US7550041B2 - Highly concentrated flowable pigment composition and process for its manufacture - Google Patents
Highly concentrated flowable pigment composition and process for its manufacture Download PDFInfo
- Publication number
- US7550041B2 US7550041B2 US11/666,130 US66613005A US7550041B2 US 7550041 B2 US7550041 B2 US 7550041B2 US 66613005 A US66613005 A US 66613005A US 7550041 B2 US7550041 B2 US 7550041B2
- Authority
- US
- United States
- Prior art keywords
- weight
- pigment
- composition
- resin
- alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000049 pigment Substances 0.000 title claims abstract description 183
- 239000000203 mixture Substances 0.000 title claims abstract description 137
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000008569 process Effects 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 230000009969 flowable effect Effects 0.000 title description 2
- 229920005989 resin Polymers 0.000 claims abstract description 64
- 239000011347 resin Substances 0.000 claims abstract description 64
- 239000007788 liquid Substances 0.000 claims abstract description 45
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 38
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 38
- 239000000976 ink Substances 0.000 claims abstract description 36
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 35
- 238000009835 boiling Methods 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 15
- 229920003023 plastic Polymers 0.000 claims abstract description 10
- 239000004033 plastic Substances 0.000 claims abstract description 10
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000004898 kneading Methods 0.000 claims abstract description 6
- 239000011248 coating agent Substances 0.000 claims abstract description 4
- 239000004594 Masterbatch (MB) Substances 0.000 claims abstract description 3
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 claims description 64
- -1 flavanthrone Chemical compound 0.000 claims description 41
- 239000002245 particle Substances 0.000 claims description 30
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 claims description 20
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 claims description 19
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 claims description 19
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 14
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 claims description 13
- 229920000180 alkyd Polymers 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 238000003801 milling Methods 0.000 claims description 9
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 claims description 9
- 235000019239 indanthrene blue RS Nutrition 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 claims description 7
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 claims description 7
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 claims description 7
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 claims description 6
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical compound C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 5
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 claims description 5
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 claims description 5
- KHUFHLFHOQVFGB-UHFFFAOYSA-N 1-aminoanthracene-9,10-dione Chemical group O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2N KHUFHLFHOQVFGB-UHFFFAOYSA-N 0.000 claims description 4
- 229920000877 Melamine resin Polymers 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 229920005992 thermoplastic resin Polymers 0.000 claims description 4
- KSLLMGLKCVSKFF-UHFFFAOYSA-N 5,12-dihydroquinolino[2,3-b]acridine-6,7,13,14-tetrone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C(=O)C(C(=O)C1=CC=CC=C1N1)=C1C2=O KSLLMGLKCVSKFF-UHFFFAOYSA-N 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 3
- PGEHNUUBUQTUJB-UHFFFAOYSA-N anthanthrone Chemical compound C1=CC=C2C(=O)C3=CC=C4C=CC=C5C(=O)C6=CC=C1C2=C6C3=C54 PGEHNUUBUQTUJB-UHFFFAOYSA-N 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims description 3
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 claims description 3
- BSIHWSXXPBAGTC-UHFFFAOYSA-N isoviolanthrone Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C(C4=C56)=CC=C5C5=CC=CC=C5C(=O)C6=CC=C4C4=C3C2=C1C=C4 BSIHWSXXPBAGTC-UHFFFAOYSA-N 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 3
- OBJNZHVOCNPSCS-UHFFFAOYSA-N naphtho[2,3-f]quinazoline Chemical compound C1=NC=C2C3=CC4=CC=CC=C4C=C3C=CC2=N1 OBJNZHVOCNPSCS-UHFFFAOYSA-N 0.000 claims description 3
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- LLBIOIRWAYBCKK-UHFFFAOYSA-N pyranthrene-8,16-dione Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C=C4C5=CC=CC=C5C(=O)C5=C4C4=C3C2=C1C=C4C=C5 LLBIOIRWAYBCKK-UHFFFAOYSA-N 0.000 claims description 3
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 claims description 3
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 claims description 3
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000013032 Hydrocarbon resin Substances 0.000 claims description 2
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 150000002028 dodecanols Chemical class 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 229920006270 hydrocarbon resin Polymers 0.000 claims description 2
- 239000012948 isocyanate Substances 0.000 claims description 2
- 150000002513 isocyanates Chemical class 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000098 polyolefin Polymers 0.000 claims description 2
- 229920006324 polyoxymethylene Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 229920005990 polystyrene resin Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 239000005060 rubber Substances 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 13
- 238000009837 dry grinding Methods 0.000 abstract description 11
- 239000012141 concentrate Substances 0.000 abstract description 6
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 28
- 238000001816 cooling Methods 0.000 description 16
- 239000013078 crystal Substances 0.000 description 16
- 239000002904 solvent Substances 0.000 description 15
- 238000007639 printing Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 239000001023 inorganic pigment Substances 0.000 description 9
- 239000003973 paint Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- JVTCNOASZYIKTG-UHFFFAOYSA-N stk329495 Chemical compound [Cu].[N-]1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)[N-]3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 JVTCNOASZYIKTG-UHFFFAOYSA-N 0.000 description 9
- RCHKEJKUUXXBSM-UHFFFAOYSA-N n-benzyl-2-(3-formylindol-1-yl)acetamide Chemical compound C12=CC=CC=C2C(C=O)=CN1CC(=O)NCC1=CC=CC=C1 RCHKEJKUUXXBSM-UHFFFAOYSA-N 0.000 description 8
- 239000012860 organic pigment Substances 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 229920001903 high density polyethylene Polymers 0.000 description 7
- 239000004700 high-density polyethylene Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- REIUXOLGHVXAEO-UHFFFAOYSA-N pentadecan-1-ol Chemical compound CCCCCCCCCCCCCCCO REIUXOLGHVXAEO-UHFFFAOYSA-N 0.000 description 4
- 230000019612 pigmentation Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 229960000541 cetyl alcohol Drugs 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 150000005125 dioxazines Chemical class 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- GOQYKNQRPGWPLP-UHFFFAOYSA-N heptadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003209 petroleum derivative Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000012963 UV stabilizer Substances 0.000 description 2
- JVVXZOOGOGPDRZ-SLFFLAALSA-N [(1R,4aS,10aR)-1,4a-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl]methanamine Chemical compound NC[C@]1(C)CCC[C@]2(C)C3=CC=C(C(C)C)C=C3CC[C@H]21 JVVXZOOGOGPDRZ-SLFFLAALSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- ALSTYHKOOCGGFT-MDZDMXLPSA-N oleyl alcohol Chemical compound CCCCCCCC\C=C\CCCCCCCCO ALSTYHKOOCGGFT-MDZDMXLPSA-N 0.000 description 2
