US7337019B2 - Integration of fault detection with run-to-run control - Google Patents
Integration of fault detection with run-to-run control Download PDFInfo
- Publication number
- US7337019B2 US7337019B2 US10/135,405 US13540502A US7337019B2 US 7337019 B2 US7337019 B2 US 7337019B2 US 13540502 A US13540502 A US 13540502A US 7337019 B2 US7337019 B2 US 7337019B2
- Authority
- US
- United States
- Prior art keywords
- run
- fault
- setpoint
- recipe
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 113
- 230000010354 integration Effects 0.000 title description 2
- 235000012431 wafers Nutrition 0.000 claims abstract description 178
- 238000012545 processing Methods 0.000 claims abstract description 119
- 238000004519 manufacturing process Methods 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 156
- 239000000463 material Substances 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 abstract description 16
- 230000008569 process Effects 0.000 description 100
- 238000005259 measurement Methods 0.000 description 35
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 238000005498 polishing Methods 0.000 description 12
- 238000011144 upstream manufacturing Methods 0.000 description 11
- 230000004075 alteration Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000000844 transformation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003070 Statistical process control Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0286—Modifications to the monitored process, e.g. stopping operation or adapting control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/31—From computer integrated manufacturing till monitoring
- G05B2219/31357—Observer based fault detection, use model
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/31—From computer integrated manufacturing till monitoring
- G05B2219/31443—Keep track of nc program, recipe program
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45031—Manufacturing semiconductor wafers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates generally to semiconductor manufacture. More particularly, the present invention relates to techniques for manufacturing semiconductors by integrating fault detection concepts with run-to-run control.
- semiconductor wafers In typical semiconductor manufacturing processes, semiconductor wafers, or simply wafers, are advanced through a number of stations within what is referred to as a fab. At each location in this assembly line-like process, processing equipment or tools perform processing operations to modify the wafers. For example, one tool may add various layers onto the wafers (e.g., a deposition tool) while another may modify the layers (e.g., etching tools) to form a completed semiconductor product.
- a deposition tool e.g., a deposition tool
- layers e.g., etching tools
- the quality checks typically include measuring widths of microscopic lines and film thicknesses on the wafer for aberrations. With many of the quality checks, the measurements can only be made after the wafers have undergone processing operations subsequent to those responsible for producing the aberrations. Furthermore, a period of time and a number of process steps typically pass between the introduction of the aberration and their detection. Thus, a number of processes may be performed on a wafer even after an aberration has been introduced. Similarly, a tool may continue processing wafers even after it has begun introducing aberrations. In either case, a number of wafers must be scrapped.
- Two examples include run-to-run control and fault detection.
- run-to-run control addresses process output drifts (i.e., drifts from process targets) by using data from outgoing and incoming wafers with modeling techniques to adjust process parameters. These drifts relate to slight changes in the way the tool produces output due to normal tool use. For example, with chemical mechanical polishing (CMP) processes, polishing pads used to reduce film thickness wear out over time. As a result, worn polishing pads inevitably require more time than new pads to produce a desired thickness. Run-to-run control may be used to address these types of problems by adjusting a process parameter such as polishing time to account for issues such as wear on a polishing pad.
- CMP chemical mechanical polishing
- Run-to-run control uses metrology data taken at one or more process steps to adjust process recipes (i.e., a set of predefined process parameters required to effectuate a processing outcome) on a run-to-run basis.
- a run may constitute one or more steps of a manufacturing process of a wafer. It may include a batch of wafer lots, a single lot or even a single wafer, depending on the particular needs and capabilities of the process step and the fab.
- run-to-run control uses the data measured at each process or tool to keep wafer properties (e.g., film thickness, uniformity, etc.) close to their nominal values by making slight modifications or adjustments to the setpoints in each tool's recipe.
- run-to-run control may be used to address process output drifts.
- run-to-run control may be used to address process drifts, it is inadequate for situations where a tool is simply no longer capable of producing an acceptable product, regardless of adjustments made to the recipe setpoints.
- run-to run control does not address situations where a wafer contains a flaw. These situations are termed tool or wafer property faults.
- a tool that has experienced a fault or failure condition causes the introduction of aberrations or flaws into the wafers.
- a wafer property fault indicates a condition on the wafer that is beyond repair.
- a number of methods may be used to detect these conditions. For example, a significant drop in temperature from the temperature required to perform the given process operation may signify a fault.
- a fault condition may be a spike in a flow rate of a process material.
- run-to-run controllers treat the fault as a drift and attempt to remedy the situation by adjusting the tool's recipe even though the adjustments simply are not capable of addressing the problem.
- the tool instead of returning the tool to acceptable operating conditions, the tool continues to introduce aberrations in subsequent wafers or continues processing a flawed wafer thereby resulting in additional waste.
- Fault detection in contrast to run-to-run control, monitors process equipment parameters and wafer attributes to detect tool and wafer property failure or fault conditions. Fault detection systems collect process data and analyze the data for an abnormality or fault during the operation of the process equipment. If a fault is detected, the fault detection system may have various methods of reacting. For example, the system may notify an equipment operator or even terminate execution of process equipment.
- fault detection is adequate for dealing with tool or wafer property failure situations, it does nothing to address process drifts. Thus, until a tool or process fails, fault detection systems remain silent and allow the tools to drift from optimal operating conditions.
- the present invention addresses the problems described above by integrating run-to-run and fault detection techniques. Specifically, semiconductor wafers and other items are processed in conjunction with a manufacturing execution system using a run-to-run controller and a fault detection system.
- a recipe is received from the manufacturing execution system by the run-to-run controller for controlling a tool.
- This recipe includes a setpoint for obtaining one or more target wafer properties. From there, processing of the wafers is monitored by measuring processing attributes including fault conditions and wafer properties using the fault detection system and/or a sensor. These processing attributes are forwarded from the fault detection system to the run-to-run controller.
- setpoints of the recipe may be modified by the run-to-run controller according to the processing attributes to maintain the target wafer properties, except in cases when a fault condition is detected by the fault detection system.
- wafers are also processed according to a recipe.
- This recipe includes at least one setpoint for obtaining one or more target wafer properties.
- This technique also includes measuring wafer properties, and detecting conditions indicative of a fault condition (e.g., either wafer or equipment faults). If a fault condition is not detected, the setpoint of the recipe is modified according to the measured wafer properties to maintain the target wafer properties. In some embodiments, if a fault condition is detected, the process is terminated.
- wafer properties may be measured before execution of processing.
- two or more setpoints of the recipe which may include temperature, pressure, power, processing time, lift position and flow rate of a material, are modified.
- fault detection models may be used to define a range of conditions indicative of a fault condition.
- the fault detection models may be modified to incorporate, as parameters, setpoints of a recipe modified by a run-to-run controller.
- FIG. 1 is a hardware block diagram representation of at least one example of a portion of semiconductor manufacturing system utilizable for implementing at least some of the concepts of the present invention
- FIG. 2 illustrates at least one example of a control system implementable by the semiconductor manufacturing system of FIG. 1 for producing semiconductor wafers
- FIG. 3 depicts at least one example of a process implementable for controlling a manufacturing process of one or more embodiments of the present invention
- FIG. 4 depicts at least one example of a process utilizable for implementing a run-to-run control procedure of one or more embodiments of the present invention
- FIG. 5 depicts at least one example of a process utilizable for implementing a fault detection control procedure of one or more embodiments of the present invention
- FIG. 6 is a high-level block diagram depicting aspects of computing devices contemplated as part of and for use with one or more embodiments of the present invention.
- FIG. 7 illustrates one example of a memory medium which may be used for storing a computer implemented process of one or more embodiments of the present invention.
- a technique for processing semiconductor wafers in conjunction with a manufacturing execution system using a run-to-run controller and a fault detection system. More particularly, the manufacturing execution system transfers a recipe to the run-to-run controller for controlling a tool. This recipe includes a setpoint for obtaining one or more target wafer properties.
- the fault detection system monitors processing of the wafers by measuring processing attributes including fault conditions and wafer properties.
- the run-to-run controller modifies the setpoints of the recipe according to the processing attributes (received from the fault detection system as well as e.g., other information gathering sources) to maintain the target wafer properties, except in cases when a fault condition is detected by the fault detection system.
- FIG. 1 depicts at least one example of a hardware block diagram representation of a portion of a semiconductor manufacturing system 100 utilizable for implementing at least one or more aspects of the present invention.
- semiconductor manufacturing system 100 includes, among other components, a fault detection system 110 , a run-to-run controller 120 , and one or more pieces of process equipment or tools 150 , each interconnected via network 130 .
- fault detection system 110 is responsible for monitoring one or more tools 150 and wafers for purposes of detecting fault conditions.
- Run-to-run controller 120 is responsible for modifying tool recipes for purposes of increasing manufacturing efficiency.
- FIG. 1 depicts fault detection system 110 and run-to-run controller 120 as being separate or distinct components, one or more embodiments of the present invention contemplate implementing fault detection system 110 and run-to-run controller 120 in a single computing node.
- any number of metrology tools or sensors 190 may be positioned upstream or downstream from each of the one or more tools 150 for measuring wafer properties immediately before or after processing by the one or more tools 150 .
- Metrology tools 190 if utilized, may be linked to the remainder of system 100 via network 130 .
- input wafer properties may also be received from an upstream or feed-forward tool (e.g., a tool positioned upstream from another tool).
- the properties may be measured by sensors at another tool at the end of or during a previous manufacturing step and forwarded for use in the instant tool.
- Examples of such metrology tools 190 include the RS-75TM offered by KLA-Tencor of San Jose, Calif.
- the one or more tools 150 may be any number of different types of tools utilized for processing a wafer to produce a desired output. Examples include CMP, lithography, deposition, or etching tools, and the like.
- the one or more tools can include a controller 152 , any number of process chambers 154 , and a wafer measurement subsystem 156 .
- controller 152 utilizes information from fault detection system 110 and run-to-run controller 120 to process the wafers.
- incoming wafers 160 are initially moved into process chamber 154 . From there, the wafers are processed and subsequently moved out of the tool. Examples of some process chambers include dual plasma etch chambers and CMP polishing chambers.
- Wafer measurement subsystem 156 is used to measure wafer properties before, during and/or after wafer processing. These properties depend on the type of tool(s) at issue, and may include film thickness, uniformity, and the like. Wafer measurement subsystem 156 may include in situ sensors capable of measuring wafer parameters in real-time during processing. Similarly, wafer measurement subsystem 156 may include an integrated or inline sensor located within or proximate to process chambers 154 for near real-time measurements. Examples of in situ sensors include the In Situ Removal Monitor offered by Applied Materials, Inc. of Santa Clara, Calif. Examples of integrated or inline sensors include tools integrated with metrology techniques (e.g., Nova 2020TM offered by Nova Measuring Instruments, Ltd. of Rehovot, Israel or Nano 9000TM offered by Nanometric of Santa Clara, Calif.).
- the one or more tools 150 performs operations on incoming wafers 160 in accordance with a process recipe, or, in other words, a set of predefined process parameters required to effectuate a processing outcome.
- a typical recipe may dictate one or more setpoints for any number of processes required to effect a desired output.
- a recipe may identify the required temperature, pressure, power, processing time, lift position and flow rate of a material needed to produce a particular wafer result.
- other properties may be included as well.
- controller 152 utilizes information received from, for example, upstream metrology tools and previous operations or runs of the one or more tools 150 to modify these recipes, when necessary.
- a measured film thickness of an incoming wafer may be provided to controller 152 along with the results of previous runs prior to processing. This information, then, may be used by controller 152 to modify one or more setpoints of the process recipe to increase production efficiency.
- wafer measurement subsystem 156 may be utilized to measure any number of wafer properties.
- wafer properties may also be measured immediately before or after processing.
- subsystem 156 may be used to detect completion of processing (e.g., via endpoint detection and the like). Once processing has been completed, the wafers are moved out of process chamber 154 to, for example, a downstream tool. Any wafer properties collected upon completion of processing, either by wafer measurement subsystem 156 or another metrology tool, may be forwarded to a downstream tool.
- the measured properties may be forwarded to controller 152 , fault detection system 110 , and/or run-to-run controller 120 for use in modifying future runs. As will be discussed below, the data forwarded to fault detection system 110 and run-to-run controller 120 may be analyzed for detecting any fault conditions and for use in modifying subsequent process recipes.
- control system 200 includes a control process 210 , fault detection process 220 , run-to-run process 230 , and wafer measurement process 240 .
- Control process 210 controls operation of one or more of tools 150 , using, for example, a control algorithm or the like.
- control process 210 may be responsible for selecting a tool or process recipe used to process a wafer.
- This process recipe may be inputted or downloaded into system 200 by, for example, a process engineer or the like.
- the recipe identifies, in part, a desired outcome or final product to be produced, as specified by any number of target properties.
- control process 210 also receives any number of pre wafer measurements 214 from, for example, an upstream metrology tool. These measurements describe to control process 210 the characteristics of an incoming wafer, and are used to determine the recipe setpoints, as will be discussed below.
- control process 210 uses these inputs (i.e., recipe 212 and measurements 214 ), control process 210 generates specific setpoints for effecting a desired outcome.
- control process 210 analyses the target properties and measurements 214 using, for example, a model for predicting the expected outputs based on certain inputs.
- the target properties e.g., film thickness
- prewafer measurements e.g., an actual thickness
- the model may be entered or implemented by, for example, a process engineer or the like during a system initialization phase.
- any suitable semiconductor wafer manufacturing model may be utilized.
- the measurements of any number of wafer properties are collected before, during and/or after processing by wafer measurement system 240 . These properties are then forwarded to run-to-run process 230 .
- Run-to-run process 230 analyzes the wafer properties measured by wafer measurement system 240 and determines whether any modifications can be made to the tool's process recipe (via e.g., control process 210 ) to increase efficiency.
- polishing pads tend to wear out with use. As a result, worn polishing pads require greater polishing times than new pads to obtain a particular film thickness.
- Run-to-run process 230 may be used to recognize that a greater amount of time is required and direct the polishing tool to increase its polishing time when needed (e.g., when a pad has worn out). Thus, the results of the run-to-run process's analysis may be forwarded to control process 210 for use in addressing process drifts in subsequent operations.
- fault detection process 220 is used by system 200 to detect fault conditions.
- fault detection process 220 uses data collected by, for example, in situ or integrated sensors during processing.
- a fault detection index is generated for these purposes.
- this index may be utilized by control process 210 to determine whether to make adjustments to the process recipes.
- the fault detection index and the results of the analysis produced by run-to-run control process 230 which together constitute at least some of the processing attributes used by the invention, are forwarded to control process 210 and analyzed to determine whether a change should be made to the process recipes.
- run-to-run control process 230 generates modifications to a recipe and fault detection process 220 identifies instances where the modification should or should not be implemented. Accordingly, control process 210 is able to modify a recipe only when appropriate (i.e., when the tool recipe may be adjusted in a manner that remedies an addressable problem or inefficiency). Thus, system 200 is able to refrain from implementing modifications generated according to run-to-run techniques under “fault” conditions.
- FIG. 3 depicts at least one example of a process implementable for controlling a manufacturing process of the present invention.
- processing commences with the step of measuring wafer properties (STEP 304 ).
- the pre process wafer properties may be measured prior to their arrival at the tool (e.g., one or more tools 150 ).
- the tool e.g., one or more tools 150 .
- any of post measurement sensors located at upstream tools, in situ sensors, integrated or inline sensors, or other analogous devices may be utilized. Any number of wafer properties may be measured at this point, including, for example, film thickness, uniformity, critical dimensions, particle counts, etc.
- the data is forwarded to run-to-run controller 120 (STEP 308 ).
- the corresponding wafer is delivered to one or more tools 150 with any associated process information (STEP 312 ).
- a manufacturing execution system transmits information relating to and identifying the particular recipe(s) to be utilized by the one or more tools 150 for processing the wafer.
- the MES may identify the particular chambers to be used, any process sequences, routing information in the tool, settings, etc.
- the MES is typically responsible for automating, integrating, and coordinating each of the processes and resources required to execute or produce an output product.
- one or more tools 150 executes its manufacturing process (STEP 316 ). More particularly, one or more tools 150 processes the wafer in accordance with the information received from the MES in conjunction with any information provided by run-to-run controller 120 and/or fault detection system 110 . As will be discussed below, the information received from run-to-run controller 120 may be used to modify or adjust the recipe provided by the MES in the absence of faults.
- fault detection system 110 monitors the tool for tool faults or tool failures and the wafers for wafer property failures (STEP 320 ).
- the analysis conducted by fault detection system or, in other words, whether a fault is detected, is forwarded to run-to-run controller 120 (STEP 324 ).
- a fault detection index may be passed to controller 120 (from fault detection system 110 ) for identifying the presence or absence of a fault.
- this information is then used to determine those instances where a recipe should (and should not) be modified according to run-to-run techniques.
- the wafer is measured in a post process measurement step (STEP 328 ).
- the measurements may be made using an integrated sensor on the tool. Similarly, other types of sensors may also be used. This information is then utilized to modify subsequent recipes, as discussed herein.
- run-to-run controller 120 modifies tool recipes using post process measurements in conjunction with fault detection information. Specifically, a determination is first made whether the process has experienced a tool or wafer property fault (STEP 332 ). For example, as will be discussed in greater detail below, a fault detection index (e.g., one or more numbers indicative of one or more conditions existing on a wafer and/or tool) generated by fault detection system 110 is compared with a range of acceptable values by, for example, run-to-run controller 120 . If the index is not acceptable a fault has occurred.
- a fault detection index e.g., one or more numbers indicative of one or more conditions existing on a wafer and/or tool
- the post process measurements collected from the run during which the tool fault occurred are not used for purposes of modifying subsequent recipes (STEP 336 ). Furthermore, processing may terminate altogether.
- the recipe is modified under the run-to-run techniques of the present invention (STEP 340 ). In this manner, recipes are modified in those situations where a tool fault has not occurred.
- FIG. 4 depicts at least one example of a process utilizable for implementing a run-to-run control procedure according to one or more concepts of the present invention.
- post process wafer properties from a previous process or tool are measured and forwarded to a tool in which the run-to-run and fault detection techniques of the present invention are to be implemented (STEP 404 ).
- the measurements may be taken from the upstream tool or from a metrology tool positioned after the upstream process but before the instant tool. Similarly, the measurements may be taken at the instant tool itself, or at any other analogous device or location before processing.
- the upstream measurements may not be valid. For example, it may be too time consuming to measure each wafer in some tools or processes. In these situations, each wafer or run may not be measured. For example, it may be possible that measurements are not performed on every second or third run. Post processing measurements from these wafers are therefore not valid or considered in the process. Thus, the upstream measurements are checked to determine whether they are valid measurements (STEP 408 ). If not, run-to-run controller 120 ignores the measured upstream measurements and continues processing using setpoints for previous runs (STEP 432 ). If valid, the measurements may be used in modifying the tool's processing recipe.
- modifications to the recipe may be factored into a fault detection model as variables.
- any recipe setpoint changes implemented by run-to-run controller 120 are forwarded to fault detection system 110 , which in turn utilizes these recipe modifications to identify new fault condition ranges.
- fault detection system 110 may operate in a sensitive manner (i.e., adjusting the range of fault conditions to comport with any modified recipe setpoints) even when recipe changes have been implemented by run-to-run controller 120 .
- runs or wafers processed by tools that have experienced a tool fault or that have experienced a wafer property failure are not considered in run-to-run processes for subsequent runs.
- fault detection information regarding the processing tool is considered before continuing (STEP 416 ). Specifically, if a failure or fault condition in a previous run is detected, the tool's recipe is not modified (STEP 412 ). Furthermore, an error message may be displayed, and processing may halt altogether.
- any necessary transformations to the data are performed (STEP 420 ).
- the raw data read by the sensors may be converted to a more meaningful form.
- a uniformity parameter may require a ratio between a number of measurements.
- a ratio of each of the measurements is calculated.
- an average of film thicknesses would require a transformation to average all of the measured thicknesses. Also, it is altogether possible that with certain measurements, no transformations are needed.
- a control process algorithm is executed for estimating the next predicted output (STEP 424 ).
- the algorithm utilizes various modeling techniques, the tool recipe, and information relating to the incoming wafers and to previous process runs for establishing an output predicted to be produced by the tool. For example, by utilizing a model, a particular output film thickness may be predicted based on setpoints corresponding to parameters such as pressure, power, gas flow, etc.
- the output is compared against specification limits (STEP 428 ).
- the specification limits indicate the acceptable limits of a wafer property. If the outputs are within the specification limits (i.e., if the predicted output is within an acceptable range), no modifications are needed and the same setpoints used in a previous run are again utilized (STEP 432 ). On the other hand, if the predicted output exceeds the specification limits, the predicted output is compared against the acceptable range of the tool (STEP 436 ). The range of the tool describes the attainable capabilities of the tool. If the predicted output cannot be brought within the specification limits because the tool range is insufficient, the desired results will therefore not be obtainable. In this case, the process ignores the results, displays an error message, and, for example, terminates processing (STEP 440 ).
- a modification may be made to the tool recipe (STEP 444 ).
- one or more setpoints of the recipe are modified according to standard modeling techniques. In many cases, as known to those of ordinary skill in the art, these models are designed by process engineers and downloaded onto system 100 during an initialization phase of the facility.
- the process is executed (STEP 448 ).
- the control algorithm utilizes one or more target water properties (i.e., desired outputs), measured incoming wafer properties, and modifications to a tool recipe as determined by run-to-run and fault detection techniques to efficiently produce semiconductor wafers.
- FIG. 5 depicts at least one example of a process utilizable for implementing a fault detection control procedure according to one or more embodiments of the present invention.
- fault detection system 110 identifies the recipe implemented on a tool or process (STEP 504 ).
- a fault detection model is built or selected (STEP 508 ).
- fault detection models may be used to define a range of conditions indicative of a fault condition.
- a model specifically associated with a recipe is utilized.
- the manufacturing process commences, during which sensors are utilized to collect wafer properties such as film thickness, uniformity, etc. in real time. Alternatively, the wafer properties may be collected before or after a process. These properties are compared against the fault detection model to produce a fault detection index or fault event (i.e., a trigger). As known to those of ordinary skill in the art, any number of methods may be used to generate the fault detection index. For example, any of statistical process control, neural network, or model based analysis techniques and the like may be utilized. The index represents the optimality of the wafers being produced by the tool. Thus, the index may be compared against a predetermined value to indicate a tool fault or tool failure.
- this index constitutes at least a portion of the wafer processing attributes used by the present invention in optimizing wafer production.
- run-to-run controller 120 may ignore measured wafer properties from runs produced by tools that have experienced a fault condition.
- fault detection system 110 may be able to redefine a range of fault conditions to accommodate recipe changes to increase system sensitivity.
- fault condition boundaries may be redefined according to, and to account for, changes or modifications to recipe setpoints.
- a narrower range of fault conditions may be implemented in the fault detection model.
- fault condition ranges may be set according to a fixed distance from a recipe setpoint. Thus, in these embodiments, a modification to a setpoint results in a corresponding modification to the fault condition range.
- a fixed recipe setpoint for obtaining a particular target property is set at an initial value (e.g., fifty units).
- fault conditions boundaries may be set initially at a given range (e.g., forty-eight and fifty-two units).
- a given range e.g., forty-eight and fifty-two units.
- actual wafer property measurements outside the given range e.g., above fifty-two and below forty-eight units
- processing may, for example, terminate.
- run-to-run controller 120 may increase the recipe setpoint (e.g., from fifty to fifty-three units), thereby inadvertently resulting in a fault condition.
- recipe setpoint e.g., from fifty to fifty-three units
- range of fault conditions e.g., to forty-three and fifty-seven units.
- embodiments of the present invention contemplate incorporating the modified setpoints into the fault detection models to generate fault condition boundaries based on a distance from the setpoint. In this manner, system sensitivity is not compromised by integrating run-to-run techniques with fault detection concepts.
- the range of fault conditions would be reset at fifty one to fifty one to fifty five.
- the non-fault condition regions may be viewed as a distance from the coordinates of the multi-dimensional setpoint.
- the range of fault condition boundaries may be redefined as a function of the manipulated recipe parameters.
- a distance between a predicted output value and an actual measured output value may be used as a metric for fault detection.
- the difference between the predicted and actual values may be used to determine the fault condition boundaries.
- FIG. 6 illustrates a block diagram of one example of the internal hardware of potentially any of the components of system 100 of FIG. 2 , examples of which include any of a number of different types of computers such as those having PentiumTM based processors as manufactured by Intel Corporation of Santa Clara, Calif.
- a bus 656 serves as the main information link interconnecting the other components of system 100 .
- CPU 658 is the central processing unit of the system, performing calculations and logic operations required to execute the processes of the instant invention as well as other programs.
- Read only memory (ROM) 660 and random access memory (RAM) 662 constitute the main memory of the system.
- Disk controller 664 interfaces one or more disk drives to the system bus 656 .
- disk drives are, for example, floppy disk drives 670 , or CD ROM or DVD (digital video disks) drives 666 , or internal or external hard drives 668 .
- CPU 658 can be any number of different types of processors, including those manufactured by Intel Corporation or Motorola of Schaumberg, Ill.
- the memory/storage devices can be any number of different types of memory devices such as DRAM and SRAM as well as various types of storage devices, including magnetic and optical media. Furthermore, the memory/storage devices can also take the form of a transmission.
- a display interface 672 interfaces display 648 and permits information from the bus 656 to be displayed on display 648 .
- Display 648 is also an optional accessory.
- Communications with external devices such as the other components of the system described above, occur utilizing, for example, communication port 674 .
- port 674 may be interfaced with a bus/network linked to metrology tools 190 .
- Optical fibers and/or electrical cables and/or conductors and/or optical communication e.g., infrared, and the like
- wireless communication e.g., radio frequency (RF), and the like
- Peripheral interface 654 interfaces the keyboard 650 and mouse 652 , permitting input data to be transmitted to bus 656 .
- the control system also optionally includes an infrared transmitter 678 and/or infrared receiver 676 .
- Infrared transmitters are optionally utilized when the computer system is used in conjunction with one or more of the processing components/stations that transmits/receives data via infrared signal transmission.
- the control system may also optionally use a low power radio transmitter 680 and/or a low power radio receiver 682 .
- the low power radio transmitter transmits the signal for reception by components of the production process, and receives signals from the components via the low power radio receiver.
- FIG. 7 is an illustration of an exemplary computer readable memory medium 784 utilizable for storing computer readable code or instructions including the model(s), recipe(s), etc).
- medium 784 may be used with disk drives illustrated in FIG. 6 .
- memory media such as floppy disks, or a CD ROM, or a digital video disk will contain, for example, a multi-byte locale for a single byte language and the program information for controlling the above system to enable the computer to perform the functions described herein.
- ROM 660 and/or RAM 662 can also be used to store the program information that is used to instruct the central processing unit 658 to perform the operations associated with the instant processes.
- suitable computer readable media for storing information include magnetic, electronic, or optical (including holographic) storage, some combination thereof, etc.
- the computer readable medium can be a transmission.
