[go: up one dir, main page]

WO1997000337A1 - Feuille d'acier a surface traitee pourvue d'un revetement de resine a conversion chimique et procede de fabrication de ladite feuille - Google Patents

Feuille d'acier a surface traitee pourvue d'un revetement de resine a conversion chimique et procede de fabrication de ladite feuille Download PDF

Info

Publication number
WO1997000337A1
WO1997000337A1 PCT/JP1996/001663 JP9601663W WO9700337A1 WO 1997000337 A1 WO1997000337 A1 WO 1997000337A1 JP 9601663 W JP9601663 W JP 9601663W WO 9700337 A1 WO9700337 A1 WO 9700337A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
colloid
steel sheet
weight
group
Prior art date
Application number
PCT/JP1996/001663
Other languages
English (en)
French (fr)
Inventor
Tadashi Sakon
Ikuo Jitsuhara
Kenichiro Tadokoro
Maki Sekoguchi
Hiromasa Shoji
Makoto Yamazaki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US08/776,811 priority Critical patent/US5897948A/en
Priority to EP96917707A priority patent/EP0776992A1/en
Publication of WO1997000337A1 publication Critical patent/WO1997000337A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • C23C22/04Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/258Alkali metal or alkaline earth metal or compound thereof

Definitions

  • the present invention relates to a resin-based surface-treated steel sheet and a method for producing the same, and more specifically, to a surface having a resin-based chemical conversion coating film having excellent corrosion resistance, particularly excellent corrosion resistance in a processed portion, and excellent insolubility of hexavalent chrome.
  • the present invention relates to a treated steel sheet and a method for producing the same.
  • chromate treatment is performed. It is common practice to form a coating.
  • chromate treatment there are an electrolytic chromate method and a coating type chromate method.
  • the electrolytic chromate method uses, for example, a bath containing chromic acid as a main component and various anions such as sulfuric acid, phosphoric acid, boric acid, and halogen. This has been done by subjecting steel sheets to cathodic electrolytic treatment.
  • the coating-type chromate method has a problem of elution of chromium from a chromate-treated steel sheet, and a method of reducing hexavalent chromium in advance with a reducing agent has been adopted.
  • chromic acid or chromic acid having a specific chromium ratio of hexavalent to trivalent chromium treated with a liquid containing inorganic colloid and inorganic anion is used.
  • a method of immobilizing chromium by combining it with an organic polymer and a method of further coating an organic polymer on a chromate film are known. It is considered.
  • a metal surface treatment composition comprising a mixture of an inorganic substance which forms a poorly water-soluble salt by reacting with an amphoteric metal has been proposed.
  • the above-mentioned Japanese Patent Application Laid-Open No. 5-230666 is excellent in that a resin film having excellent chromium elution properties is formed without impairing corrosion resistance.
  • problems such as oxidation by acid and gelation by interaction between chromic acid and carboxylic acid component.
  • the effect of suppressing chromic acid elution is presumed to be due to the strong interaction of chromium ions with the resin. If this interaction force is too strong, the resin layer will be unevenly solidified (excessive entanglement between molecular chains, ion segregation). Etc.), and the resulting coating becomes brittle, which deteriorates the chromium elution property of the processed part, and it cannot always be said that the chromium elution property is sufficient.
  • the technique of redispersing the powder pigment as disclosed in Japanese Patent Application Laid-Open No. 7-180068 is excellent in that chromium can be hardly dissolved, but is the primary particle size of the pigment fine?
  • aggregation of the pigments which occurs when mixed with the resin liquid, easily occurs. Since hetero-aggregation with non-resin easily occurs, the dispersibility of the pigment in the treatment liquid is poor, and the treatment liquid becomes unstable due to sedimentation of the pigment. It is not possible to prevent corrosion from progressing from places where pigment density is low.
  • the pigment which has a large particle size as a result of deflection in the coating, breaks the coating and exposes the underlying metal, so that the corrosion resistance of the processed part is ensured. Can not.
  • a method may be considered in which the liquid is stirred with a homogenizer or a mixer to apply a strong shearing force to re-disperse the pigment that has aggregated or settled in the processing liquid, but this is uneconomical due to an increase in the number of steps. Not only that, the pigment in the liquid will eventually agglomerate and cannot be an essential solution, and stable dispersion in the coating is not guaranteed. Disclosure of the invention
  • the corrosion resistance of the processed part is such that if the particle size finally incorporated in the coating is sufficiently small and the dispersibility is good, the coating will not be damaged even after processing, and therefore It has been found that the chromate particles need to be small enough and have good dispersibility.
  • the dispersibility and particle size of the chromate in the treated film are determined not by the particle size at the time of particle preparation but by the dispersion stability, particle size and uniformity of the treatment solution finally obtained. Ruled. Therefore, not only this dispersion stabilization, but also to save re-dispersion energy, fine and stable hardly soluble chromate particles, that is, colloids, are formed in the liquid. It has been found that it is effective to prevent the generated colloid from agglomerating and to co-exist with the resin by utilizing the electrical disturbance and potential repulsion between the colloid particles.
  • the gist of the present invention is as follows.
  • a surface-treated steel sheet including a steel sheet and a resin-based chemical conversion coating, wherein the resin-based chemical conversion coating is hardly soluble chromic acid dispersed in a matrix resin and the matrix resin. It has colloidal particles of salt in a weight ratio of 50/1 to 1/1, and the colloidal particles have an average particle diameter of less than 1 / m as particles dispersed in the matrix resin. Is a surface-treated steel sheet.
  • the average diameter of the colloid particles is 0.30 m or less.
  • the chromate is ZnCr0 4, SrCr0 4, BaCr0 4 , CuCr0 4, FeCr 0 4, Ag 2 Cr0 4 and SnCr0 1 kind or 2 above is the more kinds selected Ri by the group consisting of 4 (1 ) Or the surface-treated steel sheet according to (2).
  • the matrix resin has, at one end, a skeleton or a functional group having an affinity for the chromate co-particles, and separates a skeleton or a functional group having an affinity for a metal.
  • the matrix resin comprises, as a core phase, a polymer obtained from at least one of a hydrophobic vinyl-based compound monomer and a Z or olefin-based compound monomer.
  • the polymer dispersant is a polymer obtained from a hydrophobic vinyl-based monomer and a hydrophilic vinyl-based monomer, and the hydrophobic vinyl-based monomer is styrene, (I) at least one member selected from the group consisting of methyl styrene, vinylinole toluene, chloro styrene, and alkyl (meth) acrylate, wherein the hydratable vinyl monomer is The surface-treated steel sheet according to the above (10), which is a polar group-containing monomer.
  • a dispersion or solution of a resin (preferably, the resin of (4), (5), (6) or (7)) is mixed with the aqueous solution to prepare a resin-based chemical conversion treatment solution.
  • a method for producing a surface-treated steel sheet including a step.
  • a hydratable polymer dispersant having a colloid-orienting group at one end and a group interacting with the metal surface at the other end is added in an amount of 0.005 to 1 part by weight of the above chromate salt. ⁇ 0.5 parts by weight
  • a polymer obtained from at least one of a hydrophobic vinyl-based compound monomer and / or an olefin-based compound monomer is used as a core phase, and a polymer formed from a chromate colloid and a metal surface is used.
  • a method for producing a surface-treated steel sheet including a step.
  • Ca (0H 2. CaC0 3, CaO, Si0 2> Cr 2 0 3, Cr0 3, Cr (0H) 3, CaSiO ZrSi0 3. Ti0 2, Li phosphate, Li emissions salt, sulfuric acid and sulfate One or more compounds selected from the group consisting of 0.02 to 2 parts by weight,
  • the chromate colloid in the film is finely dispersed as a poorly water-soluble salt, and therefore, elution of chromium out of the film is suppressed. Since there is no interaction with the resin, even if the steel sheet is subjected to bending, tension, or other processing, the original toughness of the resin can be exhibited. It can suppress elution.
  • the chromate colloid incorporated in the coating dissolves by triggering the pH drop in the corrosion reaction progressing part, and selectively releases chromic acid to the corroded area to prevent corrosion. Functions can be exhibited. Therefore, the presence of the soluble chromium is limited only to the portion where the corrosion has progressed, and the chromium elution amount of the entire coating can be extremely reduced as compared with the conventional one without impairing the corrosion resistance.
  • Figure 1 is a schematic diagram showing the state of coating of chromate colloid particles with block copolymer resin and telechelic resin.
  • Figure 2 is a schematic diagram showing the stable dispersion of chromate colloid particles by core-shell type resin.
  • Fig. 3 is a conceptual cross-sectional view of the chemical conversion coating.
  • Figure 4 is a schematic diagram of the dispersion stabilization of chromate colloid by a polymer dispersant.
  • Figure 5 is a conceptual cross-sectional view of the chemical conversion coating. Preferred embodiments of the invention
  • the metal plate to which the present invention can be applied includes a zinc-plated steel plate, a zinc-nickel plated steel plate, a zinc-iron plated steel plate, a zinc-chrome plated steel plate, and a zinc-aluminum plated plate.
  • multi-layer plating in which two or more of the above platings are sequentially applied, or a combination of the above plating and other types of plating, such as iron plating, iron-iron plating, etc. Also applicable to multi-layer plating. Furthermore, zinc plates, zinc alloy plates, aluminum plates, aluminum alloy plates, iron plates, steel plates, etc. can be used.
  • an aqueous solution containing a metal ion which forms a hardly soluble salt by reacting with an aqueous solution of chromic acid is mixed, and chromium is mixed.
  • the method is based on the precipitation of acid salts. Therefore, the colloid particle size changes the mixing speed, temperature, stirring speed, etc. Can be controlled by known methods.
  • aqueous solution of chromic acid examples include chromic anhydride and reduced chromic acid obtained by partially reducing the same with starch or the like, or potassium dichromate, ammonium bichromate, sodium bichromate, It is possible to use an aqueous solution of bichromate or chromate such as chromate-ammonium, ammonium chromate, or sodium chromate.
  • Examples of the aqueous solution containing a metal ion that forms a hardly soluble chromate by reacting with a chromic acid aqueous solution include metals such as Zn, Cu, Sr, Ba, Fe, Ag, and Sn;
  • As the salt it is possible to use an aqueous solution in which a water-soluble salt is dissolved, such as acetate, anhydrous acetate, (carbonate, carbonate, phosphonate, sulfate, formate, nitrate, chloride, etc.). it can.
  • aqueous solution containing chromic acid and an aqueous solution containing metal ions are mixed to precipitate hardly soluble chromate colloid.
  • the surface potential of the chromate colloid itself can be determined by adjusting the molar mixing ratio of chromic acid / metal ion, adjusting the PH, colloid stabilizing agent, polymer dispersant into which an ionic functional group is introduced, etc. Thereby, the absolute value of the surface potential can be increased to enhance the repulsion, and the dispersibility of the colloid particles can be improved. The specific methods for these are described below.
  • the potential can be controlled by changing the molar mixing ratio of chromic acid / metal ions during colloid precipitation.
  • the molar ratio of chromic acid / metal ion of the present invention can be arbitrarily selected from 0.8 to 1.2, depending on the mixing stability with the resin to be mixed. Below 0.8, the concentration of metal polyvalent cations in the solution increases, destabilizing the resin and causing the treatment solution to gel. When the ratio is 1.2 or more, the amount of soluble chromic acid increases, and the amount of chromic acid eluted increases.
  • the treatment solution used for the present invention be adjusted to a final pH range of 5 to 12. . If it is less than 5, not only coagulation occurs, but also the chromate binder becomes easy to dissolve, and the elution amount of chromium increases. If it exceeds 12, hydrolysis of the resin in the liquid proceeds, and the resin is degraded. More preferably, it is 6-10.
  • Phosphoric acid, phosphate, sulfuric acid, and sulfate as stabilizers of calcium carbonate are sulfate ions or phosphate ions in the form of chromate colloid particles. Adsorb to the surface and apply a negative potential. Therefore, for these phosphates and sulfates, water-soluble salts must be selected. They also serve as passive film forming aids at the same time.
  • the addition amount is preferably 2 or less in molar ratio: salt / (chromate constituting colloid). If it is 2 or more, the crystal grains of the salt in the coating become too large, and the coating toughness decreases. If it is less than 0.02, the effect cannot be expected.
  • Polymeric dispersants can also be adsorbed on the surface and imparted a potential by ionic functional groups.
  • a commercially available ionic polymer dispersant can also be used simply to ensure the dispersion stability of the colloid.
  • dispersant a commercially available nonionic polymer dispersant can be used simply to ensure the dispersion stability of the colloid particles.
  • Chromium salts of poorly soluble obtained by the colloids to you this is, ZnCr0 4 , SrC r0 4. BaCr0 4, CuCr0 4, FeCr0 4. Ag 2 Cr0 4, SnCr0 4 1 or two or more compounds or Z and mixtures by Li Cheng such.
  • the size of colloid particles is generally said to be in the range of 1 nm to 1 m.
  • a resin-based chemical conversion treatment liquid in which chromate is dispersed as colloid particles the size of the particles at the time of colloid preparation is substantially unchanged from the resin system. This is the particle size of the dispersed particles of the chromate in the chemical conversion coating, which enables fine dispersion.
  • the average particle size of the chromate colloid particles dispersed in the resin-based coating (all primary particles, secondary particles in which primary particles are aggregated, or all particles in a dispersed state) May be less than 1 / m, preferably less than 0.7 ⁇ m, more preferably less than 0.3 ⁇ m, especially less than 0.15 ⁇ m.