- 239000006069 physical mixture Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 150000003233 pyrroles Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 235000010215 titanium dioxide Nutrition 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 2
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- VXBFFSKHYDXGAP-UHFFFAOYSA-N 1,4-bis(3,4-dichlorophenyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-3,6-dione Chemical compound C1=C(Cl)C(Cl)=CC=C1C(NC1=O)=C2C1=C(C=1C=C(Cl)C(Cl)=CC=1)NC2=O VXBFFSKHYDXGAP-UHFFFAOYSA-N 0.000 description 1
- 239000005968 1-Decanol Substances 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- GIEMHYCMBGELGY-UHFFFAOYSA-N 10-undecen-1-ol Chemical compound OCCCCCCCCCC=C GIEMHYCMBGELGY-UHFFFAOYSA-N 0.000 description 1
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical class CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- LFEHSRSSAGQWNI-UHFFFAOYSA-N 2,6,8-trimethylnonan-4-ol Chemical compound CC(C)CC(C)CC(O)CC(C)C LFEHSRSSAGQWNI-UHFFFAOYSA-N 0.000 description 1
- TXWSZJSDZKWQAU-UHFFFAOYSA-N 2,9-dimethyl-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione Chemical compound N1C2=CC=C(C)C=C2C(=O)C2=C1C=C(C(=O)C=1C(=CC=C(C=1)C)N1)C1=C2 TXWSZJSDZKWQAU-UHFFFAOYSA-N 0.000 description 1
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BTXXTMOWISPQSJ-UHFFFAOYSA-N 4,4,4-trifluorobutan-2-one Chemical compound CC(=O)CC(F)(F)F BTXXTMOWISPQSJ-UHFFFAOYSA-N 0.000 description 1
- DCOZERGYCYJONV-UHFFFAOYSA-N 4-(4-tert-butylphenyl)-1-phenyl-2,5-dihydropyrrolo[3,4-c]pyrrole-3,6-dione Chemical compound C1=CC(C(C)(C)C)=CC=C1C(NC1=O)=C2C1=C(C=1C=CC=CC=1)NC2=O DCOZERGYCYJONV-UHFFFAOYSA-N 0.000 description 1
- MIEGXDVWEMSFFT-UHFFFAOYSA-N 4-[4-(4-cyanophenyl)-3,6-dioxo-2,5-dihydropyrrolo[3,4-c]pyrrol-1-yl]benzonitrile Chemical compound C=12C(=O)NC(C=3C=CC(=CC=3)C#N)=C2C(=O)NC=1C1=CC=C(C#N)C=C1 MIEGXDVWEMSFFT-UHFFFAOYSA-N 0.000 description 1
- CUUQUEAUUPYEKK-UHFFFAOYSA-N 4-ethyloct-1-yn-3-ol Chemical compound CCCCC(CC)C(O)C#C CUUQUEAUUPYEKK-UHFFFAOYSA-N 0.000 description 1
- WUNYIZFTHRAWOD-UHFFFAOYSA-N 6-butoxyhexan-1-ol Chemical compound CCCCOCCCCCCO WUNYIZFTHRAWOD-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- BQACOLQNOUYJCE-FYZZASKESA-N Abietic acid Natural products CC(C)C1=CC2=CC[C@]3(C)[C@](C)(CCC[C@@]3(C)C(=O)O)[C@H]2CC1 BQACOLQNOUYJCE-FYZZASKESA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CGSLYBDCEGBZCG-UHFFFAOYSA-N Octicizer Chemical compound C=1C=CC=CC=1OP(=O)(OCC(CC)CCCC)OC1=CC=CC=C1 CGSLYBDCEGBZCG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001308 Zinc ferrite Inorganic materials 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ALSTYHKOOCGGFT-UHFFFAOYSA-N cis-oleyl alcohol Natural products CCCCCCCCC=CCCCCCCCCO ALSTYHKOOCGGFT-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- PGWFQHBXMJMAPN-UHFFFAOYSA-N ctk4b5078 Chemical class [Cd].OS(=O)(=O)[Se]S(O)(=O)=O PGWFQHBXMJMAPN-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- XJUNRGGMKUAPAP-UHFFFAOYSA-N dioxido(dioxo)molybdenum;lead(2+) Chemical compound [Pb+2].[O-][Mo]([O-])(=O)=O XJUNRGGMKUAPAP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- VMPHSYLJUKZBJJ-UHFFFAOYSA-N lauric acid triglyceride Natural products CCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC)COC(=O)CCCCCCCCCCC VMPHSYLJUKZBJJ-UHFFFAOYSA-N 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000010951 particle size reduction Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 230000000485 pigmenting effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- WPPDXAHGCGPUPK-UHFFFAOYSA-N red 2 Chemical compound C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=2C=3C4=CC=C5C6=CC=C7C8=C(C=9C=CC=CC=9)C9=CC=CC=C9C(C=9C=CC=CC=9)=C8C8=CC=C(C6=C87)C(C=35)=CC=2)C4=C1C1=CC=CC=C1 WPPDXAHGCGPUPK-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- JNXDCMUUZNIWPQ-UHFFFAOYSA-N trioctyl benzene-1,2,4-tricarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C(C(=O)OCCCCCCCC)=C1 JNXDCMUUZNIWPQ-UHFFFAOYSA-N 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- WGEATSXPYVGFCC-UHFFFAOYSA-N zinc ferrite Chemical compound O=[Zn].O=[Fe]O[Fe]=O WGEATSXPYVGFCC-UHFFFAOYSA-N 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0001—Post-treatment of organic pigments or dyes
- C09B67/0014—Influencing the physical properties by treatment with a liquid, e.g. solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0001—Post-treatment of organic pigments or dyes
- C09B67/0002—Grinding; Milling with solid grinding or milling assistants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0001—Post-treatment of organic pigments or dyes
- C09B67/0014—Influencing the physical properties by treatment with a liquid, e.g. solvents
- C09B67/0016—Influencing the physical properties by treatment with a liquid, e.g. solvents of phthalocyanines
Definitions
- the invention pertains to a conditioning process for crude pigments, wherein a crude pigment is extruded or kneaded in the presence of low amounts of a higher aliphatic alcohol and/or a higher liquid hydrocarbon and optionally a resin and other components.
- the concentrate thus obtained has a very high pigment level and the consistence of a powder. Its handling and its incorporation into further pigment preparations such as masterbatches (for example granulates, pastes, dispersions) or into ready for use compositions such as inks and coatings are very easy and lead to excellent results, in particular with respect to rheology, especially flow. Final articles obtained therefrom exhibit brilliant, homogeneous colorations of high colour strength.
- U.S. Pat. No. 3,004,986 discloses the use of C 5 -C 12 alcohols as an after-treatment agent for phthalocyanine pigments.
- the crude pigment is acid pasted to a finely divided form, which is suspended into water containing a minor amount of the alcohol and heated with live steam. The pigment is then isolated from the slurry.
- NL-254 042 discloses a process for conditioning dioxazine pigments through salt kneading. Lauryl alcohol is used in combination with a much larger amount of glycerin or chemically modified molasse. The pigment is then isolated from the kneaded mass and dried.
- U.S. Pat. 4,386,967 discloses the pretreatment of dry pigments through spraying with a solvent before incorporation in a liquid medium to improve its dispersibility.
- inks comprising 77.78% of pigment, 14.44% of a polyester resin and 7.78% of tridecanol are prepared with two passes on a three-roll mill.
- EP0 290 108A1 discloses a process for producing a printing-ink stock, wherein a pigment, a thermoplastic resin and a diluent are treated in an extruder.
- the proportions of pigment, thermoplastic resin and diluent are generally 15-40%, 40-70% and 8-15%, respectively.
- the diluent is for example a mineral oil, but the pigment particles are not comminuted.
- the printing ink stock is a more or less viscous, liquid, stable product in which the pigment is dispersed.
- EP0 350 687 A2 discloses a process for transforming crude copper phthalocyanine into a pigmentary form, wherein the crude with highly agglomerated particles of primary particle size below 0.1 ⁇ m is wet-milled in an optionally aqueous solvent under high shear, followed by addition of water, isolation and drying.
- the pigment concentration is from 15 to 55% by weight and there is no binder.
- EP 0 392 334 A2 discloses dry-milling crude copper phthalocyanine in the presence of from 0.5 to 10% binder, based on the total amount of binder in the final ink to be produced. The dry-milled product is then blended with the other ink ingredients in a dissolver, followed by several passes through a pearl mill. This process is not very efficient according to DE 101 52 136A1.