- Embodiments of the present invention contemplate that various portions of software for implementing the various aspects of the present invention as previously described can reside in the memory/storage devices.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Selective Calling Equipment (AREA)
Abstract
Description
Claims (75)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/135,405 US7337019B2 (en) | 2001-07-16 | 2002-05-01 | Integration of fault detection with run-to-run control |
AT02746974T ATE362127T1 (en) | 2001-07-16 | 2002-07-12 | INTEGRATION OF ERROR DETECTION WITH RUN-TO-RUN CONTROL |
PCT/US2002/021942 WO2003009345A2 (en) | 2001-07-16 | 2002-07-12 | Integration of fault detection with run-to-run control |
AU2002316650A AU2002316650A1 (en) | 2001-07-16 | 2002-07-12 | Integration of fault detection with run-to-run control |
EP02746974A EP1412827B1 (en) | 2001-07-16 | 2002-07-12 | Integration of fault detection with run-to-run control |
KR1020047000645A KR100916190B1 (en) | 2001-07-16 | 2002-07-12 | Integration of run-to-run control and fault detection |
JP2003514592A JP4377224B2 (en) | 2001-07-16 | 2002-07-12 | Method and system for processing wafer and computer program therefor |
CNB028142578A CN100432879C (en) | 2001-07-16 | 2002-07-12 | Integration of fault detection with run-to-run control |
DE60220063T DE60220063T2 (en) | 2001-07-16 | 2002-07-12 | INTEGRATION OF FAULT RECOGNITION WITH RUN-TO-RUN CONTROL |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30514001P | 2001-07-16 | 2001-07-16 | |
US10/135,405 US7337019B2 (en) | 2001-07-16 | 2002-05-01 | Integration of fault detection with run-to-run control |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030014145A1 US20030014145A1 (en) | 2003-01-16 |
US7337019B2 true US7337019B2 (en) | 2008-02-26 |
Family
ID=26833291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/135,405 Expired - Lifetime US7337019B2 (en) | 2001-07-16 | 2002-05-01 | Integration of fault detection with run-to-run control |
Country Status (9)
Country | Link |
---|---|
US (1) | US7337019B2 (en) |
EP (1) | EP1412827B1 (en) |
JP (1) | JP4377224B2 (en) |
KR (1) | KR100916190B1 (en) |
CN (1) | CN100432879C (en) |
AT (1) | ATE362127T1 (en) |
AU (1) | AU2002316650A1 (en) |
DE (1) | DE60220063T2 (en) |
WO (1) | WO2003009345A2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040185583A1 (en) * | 2003-03-17 | 2004-09-23 | Tokyo Electron Limited | Method of operating a system for chemical oxide removal |
US20050221207A1 (en) * | 2004-03-30 | 2005-10-06 | Wataru Nagatomo | Method and apparatus for monitoring exposure process |
US20070122921A1 (en) * | 2002-03-22 | 2007-05-31 | Applied Materials, Inc. | Copper Wiring Module Control |
US20070169694A1 (en) * | 2001-06-19 | 2007-07-26 | Applied Materials, Inc. | Feedback control of sub-atmospheric chemical vapor deposition processes |
US20080147580A1 (en) * | 2003-11-10 | 2008-06-19 | Pannese Patrick D | Applications of neural networks |
US20080155442A1 (en) * | 2003-11-10 | 2008-06-26 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US20080163094A1 (en) * | 2003-11-10 | 2008-07-03 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US20090138114A1 (en) * | 2005-05-11 | 2009-05-28 | Richard Gerard Burda | Method of release and product flow management for a manufacturing facility |
US20090248187A1 (en) * | 2007-03-21 | 2009-10-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Advanced process control for semiconductor processing |
US20090259332A1 (en) * | 2008-04-09 | 2009-10-15 | Inotera Memories, Inc. | Fuzzy control method for adjusting a semiconductor machine |
US20100332012A1 (en) * | 2009-06-30 | 2010-12-30 | Chung-Ho Huang | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US20110190921A1 (en) * | 2010-02-02 | 2011-08-04 | Applied Materials, Inc. | Flexible process condition monitoring |
US20110307088A1 (en) * | 2010-06-09 | 2011-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Auto Device Skew Manufacturing |
US20120016499A1 (en) * | 2010-07-16 | 2012-01-19 | Hitachi Global Storage Technologies Netherlands B.V. | Implementing sequential segmented interleaving algorithm for enhanced process control |
US8420531B2 (en) | 2011-06-21 | 2013-04-16 | International Business Machines Corporation | Enhanced diffusion barrier for interconnect structures |
US20140207269A1 (en) * | 2013-01-24 | 2014-07-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of Process Stability |
US20140278165A1 (en) * | 2013-03-14 | 2014-09-18 | Johnson Controls Technology Company | Systems and methods for analyzing energy consumption model data |
US9721895B1 (en) | 2016-10-06 | 2017-08-01 | International Business Machines Corporation | Self-formed liner for interconnect structures |
US9761484B1 (en) | 2016-07-25 | 2017-09-12 | International Business Machines Corporation | Interconnect structure and fabrication thereof |
US9773735B1 (en) | 2016-08-16 | 2017-09-26 | International Business Machines Corporation | Geometry control in advanced interconnect structures |
US9786603B1 (en) | 2016-09-22 | 2017-10-10 | International Business Machines Corporation | Surface nitridation in metal interconnects |
US9953864B2 (en) | 2016-08-30 | 2018-04-24 | International Business Machines Corporation | Interconnect structure |
US10086511B2 (en) | 2003-11-10 | 2018-10-02 | Brooks Automation, Inc. | Semiconductor manufacturing systems |
US10133263B1 (en) | 2014-08-18 | 2018-11-20 | Kla-Tencor Corporation | Process condition based dynamic defect inspection |
US10177091B2 (en) | 2016-02-19 | 2019-01-08 | Globalfoundries Inc. | Interconnect structure and method of forming |
US10185312B2 (en) | 2017-01-31 | 2019-01-22 | Globalfoundries Inc. | Insitu tool health and recipe quality monitoring on a CDSEM |
US10714382B2 (en) | 2018-10-11 | 2020-07-14 | International Business Machines Corporation | Controlling performance and reliability of conductive regions in a metallization network |
US10916503B2 (en) | 2018-09-11 | 2021-02-09 | International Business Machines Corporation | Back end of line metallization structure |
US11133216B2 (en) | 2018-06-01 | 2021-09-28 | International Business Machines Corporation | Interconnect structure |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6718224B2 (en) * | 2001-09-17 | 2004-04-06 | Yield Dynamics, Inc. | System and method for estimating error in a manufacturing process |
US6697696B1 (en) * | 2002-02-28 | 2004-02-24 | Advanced Micro Devices, Inc. | Fault detection control system using dual bus architecture, and methods of using same |
US6763278B1 (en) * | 2002-04-26 | 2004-07-13 | Advanced Micro Devices, Inc. | Operating a processing tool in a degraded mode upon detecting a fault |
US8321048B1 (en) * | 2002-06-28 | 2012-11-27 | Advanced Micro Devices, Inc. | Associating data with workpieces and correlating the data with yield data |
US20080275587A1 (en) * | 2002-09-25 | 2008-11-06 | Advanced Micro Devices, Inc. | Fault detection on a multivariate sub-model |
US7158851B2 (en) * | 2003-06-30 | 2007-01-02 | Tokyo Electron Limited | Feedforward, feedback wafer to wafer control method for an etch process |
DE10343627B4 (en) * | 2003-09-20 | 2014-03-06 | Eads Deutschland Gmbh | Closure element for an area of the outer skin of an aircraft |
US8073667B2 (en) * | 2003-09-30 | 2011-12-06 | Tokyo Electron Limited | System and method for using first-principles simulation to control a semiconductor manufacturing process |
US8050900B2 (en) | 2003-09-30 | 2011-11-01 | Tokyo Electron Limited | System and method for using first-principles simulation to provide virtual sensors that facilitate a semiconductor manufacturing process |
US8296687B2 (en) | 2003-09-30 | 2012-10-23 | Tokyo Electron Limited | System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool |
US8032348B2 (en) | 2003-09-30 | 2011-10-04 | Tokyo Electron Limited | System and method for using first-principles simulation to facilitate a semiconductor manufacturing process |
US8036869B2 (en) | 2003-09-30 | 2011-10-11 | Tokyo Electron Limited | System and method for using first-principles simulation to control a semiconductor manufacturing process via a simulation result or a derived empirical model |
US6960774B2 (en) * | 2003-11-03 | 2005-11-01 | Advanced Micro Devices, Inc. | Fault detection and control methodologies for ion implantation processes, and system for performing same |
US20050221020A1 (en) * | 2004-03-30 | 2005-10-06 | Tokyo Electron Limited | Method of improving the wafer to wafer uniformity and defectivity of a deposited dielectric film |
KR100839071B1 (en) * | 2004-05-13 | 2008-06-19 | 삼성전자주식회사 | System and method for monitoring the status of process equipment |
TWI336823B (en) * | 2004-07-10 | 2011-02-01 | Onwafer Technologies Inc | Methods of and apparatuses for maintenance, diagnosis, and optimization of processes |
US7292906B2 (en) * | 2004-07-14 | 2007-11-06 | Tokyo Electron Limited | Formula-based run-to-run control |
US7212878B2 (en) * | 2004-08-27 | 2007-05-01 | Tokyo Electron Limited | Wafer-to-wafer control using virtual modules |
US20060079983A1 (en) * | 2004-10-13 | 2006-04-13 | Tokyo Electron Limited | R2R controller to automate the data collection during a DOE |
KR101079487B1 (en) * | 2005-01-28 | 2011-11-03 | 어플라이드 머티어리얼스, 인코포레이티드 | Method and apparatus for enhanced operation of substrate carrier handlers |
US7477960B2 (en) * | 2005-02-16 | 2009-01-13 | Tokyo Electron Limited | Fault detection and classification (FDC) using a run-to-run controller |
US7783455B1 (en) * | 2005-03-04 | 2010-08-24 | Globalfoundries Inc. | Methods and systems for analyzing process equipment processing variations using sensor data |
US7117059B1 (en) * | 2005-04-18 | 2006-10-03 | Promos Technologies Inc. | Run-to-run control system and operating method of the same |
CN100422888C (en) * | 2005-08-16 | 2008-10-01 | 力晶半导体股份有限公司 | Batch-to-batch control system and method for reaction chamber level |
CN100424674C (en) * | 2005-08-22 | 2008-10-08 | 力晶半导体股份有限公司 | Method for improving material handling efficiency and manufacturing system using the same |
US7206721B1 (en) * | 2005-12-12 | 2007-04-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Methods and systems of offline measurement for process tool monitoring |
ATE513445T1 (en) | 2005-12-14 | 2011-07-15 | Research In Motion Ltd | METHOD AND DEVICE FOR TERMINAL-BASED RADIO CONTROL IN A UMTS NETWORK |
US7672749B1 (en) * | 2005-12-16 | 2010-03-02 | GlobalFoundries, Inc. | Method and apparatus for hierarchical process control |
CN101030080B (en) * | 2006-03-01 | 2010-08-25 | 茂德科技股份有限公司 | Error detection system and management method thereof |
JP4839101B2 (en) * | 2006-03-08 | 2011-12-21 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing condition examination method, and storage medium |
EP2363981B1 (en) | 2006-05-17 | 2017-08-02 | BlackBerry Limited | Method and system for signaling release cause indication in a UMTS network |
US8265034B2 (en) * | 2006-05-17 | 2012-09-11 | Research In Motion Limited | Method and system for a signaling connection release indication |
US20080049662A1 (en) * | 2006-08-25 | 2008-02-28 | Research In Motion Limited | Apparatus, and associated method, for releasing a data-service radio resource allocated to a data-service-capable mobile node |
JP5224744B2 (en) * | 2006-10-04 | 2013-07-03 | 株式会社日立国際電気 | Substrate processing equipment |
JP4942174B2 (en) * | 2006-10-05 | 2012-05-30 | 東京エレクトロン株式会社 | Substrate processing system processing recipe optimization method, substrate processing system, substrate processing apparatus |
US7509186B2 (en) * | 2006-11-07 | 2009-03-24 | International Business Machines Corporation | Method and system for reducing the variation in film thickness on a plurality of semiconductor wafers having multiple deposition paths in a semiconductor manufacturing process |
EP2387283B1 (en) | 2007-11-13 | 2018-11-28 | BlackBerry Limited | Method and apparatus for state/mode transitioning |
US20090137068A1 (en) * | 2007-11-28 | 2009-05-28 | Michal Rosen-Zvi | Method and Computer Program Product for Wafer Manufacturing Process Abnormalities Detection |
TW200929412A (en) * | 2007-12-18 | 2009-07-01 | Airoha Tech Corp | Model modification method for a semiconductor device |
JP4831061B2 (en) * | 2007-12-26 | 2011-12-07 | パナソニック株式会社 | Electronic component mounting apparatus and emergency stop method for electronic component mounting apparatus |
US8271122B2 (en) | 2008-03-07 | 2012-09-18 | Mks Instruments, Inc. | Process control using process data and yield data |
US7622308B2 (en) * | 2008-03-07 | 2009-11-24 | Mks Instruments, Inc. | Process control using process data and yield data |
WO2010054391A2 (en) * | 2008-11-10 | 2010-05-14 | Research In Motion Limited | Method and apparatus of transition to a battery efficient state or configuration by indicating end of data transmission in long term evolution |
JP5334787B2 (en) * | 2009-10-09 | 2013-11-06 | 株式会社日立ハイテクノロジーズ | Plasma processing equipment |
WO2011061352A1 (en) | 2009-11-23 | 2011-05-26 | Research In Motion Limited | Method and apparatus for state/mode transitioning |
MX2012005873A (en) | 2009-11-23 | 2012-11-30 | Research In Motion Ltd | Method and apparatus for state/mode transitioning. |
ES2805149T3 (en) | 2009-11-23 | 2021-02-10 | Blackberry Ltd | State or mode transition trigger based on the transmission of a connection release signaling indication message |
WO2011064223A1 (en) * | 2009-11-24 | 2011-06-03 | Research In Motion Limited | Method and apparatus for state/mode transitioning |
US8983532B2 (en) * | 2009-12-30 | 2015-03-17 | Blackberry Limited | Method and system for a wireless communication device to adopt varied functionalities based on different communication systems by specific protocol messages |
MX2012005875A (en) * | 2010-02-10 | 2012-11-30 | Research In Motion Ltd | Method and apparatus for state/mode transitioning. |
DE102010009795B4 (en) | 2010-03-01 | 2014-05-15 | Von Ardenne Anlagentechnik Gmbh | Method and device for producing metal back contacts for wafer-based solar cells |
CN102222600B (en) * | 2010-04-13 | 2013-07-31 | 中芯国际集成电路制造(上海)有限公司 | Cabinet recovery processing method and apparatus |
WO2012100821A1 (en) * | 2011-01-26 | 2012-08-02 | Vega Grieshaber Kg | Diagnosis of physical-layer bus parameters in a filling level measuring device |
CN103314634A (en) | 2011-11-11 | 2013-09-18 | 捷讯研究有限公司 | Method and apparatus for user equipment state transition |
EP2677380A1 (en) * | 2012-06-21 | 2013-12-25 | Siemens Aktiengesellschaft | Method for controlling a manufacturing execution system (MES) |
US9715180B2 (en) * | 2013-06-11 | 2017-07-25 | Cymer, Llc | Wafer-based light source parameter control |
JP6392581B2 (en) * | 2014-08-20 | 2018-09-19 | ファナック株式会社 | Robot control device and processing system for robots used with machine tools |
US20160148850A1 (en) * | 2014-11-25 | 2016-05-26 | Stream Mosaic, Inc. | Process control techniques for semiconductor manufacturing processes |
US10430719B2 (en) | 2014-11-25 | 2019-10-01 | Stream Mosaic, Inc. | Process control techniques for semiconductor manufacturing processes |
CN105700490B (en) * | 2014-11-28 | 2018-09-07 | 中芯国际集成电路制造(天津)有限公司 | A kind of method and system improving product yield |
US9934351B2 (en) | 2015-11-09 | 2018-04-03 | Applied Materials, Inc. | Wafer point by point analysis and data presentation |
US10429808B2 (en) * | 2016-01-19 | 2019-10-01 | Honeywell International Inc. | System that automatically infers equipment details from controller configuration details |
US11029673B2 (en) | 2017-06-13 | 2021-06-08 | Pdf Solutions, Inc. | Generating robust machine learning predictions for semiconductor manufacturing processes |
US11022642B2 (en) | 2017-08-25 | 2021-06-01 | Pdf Solutions, Inc. | Semiconductor yield prediction |
US11029359B2 (en) | 2018-03-09 | 2021-06-08 | Pdf Solutions, Inc. | Failure detection and classsification using sensor data and/or measurement data |
US11775714B2 (en) | 2018-03-09 | 2023-10-03 | Pdf Solutions, Inc. | Rational decision-making tool for semiconductor processes |
US10777470B2 (en) | 2018-03-27 | 2020-09-15 | Pdf Solutions, Inc. | Selective inclusion/exclusion of semiconductor chips in accelerated failure tests |
CN110889260B (en) * | 2018-09-05 | 2023-01-17 | 长鑫存储技术有限公司 | Method and device for detecting process parameters, electronic equipment and computer readable medium |
US11486927B2 (en) | 2020-04-02 | 2022-11-01 | Applied Materials, Inc. | Bode fingerprinting for characterizations and failure detections in processing chamber |
KR20220050047A (en) * | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | Predictive maintenance method, and predictive maintenance device |
US11853042B2 (en) * | 2021-02-17 | 2023-12-26 | Applied Materials, Inc. | Part, sensor, and metrology data integration |
US12116686B2 (en) * | 2022-02-11 | 2024-10-15 | Applied Materials, Inc. | Parameter adjustment model for semiconductor processing chambers |
Citations (404)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3205485A (en) | 1960-10-21 | 1965-09-07 | Ti Group Services Ltd | Screening vane electro-mechanical transducer |
US3229198A (en) | 1962-09-28 | 1966-01-11 | Hugo L Libby | Eddy current nondestructive testing device for measuring multiple parameter variables of a metal sample |
US3767900A (en) | 1971-06-23 | 1973-10-23 | Cons Paper Inc | Adaptive controller having optimal filtering |
US3920965A (en) | 1973-10-03 | 1975-11-18 | Siemens Ag | Method and apparatus for predictive control |
US4000458A (en) | 1975-08-21 | 1976-12-28 | Bell Telephone Laboratories, Incorporated | Method for the noncontacting measurement of the electrical conductivity of a lamella |
US4207520A (en) | 1978-04-06 | 1980-06-10 | The United States Of America As Represented By The Secretary Of The Air Force | Multiple frequency digital eddy current inspection system |
US4209744A (en) | 1976-04-29 | 1980-06-24 | Fedosenko Jury K | Eddy current device for automatically testing the quality of elongated electrically conductive objects by non-destructive techniques |
US4302721A (en) | 1978-05-08 | 1981-11-24 | Tencor Instruments | Non-contacting resistivity instrument with structurally related conductance and distance measuring transducers |
US4368510A (en) | 1980-10-20 | 1983-01-11 | Leeds & Northrup Company | Automatic identification system for self tuning process controller |
JPS6166104U (en) | 1984-10-03 | 1986-05-07 | ||
US4609870A (en) | 1981-03-27 | 1986-09-02 | Hocking Electronics Limited | Lift off compensation of eddy current crack detection system by controlling damping resistance of oscillator |
US4616308A (en) | 1983-11-15 | 1986-10-07 | Shell Oil Company | Dynamic process control |
JPS61171147U (en) | 1985-04-13 | 1986-10-23 | ||
US4663703A (en) | 1985-10-02 | 1987-05-05 | Westinghouse Electric Corp. | Predictive model reference adaptive controller |
US4698766A (en) | 1984-05-19 | 1987-10-06 | British Aerospace Plc | Industrial processing and manufacturing systems |
US4750141A (en) | 1985-11-26 | 1988-06-07 | Ade Corporation | Method and apparatus for separating fixture-induced error from measured object characteristics and for compensating the measured object characteristic with the error, and a bow/warp station implementing same |
US4755753A (en) | 1986-07-23 | 1988-07-05 | General Electric Company | Eddy current surface mapping system for flaw detection |
US4757259A (en) | 1985-11-06 | 1988-07-12 | Cegedur Societe De Transformation De L'aluminium Pechiney | Method for measuring the thickness and temperature of a moving metal sheet by means of eddy currents |
US4796194A (en) | 1986-08-20 | 1989-01-03 | Atherton Robert W | Real world modeling and control process |
JPH01283934A (en) | 1988-05-11 | 1989-11-15 | Tokyo Electron Ltd | Etching apparatus |
US4901218A (en) | 1987-08-12 | 1990-02-13 | Renishaw Controls Limited | Communications adaptor for automated factory system |
US4938600A (en) | 1989-02-09 | 1990-07-03 | Interactive Video Systems, Inc. | Method and apparatus for measuring registration between layers of a semiconductor wafer |
US4957605A (en) | 1989-04-17 | 1990-09-18 | Materials Research Corporation | Method and apparatus for sputter coating stepped wafers |
US4967381A (en) | 1985-04-30 | 1990-10-30 | Prometrix Corporation | Process control interface system for managing measurement data |
EP0397924A1 (en) | 1989-05-17 | 1990-11-22 | Koninklijke Philips Electronics N.V. | Work station controller module |
JPH03202710A (en) | 1989-06-12 | 1991-09-04 | Tzn Forschungs & Entwicklungszentrum Unterluess Gmbh | Method and device for measuring layer thickness in non-contact state |
US5089970A (en) | 1989-10-05 | 1992-02-18 | Combustion Engineering, Inc. | Integrated manufacturing system |
CA2194855A1 (en) | 1990-08-31 | 1992-03-01 | Dennis A. Sierk | Process gas distribution system and method |
US5108570A (en) | 1990-03-30 | 1992-04-28 | Applied Materials, Inc. | Multistep sputtering process for forming aluminum layer over stepped semiconductor wafer |
US5208765A (en) | 1990-07-20 | 1993-05-04 | Advanced Micro Devices, Inc. | Computer-based method and system for product development |
US5220517A (en) | 1990-08-31 | 1993-06-15 | Sci Systems, Inc. | Process gas distribution system and method with supervisory control |
JPH05151231A (en) | 1990-08-14 | 1993-06-18 | Toshiba Corp | Manufacturing process managing system |
US5226118A (en) | 1991-01-29 | 1993-07-06 | Prometrix Corporation | Data analysis system and method for industrial process control systems |
US5231585A (en) | 1989-06-22 | 1993-07-27 | Hitachi Ltd. | Computer-integrated manufacturing system and method |
US5236868A (en) | 1990-04-20 | 1993-08-17 | Applied Materials, Inc. | Formation of titanium nitride on semiconductor wafer by reaction of titanium with nitrogen-bearing gas in an integrated processing system |
JPH05216896A (en) | 1991-11-14 | 1993-08-27 | Toshiba Corp | Manufacturing process management system |
US5240552A (en) | 1991-12-11 | 1993-08-31 | Micron Technology, Inc. | Chemical mechanical planarization (CMP) of a semiconductor wafer using acoustical waves for in-situ end point detection |
JPH05266029A (en) | 1992-03-16 | 1993-10-15 | Toshiba Corp | Process flow preparing device |
US5260868A (en) | 1986-08-11 | 1993-11-09 | Texas Instruments Incorporate | Method for calendaring future events in real-time |
US5270222A (en) | 1990-12-31 | 1993-12-14 | Texas Instruments Incorporated | Method and apparatus for semiconductor device fabrication diagnosis and prognosis |
US5283141A (en) | 1992-03-05 | 1994-02-01 | National Semiconductor | Photolithography control system and method using latent image measurements |
US5295242A (en) | 1990-11-02 | 1994-03-15 | Consilium, Inc. | Apparatus and method for viewing relationships in a factory management system |
JPH06110894A (en) | 1992-09-29 | 1994-04-22 | Toshiba Corp | Data verification system |
US5309221A (en) | 1991-12-31 | 1994-05-03 | Corning Incorporated | Measurement of fiber diameters with high precision |
JPH06176994A (en) | 1992-10-08 | 1994-06-24 | Toshiba Corp | Manufacturing-rule check system |
JPH06184434A (en) | 1992-12-16 | 1994-07-05 | Tonen Corp | Thermoplastic resin composition |
JPH06252236A (en) | 1993-02-24 | 1994-09-09 | Toshiba Corp | Apparatus for checking and simulation of process flow |
US5347446A (en) | 1991-02-08 | 1994-09-13 | Kabushiki Kaisha Toshiba | Model predictive control apparatus |
JPH06260380A (en) | 1993-03-04 | 1994-09-16 | Toshiba Corp | Semiconductor production system |
EP0621522A2 (en) | 1993-04-20 | 1994-10-26 | Praxair Inc. | Facility and gas management system |
US5367624A (en) | 1993-06-11 | 1994-11-22 | Consilium, Inc. | Interface for controlling transactions in a manufacturing execution system |
US5369544A (en) | 1993-04-05 | 1994-11-29 | Ford Motor Company | Silicon-on-insulator capacitive surface micromachined absolute pressure sensor |
US5375064A (en) | 1993-12-02 | 1994-12-20 | Hughes Aircraft Company | Method and apparatus for moving a material removal tool with low tool accelerations |
US5398336A (en) | 1990-10-16 | 1995-03-14 | Consilium, Inc. | Object-oriented architecture for factory floor management |
US5402367A (en) | 1993-07-19 | 1995-03-28 | Texas Instruments, Incorporated | Apparatus and method for model based process control |
US5408405A (en) | 1993-09-20 | 1995-04-18 | Texas Instruments Incorporated | Multi-variable statistical process controller for discrete manufacturing |
US5410473A (en) | 1992-01-07 | 1995-04-25 | Fukuda Denshi Kabushiki Kaisha | Method and apparatus for recording electrocardiogram information |
US5420796A (en) | 1993-12-23 | 1995-05-30 | Vlsi Technology, Inc. | Method of inspecting planarity of wafer surface after etchback step in integrated circuit fabrication |
US5427878A (en) | 1991-06-26 | 1995-06-27 | Digital Equipment Corporation | Semiconductor wafer processing with across-wafer critical dimension monitoring using optical endpoint detection |
US5444837A (en) | 1993-01-12 | 1995-08-22 | Sextant Avionique | Method for structuring information used in an industrial process and its application to aircraft piloting assistance |
US5469361A (en) | 1991-08-08 | 1995-11-21 | The Board Of Regents Acting For And On Behalf Of The University Of Michigan | Generic cell controlling method and apparatus for computer integrated manufacturing system |
WO1995034866A1 (en) | 1994-06-14 | 1995-12-21 | Telefonaktiebolaget Lm Ericsson | A method and system for manipulating intelligent representations of real equipment within a graphical computer system |
US5485082A (en) | 1990-04-11 | 1996-01-16 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Method of calibrating a thickness measuring device and device for measuring or monitoring the thickness of layers, tapes, foils, and the like |
US5490097A (en) | 1993-03-22 | 1996-02-06 | Fujitsu Limited | System and method for modeling, analyzing and executing work process plans |
JPH0850161A (en) | 1994-08-05 | 1996-02-20 | Matsushita Electron Corp | Measuring method of semiconductor device |
US5495417A (en) | 1990-08-14 | 1996-02-27 | Kabushiki Kaisha Toshiba | System for automatically producing different semiconductor products in different quantities through a plurality of processes along a production line |
US5497381A (en) | 1993-10-15 | 1996-03-05 | Analog Devices, Inc. | Bitstream defect analysis method for integrated circuits |
JPH0823166B2 (en) | 1993-04-05 | 1996-03-06 | 西武ポリマ化成株式会社 | Construction method of culvert joint |
US5503707A (en) | 1993-09-22 | 1996-04-02 | Texas Instruments Incorporated | Method and apparatus for process endpoint prediction based on actual thickness measurements |
US5511005A (en) | 1994-02-16 | 1996-04-23 | Ade Corporation | Wafer handling and processing system |
US5519605A (en) | 1994-10-24 | 1996-05-21 | Olin Corporation | Model predictive control apparatus and method |
JPH08149583A (en) | 1994-11-21 | 1996-06-07 | Mitsubishi Electric Corp | Process controller and data monitor method |
US5526293A (en) | 1993-12-17 | 1996-06-11 | Texas Instruments Inc. | System and method for controlling semiconductor wafer processing |
US5525808A (en) | 1992-01-23 | 1996-06-11 | Nikon Corporaton | Alignment method and alignment apparatus with a statistic calculation using a plurality of weighted coordinate positions |
US5534289A (en) | 1995-01-03 | 1996-07-09 | Competitive Technologies Inc. | Structural crack monitoring technique |
US5541510A (en) | 1995-04-06 | 1996-07-30 | Kaman Instrumentation Corporation | Multi-Parameter eddy current measuring system with parameter compensation technical field |
US5546312A (en) | 1993-09-20 | 1996-08-13 | Texas Instruments Incorporated | Use of spatial models for simultaneous control of various non-uniformity metrics |
US5553195A (en) | 1993-09-30 | 1996-09-03 | U.S. Philips Corporation | Dynamic neural net |
US5571366A (en) * | 1993-10-20 | 1996-11-05 | Tokyo Electron Limited | Plasma processing apparatus |
JPH08304023A (en) | 1995-04-28 | 1996-11-22 | Dainippon Screen Mfg Co Ltd | Measuring-point mapping device and measuring apparatus for semiconductor wafer utilizing the device |
EP0747795A2 (en) | 1995-06-07 | 1996-12-11 | Xerox Corporation | A system for generically describing and scheduling operation of a modular printing machine |