  • the weight ratio of the matrix resin to the chromate binder is preferably 50/1 to 1/1. If it is larger than 50/1, the chromate protection effect cannot be expected, and if it is smaller than 1Z1, the coating toughness is impaired.
  • the size of the colloid particles be sufficiently small with respect to the coating thickness. If the particle size is too large to be incorporated into the resin matrix of the coating, most of the colloid particles will protrude from the surface of the coating, and in a humid atmosphere, there will be a long term This is because chromic acid gradually dissolves while maintaining the dissolution equilibrium, and the chromic acid contained in the coating almost completely dissolves out of the coating. Also, when the coating is subjected to stress, if large particles are present in the coating, exfoliation occurs at the colloid particle / resin interface, which significantly reduces the coatability of the coating. Therefore, if the colloid particles are too large, it is impossible to maintain the steel sheet performance such as the corrosion resistance of the flat plate and the processed portion and the chromium elution property over a long period of time.
  • the size of the colloid particles be sufficiently small with respect to the thickness of the coating film and that the colloid particles be incorporated into the matrix resin.
  • the coating thickness under the environment where the treated steel sheet of the present invention is used is
  • the particle size of the colloid particles in this case depends on the film thickness, but the average particle size is preferably 0.3 ⁇ m or less, and more preferably 0.15 ⁇ m or less.
  • the matrix resin suitably used in the present invention is capable of stably dispersing colloid particles in a treatment solution.
  • FIG. 1 is a schematic diagram showing a state in which chromium-containing colloid particles are coated with a block copolymer resin or a telechelic resin. This figure
  • FIG. 2 is a schematic diagram showing a state in which the chromium-containing colloid particles are covered with the core seal type resin.
  • the spherical core-shell resin is composed of a core phase 3 and a seal phase 4 covering the surface thereof.
  • the shell phase 4 may cover the surface of the core phase 3 entirely or partially, and may have a structure to which fine particles adhere as shown in the figure.
  • the matrix resin having such a resin structure is based on a skeleton that ensures stable dispersion of colloid by the steric protection effect of resin adsorption and has stable characteristics even in the state of the film. This is because they have the properties of rear, ion permeability, paint adhesion, fingerprint resistance, adhesion to metal surfaces, and addition.
  • the core-shell resin is composed of a spherical core phase 3 and a shell phase 4 covering the surface thereof.
  • the resin composition is selected from vinyl compounds and olefin compounds. These are copolymer resins having as a monomer one or a mixture of two or more of them, and are produced by various polymerization methods of solution, bulk, interface, and emulsion.
  • a polymer of one or a mixture of two or more selected from olefin-based monomers and olefin-based monomers is used as the core phase and has high affinity with water and metal surfaces.
  • Ma's An emulsion resin having a polymer as a shell phase.
  • Is a functional group or backbone has an affinity with the chromate colloids surface, if generally colloids particle surface potential is positive, - C00H, - S0 3 H , - P (0) (0H) 2 or other functional groups, or when the potential is negative, such as --NH 2, --NHR, etc., or alcoholic --0H, phenolic --OH, etc., regardless of the colloid surface potential.
  • Examples include a skeleton of a hydrophobic alkyl group.
  • alcoholic — 0H phenolic — 0H, -C00H, -SOsH, -P (0) (0H) 2 , -NH 2 , —NHR and other functional groups.
  • the hydrophobic main skeleton is not particularly limited as long as it is typically a vinyl-based or olefin-based skeleton that does not contain a hydrophilic group.
  • the above-described colloid precipitation reaction can be performed in a nonionic emulsion or latex, whereby more fine and stable colloid particles can be obtained.
  • additives, colloid stabilizers, passivation film forming aids, polymer dispersants, etc. are added to increase the adhesion of the post-treated film to the steel sheet. Mix the resin.
  • a nonionic emery resin or latex can be used as the resin to be mixed first.
  • the resin structure is one or more selected from vinyl monomers and olefin monomers that do not solvate with water and do not interact with metal cations. From a polymer of the mixture of Dispersant used to stabilize this emulsion resin or latex Nonionic type and protective colloid are preferred. The reason why these resins are used is that the resin is exposed to an environment in which metal cations coexist at a high concentration during the preparation, and the resin takes a cross-linked structure and gels due to the metal cation. This is to prevent it.
  • the performance of a steel sheet can be improved.
  • a polymer dispersant In order to ensure the stable dispersibility of the core, use the organic surface adsorption and steric hindrance of the organic substance, and add a functional group with high affinity to the metal surface to the outer layer to apply the metal to the metal layer during coating.
  • a tilting machine that concentrates the corrosion resistance function on the metal surface It is now possible to obtain functional resin-based chemical conversion coatings.
  • This polymer dispersant is adsorbed on the surface of the colloid particles, acts as an anchor, has a length sufficient to stabilize the colloid particles due to steric hindrance, and has a hydratable polymer chain.
  • the hydratable polymer chain contains a polar group that has high adhesion to the metal surface and enables preferential deposition on the metal surface. It is.
  • the polymer dispersant is composed of a polymer of a hydrophobic vinyl monomer and a polymer of a hydratable (hydrophilic) vinyl monomer, and the hydrophobic vinyl monomer is styrene.
  • One or more selected from len, dimethyl styrene, vinyl toluene, chlorostyrene, alkyl (meth) atalinoleate, and the like can be used. Further, a polar group-containing monomer can be used as the hydratable (hydrophilic) vinyl monomer.
  • pro tons donating groups such as -OH, or their salts, esters and - title 2, - NHR, in A proton-accepting group, or a quaternary ammonium group having an ionic bond, or an amphoteric polar group in which a proton-accepting group and a donating group are mixed, and these polar groups are used alone or in a complex form.
  • a seeded vinyl compound is used.
  • the polymer can be produced by using one or more of these monomers.
  • these functional groups may be introduced after the polymerization.
  • styrene sulfonic acid examples include styrene sulfonic acid, styrene olenoic acid, vinyl phenol, (meth) acrylic acid, vinyl alcohol, and acetic acid.
  • the length of the polymer of these resins is too long, the affinity with the aqueous medium becomes too strong, so that the dispersant is pulled by the aqueous medium and desorbed from the surface of the mouth, and If it becomes longer, it bends on the surface of the colloid particles, compressing the three-dimensional barrier, and entangled with other polymer chains coated with colloid particles, causing re-aggregation of the colloid particles.
  • it is necessary to adjust the number average molecular weight of the resin to 1,000 to 50,000, preferably 2,000 to 40,000.
  • FIG. 4 is a schematic diagram of the dispersion stabilization of chromate colloid by a polymer dispersant.
  • a polymer dispersant was used in order to ensure the dispersibility of the resin-containing chromium colloid and the processing solution. It forms a functionally graded resin film on which the anticorrosion function is selectively concentrated.
  • the polymer dispersant 15 is composed of a hydratable resin skeleton 18 having an affinity group 16 for the metal surface and an orientation group 17 for the colloid surface. Form a protective barrier around.
  • FIG. 5 is a conceptual cross-sectional view of the chemical conversion coating. As shown in FIG.
  • the addition amount is from 1: 0.02 to 1: 2 in terms of matrix resin: passivation film forming aid (weight ratio).
  • matrix resin passivation film forming aid (weight ratio).
  • the concentration of the matrix resin is preferably adjusted to 100 g Z 1 or more, preferably 150 g / 1 or more, from the viewpoint of film formation stability.
  • hexavalent chromium in these treatment solutions can be left in the solution during the process of preparing the chromate-containing colloid, depending on the type of resin used.
  • concentration of the hexavalent chromium can be adjusted.
  • hexavalent chromium has strong oxidizing power, depending on the type of resin selected, the easily oxidizable part (such as the reducing hydroxyl group of alkyl alcohols and alcohol amides) in the structure is oxidized. As a result, chemical and physical cross-linking between resin molecular chains occurs. This cross-linking is not preferable because it induces gelation in the treatment solution, and it is presumed that the solid film has a dense structure, which is expected to improve the barrier function, thereby improving the film properties. Since the degree of oxidation varies depending on the type of resin, it is not possible to specify clearly, but it is preferable to adjust the ratio of resin Z hexavalent chromium to 500/1 to 100/1.
  • the surface-treated steel sheet of the present invention can be obtained by applying the resin-based chemical conversion treatment liquid prepared as described above to a metal plate and drying it.
  • the coating surface temperature is heated to about 50 ° C. or more, so that the resin is brought into close contact with the steel sheet and the resins are fused with each other to increase the coating strength.
  • the solvent used is tetrahydrofuran (THF)
  • the catalyst is S-BuLi
  • monomer charge ratio weight ratio
  • Reaction temperature 40-60 ° C, monomer charge / solvent 2/100
  • the reaction solvent was poured into petroleum ether and methanol, and the block copolymer was added. After purifying and dissolving the obtained copolymer in a polar solvent, it was poured into water, and the mixture was repeatedly stirred and finely divided by vigorous stirring to remove water and to remove the solvent, and to adjust the polymer solid concentration.
  • Styrene (10 parts by weight): Hydroxyl acrylate (10 parts by weight): Butyl methacrylate (15 parts by weight): Butyl acrylate (65 parts by weight)
  • Styrene (20 parts by weight): Methyl methacrylate (20 parts by weight): Petrimethyl acrylate (10 parts by weight): Butyl acrylate (30 parts by weight) Methyl methacrylate Acid (6 parts by weight): Hydroxyl acrylate (8 parts by weight): Hydroxyl methacrylate (6 parts by weight) was used to obtain a core resin.
  • the surface of the treated coating obtained by applying and drying this on a zinc-plated steel plate (Silver Zinc, manufactured by Nippon Steel Corporation) was observed by SEM, and the number average particle size of the chromate-containing colloid was found to be 0.3 m or less. Incidentally, it gelled in a day was mixed the resin in an aqueous solution of Cr0 3 so that 200 g Z l.
  • the surface of the treated coating obtained by applying and drying this on a zinc-plated steel plate was observed by SEM, and the number average particle size of the chromium-containing colloid was measured. The diameter was less than 0.2 m.
  • This aqueous solution of chromic acid was added to the above-mentioned latex / metal salt mixture with stirring to obtain a colloid solution of zinc chromate, or strontium chromate, and potassium chromate.
  • the mixture was refluxed at 60 ° C for 15 hours, and the reaction solution was dropped into excess deionized water. Washing was repeated until the temperature reached 6, and vacuum drying was performed at 75 ° C for 80 hours.
  • This resin is dissolved in pyridine and acetyl
  • the sulfite was sulfonated as a sulfonating agent. 5 parts by weight of styrene were polymerized in tetrahydrofuran (THF) solvent (200 parts by weight) using S-Bu catalyst as an anion polymerization (60 ° C x 3 hr). -(Si Ph) was added and the force was ringed.
  • styrene Five parts by weight of styrene are subjected to anion polymerization (60 ° C x 3 hr) using s-BuLi as a catalyst in tetrahydrofuran (THF) solvent (200 parts by weight). P- (S-SCA) was added and coupled.
  • Table 1 shows the evaluation of the stability of the chromate-containing colloid containing the three types of polymer dispersants (A) to (C) described above, by adjusting the molecular weight by varying the reaction time.
  • the dispersant according to the present invention was able to secure long-term stability without impairing the dispersion stability of chromate-containing colloid.
  • Table 2 shows the dispersion stability in water-based thermosetting paints. Usually, when a thermosetting water-based paint is used, it contains a reactive monomer, a catalyst, a curing agent and the like, and therefore has a strong chemical interaction with the pigment surface and impairs the dispersibility.
  • the molecular weight was adjusted for each of the three types of polymer dispersants (A) to (C) by varying the reaction time, and the effects on the stability of the chromate-containing colloid shown in Table 1 were evaluated under the following conditions. went.
  • Paint A Paint for fingerprint-resistant steel sheet (acrylic)
  • Paint B Paint for lubricating steel sheet (urethane-modified epoxy, acrylic
  • chromium salts pigment used in Comparative Example a commercially available di Nkuiero one (ZnCr0 4), scan collected by filtration Nchiumuku b Mae preparative (SrCr0 4), BaCr reagent 0 4, average particle by mechanical grinding, respectively It was used to a diameter of about 0.3 m or less, mixed at the mixing ratio shown in Table 3, stirred with a handy mixer for 3 minutes, and then applied to a zinc-coated steel plate (silver zinc, manufactured by Nippon Steel Corporation). A film was formed by using a cloth and drying, and a comprehensive performance test was performed.
  • the deposition state of chromate colloid on the metal surface shown in Table 3 was analyzed as a coating cross-sectional dispersion state analysis, and each coating was subjected to spherical polishing XPS to measure the profile of Cr in the coating thickness direction.
  • X-ray photoelectron spectrometer Park 5500 manufactured by Perkin Elmer
  • X-ray source Mg-K (1253.6 eV) 15 kV-27 mA
  • analysis area 800 m ⁇
  • vacuum in the analysis room 2 x 10 — 8 Pa and Cr2p were measured over 100 scans in the scanning range of 567 to 597 eV.
  • stable for more than 1 month
  • stable for 15 to 1 month
  • stable for 3 to 5 days
  • the surface-treated steel sheet having the resin-based chemical conversion coating film of the present invention can be used for cold-rolled steel sheets, Zn-plated steel sheets, and Zn-based alloy-plated steel sheets used for automobiles, home appliances, and building materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