- EP 0 774 494 A1 discloses a process for the production of ink concentrates, wherein a crude metal phthalocyanine is milled then kneaded together with an ink vehicle comprising one or more ink solvents.
- concentration range for the pigment is from 20 to 80%, but all examples use concentrations of about 40 to 50%, together with about 30 to 80% of resin, based on the pigment.
- the pigment is dispersed in the ink solvent, thus forming a viscous fluid paste.
- Cetyl alcohol and petroleum distillate are used as ink solvents in a total amount of at least 23% (example 15), with a higher amount of petroleum distillate excepted in example 8 wherein a large amount of a hyperdispersant is added to increase the fluidity.
- EP 0 780 446 A 1 discloses a process for the production of pigments, wherein crude pigments are kneaded in the presence of a liquid carboxylic acid and optionally a salt, such as sodium chloride.
- a liquid carboxylic acid and optionally a salt, such as sodium chloride.
- this method has the disadvantage that the resulting pigment must be washed salt-free and the liquid carboxylic acid must be disposed of or purified for recycling.
- EP 0 783 029 A1 discloses a method for producing a ⁇ -type copper phthalocyanine pigment, comprising the steps of wet-milling the reaction mixture consisting of the crude pigment and an organic solvent, then removing the organic solvent preferably by steam distillation. The pigment is finally isolated by washing, filtration and drying.
- organic solvents there are used for example an aromatic hydrocarbon, decalin, nitrobenzene or trichlorobenzene. The process is disclosed to be preferable to processes wherein the isolated crude pigment is mechanically ground and to provide an excellent dispersibility.
- DE 19641 768 A1 discloses a process for extruding pastes, wherein all components are homogenized, dispersed and wetted continuously in the extruder without any premixing step.
- the examples illustrate the use of from 40 to 70% of unspecified colour pigments and a mixture of three binders each of different type.
- the product is especially a ready for use printing ink.
- EP 0 878 518 A2 discloses a process highly similar to that of EP 0 774 494 A1, but leading to a paint concentrate.
- WO 99/54410 A1 discloses a process for the preparation of a ⁇ copper phthalo-cyanine pigment, wherein crude copper phthalocyanine is first dry- or wet-milled, then isolated and conditioned in the presence of organic solvents and an aqueous base. The finished pigment is always finally isolated and dried.
- DE 101 52 136 A1 excludes entirely the presence of aliphatic alcohols having at least 12 carbon atoms or carboxylic acids having at least 4 carbon atoms as well as the presence of >0.5% of other monofunctional alcohols. Instead and in analogy with flushing processes, there is added from 2 to 70%, preferably 10 to 70% of water, especially above 30% of water in order to enable at least 60% of the added water to be separated together with any impurities and the preferably added milling salt. The use of pigments containing about 0.5% of residual moisture is recommended.
- example 2 The use of finished pigments is disclosed not necessarily to be required, but the product of example 2 starting from crude copper phthalocyanine is said not to be universally useful for oil printing inks, in contrast to the product of example 2a starting from commercially available, pigmentary ⁇ copper phthalocyanine. Moreover, a copper phthalocyanine is not converted to ⁇ copper phthalocyanine in the absence of toluene (example 3).
- EP 1 277 808 A2 discloses easily distributable pigment compositions comprising up to 90% pigment in an urea-aldehyd resin, which are obtained through extrusion, crushing, and optionally grinding and/or sieving. This process starts from already conditioned pigments and the product requires a mechanical post-treatment such as milling. Examples 1 and 4 lead to solid particles comprising 80% by weight of C.I. Pigment Yellow 184 (bismuth vanadate) and 75% by weight of C.I. Pigment Yellow 34 (lead chromate), respectively. Such concentrations, however, are not reached with organic pigments, which moreover show only very slight improvements in colour strength (and also in saturation for ⁇ copper phthalocyanine).
- the concentrate has no more the consistence of a paste but collapses into particles much easier to handle while surprisingly of excellent dispersibility and coloristic properties.
- the collection of particles thus obtained is advantageously generally free flowable.
- the invention pertains to a pigment composition
- a pigment composition comprising
- the pigment composition may optionally also comprise from 0 to 8% by weight, based on the weight of the pigment, of further components.
- the pigment may be inorganic or preferably organic, for example pigments of the 1-aminoanthraquinone, anthanthrone, anthrapyrimidine, azo, azomethine, quinacridone, quinacridonequinone, quinophthalone, dioxazine, diketopyrrolopyrrole, flavanthrone, indanthrone, isoindoline, isoindolinone, isoviolanthrone, perinone, perylene, phthalocyanine, pyranthrone or thioindigo series, including those, where applicable, in the form of metal complexes or lakes, in particular unsubstituted or partially halogenated phthalocyanines such as copper, zinc or nickel phthalocyanines, 1,4-diketo-3,6-diaryl-pyrrolo[3,4-c]pyrroles, dioxazines, isoindolinones, indanthrones, perylenes and qui
- Azo pigments may be, for example, mono- or dis-azo pigments from any known sub-class, obtainable, for example, by coupling, condensation or lake formation.
- the pigment is a phthalocyanine pigment, most preferred ⁇ copper phthalocyanine (Colour Index Pigment Blue 15:3 or 15:4).
- inorganic pigments are carbon black, metal oxides, mixed metal oxides, antimony yellow, lead chromate, lead chromate sulfate, lead molybdate, ultramarine blue, cobalt blue, manganese blue, chrome oxide green, hydrated chrome oxide green, cobalt green, metal sulfides, cadmium sulfoselenides, zinc ferrite and bismuth vanadate. Because of their higher specific surface area, inorganic pigments are in general preferably present in higher concentrations than organic pigments, such as from 82 to 95% by weight inorganic pigment, based on the weight of the composition.
- the pigment can also be a mixture of pigments of different chemical and/or crystallographic structure, including mixtures of organic pigments, mixtures of inorganic pigments as well as mixtures of organic and inorganic pigments, for example mixtures comprising from 1 to 99% by weight of one or more organic pigments and 1 to 99% by weight of one or more inorganic pigments, preferably from 10 to 99% by weight of an organic pigment and 1 to 90% by weight of an inorganic pigment, especially from 50 to 99% by weight of an organic pigment and from 1 to 50% by weight of an inorganic pigment.
- Mixtures of inorganic and organic pigments as described for example in U.S. Pat. No. 5,976,238.
- the pigment comprises two or more chemically different compounds and/or two or more crystallographically different phases, these can be simple physical mixtures or form solid solutions, mixed crystals or even different phases coexisting within the same particle.
- the resin may be a resin or binder conventionally employed in ink, coating, plastic and other applications (including masterbatches), or a resin compatible with the other usual components of these applications.
- resins suitable for oil-based inks are rosin, the principal component of which is abietic acid; chemically modified rosins such as hydrogenated, dehydrogenated or disproportionated rosin; dimerised or polymerized rosin; esterified rosin; non-esterified rosin or partially esterified rosin; maleic or phenolic modified rosins; rosin amines; alkyd resins; hydrocarbon resins; nitrocellulose; polyamide; polystyrene or epoxy resin; thermoplastic resins; and mixtures of two or more thereof.
- Resins particularly suitable for aqueous inks are water-compatible, such as for example acrylic resins.
- Illustrative rosins include commercially available materials such as StaybeliteTM Resin-E (hydrogenated rosin), esterified rosin derivatives, RecoldisTM A resin (disproportionated rosin), DymerexTM resin (dimerised rosin) and rosin amine D (dehydroabietyl amine). Preferred are hydrogenated, phenolic-modified rosins and maleic-modified rosins.