US5586039A (en) | 1993-03-29 | 1996-12-17 | Texas Instruments Incorporated | Computer-aided manufacturing support method and system for specifying relationships and dependencies between process type components |
US5599423A (en) | 1995-06-30 | 1997-02-04 | Applied Materials, Inc. | Apparatus and method for simulating and optimizing a chemical mechanical polishing system |
JPH0934535A (en) | 1995-07-13 | 1997-02-07 | Mitsubishi Electric Corp | Maintenance notification system |
US5602492A (en) | 1992-03-13 | 1997-02-11 | The United States Of America As Represented By The Secretary Of Commerce | Electrical test structure and method for measuring the relative locations of conducting features on an insulating substrate |
US5603707A (en) | 1995-11-28 | 1997-02-18 | The Procter & Gamble Company | Absorbent article having a rewet barrier |
US5617023A (en) | 1995-02-02 | 1997-04-01 | Otis Elevator Company | Industrial contactless position sensor |
US5627083A (en) | 1993-08-03 | 1997-05-06 | Nec Corporation | Method of fabricating semiconductor device including step of forming superposition error measuring patterns |
US5629216A (en) | 1994-06-30 | 1997-05-13 | Seh America, Inc. | Method for producing semiconductor wafers with low light scattering anomalies |
US5642296A (en) | 1993-07-29 | 1997-06-24 | Texas Instruments Incorporated | Method of diagnosing malfunctions in semiconductor manufacturing equipment |
US5646870A (en) | 1995-02-13 | 1997-07-08 | Advanced Micro Devices, Inc. | Method for setting and adjusting process parameters to maintain acceptable critical dimensions across each die of mass-produced semiconductor wafers |
US5649169A (en) | 1995-06-20 | 1997-07-15 | Advanced Micro Devices, Inc. | Method and system for declustering semiconductor defect data |
US5654903A (en) | 1995-11-07 | 1997-08-05 | Lucent Technologies Inc. | Method and apparatus for real time monitoring of wafer attributes in a plasma etch process |
US5655951A (en) | 1995-09-29 | 1997-08-12 | Micron Technology, Inc. | Method for selectively reconditioning a polishing pad used in chemical-mechanical planarization of semiconductor wafers |
US5663797A (en) | 1996-05-16 | 1997-09-02 | Micron Technology, Inc. | Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers |
US5665214A (en) | 1995-05-03 | 1997-09-09 | Sony Corporation | Automatic film deposition control method and system |
US5665199A (en) | 1995-06-23 | 1997-09-09 | Advanced Micro Devices, Inc. | Methodology for developing product-specific interlayer dielectric polish processes |
US5666297A (en) | 1994-05-13 | 1997-09-09 | Aspen Technology, Inc. | Plant simulation and optimization software apparatus and method using dual execution models |
US5664987A (en) | 1994-01-31 | 1997-09-09 | National Semiconductor Corporation | Methods and apparatus for control of polishing pad conditioning for wafer planarization |
US5667424A (en) | 1996-09-25 | 1997-09-16 | Chartered Semiconductor Manufacturing Pte Ltd. | New chemical mechanical planarization (CMP) end point detection apparatus |
JPH09246547A (en) | 1996-03-11 | 1997-09-19 | Fujitsu Ltd | Semiconductor device and manufacturing method thereof |
US5674787A (en) | 1996-01-16 | 1997-10-07 | Sematech, Inc. | Selective electroless copper deposited interconnect plugs for ULSI applications |
US5695810A (en) | 1996-11-20 | 1997-12-09 | Cornell Research Foundation, Inc. | Use of cobalt tungsten phosphide as a barrier material for copper metallization |
US5698989A (en) | 1994-10-06 | 1997-12-16 | Applied Materilas, Inc. | Film sheet resistance measurement |
JPH1034522A (en) | 1996-07-17 | 1998-02-10 | Nikon Corp | Polishing device for cmp and cmp device system |
US5719796A (en) | 1995-12-04 | 1998-02-17 | Advanced Micro Devices, Inc. | System for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback |
WO1998005066A3 (en) | 1996-07-26 | 1998-03-05 | Speedfam Corp | Methods and apparatus for the in-process detection and measurement of thin film layers |
US5735055A (en) | 1996-04-23 | 1998-04-07 | Aluminum Company Of America | Method and apparatus for measuring the thickness of an article at a plurality of points |
US5740429A (en) | 1995-07-07 | 1998-04-14 | Advanced Micro Devices, Inc. | E10 reporting tool |
US5751582A (en) | 1995-09-25 | 1998-05-12 | Texas Instruments Incorporated | Controlling process modules using site models and monitor wafer control |
US5754297A (en) | 1994-01-28 | 1998-05-19 | Applied Materials, Inc. | Method and apparatus for monitoring the deposition rate of films during physical vapor deposition |
US5761064A (en) | 1995-10-06 | 1998-06-02 | Advanced Micro Devices, Inc. | Defect management system for productivity and yield improvement |
US5761065A (en) | 1995-03-30 | 1998-06-02 | Advanced Micro Devices, Inc. | Arrangement and method for detecting sequential processing effects in manufacturing |
US5764543A (en) | 1995-06-16 | 1998-06-09 | I2 Technologies, Inc. | Extensible model network representation system for process planning |
JPH10173029A (en) | 1996-12-13 | 1998-06-26 | Dainippon Screen Mfg Co Ltd | Method of determining measuring positions of wafer |
US5777901A (en) | 1995-09-29 | 1998-07-07 | Advanced Micro Devices, Inc. | Method and system for automated die yield prediction in semiconductor manufacturing |
US5787021A (en) | 1994-12-28 | 1998-07-28 | Detusche Itt Industries Gmbh | Information system for production control |
US5787269A (en) | 1994-09-20 | 1998-07-28 | Ricoh Company, Ltd. | Process simulation apparatus and method for selecting an optimum simulation model for a semiconductor manufacturing process |
US5808303A (en) | 1997-01-29 | 1998-09-15 | Art Aerospace Research Technologies Inc. | Infrared screening and inspection system |
US5812407A (en) | 1996-08-13 | 1998-09-22 | Sony Corporation | Apparatus for correcting and holding front surface of sheet |
WO1998045090A1 (en) | 1997-04-04 | 1998-10-15 | Obsidian, Inc. | Polishing media magazine for improved polishing |
US5823854A (en) | 1996-05-28 | 1998-10-20 | Industrial Technology Research Institute | Chemical-mechanical polish (CMP) pad conditioner |
US5825913A (en) | 1995-07-18 | 1998-10-20 | Cognex Corporation | System for finding the orientation of a wafer |
US5824599A (en) | 1996-01-16 | 1998-10-20 | Cornell Research Foundation, Inc. | Protected encapsulation of catalytic layer for electroless copper interconnect |
US5825356A (en) | 1996-03-18 | 1998-10-20 | Wall Data Incorporated | Help system with semitransparent window for disabling controls |
US5828778A (en) | 1995-07-13 | 1998-10-27 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for analyzing failure of semiconductor wafer |
US5832224A (en) | 1988-09-14 | 1998-11-03 | Digital Equipment Corporation | Entity management system |
US5831851A (en) | 1995-03-21 | 1998-11-03 | Seagate Technology, Inc. | Apparatus and method for controlling high throughput sputtering |
EP0877308A2 (en) | 1997-05-06 | 1998-11-11 | Tokyo Electron Limited | Control apparatus and control method |
US5838951A (en) | 1996-02-29 | 1998-11-17 | Anam Industrial Co., Ltd | Wafer map conversion method |
US5844554A (en) | 1996-09-17 | 1998-12-01 | Bt Squared Technologies, Inc. | Methods and systems for user interfaces and constraint handling configurations software |
EP0881040A2 (en) | 1997-05-28 | 1998-12-02 | LAM Research Corporation | Method and apparatus for in-situ monitoring of thickness using a multi-wavelength spectrometer during chemical-mechanical polishing |
US5857258A (en) | 1992-03-13 | 1999-01-12 | The United States Of America As Represented By The Secretary Of Commerce | Electrical test structure and method for measuring the relative locations of conductive features on an insulating substrate |
US5859964A (en) * | 1996-10-25 | 1999-01-12 | Advanced Micro Devices, Inc. | System and method for performing real time data acquisition, process modeling and fault detection of wafer fabrication processes |
US5859975A (en) | 1993-12-15 | 1999-01-12 | Hewlett-Packard, Co. | Parallel processing computer system having shared coherent memory and interconnections utilizing separate undirectional request and response lines for direct communication or using crossbar switching device |
US5859777A (en) | 1996-05-14 | 1999-01-12 | Toshiba Kikai Kabushiki Kaisha | Casting control support system for die casting machines |
US5862054A (en) | 1997-02-20 | 1999-01-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Process monitoring system for real time statistical process control |
US5863807A (en) | 1995-09-20 | 1999-01-26 | Samsung Electronics Co., Ltd. | Manufacturing method of a semiconductor integrated circuit |
US5867389A (en) | 1995-11-29 | 1999-02-02 | Dainippon Screen Mfg. Co., Ltd. | Substrate processing management system with recipe copying functions |
EP0895145A1 (en) | 1997-08-01 | 1999-02-03 | Hewlett-Packard Company | Process control device |
US5870306A (en) | 1996-06-13 | 1999-02-09 | Mitsubishi Denki Kabushiki Kaisha | Automatic programming method and device for multi-system machine tool |
US5871805A (en) | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
WO1999009371A1 (en) | 1997-08-19 | 1999-02-25 | Micron Technology, Inc. | Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers |
JPH1167853A (en) | 1997-08-26 | 1999-03-09 | Mitsubishi Electric Corp | Wafer map analysis auxiliary system and wafer map analysis method |
US5883437A (en) | 1994-12-28 | 1999-03-16 | Hitachi, Ltd. | Method and apparatus for inspection and correction of wiring of electronic circuit and for manufacture thereof |
US5889991A (en) | 1996-12-06 | 1999-03-30 | International Business Machines Corp. | Method and system for customizing a palette using any java class |
US5895596A (en) * | 1997-01-27 | 1999-04-20 | Semitool Thermal | Model based temperature controller for semiconductor thermal processors |
EP0910123A1 (en) | 1996-03-19 | 1999-04-21 | Hitachi, Ltd. | Process control system |
US5901313A (en) | 1991-03-01 | 1999-05-04 | Ast Research, Inc. | Application management system |
US5903455A (en) | 1996-02-06 | 1999-05-11 | Fisher-Rosemount Systems, Inc. | Interface controls for use in a field device management system |
JPH11126816A (en) | 1997-10-23 | 1999-05-11 | Dainippon Screen Mfg Co Ltd | Method for correcting and deciding coordinates of objective point on wafer |
JPH11135601A (en) | 1997-10-29 | 1999-05-21 | Dainippon Screen Mfg Co Ltd | Method for creating measurement information and measurement position of wafer |
WO1999025520A1 (en) | 1997-11-18 | 1999-05-27 | Speedfam-Ipec Corporation | Method and apparatus for modeling a chemical mechanical polishing process |
US5910011A (en) | 1997-05-12 | 1999-06-08 | Applied Materials, Inc. | Method and apparatus for monitoring processes using multiple parameters of a semiconductor wafer processing system |
US5912678A (en) | 1997-04-14 | 1999-06-15 | Texas Instruments Incorporated | Process flow design at the module effects level through the use of acceptability regions |
US5916016A (en) | 1997-10-23 | 1999-06-29 | Vlsi Technology, Inc. | Methods and apparatus for polishing wafers |
US5923553A (en) | 1995-12-21 | 1999-07-13 | Samsung Electronics Co., Ltd. | Method for controlling a semiconductor manufacturing process by failure analysis feedback |
US5926690A (en) | 1997-05-28 | 1999-07-20 | Advanced Micro Devices, Inc. | Run-to-run control process for controlling critical dimensions |
US5930138A (en) | 1995-08-22 | 1999-07-27 | Advanced Micro Devices, Inc. | Arrangement and method for detecting sequential processing effects in manufacturing using predetermined sequences within runs |
EP0932194A1 (en) | 1997-12-30 | 1999-07-28 | International Business Machines Corporation | Method and system for semiconductor wafer fabrication process real-time in-situ interactive supervision |
EP0932195A1 (en) | 1997-12-30 | 1999-07-28 | International Business Machines Corporation | Method and system for semiconductor wafer fabrication process real-time in-situ supervision |
US5940300A (en) | 1996-12-12 | 1999-08-17 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for analyzing a fabrication line |
US5943550A (en) | 1996-03-29 | 1999-08-24 | Advanced Micro Devices, Inc. | Method of processing a semiconductor wafer for controlling drive current |
US5943237A (en) | 1996-10-21 | 1999-08-24 | U.S. Philips Corporation | Method and system for assessing a measurement procedure and measurement-induced uncertainties on a batchwise manufacturing process of discrete products |
US5960185A (en) | 1996-06-24 | 1999-09-28 | International Business Machines Corporation | Method and apparatus for wafer disposition based on systematic error modeling |
US5961369A (en) | 1996-07-18 | 1999-10-05 | Speedfam-Ipec Corp. | Methods for the in-process detection of workpieces with a monochromatic light source |
US5963881A (en) | 1995-09-22 | 1999-10-05 | Texas Instruments Incorporated | Method and system for enhancing the identification of causes of variations in the performance of manufactured articles |
US5975994A (en) | 1997-06-11 | 1999-11-02 | Micron Technology, Inc. | Method and apparatus for selectively conditioning a polished pad used in planarizng substrates |
US5978751A (en) | 1997-02-25 | 1999-11-02 | International Business Machines Corporation | Variegated manufacturing process test method and apparatus |
US5982920A (en) | 1997-01-08 | 1999-11-09 | Lockheed Martin Energy Research Corp. Oak Ridge National Laboratory | Automated defect spatial signature analysis for semiconductor manufacturing process |
WO1999059200A1 (en) | 1998-05-11 | 1999-11-18 | Applied Materials, Inc. | Fab yield enhancement system |
US6002989A (en) | 1996-04-02 | 1999-12-14 | Hitachi, Ltd. | System for quality control where inspection frequency of inspection apparatus is reset to minimize expected total loss based on derived frequency function and loss value |
US6012048A (en) | 1997-05-30 | 2000-01-04 | Capital Security Systems, Inc. | Automated banking system for dispensing money orders, wire transfer and bill payment |
WO2000000874A1 (en) | 1998-06-26 | 2000-01-06 | Advanced Micro Devices, Inc. | System and method for controlling the manufacture of discrete parts in semiconductor fabrication using model predictive control |
US6017771A (en) | 1998-04-27 | 2000-01-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and system for yield loss analysis by yield management system |
WO2000005759A1 (en) | 1998-07-20 | 2000-02-03 | Isemicon, Inc | Method for measuring number of yield loss chips and number of poor chips by type due to defect of semiconductor chips |
US6037664A (en) | 1997-08-20 | 2000-03-14 | Sematech Inc | Dual damascene interconnect structure using low dielectric constant material for an inter-level dielectric layer |
US6036349A (en) | 1995-07-27 | 2000-03-14 | Health Designs, Inc. | Method and apparatus for validation of model-based predictions |
US6041270A (en) | 1997-12-05 | 2000-03-21 | Advanced Micro Devices, Inc. | Automatic recipe adjust and download based on process control window |
US6041263A (en) | 1996-10-01 | 2000-03-21 | Aspen Technology, Inc. | Method and apparatus for simulating and optimizing a plant model |
US6054379A (en) | 1998-02-11 | 2000-04-25 | Applied Materials, Inc. | Method of depositing a low k dielectric with organo silane |
US6059636A (en) | 1997-07-11 | 2000-05-09 | Tokyo Seimitsu Co., Ltd. | Wafer polishing apparatus |
US6064759A (en) | 1996-11-08 | 2000-05-16 | Buckley; B. Shawn | Computer aided inspection machine |
US6072313A (en) | 1995-04-10 | 2000-06-06 | International Business Machines Corporation | In-situ monitoring and control of conductive films by detecting changes in induced eddy currents |
US6074443A (en) | 1996-10-21 | 2000-06-13 | Applied Materials, Inc. | Method and apparatus for scheduling wafer processing within a multiple chamber semiconductor wafer processing tool having a multiple blade robot |
WO2000035063A1 (en) | 1998-12-07 | 2000-06-15 | Abb Power T & D Company Inc. | Architecture layer interfacing devices and applications |
US6077412A (en) | 1997-08-22 | 2000-06-20 | Cutek Research, Inc. | Rotating anode for a wafer processing chamber |
US6078845A (en) | 1996-11-25 | 2000-06-20 | Schlumberger Technologies, Inc. | Apparatus for carrying semiconductor devices |
JP2000183001A (en) | 1998-12-10 | 2000-06-30 | Okamoto Machine Tool Works Ltd | Polish end-point detecting method for wafer and chemical-mechanical polishing device used for the same |
US6094688A (en) | 1997-01-08 | 2000-07-25 | Crossworlds Software, Inc. | Modular application collaboration including filtering at the source and proxy execution of compensating transactions to conserve server resources |
US6096649A (en) | 1999-10-25 | 2000-08-01 | Taiwan Semiconductor Manufacturing Company | Top metal and passivation procedures for copper damascene structures |
US6097887A (en) | 1997-10-27 | 2000-08-01 | Kla-Tencor Corporation | Software system and method for graphically building customized recipe flowcharts |
US6100195A (en) | 1998-12-28 | 2000-08-08 | Chartered Semiconductor Manu. Ltd. | Passivation of copper interconnect surfaces with a passivating metal layer |
US6112130A (en) | 1996-10-02 | 2000-08-29 | Kabushiki Kaisha Toshiba | Semiconductor product manufacturing execution system and semiconductor product manufacturing method |
US6114238A (en) | 1998-01-26 | 2000-09-05 | United Silicon Incorporated | Self-aligned metal nitride for copper passivation |
US6113462A (en) | 1997-12-18 | 2000-09-05 | Advanced Micro Devices, Inc. | Feedback loop for selective conditioning of chemical mechanical polishing pad |
WO2000054325A1 (en) | 1999-03-10 | 2000-09-14 | Nova Measuring Instruments Ltd. | Method and apparatus for monitoring a chemical mechanical planarization process applied to metal-based patterned objects |
GB2347885A (en) | 1998-10-15 | 2000-09-20 | Nec Corp | Control of pad dresser in chemical-mechanical polishing appararus |
US6127263A (en) | 1998-07-10 | 2000-10-03 | Applied Materials, Inc. | Misalignment tolerant techniques for dual damascene fabrication |
US6128016A (en) | 1996-12-20 | 2000-10-03 | Nec Corporation | Graphic user interface for managing a server system |
US6136163A (en) | 1999-03-05 | 2000-10-24 | Applied Materials, Inc. | Apparatus for electro-chemical deposition with thermal anneal chamber |
US6141660A (en) | 1998-07-16 | 2000-10-31 | International Business Machines Corporation | Command line interface for creating business objects for accessing a hierarchical database |
US6143646A (en) | 1997-06-03 | 2000-11-07 | Motorola Inc. | Dual in-laid integrated circuit structure with selectively positioned low-K dielectric isolation and method of formation |
US6148099A (en) | 1997-07-03 | 2000-11-14 | Neopath, Inc. | Method and apparatus for incremental concurrent learning in automatic semiconductor wafer and liquid crystal display defect classification |
US6148239A (en) | 1997-12-12 | 2000-11-14 | Advanced Micro Devices, Inc. | Process control system using feed forward control threads based on material groups |
US6148246A (en) | 1997-06-13 | 2000-11-14 | Canon Kabushiki Kaisha | Semiconductor process system, its control method, computer readable memory, and device manufacturing method |
US6150270A (en) | 1998-01-07 | 2000-11-21 | Kabushiki Kaisha Toshiba | Method for forming barrier layer for copper metallization |
US6157864A (en) | 1998-05-08 | 2000-12-05 | Rockwell Technologies, Llc | System, method and article of manufacture for displaying an animated, realtime updated control sequence chart |
US6159075A (en) | 1999-10-13 | 2000-12-12 | Vlsi Technology, Inc. | Method and system for in-situ optimization for semiconductor wafers in a chemical mechanical polishing process |
US6161054A (en) | 1997-09-22 | 2000-12-12 | On-Line Technologies, Inc. | Cell control method and apparatus |
US6159644A (en) | 1996-03-06 | 2000-12-12 | Hitachi, Ltd. | Method of fabricating semiconductor circuit devices utilizing multiple exposures |
WO2000079355A1 (en) | 1999-06-22 | 2000-12-28 | Brooks Automation, Inc. | Run-to-run controller for use in microelectronic fabrication |
US6169931B1 (en) | 1998-07-29 | 2001-01-02 | Southwest Research Institute | Method and system for modeling, predicting and optimizing chemical mechanical polishing pad wear and extending pad life |
US6172756B1 (en) | 1998-12-11 | 2001-01-09 | Filmetrics, Inc. | Rapid and accurate end point detection in a noisy environment |
US6173240B1 (en) | 1998-11-02 | 2001-01-09 | Ise Integrated Systems Engineering Ag | Multidimensional uncertainty analysis |
EP1066925A2 (en) | 1999-07-09 | 2001-01-10 | Applied Materials, Inc. | Closed loop control of wafer polishing in a chemical mechanical polishing system |
EP1067757A1 (en) | 1999-07-09 | 2001-01-10 | Hewlett-Packard Company | Curled surface imaging system |
US6175777B1 (en) | 1997-04-17 | 2001-01-16 | Samsung Electronics Co., Ltd. | Method for transferring wafer cassettes after checking whether process equipment is in a suitable mode |
US6178390B1 (en) | 1997-12-26 | 2001-01-23 | Samsung Electronics Co., Ltd. | Method for controlling thicknesses of layers formed by deposition equipment for fabricating semiconductor devices |
EP1071128A2 (en) | 1999-07-21 | 2001-01-24 | Applied Materials, Inc. | Real time defect source identification on a semiconductor substrate |
US6181013B1 (en) | 1999-06-25 | 2001-01-30 | Taiwan Semiconductor Manufacturing Company | Method for selective growth of Cu3Ge or Cu5Si for passivation of damascene copper structures and device manufactured thereby |
US6183345B1 (en) | 1997-03-24 | 2001-02-06 | Canon Kabushiki Kaisha | Polishing apparatus and method |
US6185324B1 (en) | 1989-07-12 | 2001-02-06 | Hitachi, Ltd. | Semiconductor failure analysis system |
WO2001011679A1 (en) | 1999-08-10 | 2001-02-15 | Advanced Micro Devices, Inc. | Method and apparatus for performing run-to-run control in a batch manufacturing environment |
US6192291B1 (en) | 1998-01-14 | 2001-02-20 | Samsung Electronics Co., Ltd. | Method of controlling semiconductor fabricating equipment to process wafers of a single lot individually |
US6197604B1 (en) | 1998-10-01 | 2001-03-06 | Advanced Micro Devices, Inc. | Method for providing cooperative run-to-run control for multi-product and multi-process semiconductor fabrication |
WO2001015865A1 (en) | 1999-08-31 | 2001-03-08 | Micron Technology, Inc. | Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization |
EP1083470A2 (en) | 1999-09-10 | 2001-03-14 | Applied Materials, Inc. | Multi-computer chamber control system, method and medium |
WO2001018623A1 (en) | 1999-09-09 | 2001-03-15 | Advanced Micro Devices, Inc. | Real-time fault detection |
US6204165B1 (en) | 1999-06-24 | 2001-03-20 | International Business Machines Corporation | Practical air dielectric interconnections by post-processing standard CMOS wafers |
JP2001076982A (en) | 1999-06-28 | 2001-03-23 | Hyundai Electronics Ind Co Ltd | System and method for automating semiconductor factory for controlling measurement equipment measuring semiconductor wafer |
US6207937B1 (en) * | 1998-05-11 | 2001-03-27 | Semitool, Inc. | Temperature control system for a thermal reactor |
US6210983B1 (en) | 1998-10-21 | 2001-04-03 | Texas Instruments Incorporated | Method for analyzing probe yield sensitivities to IC design |
US6211094B1 (en) | 1998-09-15 | 2001-04-03 | Samsung Electronics Co., Ltd. | Thickness control method in fabrication of thin-film layers in semiconductor devices |
US6214734B1 (en) | 1998-11-20 | 2001-04-10 | Vlsi Technology, Inc. | Method of using films having optimized optical properties for chemical mechanical polishing endpoint detection |
US6212961B1 (en) | 1999-02-11 | 2001-04-10 | Nova Measuring Instruments Ltd. | Buffer system for a wafer handling system |
WO2001025865A1 (en) | 1999-10-05 | 2001-04-12 | Advanced Micro Devices, Inc. | Method and apparatus for monitoring controller performance using statistical process control |
US6219711B1 (en) | 1997-05-13 | 2001-04-17 | Micron Electronics, Inc. | Synchronous communication interface |
US6217412B1 (en) | 1999-08-11 | 2001-04-17 | Advanced Micro Devices, Inc. | Method for characterizing polish pad lots to eliminate or reduce tool requalification after changing a polishing pad |
EP1092505A2 (en) | 1999-10-12 | 2001-04-18 | Applied Materials, Inc. | Method of controlling a polishing machine |
US6222936B1 (en) | 1998-02-03 | 2001-04-24 | Advanced Micro Devices, Inc. | Apparatus and method for reducing defects in a semiconductor lithographic process |
US6226563B1 (en) | 1998-01-14 | 2001-05-01 | Samsung Electronics Co., Ltd. | Method for controlling unit process conditions of semiconductor fabricating equipment arranged in a processing line |
US6226792B1 (en) | 1998-10-14 | 2001-05-01 | Unisys Corporation | Object management system supporting the use of application domain knowledge mapped to technology domain knowledge |
US6228280B1 (en) | 1998-05-06 | 2001-05-08 | International Business Machines Corporation | Endpoint detection by chemical reaction and reagent |
WO2001033501A1 (en) | 1999-10-31 | 2001-05-10 | Insyst Ltd. | A knowledge-engineering protocol-suite |
WO2001033277A1 (en) | 1999-10-31 | 2001-05-10 | Insyst Ltd. | Strategic method for process control |
TW434103B (en) | 1998-10-23 | 2001-05-16 | Taiwan Semiconductor Mfg | Chemical mechanical polishing device with terminal point detection functions |
US6237050B1 (en) | 1997-12-26 | 2001-05-22 | Samsung Electronics Co., Ltd. | Method for controlling components of semiconductor fabricating equipment arranged in a processing line |
US6236903B1 (en) | 1997-09-29 | 2001-05-22 | Samsung Electronics Co., Ltd. | Multiple reaction chamber system having wafer recognition system and method for processing wafer using same |
US20010001755A1 (en) | 1993-08-25 | 2001-05-24 | Sandhu Gurtej S. | System for real-time control of semiconductor wafer polishing |
TW436383B (en) | 2000-03-16 | 2001-05-28 | Taiwan Semiconductor Mfg | The end-point detection method of CMP polishing using the principle of optical confocal feedback |
US6240330B1 (en) | 1997-05-28 | 2001-05-29 | International Business Machines Corporation | Method for feedforward corrections for off-specification conditions |
US6240331B1 (en) | 1998-02-03 | 2001-05-29 | Samsung Electronics Co., Ltd. | Integrated management of semiconductor process data |
US20010003084A1 (en) | 1999-12-06 | 2001-06-07 | Moshe Finarov | Method and system for endpoint detection |
US6245581B1 (en) | 2000-04-19 | 2001-06-12 | Advanced Micro Devices, Inc. | Method and apparatus for control of critical dimension using feedback etch control |
US6246972B1 (en) | 1996-08-23 | 2001-06-12 | Aspen Technology, Inc. | Analyzer for modeling and optimizing maintenance operations |
US6249712B1 (en) | 1995-09-26 | 2001-06-19 | William J. N-O. Boiquaye | Adaptive control process and system |
US6248602B1 (en) | 1999-11-01 | 2001-06-19 | Amd, Inc. | Method and apparatus for automated rework within run-to-run control semiconductor manufacturing |
US6253366B1 (en) | 1999-03-31 | 2001-06-26 | Unisys Corp. | Method and system for generating a compact document type definition for data interchange among software tools |
US6252412B1 (en) | 1999-01-08 | 2001-06-26 | Schlumberger Technologies, Inc. | Method of detecting defects in patterned substrates |
US6259160B1 (en) | 1999-04-21 | 2001-07-10 | Advanced Micro Devices, Inc. | Apparatus and method of encapsulated copper (Cu) Interconnect formation |
US6263255B1 (en) | 1998-05-18 | 2001-07-17 | Advanced Micro Devices, Inc. | Advanced process control for semiconductor manufacturing |
WO2001052319A1 (en) | 2000-01-07 | 2001-07-19 | Advanced Micro Devices, Inc. | Method and apparatus for determining measurement frequency based on hardware age and usage |
US6268270B1 (en) * | 1999-04-30 | 2001-07-31 | Advanced Micro Devices, Inc. | Lot-to-lot rapid thermal processing (RTP) chamber preheat optimization |
US6271670B1 (en) | 1998-02-09 | 2001-08-07 | Sandia Corporation | Method and apparatus for detecting external cracks from within a metal tube |
WO2001057823A2 (en) | 2000-02-01 | 2001-08-09 | Domain Logix Corporation | Apparatus and method for web-based tool management |
US6278899B1 (en) | 1996-05-06 | 2001-08-21 | Pavilion Technologies, Inc. | Method for on-line optimization of a plant |