明 細 書
樹脂系化成処理皮膜を有する表面処理鋼板及びその製造方法 技術分野
本発明は樹脂系表面処理鋼板及びその製造方法に係り、 より詳し く述べる と、 耐食性、 特に加工部における耐食性に優れ、 かつ 6価 ク ロムの難溶性に優れた樹脂系化成処理被膜を有する表面処理鋼板 及びその製造方法に関する。
従来の技術
従来、 自動車、 家電製品、 建材用途に用いられる冷延鋼板、 Znめ つ き鋼板及び Zn系合金めつ き鋼板等の耐蝕性を改善するために、 ク ロ メ一 ト処理してクロ メ 一 ト被膜を形成するこ とが一般に行われて いる。 このク ロ メー ト処理と しては、 電解型クロ メー ト法や塗布型 クロメー ト法がある。 電解型ク ロ メー ト法と しては、 例えばク ロム 酸を主成分と し、 他に硫酸、 リ ン酸、 ホウ酸及びハロゲンを添加し たもの等各種陰イオンを添加した浴を用いて、 鋼板を陰極電解処理 するこ とによ り行われて来た。 また、 塗布型ク ロ メ ー ト法と しては クロ メー ト処理鋼板からのク ロムの溶出の問題があり、 予め 6価ク ロムを還元剤で還元してお く 方法がと られ、 例えば、 3価ク ロムを 主成分とする水溶性ク ロム酸塩、 無機コロ イ ド化合物及び無機ァニ オンを含有する酸性水溶液を塗布する もの、 6価ク ロムの一部を 3 価に還元したク ロム酸や 6価ク ロムと 3価のク ロム比を特定化した ク ロム酸に無機コロイ ドゃ無機ァニオンを含む液で処理したもの等 が知られている。 また、 有機重合体と複合させてク ロムの固定化を 行う方法やク ロ メー ト被膜の上に更に有機重合体を被覆する方法が 考えられている。
クロメー ト被膜のうち電解によって形成されたク ロ メ一 ト被膜は ク ロムの溶出は少ないものの耐蝕性は充分とは言えず、 また、 加工 時の被膜の耐疵付性及び加工後の耐蝕性にも多少の問題があつた。
また、 塗布型によって形成されたク ロメー ト被膜は処理後そのま まの状態で使用する ときにはク ロ メー ト被膜は溶出し易い。 また、 耐蝕性及び塗料密着性も必ずしも充分では無く 、 加工時の被膜の耐 疵付性及び加工後の耐蝕性についても必ずしも充分では無かつた。
また、 樹脂型ク ロ メー トの場合はク ロム酸浴に各種樹脂が添加さ れるか、 その際、 ク ロム酸の有する強力な酸化作用によって樹脂は 次第に反応し、 浴を安定に維持するこ とが難しかった。
このよう にクロム溶出を押さえるために溶出性の 6価クロムを予 め還元してお く こ とは、 耐蝕性の低下が否めないし、 それでさえも ク ロム溶出は防ぎきれず密着性も充分でない。 また、 還元性有機重 合体による ク ロムの還元方法では、 水分散型も しく は水溶性型有機 重合体自身の安定性が悪く なり、 なおかつク 口ムの溶出防止性能は 低い。 さ らに、 有機重合体被覆による方法は工程増加に伴う コス ト 増加が起こ り、 なおかつ被覆被膜の損傷部分や切断部分からのク 口 ム溶出が問題であり、 溶接性も損なう等の問題から、 特開平 5 - 23 0666号公報のよう に、 エチ レ ン系不飽和カルボン酸成分 0. 1〜1 0重 量%と水酸基含有モノ マー成分 1 〜 30重量% とその他のェチ レ ン系 不飽和化合物 60〜98. 9重量%からなる有機重合体が水性媒体中に安 定に分散した有機重合体水性エマ儿ジ ヨ ン と、 水溶性ク ロム酸塩と 、 無機化合物の水系コロイ ド及び両性金属と反応して難水溶性塩を 形成する無機物とを混合してなる金属表面処理用組成物が提案され ている。
また、 上記クロム酸/樹脂の相互作用を抑えう る ものと して、 Ba Cr04や SrCr04といつた難溶性ク ロム酸塩の微細粉体を樹脂液中に混 合し、 さ らに機械的手段によって顔料を再分散し、 防靖塗料と して 用いる技術が提案されている (特開平 7 — 180068号公報) 。
上述した特開平 5 — 230666号公報においては、 耐蝕性を損なう こ とな く クロム溶出性に優れた樹脂被膜を形成する点で優れているが 、 この樹脂被膜も長期において水酸基含有成分のク ロム酸による酸 化、 クロム酸とカルボン酸成分との相互作用によるゲル化等の問題 がある。 また、 クロム酸溶出抑制効果はク ロムイオンの樹脂との強 い相互作用に起因する ものと推定され、 この相互作用力が強すぎる と樹脂層の不均一凝固 (分子鎖間の過剰絡み、 イオン偏析等) が起 こ り生成被膜は脆化するため加工部のク ロム溶出性が悪化し、 必ず しも クロム溶出性に充分と言う こ とが出来ない。
また、 特開平 7 - 180068号公報に開示されているような粉体顔料 を再分散する手法では、 クロムを難溶化できる点で優れているが、 顔料の一次粒子の粒径が微細ではあるか、 樹脂液との混合時に引き 起こる顔料同士の凝集が起こ りやすい。 非樹脂とのヘテロ凝集が起 こ りやすいため、 処理液中での顔料分散性が悪く 、 顔料の沈降など による処理液の不安定化がおこ り、 塗布された結果得られた被膜中 において顔料が偏折し、 顔料密度の低い.箇所から腐食が進行するこ とはさけられない。 更には加工を受けた際に、 被膜中において、 偏 折し結果と して粒径の大き く なった顔料が、 被膜を破き下地の金属 が露出するため、 加工部耐食性を確保する こ とができない。
また、 ホモジナイザーやミ キサー等で液を撹拌し、 強力な剪断力 を与えるこ とによって処理液中で凝集や沈降した顔料を再分散する 方法も考えられるが、 工程増加のため非経済的であるだけでな く 、 液中の顔料はやがて凝集してしま うため、 本質的な解決になり得ず 、 又、 被膜中での安定分散は保証の限りではない。 発明の開示
本発明者らは、 従来技術の上記問題点を解決すべく鋭意努力する 過程で、 処理液中の樹脂 Zク ロムの反応をな く し、 かつク ロムを難 溶化するには、 難溶性のクロム酸塩 (M i 2 Cr04 , P Cr04など) が有 効であるこ と、 クロム酸塩粒子の被膜中の含有量が同じならば、 被 膜中のクロム酸塩の粒子径が小さい方が耐食性に優れている こ と、 クロム酸塩の被膜中含有量がおな じで同じ一次粒子径であれば、 被 膜中のクロム酸塩の分散性が良好の方が耐食性を有するこ と、 加工 部の耐食性は、 最終的に被膜中に取り込まれた粒子径が十分小さ く かつ分散性が良好であれば、 加工を受けた際も被膜に損傷を与えな いこ と、 従って被膜中のク ロム酸塩粒子が十分小さ く、 分散性が良 好である こ とが必要であるこ とを見い出 した。
さ らに、 処理被膜中のクロム酸塩の分散性ならびに粒子径は、 粒 子調製時の粒径ではな く 、 最終的に得られる処理液中の分散安定性 ならびに粒子径及びその均一性によって支配される。 従ってこの分 散安定化のみならず、 再分散エネルギーを節約するためにも液中で 微細で安定な難溶性のク ロム酸塩粒子、 つま り コロイ ドを生成させ るこ と、 さ らに立体的障害や、 コロイ ド粒子間の電位的な反発を利 用 して、 生成したコロイ ドの凝集を防ぎつつ、 樹脂と供存させる こ とが有効であるこ とを見い出した。
本発明の要旨は下記にある。
( 1 ) 鋼板および樹脂系化成処理被膜を含む表面処理鋼板であつ て、 該樹脂系化成処理被膜はマ ト リ ッ クス樹脂と該マ ト リ ッ クス樹 脂中に分散した難溶性ク ロム酸塩のコロイ ド粒子を重量比 50/ 1 〜 1 / 1 の範囲内で有し、 該コロイ ド粒子は該マ ト リ ッ クス樹脂中に 分散した粒子の平均粒径と して 1 / m未満である、 表面処理鋼板。
( 2 ) 前記コロイ ド粒子の分散粒子平均径が 0. 30 m以下である 上記 ( 1 ) 記載の表面処理鋼板。
( 3 ) 前記クロム酸塩が ZnCr04, SrCr04 , BaCr04 , CuCr04 , FeCr 04, Ag 2 Cr04 および SnCr04からなる群よ り選ばれる 1 種又は 2種以 上である上記 ( 1 ) 又は ( 2 ) 記載の表面処理鋼板。
( 4 ) 前記マ ト リ ッ クス樹脂が、 前記ク ロム酸塩のコ口ィ ド粒子 と親和性のある骨格又は官能基を一端に有し、 金属と親和性のある 骨格又は官能基を別の一端に有し、 かつ残部が疎水性分子骨格であ るブロ ッ ク共重合体又はテレケ リ ッ ク樹脂の一方又は両方を含む上 記 ( 1 ) , ( 2 ) 又は ( 3 ) 記載の表面処理鋼板。
( 5 ) 前記マ ト リ ッ クス樹脂が、
親水性のビ二ル系カルボン酸、 ビニル系ァ ミ ン、 ビ二ル系 リ ン酸 塩及びビニ儿系アルコールから選ばれる 1 種以上のモノ マ一から得 られるポリ マーと、 疎水性のビニル系化合物モノ マ一及び Z又はォ レ フィ ン系化合物モノ マーの 1 種以上から得られるポリマーとの共 重合体、 または
疎水性のビニル系化合物モノ マー及び/又はォ レ フ ィ ン系化合物 モノ マーの 1 種以上から得られるポリ マーの末端に金属表面との親 和性のある官能基を有するポリ マー
を含む上記 ( 1 ) , ( 2 ) 又は ( 3 ) 記載の表面処理鋼板。
( 6 ) 前記マ ト リ ッ クス樹脂が、 疎水性のビニル系化合物モノマ —及び Z又はォレ フ ィ ン系化合物モノ マーの 1 種以上から得られる ポリマーをコア相と し、 前記ク ロム酸塩コロイ ド粒子及び金属表面 との親和性を有するポリ マーの 1 種以上をシェル相と したコア Zシ ル樹脂を含む上記 ( 1 ) , ( 2 ) 又は ( 3 ) 記載の表面処理鋼板
( 7 ) 前記マ ト リ ッ クス樹脂が、
疎水性の ビニル系化合物モノ マー及び/又はォ レ フ ィ ン系化合物 モノ マーの 1種以上から得られるポリマーと、 疎水性のビニル系化 合物モノマー及び z又はォレフ ィ ン系化合物モノ マーの 1種以上と 水及び金属と親和性を有するモノ マーの 1種以上とから得られる共 重合体との混合物
を含む上記 ( 1 ) , ( 2 ) 又は ( 3 ) 記載の表面処理鋼板。
( 8 ) 前記マ ト リ ッ クス樹脂 1重量部に対し、 Ca(0H)2, CaC03, CaO, Si02, Cr203, Cr03, Cr(0H)3, CaSiOs, ZrSi03, Ti02 、 リ ン 酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群よ り選ばれる 1種以上の 添加物を 0.02〜 2重量部含む上記 ( 1 ) 〜 ( 7 ) 記載の表面処理鋼 板。
( 9 ) 前記コ口ィ ド粒子 1重量部に対し、 コロイ ド安定化剤又は 不動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸および硫酸塩 からなる群よ り選ばれる 1種以上の化合物を 0.02〜 2重量部含む上 記 ( 1 ) 〜 ( 7 ) 記載の表面処理鋼板。
(10) 一端にコロイ ド配向性基を有し、 他の一端に金属表面と相 互作用を有する基を有する水和性高分子分散剤を、 前記コロイ ド粒 子 1重量部に対し、 0.005〜 0.5重量部含み、 前記被膜中において 前記コロイ ド粒子が前記被膜/鋼板界面に偏析している上記 ( 1 ) 〜 ( 7 ) 記載の表面処理鋼板。
(11) 前記高分子分散剤が、 疎水性のビニル系モノ マーと親水性 のビニ儿系モノ マーとから得られるポリ マーであり、 該疎水性ビ二 ル系モノ マーがスチ レ ン、 ひ 一 メ チルスチ レ ン、 ビニノレ ト ルエ ン、 ク ロ ロスチ レ ン、 ( メ タ) ア ク リ ル酸アルキルエステルからなる群 から選ばれた 1種以上であり、 該水和性ビニル系モノマーが、 極性 基含有モノ マ—である上記 (10) 記載の表面処理鋼板。
(12) ク ロム酸水溶液に金属イオ ンを含有する水溶液を添加し、 前記水溶液の pHを 5〜 12に調整し、 こ こで前記金属イ オ ンの添加時 又は前記 pHの調整時にク ロム酸塩コロイ ドを析出させ、
前記水溶液に樹脂 (好ま しく は上記 ( 4 ) , ( 5 ) , ( 6 ) 又は ( 7 ) の樹脂) の分散体又は溶液を混合して樹脂系化成処理液を調 製し、
前記樹脂系化成処理液を鋼板表面に塗布及び乾燥して、 鋼板表面 に樹脂系化成処理被膜を形成する
工程を含む表面処理鋼板の製造方法。
(13) 前記コロイ ド水溶液に、
i ) Ca(0H)2, CaC03, CaO, Si02, Cr 203, Cr03, Cr(0H)3, CaSiO 3 , ZrSiOs, Ti02 、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群 から選ばれる 1種以上の化合物を、 後記樹脂 1重量部に対し 0.02〜 2重量部、
ϋ ) コロイ ド安定化剤又は不動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群から選ばれる 1種以上の化合 物を、 前記ク ロ ム酸塩コロイ ド 1 重量部に対し 0.02〜 2重量部、 ま たは
iii) 一端にコロイ ド配向性基を有し別の一端に金属表面との相互 作用をする基を有する水和性高分子分散剤を、 前記ク ロム酸塩コロ イ ド 1重量部に対し 0.005〜 0.5重量部
のうち 1種又は 2種以上を添加する工程をさ らに有する (12) 記載 の方法。
(14) pH5〜12に調整したク ロム酸水溶液を準備し、 前記ク ロム 酸水溶液に金属イオンを含有する水溶液を添加してク ロム酸塩コロ ィ ドを析出させ、
前記水溶液に樹脂 (好ま し く は上記 ( 4 ) , ( 5 ) , ( 6 ) 又は ( 7 ) の樹脂) の分散体又は溶液を混合して樹脂系化成処理液を調 製し、 前記樹脂系化成処理液を鋼板表面に塗布及び乾燥して、 鋼板表面 に樹脂系化成処理被膜を形成する
工程を含む表面処理鋼板の製造方法。
(15) 前記コロイ ド水溶液に
i ) Ca(0H)2, CaC03, CaO, Si02, Cr 203, Cr03. Cr(0H)3, CaSiO 3 , ZrSiOs, Ti02 、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群 から選ばれる 1種以上の化合物を、 後記樹脂 1重量部に対し 0.02〜 2重量部、
ii ) コロイ ド安定化剤又は不動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群から選ばれる 1種以上の化合 物を、 前記ク ロ厶酸塩コロイ ド 1重量部に対し 0.02〜 2重量部、 ま たは
iii) 一端にコロイ ド配向性基を有し別の一端に金属表面との相互 作用をする基を有する水和性高分子分散剤を、 前記ク ロム酸塩コロ ィ ド 1重量部に対し 0.005〜0.5 重量部
のうち 1種又は 2種以上を添加する工程をさ らに有する上記 (14) 記載の方法。
(16) 疎水性のビニル系化合物モノ マーの 1種以上及び Z又はォ レ フ ィ ン系化合物モノ マーの 1種以上から得られるポリ マーの水性 ェマルジ ョ ン樹脂又はラテ ツ ク スを準備し、
pH 5〜12に調整したク ロム酸水溶液と金属イ オ ンを含有する水溶 液を前記エマルジ ョ ン樹脂またはラテツ クスに添加して、 ク ロム酸 塩コロイ ドを析出させ、 前記コロイ ド含有樹脂液に、
i ) ク ロム酸塩コロイ ドと親和性のある骨格又は官能基を一端に 有し、 金属と親和性のある骨格又は官能基を別の一端に有し、 かつ 残部が疎水性分子骨格であるプロ ッ ク共重合体又はテレケ リ ッ ク樹 脂の一方又は両方、 ii ) 親水性のビニル系カルボン酸、 ビニル系ァ ミ ン、 ビニル系リ ン酸塩及びビニル系アルコールから選ばれる 1 種以上のモノ マーか ら得られるポ リ マーと疎水性のビニル系化合物モノ マ一及び Z又は ォレ フィ ン系化合物モノマーの 1 種以上から得られるポリマーとの 共重合体、 または疎水性のビュル系化合物モノマー及び/又はォレ フィ ン系化合物モノ マーの 1 種以上から得られるポリマーの末端に 金属表面との親和性のある官能基を有するポリマー、 または