- resins which are most suitable for coatings applications, are for example acrylic, alkyd (with and without melamine), epoxy (esterified or not), phenolic, melamine, urea, polyester, polyurethane, silicone, styrene, vinyl, blocked isocyanate, benzoguanamine, cellulose ester, aldehyde or ketone based resins, or copolymers or combinations thereof, such as long or short-chain alkyds, both modified and non modified, or styrene copolymers with alkyds, methacrylates, polyvinyl acetate or chloride, or with butadiene.
- Especially useful are the commercially available resins of the Laropal® range (BASF).
- resins which are most suitable for plastics applications, are polyolefins, plasticised or rigid PVC, polystyrenes, acrylonitrile butadiene styrene, polycarbonates, terephthalates such as poly(ethylene terephthalate), poly(butylene terephthalate), polymethacrylates such as polymethyl methacrylate, polyacrylates, polyamides, polyoxymethylene acetal and rubbers.
- the C 10 -C 18 alcohol can be aliphatic or alicyclic, linear or branched, and saturated or partially insaturated. Preferably it is linear, aliphatic and/or saturated.
- Suitable alcohols are for example 1-decanol (laurin alcohol), 1-undecanol, 1-dodecanol (lauryl alcohol), 2,6,8-trimethyl-4-nonanol, 1-tridecanol, 1-tetradecanol (myristyl alcohol), 1-pentadecanol (pentadecyl alcohol), 1-hexadecanol (cetyl alcohol), 1-heptadecanol (margaryl alcohol), 1-octadecanol (stearyl alcohol), 10-undecen-1-ol, cis-9-octadecen-1-ol (oleyl alcohol), trans-9-octadecen-1-ol (elaidyl alcohol) and 4-ethyl-1-octyn-3-ol,as well as glycols and glycol ethers, such as 1,10-decanediol, 1,12-dodecanediol, 6-butoxy-1-he
- Suitable liquid hydrocarbons have at least 6, preferably at least 8 carbon atoms, most preferred at least 12 carbon atoms, and they can be linear, branched and/or cyclic, and fully saturated or partially insaturated with up to about 25% insaturated or aromatic bonds. Most preferably, the number of insaturated or aromatic bonds is from 0 to 5%.
- Liquid hydrocarbons are preferably used as mixtures of isomers and/or homologues, in which case the above number of carbon atoms is applicable for the weight average of the mixture (determined for example by HPLC) and the above number of insaturated and/or aromatic bonds is applicable for the molar average in the mixture (determined for example by 13 C-NMR spectroscopy, 25% multiple bonds corresponding to one of four carbon atoms at a multiple bond).
- the hydrocarbon should be liquid at the dry-milling temperature, which is preferably from 20 to 80° C.
- the liquid hydrocarbon has adequately a melting point of 80° C. or below, preferably a melting point of 20° C. or below.
- Examples are aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, heptane, octane, decalin, dodecane and higher homologues commonly called boiling range petrol, petroleum ether, ligroin, mineral oil or also simply printing ink distillate.
- Such commercially available mixtures of technical grade usually comprise no or only minor amounts of insaturated and/or aromatic bonds as indicated above. Higher aromatic or insaturated hydrocarbons with melting points above 80° C.
- the liquid hydrocarbon has preferably a boiling point of from 100 to 350° C. at 10 5 Pa, more preferably a boiling point of from 150 to 350° C. at 10 5 Pa.
- the amount of liquid hydrocarbon is preferably from 0 to 1.2 parts by weight per part by weight of C 10 -C 18 alcohol. Above weight limits refer to the total of both.
- Further components are for example additives such as dyestuffs, dispersants, rheology improvers, phase directors or stabilizers, UV stabilizers, antioxidants, antiozonants, processing stabilizers, lubricants, platicizers, fillers, etc., for example polymeric hyperdispersants such as derivatives of 12-hydroxy stearic acid or of aliphatic sulfonates, or pigment derivatives such as phthalimidomethyl, 3,5-dimethylpyrazolylmethyl, N-saccharinomethyl, sulfo-naphthylmethyl, di-C 1 -C 4 alkylamino and amino methyl substituted and/or sulphonated pigments or pigment derivatives and their amine salts, and mixtures thereof.
- additives such as dyestuffs, dispersants, rheology improvers, phase directors or stabilizers, UV stabilizers, antioxidants, antiozonants, processing stabilizers, lubricants, platicizers, fill
- the most suitable pigment derivatives are derivatives of polycyclic and heterocyclic pigments, such as phthalocyanines, isoindolinones, indanthrones, flavanthrones, quinacridones (including dihydroquinacridones and quinacridonequinones), aminoanthraquinones, dioxazines, 1,4-diketo-3,6-diaryl-pyrrolo[3,4-c]pyrroles and perylenes.
- phthalocyanines isoindolinones, indanthrones, flavanthrones, quinacridones (including dihydroquinacridones and quinacridonequinones), aminoanthraquinones, dioxazines, 1,4-diketo-3,6-diaryl-pyrrolo[3,4-c]pyrroles and perylenes.
- plastics additives such as UV stabilizers, antioxidants, antiozonants, processing stabilizers and lubricants are well-known to the skilled artisan and described for example in the Plastics Additives Handbook, 5 th Edition 2001 (ISBN 3-446-21654-5), the contents of which are incorporated herein by reference.
- Plasticizers may for example be sebacates and azelates, such as dibutyl sebacate, esters such as benzyl benzoate, adipates such as dioctyladipate, citrates such as triethylcitrate, epoxies, phosphate esters such as 2-ethylhexyl diphenyl phosphate, phthalates such as dioctylphthalate, trimellitates such as trioctyl trimellitate and secondary plasticisers such as chlorinated paraffins.
- a pigment derivative of the same pigment class for example quinacridone derivatives for quinacridone pigments, dioxazine derivatives for dioxazine pigments, diketopyrrolopyrrole derivatives for diketopyrrolopyrrole pigments, perylene derivatives for perylene pigments and phthalocyanine derivatives for phthalocyanine pigments.
- Phthalocyanine derivatives obtained from unsubstituted or halogenated phthalocyanines are especially useful as additives for phthalocyanine pigments, in particular the phthalimidomethyl, dimethylamino, amino methyl and/or sulfo derivatives.
- Further other components can for example be water or other liquids, such as phase directors, this short list, however, being by no means exhaustive.
- the amount of other liquids, and in particular the amount of water should be ⁇ 2% by weight, based on the weight of the pigment. Otherwise, there is a risk of impeding the effect of the C 10 -C 18 alcohol and/or liquid hydrocarbon having a boiling point higher than 80° C. at 10 5 Pa in the instant composition's particles.
- liquids which may be used are one or more of the following ones, commonly called solvents but which in the instant case do not dissolve the pigment nor necessarily the resin: alcohols such as methanol, ethanol, propanols, butanols and C 2 -C 8 glycols or C 4 -C 8 polyglycols, aromatic hydrocarbons such as toluene and xylene, heterocycles such as pyridine, quinoline, isoquinoline and 1-hydroxyethyl-2-heptydecyl-2-imidazolin (Amine OTM), linear or branched amines such as tri-ethanol amine, Primene TOATM (C 8 ), Primene 81-RTM (C 12-14 ) and Primene JM-TTM (each Rohm and Haas, Philadelphia/US), aliphatic carboxylic acids such as acetic acid, propionic acid, butyric acid, hexanoic acid, n-octanoic acid
- compositions preferably consist essentially of only the components listed above.
- the amount of C 10 -C 18 alcohol is preferably at least 1% by weight, more preferably at least 2% by weight, based on the weight of the composition.