US6277014B1 (en) | 1998-10-09 | 2001-08-21 | Applied Materials, Inc. | Carrier head with a flexible membrane for chemical mechanical polishing |
US6276989B1 (en) | 1999-08-11 | 2001-08-21 | Advanced Micro Devices, Inc. | Method and apparatus for controlling within-wafer uniformity in chemical mechanical polishing |
US6280289B1 (en) | 1998-11-02 | 2001-08-28 | Applied Materials, Inc. | Method and apparatus for detecting an end-point in chemical mechanical polishing of metal layers |
US6281127B1 (en) | 1999-04-15 | 2001-08-28 | Taiwan Semiconductor Manufacturing Company | Self-passivation procedure for a copper damascene structure |
US6284622B1 (en) | 1999-10-25 | 2001-09-04 | Advanced Micro Devices, Inc. | Method for filling trenches |
US6287879B1 (en) | 1999-08-11 | 2001-09-11 | Micron Technology, Inc. | Endpoint stabilization for polishing process |
US6290572B1 (en) | 2000-03-23 | 2001-09-18 | Micron Technology, Inc. | Devices and methods for in-situ control of mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies |
US6292708B1 (en) | 1998-06-11 | 2001-09-18 | Speedfam-Ipec Corporation | Distributed control system for a semiconductor wafer processing machine |
US6291367B1 (en) | 2000-06-01 | 2001-09-18 | Atmel Corporation | Method for depositing a selected thickness of an interlevel dielectric material to achieve optimum global planarity on a semiconductor wafer |
TW455976B (en) | 2000-08-11 | 2001-09-21 | Taiwan Semiconductor Mfg | Endpoint detection method of chemical mechanical polishing process |
TW455938B (en) | 1998-12-10 | 2001-09-21 | Nippon Kogaku Kk | Wafer polishing stop detection method and polishing stop detection device |
US6298274B1 (en) | 1998-11-19 | 2001-10-02 | Oki Electric Industry Co., Ltd. | Conveyance system in a semiconductor manufacturing process and method for processing semiconductor wafer therein |
US6298470B1 (en) | 1999-04-15 | 2001-10-02 | Micron Technology, Inc. | Method for efficient manufacturing of integrated circuits |
JP2001284299A (en) | 2000-01-25 | 2001-10-12 | Nikon Corp | Monitor device polishing device therewith and monitor method, and polishing method |
US6303395B1 (en) | 1999-06-01 | 2001-10-16 | Applied Materials, Inc. | Semiconductor processing techniques |
US6304999B1 (en) | 2000-10-23 | 2001-10-16 | Advanced Micro Devices, Inc. | Method and apparatus for embedded process control framework in tool systems |
US20010030366A1 (en) | 2000-03-08 | 2001-10-18 | Hiroshi Nakano | Semiconducting system and production method |
US6307628B1 (en) | 2000-08-18 | 2001-10-23 | Taiwan Semiconductor Manufacturing Company, Ltd | Method and apparatus for CMP end point detection using confocal optics |
JP2001305108A (en) | 2000-04-21 | 2001-10-31 | Daido Steel Co Ltd | Eddy current flaw detector |
US6314379B1 (en) | 1997-05-26 | 2001-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated defect yield management and query system |
US20010039462A1 (en) | 2000-04-03 | 2001-11-08 | Rafael Mendez | System and method for predicting software models using material-centric process instrumentation |
US6317643B1 (en) | 1999-03-31 | 2001-11-13 | Agere Systems Guardian Corp. | Manufacturing and engineering data base |
US20010040997A1 (en) | 1999-05-28 | 2001-11-15 | Tsap Leonid V. | Computer vision-based technique for objective assessment of material properties in non-rigid objects |
US6320655B1 (en) | 1999-03-16 | 2001-11-20 | Kabushiki Kaisha Toshiba | Defect-position identifying method for semiconductor substrate |
EP1072967A3 (en) | 1999-07-29 | 2001-11-21 | Applied Materials, Inc. | Computer integrated manufacturing techniques |
US20010042690A1 (en) | 1998-11-03 | 2001-11-22 | Nutool, Inc. | Method and apparatus for electroplating and electropolishing |
US20010044667A1 (en) | 2000-05-16 | 2001-11-22 | Nec Corporation | System of manufacturing semiconductor intergrated circuit |
US6324481B1 (en) | 1998-10-21 | 2001-11-27 | Texas Instruments Incorporated | Method for the calculation of wafer probe yield limits from in-line defect monitor data |
US6334807B1 (en) | 1999-04-30 | 2002-01-01 | International Business Machines Corporation | Chemical mechanical polishing in-situ end point system |
US6336841B1 (en) | 2001-03-29 | 2002-01-08 | Macronix International Co. Ltd. | Method of CMP endpoint detection |
JP2002009030A (en) | 2000-06-16 | 2002-01-11 | Nec Corp | Method and device for detecting polishing end point of semiconductor wafer |
US6339727B1 (en) | 1998-12-21 | 2002-01-15 | Recot, Inc. | Apparatus and method for controlling distribution of product in manufacturing process |
US6340602B1 (en) | 1999-12-10 | 2002-01-22 | Sensys Instruments | Method of measuring meso-scale structures on wafers |
US6345288B1 (en) | 1989-08-31 | 2002-02-05 | Onename Corporation | Computer-based communication system and method using metadata defining a control-structure |
US6345315B1 (en) | 1997-08-13 | 2002-02-05 | Sudhindra N. Mishra | Method for platform and protocol independent communication between client-server pairs |
US6346426B1 (en) | 2000-11-17 | 2002-02-12 | Advanced Micro Devices, Inc. | Method and apparatus for characterizing semiconductor device performance variations based on independent critical dimension measurements |
GB2365215A (en) | 2000-03-23 | 2002-02-13 | Ibm | Composite diffusion barrier for protecting copper interconnects in low dielectric constant materials from oxidation |
WO2001052055A3 (en) | 2000-01-10 | 2002-02-21 | Wind River Systems Inc | System and method for implementing a flexible data-driven target object model |
EP1182526A2 (en) | 2000-08-15 | 2002-02-27 | Applied Materials, Inc. | Run-to-run control over semiconductor processing tool based upon mirror image |
WO2002017150A1 (en) | 2000-08-23 | 2002-02-28 | Pri Automation, Inc. | Web based tool control in a semiconductor fabrication facility |
US6355559B1 (en) | 1999-11-18 | 2002-03-12 | Texas Instruments Incorporated | Passivation of inlaid metallization |
US20020032499A1 (en) | 1999-04-13 | 2002-03-14 | Wilson Gregory J. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US6360184B1 (en) | 1996-03-28 | 2002-03-19 | Bio-Analytics, Inc. D/B/A Biomedware, Inc. | Method for measuring a degree of association for dimensionally referenced data |
US6360133B1 (en) | 1999-06-17 | 2002-03-19 | Advanced Micro Devices, Inc. | Method and apparatus for automatic routing for reentrant process |
US6366934B1 (en) | 1998-10-08 | 2002-04-02 | International Business Machines Corporation | Method and apparatus for querying structured documents using a database extender |
US6368879B1 (en) | 1999-09-22 | 2002-04-09 | Advanced Micro Devices, Inc. | Process control with control signal derived from metrology of a repetitive critical dimension feature of a test structure on the work piece |
US6368883B1 (en) | 1999-08-10 | 2002-04-09 | Advanced Micro Devices, Inc. | Method for identifying and controlling impact of ambient conditions on photolithography processes |
US6368884B1 (en) | 2000-04-13 | 2002-04-09 | Advanced Micro Devices, Inc. | Die-based in-fab process monitoring and analysis system for semiconductor processing |
WO2002031613A2 (en) | 2000-10-13 | 2002-04-18 | Insyst Ltd. | System and method for monitoring process quality control |
WO2002033737A2 (en) | 2000-10-17 | 2002-04-25 | Speedfam-Ipec Corporation | Multiprobe detection system for chemical-mechanical planarization tool |
US6381564B1 (en) | 1998-05-28 | 2002-04-30 | Texas Instruments Incorporated | Method and system for using response-surface methodologies to determine optimal tuning parameters for complex simulators |
US6379980B1 (en) | 2000-07-26 | 2002-04-30 | Advanced Micro Devices, Inc. | Method and apparatus for monitoring material removal tool performance using endpoint time removal rate determination |
US6389491B1 (en) | 1999-03-23 | 2002-05-14 | Agilent Technologies, Inc. | Test instrumentation I/O communication interface and method |
US6388253B1 (en) | 1999-06-29 | 2002-05-14 | Applied Materials, Inc. | Integrated critical dimension control for semiconductor device manufacturing |
US20020058460A1 (en) | 2000-09-20 | 2002-05-16 | Lee Jae-Dong | Method of controlling wafer polishing time using sample-skip algorithm and wafer polishing using the same |
US6391780B1 (en) | 1999-08-23 | 2002-05-21 | Taiwan Semiconductor Manufacturing Company | Method to prevent copper CMP dishing |
US6397114B1 (en) | 1996-03-28 | 2002-05-28 | Rosemount Inc. | Device in a process system for detecting events |
US6395152B1 (en) | 1998-07-09 | 2002-05-28 | Acm Research, Inc. | Methods and apparatus for electropolishing metal interconnections on semiconductor devices |
US6400162B1 (en) | 2000-07-21 | 2002-06-04 | Ade Corporation | Capacitive displacement sensor for measuring thin targets |
US6405144B1 (en) | 2000-01-18 | 2002-06-11 | Advanced Micro Devices, Inc. | Method and apparatus for programmed latency for improving wafer-to-wafer uniformity |
US6405096B1 (en) | 1999-08-10 | 2002-06-11 | Advanced Micro Devices, Inc. | Method and apparatus for run-to-run controlling of overlay registration |
US20020070126A1 (en) | 2000-09-19 | 2002-06-13 | Shuzo Sato | Polishing method, polishing apparatus, plating method, and plating apparatus |
US20020077031A1 (en) | 2000-07-10 | 2002-06-20 | Nils Johansson | Combined eddy current sensing and optical monitoring for chemical mechanical polishing |
US20020081951A1 (en) | 2000-06-30 | 2002-06-27 | Lam Research Corporation | Apparatus and method for qualifying a chemical mechanical planarization process |
US6417014B1 (en) | 1999-10-19 | 2002-07-09 | Advanced Micro Devices, Inc. | Method and apparatus for reducing wafer to wafer deposition variation |
US20020089676A1 (en) | 1997-05-28 | 2002-07-11 | Jiri Pecen | Method and apparatus for in-situ monitoring of thickness during chemical -mechanical polishing |
WO2001080306A3 (en) | 2000-04-13 | 2002-07-18 | Advanced Micro Devices Inc | Automated process monitoring and analysis system for semiconductor processing |
EP0869652A3 (en) | 1997-04-01 | 2002-07-24 | Tumbleweed Software Corporation | Document delivery system |
US6427093B1 (en) | 1999-10-07 | 2002-07-30 | Advanced Micro Devices, Inc. | Method and apparatus for optimal wafer-by-wafer processing |
US20020102853A1 (en) | 2000-12-22 | 2002-08-01 | Applied Materials, Inc. | Articles for polishing semiconductor substrates |
US20020107604A1 (en) | 2000-12-06 | 2002-08-08 | Riley Terrence J. | Run-to-run control method for proportional-integral-derivative (PID) controller tuning for rapid thermal processing (RTP) |
US20020107599A1 (en) | 2000-02-02 | 2002-08-08 | Patel Nital S. | Method and system for dispatching semiconductor lots to manufacturing equipment for fabrication |
US6432728B1 (en) | 2000-10-16 | 2002-08-13 | Promos Technologies, Inc. | Method for integration optimization by chemical mechanical planarization end-pointing technique |
US6438438B1 (en) | 1993-12-28 | 2002-08-20 | Hitachi, Ltd. | Method and system for manufacturing semiconductor devices, and method and system for inspecting semiconductor devices |
US20020113039A1 (en) | 1999-07-09 | 2002-08-22 | Mok Yeuk-Fai Edwin | Integrated semiconductor substrate bevel cleaning apparatus and method |
US6442496B1 (en) | 2000-08-08 | 2002-08-27 | Advanced Micro Devices, Inc. | Method and apparatus for dynamic sampling of a production line |
US6449524B1 (en) * | 2000-01-04 | 2002-09-10 | Advanced Micro Devices, Inc. | Method and apparatus for using equipment state data for run-to-run control of manufacturing tools |
US20020128805A1 (en) | 2000-12-26 | 2002-09-12 | Insyst Intelligent Systems Ltd. | Model predictive control (MPC) system using DOE based model |
US20020127950A1 (en) | 2000-10-18 | 2002-09-12 | Takenori Hirose | Method of detecting and measuring endpoint of polishing processing and its apparatus and method of manufacturing semiconductor device using the same |
US6455937B1 (en) | 1998-03-20 | 2002-09-24 | James A. Cunningham | Arrangement and method for improved downward scaling of higher conductivity metal-based interconnects |
WO2002074491A1 (en) | 2001-03-19 | 2002-09-26 | Lam Research Corporation | In situ detection of a thin metal-interface using optical interference during a cmp process |
US6465263B1 (en) * | 2000-01-04 | 2002-10-15 | Advanced Micro Devices, Inc. | Method and apparatus for implementing corrected species by monitoring specific state parameters |
US20020149359A1 (en) | 2000-08-24 | 2002-10-17 | Crouzen Paulus Carolus Nicolaas | Method for measuring the wall thickness of an electrically conductive object |
US6470230B1 (en) | 2000-01-04 | 2002-10-22 | Advanced Micro Devices, Inc. | Supervisory method for determining optimal process targets based on product performance in microelectronic fabrication |
US20020165636A1 (en) | 2001-05-04 | 2002-11-07 | Hasan Talat Fatima | Systems and methods for metrology recipe and model generation |
US6479902B1 (en) | 2000-06-29 | 2002-11-12 | Advanced Micro Devices, Inc. | Semiconductor catalytic layer and atomic layer deposition thereof |
US6479990B2 (en) | 1998-12-18 | 2002-11-12 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Eddy current sensor for analyzing a test object and method of operating same |
US6484064B1 (en) | 1999-10-05 | 2002-11-19 | Advanced Micro Devices, Inc. | Method and apparatus for running metrology standard wafer routes for cross-fab metrology calibration |
US6482660B2 (en) | 2001-03-19 | 2002-11-19 | International Business Machines Corporation | Effective channel length control using ion implant feed forward |
JP2002343754A (en) | 2001-05-15 | 2002-11-29 | Nikon Corp | Polishing apparatus and method and semiconductor device manufacturing method using the same |
US20020183986A1 (en) | 2001-05-30 | 2002-12-05 | Stewart Paul Joseph | System and method for design of experiments using direct surface manipulation of a mesh model |
US6492281B1 (en) | 2000-09-22 | 2002-12-10 | Advanced Micro Devices, Inc. | Method of fabricating conductor structures with metal comb bridging avoidance |
US20020185658A1 (en) | 2001-06-01 | 2002-12-12 | Hiroaki Inoue | Electroless plating liquid and semiconductor device |
US6495452B1 (en) | 1999-08-18 | 2002-12-17 | Taiwan Semiconductor Manufacturing Company | Method to reduce capacitance for copper interconnect structures |
US20020193902A1 (en) | 2001-06-19 | 2002-12-19 | Applied Materials, Inc. | Integrating tool, module, and fab level control |
US20020193899A1 (en) | 2001-06-19 | 2002-12-19 | Applied Materials, Inc. | Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing |
US20020199082A1 (en) | 2001-06-19 | 2002-12-26 | Applied Materials, Inc. | Method, system and medium for process control for the matching of tools, chambers and/or other semiconductor-related entities |
US20020197745A1 (en) | 2001-06-19 | 2002-12-26 | Shanmugasundram Arulkumar P. | Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles |
US20020197934A1 (en) | 2001-06-19 | 2002-12-26 | Paik Young Joseph | Control of chemical mechanical polishing pad conditioner directional velocity to improve pad life |
US20030017256A1 (en) | 2001-06-14 | 2003-01-23 | Takashi Shimane | Applying apparatus and method of controlling film thickness for enabling uniform thickness |
US20030020928A1 (en) | 2000-07-08 | 2003-01-30 | Ritzdorf Thomas L. | Methods and apparatus for processing microelectronic workpieces using metrology |
US20030020909A1 (en) | 2001-04-09 | 2003-01-30 | Speedfam-Ipec Corporation | Method and apparatus for optical endpoint calibration in CMP |
US6515368B1 (en) | 2001-12-07 | 2003-02-04 | Advanced Micro Devices, Inc. | Semiconductor device with copper-filled via includes a copper-zinc/alloy film for reduced electromigration of copper |
US6517414B1 (en) | 2000-03-10 | 2003-02-11 | Appied Materials, Inc. | Method and apparatus for controlling a pad conditioning process of a chemical-mechanical polishing apparatus |
US6517413B1 (en) | 2000-10-25 | 2003-02-11 | Taiwan Semiconductor Manufacturing Company | Method for a copper CMP endpoint detection system |
US6528409B1 (en) | 2002-04-29 | 2003-03-04 | Advanced Micro Devices, Inc. | Interconnect structure formed in porous dielectric material with minimized degradation and electromigration |
US6532555B1 (en) * | 1999-10-29 | 2003-03-11 | Advanced Micro Devices, Inc. | Method and apparatus for integration of real-time tool data and in-line metrology for fault detection in an advanced process control (APC) framework |
US6535783B1 (en) * | 2001-03-05 | 2003-03-18 | Advanced Micro Devices, Inc. | Method and apparatus for the integration of sensor data from a process tool in an advanced process control (APC) framework |
US6537912B1 (en) | 2000-08-25 | 2003-03-25 | Micron Technology Inc. | Method of forming an encapsulated conductive pillar |
US6541401B1 (en) | 2000-07-31 | 2003-04-01 | Applied Materials, Inc. | Wafer pretreatment to decrease rate of silicon dioxide deposition on silicon nitride compared to silicon substrate |
US6540591B1 (en) | 2001-04-18 | 2003-04-01 | Alexander J. Pasadyn | Method and apparatus for post-polish thickness and uniformity control |
US6546508B1 (en) * | 1999-10-29 | 2003-04-08 | Advanced Micro Devices, Inc. | Method and apparatus for fault detection of a processing tool in an advanced process control (APC) framework |
US6560504B1 (en) | 1999-09-29 | 2003-05-06 | Advanced Micro Devices, Inc. | Use of contamination-free manufacturing data in fault detection and classification as well as in run-to-run control |
US6563308B2 (en) | 2000-03-28 | 2003-05-13 | Kabushiki Kaisha Toshiba | Eddy current loss measuring sensor, thickness measuring system, thickness measuring method, and recorded medium |
US6567717B2 (en) | 2000-01-19 | 2003-05-20 | Advanced Micro Devices, Inc. | Feed-forward control of TCI doping for improving mass-production-wise, statistical distribution of critical performance parameters in semiconductor devices |
US6580958B1 (en) | 1998-11-25 | 2003-06-17 | Canon Kabushiki Kaisha | Semiconductor manufacturing apparatus and device manufacturing method |
US6590179B2 (en) | 2000-09-22 | 2003-07-08 | Hitachi, Ltd. | Plasma processing apparatus and method |
US6604012B1 (en) | 1999-10-23 | 2003-08-05 | Samsung Electronics Co., Ltd. | Lots dispatching method for variably arranging processing equipment and/or processing conditions in a succeeding process according to the results of a preceding process and apparatus for the same |
US6605549B2 (en) | 2001-09-29 | 2003-08-12 | Intel Corporation | Method for improving nucleation and adhesion of CVD and ALD films deposited onto low-dielectric-constant dielectrics |
US20030154062A1 (en) | 2001-10-15 | 2003-08-14 | General Electric Company | System and method for statistical design of ultrasound probe and imaging system |
US6607976B2 (en) | 2001-09-25 | 2003-08-19 | Applied Materials, Inc. | Copper interconnect barrier layer structure and formation method |
US6609946B1 (en) | 2000-07-14 | 2003-08-26 | Advanced Micro Devices, Inc. | Method and system for polishing a semiconductor wafer |
US6616513B1 (en) | 2000-04-07 | 2003-09-09 | Applied Materials, Inc. | Grid relief in CMP polishing pad to accurately measure pad wear, pad profile and pad wear profile |
US6618692B2 (en) | 2000-09-20 | 2003-09-09 | Hitachi, Ltd. | Remote diagnostic system and method for semiconductor manufacturing equipment |
US6625497B2 (en) | 2000-11-20 | 2003-09-23 | Applied Materials Inc. | Semiconductor processing module with integrated feedback/feed forward metrology |
US6630741B1 (en) | 2001-12-07 | 2003-10-07 | Advanced Micro Devices, Inc. | Method of reducing electromigration by ordering zinc-doping in an electroplated copper-zinc interconnect and a semiconductor device thereby formed |
US6640151B1 (en) | 1999-12-22 | 2003-10-28 | Applied Materials, Inc. | Multi-tool control system, method and medium |
US6660633B1 (en) | 2002-02-26 | 2003-12-09 | Advanced Micro Devices, Inc. | Method of reducing electromigration in a copper line by electroplating an interim copper-zinc alloy thin film on a copper surface and a semiconductor device thereby formed |
US6678570B1 (en) | 2001-06-26 | 2004-01-13 | Advanced Micro Devices, Inc. | Method and apparatus for determining output characteristics using tool state data |
US6708074B1 (en) | 2000-08-11 | 2004-03-16 | Applied Materials, Inc. | Generic interface builder |
US6708075B2 (en) | 2001-11-16 | 2004-03-16 | Advanced Micro Devices | Method and apparatus for utilizing integrated metrology data as feed-forward data |
US6725402B1 (en) * | 2000-07-31 | 2004-04-20 | Advanced Micro Devices, Inc. | Method and apparatus for fault detection of a processing tool and control thereof using an advanced process control (APC) framework |
US6728587B2 (en) | 2000-12-27 | 2004-04-27 | Insyst Ltd. | Method for global automated process control |
US6735492B2 (en) | 2002-07-19 | 2004-05-11 | International Business Machines Corporation | Feedback method utilizing lithographic exposure field dimensions to predict process tool overlay settings |
US6751518B1 (en) | 2002-04-29 | 2004-06-15 | Advanced Micro Devices, Inc. | Dynamic process state adjustment of a processing tool to reduce non-uniformity |
US6774998B1 (en) | 2001-12-27 | 2004-08-10 | Advanced Micro Devices, Inc. | Method and apparatus for identifying misregistration in a complimentary phase shift mask process |
US6913938B2 (en) * | 2001-06-19 | 2005-07-05 | Applied Materials, Inc. | Feedback control of plasma-enhanced chemical vapor deposition processes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4207250A (en) * | 1978-12-18 | 1980-06-10 | Mobil Oil Corporation | Conversion of synthesis gas with iron-containing fluid catalyst |
JP3186643B2 (en) * | 1997-05-08 | 2001-07-11 | 日本電気株式会社 | Wireless device comprising a charger and a charger and a portable wireless device |
DE19747574A1 (en) * | 1997-10-28 | 1999-05-06 | Siemens Ag | Procedure for determining feasible configurations of processing systems |
NL1015480C2 (en) * | 1999-06-22 | 2002-08-22 | Hyundai Electronics Ind | Semiconductor factory automation system and method for processing at least one semiconductor wafer cartridge. |
-
2002
- 2002-05-01 US US10/135,405 patent/US7337019B2/en not_active Expired - Lifetime
- 2002-07-12 KR KR1020047000645A patent/KR100916190B1/en not_active Expired - Lifetime
- 2002-07-12 CN CNB028142578A patent/CN100432879C/en not_active Expired - Fee Related
- 2002-07-12 DE DE60220063T patent/DE60220063T2/en not_active Expired - Fee Related
- 2002-07-12 EP EP02746974A patent/EP1412827B1/en not_active Expired - Lifetime
- 2002-07-12 AU AU2002316650A patent/AU2002316650A1/en not_active Abandoned
- 2002-07-12 JP JP2003514592A patent/JP4377224B2/en not_active Expired - Fee Related
- 2002-07-12 AT AT02746974T patent/ATE362127T1/en not_active IP Right Cessation
- 2002-07-12 WO PCT/US2002/021942 patent/WO2003009345A2/en active IP Right Grant
Patent Citations (437)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3205485A (en) | 1960-10-21 | 1965-09-07 | Ti Group Services Ltd | Screening vane electro-mechanical transducer |
US3229198A (en) | 1962-09-28 | 1966-01-11 | Hugo L Libby | Eddy current nondestructive testing device for measuring multiple parameter variables of a metal sample |
US3767900A (en) | 1971-06-23 | 1973-10-23 | Cons Paper Inc | Adaptive controller having optimal filtering |
US3920965A (en) | 1973-10-03 | 1975-11-18 | Siemens Ag | Method and apparatus for predictive control |
US4000458A (en) | 1975-08-21 | 1976-12-28 | Bell Telephone Laboratories, Incorporated | Method for the noncontacting measurement of the electrical conductivity of a lamella |
US4209744A (en) | 1976-04-29 | 1980-06-24 | Fedosenko Jury K | Eddy current device for automatically testing the quality of elongated electrically conductive objects by non-destructive techniques |
US4207520A (en) | 1978-04-06 | 1980-06-10 | The United States Of America As Represented By The Secretary Of The Air Force | Multiple frequency digital eddy current inspection system |
US4302721A (en) | 1978-05-08 | 1981-11-24 | Tencor Instruments | Non-contacting resistivity instrument with structurally related conductance and distance measuring transducers |
US4368510A (en) | 1980-10-20 | 1983-01-11 | Leeds & Northrup Company | Automatic identification system for self tuning process controller |
US4609870A (en) | 1981-03-27 | 1986-09-02 | Hocking Electronics Limited | Lift off compensation of eddy current crack detection system by controlling damping resistance of oscillator |
US4616308A (en) | 1983-11-15 | 1986-10-07 | Shell Oil Company | Dynamic process control |
US4698766A (en) | 1984-05-19 | 1987-10-06 | British Aerospace Plc | Industrial processing and manufacturing systems |
JPS6166104U (en) | 1984-10-03 | 1986-05-07 | ||
JPS61171147U (en) | 1985-04-13 | 1986-10-23 | ||
US4967381A (en) | 1985-04-30 | 1990-10-30 | Prometrix Corporation | Process control interface system for managing measurement data |
US4663703A (en) | 1985-10-02 | 1987-05-05 | Westinghouse Electric Corp. | Predictive model reference adaptive controller |
US4757259A (en) | 1985-11-06 | 1988-07-12 | Cegedur Societe De Transformation De L'aluminium Pechiney | Method for measuring the thickness and temperature of a moving metal sheet by means of eddy currents |
US4750141A (en) | 1985-11-26 | 1988-06-07 | Ade Corporation | Method and apparatus for separating fixture-induced error from measured object characteristics and for compensating the measured object characteristic with the error, and a bow/warp station implementing same |
US4755753A (en) | 1986-07-23 | 1988-07-05 | General Electric Company | Eddy current surface mapping system for flaw detection |
US5260868A (en) | 1986-08-11 | 1993-11-09 | Texas Instruments Incorporate | Method for calendaring future events in real-time |
US4796194A (en) | 1986-08-20 | 1989-01-03 | Atherton Robert W | Real world modeling and control process |
US4901218A (en) | 1987-08-12 | 1990-02-13 | Renishaw Controls Limited | Communications adaptor for automated factory system |
JPH01283934A (en) | 1988-05-11 | 1989-11-15 | Tokyo Electron Ltd | Etching apparatus |
US5832224A (en) | 1988-09-14 | 1998-11-03 | Digital Equipment Corporation | Entity management system |
US4938600A (en) | 1989-02-09 | 1990-07-03 | Interactive Video Systems, Inc. | Method and apparatus for measuring registration between layers of a semiconductor wafer |
US4957605A (en) | 1989-04-17 | 1990-09-18 | Materials Research Corporation | Method and apparatus for sputter coating stepped wafers |
EP0397924A1 (en) | 1989-05-17 | 1990-11-22 | Koninklijke Philips Electronics N.V. | Work station controller module |
JPH03202710A (en) | 1989-06-12 | 1991-09-04 | Tzn Forschungs & Entwicklungszentrum Unterluess Gmbh | Method and device for measuring layer thickness in non-contact state |
US5231585A (en) | 1989-06-22 | 1993-07-27 | Hitachi Ltd. | Computer-integrated manufacturing system and method |
US6185324B1 (en) | 1989-07-12 | 2001-02-06 | Hitachi, Ltd. | Semiconductor failure analysis system |
US6345288B1 (en) | 1989-08-31 | 2002-02-05 | Onename Corporation | Computer-based communication system and method using metadata defining a control-structure |
US5089970A (en) | 1989-10-05 | 1992-02-18 | Combustion Engineering, Inc. | Integrated manufacturing system |
US5108570A (en) | 1990-03-30 | 1992-04-28 | Applied Materials, Inc. | Multistep sputtering process for forming aluminum layer over stepped semiconductor wafer |
US5485082A (en) | 1990-04-11 | 1996-01-16 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Method of calibrating a thickness measuring device and device for measuring or monitoring the thickness of layers, tapes, foils, and the like |
US5236868A (en) | 1990-04-20 | 1993-08-17 | Applied Materials, Inc. | Formation of titanium nitride on semiconductor wafer by reaction of titanium with nitrogen-bearing gas in an integrated processing system |
US5208765A (en) | 1990-07-20 | 1993-05-04 | Advanced Micro Devices, Inc. | Computer-based method and system for product development |
JPH05151231A (en) | 1990-08-14 | 1993-06-18 | Toshiba Corp | Manufacturing process managing system |
US5694325A (en) | 1990-08-14 | 1997-12-02 | Kabushiki Kaisha Toshiba | Semiconductor production system |