iii ) 疎水性のビニル系化合物モノ マー及び/又はォレ フ ィ ン系化 合物モノ マーの 1 種以上から得られるポリマーをコア相と し、 ク ロ 厶酸塩コロイ ド及び金属表面との親和性を有するポリ マーの 1 種以 上をシヱル相と したコア Zシヱル樹脂
のェマルジョ ン樹脂又はラテツ クスのう ち 1 種又は 2種以上を添加 して、 樹脂系化成処理液を調製し、
前記樹脂系化成処理液を鋼板表面に塗布及び乾燥して、 鋼板表面 に樹脂系化成処理被膜を形成する
工程を含む表面処理鋼板の製造方法。
(17) 前記コロイ ド含有ェマルジ ヨ ン又はラテ ッ ク スに、 前記 i ) 〜 iii ) のポ リ マー、 樹脂、 ェマルジ ヨ ン又はラテ ッ クスを添加す る工程の前に、
i ) Ca(0H 2. CaC03, CaO, Si02> Cr203, Cr03, Cr(0H)3, CaSiO ZrSi03. Ti02 、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群 から選ばれる 1 種以上の化合物を、 後記樹脂 1 重量部に対し 0.02〜 2重量部、
ϋ ) コロイ ド安定化剤又は不動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群から選ばれる 1 種以上の化合 物を、 前記ク ロム酸塩コロイ ド 1 重量部に対し 0.02〜 2重量部、 ま たは iii ) 一端にコロイ ド配向性基を有し別の一端に金属表面との相互 作用をする基を有する水和性高分子分散剤を、 前記ク ロム酸塩コロ ィ ド 1 重量部に対し 0. 005〜0. 5 重量部
のう ち 1 種又は 2種以上を添加する工程をさ らに有する上記 (1 6) 記載の方法。
( 18 ) 上記 (12) , ( 14) 又は (1 6) の方法で製造された表面処 理鋼板。
上記の如き表面処理被膜を有するこ とによって、 被膜中のク ロム 酸塩コロイ ドが難水溶性の塩と して微分散しているため、 被膜外へ のク ロム溶出を抑制する ものであり、 かつ樹脂との相互作用も無い ため、 鋼板が曲げ、 引っ張り等の加工を施された場合でも、 樹脂本 来の靱性を発揮させる こ とができ、 これまで問題であった加工部の ク ロム溶出を抑制する こ とができる ものである。
また、 この被膜中に取り込まれたク ロム酸塩コロイ ドは、 腐食反 応進行部分の pH低下を ト リ ガーにして溶解するため、 腐食箇所へ選 択的にク ロム酸を放出し、 防食機能を発現させるこ とができる。 従 つて、 可溶なク□厶の存在は腐食進行部分のみに限定され、 耐食性 を損なわずに被膜全体のク ロム溶出量を従来よ り極端に低減するこ とができる。
また、 微粒子化したク ロム酸塩の顔料粉体のきわめてエネルギー 効率の悪い再分散工程が不要であり、 経済的に非常に有利である。
図面の簡単な説明
図 1 はプロ ッ ク共重合樹脂及びテレケ リ ッ ク樹脂による ク ロム酸 塩コロイ ド粒子の被覆状態を示す模式図、
図 2 はコア— シヱル型樹脂による ク ロ ム酸塩コロイ ド粒子の安定 分散を示す模式図、 図 3 は化成処理被膜の断面概念図、
図 4 は高分子分散剤による ク oム酸塩コロイ ドの分散安定化の模 式図、
図 5 は化成処理被膜の断面概念図である。 発明の好ま しい実施形態
本発明が適用可能な金属板と しては、 亜鉛めつ き鋼板、 亜鉛 -二 ッケルめっき鋼板、 亜鉛—鉄めつ き鋼板、 亜鉛— ク ロムめつき鋼板 、 亜鉛一アル ミ ニウムめっ き鋼板、 亜鉛一 チタ ンめつき鋼板、 亜鉛 一マグネシウムめっき鋼板、 亜鉛一マ ン ガンめっき鋼板などの亜鉛 系の電気めつき、 溶融めつき、 蒸着めつ き鋼板、 アル ミ ニウムまた はアル ミ ニウム合金めつき鋼板、 鉛または鉛合金めつき鋼板、 錫ま たは錫合金めつき鋼板、 さ らにはこれらのめっ き層に少量の異種金 属元素あるいは不純物と してコバル ト、 モ リ ブデン、 タ ングステン 、 ニッケル、 チタ ン、 ク ロム、 アル ミ ニウム、 マンガン、 鉄、 マグ ネシゥム、 鉛、 アンチモ ン、 錫、 銅、 カ ド ミ ウム、 ヒ素等を含有さ せたもの、 または/およびシ リ カ、 アル ミ ナ、 チタニア等の無機物 を分散させたものが含まれる。 さ らには、 以上のめっきのうち 2種 類以上を順次施した多層めつき、 あるいは以上のめっき と他の種類 のめつき、 例えば鉄めつき、 鉄一 りんめつ きなどとを組み合わせた 複層めっきにも適用可能である。 さ らに、 亜鉛板、 亜鉛合金板、 ァ ルミニゥム板、 アル ミ ニウム合金板、 鉄板、 鋼板なども使用可能で ある。
本発明では、 難溶性のク ロム酸塩のコロ イ ドを調製するに当って は、 ク ロム酸水溶液と反応し、 難溶性の塩をつく る金属イオンを含 む水溶液を混合し、 ク ロム酸塩を析出させる手法を基本と している 。 従って、 コロイ ドの粒径は、 混合速度、 温度、 撹拌速度等を変化 させる既知の方法によって制御できる。
クロム酸水溶液と しては、 無水ク ロム酸およびこれをでんぷん等 で部分還元した還元クロム酸、 あるいは重ク ロム酸カ リ ウム、 重ク ロム酸アンモニゥム、 重クロ厶酸ナ ト リ ゥ厶、 クロム酸力 リ ゥ厶、 ク ロム酸ア ンモニゥ厶、 ク ロム酸ナ ト リ ウム等の重ク ロム酸塩ゃク ロム酸塩などの水溶液を用いるこ とが可能である。
ク ロム酸水溶液と反応して難溶性のクロム酸塩を生成する金属ィ オンを含む水溶液と しては、 Zn, Cu, Sr , Ba, Fe, Ag, Snなどの金 属、 これらの金属の塩と して酢酸塩、 無水酢酸塩、 (炭酸塩、 カル ボン酸塩、 ホスホ ン酸塩、 硫酸塩、 ギ酸塩、 硝酸塩、 塩化物などめ 水溶性の塩を溶解した水溶液を用いる こ とができる。
ク ロム酸水溶液と金属イ オ ンを含む水溶液を混合して難溶性のク ロム酸塩コロイ ドを析出させる。 ク ロム酸塩コロイ ド自体の表面電 位は、 ク ロム酸/金属イオンのモル混合比、 P Hの調整、 コロイ ド安 定化剤、 イ オ ン性官能基が導入された高分子分散剤などによ り表面 電位の絶対値を上げて反発力を増強させ、 コ ロイ ド粒子の分散性を 向上させるこ とができる。 これらについて具体的手法を以下に述べ る。
コロイ ド析出の際のク ロム酸/金属イオンのモル混合比を変える こ とで、 電位を制御できる。 ク ロム酸リ ッチの場合、 マイナス電位 が強く なり、 金属イオン リ ッチになる と、 ブラス性が強く なる。 従 つて、 本発明の混合モル比ク ロム酸/金属イオンは、 混合する樹脂 との混合安定性によるが 0. 8〜 1 . 2まで任意に選択できる。 0. 8以 下だと液中の金属多価カチオン濃度が増し、 樹脂を不安定化し処理 液がゲル化する。 1 . 2以上である と可溶なク ロム酸が多 く なり、 ク 口ムの溶出量が増す。
一般的に pHが低いとコロイ ド粒子の表面電位はプラ スで、 pHが高 く なるにつれて低く なり、 等電位点を経てマイナスに転じる。 本発 明のクロム酸塩コロイ ドの等電位点は、 pH 5未満にあるため、 本発 明に使われる処理液は、 最終的に pH 5 〜 12の範囲内に調整するこ と が望ま しい。 5未満である と、 凝集するだけでな く 、 ク ロム酸塩コ 口ィ ドが溶解しやすく なり、 クロムの溶出量が増す。 12超である と 、 液中で樹脂の加水分解が進み、 樹脂が変質してしま う。 よ り好ま し く は 6〜10である。
ク 口ム酸塩コ口ィ ドの安定化剤と してのリ ン酸、 リ ン酸塩、 硫酸 、 硫酸塩は、 硫酸イオン、 あるいは、 リ ン酸イオンをク ロム酸塩コ ロイ ド粒子表面に吸着させ、 マイ ナス電位を与える。 従って、 これ ら リ ン酸塩、 硫酸塩は、 水溶性の塩を選択しなければならない。 ま た、 これらは同時に不動態被膜形成助剤になる。 添加量は、 モル比 : 塩/ (コ ロイ ドを構成する ク ロム酸塩) が 2以下が良い。 2以上 だと、 被膜中での塩の結晶粒が大き く なりすぎ、 被膜靭性が低下す る。 0. 02以下である と効果が期待できない。
高分子分散剤も、 表面に吸着しイオン性官能基によって電位を与 える こ とができる。 単にコロイ ドの分散安定性を確保するためなら ば、 市販のイオン性高分子分散剤を使用するこ と もできる。
ク ロム酸塩のコロイ ドの分散性を高め.る もう 1 つの方法は、 立体 的障害を利用する方法である。 すなわち、 液中で樹脂あるいはノニ オン性の高分子分散剤をコロイ ドに吸着させ、 コロイ ド粒子を被覆 し立体的障害をつく り凝集を防ぐ、 具体的には、 親コロイ ド性の骨 格を樹脂あるいは分散剤の一部に付与し、 吸着させる方法である。
このような樹脂と しては後述する。 また、 分散剤と しては、 単に コロイ ド粒子の分散安定性を確保するためならば、 市販のノニオン 性の高分子分散剤を用いるこ とができる。
こ う してコロイ ドと して得られる難溶性のク ロム酸塩は、 ZnCr04 , SrC r04 . BaCr04, CuCr04, FeCr04. Ag 2 Cr04 , SnCr04 などの 1 種 又は 2種以上の化合物又は Zおよび混合物よ りなる。
コロイ ド粒子の寸法は一般的には 1 nm〜 1 mの範囲と言われて いる。 しかし、 本発明で重要なこ とは、 ク ロム酸塩をコロイ ド粒子 と して分散させた樹脂系化成処理液を用いる こ とにより、 コロイ ド 調製時の粒子の寸法が実質的にそのまま樹脂系化成処理被膜中のク ロム酸塩の分散粒子の粒径となり、 微細分散が可能にされる こ とで ある。 すなわち、 樹脂系被膜中に分散している ク ロム酸塩コロイ ド 粒子 (一次粒子のほか、 一次粒子が凝集した二次粒子も存在するか 、 分散状態で存在するすべての粒子) の平均粒径が 1 / m未満、 好 ま し く 0. 7〃 m以下、 よ り好ま し く は 0. 3〃 m以下、 特に 0. 15〃 m 以下である こ とができる。 また、 マ ト リ ッ クス樹脂と ク ロム酸塩コ 口ィ ドの重量比は 50/ 1 〜 1 / 1 が好ま しい。 50/ 1 よ り大きいと クロム酸塩の防錡効果が期待できず、 1 Z 1 よ り小さいと被膜靭性 が損われる。
コロイ ド粒子の大きさは、 被膜厚さに対して十分小さいこ とが望 ま しい。 粒径が、 被膜の樹脂マ ト リ ッ クス中に取り込まれないほど 大きいと、 被膜表面にほとんどのコロイ ド粒子が突き出た状態にな り、 湿潤雰囲気下では、 長期的にはその物質固有の溶解平衡を保ち つつク ロム酸が少しづつ溶けだし、 被膜中に含有させたク ロム酸塩 力 ほとんど被膜外に溶け出してしま うからである。 また、 被膜が加 ェを受けた際に、 被膜中に大きな粒子が存在する とコロイ ド粒子/ 樹脂界面で剥離が発生し、 被膜の被覆性を著しく 低下させる。 従つ て、 コロイ ド粒子が大きすぎる と、 長期的に平板及び加工部の耐食 性、 並びにクロム溶出性といった鋼板性能を維持する こ とはできな い。
つま り、 長期的な耐食性あるいはク oム難溶性を維持するために は、 コロイ ド粒子の大きさは被膜厚さに対し十分小さ く し、 マ ト リ ッ クス樹脂に取り込まれるこ とが必要である。
通常、 本発明の処理鋼板が使用されている環境下での被膜厚さは
、 特に限定する ものではないが、 通常 0. 3 m〜 5 m程度でよい 。 従って、 この場合のコロイ ド粒子の粒径は、 膜厚に依存するが、 平均粒径を 0. 3〃 m以下、 さ らには 0. 1 5〃 m以下である こ とがよ り 好ま しい。
コロイ ド粒子の粒径は小さいほど有効であるが、 あま り小さいと 比表面積が大き く なって溶解性が増す可能性があるが本発明のコ口 ィ ド生成方法で作成できる程度の微細さであれば特に問題はない。 現在でも、 一般的に 0. 1 0 m程度の粒径までは生成可能であるが、 前述のコロイ ド析出条件の改良によって 0. 05 m程度までは十分に 生成可能であると考えられる。
本発明で好適に用いられるマ ト リ ッ ク ス樹脂は、 処理液中におい て、 コロイ ド粒子を安定分散させる こ とができる ものである。
立体的障害によって分散安定性を付与する場合、 ク ロム酸塩コロ イ ドを析出させた後、 混合させる樹脂は、 コロイ ド粒子表面に対し 水素結合、 酸 -塩基結合、 吸着等の相互作用を有する分子骨格又は 官能基を一つの末端部に有し、 金属材料表面に対し吸着、 水素結合 等の密着する分子骨格又は官能基を他の末端部に有し、 残部はビヒ ク ルに親和性が無く、 溶媒和 (水和) しない不溶化分子骨格から構 成されるブロ ッ ク共重合樹脂又はテ レケ リ ッ ク樹脂ないしはコア— シ ェル型樹脂よ り構成される。 これ らの樹脂構造について図 1 及び 図 2 に示す。 図 1 はプロ ッ ク共重合樹脂又はテレケ リ ツ ク樹脂によ る クロム含有コロイ ド粒子の被覆状態を示す模式図である。 この図
1 に示すように、 プロ ッ ク共重合樹脂又はテレケ リ ツ ク樹脂 2がク ロム含有コロイ ド粒子 1 表面を被覆し、 コ ロ イ ドの安定分散性を確 保する。 図 2 はコアーシヱル型樹脂による ク ロム含有コロイ ド粒子 の被覆状態を示す模式図である。 図 2 に示すように、 球状のコア一 シェル型樹脂はコア相 3 とその表面を覆う シヱル相 4 とから構成さ れている。 シェル相 4 はコア相 3 の表面を全面的に又は部分的に覆 えばよ く 、 図の如く 、 微粒子が付着した構造でもよい。
このような樹脂構造をもつマ ト リ ッ クス樹脂と した理由は樹脂吸 着による立体的保護効果によるコロイ ドの安定分散性を確保し、 被 膜状態でも安定した特性を有する骨格であり、 ガスバ リ アー性、 耐 イオン透過性、 塗料密着性、 耐指紋性、 金属表面との密着性及び加 ェ性等を有するためである。 コア一 シェル型樹脂は球状のコア相 3 とその表面を覆う シェル相 4 とから構成される。
従って、 立体的障害によってコロイ ドの分散安定化をはかる場合 このような樹脂構造を有するこ とが望ま し く 、 その樹脂組成と して は、 ビニル系化合物、 ォレフ ィ ン系化合物の中から選ばれた 1 種又 は 2種以上の混合物をモノ マーとする共重合樹脂で、 これらは溶液 、 バルク、 界面及びェマルジ ヨ ンの多種の重合方法によって製造さ れる。
この水系ビヒ クルの場合、 ①主要部分は疎水性のビニル系モノマ 一、 ォレ フ ィ ン系モノ マーの中から選ばれた 1 種又は 2種以上の混 合物の重合物で、 両末端部分にク ロム酸塩コロイ ド表面と金属表面 との親和性が高いビニル系カルボン酸、 ビニル系ァ ミ ン、 ビニル系 燐酸塩等の有機重合体にて構成される共重合樹脂、 又は②非水和性
(疎水性) 主要骨格部の重合過程において連鎖移動剤を用い末端に コロイ ド及び金属の表面と親和性の基を導入したテレケ リ ッ ク樹脂 、 又は③水に溶媒和 (水和) しないビニル系モ ノ マ一、 ォ レ フ ィ ン 系モノマーの中から選ばれた 1 種又は 2種以上の混合物の重合物の 重合物をコア相と し、 水及び金属表面との親和性の高いモノ マーの 重合物をシェル相としたェマルジ ヨ ン樹脂等である。