- the amount of C 10 -C 18 alcohol is at least equal to the amount of liquid hydrocarbon, especially at least 2% by weight, based on the weight of the composition, higher than the total amount of optional liquid hydrocarbon and optional further components with the exception of solvents having a higher polarity than the C 10 -C 18 alcohol.
- the polarity of solvents can suitably be compared on the basis of their dipole moment at 25 ⁇ 5° C.
- the invention also pertains to a pigment composition
- a pigment composition comprising
- the instant compositions exhibit excellent properties as described above in the introduction.
- the particles are not agglomerated and can usually be handled just like solid pigments and pigment preparations, while significantly less dusting.
- the powder is free-flowing so that it can advantageously be, for example, scooped or transported with a conveyor belt. There are less losses and cleaning is much easier than with the prior art pastes and non-resinated pigment powders. Coarse or fine particles can advantageously be obtained if desired by routine variations of the process conditions.
- compositions can be made directly from crude pigments through a simple 2- or 3-step process comprising dry-milling, blending and wet-shearing. Additional steps are possible but generally superfluous.
- the invention also pertains to a process for making a pigment composition, comprising the steps of
- kneading in particular batch kneaders and extruders, for example single screw, planetary rolls or especially twin-screw extruder with counter- or preferably with co-rotating screws, or Sigma kneaders. Further devices may also be used, provided the energy input remains in the range specified below, for example edge or pan mills.
- the crude pigments used as starting materials for step a) are generally in the form of particles too coarse to fully develop their coloristic properties, for example with a particle size of from 1 to 500 ⁇ m, preferably from 2 to 200 ⁇ m, most preferred from 5 to 100 ⁇ m.
- These coarse crude particles can either be primary particles, or also aggregates of smaller particles. They are generally obtained industrially, either through purification of natural materials, such as bio-organic masses, minerals or ores, or preferably synthetically according to well-known processes.
- the crude pigment can be a mixture of pigments comprising at least one crude pigment and if desired one or more other pigments of smaller particle size, for example from 0.001 to 1 ⁇ m average particle size.
- Milling is a process by which the solids are subject to mechanical means of achieving particle size reduction, such as attrition or grinding.
- Step a) consists essentially of dry-milling, which is understood to be milling under such conditions that the millbase essentially retains the properties of a powder, such as free flow and substantial absence of a liquid phase.
- the powder may be wetted by a low level of solvent as long as its properties are not significantly affected.
- the amounts of resin, C 10 -C 18 alcohol, liquid hydrocarbon having a boiling point higher than 80° C. at 10 5 Pa and optionally further components depend on each other, so that the amount of crude pigment remains no lower than 75% by weight, preferably no lower than 78% by weight, most preferred no lower than 80% by weight.
- step a) It is further desirable to avoid caking of the mixture in step a) though such problem generally does not arise with the instant small amounts of C 10 -C 18 alcohol and/or liquid hydrocarbon having a boiling point higher than 80° C. at 10 5 Pa. Avoiding caking can be achieved simply by means well-known in the art, such as the choice of a resin having a softening point below the dry-milling temperature, reducing the amount of components which are liquid at the dry-milling temperature, and/or cooling.
- a resin is used in the step a), it is preferably used in particulate form.
- Suitable equipment for dry-milling may for example be a rotating or vibrating ball mill, each working either batchwise or continuously, or a jet- or high-speed mill.
- the dry-milled pigment has suitably an average particle size of less than half the particle size of the crude pigment, so that the particles have surfaces freshly broken thus activated.
- the dry-milled pigment has an average particle size of from 0.001 to 4 ⁇ m, more preferably from 0.01 to 1.5 ⁇ m, most preferred from 0.03 to 0.8 ⁇ m.
- the particle size of both the crude and the dry-milled pigment can be determined for example by laser diffraction, which method generally gives results in good correlation with electron and optical microscopy while avoiding the problem of selecting a representative sample. The average is meant by weight of the fractions.
- the dry-milling step a) may also induce a partial or complete transformation of the crude pigment into a particular crystal phase, which transformation is generally beneficial.
- Such mixed crystals have usually better coloristic characteristics and an X-ray pattern different from the X-ray pattern of the physical mixture, but sometimes identical to the X-ray pattern of one of the components (single phase solid solution) or of a similar, for example unsymmetrical pigment, examples of which are known from the prior art.
- step a) From 0 to 8% by weight, based on the weight of the pigment, of further components may also be added in step a) and/or comprised in the blend b), or added separately in step c).
- the optional step b) can if desired be performed either at the end of step a) or at the beginning of step c), for example in the first or some of the first mixing zones of an extruder.
- Each component may if desired be fed separately to the extruder.
- An extruder may have, for example, 1 to 30 mixing zones, more usually 2 to 20 mixing zones.
- the energy input to the materials to be extruded may be adjusted by adjusting the screw speed, throughput rate, feedstock composition and/or extruder motor power.
- the energy input is generally from 0.36 to 21.6 KJ/g (0.1-6 kW int h/kg) of extrudate, preferably from 0.72 to 14.4 KJ/g (0.2-4 kW int h/kg), more preferably from 1.08 to 10.8 KJ/g (0.3-3 kW int h/kg) of extrudate.
- the necessary time of treatment depends on the desired energy input, the amount of blend to be treated and the efficiency of the means for kneading, from which parameters it can be calculated.
- the temperature and energy input are independent from the type of device and should be set to the same values also in other devices, such as batch or Sigma kneaders and edge or pan mills.
- the mixing zones are determined by the device geometry and the sequence and spots of addition of the components, which are of course as variable as in the case of an extruder.
- step c When any optional component of not negligible volatility (especially such of boiling point of below 80° C. or from 80 to 150° C. at 10 5 Pa) is present during step c), it is preferred to eliminate it partially or wholly from the composition through evaporation during or after step c). This can be easily done for example through vents in an extruder or in the cover of a kneader in step c), or in an oven, fluidized bed, drying tower, tumbler or any other drying means after step c), preferably under reduced pressure of from 1-10 5 Pa, especially from 10 2 -3 ⁇ 10 4 Pa.
- components of boiling point below 80° C. more preferably also such of boiling point below 100° C., most preferred also such of boiling point below 150° C., should preferably substantially be avoided for safety and toxicological reasons.
- the product from step c) may optionally be subjected to additional milling and/or sieving steps to obtain a fine powder of desired size distribution. This is much easier and requires less energy than necessary for the prior art extrudate of EP 1 277 808 A2 and advantageously leads to less undesired dust.
- the pigments obtainable by the instant process are in many cases advantageously isometric with an aspect ratio generally below 5:1, preferably below 2.5:1 for 50% or more of the particles, though no salt is used and a liquid phase for particle growth is absent.
- the total process time can be kept short, what is economically very advantageous.
- residence times of about from 10 min to 100 h in the dry-milling step a) and from 1 s to 10 h in the kneading step c) lead to fully satisfactory results.
- Continuous equipment such as extruders usually require much shorter residence times than batch kneaders for the same result in step c), for example up to only 15 min.
- the residence time is irrelevant in the blending step b), it is generally desirable to keep it as short as possible for cost reasons.
- the efficiency of processing is high and there are also environmental improvements.
- the process doesn't involve the use of salt or other grinding aids during milling, therefore, there is no need to wash the product to remove the grinding aids.
- Most solvents used are high boiling and remain part of the final composition. Accordingly, there is no requirement to wash the product to remove solvent and therefore no solvent recovery step is required. Thus, the overall solvent use and water consumption is much lower than for a conventional process. Additionally, no effluent is generated leading to additional environmental and cost benefits.