US5495417A (en) | 1990-08-14 | 1996-02-27 | Kabushiki Kaisha Toshiba | System for automatically producing different semiconductor products in different quantities through a plurality of processes along a production line |
US5508947A (en) | 1990-08-31 | 1996-04-16 | Sci Systems, Inc. | Process gas distribution system and method with automatic transducer zero calibration |
US5497316A (en) | 1990-08-31 | 1996-03-05 | Sci Systems, Inc. | Process gas distribution system and method |
US5220517A (en) | 1990-08-31 | 1993-06-15 | Sci Systems, Inc. | Process gas distribution system and method with supervisory control |
CA2165847C (en) | 1990-08-31 | 1998-11-17 | Dennis A. Sierk | Process gas distribution system and method with automatic transducer zero calibration |
US5329463A (en) | 1990-08-31 | 1994-07-12 | Sci Systems, Inc. | Process gas distribution system and method with gas cabinet exhaust flow control |
CA2050247C (en) | 1990-08-31 | 1997-01-07 | Dennis A. Sierk | Process gas distribution system and method |
CA2194855A1 (en) | 1990-08-31 | 1992-03-01 | Dennis A. Sierk | Process gas distribution system and method |
US5657254A (en) | 1990-08-31 | 1997-08-12 | Sci Systems, Inc. | Process gas distribution system and method with automatic transducer zero calibration |
US5398336A (en) | 1990-10-16 | 1995-03-14 | Consilium, Inc. | Object-oriented architecture for factory floor management |
US5295242A (en) | 1990-11-02 | 1994-03-15 | Consilium, Inc. | Apparatus and method for viewing relationships in a factory management system |
US5719495A (en) | 1990-12-31 | 1998-02-17 | Texas Instruments Incorporated | Apparatus for semiconductor device fabrication diagnosis and prognosis |
US5270222A (en) | 1990-12-31 | 1993-12-14 | Texas Instruments Incorporated | Method and apparatus for semiconductor device fabrication diagnosis and prognosis |
US5226118A (en) | 1991-01-29 | 1993-07-06 | Prometrix Corporation | Data analysis system and method for industrial process control systems |
US5347446A (en) | 1991-02-08 | 1994-09-13 | Kabushiki Kaisha Toshiba | Model predictive control apparatus |
US5901313A (en) | 1991-03-01 | 1999-05-04 | Ast Research, Inc. | Application management system |
US5427878A (en) | 1991-06-26 | 1995-06-27 | Digital Equipment Corporation | Semiconductor wafer processing with across-wafer critical dimension monitoring using optical endpoint detection |
US5469361A (en) | 1991-08-08 | 1995-11-21 | The Board Of Regents Acting For And On Behalf Of The University Of Michigan | Generic cell controlling method and apparatus for computer integrated manufacturing system |
JPH05216896A (en) | 1991-11-14 | 1993-08-27 | Toshiba Corp | Manufacturing process management system |
US5240552A (en) | 1991-12-11 | 1993-08-31 | Micron Technology, Inc. | Chemical mechanical planarization (CMP) of a semiconductor wafer using acoustical waves for in-situ end point detection |
US5309221A (en) | 1991-12-31 | 1994-05-03 | Corning Incorporated | Measurement of fiber diameters with high precision |
US5410473A (en) | 1992-01-07 | 1995-04-25 | Fukuda Denshi Kabushiki Kaisha | Method and apparatus for recording electrocardiogram information |
US5525808A (en) | 1992-01-23 | 1996-06-11 | Nikon Corporaton | Alignment method and alignment apparatus with a statistic calculation using a plurality of weighted coordinate positions |
US5338630A (en) | 1992-03-05 | 1994-08-16 | National Semiconductor Corporation | Photolithography control system and method using latent image measurements |
US5283141A (en) | 1992-03-05 | 1994-02-01 | National Semiconductor | Photolithography control system and method using latent image measurements |
US5602492A (en) | 1992-03-13 | 1997-02-11 | The United States Of America As Represented By The Secretary Of Commerce | Electrical test structure and method for measuring the relative locations of conducting features on an insulating substrate |
US5857258A (en) | 1992-03-13 | 1999-01-12 | The United States Of America As Represented By The Secretary Of Commerce | Electrical test structure and method for measuring the relative locations of conductive features on an insulating substrate |
JPH05266029A (en) | 1992-03-16 | 1993-10-15 | Toshiba Corp | Process flow preparing device |
JPH06110894A (en) | 1992-09-29 | 1994-04-22 | Toshiba Corp | Data verification system |
JPH06176994A (en) | 1992-10-08 | 1994-06-24 | Toshiba Corp | Manufacturing-rule check system |
JPH06184434A (en) | 1992-12-16 | 1994-07-05 | Tonen Corp | Thermoplastic resin composition |
US5444837A (en) | 1993-01-12 | 1995-08-22 | Sextant Avionique | Method for structuring information used in an industrial process and its application to aircraft piloting assistance |
JPH06252236A (en) | 1993-02-24 | 1994-09-09 | Toshiba Corp | Apparatus for checking and simulation of process flow |
JPH06260380A (en) | 1993-03-04 | 1994-09-16 | Toshiba Corp | Semiconductor production system |
US5490097A (en) | 1993-03-22 | 1996-02-06 | Fujitsu Limited | System and method for modeling, analyzing and executing work process plans |
US5586039A (en) | 1993-03-29 | 1996-12-17 | Texas Instruments Incorporated | Computer-aided manufacturing support method and system for specifying relationships and dependencies between process type components |
JPH0823166B2 (en) | 1993-04-05 | 1996-03-06 | 西武ポリマ化成株式会社 | Construction method of culvert joint |
US5369544A (en) | 1993-04-05 | 1994-11-29 | Ford Motor Company | Silicon-on-insulator capacitive surface micromachined absolute pressure sensor |
EP0621522A2 (en) | 1993-04-20 | 1994-10-26 | Praxair Inc. | Facility and gas management system |
US5367624A (en) | 1993-06-11 | 1994-11-22 | Consilium, Inc. | Interface for controlling transactions in a manufacturing execution system |
US5402367A (en) | 1993-07-19 | 1995-03-28 | Texas Instruments, Incorporated | Apparatus and method for model based process control |
US5838595A (en) | 1993-07-19 | 1998-11-17 | Texas Instruments, Inc. | Apparatus and method for model based process control |
US5642296A (en) | 1993-07-29 | 1997-06-24 | Texas Instruments Incorporated | Method of diagnosing malfunctions in semiconductor manufacturing equipment |
US5627083A (en) | 1993-08-03 | 1997-05-06 | Nec Corporation | Method of fabricating semiconductor device including step of forming superposition error measuring patterns |
US20010001755A1 (en) | 1993-08-25 | 2001-05-24 | Sandhu Gurtej S. | System for real-time control of semiconductor wafer polishing |
US5546312A (en) | 1993-09-20 | 1996-08-13 | Texas Instruments Incorporated | Use of spatial models for simultaneous control of various non-uniformity metrics |
US5408405A (en) | 1993-09-20 | 1995-04-18 | Texas Instruments Incorporated | Multi-variable statistical process controller for discrete manufacturing |
US5503707A (en) | 1993-09-22 | 1996-04-02 | Texas Instruments Incorporated | Method and apparatus for process endpoint prediction based on actual thickness measurements |
US5553195A (en) | 1993-09-30 | 1996-09-03 | U.S. Philips Corporation | Dynamic neural net |
US5497381A (en) | 1993-10-15 | 1996-03-05 | Analog Devices, Inc. | Bitstream defect analysis method for integrated circuits |
US5571366A (en) * | 1993-10-20 | 1996-11-05 | Tokyo Electron Limited | Plasma processing apparatus |
US5375064A (en) | 1993-12-02 | 1994-12-20 | Hughes Aircraft Company | Method and apparatus for moving a material removal tool with low tool accelerations |
US5859975A (en) | 1993-12-15 | 1999-01-12 | Hewlett-Packard, Co. | Parallel processing computer system having shared coherent memory and interconnections utilizing separate undirectional request and response lines for direct communication or using crossbar switching device |
US5526293A (en) | 1993-12-17 | 1996-06-11 | Texas Instruments Inc. | System and method for controlling semiconductor wafer processing |
US5661669A (en) | 1993-12-17 | 1997-08-26 | Texas Instruments Incorporated | Method for controlling semiconductor wafer processing |
US5420796A (en) | 1993-12-23 | 1995-05-30 | Vlsi Technology, Inc. | Method of inspecting planarity of wafer surface after etchback step in integrated circuit fabrication |
US6438438B1 (en) | 1993-12-28 | 2002-08-20 | Hitachi, Ltd. | Method and system for manufacturing semiconductor devices, and method and system for inspecting semiconductor devices |
US5754297A (en) | 1994-01-28 | 1998-05-19 | Applied Materials, Inc. | Method and apparatus for monitoring the deposition rate of films during physical vapor deposition |
US5664987A (en) | 1994-01-31 | 1997-09-09 | National Semiconductor Corporation | Methods and apparatus for control of polishing pad conditioning for wafer planarization |
US5511005A (en) | 1994-02-16 | 1996-04-23 | Ade Corporation | Wafer handling and processing system |
US5666297A (en) | 1994-05-13 | 1997-09-09 | Aspen Technology, Inc. | Plant simulation and optimization software apparatus and method using dual execution models |
WO1995034866A1 (en) | 1994-06-14 | 1995-12-21 | Telefonaktiebolaget Lm Ericsson | A method and system for manipulating intelligent representations of real equipment within a graphical computer system |
US5629216A (en) | 1994-06-30 | 1997-05-13 | Seh America, Inc. | Method for producing semiconductor wafers with low light scattering anomalies |
JPH0850161A (en) | 1994-08-05 | 1996-02-20 | Matsushita Electron Corp | Measuring method of semiconductor device |
US5787269A (en) | 1994-09-20 | 1998-07-28 | Ricoh Company, Ltd. | Process simulation apparatus and method for selecting an optimum simulation model for a semiconductor manufacturing process |
US5698989A (en) | 1994-10-06 | 1997-12-16 | Applied Materilas, Inc. | Film sheet resistance measurement |
US5519605A (en) | 1994-10-24 | 1996-05-21 | Olin Corporation | Model predictive control apparatus and method |
JPH08149583A (en) | 1994-11-21 | 1996-06-07 | Mitsubishi Electric Corp | Process controller and data monitor method |
US5883437A (en) | 1994-12-28 | 1999-03-16 | Hitachi, Ltd. | Method and apparatus for inspection and correction of wiring of electronic circuit and for manufacture thereof |
US5787021A (en) | 1994-12-28 | 1998-07-28 | Detusche Itt Industries Gmbh | Information system for production control |
US5534289A (en) | 1995-01-03 | 1996-07-09 | Competitive Technologies Inc. | Structural crack monitoring technique |
US5617023A (en) | 1995-02-02 | 1997-04-01 | Otis Elevator Company | Industrial contactless position sensor |
US5646870A (en) | 1995-02-13 | 1997-07-08 | Advanced Micro Devices, Inc. | Method for setting and adjusting process parameters to maintain acceptable critical dimensions across each die of mass-produced semiconductor wafers |
US5831851A (en) | 1995-03-21 | 1998-11-03 | Seagate Technology, Inc. | Apparatus and method for controlling high throughput sputtering |
US5761065A (en) | 1995-03-30 | 1998-06-02 | Advanced Micro Devices, Inc. | Arrangement and method for detecting sequential processing effects in manufacturing |
US5541510A (en) | 1995-04-06 | 1996-07-30 | Kaman Instrumentation Corporation | Multi-Parameter eddy current measuring system with parameter compensation technical field |
US6072313A (en) | 1995-04-10 | 2000-06-06 | International Business Machines Corporation | In-situ monitoring and control of conductive films by detecting changes in induced eddy currents |
JPH08304023A (en) | 1995-04-28 | 1996-11-22 | Dainippon Screen Mfg Co Ltd | Measuring-point mapping device and measuring apparatus for semiconductor wafer utilizing the device |
US5665214A (en) | 1995-05-03 | 1997-09-09 | Sony Corporation | Automatic film deposition control method and system |
EP0747795A2 (en) | 1995-06-07 | 1996-12-11 | Xerox Corporation | A system for generically describing and scheduling operation of a modular printing machine |
US5764543A (en) | 1995-06-16 | 1998-06-09 | I2 Technologies, Inc. | Extensible model network representation system for process planning |
US5649169A (en) | 1995-06-20 | 1997-07-15 | Advanced Micro Devices, Inc. | Method and system for declustering semiconductor defect data |
US5665199A (en) | 1995-06-23 | 1997-09-09 | Advanced Micro Devices, Inc. | Methodology for developing product-specific interlayer dielectric polish processes |
US5599423A (en) | 1995-06-30 | 1997-02-04 | Applied Materials, Inc. | Apparatus and method for simulating and optimizing a chemical mechanical polishing system |
US5740429A (en) | 1995-07-07 | 1998-04-14 | Advanced Micro Devices, Inc. | E10 reporting tool |
JPH0934535A (en) | 1995-07-13 | 1997-02-07 | Mitsubishi Electric Corp | Maintenance notification system |
US5828778A (en) | 1995-07-13 | 1998-10-27 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for analyzing failure of semiconductor wafer |
US5825913A (en) | 1995-07-18 | 1998-10-20 | Cognex Corporation | System for finding the orientation of a wafer |
US6036349A (en) | 1995-07-27 | 2000-03-14 | Health Designs, Inc. | Method and apparatus for validation of model-based predictions |
US5930138A (en) | 1995-08-22 | 1999-07-27 | Advanced Micro Devices, Inc. | Arrangement and method for detecting sequential processing effects in manufacturing using predetermined sequences within runs |
US5863807A (en) | 1995-09-20 | 1999-01-26 | Samsung Electronics Co., Ltd. | Manufacturing method of a semiconductor integrated circuit |
US5963881A (en) | 1995-09-22 | 1999-10-05 | Texas Instruments Incorporated | Method and system for enhancing the identification of causes of variations in the performance of manufactured articles |
US5751582A (en) | 1995-09-25 | 1998-05-12 | Texas Instruments Incorporated | Controlling process modules using site models and monitor wafer control |
US6249712B1 (en) | 1995-09-26 | 2001-06-19 | William J. N-O. Boiquaye | Adaptive control process and system |
US5655951A (en) | 1995-09-29 | 1997-08-12 | Micron Technology, Inc. | Method for selectively reconditioning a polishing pad used in chemical-mechanical planarization of semiconductor wafers |
US5777901A (en) | 1995-09-29 | 1998-07-07 | Advanced Micro Devices, Inc. | Method and system for automated die yield prediction in semiconductor manufacturing |
US5761064A (en) | 1995-10-06 | 1998-06-02 | Advanced Micro Devices, Inc. | Defect management system for productivity and yield improvement |
US5654903A (en) | 1995-11-07 | 1997-08-05 | Lucent Technologies Inc. | Method and apparatus for real time monitoring of wafer attributes in a plasma etch process |
US5603707A (en) | 1995-11-28 | 1997-02-18 | The Procter & Gamble Company | Absorbent article having a rewet barrier |
US5867389A (en) | 1995-11-29 | 1999-02-02 | Dainippon Screen Mfg. Co., Ltd. | Substrate processing management system with recipe copying functions |
US5719796A (en) | 1995-12-04 | 1998-02-17 | Advanced Micro Devices, Inc. | System for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback |
US5923553A (en) | 1995-12-21 | 1999-07-13 | Samsung Electronics Co., Ltd. | Method for controlling a semiconductor manufacturing process by failure analysis feedback |
US5674787A (en) | 1996-01-16 | 1997-10-07 | Sematech, Inc. | Selective electroless copper deposited interconnect plugs for ULSI applications |
US5824599A (en) | 1996-01-16 | 1998-10-20 | Cornell Research Foundation, Inc. | Protected encapsulation of catalytic layer for electroless copper interconnect |
US5903455A (en) | 1996-02-06 | 1999-05-11 | Fisher-Rosemount Systems, Inc. | Interface controls for use in a field device management system |
US5960214A (en) | 1996-02-06 | 1999-09-28 | Fisher-Rosemount Systems, Inc. | Integrated communication network for use in a field device management system |
US5838951A (en) | 1996-02-29 | 1998-11-17 | Anam Industrial Co., Ltd | Wafer map conversion method |
US6159644A (en) | 1996-03-06 | 2000-12-12 | Hitachi, Ltd. | Method of fabricating semiconductor circuit devices utilizing multiple exposures |
JPH09246547A (en) | 1996-03-11 | 1997-09-19 | Fujitsu Ltd | Semiconductor device and manufacturing method thereof |
US5825356A (en) | 1996-03-18 | 1998-10-20 | Wall Data Incorporated | Help system with semitransparent window for disabling controls |
EP0910123A1 (en) | 1996-03-19 | 1999-04-21 | Hitachi, Ltd. | Process control system |
US6360184B1 (en) | 1996-03-28 | 2002-03-19 | Bio-Analytics, Inc. D/B/A Biomedware, Inc. | Method for measuring a degree of association for dimensionally referenced data |
US6397114B1 (en) | 1996-03-28 | 2002-05-28 | Rosemount Inc. | Device in a process system for detecting events |
US5943550A (en) | 1996-03-29 | 1999-08-24 | Advanced Micro Devices, Inc. | Method of processing a semiconductor wafer for controlling drive current |
US6002989A (en) | 1996-04-02 | 1999-12-14 | Hitachi, Ltd. | System for quality control where inspection frequency of inspection apparatus is reset to minimize expected total loss based on derived frequency function and loss value |
US5871805A (en) | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
US5735055A (en) | 1996-04-23 | 1998-04-07 | Aluminum Company Of America | Method and apparatus for measuring the thickness of an article at a plurality of points |
US6278899B1 (en) | 1996-05-06 | 2001-08-21 | Pavilion Technologies, Inc. | Method for on-line optimization of a plant |
US5859777A (en) | 1996-05-14 | 1999-01-12 | Toshiba Kikai Kabushiki Kaisha | Casting control support system for die casting machines |
US6191864B1 (en) | 1996-05-16 | 2001-02-20 | Micron Technology, Inc. | Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers |
US5663797A (en) | 1996-05-16 | 1997-09-02 | Micron Technology, Inc. | Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers |
US5910846A (en) | 1996-05-16 | 1999-06-08 | Micron Technology, Inc. | Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers |
US6108092A (en) | 1996-05-16 | 2000-08-22 | Micron Technology, Inc. | Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers |
US5823854A (en) | 1996-05-28 | 1998-10-20 | Industrial Technology Research Institute | Chemical-mechanical polish (CMP) pad conditioner |
US5870306A (en) | 1996-06-13 | 1999-02-09 | Mitsubishi Denki Kabushiki Kaisha | Automatic programming method and device for multi-system machine tool |
US5960185A (en) | 1996-06-24 | 1999-09-28 | International Business Machines Corporation | Method and apparatus for wafer disposition based on systematic error modeling |
JPH1034522A (en) | 1996-07-17 | 1998-02-10 | Nikon Corp | Polishing device for cmp and cmp device system |
US5961369A (en) | 1996-07-18 | 1999-10-05 | Speedfam-Ipec Corp. | Methods for the in-process detection of workpieces with a monochromatic light source |
WO1998005066A3 (en) | 1996-07-26 | 1998-03-05 | Speedfam Corp | Methods and apparatus for the in-process detection and measurement of thin film layers |
US5812407A (en) | 1996-08-13 | 1998-09-22 | Sony Corporation | Apparatus for correcting and holding front surface of sheet |
US6246972B1 (en) | 1996-08-23 | 2001-06-12 | Aspen Technology, Inc. | Analyzer for modeling and optimizing maintenance operations |
US5844554A (en) | 1996-09-17 | 1998-12-01 | Bt Squared Technologies, Inc. | Methods and systems for user interfaces and constraint handling configurations software |
US5667424A (en) | 1996-09-25 | 1997-09-16 | Chartered Semiconductor Manufacturing Pte Ltd. | New chemical mechanical planarization (CMP) end point detection apparatus |
US6041263A (en) | 1996-10-01 | 2000-03-21 | Aspen Technology, Inc. | Method and apparatus for simulating and optimizing a plant model |
US6112130A (en) | 1996-10-02 | 2000-08-29 | Kabushiki Kaisha Toshiba | Semiconductor product manufacturing execution system and semiconductor product manufacturing method |
US5943237A (en) | 1996-10-21 | 1999-08-24 | U.S. Philips Corporation | Method and system for assessing a measurement procedure and measurement-induced uncertainties on a batchwise manufacturing process of discrete products |
US6074443A (en) | 1996-10-21 | 2000-06-13 | Applied Materials, Inc. | Method and apparatus for scheduling wafer processing within a multiple chamber semiconductor wafer processing tool having a multiple blade robot |
US5859964A (en) * | 1996-10-25 | 1999-01-12 | Advanced Micro Devices, Inc. | System and method for performing real time data acquisition, process modeling and fault detection of wafer fabrication processes |
US6064759A (en) | 1996-11-08 | 2000-05-16 | Buckley; B. Shawn | Computer aided inspection machine |
US5695810A (en) | 1996-11-20 | 1997-12-09 | Cornell Research Foundation, Inc. | Use of cobalt tungsten phosphide as a barrier material for copper metallization |
US6078845A (en) | 1996-11-25 | 2000-06-20 | Schlumberger Technologies, Inc. | Apparatus for carrying semiconductor devices |
US5889991A (en) | 1996-12-06 | 1999-03-30 | International Business Machines Corp. | Method and system for customizing a palette using any java class |
US5940300A (en) | 1996-12-12 | 1999-08-17 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for analyzing a fabrication line |
JPH10173029A (en) | 1996-12-13 | 1998-06-26 | Dainippon Screen Mfg Co Ltd | Method of determining measuring positions of wafer |
US6128016A (en) | 1996-12-20 | 2000-10-03 | Nec Corporation | Graphic user interface for managing a server system |
US6094688A (en) | 1997-01-08 | 2000-07-25 | Crossworlds Software, Inc. | Modular application collaboration including filtering at the source and proxy execution of compensating transactions to conserve server resources |
US5982920A (en) | 1997-01-08 | 1999-11-09 | Lockheed Martin Energy Research Corp. Oak Ridge National Laboratory | Automated defect spatial signature analysis for semiconductor manufacturing process |
US5895596A (en) * | 1997-01-27 | 1999-04-20 | Semitool Thermal | Model based temperature controller for semiconductor thermal processors |
US5808303A (en) | 1997-01-29 | 1998-09-15 | Art Aerospace Research Technologies Inc. | Infrared screening and inspection system |
US5862054A (en) | 1997-02-20 | 1999-01-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Process monitoring system for real time statistical process control |
US5978751A (en) | 1997-02-25 | 1999-11-02 | International Business Machines Corporation | Variegated manufacturing process test method and apparatus |
US6183345B1 (en) | 1997-03-24 | 2001-02-06 | Canon Kabushiki Kaisha | Polishing apparatus and method |
EP0869652A3 (en) | 1997-04-01 | 2002-07-24 | Tumbleweed Software Corporation | Document delivery system |
WO1998045090A1 (en) | 1997-04-04 | 1998-10-15 | Obsidian, Inc. | Polishing media magazine for improved polishing |
US5912678A (en) | 1997-04-14 | 1999-06-15 | Texas Instruments Incorporated | Process flow design at the module effects level through the use of acceptability regions |
US6175777B1 (en) | 1997-04-17 | 2001-01-16 | Samsung Electronics Co., Ltd. | Method for transferring wafer cassettes after checking whether process equipment is in a suitable mode |
EP0877308A2 (en) | 1997-05-06 | 1998-11-11 | Tokyo Electron Limited | Control apparatus and control method |
US5910011A (en) | 1997-05-12 | 1999-06-08 | Applied Materials, Inc. | Method and apparatus for monitoring processes using multiple parameters of a semiconductor wafer processing system |
US6219711B1 (en) | 1997-05-13 | 2001-04-17 | Micron Electronics, Inc. | Synchronous communication interface |
US6314379B1 (en) | 1997-05-26 | 2001-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated defect yield management and query system |
EP0881040A2 (en) | 1997-05-28 | 1998-12-02 | LAM Research Corporation | Method and apparatus for in-situ monitoring of thickness using a multi-wavelength spectrometer during chemical-mechanical polishing |
US5926690A (en) | 1997-05-28 | 1999-07-20 | Advanced Micro Devices, Inc. | Run-to-run control process for controlling critical dimensions |
US6240330B1 (en) | 1997-05-28 | 2001-05-29 | International Business Machines Corporation | Method for feedforward corrections for off-specification conditions |
US20020089676A1 (en) | 1997-05-28 | 2002-07-11 | Jiri Pecen | Method and apparatus for in-situ monitoring of thickness during chemical -mechanical polishing |
US6111634A (en) | 1997-05-28 | 2000-08-29 | Lam Research Corporation | Method and apparatus for in-situ monitoring of thickness using a multi-wavelength spectrometer during chemical-mechanical polishing |
US6012048A (en) | 1997-05-30 | 2000-01-04 | Capital Security Systems, Inc. | Automated banking system for dispensing money orders, wire transfer and bill payment |
US6143646A (en) | 1997-06-03 | 2000-11-07 | Motorola Inc. | Dual in-laid integrated circuit structure with selectively positioned low-K dielectric isolation and method of formation |
US5975994A (en) | 1997-06-11 | 1999-11-02 | Micron Technology, Inc. | Method and apparatus for selectively conditioning a polished pad used in planarizng substrates |
US6148246A (en) | 1997-06-13 | 2000-11-14 | Canon Kabushiki Kaisha | Semiconductor process system, its control method, computer readable memory, and device manufacturing method |
US6148099A (en) | 1997-07-03 | 2000-11-14 | Neopath, Inc. | Method and apparatus for incremental concurrent learning in automatic semiconductor wafer and liquid crystal display defect classification |
US6059636A (en) | 1997-07-11 | 2000-05-09 | Tokyo Seimitsu Co., Ltd. | Wafer polishing apparatus |
EP0895145A1 (en) | 1997-08-01 | 1999-02-03 | Hewlett-Packard Company | Process control device |
US6345315B1 (en) | 1997-08-13 | 2002-02-05 | Sudhindra N. Mishra | Method for platform and protocol independent communication between client-server pairs |
WO1999009371A1 (en) | 1997-08-19 | 1999-02-25 | Micron Technology, Inc. | Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers |
US6037664A (en) | 1997-08-20 | 2000-03-14 | Sematech Inc | Dual damascene interconnect structure using low dielectric constant material for an inter-level dielectric layer |
US6077412A (en) | 1997-08-22 | 2000-06-20 | Cutek Research, Inc. | Rotating anode for a wafer processing chamber |
JPH1167853A (en) | 1997-08-26 | 1999-03-09 | Mitsubishi Electric Corp | Wafer map analysis auxiliary system and wafer map analysis method |
US6161054A (en) | 1997-09-22 | 2000-12-12 | On-Line Technologies, Inc. | Cell control method and apparatus |
US6236903B1 (en) | 1997-09-29 | 2001-05-22 | Samsung Electronics Co., Ltd. | Multiple reaction chamber system having wafer recognition system and method for processing wafer using same |
JPH11126816A (en) | 1997-10-23 | 1999-05-11 | Dainippon Screen Mfg Co Ltd | Method for correcting and deciding coordinates of objective point on wafer |
US5916016A (en) | 1997-10-23 | 1999-06-29 | Vlsi Technology, Inc. | Methods and apparatus for polishing wafers |
US6097887A (en) | 1997-10-27 | 2000-08-01 | Kla-Tencor Corporation | Software system and method for graphically building customized recipe flowcharts |
JPH11135601A (en) | 1997-10-29 | 1999-05-21 | Dainippon Screen Mfg Co Ltd | Method for creating measurement information and measurement position of wafer |
WO1999025520A1 (en) | 1997-11-18 | 1999-05-27 | Speedfam-Ipec Corporation | Method and apparatus for modeling a chemical mechanical polishing process |
US6041270A (en) | 1997-12-05 | 2000-03-21 | Advanced Micro Devices, Inc. | Automatic recipe adjust and download based on process control window |
US6148239A (en) | 1997-12-12 | 2000-11-14 | Advanced Micro Devices, Inc. | Process control system using feed forward control threads based on material groups |
US6113462A (en) | 1997-12-18 | 2000-09-05 | Advanced Micro Devices, Inc. | Feedback loop for selective conditioning of chemical mechanical polishing pad |
US6237050B1 (en) | 1997-12-26 | 2001-05-22 | Samsung Electronics Co., Ltd. | Method for controlling components of semiconductor fabricating equipment arranged in a processing line |
US6178390B1 (en) | 1997-12-26 | 2001-01-23 | Samsung Electronics Co., Ltd. | Method for controlling thicknesses of layers formed by deposition equipment for fabricating semiconductor devices |
US6363294B1 (en) | 1997-12-30 | 2002-03-26 | International Business Machines Corporation | Method and system for semiconductor wafer fabrication process real-time in-situ interactive supervision |
EP0932194A1 (en) | 1997-12-30 | 1999-07-28 | International Business Machines Corporation | Method and system for semiconductor wafer fabrication process real-time in-situ interactive supervision |
EP0932195A1 (en) | 1997-12-30 | 1999-07-28 | International Business Machines Corporation | Method and system for semiconductor wafer fabrication process real-time in-situ supervision |