クロム酸塩コロイ ド表面との親和性を有する官能基または骨格と しては、 一般的にコロイ ド粒子表面電位がプラスの場合、 — C00H, - S03 H, — P (0) (0H) 2 等の官能基、 また電位がマイ ナスの場合—NH 2 , - NHR 等の官能基、 あるいはコロイ ドの表面電位にかかわらず アルコール性 - 0H、 フ エノ ール性一 OH等の官能基や疎水性のアルキ ル基等の骨格があげられる。
親水性あるいは金属表面との親和性を有する官能基と して、 一般 的にアルコール性— 0H、 フエ ノ ール性— 0H、 - C00H, - SO s H, - P ( 0) (0H) 2 , - NH 2 , — NHR 等の官能基があげられる。
疎水性の主要骨格は、 代表的には親水基を含まないビニル系、 ォ レ フ ィ ン系であれば特に限定しない。
なお、 これらブロ ッ ク共重合樹脂又はコアーシェル型樹脂の場合 、 両末端部と非水和性骨格部との重量比は 3 / 100 〜 1 Z 1 好ま し く は 1 Z 20〜 3 / 10に調製する。
また、 本発明によれば、 ノニオン系のェマルジ ヨ ン又はラテッ ク ス中で前記のコロイ ド析出反応を行なう こ とができ、 これによ り、 よ り微細かつ安定なコロイ ド粒子を得るこ とができるこ とが見い出 された。 コロイ ド析出後、 必要であれば、 添加物、 コロイ ド安定化 剤、 不動態被膜形成助剤および高分子分散剤等を加えて後処理被膜 の鋼板との密着性を上げるために第 2 の樹脂を混合する。
この方法で処理液を調製する場合、 最初に混合する樹脂は、 ノニ オン系のエマ几ジ ョ ン樹脂あるいはラテツ クスが使用できる。 その 樹脂構造と しては、 水に溶媒和せず、 金属カチオ ン との相互作用の ないビニル系モノ マ一、 ォレ フ ィ ン系モノ マーの中から選ばれた 1 種又は 2種以上の混合物の重合体から構成される。 このェマルジ ョ ン樹脂あるいはラテツ クスを安定化させるために使用される分散剤 や保護コロイ ドは、 ノニオン系が好ま しい。 これらの樹脂である理 由は、 該樹脂が、 調製中に高濃度で金属カチオンが共存する環境下 にさ らされるためであり、 金属カチオンによって樹脂が架橋構造を と りゲル化するのを防ぐためである。 2番目に混合する樹脂と して は、 水および金属との親和性が高いモノ マーと水に溶媒和しないビ ニル系モノ マー、 ォレフ ィ ン系モノ マーを一種以上を含む重合体か らなるェマルジ ョ ン樹脂又はラテツ クスが使用できる。 あるいは前 記 ( 4 ) , ( 5 ) , ( 6 ) の樹脂のェマルジヨ ン又はラテッ クスを 用いるこ とができる。 これを加える理由は、 処理被膜と金属表面と の密着性を確保するためであり、 これが添加されないと耐食性が低 い。
以上あげた以外の樹脂もマ ト リ ッ クス樹脂と して適宜使用できる 力べ、 処理液調製時の添加は、 コロイ ドの分散性を損なわないように 添加する必要がある。 その種類は、 鋼板使用環境下で機械的靭性を 有していれば、 特に限定しない。 汎用的には、 市販の水分散性のェ マルジ ョ ン樹脂あるいはラテツ クスが好ま しい。
これらの樹脂も含めてマ ト リ ッ クス樹脂の最低製膜温度の範囲は 、 一 40て〜 20°Cの範囲である こ とが好ま しい。 最低製膜温度が一 40 Vより低く なる と被膜の耐傷付き性が損なわれ、 20でより高 く なる と加工部の耐食性が損なわれたり、 被膜乾燥温度が高温になり経済 的ではない。
また、 本発明のコロイ ド粒子を高分子分散剤を用いて金属表面に 偏折させる こ とによって、 鋼板性能を向上させる こ とができる。 コ 口 ィ ドの安定分散性を確保するために有機物のコ 口 ィ ド表面吸着性 、 立体障害性を利用 し、 かつその外層に金属表面との親和性の高い 官能基を付与し塗布時に金属表面への優先析出能を付与する こ とに より、 被膜基本機能に加え、 金属表面に耐蝕機能を濃縮した傾斜機 能樹脂系化成被膜を得るこ とが可能となつた。
この高分子分散剤はコロイ ド粒子表面に吸着されてア ンカ一の働 きをし、 コロイ ド粒子を立体障害により安定化するに十分な長さを 持ち、 かつ水和の可能な高分子連鎖に結合した構造を基本とする も のであり、 さ らには、 水和可能な高分子連鎖には金属表面との密着 性が高い極性基を含み、 金属表面への優先析出を可能とする もので ある。 その高分子分散剤と しては疎水性ビニル系モノ マーの重合物 と水和性 (親水性) ビニル系モノ マーの重合物から構成され、 その 疎水性ビニル系モノ マー と しては、 スチ レ ン、 ひー メ チルスチ レ ン 、 ビニル ト ルエン、 ク ロ ロスチ レ ン、 ( メ タ) ア タ リ ノレ酸アルキル エステル等の中から選ばれた 1 種又は 2種以上が使用できる。 又、 水和性 (親水性) ビニル系モノ マーと しては極性基含有モノマーが 使用できる。 この極性基とは- C00H. - S03 H, - P (0) (0H) 2, -OH 等の プロ ト ン供与性群、 又は、 それらの塩、 エステル及び-題 2 , - NHR、 のプロ ト ン受容性群、 更には、 イオン結合を有する 4級アンモニゥ ム基、 又はプロ ト ン受容性基、 供与性基が混在する両性極性基等を 意味し、 これら極性基が単独、 又は複雑種導入されたビニル系化合 物が使用される。 又、 重合物はこれらモノ マーの 1 種又はそれ以上 を使用 し製造できる。 更に、 重合後にこれら官能基を導入しても差 し支えない。
これ らの具体的な例と しては、 スチ レ ン スルホ ン酸、 スチ レ ン力 ノレボン酸、 ビニル フ エ ノ ー几、 ( メ タ) ア ク リ ル酸、 ビニ儿ァルコ ー儿、 酢酸ビニル、 ( メ タ) ァ ク リ ル酸燐酸塩、 ビニル ピ リ ジ ン、 ビニルピロ リ ドン、 エチ レ ン ィ ミ ン、 エチ レ ンオキサイ ド、 プロ ピ レ ンオキサイ ド、 エチ レ ン グ リ コール、 プロ ピレ ン グ リ コール、 ビ ニルフ エ ノ ールスルホ ン酸、 ジ メ チルア ミ ノ メ チ レ ン ビニル フ エ ノ —ル、 ジエタ ノ ールア ミ ノ メ チ レ ン ビニルフ エ ノ ール、 ビニル一 8 ー ヒ ドロキシキノ リ ン、 N— ( 3—スルフ ォ プロ ピル) 一 N— メ タ ク リ ロイ ルァ ミ ドプロ ピールー N— ジ メ チルア ンモニゥムべタイ ン 等である。 これら疎水性重合物と親水性重合物の重量比が 1 /100 〜 1 / 2、 好ま しく は 1 /100 〜 1 / 5である水溶性高分子である 。 また、 これらの樹脂の高分子の長さは、 あま り長すぎる と水系媒 体との親和性が強く なり過ぎて分散剤が水系媒体に引っ張られ、 コ 口ィ ド表面から脱着し、 又、 さ らに長く なる とコロィ ド粒子表面で 屈曲して立体障壁を圧縮したり、 他のコロイ ド粒子被覆高分子鎖と 絡み合いを起こ しコロイ ド粒子再凝集を誘発する。 これらを考慮し て樹脂の数平均分子量を 1000〜50000 、 好ま し く は 2000〜40000 に 調整する こ とが必要である。
図 4は高分子分散剤による ク ロム酸塩コロイ ドの分散安定化の模 式図である。 図 4に示すよう に、 樹脂を含ク ロムコロイ ドと処理液 中での分散性確保のため、 高分子分散剤を用い、 かつ、 こ の高分子 分散剤に金属表面選択性を付与し、 金属表面に防食機能が選択的に 集中した傾斜機能性樹脂被膜を形成させる。 そ こで、 こ の高分子分 散剤 15は金属表面との親和性基 16とコロイ ド表面への配向基 17を持 つ水和性樹脂骨格 18よ り構成され、 含ク ロムコロ イ ド 1 の周辺に保 護障壁を形成する。 図 5は化成処理被膜の断面概念図である。 図 5 に示すように、 金属 19の表面にめっき層 20を形成させ、 その表面に 化成処理被膜層 21が形成され、 その化成処理被膜層 21中には含ク ロ 厶コロイ ド 1がマ ト リ ッ クス樹脂 22中に分散した状態を形成する。 その他の添加物と して、 Ca(0H)2, CaC03, CaO, Si02, Cr 203. Cr
03, Cr(0H)3. Zn3(P04)2, KP03, Ca2(P04)3, CaSi03, ZrSi03, A1P 04 · nH20, Ti02. Zr3P04, H2SO4. NaHS04, Na2S0 , H3P0 . NaH2P0 Na2HP04, Na3P04等の 1種又は 2種以上の化合物を処理液中に混 入させ、 防食性等機能向上をはかる。 この無機添加物の添加量はマ ト リ ッ クス樹脂 : 無機添加物 (重量比) で 1 : 0. 02〜 1 : 2 とする 。 また、 不働態化被膜形成助剤と して燐酸を挙げるこ とができる。 この添加量はマ ト リ ッ クス樹脂 : 不働態化被膜形成助剤 (重量比) で 1 : 0. 02〜 1 : 2 とする。 これら以外にも添加物と して加えるこ と もできるが混合によってコロイ ドの分散性が悪化しないよう に気 をつける必要がある。
マ ト リ ツ クス樹脂の濃度は被膜形成安定性の観点から l OO g Z 1 以上、 好ま し く は 150 g / 1 以上に調整するのが好ま しい。
なお、 これら処理液中の 6価ク ロムについて、 含ク ロム酸塩コロ イ ドの調製過程において、 液中に 6価ク ロムを残存させるこ とが可 能であり、 用いる樹脂種に応じ、 この 6価ク ロムの濃度調整を行う こ とができる。
また、 6価ク ロムは強力な酸化力を有するので、 選択樹脂種によ つては、 その構造上の易酸化部 (アルキルアルコール類、 アルコー ルア ミ ド類等の還元性水酸基部等) が酸化され、 樹脂分子鎖間の化 学架橋、 物理架橋が起こる。 この架橋は処理液中においてゲル化等 を誘発し好ま しいものではないか、 固体被膜と しては、 構造が緻密 となるためバリ アー機能が向上する と推定され、 被膜物性が向上す る。 樹脂種によ り被酸化程度が異なるため明確な規定はできないが 、 樹脂 Z 6価クロムの比率にして 500 / 1 〜 100/ 1 に調整するの が好ま しい。
このように調製した樹脂系化成処理液を金属板に塗布し、 乾燥す る こ とによって、 本発明の表面処理鋼板を得るこ とができる。 一般 には、 被膜表面到達温度が約 50 °C以上に加熱されれば良く 、 これに よって樹脂を鋼板に密着させる と共に、 樹脂相互を融合させて被膜 強度を高める。
以上述べたように、 本発明による ク ロムを微分散コロイ ド系にて 供給する こ とにより、 樹脂との相互作用を抑制し、 塗料の長期安定 性、 被膜構造の安定性を確保でき、 操業性並びに加工部耐蝕性の向 上をはかり、 かつコ ロイ ドは pH低下によ り溶解し、 6価ク ロムを放 出するため腐食進行部に選択的に反応し、 不動態化作用を有し、 腐 食部の選択的修復効果をも発揮するこ とが出来る極めて優れた効果 を奏する ものである。
実施例
1.マ ト リ ッ ク ス樹脂
( 1 ) ブロ ッ ク コポ リ マ一
ポ リ ( メ タ ク リ ル酸、 ヒ ドロキンェチルァ ク リ レー ト、 ヒ ドロキン ェチ儿 メ タア タ リ レー ト 一 ポ リ (スチ レ ン、 メ タ ク リ ノレ酸 メ チル、 メ タ ク リ ル酸プチル、 ァ ク リ ル酸プチル) 一 ポ リ ( メ タ ク リ ル酸、 ヒ ドロキシェチルァ ク リ レ一 卜、 ヒ ドロキシェチルメ タァ ク リ レー ト) ブロ ッ ク共重合体を リ ビン グァニオ ン重合法によ り製造する。 溶媒はテ ト ラ ヒ ドロ フ ラ ン(THF) 、 触媒は S - BuL iを用い、 モノ マー 仕込み比 (重量比) で、
メ チ儿 メ タア タ リ ノレ酸 : ヒ ドロキシェチル了 ク リ レ 一 ト : ヒ ドロキ シェチル メ タ ク リ レー ト = 3 : 4 : 3 … 第 1 段の合成 (樹脂末 端部)
ステ レ ン : メ チノレメ タァ ク リ レ ー ト : ブチノレ メ タァ ク リ レー ト : ブ チルァ ク リ レ ー ト = 20 : 10 : 1 0 : 40 · · · リ ビン グァニオ ン重合 ( 樹脂主要部)
メ チ儿 メ タア ク リ ル酸メ チノレ : ヒ ドロキシェチルア タ リ レ ー ト : ヒ ドロキシェチルメ 夕 ク リ レー ト = 3 : 4 : 3 · · · カ ッ プリ ン グ ( 樹脂残末端部)
反応温度 : 40〜60°C、 モノ マー仕込み量/溶媒二 2 / 100
反応溶媒を石油エーテル、 メ タ ノ ールに注ぎ、 ブロ ッ ク共重合体を 精製し、 得られた共重合体を極性溶媒に溶解後、 水中に投入し、 強 撹拌によ り微細粒子化、 水洗を繰り返し脱溶媒、 重合体固形分濃度 調整を行った。
( 2 ) テレケ リ ッ ク樹脂
ポリ (スチレ ン、 メ タ ク リ ル酸メチル、 メ 夕 ク リ ル酸プチル、 ァク リ ル酸プチル) のァニオン重合過程で連鎖移動剤と してメルカプ ト プロ ピオン酸、 メルカプ トエタノ ール等を使用 し、 アク リ ルモノマ —共重合体の末端に水酸基、 カルボキシル基を導入した。
スチレ ン (10重量部) : ヒ ドロキシェチルァク リ レー ト (10重量部 ) : メ タ ク リ ル酸ブチル ( 15重量部) : ア ク リ ル酸ブチル ( 65重量 部)
溶媒 THF, 500重量部、 重合開始剤、 4 — 4 ' ァゾビス ( 4 —シァノ ペンタ ン酸) 1.5重量部、 温度 80°Cで濃度調整を行った。
( 3 ) コア . シ ェル型ェマルジ ヨ ン樹脂
スチレ ン (20重量部) : メチルメ タ ク リ レー ト (20重量部) : プチ ルメ 夕 ク リ レー ト .( 10重量部) : ブチルァ ク リ レー ト ( 30重量部) 一 メチルメ 夕 ク リ ル酸 ( 6重量部) : ヒ ドロキシェチルァク リ レ一 ト ( 8重量部) : ヒ ドロキシェチルメ タアタ リ レー ト ( 6重量部) 系にて製造し、 コアー シヱル型樹脂を得た。
製造法 : モノマ 40重 部
脱イ オ ン水 60重 部
SDBS 0.2重 部 ( Sod i um Dodecyl
Benzene sulfonate) ア ンモニアノ、0—サルフ ェ イ 0.2重 部
温度 X時間 70°C x 8 r
( 4 ) ラテッ クス
市販の官能基を含有しない 二オン系の SBRラテッ クス(DIC製 樹脂含有率 50重量%)
( 5 ) カルボキシル基含有ラテッ クス
市販のカルボキシル基含有の SBRラテッ クス (日本合成ゴム製、 樹脂含有率 50重量%)
2. クロム酸塩コロイ ド含有樹脂液
( a ) Cr03 1.5gを水 65gに溶解(pHl.3) 後、 無水酢酸亜鉛 2.75 g、 又は酢酸ス ト ロ ンチウム 0.5水和物3.22£、 又は酢酸バ リ ウム
3.83gを加え、 撹拌 (温度 40°C) し、 これに水酸化ナ ト リ ウムを加 え pH 7 に調製し、 クロム酸亜鉛コロイ ド、 又はクロム酸ス ト ロ ンチ ゥム、 又はクロム酸バリ ウムのコロイ ド溶液を得た。
この溶液に上記樹脂 ( 1 ) を 200 g / 1 になるよう に混和したと ころ、 1 ヶ月以上ゲル化せず安定であった。
また、 これを亜鉛めつ き鋼板 (シルバージンク、 新日本製鐵製) に塗布乾燥して得られた処理被膜表面を SEMで観察したところ、 含 クロム酸塩コロイ ドの数平均の粒子径は 0.3〃 m以下であった。 なお、 Cr03の水溶液に上記樹脂を 200 g Z l となるよう に混和し たところ 1 日でゲル化した。