- compositions can be used for any pigmenting purpose, such as the preparation of masterbatches, inks, coatings, plastics as well as special applications such as toners or colour filters.
- the invention also pertains to the use of an instant composition for the preparation of a masterbatch, ink, coating, plastic material, toner or colour filter.
- the materials to be pigmented with the instant compositions can optionally be reinforced or in the form of masterbatches, granulates or dispersions.
- the instant composition are preferably used for coatings/paints and inks, most preferred for solvent based inks.
- Printing inks comprise the pigment composition of the invention judiciously in a concentration of from 0.01 to 40% by weight, preferably from 1 to 25% by weight, with particular preference from 5 to 10% by weight, based on the overall weight of the printing ink.
- They may be used, for example, for gravure printing, flexographic printing, screen printing, offset printing, or continuous or dropwise inkjet printing on paper, board, metal, wood, leather, plastic or textiles, or else in special applications in accordance with formulations which are general knowledge, for example in publishing, packaging or freight, in logistics, in advertising, in security printing or else in the office sector for ballpoint pens, felt-tip pens, fibre-tip pens, inking pads, ink ribbons or inkjet printer cartridges.
- the pigment concentration is generally the same in other applications.
- the screwspeed is set at 400 rpm, resulting in a specific energy of 4.93 KJ/g (1.37 kW int h/kg).
- the resulting pigment composition has a copper phthalocyanine content of 81% comprising 95% of the ⁇ modification.
- Example 2 It is proceeded as in Example 1, with the only difference that the components are supplied to the twin screw extruder in a ratio of crude copper phthalocyanine to 1-dodecanol to resin of 8.1:0.5:1.4.
- the total feedrate is 816 g/h.
- the resulting specific energy is 5.29 KJ/g (1.47 kW int h/kg).
- the resulting pigment composition has a copper phthalocyanine content of 81% comprising 95% of the ⁇ modification.
- the screwspeed is set at 400 rpm, resulting in a specific energy of 7.71 KJ/g (2.14 kW int h/kg).
- the resulting pigment composition has a copper phthalocyanine content of 81% comprising 95% of the ⁇ modification.
- a ball milled intermediate according to the first part of Example 1 is supplied to a batch kneader together with dodecanol and a hydrogenated resin (StaybeliteTM Resin-E, Eastman Chemical Company, Kingsport, Te/US).
- the ratio of crude copper phthalocyanine to 1-dodecanol to resin is 8.1:1:0.9.
- the kneader has a water jacket, which is supplied with water at 40° C.
- the kneader is set to a speed of 78 rpm.
- the total powder charge of 400 g is kneaded for a period of 21 ⁇ 2 hours.
- the resulting pigment composition has a copper phthalocyanine content of 81% comprising 94% of the ⁇ modification.
- BMI ball milled intermediate
- the crystal form of the milled material is 50% ⁇ .
- the BMI is supplied to a co-rotating twin screw extruder (APV, Peterborough) together with a hydrogenated resin and tridecanol in a ratio of BMI to resin to tridecanol of 8.1:0.9:1.0.
- the total feedrate is 5 kg/h.
- the barrel temperature of the extruder is set at zero and the temperature is controlled using water-cooling.
- the barrel temperature is restricted to 0-70° C. and the screwspeed is set at 250 rpm, resulting in a specific energy of 4.25 KJ/g (1.18 kW int h/kg).
- the resulting pigment composition has a copper phthalocyanine content of 81% predominantly in the ⁇ modification.
- BMI ball milled intermediate
- the crystal form of the milled material is 50% ⁇ .
- the BMI is supplied to a co-rotating twin screw extruder (APV, Peterborough) together with a hydrogenated resin, dodecanol and phthalimido-methyl copper phthalocyanine in a ratio of BMI to resin to dodecanol to phthalimido-methyl derivative of 7.6:1.4:0.5:0.5.
- the total feedrate is 5 kg/h.
- the barrel temperature of the extruder is set at zero and the temperature is controlled using water-cooling.
- the barrel temperature is restricted to 0-60° C. and the screwspeed is set at 250 rpm, resulting in a specific energy of 3.82 KJ/g (1.06 kW int h/kg).
- the resulting pigment composition has a chromophore content of 81% predominantly in the ⁇ modification.
- BMI ball milled intermediate
- the crystal form of the milled material is 50% ⁇ .
- the BMI is supplied to a co-rotating twin screw extruder (APV, Peterborough) together with a hydrogenated resin, dodecanol and phthalimido-methyl copper phthalocyanine in a ratio of ratio of BMI to resin to dodecanol to additive of 8.0:0.9:1.0:0.1.
- the total feedrate is 0.8 kg/h.
- the barrel temperature of the extruder is set at zero and the temperature is controlled using water-cooling.
- the barrel temperature is restricted to 0-60° C. and the screwspeed is set at 400 rpm, resulting in a specific energy of 5.08 KJ/g (1.41 kW int h/kg).
- the resulting pigment composition has a chromophore content of 81% predominantly in the ⁇ modification.
- BMI ball milled intermediate
- the crystal form of the milled material is 50% ⁇ .
- the BMI is supplied to a co-rotating twin screw extruder (APV, Peterborough) together with dodecanol in a ratio of BMI to dodecanol of 9.0:1.0.
- the total feedrate is 10 kg/h.
- the barrel temperature of the extruder is set at 80° C. and the temperature is controlled to less than 85° C. using water-cooling.
- the barrel temperature is restricted to 0-85° C. and the screwspeed is set at 400 rpm, resulting in a specific energy of 1.08 KJ/g (0.3 kW int h/kg).
- the resulting pigment composition has a chromophore content of 81% predominantly in the ⁇ modification.
- Example 2 It is proceeded as in Example 2, with the differences that the ratio of crude copper phthalocyanine to resin to 1-dodecanol is 8.1:0.9:1.0, the total feedrate is 10 Kg/h and the barrel temperature is set to 80° C. and controlled to less than 85° C. by water cooling. The screwspeed is set at 300 rpm, resulting in a specific energy of 0.97 KJ/g (0.27 kW int h/kg). The resulting pigment composition has a copper phthalocyanine content of 81% predominantly in the ⁇ modification.
- the product according to example 1 is premixed at a pigmentation level of 15% in a heatset varnish system at 60° C. using a trifoil impeller at a speed of 1000 rpm for 15 minutes. After this time, the trifoil head is replaced with a nylon disc and 200 g of 1 mm glass beads are added. The temperature is increased to 80° C. and the millbase stirred for 15 minutes at 3000 rpm. The millbase is then letdown to 14% pigmentation using a 11.5:1 blend of varnish and 1-tridecanol. The ink is isolated in a glass jar and allowed to cool.
- the quality of the printing ink is also examined visually during triple roll milling.
- Final ink viscosity is determined on the falling bar Laray viscometer, for example according to ASTM D4040 or ISO 12644 [1996].
- Low shear flow is determined by the glass plate technique at 60° angle. The dispersibility, tinctorial strength, gloss development and flowability are excellent in comparison with conventionally processed ⁇ copper phthalocyanine pigments (C.I. Pigment Blue 15:3).
- Example 17 It is proceeded as in Example 17, with the difference that the products according to Examples 2, 3, 4, 5, 6, 7, 8 and 9 are each used instead of the product of example 1.
- the dispersibility, tinctorial strength, gloss development and flowability are in each case excellent in comparison with conventionally processed ⁇ copper phthalocyanine pigments (C.I. Pigment Blue 15:3).
- Example 17 It is proceeded as in Example 17, with the difference that the products according to Examples 10 and 12 are each used instead of the product of example 1.
- the dispersibility, tinctorial strength, gloss development and flowability are in each case excellent in comparison with conventionally processed pigments.