US6150270A (en) | 1998-01-07 | 2000-11-21 | Kabushiki Kaisha Toshiba | Method for forming barrier layer for copper metallization |
US6226563B1 (en) | 1998-01-14 | 2001-05-01 | Samsung Electronics Co., Ltd. | Method for controlling unit process conditions of semiconductor fabricating equipment arranged in a processing line |
US6192291B1 (en) | 1998-01-14 | 2001-02-20 | Samsung Electronics Co., Ltd. | Method of controlling semiconductor fabricating equipment to process wafers of a single lot individually |
US6114238A (en) | 1998-01-26 | 2000-09-05 | United Silicon Incorporated | Self-aligned metal nitride for copper passivation |
US6240331B1 (en) | 1998-02-03 | 2001-05-29 | Samsung Electronics Co., Ltd. | Integrated management of semiconductor process data |
US6222936B1 (en) | 1998-02-03 | 2001-04-24 | Advanced Micro Devices, Inc. | Apparatus and method for reducing defects in a semiconductor lithographic process |
US6271670B1 (en) | 1998-02-09 | 2001-08-07 | Sandia Corporation | Method and apparatus for detecting external cracks from within a metal tube |
US6054379A (en) | 1998-02-11 | 2000-04-25 | Applied Materials, Inc. | Method of depositing a low k dielectric with organo silane |
US6455937B1 (en) | 1998-03-20 | 2002-09-24 | James A. Cunningham | Arrangement and method for improved downward scaling of higher conductivity metal-based interconnects |
US6017771A (en) | 1998-04-27 | 2000-01-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and system for yield loss analysis by yield management system |
US6228280B1 (en) | 1998-05-06 | 2001-05-08 | International Business Machines Corporation | Endpoint detection by chemical reaction and reagent |
US6157864A (en) | 1998-05-08 | 2000-12-05 | Rockwell Technologies, Llc | System, method and article of manufacture for displaying an animated, realtime updated control sequence chart |
US6211495B1 (en) * | 1998-05-11 | 2001-04-03 | Semitool, Inc. | Temperature control system for a thermal reactor |
WO1999059200A1 (en) | 1998-05-11 | 1999-11-18 | Applied Materials, Inc. | Fab yield enhancement system |
US6441350B1 (en) * | 1998-05-11 | 2002-08-27 | Brooks Automation Inc. | Temperature control system for a thermal reactor |
US6222164B1 (en) * | 1998-05-11 | 2001-04-24 | Semitool, Inc. | Temperature control system for a thermal reactor |
US6207937B1 (en) * | 1998-05-11 | 2001-03-27 | Semitool, Inc. | Temperature control system for a thermal reactor |
US6263255B1 (en) | 1998-05-18 | 2001-07-17 | Advanced Micro Devices, Inc. | Advanced process control for semiconductor manufacturing |
US6381564B1 (en) | 1998-05-28 | 2002-04-30 | Texas Instruments Incorporated | Method and system for using response-surface methodologies to determine optimal tuning parameters for complex simulators |
US6292708B1 (en) | 1998-06-11 | 2001-09-18 | Speedfam-Ipec Corporation | Distributed control system for a semiconductor wafer processing machine |
WO2000000874A1 (en) | 1998-06-26 | 2000-01-06 | Advanced Micro Devices, Inc. | System and method for controlling the manufacture of discrete parts in semiconductor fabrication using model predictive control |
US6230069B1 (en) * | 1998-06-26 | 2001-05-08 | Advanced Micro Devices, Inc. | System and method for controlling the manufacture of discrete parts in semiconductor fabrication using model predictive control |
US6440295B1 (en) | 1998-07-09 | 2002-08-27 | Acm Research, Inc. | Method for electropolishing metal on semiconductor devices |
US6395152B1 (en) | 1998-07-09 | 2002-05-28 | Acm Research, Inc. | Methods and apparatus for electropolishing metal interconnections on semiconductor devices |
US6127263A (en) | 1998-07-10 | 2000-10-03 | Applied Materials, Inc. | Misalignment tolerant techniques for dual damascene fabrication |
US6141660A (en) | 1998-07-16 | 2000-10-31 | International Business Machines Corporation | Command line interface for creating business objects for accessing a hierarchical database |
WO2000005759A1 (en) | 1998-07-20 | 2000-02-03 | Isemicon, Inc | Method for measuring number of yield loss chips and number of poor chips by type due to defect of semiconductor chips |
US6169931B1 (en) | 1998-07-29 | 2001-01-02 | Southwest Research Institute | Method and system for modeling, predicting and optimizing chemical mechanical polishing pad wear and extending pad life |
US6211094B1 (en) | 1998-09-15 | 2001-04-03 | Samsung Electronics Co., Ltd. | Thickness control method in fabrication of thin-film layers in semiconductor devices |
US6197604B1 (en) | 1998-10-01 | 2001-03-06 | Advanced Micro Devices, Inc. | Method for providing cooperative run-to-run control for multi-product and multi-process semiconductor fabrication |
US6366934B1 (en) | 1998-10-08 | 2002-04-02 | International Business Machines Corporation | Method and apparatus for querying structured documents using a database extender |
US6277014B1 (en) | 1998-10-09 | 2001-08-21 | Applied Materials, Inc. | Carrier head with a flexible membrane for chemical mechanical polishing |
US6226792B1 (en) | 1998-10-14 | 2001-05-01 | Unisys Corporation | Object management system supporting the use of application domain knowledge mapped to technology domain knowledge |
GB2347885A (en) | 1998-10-15 | 2000-09-20 | Nec Corp | Control of pad dresser in chemical-mechanical polishing appararus |
US6324481B1 (en) | 1998-10-21 | 2001-11-27 | Texas Instruments Incorporated | Method for the calculation of wafer probe yield limits from in-line defect monitor data |
US6210983B1 (en) | 1998-10-21 | 2001-04-03 | Texas Instruments Incorporated | Method for analyzing probe yield sensitivities to IC design |
TW434103B (en) | 1998-10-23 | 2001-05-16 | Taiwan Semiconductor Mfg | Chemical mechanical polishing device with terminal point detection functions |
US6280289B1 (en) | 1998-11-02 | 2001-08-28 | Applied Materials, Inc. | Method and apparatus for detecting an end-point in chemical mechanical polishing of metal layers |
US6652355B2 (en) | 1998-11-02 | 2003-11-25 | Applied Materials, Inc. | Method and apparatus for detecting an end-point in chemical mechanical polishing of metal layers |
US6173240B1 (en) | 1998-11-02 | 2001-01-09 | Ise Integrated Systems Engineering Ag | Multidimensional uncertainty analysis |
US20010042690A1 (en) | 1998-11-03 | 2001-11-22 | Nutool, Inc. | Method and apparatus for electroplating and electropolishing |
US6298274B1 (en) | 1998-11-19 | 2001-10-02 | Oki Electric Industry Co., Ltd. | Conveyance system in a semiconductor manufacturing process and method for processing semiconductor wafer therein |
US6214734B1 (en) | 1998-11-20 | 2001-04-10 | Vlsi Technology, Inc. | Method of using films having optimized optical properties for chemical mechanical polishing endpoint detection |
US6580958B1 (en) | 1998-11-25 | 2003-06-17 | Canon Kabushiki Kaisha | Semiconductor manufacturing apparatus and device manufacturing method |
WO2000035063A1 (en) | 1998-12-07 | 2000-06-15 | Abb Power T & D Company Inc. | Architecture layer interfacing devices and applications |
TW455938B (en) | 1998-12-10 | 2001-09-21 | Nippon Kogaku Kk | Wafer polishing stop detection method and polishing stop detection device |
JP2000183001A (en) | 1998-12-10 | 2000-06-30 | Okamoto Machine Tool Works Ltd | Polish end-point detecting method for wafer and chemical-mechanical polishing device used for the same |
US6172756B1 (en) | 1998-12-11 | 2001-01-09 | Filmetrics, Inc. | Rapid and accurate end point detection in a noisy environment |
US6479990B2 (en) | 1998-12-18 | 2002-11-12 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Eddy current sensor for analyzing a test object and method of operating same |
US6339727B1 (en) | 1998-12-21 | 2002-01-15 | Recot, Inc. | Apparatus and method for controlling distribution of product in manufacturing process |
US6100195A (en) | 1998-12-28 | 2000-08-08 | Chartered Semiconductor Manu. Ltd. | Passivation of copper interconnect surfaces with a passivating metal layer |
US6252412B1 (en) | 1999-01-08 | 2001-06-26 | Schlumberger Technologies, Inc. | Method of detecting defects in patterned substrates |
US6212961B1 (en) | 1999-02-11 | 2001-04-10 | Nova Measuring Instruments Ltd. | Buffer system for a wafer handling system |
US6136163A (en) | 1999-03-05 | 2000-10-24 | Applied Materials, Inc. | Apparatus for electro-chemical deposition with thermal anneal chamber |
WO2000054325A1 (en) | 1999-03-10 | 2000-09-14 | Nova Measuring Instruments Ltd. | Method and apparatus for monitoring a chemical mechanical planarization process applied to metal-based patterned objects |
US6320655B1 (en) | 1999-03-16 | 2001-11-20 | Kabushiki Kaisha Toshiba | Defect-position identifying method for semiconductor substrate |
US6389491B1 (en) | 1999-03-23 | 2002-05-14 | Agilent Technologies, Inc. | Test instrumentation I/O communication interface and method |
US6253366B1 (en) | 1999-03-31 | 2001-06-26 | Unisys Corp. | Method and system for generating a compact document type definition for data interchange among software tools |
US6317643B1 (en) | 1999-03-31 | 2001-11-13 | Agere Systems Guardian Corp. | Manufacturing and engineering data base |
US20020032499A1 (en) | 1999-04-13 | 2002-03-14 | Wilson Gregory J. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
US6298470B1 (en) | 1999-04-15 | 2001-10-02 | Micron Technology, Inc. | Method for efficient manufacturing of integrated circuits |
US6281127B1 (en) | 1999-04-15 | 2001-08-28 | Taiwan Semiconductor Manufacturing Company | Self-passivation procedure for a copper damascene structure |
US6455415B1 (en) | 1999-04-21 | 2002-09-24 | Advanced Micro Devices, Inc. | Method of encapsulated copper (Cu) interconnect formation |
US6259160B1 (en) | 1999-04-21 | 2001-07-10 | Advanced Micro Devices, Inc. | Apparatus and method of encapsulated copper (Cu) Interconnect formation |
US6268270B1 (en) * | 1999-04-30 | 2001-07-31 | Advanced Micro Devices, Inc. | Lot-to-lot rapid thermal processing (RTP) chamber preheat optimization |
US6334807B1 (en) | 1999-04-30 | 2002-01-01 | International Business Machines Corporation | Chemical mechanical polishing in-situ end point system |
US20010040997A1 (en) | 1999-05-28 | 2001-11-15 | Tsap Leonid V. | Computer vision-based technique for objective assessment of material properties in non-rigid objects |
US6303395B1 (en) | 1999-06-01 | 2001-10-16 | Applied Materials, Inc. | Semiconductor processing techniques |
US6529789B1 (en) | 1999-06-17 | 2003-03-04 | Advanced Micro Devices, Inc. | Method and apparatus for automatic routing for reentrant processes |
US6360133B1 (en) | 1999-06-17 | 2002-03-19 | Advanced Micro Devices, Inc. | Method and apparatus for automatic routing for reentrant process |
WO2000079355A1 (en) | 1999-06-22 | 2000-12-28 | Brooks Automation, Inc. | Run-to-run controller for use in microelectronic fabrication |
US6587744B1 (en) * | 1999-06-22 | 2003-07-01 | Brooks Automation, Inc. | Run-to-run controller for use in microelectronic fabrication |
US6204165B1 (en) | 1999-06-24 | 2001-03-20 | International Business Machines Corporation | Practical air dielectric interconnections by post-processing standard CMOS wafers |
US6181013B1 (en) | 1999-06-25 | 2001-01-30 | Taiwan Semiconductor Manufacturing Company | Method for selective growth of Cu3Ge or Cu5Si for passivation of damascene copper structures and device manufactured thereby |
JP2001076982A (en) | 1999-06-28 | 2001-03-23 | Hyundai Electronics Ind Co Ltd | System and method for automating semiconductor factory for controlling measurement equipment measuring semiconductor wafer |
US6486492B1 (en) | 1999-06-29 | 2002-11-26 | Applied Materials, Inc. | Integrated critical dimension control for semiconductor device manufacturing |
US6388253B1 (en) | 1999-06-29 | 2002-05-14 | Applied Materials, Inc. | Integrated critical dimension control for semiconductor device manufacturing |
EP1067757A1 (en) | 1999-07-09 | 2001-01-10 | Hewlett-Packard Company | Curled surface imaging system |
EP1066925A2 (en) | 1999-07-09 | 2001-01-10 | Applied Materials, Inc. | Closed loop control of wafer polishing in a chemical mechanical polishing system |
US20020113039A1 (en) | 1999-07-09 | 2002-08-22 | Mok Yeuk-Fai Edwin | Integrated semiconductor substrate bevel cleaning apparatus and method |
EP1071128A2 (en) | 1999-07-21 | 2001-01-24 | Applied Materials, Inc. | Real time defect source identification on a semiconductor substrate |
EP1072967A3 (en) | 1999-07-29 | 2001-11-21 | Applied Materials, Inc. | Computer integrated manufacturing techniques |
US6368883B1 (en) | 1999-08-10 | 2002-04-09 | Advanced Micro Devices, Inc. | Method for identifying and controlling impact of ambient conditions on photolithography processes |
WO2001011679A1 (en) | 1999-08-10 | 2001-02-15 | Advanced Micro Devices, Inc. | Method and apparatus for performing run-to-run control in a batch manufacturing environment |
US6405096B1 (en) | 1999-08-10 | 2002-06-11 | Advanced Micro Devices, Inc. | Method and apparatus for run-to-run controlling of overlay registration |
US6503839B2 (en) | 1999-08-11 | 2003-01-07 | Micron Technology, Inc. | Endpoint stabilization for polishing process |
US6217412B1 (en) | 1999-08-11 | 2001-04-17 | Advanced Micro Devices, Inc. | Method for characterizing polish pad lots to eliminate or reduce tool requalification after changing a polishing pad |
US6276989B1 (en) | 1999-08-11 | 2001-08-21 | Advanced Micro Devices, Inc. | Method and apparatus for controlling within-wafer uniformity in chemical mechanical polishing |
US6287879B1 (en) | 1999-08-11 | 2001-09-11 | Micron Technology, Inc. | Endpoint stabilization for polishing process |
US6495452B1 (en) | 1999-08-18 | 2002-12-17 | Taiwan Semiconductor Manufacturing Company | Method to reduce capacitance for copper interconnect structures |
US6391780B1 (en) | 1999-08-23 | 2002-05-21 | Taiwan Semiconductor Manufacturing Company | Method to prevent copper CMP dishing |
WO2001015865A1 (en) | 1999-08-31 | 2001-03-08 | Micron Technology, Inc. | Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization |
US20010006873A1 (en) | 1999-08-31 | 2001-07-05 | Moore Scott E. | Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization |
US6556881B1 (en) * | 1999-09-09 | 2003-04-29 | Advanced Micro Devices, Inc. | Method and apparatus for integrating near real-time fault detection in an APC framework |
WO2001018623A1 (en) | 1999-09-09 | 2001-03-15 | Advanced Micro Devices, Inc. | Real-time fault detection |
EP1083470A2 (en) | 1999-09-10 | 2001-03-14 | Applied Materials, Inc. | Multi-computer chamber control system, method and medium |
US6368879B1 (en) | 1999-09-22 | 2002-04-09 | Advanced Micro Devices, Inc. | Process control with control signal derived from metrology of a repetitive critical dimension feature of a test structure on the work piece |
US6560504B1 (en) | 1999-09-29 | 2003-05-06 | Advanced Micro Devices, Inc. | Use of contamination-free manufacturing data in fault detection and classification as well as in run-to-run control |
US6484064B1 (en) | 1999-10-05 | 2002-11-19 | Advanced Micro Devices, Inc. | Method and apparatus for running metrology standard wafer routes for cross-fab metrology calibration |
WO2001025865A1 (en) | 1999-10-05 | 2001-04-12 | Advanced Micro Devices, Inc. | Method and apparatus for monitoring controller performance using statistical process control |
US6427093B1 (en) | 1999-10-07 | 2002-07-30 | Advanced Micro Devices, Inc. | Method and apparatus for optimal wafer-by-wafer processing |
EP1092505A2 (en) | 1999-10-12 | 2001-04-18 | Applied Materials, Inc. | Method of controlling a polishing machine |
US6159075A (en) | 1999-10-13 | 2000-12-12 | Vlsi Technology, Inc. | Method and system for in-situ optimization for semiconductor wafers in a chemical mechanical polishing process |
US6417014B1 (en) | 1999-10-19 | 2002-07-09 | Advanced Micro Devices, Inc. | Method and apparatus for reducing wafer to wafer deposition variation |
US6604012B1 (en) | 1999-10-23 | 2003-08-05 | Samsung Electronics Co., Ltd. | Lots dispatching method for variably arranging processing equipment and/or processing conditions in a succeeding process according to the results of a preceding process and apparatus for the same |
US6096649A (en) | 1999-10-25 | 2000-08-01 | Taiwan Semiconductor Manufacturing Company | Top metal and passivation procedures for copper damascene structures |
US6284622B1 (en) | 1999-10-25 | 2001-09-04 | Advanced Micro Devices, Inc. | Method for filling trenches |
US6546508B1 (en) * | 1999-10-29 | 2003-04-08 | Advanced Micro Devices, Inc. | Method and apparatus for fault detection of a processing tool in an advanced process control (APC) framework |
US6532555B1 (en) * | 1999-10-29 | 2003-03-11 | Advanced Micro Devices, Inc. | Method and apparatus for integration of real-time tool data and in-line metrology for fault detection in an advanced process control (APC) framework |
WO2001033501A1 (en) | 1999-10-31 | 2001-05-10 | Insyst Ltd. | A knowledge-engineering protocol-suite |
WO2001033277A1 (en) | 1999-10-31 | 2001-05-10 | Insyst Ltd. | Strategic method for process control |
US6248602B1 (en) | 1999-11-01 | 2001-06-19 | Amd, Inc. | Method and apparatus for automated rework within run-to-run control semiconductor manufacturing |
US6355559B1 (en) | 1999-11-18 | 2002-03-12 | Texas Instruments Incorporated | Passivation of inlaid metallization |
US20010003084A1 (en) | 1999-12-06 | 2001-06-07 | Moshe Finarov | Method and system for endpoint detection |
US6340602B1 (en) | 1999-12-10 | 2002-01-22 | Sensys Instruments | Method of measuring meso-scale structures on wafers |
US6640151B1 (en) | 1999-12-22 | 2003-10-28 | Applied Materials, Inc. | Multi-tool control system, method and medium |
US6470230B1 (en) | 2000-01-04 | 2002-10-22 | Advanced Micro Devices, Inc. | Supervisory method for determining optimal process targets based on product performance in microelectronic fabrication |
US6449524B1 (en) * | 2000-01-04 | 2002-09-10 | Advanced Micro Devices, Inc. | Method and apparatus for using equipment state data for run-to-run control of manufacturing tools |
US6465263B1 (en) * | 2000-01-04 | 2002-10-15 | Advanced Micro Devices, Inc. | Method and apparatus for implementing corrected species by monitoring specific state parameters |
WO2001052319A1 (en) | 2000-01-07 | 2001-07-19 | Advanced Micro Devices, Inc. | Method and apparatus for determining measurement frequency based on hardware age and usage |
WO2001052055A3 (en) | 2000-01-10 | 2002-02-21 | Wind River Systems Inc | System and method for implementing a flexible data-driven target object model |
US6405144B1 (en) | 2000-01-18 | 2002-06-11 | Advanced Micro Devices, Inc. | Method and apparatus for programmed latency for improving wafer-to-wafer uniformity |
US6567717B2 (en) | 2000-01-19 | 2003-05-20 | Advanced Micro Devices, Inc. | Feed-forward control of TCI doping for improving mass-production-wise, statistical distribution of critical performance parameters in semiconductor devices |
JP2001284299A (en) | 2000-01-25 | 2001-10-12 | Nikon Corp | Monitor device polishing device therewith and monitor method, and polishing method |
WO2001057823A2 (en) | 2000-02-01 | 2001-08-09 | Domain Logix Corporation | Apparatus and method for web-based tool management |
US20020107599A1 (en) | 2000-02-02 | 2002-08-08 | Patel Nital S. | Method and system for dispatching semiconductor lots to manufacturing equipment for fabrication |
US20010030366A1 (en) | 2000-03-08 | 2001-10-18 | Hiroshi Nakano | Semiconducting system and production method |
US6517414B1 (en) | 2000-03-10 | 2003-02-11 | Appied Materials, Inc. | Method and apparatus for controlling a pad conditioning process of a chemical-mechanical polishing apparatus |
TW436383B (en) | 2000-03-16 | 2001-05-28 | Taiwan Semiconductor Mfg | The end-point detection method of CMP polishing using the principle of optical confocal feedback |
GB2365215A (en) | 2000-03-23 | 2002-02-13 | Ibm | Composite diffusion barrier for protecting copper interconnects in low dielectric constant materials from oxidation |
US6290572B1 (en) | 2000-03-23 | 2001-09-18 | Micron Technology, Inc. | Devices and methods for in-situ control of mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies |
US6563308B2 (en) | 2000-03-28 | 2003-05-13 | Kabushiki Kaisha Toshiba | Eddy current loss measuring sensor, thickness measuring system, thickness measuring method, and recorded medium |
US20010039462A1 (en) | 2000-04-03 | 2001-11-08 | Rafael Mendez | System and method for predicting software models using material-centric process instrumentation |
US6616513B1 (en) | 2000-04-07 | 2003-09-09 | Applied Materials, Inc. | Grid relief in CMP polishing pad to accurately measure pad wear, pad profile and pad wear profile |
WO2001080306A3 (en) | 2000-04-13 | 2002-07-18 | Advanced Micro Devices Inc | Automated process monitoring and analysis system for semiconductor processing |
US6368884B1 (en) | 2000-04-13 | 2002-04-09 | Advanced Micro Devices, Inc. | Die-based in-fab process monitoring and analysis system for semiconductor processing |
US6245581B1 (en) | 2000-04-19 | 2001-06-12 | Advanced Micro Devices, Inc. | Method and apparatus for control of critical dimension using feedback etch control |
JP2001305108A (en) | 2000-04-21 | 2001-10-31 | Daido Steel Co Ltd | Eddy current flaw detector |
US20010044667A1 (en) | 2000-05-16 | 2001-11-22 | Nec Corporation | System of manufacturing semiconductor intergrated circuit |
US6291367B1 (en) | 2000-06-01 | 2001-09-18 | Atmel Corporation | Method for depositing a selected thickness of an interlevel dielectric material to achieve optimum global planarity on a semiconductor wafer |
JP2002009030A (en) | 2000-06-16 | 2002-01-11 | Nec Corp | Method and device for detecting polishing end point of semiconductor wafer |
US6479902B1 (en) | 2000-06-29 | 2002-11-12 | Advanced Micro Devices, Inc. | Semiconductor catalytic layer and atomic layer deposition thereof |
US20020081951A1 (en) | 2000-06-30 | 2002-06-27 | Lam Research Corporation | Apparatus and method for qualifying a chemical mechanical planarization process |
US6435952B1 (en) | 2000-06-30 | 2002-08-20 | Lam Research Corporation | Apparatus and method for qualifying a chemical mechanical planarization process |
US20030020928A1 (en) | 2000-07-08 | 2003-01-30 | Ritzdorf Thomas L. | Methods and apparatus for processing microelectronic workpieces using metrology |
US20020077031A1 (en) | 2000-07-10 | 2002-06-20 | Nils Johansson | Combined eddy current sensing and optical monitoring for chemical mechanical polishing |
US6609946B1 (en) | 2000-07-14 | 2003-08-26 | Advanced Micro Devices, Inc. | Method and system for polishing a semiconductor wafer |
US6400162B1 (en) | 2000-07-21 | 2002-06-04 | Ade Corporation | Capacitive displacement sensor for measuring thin targets |
US6379980B1 (en) | 2000-07-26 | 2002-04-30 | Advanced Micro Devices, Inc. | Method and apparatus for monitoring material removal tool performance using endpoint time removal rate determination |
US6725402B1 (en) * | 2000-07-31 | 2004-04-20 | Advanced Micro Devices, Inc. | Method and apparatus for fault detection of a processing tool and control thereof using an advanced process control (APC) framework |
US6541401B1 (en) | 2000-07-31 | 2003-04-01 | Applied Materials, Inc. | Wafer pretreatment to decrease rate of silicon dioxide deposition on silicon nitride compared to silicon substrate |
US6442496B1 (en) | 2000-08-08 | 2002-08-27 | Advanced Micro Devices, Inc. | Method and apparatus for dynamic sampling of a production line |
TW455976B (en) | 2000-08-11 | 2001-09-21 | Taiwan Semiconductor Mfg | Endpoint detection method of chemical mechanical polishing process |
US6708074B1 (en) | 2000-08-11 | 2004-03-16 | Applied Materials, Inc. | Generic interface builder |
EP1182526A2 (en) | 2000-08-15 | 2002-02-27 | Applied Materials, Inc. | Run-to-run control over semiconductor processing tool based upon mirror image |
US6307628B1 (en) | 2000-08-18 | 2001-10-23 | Taiwan Semiconductor Manufacturing Company, Ltd | Method and apparatus for CMP end point detection using confocal optics |
WO2002017150A1 (en) | 2000-08-23 | 2002-02-28 | Pri Automation, Inc. | Web based tool control in a semiconductor fabrication facility |
US20020149359A1 (en) | 2000-08-24 | 2002-10-17 | Crouzen Paulus Carolus Nicolaas | Method for measuring the wall thickness of an electrically conductive object |
US6537912B1 (en) | 2000-08-25 | 2003-03-25 | Micron Technology Inc. | Method of forming an encapsulated conductive pillar |
US20020070126A1 (en) | 2000-09-19 | 2002-06-13 | Shuzo Sato | Polishing method, polishing apparatus, plating method, and plating apparatus |
US20020058460A1 (en) | 2000-09-20 | 2002-05-16 | Lee Jae-Dong | Method of controlling wafer polishing time using sample-skip algorithm and wafer polishing using the same |
US6618692B2 (en) | 2000-09-20 | 2003-09-09 | Hitachi, Ltd. | Remote diagnostic system and method for semiconductor manufacturing equipment |
US6590179B2 (en) | 2000-09-22 | 2003-07-08 | Hitachi, Ltd. | Plasma processing apparatus and method |
US6492281B1 (en) | 2000-09-22 | 2002-12-10 | Advanced Micro Devices, Inc. | Method of fabricating conductor structures with metal comb bridging avoidance |
WO2002031613A2 (en) | 2000-10-13 | 2002-04-18 | Insyst Ltd. | System and method for monitoring process quality control |
WO2002031613A3 (en) | 2000-10-13 | 2002-10-17 | Insyst Ltd | System and method for monitoring process quality control |
US6432728B1 (en) | 2000-10-16 | 2002-08-13 | Promos Technologies, Inc. | Method for integration optimization by chemical mechanical planarization end-pointing technique |
WO2002033737A2 (en) | 2000-10-17 | 2002-04-25 | Speedfam-Ipec Corporation | Multiprobe detection system for chemical-mechanical planarization tool |
US20020127950A1 (en) | 2000-10-18 | 2002-09-12 | Takenori Hirose | Method of detecting and measuring endpoint of polishing processing and its apparatus and method of manufacturing semiconductor device using the same |
US6304999B1 (en) | 2000-10-23 | 2001-10-16 | Advanced Micro Devices, Inc. | Method and apparatus for embedded process control framework in tool systems |
US6517413B1 (en) | 2000-10-25 | 2003-02-11 | Taiwan Semiconductor Manufacturing Company | Method for a copper CMP endpoint detection system |
US6346426B1 (en) | 2000-11-17 | 2002-02-12 | Advanced Micro Devices, Inc. | Method and apparatus for characterizing semiconductor device performance variations based on independent critical dimension measurements |
US6625497B2 (en) | 2000-11-20 | 2003-09-23 | Applied Materials Inc. | Semiconductor processing module with integrated feedback/feed forward metrology |
US20020107604A1 (en) | 2000-12-06 | 2002-08-08 | Riley Terrence J. | Run-to-run control method for proportional-integral-derivative (PID) controller tuning for rapid thermal processing (RTP) |
US20020102853A1 (en) | 2000-12-22 | 2002-08-01 | Applied Materials, Inc. | Articles for polishing semiconductor substrates |
US20020128805A1 (en) | 2000-12-26 | 2002-09-12 | Insyst Intelligent Systems Ltd. | Model predictive control (MPC) system using DOE based model |
US6728587B2 (en) | 2000-12-27 | 2004-04-27 | Insyst Ltd. | Method for global automated process control |
US6535783B1 (en) * | 2001-03-05 | 2003-03-18 | Advanced Micro Devices, Inc. | Method and apparatus for the integration of sensor data from a process tool in an advanced process control (APC) framework |
US6482660B2 (en) | 2001-03-19 | 2002-11-19 | International Business Machines Corporation | Effective channel length control using ion implant feed forward |
WO2002074491A1 (en) | 2001-03-19 | 2002-09-26 | Lam Research Corporation | In situ detection of a thin metal-interface using optical interference during a cmp process |
US6336841B1 (en) | 2001-03-29 | 2002-01-08 | Macronix International Co. Ltd. | Method of CMP endpoint detection |
US20030020909A1 (en) | 2001-04-09 | 2003-01-30 | Speedfam-Ipec Corporation | Method and apparatus for optical endpoint calibration in CMP |
US6540591B1 (en) | 2001-04-18 | 2003-04-01 | Alexander J. Pasadyn | Method and apparatus for post-polish thickness and uniformity control |
US20020165636A1 (en) | 2001-05-04 | 2002-11-07 | Hasan Talat Fatima | Systems and methods for metrology recipe and model generation |