( b ) Cr03 1.5gを水 65gに溶解(pHl.3) 後、 無水酢酸亜鉛 2.75 g、 又は酢酸ス ト ロ ンチウム 0.5水和物3.22 、 又は酢酸バ リ ウム 3.83 gを加え、 撹拌 (温度 40°C) し、 これにスノ ーテ ッ ク ス 0 ( 日 産化学製シ リ カゲル、 固形分 20〜21%、 粒径 10〜20nm、 Ph 2 〜 4 ) を 10.53g加え、 撹拌したところ、 分散性良く ゲル化しなかった。 この溶液に水酸化ナ ト リ ゥ厶を加え pH 7 に調製し、 ク ロム酸亜鉛コ ロイ ド、 又はク ロム酸ス ト ロ ンチウム又は ク ロム酸バ リ ウムのコ ロ ィ ド溶液を得た。
この溶液に上記樹脂 ( 2 ) を 200 g / 1 になるように混和したと ころ、 1 ヶ月以上ゲ儿化せず安定であった。 また、 これを亜鉛めつき鋼板 (シルバージンク、 新日本製鐵製) に塗布乾燥して得られた処理被膜表面を SBMで観察したと ころ、 含 ク ロム酸塩コロイ ドの数平均の粒子径は 0.3 m以下であった。
( c ) 含クロム酸塩コロイ ドの調製過程において、 pH調整剤と し て水酸化ナ ト リ ゥ厶に以外のアル力 リ を使用 した。
Cr03 1.5gを水 65gに溶解(pHl.3) 後、 無水酢酸亜鉛 2.75g、 又 は酢酸ス ト ロ ンチウム 0.5水和物3.228、 又は酢酸バ リ ウム 3.83g を加え、 撹拌 (温度 40°C) し、 ア ンモニア水を加え pH7に調製し、 ク ロム酸亜鉛コロイ ド、 又はク ロム酸ス ト ロ ンチウム、 又はク ロム 酸バリ ゥムのコロイ ド溶液を得た。
この溶液に上記樹脂 ( 3 ) を 200 g / 1 になるよう に混和したと ころ、 1 ヶ月以上ゲル化せず安定であった。
また、 これを亜鉛めつ き鋼板 (シルバージンク、 新日本製鐵製) に塗布乾燥して得られた処理被膜表面を SEMで観察したところ、 含 ク ロ厶酸塩コロイ ドの数平均の粒子径は 0.3 m以下であった。
( d ) C.rOsを水に溶解後、 ア ンモニア水を用いて pHIOに調整し、 水を加え 0.75mol/ 1 になるように濃度調整した。
この水溶液 1 Occに無水酢酸亜鉛水溶液 0.75mo 1 Z 1 、 又は酢酸ス ト ロ ンチウム水溶液 0.75molZ l 、 又は酢酸バ リ ウム水溶液 0.75m ol/ 1 それぞれ lOccを撹拌しながら加え、 ク ロム酸亜鉛、 又はクロ 厶酸ス ト ロ ンチウ厶又はク ロム酸バリ ゥ厶のコロイ ド溶液を得た。
この溶液に上記樹脂 ( 3 ) を 200 g / 1 になるよう に混和したと ころ、 1 ヶ月以上ゲル化せず安定であった。
また、 これを亜鉛めつ き鋼板 (シルバージ ンク、 新日本製鐵製) に塗布乾燥して得られた処理被膜表面を SEMで観察したところ、 含 ク ロム酸塩コロイ ドの数平均の粒子径は 0.2 m以下であった。
( e ) 上記樹脂 ( 4 ) 、 すなわち、 ノ ニオン系 SBRラテッ クス 6 mlに、 無水酢酸亜鉛水溶液 0.75molZ l 、 又は酢酸ス ト ロ ンチウム 水溶液 0.75molZ l、 又は酢酸バリ ウム水溶液 0.75molZ 1 の lOcc を加えて混合した。
一方、 ア ンモニア水を用いて pHIOに調整した 0.75 molZ 1 の Cr03 水溶液を調製した。
このク ロム酸水溶液を上記ラテッ クス/金属塩混合液に撹拌しな がら加え、 ク ロム酸亜鉛、 又はク ロム酸ス ト ロ ンチウム、 ク ロム酸 ノくリ ウムのコロイ ド溶液を得た。
この溶液に、 コロイ ド安定化剤と して硫酸水素ナ ト リ ウム 0.0037 5mol加え、 さ らに上記樹脂 ( 5 ) を先に加えた樹脂との総量が 200 g Z 1 になるよう に混和したと ころ、 1 ヶ月以上ゲル化せず安定で めった。
また、 これを亜鉛めつき鋼板 (シルバージン ク、 新日本製鐵製) に塗布乾燥して得られた処理被膜表面を SEMで観察したところ、 含 ク ロム酸塩コロイ ドの数平均の粒子径は 0.15〃 m以下であった。 3.高分子分散剤
( A ) ポ リ 一 (スチ レ ン) 一 ポ リ 一 (スチ レ ンスルフ ォ ン酸、 ビ ニルフ ヱ ノ 一ルスルフ ォ ン酸) の合成
スチ レ ン、 夕一 シャ ルブチルォキシカルボニルスチ レ ンを各々 20 重量部、 30重量部を溶媒テ ト ラ ヒ ドロ フ ラ ン(THF)200重量部中にて 開始剤 ΑίΒΝ 1 重量部を用いラ ジカル重合 (70°C X 2〜16hr) 、 反応 停止剤と してジク ロロパラキシレ ンを 2重量部加え、 反応溶液を石 油エーテル、 メ タ ノ ール中に落と し回収精製した。 上記樹脂を 15重 量%となるように、 パラジオキサンに Ar雰囲気下で溶解し、 ト リ フ ルォロ酢酸を加え 60°C、 15時間還流、 反応溶液を過剰の脱イオン水 に落と し、 pH 6 になるまで水洗を繰り返し、 75°C, 80hr真空乾燥し た。 この樹脂をピリ ジン中に溶解し、 既知の方法を用い、 ァセチル スルフエ一 トをスルホン化剤と してスルホン化した。 スチレ ン 5重 量部をテ トラ ヒ ドロフ ラ ン(THF) 溶媒(200重量部) 中で S- Buいを触 媒と してァニオン重合 (60°C x 3 hr) この溶液にスルホン化 P- (Si Ph) を加え、 力 ップリ ングした。
( B ) ポ リ 一 (スチ レ ン) 一 ポ リ 一 (スチ レ ンスルフ ォ ン酸、 ビ 二ルフ.エ ノ ールスルフ ォ ン酸、 ビニル ピ リ ジ ンスルフ ォ ン酸) の合 成
スチレ ン、 夕一シャルブチルォキシカルボニルスチレ ン、 ビニル ピリ ジンを各々 20重量部、 30重量部、 30重量部を溶媒テ トラ ヒ ドロ フ ラ ン(THF)200重量部中にて開始剤 AIBN 1 重量部を用いラ ジカル童 合 (70°C X 2〜12hr) 、 反応停止剤と してジク ロロパラキンレ ンを 2重量部加え、 反応溶液を石油エーテル、 メ タ ノ ール中に落と し回 収精製した。 上記樹脂を 15重量%となるよ う に、 パラ ジオキサンに Ar雰囲気下で溶解し、 ト リ フルォロ酢酸を加え 60°C、 15時間還流、 反応溶液を過剰の脱イオン水に落と し、 pH 7 になるまで水洗を繰り 返し、 75°C, 80hr真空乾燥した。 こ の樹脂をテ ト ラ ヒ ドロフ ラ ン(T HF) 中に溶解し、 既知の方法を用い、 ァセチルスルフ ヱー トをス儿 ホ ン化剤と してスルホ ン化した。 スチ レ ン 5重量部をテ ト ラ ヒ ドロ フラ ン(THF) 溶媒中(200重量部) 中で s- BuLiを触媒と してァニオン 重合 (60°C x 3 hr) し、 こ の溶液に前述のスルホ ン化 P-(S- vph- vpy ) を加え、 カ ップリ ングした。
( C ) ポ リ 一 (スチ レ ン) —ポ リ 一 (スチ レ ンスルフ ォ ン酸、 安 息香酸ビニルスルフ ォ ン酸) の合成
スチレ ン、 安息香酸ビニルを各々 20重量部、 30重量部を溶媒テ ト ラ ヒ ドロフ ラ ン(THF)400重量部中にて開始剤 MBN 1 重量部を用いラ ジカル重合 (70°C X 10〜30hr) 、 反応停止剤と してジクロロパラキ シ レ ンを 2重量部加え、 反応溶液をヘプタ ン中に落と し回収精製し た。 上記樹脂をピリ ジン中に溶解し、 既知の方法を用い、 ァセチル スルフヱ一 トをスルホン化剤と してスルホン化した。 スチレ ン 5重 量部をテ トラ ヒ ドロフラ ン(THF) 溶媒中(200重量部) 中で s-BuLiを 触媒と してァニオン重合 (60°C X 3 hr) し、 この溶液に前述のスル ホン化 P- (S- SCA) を加え、 カ ップリ ングした。
上述した (A) 〜 ( C ) の高分子分散剤 3種を各々反応時間を変 えて分子量を調整し、 その含ク ロム酸塩コロイ ドの安定性の評価を 表 1 に示す。 表 1 から明らかなように、 本発明による分散剤は含ク ロム酸塩コロイ ドの分散安定性を損なう こ とな く、 長期安定性を確 保できた。 また、 水系熱硬化性塗料中での分散安定性について表 2 に示す。 通常、 熱硬化性水系塗料を用いる と反応性モノマー、 触媒 、 硬化剤等を含むため顔料表面との化学的相互作用が強く 、 分散性 を損なう ものであるので、 本発明による高分子分散剤被覆含ク ロム 酸塩コロイ ドと熱硬化性水系塗料との分散安定性を高分子分散剤無 しの含ク ロム酸塩コロイ ドと比較したものである。 この表 2 よ り本 発明高分子分散剤の比較的長い水和分子鎖の含クロム酸塩コロイ ド の安定被覆により反応性の高い水系反応性塗料中にて安定分散性が 確保できる こ とが判る。
なお、 (A) 〜 ( C ) の高分子分散剤 3種をそれぞれ反応時間を 変えて分子量を調整し、 表 1 に示す含クロム酸塩コロイ ドの安定性 に与える影響評価を次の条件で行った。
• コロイ ド : ZnCr04, SrCr04, BaCr04 60 g / 1
• 分散剤 : 15gZ 1
• 評価基準 © : 1 ヶ月以上変化な し、 〇 : 1 ヶ月で少量の沈降 • 数平均分子量 (Mw) : SEC (Size Exclusion Chromatography ) にて測定、 ポリ スチレ ン換算値
• 成分分析値 : 元素分析計使用 また、 表 2 に示す水系熱硬化性塗料中での分散安定性比較は、 次 の条件で行つた。
' 含ク ロ ム酸塩コロイ ド : ZnCr04, SrCrOi, BaCr04 60 g / 1
• 高分子分散剤 : 15gZ 1
• 塗料 A : 耐指紋性鋼板用塗料 (アク リ ル系)
• 塗料 B : 潤滑鋼板用塗料 (ウ レタ ン変性エポキシ、 アク リ ル系
)
• 評価基準 : ◎ : 1 ヶ月以上安定、 〇 : 微量沈降、 △ : 10〜20日 でゲル化、 X : 3 日以内にゲル化
50°Cに放置し目視判定
表 1
Figure imgf000032_0001
2
高分子 熱硬化性水系塗料 ク ロム酸塩コロイ ド 安定性 分散剤
7n Γ r Π
ん 11し Γ U 4
2 Λ
A SrCr04
BaCr04
A
ZnCr04 (Q)
2 D
D SrCr04
ZnCr04
2 Δ SrCr04
BaCr04
B
ZnCr04 (C))
2 D SrCr04
BaCr04
ZnCr04
2 Λ SrCr04
BaCr04
ZnCr04
2 D SrCr04
BaCr04
ZnCr04
E Δ SrCr04
BaCr04 Δ
ZnCr04
B SrCr04 Δ
BaCr04 Δ 4.総合性能試験
上記 2で調製した含クロム酸塩コロイ ド含有樹脂液に、 上記 3で 合成した高分子分散剤、 添加物 (Si02) 、 不動態被膜形成助剤 (ォ ルツ燐酸) それぞれを表 3 に示す配合比で混合し、 1 週間室温にて 静置した後、 亜鉛めつき鋼板 (シルバージ ング、 新日本製鐵製) に 塗布、 乾燥により被膜形成を行い、 総合性能試験を行った。 その結 果を表 4 に示す。
なお、 比較例に使用 したク ロム酸塩顔料は、 市販のジ ンクイエロ 一 (ZnCr04) 、 ス ト ロ ンチウムク ロ メー ト (SrCr04) 、 試薬の BaCr 04、 それぞれを機械的粉砕によって平均粒径約 0.3 m以下に して 用い、 表 3 に示す配合比で混合後、 ハ ンディ ー ミ キサーで 3分間撹 拌してから亜鉛めつき鋼板 (シルバー ジ ンク、 新日本製鐵製) に塗 布、 乾燥によ り被膜形成を行い、 総合性能試験を行った。 これ らの ク ロム酸塩顔料は平均一次粒子径は 0.3/z m以下であるが、 樹脂系 塗膜中に分散している粒子は凝集粒子であり、 その平均粒径は下記 の如く観察でき、 約 1.3 / mよ り大きかった。
表 3 に示す金属表面へのク ロム酸塩コロイ ドの析出状態を被膜断 面分散状態解析と して、 各被膜を球面研磨 XPSを用い、 Crの被膜厚 方向のプロフ ィ ルを測定した。 X線光電子分光分析装置 (パーキ ン エルマ—社製 PH卜 5500型) 、 X線源 : Mg- Kひ ( 1253.6eV) 15kV-27m A 、 分析領域 : 800 m ø、 分析室真空度 2 X 10— 8Pa, Cr2pを 567 〜597eV の走査範囲で 100回の積算回数で測定した。
また、 表 4 に示す性能評価評点は次の通りである。
- 耐ク ロム溶出性 : 沸騰水 30min浸漬後の Cr溶出量
© : < 2 mg/m 2 、 〇 : 2〜 7 mg/m 2 、 △ : 7〜 15mg/m 2 、 : > 15mg/m 2
• SST : 白靖 ◎ : < 2 % . 〇 : 2〜 5 %、 Δ : 5〜20%、 x : > 20% • 加工部耐食性 : エリ クセン 7關加工後、 SST240時間
© : く 2 %、 〇 : 2〜 5 %、 Δ : 5 〜20%、 X : > 20%
• 処理液安定性 :
◎ : 1 ヶ月以上安定、 〇 : 15〜 1 ヶ月安定、 △ : 3 〜 5 日安定、
X : 1 日以下
表 3 に示した本発明の高分子分散剤が配合された実施例 25〜 60に 関して、 金属表面から 20〜40%の膜厚に渡り、 Crの濃化が確認され た。
なお、 本発明の高分子分散剤が配合されていない実施例 1 〜12に 関しては金属表面部にわずかな Crの濃化を確認するに止ま り、 断面 方向のク ロム酸塩コロイ ドの分散状態には明確な差が測定された。
また、 表 4 から明らかなよう にク ロム酸塩コロイ ドの金属表面偏 析樹脂被膜は、 均一分散樹脂被膜と同等の性能以上を示すこ とが判 る。
表 3
Figure imgf000036_0001
表 3 (つづき)
Figure imgf000037_0001
表 3 (つづき)
iifP
ίΐί クロ厶!)傻; コ口 ィ
クロム酸塩 nフ κ itl'lli¾JI¾r ^
クロム酸 高分子 剛 ィ、 iTi鹏l 柳 JI 1ΙΙΠ rzt
~'V ィド含捕謹 コロイド クロム酸 塩顔料 (Si02) (+ルソ«) 考
49 (a) 一 C 2 1 g/1 lOg/1 lOg/1
50 (a) ― ― C 2 1 g/1 lOg/l lOg/1
51 (a) J> B t GaCrO., 50g/l C 2 1 g/1 lOg/l lOg/1 本
52 (c) CO —— 一 C 2 1 g/1 7.5g/l ■ lOg/1
53 (c) p CD ! CD CD CD一 C 2 1 g/1 7.5g/l lOg/1
54 (c) ——
OO CO CO C C 2 1 g/1 7.5g/l lOg/1 発
55 (d) C 2 1 g/1 lOgZl lOg/1
56 (d) ― ― C 2 1 g/1 lOg/1 lOg/1
57 (d) C 2 1 g/1 lOg/1 lOg/1 明
58 (e) C 2 1 g/1 lOg/1 10 g/1
59 (e) ― ― C 2 1 g/1 lOg/1 lOg/1
60 (e) C 2 1 g/1 lOg/1 lOg/1
ブロック共 IE
61 20g/l lO Xl lOg/1
合体
テレケリック 比
62 20g/l 7.5g/l lOg/1 コアシェル型ェ 較
63 20g/l lOg/1 lOg/1
マルジヨン樹脂
64 SBR ラテックス 20 /l 例
lOg/1 lOg/1
表 3 (つづき)
Figure imgf000039_0001
1 ) 糊 度 200 g/ 1 ·媚奠形 fiffill 200°Cx30sec · : ffil嫩板 注 2 ) 例は液安定 無いため、 配合後すぐに塗布した。
注 3 ) ^例 61 76の枝 ffl 夜中には、 ク口ム酉 コ口ィドは含有してし、なし、。
表 4
Figure imgf000040_0001
4 (つづき)
Figure imgf000041_0001
産業上の利用可能性
本発明の樹脂系化成処理被膜を有する表面処理鋼板は、 自動車、 家電製品、 建材用途に用いられる冷延鋼板、 Znめっ き鋼板、 Z n系合 金めつき鋼板などに利用可能である。