- Pigment is weighed into a glass jar containing 2 mm glass beads.
- An alkyd melamine resin system in aromatic hydrocarbons is added to deliver a pigmentation level of 2%.
- the jar is then placed on a Skandex® mixer to disperse for 30 minutes-8 hours (depending on the pigment class).
- the dispersion is then filtered through a gauze strainer to remove the beads and a drawdown prepared of the full shade paint using a 100 ⁇ m wet film thickness meter bar coater onto a white high-gloss cast-coated card (AstraluxTM, Favini IT/NL) with black overstripe.
- AstraluxTM white high-gloss cast-coated card
- the pigment compositions of examples 9, 13, 14, 15 and 16 all show excellent tinctorial strength compared to conventionally processed pigments, however, with superior properties and a much higher efficiency of processing as well as environmental improvements.
- Pigment according to example 9 is weighed into a glass jar containing 2.3-2.6 mm glass beads. A long oil alkyd resin system in aliphatic hydrocarbons is added to deliver a pigmentation level of 13%. The jar is then placed on a SkandexTM mixer to disperse for 30 minutes. The dispersion is filtered through a gauze strainer to remove the beads and then letdown to 9% using further long oil alkyd resin system and driers. A drawdown is then prepared of the full shade paint using a 100 ⁇ m wet film thickness meter bar coater onto a white high-gloss cast-coated card with black overstripe.
- a 1:10 (dry weight) pigment: TiO 2 reduction of the thus obtained full shade paint is prepared by diluting with white base. The preparation is dispersed for 10 minutes on the SkandexTM and a drawdown of the tint is prepared using a 100 ⁇ m wet film thickness meter bar coater onto a white high-gloss cast-coated card.
- Each of the above illustrations are allowed to cure at 23° C.
- the full shade and tint illustrations are measured for colouristics and transparency using a spectrophotometer with CIE L*a*b* software.
- the excellent tinctorial strength is excellent as compared to conventionally processed ⁇ copper phthalocyanine pigments, however, with superior properties and a much higher efficiency of processing as well as environmental improvements.
- 0.12 g of pigment according to example 9 is weighed into a polyethylene beaker containing 40 g of HDPE.
- the pigment is mixed into the HDPE using a spatula.
- the blend is placed on a 2-roll mill at 150° C. with a nip gap of 0.6 mm and milled for 10 minutes.
- the full tone HDPE sheets produced are pressed out at 160° C.
- 0.2 g of pigment according to example 9 and 2 g of titanium dioxide are weighed into a polyethylene beaker containing 40 g of HDPE.
- the pigments are mixed into the HDPE using a spatula.
- the blend is placed on a 2-roll mill at 150° C. with a nip gap of 0.6 mm and milled for 10 minutes.
- the white reduced HDPE sheets are pressed out at 160° C. After cooling to 23° C., all sheets are assessed against a standard.
- the dispersion is assessed at 25 ⁇ magnification under a microscope and the colouristic properties are assessed visually or using a colourimeter. The properties are excellent as compared to conventionally processed ⁇ copper phthalocyanine pigments.
- Examples 33 and 34 are repeated, with the difference that the pigment according to example 9 is replaced by the pigments according to examples 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15 and 16 in example 33 and by the pigments according to examples 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 and 12 in example 34, respectively.
- the properties are excellent as compared to conventionally processed pigments, however, with superior properties and a higher efficiency of processing as well as environmental improvements.
- Examples 1 to 57 are repeated, with the difference that 35% of the long chain alcohol (examples 58-114) or the whole of it (examples 115-171) is replaced by the same quantity of an aromatic free petroleum distillate of boiling range 230-290° C., with excellent results.
- the barrel temperature and screwspeed may also be varied in order the specific energy to remain in the preferred range.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Developing Agents For Electrophotography (AREA)
- Paints Or Removers (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04105431 | 2004-11-01 | ||
EP04105431.3 | 2004-11-01 | ||
EP05107202 | 2005-08-04 | ||
EP05107202.3 | 2005-08-04 | ||
PCT/EP2005/055471 WO2006048388A2 (en) | 2004-11-01 | 2005-10-24 | Highly concentrated flowable pigment composition and process for its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070289501A1 US20070289501A1 (en) | 2007-12-20 |
US7550041B2 true US7550041B2 (en) | 2009-06-23 |
Family
ID=36088300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/666,130 Expired - Fee Related US7550041B2 (en) | 2004-11-01 | 2005-10-24 | Highly concentrated flowable pigment composition and process for its manufacture |
Country Status (4)
Country | Link |
---|---|
US (1) | US7550041B2 (ja) |
EP (2) | EP1807474A2 (ja) |
TW (1) | TW200624517A (ja) |
WO (1) | WO2006048388A2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103709735A (zh) * | 2013-12-28 | 2014-04-09 | 宁波金富亮塑料科技有限公司 | 一种耐磨抗uv尼龙用色母粒 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7585363B1 (en) * | 2008-10-29 | 2009-09-08 | Eastman Kodak Company | Method for preparing nanodispersions of fluorinated phthalocyanine pigments |
CN103694685A (zh) * | 2013-12-28 | 2014-04-02 | 宁波金富亮塑料科技有限公司 | 一种白色抗uv尼龙用色母粒 |
CN103694681A (zh) * | 2013-12-28 | 2014-04-02 | 宁波金富亮塑料科技有限公司 | 一种绿色抗uv尼龙用色母粒 |
CN103756294A (zh) * | 2013-12-28 | 2014-04-30 | 宁波金富亮塑料科技有限公司 | 一种抗uv尼龙用色母粒配方 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1411880U (ja) | ||||
NL254042A (ja) | ||||
US3004986A (en) | 1957-02-08 | 1961-10-17 | Standard Ultramarine & Color C | Phthalocyanine pigments |
DE2714778A1 (de) | 1977-04-02 | 1978-10-12 | Basf Ag | Verfahren zur herstellung einer deckenden pigmentform des perylen-3,4, 9,10-tetracarbonsaeure-bis(2',5'-dimethylphenyl)imids |
US4386967A (en) | 1981-10-13 | 1983-06-07 | Sun Chemical Corporation | Pretreatment of pigments |
US5530115A (en) | 1989-12-08 | 1996-06-25 | Canon Kabushiki Kaisha | Process for producing crystalline I-type oxytitanium phthalocyanine |
US5725984A (en) | 1996-02-13 | 1998-03-10 | Orient Chemical Industries, Ltd. | Omega-oxo-aluminum phthalocyanine dimer having novel polymorph and electrophotographic photoreceptor prepared by using the same |
US5831083A (en) | 1996-01-08 | 1998-11-03 | Dainippon Ink And Chemicals, Inc. | Production method of beta-type copper phthalocyanine pigment |
US5964929A (en) | 1995-11-16 | 1999-10-12 | Ciba Specialty Chemicals Corporation | Process for the production of ink concentrates |
