing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997044712A1 (en) * | 1996-05-24 | 1997-11-27 | Symetrix Corporation | Photosensitive solutions and use thereof in making thin films |
JPH11322845A (ja) * | 1998-05-18 | 1999-11-26 | Nof Corp | ポリビニル安息香酸及びその製造方法 |
JP2000191925A (ja) * | 1998-12-25 | 2000-07-11 | Toagosei Co Ltd | 有機無機複合体 |
WO2001087896A1 (fr) * | 2000-05-15 | 2001-11-22 | Japan Science And Technology Corporation | Procede destine a former un film mince a partir d'un compose de perovskite lamellaire inorganique/d'ammonium organique |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483787A (ja) * | 1990-07-24 | 1992-03-17 | Ube Ind Ltd | 層状ペロブスカイト型化合物の板状単結晶の作製方法 |
JP2967189B2 (ja) * | 1997-09-01 | 1999-10-25 | 工業技術院長 | ビスマス系層状ペロブスカイト化合物強誘電体薄膜用前駆体の製造方法 |
JP3542077B2 (ja) * | 2000-09-08 | 2004-07-14 | 独立行政法人 科学技術振興機構 | 有機アンモニウム・無機層状ペロブスカイト化合物とその製造方法 |
-
2001
- 2001-02-14 JP JP2001036429A patent/JP3529733B2/ja not_active Expired - Fee Related
- 2001-11-19 CA CA002398371A patent/CA2398371C/en not_active Expired - Fee Related
- 2001-11-19 WO PCT/JP2001/010090 patent/WO2002048219A1/ja active Application Filing
- 2001-11-19 US US10/182,611 patent/US6716927B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997044712A1 (en) * | 1996-05-24 | 1997-11-27 | Symetrix Corporation | Photosensitive solutions and use thereof in making thin films |
JPH11322845A (ja) * | 1998-05-18 | 1999-11-26 | Nof Corp | ポリビニル安息香酸及びその製造方法 |
JP2000191925A (ja) * | 1998-12-25 | 2000-07-11 | Toagosei Co Ltd | 有機無機複合体 |
WO2001087896A1 (fr) * | 2000-05-15 | 2001-11-22 | Japan Science And Technology Corporation | Procede destine a former un film mince a partir d'un compose de perovskite lamellaire inorganique/d'ammonium organique |
Non-Patent Citations (2)
Title |
---|
Basace, Yvon et al., "Delepine reaction of acetylenic compounds", Bull. Soc. chim. Fr., 1971, Vol. 4, pages 1468-1472 * |
Besace, Yvon et al., "Synthesis of primary [2,4-alkadiyn-1-ylamines] by the Delepine reaction", C. R. Acad. Sci., Ser. C, 1970, Vol. 270, No. 19, pages 1605-1607 * |
Also Published As
Publication number | Publication date |
---|---|
CA2398371A1 (en) | 2002-06-20 |
CA2398371C (en) | 2005-04-26 |
JP2002241435A (ja) | 2002-08-28 |
US20030096902A1 (en) | 2003-05-22 |
US6716927B2 (en) | 2004-04-06 |
JP3529733B2 (ja) | 2004-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002048219A1 (fr) | Polymere lamellaire organique/inorganique du type perovskite | |
Xu et al. | Luminescent sp2-carbon-linked 2D conjugated polymers with high photostability | |
Grüner et al. | Direct determination of the emission zone in a polymer light‐emitting diode | |
EP0506368A2 (en) | Organic functional thin film, fabrication and use thereof | |
US5008127A (en) | Process for the production of a highly-orientated ultralong conjugated polymer | |
Chao et al. | High‐Performance Non‐Volatile Flash Photomemory via Highly Oriented Quasi‐2D Perovskite | |
US10879670B2 (en) | Continuous-wave pumped polymer laser and preparation method thereof | |
Guo et al. | Eco-friendly strategy to improve durability and stability of zwitterionic capping ligand colloidal CsPbBr3 nanocrystals | |
Tunstall-Garcia et al. | The role of polyhedral oligomeric silsesquioxanes in optical applications | |
Zhang et al. | Synthesis and optical properties of novel organic–inorganic hybrid uv (R–NH 3) 2 PbCl 4 semiconductors | |
Peng et al. | Fabrication of high-performance CsPbBr3 perovskite quantum dots/polymer composites via photopolymerization: Implications for luminescent displays and lighting | |
JP2506973B2 (ja) | 光記録媒体の製造方法 | |
Ochonma et al. | Advancements in π-conjugated polymers: harnessing cycloalkyl straps for high-performance π-conjugated materials | |
He et al. | [2+ 2] Cycloaddition-retroelectrocyclization reactivity and thin film transistor performances of carbazole-based platinum polyyne polymers | |
EP0441326B1 (en) | A process for preparing a photo-recording medium | |
Chen et al. | Effects of annealing treatment on the properties of MEH-PPV/titania hybrids prepared via in situ sol–gel reaction | |
Era | Formation of PbBr-based layered perovskite structure having poly (thiophene) as an organic layer by soaking thin film of hydrogen bromide salt of poly (3-aminododecylthiophene) in aqueous lead bromide solution | |
Ogawa | Control of polymerization processes of 10, 12‐pentacosadiynoic acid LB films | |
Nishiyama et al. | Luminescence and Absorption Spectra of Poly (4-vinylpyridine) Thin Films and Their Surface Modification | |
Yan et al. | Photophysical properties of ternary hybrid system of lanthanide center linking organically modified silica and polymeric chain | |
US5248526A (en) | Process for producing polyacetylene or polyacene type long conjugated polymers | |
Suwa et al. | Preparation and evaluation of polyaniline LB films | |
Buchgraber et al. | UV‐Induced Modification of Conjugated Polymers Using Gaseous Organosilanes | |
Panin et al. | Light emission from the polythiophene derivative/ITO structure under electron beam excitation | |
KR101010803B1 (ko) | 결정성 유기 반도체 구조체 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2398371 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10182611 Country of ref document: US |