JP2002343754A (en) | 2001-05-15 | 2002-11-29 | Nikon Corp | Polishing apparatus and method and semiconductor device manufacturing method using the same |
US20020183986A1 (en) | 2001-05-30 | 2002-12-05 | Stewart Paul Joseph | System and method for design of experiments using direct surface manipulation of a mesh model |
US20020185658A1 (en) | 2001-06-01 | 2002-12-12 | Hiroaki Inoue | Electroless plating liquid and semiconductor device |
US20030017256A1 (en) | 2001-06-14 | 2003-01-23 | Takashi Shimane | Applying apparatus and method of controlling film thickness for enabling uniform thickness |
US20020193902A1 (en) | 2001-06-19 | 2002-12-19 | Applied Materials, Inc. | Integrating tool, module, and fab level control |
US20020193899A1 (en) | 2001-06-19 | 2002-12-19 | Applied Materials, Inc. | Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing |
US20020199082A1 (en) | 2001-06-19 | 2002-12-26 | Applied Materials, Inc. | Method, system and medium for process control for the matching of tools, chambers and/or other semiconductor-related entities |
US20020197745A1 (en) | 2001-06-19 | 2002-12-26 | Shanmugasundram Arulkumar P. | Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles |
US20020197934A1 (en) | 2001-06-19 | 2002-12-26 | Paik Young Joseph | Control of chemical mechanical polishing pad conditioner directional velocity to improve pad life |
US6913938B2 (en) * | 2001-06-19 | 2005-07-05 | Applied Materials, Inc. | Feedback control of plasma-enhanced chemical vapor deposition processes |
US6678570B1 (en) | 2001-06-26 | 2004-01-13 | Advanced Micro Devices, Inc. | Method and apparatus for determining output characteristics using tool state data |
US6607976B2 (en) | 2001-09-25 | 2003-08-19 | Applied Materials, Inc. | Copper interconnect barrier layer structure and formation method |
US6605549B2 (en) | 2001-09-29 | 2003-08-12 | Intel Corporation | Method for improving nucleation and adhesion of CVD and ALD films deposited onto low-dielectric-constant dielectrics |
US20030154062A1 (en) | 2001-10-15 | 2003-08-14 | General Electric Company | System and method for statistical design of ultrasound probe and imaging system |
US6708075B2 (en) | 2001-11-16 | 2004-03-16 | Advanced Micro Devices | Method and apparatus for utilizing integrated metrology data as feed-forward data |
US6630741B1 (en) | 2001-12-07 | 2003-10-07 | Advanced Micro Devices, Inc. | Method of reducing electromigration by ordering zinc-doping in an electroplated copper-zinc interconnect and a semiconductor device thereby formed |
US6624075B1 (en) | 2001-12-07 | 2003-09-23 | Advanced Micro Devices, Inc. | Method of reducing electromigration in a copper line by Zinc-Doping of a copper surface from an electroplated copper-zinc alloy thin film and a semiconductor device thereby formed |
US6515368B1 (en) | 2001-12-07 | 2003-02-04 | Advanced Micro Devices, Inc. | Semiconductor device with copper-filled via includes a copper-zinc/alloy film for reduced electromigration of copper |
US6774998B1 (en) | 2001-12-27 | 2004-08-10 | Advanced Micro Devices, Inc. | Method and apparatus for identifying misregistration in a complimentary phase shift mask process |
US6660633B1 (en) | 2002-02-26 | 2003-12-09 | Advanced Micro Devices, Inc. | Method of reducing electromigration in a copper line by electroplating an interim copper-zinc alloy thin film on a copper surface and a semiconductor device thereby formed |
US6751518B1 (en) | 2002-04-29 | 2004-06-15 | Advanced Micro Devices, Inc. | Dynamic process state adjustment of a processing tool to reduce non-uniformity |
US6528409B1 (en) | 2002-04-29 | 2003-03-04 | Advanced Micro Devices, Inc. | Interconnect structure formed in porous dielectric material with minimized degradation and electromigration |
US6735492B2 (en) | 2002-07-19 | 2004-05-11 | International Business Machines Corporation | Feedback method utilizing lithographic exposure field dimensions to predict process tool overlay settings |
Non-Patent Citations (251)
Title |
---|
"A real-time equipment monitoring and fault detection system", Guo et al., Semiconductor Manufacturing Technology Workshop, Jun. 16-17, 1998, pp. 111-121. * |
"Equipment and APC integration at AMD with workstream", Lantz, IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings, Oct. 11-13, 1999, pp. 325-327. * |
"3D optical profilometer MicroXAM by ADE Phase Shift." http://www.phase-shift.com/microxam.shtml. |
"ADE Technologies, Inc.—6360." http://www.adetech.com/6360.shtml. |
"NanoMapper FA factory automation wafer nanotopography measurement." http://www.phase-shift.com/nanomapperfa.shtml. |
"NanoMapper wafer nanotopography measurement by ADE Phase Shift." http://www.phase-shift.com/nanomap.shtml. |
"Semiconductor Manufacturing: An Overview." <http://users.ece.gatech.edu/˜gmay/overview.html>. |
"Wafer flatness measurement of advanced wafers." http://www.phase-shift.com/wafer-flatness.shtml. |
1999. "Contactless Bulk Resistivity/Sheet Resistance Measurement and Mapping Systems." www.Lehighton.com/fabtech1/index.html. |
2000. "Microsense II Capacitance Gaging System." www.adetech.com. |
2002. "Microsense II—5810: Non-Contact Capacitance Gaging Module." www.adetech.com. |
ACM Research Inc. 2000. "Advanced Copper Metallization for 0.13 to 0.05 μm & Beyond." <http://acmrc.com/press/ACM-ECP-brochure.pdf>. |
ACM Research, Inc. 2002. "ACM Ultra ECP® System: Electro-Copper Plating (ECP) Deposition." www.acmrc.com/ecp.html. |
Adams, Bret W., Bogdan Swedek, Rajeev Bajaj, Fritz Redeker, Manush Birang, and Gregory Amico. "Full-Wafer Endpoint Detection Improves Process Control in Copper CMP." Semiconductor Fabtech—12th Edition. Applied Materials, Inc., Santa Clara, CA. |
Applied Materials, Inc. 2002. "Applied Materials: Information for Everyone: Copper Electrochemical Plating." www.appliedmaterials.com/products/copper—electrochemical—plating.html. |
Apr. 22, 2004. Office Action for U.S. Appl. No. 09/998,372, filed Nov. 30, 2001. |
Apr. 26, 2005. International Preliminary Examination Report for PCT Serial No. PCT/US02/21942. |
Apr. 28, 2004. Written Opinion for PCT/US02/19117. |
Apr. 29, 2004. Written Opinion for PCT/US02/19061. |
Apr. 9, 2003. Office Action for U.S. Appl. No. 09/928,474, filed Aug. 14, 2001. |
Apr. 9, 2004. Written Opinion for PCT/US02/19116. |
Aug. 1, 2003. Written Opinion for PCT/US01/27406. |
Aug. 18, 2004. International Preliminary Examination Report for PCT Serial No. PCT/US02/19116. |
Aug. 2, 2004. Office Action for U.S. Appl. No. 10/174,377, filed Jun. 18, 2002. |
Aug. 20, 2003. Written Opinion for PCT/US01/22833. |
Aug. 25, 2003. Office Action for U.S. Appl. No. 10/100,184, filed Mar. 19, 2002. |
Aug. 25, 2004. Office Action for U.S. Appl. No. 09/998,384, filed Nov. 30, 2001. |
Aug. 8, 2003. International Search Report for PCT/US03/08513. |
Aug. 8, 2003. PCT International Search Report from PCT/US03/08513. |
Aug. 9, 2004. Written Opinion for PCT Serial No. PCT/US02/19063. |
Baliga, John. Jul. 1999. "Advanced Process Control: Soon to be a Must." Semiconductor International. www.semiconductor.net/semiconductor/issues/issues/1999/jul99/docs/feature 1.asp. |
Berman, Mike, Thomas Bibby, and Alan Smith. "Review of In Situ & In-line Detection for CMP Applications." Semiconductor Fabtech, 8th Edition, pp. 267-274. |
Boning, Duane et al. "Run by Run Control of Chemical-Mechanical Polishing." IEEE Trans. Oct. 1996. vol. 19, No. 4. pp. 307-314. |
Boning, Duane S., Jerry Stefani, and Stephanie W. Butler. Feb. 1999. "Statistical Methods for Semiconductor Manufacturing." Encyclopedia of Electrical Engineering, J. G. Webster, Ed. |
Boning, Duane S., William P. Moyne, Taber H. Smith, James Moyne, Ronald Telfeyan, Arnon Hurwitz, Scott Shellman, and John Taylor. Oct. 1996. "Run by Run Control of Chemical-Mechanical Polishing." IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C, vol. 19, No. 4, pp. 307-314. |
Boning, Duane, William Moyne, Taber Smith, James Moyne, Roland Telfeyan, Arnon Hurwitz, Scott Shellman, and John Taylor. Oct. 1996. "Run by Run Control of Chemical-Mechanical Polishing." IEEE Trans. CPMT (C), vol. 19, No. 4, pp. 307-314. |
Burke, Peter A. Jun. 1991. "Semi-Empirical Modelling of SiO2 Chemical-Mechanical Polishing Planarization." VMIC Conference, 1991 IEEE, pp. 379-384. IEEE. |
Campbell, W. J., S. K. Firth, A. J. Toprac, and T. F. Edgar. May 2002. "A Comparison of Run-to-Run Control Algorithms (Abstract)." Proceedings of 2002 American Control Conference, vol. 3, pp. 2150-2155. |
Campbell, W. Jarrett, and Anthony J. Toprac. Feb. 11-12, 1998. "Run-to-Run Control in Microelectronics Manufacturing." Advanced Micro Devises, TWMCC. |
Chang, E., B. Stine, T. Maung, R. Divecha, D. Boning, J. Chung, K. Chang, G. Ray, D. Bradbury, O. S. Nakagawa, S. Oh, and D. Bartelink. Dec. 1995. "Using a Statistical Metrology Framework to Identify Systematic and Random Sources of Die- and Wafer-level ILD Thickness Variation in CMP Processes." Washington, D.C.: International Electron Devices Meeting. |
Chang, Norman H. and Costas J. Spanos. Feb. 1991. "Continuous Equipment Diagnosis Using Evidence Integration: An LPCVD Application." IEEE Transactions on Semiconductor Manufacturing, v. 4, n. 1, pp. 43-51. |
Chaudhry, Nauman A. et al. "A Design Methodology for Databases with Uncertain Data." University of Michigan. pp. 1-14. |
Chaudhry, Nauman et al, "Designing Databases with Fuzzy Data and Rules for Application to Discrete Control." University of Michigan. pp. 1-21. |
Chaudhry, Nauman et al. "Active Controller: Utilizing Active Databases for Implementing Multi-Step Control of Semiconductor Manufacturing." University of Michigan. pp. 1-24. |
Chemali, Chadi El, James Moyne, Kareemullah Khan, Rock Nadeau, Paul Smith, John Colt, Jonathan Chapple-Sokol, and Tarun Parikh. Nov. 1998. "Multizone Uniformity Control of a CMP Process Utilizing a Pre and Post-Measurement Strategy." Seattle, Washington: SEMETECH Symposium. |
Chen, Argon and Ruey-Shan Guo. Feb. 2001. "Age-Based Double EWMA Controller and Its Application to CMP Processes." IEEE Transactions on Semiconductor Manufacturing, vol. 14, No. 1, pp. 11-19. |
Cheung, Robin. Oct. 18, 2000. "Copper Interconnect Technology." AVS/CMP User Group Meeting, Santa Clara, CA. |
Consilium Corporate Brochure. Oct. 1999. www.consilium.com. |
Consilium. 1998. FAB300<SUP>TM</SUP>. Mountain View, California: Consilium, Inc. |
Consilium. 1998. FAB300TM. Mountain View, California: Consilium, Inc. |
Consilium. Aug. 1998. Quality Management Component: QMC<SUP>TM </SUP>and QMC-Link<SUP>TM </SUP>Overview. Mountain View, California: Consilium, Inc. |
Consilium. Aug. 1998. Quality Management Component: QMCTM and QMC-LinkTM Overview. Mountain View, California: Consilium, Inc. |
Consilium. Jan. 1999. "FAB300<SUP>TM</SUP>: Consilium's Next Generation MES Solution of Software and Services which Control and Automate Real-Time FAB Operations." www.consilium.com/products/fab300<SUB>-</SUB>page.htm#FAB399 Introduction. |
Consilium. Jan. 1999. "FAB300TM: Consilium's Next Generation MES Solution of Software and Services which Control and Automate Real-Time FAB Operations." www.consilium.com/products/fab300—page.htm#FAB399 Introduction. |
Consilium. Jul. 1999. "Increasing Overall Equipment Effectiveness (OEE) in Fab Manufacturing by Implementing Consilium's Next-Generation Manufacturing Execution System-MES II." Semiconductor Fabtech Edition 10. |
Consilium. Nov. 1999. FAB300<SUP>TM </SUP>Update. |
Consilium. Nov. 1999. FAB300TM Update. |
Cunningham, James A. 2003. "Using Electrochemistry to Improve Copper Interconnects." <http://www.e-insite.net/semiconductor/index.asp?layout=article&Articleid=CA47465>. |
Dec. 1, 2003. Office Action for U.S. Appl. No. 10/173,108, filed Jun. 18, 2002. |
Dec. 11, 2003. Office Action for U.S. Appl. No. 09/943,383, filed Aug. 31, 2001. |
Dec. 16, 2003. International Search Report for PCT/US03/23964. |
Dec. 17, 2002. Office Action for U.S. Appl. No. 09/363,966, filed Jul. 29, 1999. |
Dishon, G., D. Eylon, M. Finarov, and A. Shulman. "Dielectric CMP Advanced Process Control Based on Integrated Monitoring." Ltd. Rehoveth, Israel: Nova Measuring Instruments. |
Dishon, G., M. Finarov, R. Kipper, J.W. Curry, T. Schraub, D. Trojan, 4<SUP>th </SUP>Stambaugh, Y. Li and J. Ben-Jacob. Feb. 1996. "On-Line Integrated Metrology for CMP Processing." Santa Clara, California: VMIC Speciality Conferences, 1<SUP>st </SUP>International CMP Planarization Conference. |
Dishon, G., M. Finarov, R. Kipper, J.W. Curry, T. Schraub, D. Trojan, 4th Stambaugh, Y. Li and J. Ben-Jacob. Feb. 1996. "On-Line Integrated Metrology for CMP Processing." Santa Clara, California: VMIC Speciality Conferences, 1st International CMP Planarization Conference. |
Durham, Jim and Myriam Roussel. 1997. "A Statistical Method for Correlating In-Line Defectivity to Probe Yield." IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 76-77. |
Edgar, T. F., W. J. Campbell, and C. Bode. Dec. 1999. "Model-Based Control in Microelectronics Manufacturing." Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, vol. 4, pp. 4185-4191. |
Edgar, Thomas F., Stephanie W. Butler, Jarrett Campbell, Carlos Pfeiffer, Chris Bode, Sung Bo Hwang, and K.S. Balakrishnan. May 1998. "Automatic Control in Microelectronics Manufacturing: Practices, Challenges, and Possibilities." Automatica, vol. 36, pp. 1567-1603, 2000. |
Edgar, Thomas F., Stephanie W. Butler, W. Jarrett Campbell, Carlos Pfeiffer, Christopher Bode, Sung Bo Hwang, K. S. Balakrishnan, and J. Hahn. Nov. 2000. "Automatic Control in Microelectronics Manufacturing: Practices, Challenges, and Possibilities (Abstract)." Automaticav. 36, n. 11. |
Eisenbraun, Eric, Oscar van der Straten, Yu Zhu, Katharine Dovidenko, and Alain Kaloyeros. 2001. "Atomic Layer Deposition (ALD) of Tantalum-Based Materials for Zero Thickness Copper Barrier Applications" (Abstract). IEEE. pp. 207-209. |
El Chemali, Chadi et al. Jul./Aug. 2000. "Multizone uniformity control of a chemical mechanical polishing process utilizing a pre- and postmeasurement strategy." J. Vac. Sci. Technol. vol. 18, No. 4, pp. 1287-1296. |
Elers, Kai-Erik, Ville Saanila, Pekka J. Soininen, Wei-Min Li, Juhana T. Kostamo, Suvi Haukka, Jyrki Juhanoja, and Wim F.A. Besling. 2002. "Diffusion Barrier Deposition on a Copper Surface by Atomic Layer Deposition" (Abstract). Advanced Materials. vol. 14, No. 13-14, pp. 149-153. |
Fan, Jr-Min, Ruey-Shan Guo, Shi-Chung Chang, and Kian-Huei Lee. 1996. "Abnormal Tred Detection of Sequence-Disordered Data Using EWMA Method." IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 169-174. |
Fang, S. J., A. Barda, T. Janecko, W. Little, D. Outley, G. Hempel, S. Joshi, B. Morrison, G. B. Shinn, and M. Birang. 1998. "Control of Dielectric Chemical Mechanical Polishing (CMP) Using and Interferometry Based Endpoint Sensor." International Proceedings of the IEEE Interconnect Technology Conference, pp. 76-78. |
Feb. 10, 2003. Office Action for U.S. Appl. No. 09/619,044, filed Jul. 19, 2000. |
Feb. 1984. "Method and Apparatus of in Situ Measurement and Overlay Error Analysis for Correcting Step and Repeat Lithographic Cameras." IBM Technical Disclosure Bulletin, pp. 4855-4859. |
Feb. 1984. "Substrate Screening Process." IBM Technical Disclosure Bulletin, pp. 4824-4825. |
Feb. 1993. "Electroless Plating Scheme to Hermetically Seal Copper Features." IBM Technical Disclosure Bulletin, pp. 405-406. |
Feb. 2, 2004. Office Action for U.S. Appl. No. 09/363,966, filed Jul. 29, 1999. |
Good, Richard and S. Joe Qin. May 2002. "Stability Analysis of Double EWMA Run-to-Run Control with Metrology Delay." IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 355-363. |
Guo, Ruey-Shan, Li-Shia Huang, Argon Chen, and Jin-Jung Chen. Oct. 1997. "A Cost-Effective Methodology for a Run-by-Run EWMA Controller." 6<SUP>th </SUP>International Symposium on Semiconductor Manufacturing, pp. 61-64. |
Guo, Ruey-Shan, Li-Shia Huang, Argon Chen, and Jin-Jung Chen. Oct. 1997. "A Cost-Effective Methodology for a Run-by-Run EWMA Controller." 6th International Symposium on Semiconductor Manufacturing, pp. 61-64. |
Herrmann, D. 1988. "Temperature Errors and Ways of Elimination for Contactless Measurement of Shaft Vibrations (Abstract)." Technisches Messen(TM), vol. 55, No. 1, pp. 27-30. West Germany. |
Herrmann, D. 1988. "Temperature Errors and Ways of Elimination for Contactless Measurement of Shaft Vibrations (Abstract)." Technisches Messen™, vol. 55, No. 1, pp. 27-30. West Germany. |
Heuberger, U. Sep. 2001. "Coating Thickness Measurement with Dual-Function Eddy-Current & Magnetic Inductance Instrument (Abstract)." Galvanotechnik, vol. 92, No. 9, pp. 2354-2366+IV. |
Hu, Albert, He Du, Steve Wong, Peter Renteln, and Emanuel Sachs. 1994. "Application of Run by Run Controller to the Chemical-Mechanical Planarization Process." IEEE/CPMT International Electronics Manufacturing Technology Symposium. pp. 371-378. |
Hu, Albert, He Du, Steve Wong, Peter Renteln, and Emmanuel Sachs. 1994. "Application of Run by Run Controller to the Chemical-Mechanical Planarization Process." IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 371-378. |
Hu, Albert, Kevin Nguyen, Steve Wong, Xiuhua Zhang, Emanuel Sachs, and Peter Renteln. 1993. "Concurrent Deployment of Run by Run Controller Using SCC Framework." IEEE/SEMI International Semiconductor Manufacturing Science Symposium. pp. 126-132. |
IslamRaja, M. M., C. Chang, J. P. McVittie, M. A. Cappelli, and K. C. Saraswat. May/Jun. 1993. "Two Precursor Model for Low-Pressure Chemical Vapor Deposition of Silicon Dioxide from Tetraethylorthosilicate." J. Vac. Sci. Technol. B, vol. 11, No. 3, pp. 720-726. |
Itabashi, Takeyuki, Hiroshi Nakano, and Haruo Akahoshi. Jun. 2002. "Electroless Deposited CoWB for Copper Diffusion Barrier Metal." IEEE International Interconnect Technology Conference, pp. 285-287. |
Jan. 20, 2004. Office Action for U.S. Appl. No. 09/927,444, filed Aug. 13, 2001. |
Jan. 23, 2004. International Search Report for PCT/US02/24860. |
Jensen, Alan, Peter Renteln, Stephen Jew, Chris Raeder, and Patrick Cheung. Jun. 2001. "Empirical-based Modeling for Control of CMP Removal Uniformity." Solid State Technology, vol. 44, No. 6, pp. 101-102, 104,106. Cowan Publ. Corp.: Washington, D.C. |
Johnson, Bob. Jun. 10, 2002. "Advanced Process Control Key to Moore's Law." Gartner, Inc. |
Jul. 12, 2004. Office Action for U.S. Appl. No. 10/173,108, filed Jun. 8, 2002. |
Jul. 15, 2004. Office Action for U.S. Appl. No. 10/172,977, filed Jun. 18, 2002. |
Jul. 1998. "Active Controller: Utilizing Active Databases for Implementing Multistep Control of Semiconductor Manufacturing (Abstract)." IEEE Transactions on Components, Packaging and Manufacturing Technology—Part C, vol. 21, No. 3, pp. 217-224. |
Jul. 23, 2002. Communication Pursuant to Article 96(2) EPC for European Patent Application No. 00 115 577.9. |
Jul. 23, 2003. Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US02/19116. |
Jul. 25, 2003. International Search Report for PCT/US02/24858. |
Jul. 29, 2002. International Search Report prepared by the European Patent Office for PCT/US01/27407. |
Jul. 5, 2001. "Motorola and Advanced Micro Devices Buy ObjectSpace Catalyst Advanced Process Control Product for Five Wafer Fabs." Semiconductor FABTECH. www.semiconductorfabtech.com/industry.news/9907/20.07.shtml. |
Jul. 9, 2002. International Search Report prepared by the European Patent Office for PCT/US01/24910. |
Jun. 18, 2003. Office Action for U.S. Appl. No. 09/655,542, filed Sep. 6, 2000. |
Jun. 20, 2002. Office Action for U.S. Appl. No. 09/619,044, filed Jul. 19, 2000. |
Jun. 23, 2004. Office Action for U.S. Appl. No. 10/686,589, filed Oct. 17, 2003. |
Jun. 3, 2004. Office Action for U.S. Appl. No. 09/928,474, filed Aug. 14, 2001. |
Jun. 30, 2004. Office Action for U.S. Appl. No. 09/800,980, filed Mar. 8, 2001. |
Khan, K., C. El Chemali, J. Moyne, J. Chapple-Sokol, R. Nadeau, P. Smith, C., and T. Parikh. Oct. 1999. "Yield Improvement at the Contact Process Through Run-to-Run Control (Abstract)." 24th IEEE/CPMT Electronics Manufacturing Technology Symposium, pp. 258-263. |
Khan, Kareemullah et al. "Run-to-Run Control of ITO Deposition Process." University of Michigan. pp. 1-6. |
Khan, Kareemullah, Victor Solakhain, Anthony Ricci, Tier Gu, and James Moyne. 1998. "Run-to-Run Control of ITO Deposition Process." Ann Arbor, Michigan. |
Khan, S., M. Musavi, and H. Ressom. Nov. 2000. "Critical Dimension Control in Semiconductor Manufacturing (Abstract)." ANNIE 2000. Smart Engineering Systems Design Conference, pp. 995-1000. St. Louis, Missouri. |
Kim, Eui Jung and William N. Gill. Jul. 1994. "Analytical Model for Chemical Vapor Deposition of SiO2 Films Using Tetraethoxysliane and Ozone" (Abstract). Journal of Crystal Growth, vol. 140, Issues 3-4, pp. 315-326. |
Kim, Jiyoun et al. "Gradient and Radial Uniformity Control of a CMP Process Utilizing a Pre- and Post- Measurement Strategy," University of Michigan. |
Kim, Y.T. and H. Sim. 2002. "Characteristics of Pulse Plasma Enhanced Atomic Layer Deposition of Tungsten Nitride Diffusion Barrier for Copper Interconnect" (Abstract). IEIC Technical Report. vol. 102, No. 178, pp. 115-118. |
KLA-Tencor Corporation. 2002. "KLA Tencor: Press Release: KLA-Tencor Introduces First Production-Worthy Copper CMP In-Situ Film Thickness and End-point Control System: Multi-Million Dollar Order Shipped to Major CMP Tool Manufacturer." www.kla-tencor.com/news—events/press—releases/press—releases2001/984086002.html. |
Klein, Bruce. Jun. 1999. "Application Development: XML Makes Object Models More Useful." Informationweek. pp. 1A-6A. |
Kurtzberg, Jerome M. and Menachem Levanoni. Jan. 1994. "ABC: A Better Control for Manufacturing." IBM Journal of Research and Development, v. 38, n. 1, pp. 11-30. |
Larrabee, G. B. May 1991. "The Intelligent Microelectronics Factory of the Future (Abstract)." IEEE/SEMI International Semiconductor Manufacturing Science Symposium, pp. 30-34. Burlingame, CA. |
Leang, Sovarong, Shang-Yi Ma, John Thomson, Bart John Bombay, and Costas J. Spanos. May 1996. "A Control System for Photolithographic Sequences." IEEE Transactions on Semiconductor Manufacturing, vol. 9, No. 2. |
Lee, Brian, Duane S. Boning, Winthrop Baylies, Noel Poduje, Pat Hester, Yong Xia, John Valley, Chris Koliopoulus, Dale Hetherington, HongJiang Sun, and Michael Lacy. Apr. 2001. "Wafer Nanotopography Effects on CMP: Experimental Validation of Modeling Methods." San Francisco, California: Materials Research Society Spring Meeting. |
Levine, Martin D. 1985. Vision in Man and Machine. New York: McGraw-Hill, Inc. pp. ix-xii, 1-58. |
Lin, Kuang-Kuo and Costas J. Spanos. Nov. 1990. "Statistical Equipment Modeling for VLSI Manufacturing: An Application for LPCVD." IEEE Transactions on Semiconductor Manufacturing, v. 3, n. 4, pp. 216-229. |
Mar. 15, 2002. Office Action for U.S. Appl. No. 09/469,227, filed Dec. 22, 1999. |
Mar. 25, 2003. International Search Report for PCT/US02/24859 prepared by the European Patent Office. |
Mar. 29, 2002. Office Action for U.S. Appl. No. 09/363,966, filed Jul. 29, 1999. |
Mar. 30, 2004. Written Opinion for PCT/US02/19062. |
Mar. 5, 2001. "KLA-Tencor Introduces First Production-worthy Copper CMP In-situ Film Thickness and End-point Control System." http://www.kla-tencor.com/j/servlet/NewsItem?newsItemID=74. |
Matsuyama, Akira and Jessi Niou. 1993. "A State-of-the-Art Automation System of an ASIC Wafer Fab in Japan." IEEE/SEMI International Semiconductor Manufacturing Science Syposium, pp. 42-47. |
May 1992. "Laser Ablation Endpoint Detector." IBM Technical Disclosure Bulletin, pp. 333-334. |
May 28, 2004. Office Action for U.S. Appl. No. 09/943,383, filed Aug. 31, 2001. |
May 5, 2004. International Preliminary Examination Report for PCT/US01/27406. |
May 5, 2004. Office Action for U.S. Appl. No. 09/943,955, filed Aug. 31, 2001. |
May 8, 2003. Office Action for U.S. Appl. No. 09/637,620, filed Aug. 11, 2000. |
McIntosh, John. Mar. 1999, "Using CD-SEM Metrology in the Manufacture of Semiconductors (Abstract)." JOM, vol. 51, No. 3, pp. 38-39. |
Meckl, P. H. and K. Umemoto. Apr. 2000. "Achieving Fast Motions by Using Shaped Reference Inputs [Semiconductor Manufacturing Machine] (Abstract)." NEC Research and Development, vol. 41, No. 2, pp. 232-237. |
Meckl, P. H. and K. Umemoto. Aug. 1999. "Achieving Fast Motions in Semiconductor Manufacturing Machinery (Abstract)." Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 1, pp. 725-729. Kohala Coast, HI. |
Miller, G. L., D. A. H. Robinson, and J. D. Wiley. Jul. 1976. "Contactless measurement of semiconductor conductivity by radio frequency-free-carrier power absorption." Rev. Sci. Instrum., vol. 47, No. 7, pp. 799-805. |
Moyne, J., V. Solakhian, A. Yershov, M. Anderson, and D. Mockler-Hebert. Apr.-May 2002. "Development and Deployment of a Multi-Component Advanced Process Control System for an Epitaxy Tool (Abstract)." 2002 IEEE Advanced Semiconductor Manufacturing Conference and Workshop, pp. 125-130. |
Moyne, James et al. "A Process-Independent Run-to-Run Controller and Its Application to Chemical-Mechanical Planarization." SEMI/IEEE Adv. Semiconductor Manufacturing Conference. Aug. 15, 1995. |
Moyne, James et al. "A Run-to-Run Control Framework for VLSI Manufacturing." Microelectronic Processing '93 Conference Proceedings. Sep. 1993. |
Moyne, James et al. "Adaptive Extensions to be a Multi-Branch Run-to-Run Controller for Plasma Etching." Journal of Vacuum Science and Technology. 1995. |
Moyne, James et al. "Yield Improvement @ Contact Through Run-to-Run Control". |
Moyne, James R., Nauman Chaudhry, and Roland Telfeyan. 1995. "Adaptive Extensions to a Multi-Branch Run-to-Run Controller for Plasma Etching." Journal of Vacuum Science and Technology. Ann Arbor, Michigan: University of Michigan Display Technology Manufacturing Center. |
Moyne, James, and John Curry, Jun. 1998, "A Fully Automated Chemical-Mechanical Planarization Process." Santa Clara, California: VLSI Multilevel Interconnection (V-MIC) Conference. |
Moyne, James, Roland Telfeyan, Arnon Hurwitz, and John Taylor. Aug. 1995. "A Process-Independent Run-to-Run Controller and Its Application to Chemical-Mechanical Planarization." SEMI/IEEE Advanced Semiconductor Manufacturing Conference and Workshop. Ann Arbor, Michigan: The University of Michigan, Electrical Engineering & Computer Science Center for Display Technology & Manufacturing. |
Moyne, James. Oct. 1999. "Advancements in CMP Process Automation and Control." Hawaii: (Invited paper and presentation to) Third International Symposium on Chemical Mechanical Polishing in IC Device Manufacturing: 196<SUP>th </SUP>Meeting of the Electrochemical Society. |
Moyne, James. Oct. 1999. "Advancements in CMP Process Automation and Control." Hawaii: (Invited paper and presentation to) Third International Symposium on Chemical Mechanical Polishing in IC Device Manufacturing: 196th Meeting of the Electrochemical Society. |
Mozumder, Purnendu K. and Gabriel G. Barna. Feb. 1994. "Statistical Feedback Control of a Plasma Etch Process." IEEE Transactions on Semiconductor Manufacturing, v. 7, n. 1, pp. 1-11. |
Muller-Heinzerling, Thomas, Ulrich Neu, Hans Georg Nurnberg, and Wolfgang May. Mar. 1994. "Recipe-Controlled Operation of Batch Processes with Batch X." ATP Automatisierungstechnische Praxis, vol. 36, No. 3, pp. 43-51. |
Mullins, J. A., W. J. Campbell, and A. D. Stock. Oct. 1997. "An Evaluation of Model Predictive Control in Run-to-Run Processing in Semiconductor Manufacturing (Abstract)." Proceedings of the SPIE—The International Society for Optical Engineering Conference, vol. 3213, pp. 182-189. |
Nov. 11, 2002. International Search Report from PCT/US02/19117. |
Nov. 12, 2002. International Search Report from PCT/US02/19063. |
Nov. 17, 2004. Written Opinion for PCT Serial No. PCT/US01/27407. |
Nov. 1999. "How to Use EWMA to Achieve SPC and EPC Control." International Symposium on NDT Contribution to the Infrastructure Safety Systems, Tores, Brazil. <http://www.ndt/net/abstract/ndtiss99/data/35.htm>. |
Nov. 5, 2003. Office Action for U.S. Appl. No. 10/172,977, filed Jun. 18, 2002. |
Nov. 7, 2002. International Search Report from PCT/US02/19061. |
NovaScan 2020. Feb. 2002. "Superior Integrated Process Control for Emerging CMP High-End Applications." |
Oct. 1, 2004. International Preliminary Examination Report for PCT Serial No. PCT/US03/23964. |