US6031030A (en) | 1997-05-15 | 2000-02-29 | Ciba Speicialty Chemicals Corporation | Production process |
DE10152136A1 (de) | 2001-10-23 | 2003-05-15 | Colour Ltd | Verfahren zur Herstellung farbiger Präparationen sowie die mit dem Verfahren erhältlichen farbigen Präparationen |
US20050119369A1 (en) | 2003-11-28 | 2005-06-02 | Ippei Imagawa | Pigment composition and printing ink containing the same |
WO2005075577A1 (en) | 2004-01-29 | 2005-08-18 | Ciba Specialty Chemicals Holding Inc. | Beta copper phthalocyanine composition and conditioning process leading thereto |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE795946A (fr) * | 1972-03-02 | 1973-08-27 | Basf Ag | Procede de preparation de pigments de phtalocyanine cuivrique (variete epsilon) |
US4388967A (en) | 1980-09-02 | 1983-06-21 | Thermalloy Incorporated | Solderable mounting stakes for heat sinks |
NL8701075A (nl) | 1987-05-07 | 1988-12-01 | O & R Inktchemie | Werkwijze voor het bereiden van een halffabrikaat ten gebruike voor de bereiding van drukinkt alsmede drukinkt verkregen onder toepassing van dat halffabrikaat. |
DE3824054A1 (de) | 1988-07-15 | 1990-01-18 | Basf Ag | Verfahren zur ueberfuehrung von rohkupferphthalocyaninen in eine pigmentform |
DE3911476A1 (de) | 1989-04-08 | 1990-10-11 | Basf Ag | Verfahren zur herstellung von fuer pastoese druckfarben geeignetem kupferphthalocyanin |
GB9526517D0 (en) | 1995-12-23 | 1996-02-28 | Ciba Geigy Ag | Production of pigments |
EP0816440B1 (de) | 1996-06-17 | 2002-12-11 | Ciba SC Holding AG | Bismuthvanadat-Pigmentpulvermischungen |
DE69705904T3 (de) | 1996-09-02 | 2009-08-27 | Canon K.K. | Magenta-Toner zur Entwicklung elektrostatischer Bilder und Herstellungsverfahren |
CH691580A5 (de) | 1996-10-04 | 2001-08-31 | Buehler Ag Patentabteilung | Extrusion von pulverförmigen Stoffen. |
GB9808169D0 (en) | 1998-04-20 | 1998-06-17 | Ciba Sc Holding Ag | Production process |
EP1277808B1 (en) | 2001-07-09 | 2004-12-15 | Ciba SC Holding AG | Easily distributable pigment compositions |
EP1436354A2 (en) | 2001-10-19 | 2004-07-14 | Ciba SC Holding AG | Process for making green pigment compositions useful for colour filters and lcd's |
CN100400603C (zh) | 2002-12-04 | 2008-07-09 | 西巴特殊化学品控股有限公司 | 通过喷雾干燥可得到的无尘色料组合物 |
WO2005123844A1 (de) * | 2004-06-16 | 2005-12-29 | Colour Ltd. | Verfahren zur herstellung von beta-kupferphthalocyanin-blaupigmenten und deren verwendung |
-
2005
- 2005-10-24 WO PCT/EP2005/055471 patent/WO2006048388A2/en active Application Filing
- 2005-10-24 US US11/666,130 patent/US7550041B2/en not_active Expired - Fee Related
- 2005-10-24 EP EP05803093A patent/EP1807474A2/en not_active Withdrawn
- 2005-10-24 EP EP12171905A patent/EP2502965A1/en not_active Withdrawn
- 2005-10-31 TW TW94138086A patent/TW200624517A/zh unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL254042A (ja) | ||||
DE1411880U (ja) | ||||
US3004986A (en) | 1957-02-08 | 1961-10-17 | Standard Ultramarine & Color C | Phthalocyanine pigments |
DE2714778A1 (de) | 1977-04-02 | 1978-10-12 | Basf Ag | Verfahren zur herstellung einer deckenden pigmentform des perylen-3,4, 9,10-tetracarbonsaeure-bis(2',5'-dimethylphenyl)imids |
US4386967A (en) | 1981-10-13 | 1983-06-07 | Sun Chemical Corporation | Pretreatment of pigments |
US5530115A (en) | 1989-12-08 | 1996-06-25 | Canon Kabushiki Kaisha | Process for producing crystalline I-type oxytitanium phthalocyanine |
US5964929A (en) | 1995-11-16 | 1999-10-12 | Ciba Specialty Chemicals Corporation | Process for the production of ink concentrates |
US5831083A (en) | 1996-01-08 | 1998-11-03 | Dainippon Ink And Chemicals, Inc. | Production method of beta-type copper phthalocyanine pigment |
US5725984A (en) | 1996-02-13 | 1998-03-10 | Orient Chemical Industries, Ltd. | Omega-oxo-aluminum phthalocyanine dimer having novel polymorph and electrophotographic photoreceptor prepared by using the same |
US6031030A (en) | 1997-05-15 | 2000-02-29 | Ciba Speicialty Chemicals Corporation | Production process |
DE10152136A1 (de) | 2001-10-23 | 2003-05-15 | Colour Ltd | Verfahren zur Herstellung farbiger Präparationen sowie die mit dem Verfahren erhältlichen farbigen Präparationen |
US20050119369A1 (en) | 2003-11-28 | 2005-06-02 | Ippei Imagawa | Pigment composition and printing ink containing the same |
WO2005075577A1 (en) | 2004-01-29 | 2005-08-18 | Ciba Specialty Chemicals Holding Inc. | Beta copper phthalocyanine composition and conditioning process leading thereto |
Non-Patent Citations (2)
Title |
---|
English language abstract No. 138:370358 of DE 101 52 136. |
English language abstract No. 90:24789of DE 27 14 778. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103709735A (zh) * | 2013-12-28 | 2014-04-09 | 宁波金富亮塑料科技有限公司 | 一种耐磨抗uv尼龙用色母粒 |
Also Published As
Publication number | Publication date |
---|---|
EP1807474A2 (en) | 2007-07-18 |
TW200624517A (ja) | 2006-07-16 |
US20070289501A1 (en) | 2007-12-20 |
WO2006048388A3 (en) | 2006-07-06 |
WO2006048388A2 (en) | 2006-05-11 |
EP2502965A1 (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1411091B1 (en) | Process for the preparation of pigments having improved colouristic properties | |
EP0678559A1 (de) | Feinverteilungsverfahren zur Herstellung von organischen Pigmenten | |
EP0753544B1 (de) | Verfahren zur Herstellung von flüssigen Pigmentpräparationen | |
US6890380B2 (en) | Conditioning of organic pigments | |
EP0799862B1 (de) | Verfahren zur Herstellung von Chinacridonpigmenten | |
EP1721941A2 (de) | Wasserbasierende Pigmentpräparationen | |
EP0408499A2 (de) | Verfahren zur Konditionierung organischer Pigmente | |
CA1160402A (en) | Process for the preparation of pigment alloys | |
JPH0841369A (ja) | 銅フタロシアニン顔料の製造における微粉砕方法 | |
US6734231B2 (en) | Easily distributable pigment compositions | |
JPS59191765A (ja) | 顔料組成物 | |
US7550041B2 (en) | Highly concentrated flowable pigment composition and process for its manufacture | |
JPH07268234A (ja) | 多環式顔料の分散液に脂肪酸タウリドを使用する方法 | |
EP1277808B1 (en) | Easily distributable pigment compositions | |
JPH1053716A (ja) | 表面処理したキナクリドン− およびジオキサジン顔料 | |
CA2362088A1 (en) | Crimson-colored pigment composition and the utilization thereof | |
US7041166B2 (en) | Manufacturing and conditioning of solid solution organic pigments | |
DE19618056A1 (de) | Verfahren zur Herstellung von flüssigen Pigmentpräparationen | |
US5622555A (en) | Process for the production of dis-azo pigment | |
EP0101666A2 (de) | Mahlen von organischen Pigmenten | |
EP1558683A1 (en) | Pigment formulations and processes for their preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CIBA SPECIALTY CHEMICALS CORP., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEALY, THOMAS;CANNON, LYNDA;MURRAY, TRACY;REEL/FRAME:019918/0567;SIGNING DATES FROM 20070313 TO 20070314 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20170623 |