Claims

請 求 の 範 囲
1. 鋼板および樹脂系化成処理被膜を含む表面処理鋼板であつて
、 該樹脂系化成処理被膜はマ ト リ ッ クス樹脂と該マ ト リ ッ クス樹脂 中に分散した難溶性ク ロム酸塩のコロイ ド粒子を重量比 50/ 1 〜 1 Z 1 の範囲内で有し、 該コロイ ド粒子は該マ ト リ ッ ク ス樹脂中に分 散した粒子の平均粒径と して 1 m未満である、 表面処理鋼板。
2. 前記コロイ ド粒子の分散粒子平均径が 0. 30 m以下である請 求の範囲第 1 項に記載の表面処理鋼板。
3. 前記ク ロム酸塩が ZnCr04 , SrCr04 , BaCr04 , CuCr04 , FeCr04 , Ag 2 Cr04 および SnCr04からなる群よ り選ばれる 1 種又は 2種以上 である請求の範囲第 1 項に記載の表面処理鋼板。
4. 前記マ ト リ ッ クス樹脂が、 前記ク 口ム酸塩のコロイ ド粒子と 親和性のある骨格又は官能基を一端に有し、 金属と親和性のある骨 格又は官能基を別の一端に有し、 かつ残部が疎水性分子骨格がある ブロ ッ ク共重合体又はテレケ リ ッ ク樹脂の一方又は両方を含む請求 の範囲第 1 項に記載の表面処理鋼板。
5. 前記マ ト リ ッ クス樹脂が、
親水性のビニル系力ルボン酸、 ビニル系ァ ミ ン、 ビ二ル系 リ ン酸 塩及びビニ儿系アルコールから選ばれる 1 種以上のモノマ一から得 られるポリ マーと、 疎水性のビニル系化合物モノ マー及び/又はォ レ フ ィ ン系化合物モノ マーの 1 種以上から得られるポリマーとの共 重合体、 または
疎水性のビニ儿系化合物モノ マー及び/又はォレ フ ィ ン系化合物 モノ マーの 1 種以上から得られるポリマーの末端に金属表面との親 和性のある官能基を有するポリ マー
を含む請求の範囲第 1 項に記載の表面処理鋼板。
6. 前記マ ト リ ッ クス樹脂が、 疎水性のビニル系化合物モノ マ— 及び Z又はォレ フ ィ ン系化合物モノ マーの 1 種以上から得られるポ リ マーをコア相と し、 前記ク ロム酸塩コロイ ド粒子及び金属表面と の親和性を有するポリ マーの 1 種以上をシェル相と したコア シェ ル樹脂を含む請求の範囲第 1 項に記載の表面処理鋼板。
7. 前記マ ト リ ッ クス樹脂が、
疎水性のビニル系化合物モノ マー及び/又はォレ フ ィ ン系化合物 モノマ一の一種以上から得られるポリ マ一と、 疎水性のビニル系化 合物モノ マー及び Z又はォレ フ ィ ン系化合物モノ マーの一種以上と 水及び金属と親和性を有するモノ マーの 1 種以上とから得られる共 重合体との混合物
を含む請求の範囲第 1 項記載の表面処理鋼板。
8. 前記マ ト リ ッ ク ス樹脂 1 重量部に対し、 Ca(0H)2, CaC03, Ca 0, Si02. Cr 203> Cr( , Cr(0H)3. CaSi03, ZrSi03, Ti02 、 リ ン酸 、 リ ン酸塩、 硫酸及び硫酸塩からなる群よ り選ばれる 1 種以上の添 加物を 0.02〜 2重量部含む請求の範囲第 1 項に記載の表面処理鋼板
9. 前記コロイ ド粒子 1 重量部に対し、 コロイ ド安定化剤又は不 動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸および硫酸塩か らなる群よ り選ばれる 1種以上の化合物を 0.02〜 2重量部含む請求 の範囲第 1 項に記載の表面処理鋼板。
10. —端にコロイ ド配向性基を有し、 他の一端に金属表面と相互 作用を有する基を有する水和性高分子分散剤を、 前記コロイ ド粒子
1 重量部に対し、 0.005〜0.5 重量部含み、 前記被膜中において前 記コロイ ド粒子が前記被膜 Z鋼板界面に偏析している請求の範囲第
1 項に記載の表面処理鋼板。
11. 前記高分子分散剤が、 疎水性のビニル系化合物モノ マー と親 水性のビニル系化合物モノマーとから得られるポリ マーであり、 該 疎水性ビニル系化合物モノ マーがスチ レ ン、 ひ— メ チルスチ レ ン、 ビニル ト ルエン、 ク ロ ロスチ レ ン、 ( メ タ) ア ク リ ル酸アルキルェ ステルからなる群から選ばれた 1 種以上であり、 該水和性ビ二ル系 化合物モノ マーが極性基含有モノ マーである請求の範囲第 10項に記 載の表面処理鋼板。
12. ク ロム酸水溶液に金属イオ ンを含有する水溶液を混合し、 前記水溶液の PHを 5〜 12に調整し、 こ こで前記金属イオ ンの添加 時又は前記 pHの調整時にク ロム酸塩コ 口 ィ ドが析出する、
前記水溶液に樹脂の分散体又は溶液を混合して樹脂系化成処理液 を調製し、
前記樹脂系化成処理液を鋼板表面に塗布及び乾燥して、 鋼板表面 に樹脂系化成処理被膜を形成する
工程を含む表面処理鋼板の製造方法。
13. 前記コロイ ド水溶液に、
i ) Ca(0H)2, CaCOs, CaO, S i 02 , Cr 203, Cr03, Cr(0H 3, CaSiO 3 . ZrSiOs, Ti02, リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群か ら選ばれる 1 種以上の化合物を、 後記樹脂 1 重量部に対し 0.02〜 2 重量部、
ϋ ) コロイ ド安定化剤又は不動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群から選ばれる 1 種以上の化合 物を、 前記ク ロム酸塩コロイ ド 1 重量部に対し 0.02〜 2重量部、 ま たは
iii ) 一端にコロイ ド配向性基を有し別の一端に金属表面との相互 作用をする基を有する水和性高分子分散剤を、 前記クロム酸塩コロ イ ド 1 重量部に対し 0.005〜0.5 重量部
のう ち 1 又は 2以上を添加する工程をさ らに含む請求の範囲第 12項 記載の方法。
14. pH5〜12に調整したク ロム酸水溶液を準備し、
前記ク ロム酸水溶液に金属イオ ンを含有する水溶液を混合してク ロム酸塩コロイ ドを析出させ、
前記水溶液に樹脂の分散体又は溶液を混合して樹脂系化成処理液 を調製し、
前記樹脂系化成処理液を鋼板表面に塗布及び乾燥して、 鋼板表面 に樹脂系化成処理被膜を形成する
工程を含む表面処理鋼板の製造方法。
15. 前記コロイ ド水溶液に、
i ) Ca(0H 2, CaCOa, CaO, Si02, Cr203, Cr03, Cr(0H)3, CaSiO 3 , ZrSi03. Ti02 、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群 から選ばれる 1 種以上の化合物を、 後記樹脂 1 重量部に対し 0.02〜 2重量部、
ϋ ) コロイ ド安定化剤又は不動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群から選ばれる 1 種以上の化合 物を、 前記クロム酸塩コロイ ド 1 重量部に対し 0.02〜 2重量部、 ま たは
iii) 一端にコロイ ド配向性基を有し別の一端に金属表面との相互 作用をする基を有する水和性高分子分散剤を、 前記ク ロム酸塩コロ イ ド 1 重量部に対し 0.005〜0.5 重量部
のう ち 1 種又は 2種以上を添加する工程をさ らに有する請求の範囲 第 14項記載の方法。
16. 疎水性のビニル系化合物モノ マーの 1 種以上及び/又はォ レ フ ィ ン系化合物モノ マーの 1 種以上から得られるポリ マーの水性ェ マルジ ョ ン樹脂又はラテツ クスを準備し、
pH 5 〜 12に調整したク ロム酸水溶液と、 金属イオ ンを含有する水 溶液を前記ェマルジョ ン又はラテツ クスに添加して、 ク ロム酸塩コ ロイ ドを析出させ、
前記コロイ ド含有エマルジ ョ ン又はラテツ タスに、
i ) ク ロム酸塩コロイ ドと親和性のある骨格又は官能基を一端に 有し、 金属と親和性のある骨格又は官能基を別の一端に有し、 かつ 残部が疎水性分子骨格であるブロ ッ ク共重合体又はテ レケ リ ッ ク樹 脂の一方又は両方、
ϋ ) 親水性のビニル系カルボン酸、 ビニル系ァ ミ ン、 ビ二ル系リ ン酸塩及びビニル系アルコールから選ばれる 1 種以上のモノ マーか ら得られるポリマーと疎水性のビニル系化合物モノ マー及び Ζ又は ォレ フ ィ ン系化合物モノ マーの 1 種以上から得られるポリ マー との 共重合体、 または疎水性のビニル系化合物モノマー及び ζ又はォレ フ ィ ン系化合物モノマーの 1 種以上から得られるポリ マーの末端に 金属表面との親和性の官能基を有するポリ マー、 または
iii ) 疎水性のビニル系化合物モノ マー及び Z又はォレ フ ィ ン系化 合物モノ マーの 1 種以上から得られるポリマーをコア相と し、 ク ロ ム酸塩コロイ ド及び金属表面との親和性を有するポリ マーの 1 種以 上をシェ ル相と したコア/シ ェ ル樹脂のェマル ジ ョ ン又はラテ ツ ク スのうち 1 種又は 2種以上を添加して、 樹脂系化成処理液を調製し 前記樹脂系化成処理液を鋼板表面に塗布及び乾燥して、 鋼板表面 に樹脂系化成処理被膜を形成する
工程を含む表面処理鋼板の製造方法。
17. 前記コロイ ド含有ェマルジ ヨ ン又はラ テ ッ ク スに、 前記 i ) 〜 iii ) のポリ マー、 樹脂、 ェマルジ ヨ ン又はラテッ クスを添加する 工程の前に、
i ) Ca (0H 2 , CaC03 , CaO, S i 02 , Cr 203 , Cr03. Cr (0H) 3 , CaS i O 3, ZrSi03. Ti02 、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群 から選ばれる 1 種以上の化合物を、 後記樹脂 1 重量部に対し 0.02〜 2重量部、
ϋ ) コロイ ド安定化剤又は不動態被膜形成助剤と して、 リ ン酸、 リ ン酸塩、 硫酸及び硫酸塩からなる群から選ばれる 1 種以上の化合 物を、 前記ク ロム酸塩コロイ ド 1 重量部に対し 0.02〜 2重量部、 ま たは
iii) 一端にコロイ ド配向性基を有し別の一端に金属表面との相互 作用をする基を有する水和性高分子分散剤を、 前記クロム酸塩コロ ィ ド 1 重量部に対し 0.005〜0.5 重量部
のう ち 1 種又は 2種以上を添加する工程をさ らに有する請求の範囲 第 16項に記載の方法。
18. 請求の範囲第 12項の方法で製造された表面処理鋼板。
19. 請求の範囲第 14項の方法で製造された表面処理鋼板。
20. 請求の範囲第 16項の方法で製造された表面処理鋼板。
PCT/JP1996/001663 1995-06-15 1996-06-17 Feuille d'acier a surface traitee pourvue d'un revetement de resine a conversion chimique et procede de fabrication de ladite feuille WO1997000337A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/776,811 US5897948A (en) 1995-06-15 1996-06-17 Surface-treated steel sheet with resin-based chemical treatment coating and process for its production
EP96917707A EP0776992A1 (en) 1995-06-15 1996-06-17 Surface-treated steel sheet having chemical conversion resin coating and process for producing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP14919995 1995-06-15
JP7/149200 1995-06-15
JP14920095 1995-06-15
JP7/149199 1995-06-15
JP12418396 1996-05-20
JP12418496 1996-05-20
JP8/124184 1996-05-20
JP8/124183 1996-05-20

Publications (1)

Publication Number Publication Date
WO1997000337A1 true WO1997000337A1 (fr) 1997-01-03

Family

ID=27471013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001663 WO1997000337A1 (fr) 1995-06-15 1996-06-17 Feuille d'acier a surface traitee pourvue d'un revetement de resine a conversion chimique et procede de fabrication de ladite feuille

Country Status (3)

Country Link
US (1) US5897948A (ja)
EP (1) EP0776992A1 (ja)
WO (1) WO1997000337A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677053B2 (en) 2000-04-21 2004-01-13 Nkk Corporation Surface-treated steel sheet and production method therefor
KR101372758B1 (ko) * 2012-12-26 2014-03-10 주식회사 포스코 자기치유제, 상기 자기치유제를 포함하는 코팅 조성물 및 이 코팅 조성물 피막을 갖는 강판
WO2022149596A1 (ja) 2021-01-06 2022-07-14 日本製鉄株式会社 表面処理鋼板
WO2022186380A1 (ja) 2021-03-04 2022-09-09 日本製鉄株式会社 表面処理鋼材

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134035A1 (en) * 1997-03-20 2003-07-17 Unisearch Limited, A.C.N. 000 263 025 Hydrophobic films
WO1998048075A1 (fr) * 1997-04-24 1998-10-29 Nippon Steel Corporation Tole enduite et fluide de traitement de surface pour metaux
JP4455712B2 (ja) * 2000-02-18 2010-04-21 山下 正人 耐大気腐食性を有する被覆鋼
WO2003014234A1 (en) * 2001-08-03 2003-02-20 Florida State University Research Foundation, Inc. Composite polyelectrolyte films for corrosion control
AU2004205901B2 (en) * 2003-01-17 2010-02-04 University Of Missouri Curators Corrosion resistant coatings containing carbon pigments
US20040249023A1 (en) * 2003-01-17 2004-12-09 Stoffer James O. Compounds for corrosion resistant primer coatings and protection of metal substrates
US7601425B2 (en) 2003-03-07 2009-10-13 The Curators Of The University Of Missouri Corrosion resistant coatings containing carbon
WO2007125038A2 (de) * 2006-04-26 2007-11-08 Basf Se Verfahren zum aufbringen korrosionsschutzschichten auf metallische oberflächen
JP4155315B2 (ja) * 2006-06-28 2008-09-24 オムロン株式会社 金属膜の製造方法、下地組成物、金属膜およびその利用
EP2048203A1 (en) * 2007-10-12 2009-04-15 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Corrosion inhibiting coating for active corrosion protection of metal surfaces comprising a sandwich-like inhibitor complex
US11034857B2 (en) * 2017-07-26 2021-06-15 Basf Coatings Gmbh Low temperature cure coating formed via resin-facilitated catalyst migration between layers in a double layer curing mechanism

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597478A (en) * 1979-01-19 1980-07-24 Nippon Steel Corp Surface treatment of weather-resistant steel
JPS61231177A (ja) * 1985-04-02 1986-10-15 Nisshin Steel Co Ltd 潤滑性に優れた高耐食性着色表面処理鋼板
JPS63123572A (ja) * 1986-11-12 1988-05-27 Hitachi Ltd ガスシ−ルドア−ク溶接用ト−チ
JPS63179736A (ja) * 1987-01-21 1988-07-23 住友金属工業株式会社 塗装後耐食性に優れた被覆鋼材
JPS63296870A (ja) * 1987-05-29 1988-12-02 Nippon Steel Corp 金属表面処理鋼板の高性能クロム含有樹脂被膜形成方法
JPH01127084A (ja) * 1987-11-11 1989-05-19 Nippon Steel Corp 鮮映性及び耐クレータリング性に優れた表面処理鋼板の製造法
JPH05123647A (ja) * 1991-06-07 1993-05-21 Aisan Ind Co Ltd 金属表面のプラスチツクライニング層
JPH079614A (ja) * 1993-06-25 1995-01-13 Toyo Kohan Co Ltd 高密度エチレン系樹脂被覆用鋼板
JPH07163940A (ja) * 1993-12-15 1995-06-27 Nkk Corp プレス成形性、プレス成形後の外観性および耐食性に優れた亜鉛系めっき鋼板
JPH07180068A (ja) * 1993-12-22 1995-07-18 Nippon Steel Corp 耐食性及び塗料密着性に優れた樹脂クロメート処理鋼板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659394A (en) * 1983-08-31 1987-04-21 Nippon Kokan Kabushiki Kaisha Process for preparation of highly anticorrosive surface-treated steel plate
US4719038A (en) * 1983-12-27 1988-01-12 Nippon Paint Co., Ltd. Corrosion resistant, coated metal laminate, its preparation and coating materials
JPS62278298A (ja) * 1985-08-28 1987-12-03 Kawasaki Steel Corp クロメート処理Zn系めっき鋼板
US4775600A (en) * 1986-03-27 1988-10-04 Nippon Kokan Kabushiki Kaisha Highly corrosion-resistant surface-treated steel plate
US4885215A (en) * 1986-10-01 1989-12-05 Kawasaki Steel Corp. Zn-coated stainless steel welded pipe
JPS63123472A (ja) * 1986-11-12 1988-05-27 Nippon Steel Corp 鋼板の表面処理法
US4889775A (en) * 1987-03-03 1989-12-26 Nippon Kokan Kabushiki Kaisha Highly corrosion-resistant surface-treated steel plate
KR910002492B1 (ko) * 1987-03-13 1991-04-23 닛뽄 고오깐 가부시끼가이샤 고내식성 복층피복 강판
DE3882769T2 (de) * 1987-03-31 1993-11-11 Nippon Steel Corp Korrosionsbeständiges plattiertes Stahlband und Verfahren zu seiner Herstellung.
US4842958A (en) * 1987-04-14 1989-06-27 Nippon Steel Corporation Chromate surface treated steel sheet
JPS63283935A (ja) * 1987-05-18 1988-11-21 Nippon Steel Corp 有機複合鋼板
JPS6480522A (en) * 1987-09-24 1989-03-27 Sumitomo Metal Ind Organic composite coated sheet of superior corrosion resistance
GB2211762B (en) * 1987-11-13 1991-11-13 Kobe Steel Ltd Zinc alloy-plated corrosion preventive steel sheet having an organic coating layer thereon and a method for making the same
US5188905A (en) * 1988-05-17 1993-02-23 Nippon Steel Corporation Coated steel sheets
US5242572A (en) * 1988-05-17 1993-09-07 Nippon Steel Corporation Coated steel sheets and process for producing the same
DE68911991T2 (de) * 1988-05-31 1994-04-21 Kawasaki Steel Co Mit einem schmierenden Harz beschichtete Stählbander die eine verbesserte Verformbarkeit und einen verbesserten Korrosionswiderstand aufweisen.
JPH064311B2 (ja) * 1989-02-27 1994-01-19 川崎製鉄株式会社 耐食性にすぐれた有機被覆鋼板
JP2628782B2 (ja) * 1990-10-08 1997-07-09 日本パーカライジング株式会社 亜鉛系めっき鋼板のクロメート処理方法
JPH0753913B2 (ja) * 1990-11-14 1995-06-07 新日本製鐵株式会社 有機複合めっき鋼板の製造方法
CA2104058C (en) * 1992-08-17 1999-05-11 Shigeko Sujita Organic composite coated steel plates having improved corrosion resistance in as-worked state
CA2113968C (en) * 1993-07-29 2000-05-30 Junichi Mano Chromated metal sheet having high corrosion resistance with improved lubricity and electric conductivity

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597478A (en) * 1979-01-19 1980-07-24 Nippon Steel Corp Surface treatment of weather-resistant steel
JPS61231177A (ja) * 1985-04-02 1986-10-15 Nisshin Steel Co Ltd 潤滑性に優れた高耐食性着色表面処理鋼板
JPS63123572A (ja) * 1986-11-12 1988-05-27 Hitachi Ltd ガスシ−ルドア−ク溶接用ト−チ
JPS63179736A (ja) * 1987-01-21 1988-07-23 住友金属工業株式会社 塗装後耐食性に優れた被覆鋼材
JPS63296870A (ja) * 1987-05-29 1988-12-02 Nippon Steel Corp 金属表面処理鋼板の高性能クロム含有樹脂被膜形成方法
JPH01127084A (ja) * 1987-11-11 1989-05-19 Nippon Steel Corp 鮮映性及び耐クレータリング性に優れた表面処理鋼板の製造法
JPH05123647A (ja) * 1991-06-07 1993-05-21 Aisan Ind Co Ltd 金属表面のプラスチツクライニング層
JPH079614A (ja) * 1993-06-25 1995-01-13 Toyo Kohan Co Ltd 高密度エチレン系樹脂被覆用鋼板
JPH07163940A (ja) * 1993-12-15 1995-06-27 Nkk Corp プレス成形性、プレス成形後の外観性および耐食性に優れた亜鉛系めっき鋼板
JPH07180068A (ja) * 1993-12-22 1995-07-18 Nippon Steel Corp 耐食性及び塗料密着性に優れた樹脂クロメート処理鋼板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677053B2 (en) 2000-04-21 2004-01-13 Nkk Corporation Surface-treated steel sheet and production method therefor
KR101372758B1 (ko) * 2012-12-26 2014-03-10 주식회사 포스코 자기치유제, 상기 자기치유제를 포함하는 코팅 조성물 및 이 코팅 조성물 피막을 갖는 강판
WO2022149596A1 (ja) 2021-01-06 2022-07-14 日本製鉄株式会社 表面処理鋼板
KR20230113604A (ko) 2021-01-06 2023-07-31 닛폰세이테츠 가부시키가이샤 표면 처리 강판
WO2022186380A1 (ja) 2021-03-04 2022-09-09 日本製鉄株式会社 表面処理鋼材
KR20230141860A (ko) 2021-03-04 2023-10-10 닛폰세이테츠 가부시키가이샤 표면 처리 강재
US12104254B2 (en) 2021-03-04 2024-10-01 Nippon Steel Corporation Surface-treated steel

Also Published As

Publication number Publication date
EP0776992A1 (en) 1997-06-04
US5897948A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
WO1997000337A1 (fr) Feuille d&#39;acier a surface traitee pourvue d&#39;un revetement de resine a conversion chimique et procede de fabrication de ladite feuille
JP4034829B2 (ja) 表面処理金属板および金属表面処理液
DE69823164T2 (de) Zusammensetzung und Verfahren für die chromatfreie Oberflächenbehandlung metallischer Materialien
CN101321894B (zh) 用于钢表面腐蚀防护处理的湿碰湿方法和无铬的酸性溶液
EP0568084B1 (en) Zinc-plated steel plate having resin coating film
EP0870549B1 (en) Metallic sheet having rust-preventive organic coating thereon, process for the production thereof and treating fluid therefor
TW201131018A (en) Surface-treating composition and surface-treated steel sheet
JP3554531B2 (ja) 被膜特性の極めて優れた電磁鋼板とその絶縁被膜形成方法
JP7083614B2 (ja) 腐食防止顔料及びその使用
JP2000129455A (ja) 被膜特性に優れた無方向性電磁鋼板
JP3596665B2 (ja) 亜鉛系めっき鋼板用表面処理皮膜及び表面処理鋼板
JP4532690B2 (ja) 樹脂系耐食性層を有する金属材
JP3686575B2 (ja) 耐食性複合層を有するアルミニウム系金属板
KR20090073635A (ko) 금속의 표면 처리제 및 이의 제조 방법
JP4999333B2 (ja) 防錆材
KR0136168B1 (ko) 내지문성, 내알카리탈지성 및 표면광택이 우수한 크로메이트 피막제조용 도포형크로메이트 처리용액
JP2976405B2 (ja) 耐水二次密着性と加工後耐食性に優れた有機複合被覆鋼板
JPH0517703A (ja) 防錆顔料およびその製造方法
JP2793945B2 (ja) 加工後耐食性に優れた有機複合被覆鋼板
JP2831452B2 (ja) 防錆顔料およびその製造方法
Figueira Microcapsules Applied on Hot Dipped Galvanized Steel
JPH09157864A (ja) 金属材料用クロメート処理液組成物、および処理方法
JP2001019831A (ja) 重合体組成物
JPS6369631A (ja) 高耐食性燃料タンク用鋼板
JPH09165686A (ja) 樹脂クロメート浴および表面処理鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08776811

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996917707

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996917707

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996917707

Country of ref document: EP