Oct. 12, 2004. International Preliminary Examination Report for PCT Serial No. PCT/US02/19061. |
Oct. 14, 2003. PCT International Search Report from PCT/US02/21942. |
Oct. 15, 2001. Search Report prepared by the Austrian Patent Office for Singapore Patent Application No. 200004286-1. |
Oct. 15, 2002. International Search Report prepared by the European Patent Office for PCT/US02/19062. |
Oct. 1984. "Method to Characterize the Stability of a Step and Repeat Lithographic System." IBM Technical Disclosure Bulletin, pp. 2857-2860. |
Oct. 20, 2003. PCT International Search Report from PCT/US02/19116. |
Oct. 23, 2002. International Search Report from PCT/US01/27406. |
Oct. 23, 2002. Office Action for U.S. Appl No. 09/469,227, filed Dec. 22, 1999. |
Oct. 23, 2003. PCT International Preliminary Examination Report from PCT/US01/24910. |
Oct. 4, 2002. International Search Report from PCT/US01/22833. |
Oct. 6, 2004. Office Action for U.S. Appl. No. 10/759,108, filed Jan. 20, 2004. |
Oechsner, R., T. Tschaftary, S. Sommer, L. Pfitzner, H. Ryssel, H. Gerath, C. Baier, and M. Hafner. Sep. 2000. "Feed-forward Control for a Lithography/Etch Sequence (Abstract)." Proceedings of the SPIE—The International Society for Optical Engineering Conference, vol. 4182, pp. 31-39. |
Ostanin, Yu. Ya. Oct. 1981. "Optimization of Thickness Inspection of Electrically Conductive Single-Layer Coatings with Laid-on Eddy-Current Transducers (Abstract)." Defektoskopiya, vol. 17, No. 10, pp. 45-52. Moscow, USSR. |
Ouma, Dennis, Duane Boning, James Chung, Greg Shinn, Leif Olsen, and John Clark. 1998. "An Integrated Characterization and Modeling Methodology for CMP Dielectric Planarization." Proceedings of the IEEE 1998 International Interconnect Technology Conference, pp. 67-69. |
Pan, J. Tony, Ping Li, Kapila Wijekoon, Stan Tsai, and Fritz Redeker. May 1999. "Copper CMP Integration and Time Dependent Pattern Effect." IEEE 1999 International Interconnect Technology Conference , pp. 164-166. |
Peng, C.H., C.H. Hsieh, C.L. Huang, J.C. Lin, M.H. Tsai, M.W. Lin, C.L. Chang, Winston S. Shue, and M.S. Liang. 2002. "A 90nm Generation Copper Dual Damascene Technology with ALD TaN Barrier." IEEE. pp. 603-606. |
Pilu, Maurizio. Sep. 2001. "Undoing Page Curl Distortion Using Applicable Surfaces." IEEE International Conference on Image Processing. Thessalonica, Greece. |
Rampalli, Prasad, Arakere Ramesh, and Nimish Shah. 1991. CEPT-A Computer-Aided Manufacturing Application for Managing Equipment Reliability and Availability in the Semiconductor Industry. New York, New York: IEEE. |
Ravid, Avi, Avner Sharon, Amit Weingarten, Vladimir Machavariani, and David Scheiner. 2000. "Copper CMP Planarity Control Using ITM." IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 437-443. |
Reitman, E. A., D. J. Friedman, and E. R. Lory. Nov. 1997. "Pre-Production Results Demonstrating Multiple-System Models for Yield Analysis (Abstract)." IEEE Transactions on Semiconductor Manufacturing, vol. 10, No. 4, pp. 469-481. |
Rocha, Joao and Carlos Ramos. Sep. 12, 1994. "Task Planning for Flexible and Agile Manufacturing Systems." Intelligent Robots and Systems '94. Advanced Robotic Systems and the Real World, IROS '94. Proceedings of the IEEE/RSJ/GI International Conference on Munich, Germany Sep. 12-16, 1994. New York, New York: IEEE. pp. 105-112. |
Ruegsegger, Steven, Aaron Wagner, James S. Freudenberg, and Dennis S. Grimard. Nov. 1999. "Feedforward Control for Reduced Run-to-Run Variation in Microelectronics Manufacturing." IEEE Transactions on Semiconductor Manufacturing, vol. 12, No. 4. |
Runyan, W. R., and K. E. Bean. 1990. "Semiconductor Integrated Circuit Processing Technology." p. 48. Reading, Massachusetts: Addison-Wesley Publishing Company. |
Sachs, Emanuel et al. "Process Control System for VLSI Fabrication". |
Sarfaty, M., A. Shanmugasundram, A. Schwarm, J. Paik, Jimin Zhang, Rong Pan, M. J. Seamons, H. Li, R. Hung, and S. Parikh. Apr.-May 2002. "Advance Process Control Solutions for Semiconductor Manufacturing (Abstract)." 13th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Advancing the Science and Technology of Semiconductor Manufacturing. ASMC 2002, pp. 101-106. Boston, MA. |
Sarfaty, Moshe, Arulkumar Shanmugasundram, ALexander Schwarm, Joseph Paik, Jimin Zhang, Rong Pan, Martin J. Seamons, Howard Li, Raymond Hung, and Suketu Parikh. Apr./May 2002. "Advance Process Control Solutions for Semiconductor Manufacturing." IEEE/SEMI Advanced Semiconductor Manufacturing Conference. pp. 101-106. |
Scarr, J. M. and J. K. Zelisse. Apr. 1993. "New Topology for Thickness Monitoring Eddy Current Sensors (Abstract)." Proceedings of the 36<SUP>th </SUP>Annual Technical Conference, Dallas, Texas. |
Scarr, J. M. and J. K. Zelisse. Apr. 1993. "New Topology for Thickness Monitoring Eddy Current Sensors (Abstract)." Proceedings of the 36th Annual Technical Conference, Dallas, Texas. |
Schaper, C. D., M. M. Moslehi, K. C. Saraswat, and T. Kailath. Nov. 1994. "Modeling, Identification, and Control of Rapid Thermal Processing Systems (Abstract)." Journal of the Electrochemical Society, vol. 141, No. 11, pp. 3200-3209. |
Schmid, Hans Albrecht. 1995. "Creating the Architecture of a Manufacturing Framework by Design Patterns." Austin, Texas: OOPSLA. |
SEMI. [1986] 1996. "Standard for Definition and Measurement of Equipment Reliability, Availability, and Maintainability (RAM)." SEMI E10-96. |
SEMI. 2000. "Provisional Specification for CIM Framework Scheduling Component." San Jose, California. SEMI E105-1000. |
SEMI. Jul. 1998. New Standard: Provisional Specification for CIM Framework Domain Architecture. Mountain View, California: SEMI Standards. SEMI Draft Doc. 2817. |
Semiconductor FABTECH. Printed Jul. 2001. "Motorola and Advanced Micro Devices Buy ObjectSpace Catalyst Advanced Process Control Product for Five Wafer Fabs." www.semiconductorfabtech.com/industry.news/9907/20.07.shtml. |
Sep. 15, 2003. Office Action for U.S. Appl. No. 09/928,474, filed Aug. 14, 2001. |
Sep. 15, 2004. Office Action for U.S. Appl. No. 10/632,107, filed Aug. 1, 2003. |
Sep. 16, 2004. International Preliminary Examination Report for PCT Serial No. PCT/US02/24859. |
Sep. 26, 2002. Office Action for U.S. Appl. No. 09/637,620, filed Aug. 11, 2000. |
Sep. 29, 2004. Office Action for U.S. Appl. No. 09/363,966, filed Jul. 29, 1999. |
Sep. 9, 2004. Written Opinion for PCT Serial No. PCT/US02/21942. |
Shindo, Wataru, Eric H. Wang, Ram Akella, and Andrzej J. Strojwas. 1997. "Excursion Detection and Source Isolation in Defect Inspection and Classification." 2nd International Workshop on Statistical Metrology, pp. 90-93. |
Smith, S.R., K.E. Elers, T. Jacobs, V. Blaschke, and K. Pfeifer. 2001. "Physical and Electrical Characterization of ALD Tin Used as a Copper Diffusion Barrier in 0.25 mum, Dual Damascene Backend Structures" (Abstract). Advanced Metallization Conference 2001. Montreal, Quebec. |
Smith, Stewart, Anthony J. Walton, Alan W. S. Ross, Georg K. H. Bodammer, and J. T. M. Stevenson. May 2002. "Evaluation of Sheet Resistance and Electrical Linewidth Measurement Techniques for Copper Damascene Interconnect." IEEE Transactions on Semiconductor Manufacturing, vol. 15, No. 2, pp. 214-222. |
Smith, Taber and Duane Boning. 1996. "A Self-Tuning EWMA Controller Utilizing Artificial Neural Network Function Approximation Techniques." IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 355-363. |
Smith, Taber, Duane Boning, James Moyne, Arnon Hurwitz, and John Curry. Jun. 1996. "Compensating for CMP Pad Wear Using Run by Run Feedback Control." Santa Clara, California: VLSI Multilevel Interconnect Conference. |
Sonderman, Thomas. 2002. "APC as a Competitive Manufacturing Technology: AMD's Vision for 300mm." AMD. |
Spanos, C. J., S. Leang, S.-Y. Ma, J. Thomson, B. Bombay, and X. Niu. May 1995. "A Multistep Supervisory Controller for Photolithographic Operations (Abstract)." Proceedings of the Symposium on Process Control, Diagnostics, and Modeling in Semiconductor Manufacturing, pp. 3-17. |
Spanos, Costas J., Hai-Fang Guo, Alan Miller, and Joanne Levine-Parrill. Nov. 1992. "Real-Time Statistical Process Control Using Tool Data." IEEE Transactions on Semiconductor Manufacturing, v. 5, n. 4, pp. 308-318. |
Stoddard, K., P. Crouch, M. Kozicki, and K. Tsakalis. Jun.-Jul. 1994. "Application of Feedforward and Adaptive Feedback Control to Semiconductor Device Manufacturing (Abstract)." Proceedings of 1994 American Control Conference-ACC '94, vol. 1, pp. 892-896. Baltimore, Maryland. |
Sun, S.C. 1998. "CVD and PVD Transition Metal Nitrides as Diffusion Barriers for Cu Metallization." IEEE. pp. 243-246. |
Suzuki, Junichi and Yoshikazu Yamamoto. 1998. "Toward the Interoperable Software Design Models: Quartet of UML, XML, DOM and CORBA." Proceedings IEEE International Software Engineering Standards Symposium. pp. 1-10. |
Tagami, M., A. Furuya, T. Onodera, and Y. Hayashi. 1999. "Layered Ta-nitrides (LTN) Barrier Film by Power Swing Sputtering (PSS) Technique for MOCVD-Cu Damascene Interconnects." IEEE. pp. 635-638. |
Takahashi, Shingo, Kaori Tai, Hiizu Ohtorii, Naoki Komai, Yuji Segawa, Hiroshi Horikoshi, Zenya Yasuda, Hiroshi Yamada, Masao Ishihara, and Takeshi Nogami. 2002. "Fragile Porous Low-k/Copper Integration by Using Electro-Chemical Polishing." 2002 Symposium on VLSI Technology Digest of Technical Papers, pp. 32-33. |
Tan, K. K., H. F. Dou, and K. Z. Tang. May-Jun. 2001. "Precision Motion Control System for Ultra-Precision Semiconductor and Electronic Components Manufacturing (Abstract)." 51st Electronic Components and Technology Conference 2001. Proceedings, pp. 1372-1379. Orlando, Florida. |
Tao, K. M., R. L. Kosut, M. Ekblad, and G. Aral. Dec. 1994. "Feedforward Learning Applied to RTP of Semiconductor Wafers (Abstract)." Proceedings of the 33<SUP>rd </SUP>IEEE Conference on Decision and Control, vol. 1, pp. 67-72. Lake Buena Vista, Florida. |
Tao, K. M., R. L. Kosut, M. Ekblad, and G. Aral. Dec. 1994. "Feedforward Learning Applied to RTP of Semiconductor Wafers (Abstract)." Proceedings of the 33rd IEEE Conference on Decision and Control, vol. 1, pp. 67-72. Lake Buena Vista, Florida. |
Telfeyan, Roland et al. "Demonstration of a Process-Independent Run-to-Run Controller." 187th Meeting of the Electrochemical Society. May 1995. |
Telfeyan, Roland, James Moyne, Nauman Chaudhry, James Pugmire, Scott Shellman, Duane Boning, William Moyne, Arnon Hurwitz, and John Taylor. Oct. 1995. "A Multi-Level Approach to the Control of a Chemical-Mechanical Planarization Process." Minneapolis, Minnesota: 42<SUP>nd </SUP>National Symposium of the American Vacuum Society. |
Telfeyan, Roland, James Moyne, Nauman Chaudhry, James Pugmire, Scott Shellman, Duane Boning, William Moyne, Arnon Hurwitz, and John Taylor. Oct. 1995. "A Multi-Level Approach to the Control of a Chemical-Mechanical Planarization Process." Minneapolis, Minnesota: 42nd National Symposium of the American Vacuum Society. |
Tobin, K. W., T. P. Karnowski, L. F. Arrowood, and F. Lakhani. Apr. 2001. "Field Test Results of an Automated Image Retrieval System (Abstract)." Advanced Semiconductor Manufacturing Conference, 2001 IEEE/SEMI, Munich, Germany. |
U.S. Appl. No. 09/363,966, filed Jul. 29, 1999, Arackaparambil et al., Computer Integrated Manufacturing Techniques. |
U.S. Appl. No. 09/469,227, filed Dec. 22, 1999, Somekh et al., Multi-Tool Control System, Method and Medium. |
U.S. Appl. No. 09/619,044, filed Jul. 19, 2000, Yuan, System and Method of Exporting or Importing Object Data in a Manufacturing Execution System. |
U.S. Appl. No. 09/637,620, filed Aug. 11, 2000, Chi et al., Generic Interface Builder. |
U.S. Appl. No. 09/655,542, filed Sep. 6, 2000, Yuan, System, Method and Medium for Defining Palettes to Transform an Application Program Interface for a Service. |
U.S. Appl. No. 09/656,031, filed Sep. 6, 2000, Chi et al., Dispatching Component for Associating Manufacturing Facility Service Requestors with Service Providers. |
U.S. Appl. No. 09/725,908, filed Nov. 30, 2000, Chi et al., Dynamic Subject Information Generation in Message Services of Distributed Object Systems. |
U.S. Appl. No. 09/800,980, filed Mar. 8, 2001, Hawkins et al., Dynamic and Extensible Task Guide. |
U.S. Appl. No. 09/811,667, filed Mar. 20, 2001, Yuan et al., Fault Tolerant and Automated Computer Software Workflow. |
U.S. Appl. No. 09/927,444, filed Aug. 13, 2001, Ward et al., Dynamic Control of Wafer Processing Paths in Semiconductor Manufacturing Processes. |
U.S. Appl. No. 09/928,473, filed Aug. 14, 2001, Koh, Tool Services Layer for Providing Tool Service Functions in Conjunction with Tool Functions. |
U.S. Appl. No. 09/928,474, filed Aug. 14, 2001, Krishnamurthy et al., Experiment Management System, Method and Medium. |
U.S. Appl. No. 09/943,383, filed Aug. 31, 2001, Shanmugasundram et al., In Situ Based Control of Semiconductor Processing Procedure. |
U.S. Appl. No. 09/943,955, filed Aug. 31, 2001, Shanmugasundram et al., Feedback Control of a Chemical Mechanical Polishing Device Providing Manipulation of Removal Rate Profiles. |
U.S. Appl. No. 09/998,372, filed Nov. 30, 2001, Paik, Control of Chemical Mechanical Polishing Pad Conditioner Directional Velocity to Improve Pad Life. |
U.S. Appl. No. 09/998,384, filed Nov. 30, 2001, Paik, Feedforward and Feedback Control for Conditioning of Chemical Mechanical Polishing Pad. |
U.S. Appl. No. 10/084,092, filed Feb. 28, 2002, Arachaparambil et al., Computer Integrated Manufacturing Techniques. |
U.S. Appl. No. 10/100,184, filed Mar. 19, 2002, Al-Bayati et al., Method, System and Medium for Controlling Semiconductor Wafer Processes Using Critical Dimension Measurements. |
U.S. Appl. No. 10/135,451, filed May 1, 2002, Shanmugasundram et al., Dynamic Metrology Schemes and Sampling Schemes for Advanced Process Control in Semiconductor Processing. |
US 6,150,664, 11/2000, Su (withdrawn) |
Van der Straten, O., Y. Zhu, E. Eisenbraun, and A. Kaloyeros. 2002. "Thermal and Electrical Barrier Performance Testing of Ultrathin Atomic Layer Deposition Tantalum-Based Materials for Nanoscale Copper Metallization." IEEE. pp. 188-190. |
Van Zant, Peter. 1997. Microchip Fabrication: A Practical Guide to Semiconductor Processing. Third Edition, pp. 472-478. New York, New York: McGraw-Hill. |
Wang, LiRen and Hefin Rowlands. 2001. "A Novel NN-Fuzzy-SPC Feedback Control System." 8th IEEE International Conference on Emerging Technologies and Factory Automation, pp. 417-423. |
Williams, Randy, Dadi Gudmundsson, Kevin Monahan, Raman Nurani, Meryl Stoller and J. George Shanthikumar. Oct. 1999. "Optimized Sample Planning for Wafer Defect Inspection," Semiconductor Manufacturing Conference Proceedings, 1999 IEEE International Symposium on Santa Clara, CA. Piscataway, NJ. pp. 43-46. |
Wu, Z.C., Y.C. Lu, C.C. Chiang, M.C. Chen, B.T. Chen, G.J. Wang, Y.T. Chen, J.L. Huang, S.M. Jang, and M.S. Liang. 2002. "Advanced Metal Barrier Free Cu Damascene Interconnects with PECVD Silicon Carbide Barriers for 90/65-nm BEOL Technology." IEEE. pp. 595-598. |
Yamagishi, H., Z. Tokei, G.P. Beyer, R. Donaton, H. Bender, T. Nogami, and K. Maex. 2000. "TEM/SEM Investigation and Electrical Evaluation of a Bottomless I-PVD TA(N) Barrier in Dual Damascene" (Abstract). Advanced Metallization Conference 2000. San Diego, CA. |
Yasuda, M., T. Osaka, and M. Ikeda. Dec. 1996. "Feedforward Control of a Vibration Isolation System for Disturbance Suppression (Abstract)." Proceeding of the 35<SUP>th </SUP>IEEE Conference on Decision and Control, vol. 2, pp. 1229-1233. Kobe, Japan. |
Yasuda, M., T. Osaka, and M. Ikeda. Dec. 1996. "Feedforward Control of a Vibration Isolation System for Disturbance Suppression (Abstract)." Proceeding of the 35th IEEE Conference on Decision and Control, vol. 2, pp. 1229-1233. Kobe, Japan. |
Yeh, C. Eugene, John C. Cheng, and Kwan Wong. 1993. "Implementation Challenges of a Feedback Control System for Wafer Fabrication." IEEE/CHMT International Electronics Manufacturing Technology Symposium, pp. 438-442. |
Zhe, Ning, J. R. Moyne, T. Smith, D. Boning, E. Del Castillo, Yeh Jinn-Yi, and Hurwitz. Nov. 1996. "A Comparative Analysis of Run-to-Run Control Algorithms in Semiconductor Manufacturing Industry (Abstract)." IEEE/SEMI 1996 Advanced Semiconductor Manufacturing Conference Workshop, pp. 375-381. |
Zhou, Zhen-Hong and Rafael Reif. Aug. 1995. "Epi-Film Thickness Measurements Using Emission Fourier Transform Infrared Spectroscopy-Part II: Real-Time in Situ Process Monitoring and Control." IEEE Transactions on Semiconductor Manufacturing, vol. 8, No. 3. |
Zorich, Robert. 1991. Handbook of Quality Integrated Circuit Manufacturing. pp. 464-498 San Diego, California: Academic Press, Inc. |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070169694A1 (en) * | 2001-06-19 | 2007-07-26 | Applied Materials, Inc. | Feedback control of sub-atmospheric chemical vapor deposition processes |
US8005634B2 (en) | 2002-03-22 | 2011-08-23 | Applied Materials, Inc. | Copper wiring module control |
US20070122921A1 (en) * | 2002-03-22 | 2007-05-31 | Applied Materials, Inc. | Copper Wiring Module Control |
US8175736B2 (en) | 2003-03-17 | 2012-05-08 | Tokyo Electron Limited | Method and system for performing a chemical oxide removal process |
US7877161B2 (en) * | 2003-03-17 | 2011-01-25 | Tokyo Electron Limited | Method and system for performing a chemical oxide removal process |
US20040185583A1 (en) * | 2003-03-17 | 2004-09-23 | Tokyo Electron Limited | Method of operating a system for chemical oxide removal |
US20080163094A1 (en) * | 2003-11-10 | 2008-07-03 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US8775148B2 (en) | 2003-11-10 | 2014-07-08 | Brooks Automation, Inc. | Methods and systems for controlling a semiconductor fabrication process |
US20080155442A1 (en) * | 2003-11-10 | 2008-06-26 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US20080163095A1 (en) * | 2003-11-10 | 2008-07-03 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US20080155447A1 (en) * | 2003-11-10 | 2008-06-26 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US10086511B2 (en) | 2003-11-10 | 2018-10-02 | Brooks Automation, Inc. | Semiconductor manufacturing systems |
US8972029B2 (en) | 2003-11-10 | 2015-03-03 | Brooks Automation, Inc. | Methods and systems for controlling a semiconductor fabrication process |
US20080155444A1 (en) * | 2003-11-10 | 2008-06-26 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US20080155446A1 (en) * | 2003-11-10 | 2008-06-26 | Pannese Patrick D | Methods and systems for controlling a semiconductor fabrication process |
US8639365B2 (en) * | 2003-11-10 | 2014-01-28 | Brooks Automation, Inc. | Methods and systems for controlling a semiconductor fabrication process |
US20080147580A1 (en) * | 2003-11-10 | 2008-06-19 | Pannese Patrick D | Applications of neural networks |
US8639489B2 (en) | 2003-11-10 | 2014-01-28 | Brooks Automation, Inc. | Methods and systems for controlling a semiconductor fabrication process |
US10444749B2 (en) | 2003-11-10 | 2019-10-15 | Brooks Automation, Inc. | Methods and systems for controlling a semiconductor fabrication process |
US8612198B2 (en) | 2003-11-10 | 2013-12-17 | Brooks Automation, Inc. | Methods and systems for controlling a semiconductor fabrication process |
US8473270B2 (en) | 2003-11-10 | 2013-06-25 | Brooks Automation, Inc. | Methods and systems for controlling a semiconductor fabrication process |
US8442667B2 (en) | 2003-11-10 | 2013-05-14 | Brooks Automation, Inc. | Applications of neural networks |
US7685560B2 (en) * | 2004-03-30 | 2010-03-23 | Hitachi High-Technologies Corporation | Method and apparatus for monitoring exposure process |
US20050221207A1 (en) * | 2004-03-30 | 2005-10-06 | Wataru Nagatomo | Method and apparatus for monitoring exposure process |
US20090138114A1 (en) * | 2005-05-11 | 2009-05-28 | Richard Gerard Burda | Method of release and product flow management for a manufacturing facility |
US8165704B2 (en) * | 2005-05-11 | 2012-04-24 | International Business Machines Corporation | Method of release and product flow management for a manufacturing facility |
US20090248187A1 (en) * | 2007-03-21 | 2009-10-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Advanced process control for semiconductor processing |
US8417362B2 (en) * | 2007-03-21 | 2013-04-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Advanced process control for semiconductor processing |
US20090259332A1 (en) * | 2008-04-09 | 2009-10-15 | Inotera Memories, Inc. | Fuzzy control method for adjusting a semiconductor machine |
US8010212B2 (en) * | 2008-04-09 | 2011-08-30 | Inotera Memories, Inc. | Fuzzy control method for adjusting a semiconductor machine |
US20100332012A1 (en) * | 2009-06-30 | 2010-12-30 | Chung-Ho Huang | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US8983631B2 (en) * | 2009-06-30 | 2015-03-17 | Lam Research Corporation | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US20110190921A1 (en) * | 2010-02-02 | 2011-08-04 | Applied Materials, Inc. | Flexible process condition monitoring |
US8670857B2 (en) | 2010-02-02 | 2014-03-11 | Applied Materials, Inc. | Flexible process condition monitoring |
US20110307088A1 (en) * | 2010-06-09 | 2011-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Auto Device Skew Manufacturing |
US8942840B2 (en) | 2010-06-09 | 2015-01-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Auto device skew manufacturing |
US8391999B2 (en) * | 2010-06-09 | 2013-03-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Auto device skew manufacturing |
US20120016499A1 (en) * | 2010-07-16 | 2012-01-19 | Hitachi Global Storage Technologies Netherlands B.V. | Implementing sequential segmented interleaving algorithm for enhanced process control |
US8406911B2 (en) * | 2010-07-16 | 2013-03-26 | HGST Netherlands B.V. | Implementing sequential segmented interleaving algorithm for enhanced process control |
US8742581B2 (en) | 2011-06-21 | 2014-06-03 | International Business Machines Corporation | Enhanced diffusion barrier for interconnect structures |
US8420531B2 (en) | 2011-06-21 | 2013-04-16 | International Business Machines Corporation | Enhanced diffusion barrier for interconnect structures |
US9429922B2 (en) * | 2013-01-24 | 2016-08-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of process stability |
US20140207269A1 (en) * | 2013-01-24 | 2014-07-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of Process Stability |
US20140278165A1 (en) * | 2013-03-14 | 2014-09-18 | Johnson Controls Technology Company | Systems and methods for analyzing energy consumption model data |
US10133263B1 (en) | 2014-08-18 | 2018-11-20 | Kla-Tencor Corporation | Process condition based dynamic defect inspection |
US10177091B2 (en) | 2016-02-19 | 2019-01-08 | Globalfoundries Inc. | Interconnect structure and method of forming |
US9761484B1 (en) | 2016-07-25 | 2017-09-12 | International Business Machines Corporation | Interconnect structure and fabrication thereof |
US10468269B2 (en) | 2016-07-25 | 2019-11-05 | International Business Machines Corporation | Interconnect structure and fabrication thereof |
US9773735B1 (en) | 2016-08-16 | 2017-09-26 | International Business Machines Corporation | Geometry control in advanced interconnect structures |
US9953864B2 (en) | 2016-08-30 | 2018-04-24 | International Business Machines Corporation | Interconnect structure |
US9786603B1 (en) | 2016-09-22 | 2017-10-10 | International Business Machines Corporation | Surface nitridation in metal interconnects |
US10068846B2 (en) | 2016-09-22 | 2018-09-04 | International Business Machines Corporation | Surface nitridation in metal interconnects |
US10615116B2 (en) | 2016-09-22 | 2020-04-07 | International Business Machines Corporation | Surface nitridation in metal interconnects |
US10361153B2 (en) | 2016-09-22 | 2019-07-23 | International Business Machines Corporation | Surface nitridation in metal interconnects |
US10304695B2 (en) | 2016-10-06 | 2019-05-28 | International Business Machines Corporation | Self-formed liner for interconnect structures |
US9721895B1 (en) | 2016-10-06 | 2017-08-01 | International Business Machines Corporation | Self-formed liner for interconnect structures |
US10930520B2 (en) | 2016-10-06 | 2021-02-23 | International Business Machines Corporation | Self-formed liner for interconnect structures |
US10185312B2 (en) | 2017-01-31 | 2019-01-22 | Globalfoundries Inc. | Insitu tool health and recipe quality monitoring on a CDSEM |
US11133216B2 (en) | 2018-06-01 | 2021-09-28 | International Business Machines Corporation | Interconnect structure |
US10916503B2 (en) | 2018-09-11 | 2021-02-09 | International Business Machines Corporation | Back end of line metallization structure |
US10714382B2 (en) | 2018-10-11 | 2020-07-14 | International Business Machines Corporation | Controlling performance and reliability of conductive regions in a metallization network |
US10896846B2 (en) | 2018-10-11 | 2021-01-19 | International Business Machines Corporation | Controlling performance and reliability of conductive regions in a metallization network |
Also Published As
Publication number | Publication date |
---|---|
WO2003009345A9 (en) | 2004-04-08 |
KR20040015813A (en) | 2004-02-19 |
WO2003009345A3 (en) | 2004-01-08 |
WO2003009345A2 (en) | 2003-01-30 |
AU2002316650A1 (en) | 2003-03-03 |
JP2005522018A (en) | 2005-07-21 |
EP1412827B1 (en) | 2007-05-09 |
CN1564970A (en) | 2005-01-12 |
EP1412827A2 (en) | 2004-04-28 |
KR100916190B1 (en) | 2009-09-08 |
DE60220063D1 (en) | 2007-06-21 |
ATE362127T1 (en) | 2007-06-15 |
JP4377224B2 (en) | 2009-12-02 |
DE60220063T2 (en) | 2008-01-10 |
US20030014145A1 (en) | 2003-01-16 |
CN100432879C (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7337019B2 (en) | Integration of fault detection with run-to-run control | |
US8849615B2 (en) | Method and system for semiconductor process control and monitoring by using a data quality metric | |
US6556949B1 (en) | Semiconductor processing techniques | |
US7047099B2 (en) | Integrating tool, module, and fab level control | |
US8010321B2 (en) | Metrics independent and recipe independent fault classes | |
KR101113203B1 (en) | Adjusting a sampling rate based on state estimation results | |
US6778873B1 (en) | Identifying a cause of a fault based on a process controller output | |
US11126172B2 (en) | Methods and systems for applying run-to-run control and virtual metrology to reduce equipment recovery time | |
KR20200045918A (en) | Operating system solution system applied to semiconductor manufacturing process | |
US6701206B1 (en) | Method and system for controlling a process tool | |
US6665623B1 (en) | Method and apparatus for optimizing downstream uniformity | |
US7100081B1 (en) | Method and apparatus for fault classification based on residual vectors | |
US6804619B1 (en) | Process control based on tool health data | |
US6821792B1 (en) | Method and apparatus for determining a sampling plan based on process and equipment state information | |
JP4828831B2 (en) | Manufacturing method of semiconductor device | |
US20080275587A1 (en) | Fault detection on a multivariate sub-model | |
US6697696B1 (en) | Fault detection control system using dual bus architecture, and methods of using same | |
US7020535B1 (en) | Method and apparatus for providing excitation for a process controller | |
US7321993B1 (en) | Method and apparatus for fault detection classification of multiple tools based upon external data | |
US7103439B1 (en) | Method and apparatus for initializing tool controllers based on tool event data | |
US7337091B1 (en) | Method and apparatus for coordinating fault detection settings and process control changes | |
CN107305365B (en) | RGA-based process control method and process control system | |
Barna | APC in the semiconductor industry, history and near term prognosis | |
Deraman et al. | MODEL OF RULE PARAMETER CREATION FOR WAFER SCRAP PREVENTION IN THE APPLIED MATERIALS CENTURA 5200 METAL ETCHER PROCESS | |
US20090112346A1 (en) | Method and System for Adaptive Equipment Notifications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REISS, TERRY P.;SHANMUGASUNDRAM, ARULKUMAR P.;SCHWARM ALEXANDER T.;REEL/FRAME:012873/0543;SIGNING DATES FROM 20020424 TO 20020429 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |