US6126776A - Method of modifying the surface of a solid polymer substrate and the product obtained - Google Patents
Method of modifying the surface of a solid polymer substrate and the product obtained Download PDFInfo
- Publication number
- US6126776A US6126776A US09/202,516 US20251698A US6126776A US 6126776 A US6126776 A US 6126776A US 20251698 A US20251698 A US 20251698A US 6126776 A US6126776 A US 6126776A
- Authority
- US
- United States
- Prior art keywords
- polymer
- substrate
- monomer
- vapour
- polymer substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 claims abstract description 71
- 239000000178 monomer Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 229920000642 polymer Polymers 0.000 claims abstract description 28
- 229920000307 polymer substrate Polymers 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000011230 binding agent Substances 0.000 claims abstract description 16
- 239000011368 organic material Substances 0.000 claims abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 8
- 229920001651 Cyanoacrylate Polymers 0.000 claims abstract description 6
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000012948 isocyanate Substances 0.000 claims abstract description 3
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 3
- -1 2-ethyl Chemical group 0.000 claims description 23
- 229940053009 ethyl cyanoacrylate Drugs 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 20
- 238000011282 treatment Methods 0.000 claims description 19
- 229940058401 polytetrafluoroethylene Drugs 0.000 claims description 17
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 17
- 239000000945 filler Substances 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000003973 paint Substances 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical group CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 229920001169 thermoplastic Polymers 0.000 claims description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims description 4
- 238000009834 vaporization Methods 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 4
- 229940095095 2-hydroxyethyl acrylate Drugs 0.000 claims description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 3
- 125000005442 diisocyanate group Chemical group 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 3
- 229920005594 polymer fiber Polymers 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 229920000137 polyphosphoric acid Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920000571 Nylon 11 Polymers 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- AXTLFVLHXSDZOW-UHFFFAOYSA-N n-ethyl-2-methylprop-2-en-1-amine Chemical compound CCNCC(C)=C AXTLFVLHXSDZOW-UHFFFAOYSA-N 0.000 claims description 2
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 229920002379 silicone rubber Polymers 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002302 Nylon 6,6 Polymers 0.000 claims 1
- 239000004945 silicone rubber Substances 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 16
- 239000004743 Polypropylene Substances 0.000 description 12
- 229920001155 polypropylene Polymers 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- IIEDMRRXMKUOQQ-UHFFFAOYSA-N 2-(cyanomethylidene)butanoic acid Chemical compound CCC(C(O)=O)=CC#N IIEDMRRXMKUOQQ-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241000283726 Bison Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S522/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S522/915—Synthetic resins or natural rubbers -- part of the class 520 series involving inert gas, steam, nitrogen gas, or carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31739—Nylon type
- Y10T428/31743—Next to addition polymer from unsaturated monomer[s]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/31797—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
Definitions
- the present invention relates to a method of modifying the surface of a solid polymer substrate and the product obtained.
- Untreated or unmodified polymer substrates are in general difficult to paint, print on or adhere to. Particularly, it is difficult to achieve a bonding between an untreated polymer surface and an organic top layer.
- the surface treatments normally used are flaming, chemical treatment with chrome sulphuric acid, or corona treatment. Flaming is the simplest method. In this method the substrate surface is stroked by a flame. Both the flaming treatment and the chemical treatment are very rough methods which may weaken the cohesiveness of the polymer substrate. Further, it is normally preferred to avoid the use of strong acids in the production.
- One of the problems of using flame treatment is that the method is not controllable. Often the surface of the polymer is severely degraded due to this treatment.
- corona treatment By use of this method a number up small sparks are created on the substrate surface (a silent discharge) These sparks often result in an erosion of the surface as well in a generation of free radicals.
- the free radicals are normally terminated by reaction with oxygen.
- the article by K. Johnsen et. al. "Modification of Polyolefin Surfaces by Plasma-Induced Grafting" Journal of Applied Polymer Science, Vol. 59, pp. 1651-1657 (1996), describes a method of modifying polyolefin surfaces by grafting polar monomers onto the surface.
- the grafting is initiated by a treatment of a LD-PE substrate surface with argon plasma for 5 minutes, whereby free radicals are generated. Thereafter, or simultaneously, the surface is treated with one of the following monomers: Acrylic acid, glycidyl methacrylate, 2-hydroxy ethylacrylate and methyl acrylate.
- the grafting time was from 7 to more than 90 minutes.
- the contact angle against water for the (acrylic acid monomer) treated LD-PE surface was improved from about 91.5° to about 38°. However, it was not tested if the affinity between the treated LD-PE surface and an organic binder actually was improved. It was finally concluded that the method is too slow to be of direct industrial application.
- a similar method of plasma treatment of PTFE surfaces is described in JP patent application No. 55-131026.
- a PTFE surface was treated with a He gas plasma for 2-10 minutes and simultaneously treated with N,N-dimethylaniline, N-monomethylaniline, aniline, benzonitrile, benzamide or pyridine monomers.
- An oxygen plasma treatment of PTFE was conducted without monomer treatment, and peel tests of the PTFE samples showed that there was no significant difference in peel resistance between the PTFE surfaces that were treated with monomers and the PTFE surfaces that were only treated with oxygen plasma. Actually, the latter had a better peel resistance than the monomer treated surfaces.
- a method of electroless plating is described in JP application No. 92-240189.
- a PTFE substrate is irradiated with UV laser in the presence of amine or amide followed by an immersing in an electroless metal plating solvent. This result in a good bonding of the plated metal to the substrate.
- this method can only be used for adhering thin metal layers to polymer substrates.
- JP patent application No. 90-081728 Another method for treatment of a fluorinated polymer is described in JP patent application No. 90-081728.
- a polymerisable monomer selected between acrylic acid, styrene sulphonic acid and acrylamide is grafted onto the surface of the resin by coating the surface with a monomer solvent, followed by irradiation of the surface with UV laser.
- the object of the present invention is to provide a industrially applicable method of binding a polymer substrate to an organic binder material, which method results in an improved binding strength.
- the object of the present invention is to provide an industrially applicable method of modifying a polymer surface, by use of which method the surface affinity against organic binder material is improved.
- Another object of the present invention is to provide a fast method of modifying a polymer surface, by use of which method the surface affinity against organic binder material is improved.
- a further object of the present invention is to provide a method of modifying a polymer surface, which does not result in any severe depolymerization of the polymer substrate, in particular when the substrate material exhibits fluorine and/or tertiary carbon atoms, and by use of which method the surface affinity against organic binder material is improved.
- step b) starts before step a), simultaneously with step a), under step a), or follows immediately after step a).
- Plasma treatment of polymer surfaces is e.g. used for cleaning purpose.
- the generated radicals are often terminated by reaction with oxygen.
- the polymer substrate can be of any polymer material provided that free radicals are created on the surface of the material when it is subjected to a gas plasma and/or treated with UV light.
- the polymer substrate is a silicon rubber, a polyolefin, or another thermoplastic.
- the thermoplastic is preferably selected between polytetra-fluoroethylene (PTFE), tetra-fluoroethylene-hexa-fluoropropylene-copolymer (FEP), polyvinyl-difluoride (PVDF), polyamides, such as e.g. nylon 6.6 and nylon 11, and polyvinyl-chloride (PVC).
- PTFE polytetra-fluoroethylene
- FEP tetra-fluoroethylene-hexa-fluoropropylene-copolymer
- PVDF polyvinyl-difluoride
- polyamides such as e.g. nylon 6.6 and nylon 11
- PVC polyvinyl-chloride
- the polyolefin is preferably polypropylene (PP) or poly (4-methyl-1-pentene) (PMP)
- the substrate can have any shape and any size.
- the polymer substrate is in the form of film, sheet, pipe, rod, porous or non-porous body, fabric, non-woven fabric, fibres or threads.
- the polymer substrate is produced by injection moulding.
- the wavelength and the intensity of the UV light are selected depending on the constitution of the polymer.
- a skilled person can by use of ordinary techniques optimise the method by selecting wavelength and intensity of the UV light as well as selecting the time of radiation.
- the time of radiation should naturally be sufficiently long to create the radicals on the surface.
- the time of radiation should not be too long, as this might result in degradation of the substrate.
- the generation of radicals on the substrate surface is preferably obtained by subjecting the substrate to a gas plasma.
- the plasma can be generated by any known methods, but preferably the gas plasma is generated by excitation of a gas in a direct current (DC), audio frequency (AF), radio frequency (RF) or microwave (MW) generated electric field. Most preferably the gas plasma is generated by excitation of a gas in a direct current (DC) or by exitation using radio frequency (RF).
- the intensity of the used gas plasma should preferably have a level ensuring creation of radicals in the polymer surface. If the level is too high, this may result in severe damage of the bulk-polymer (depolymerization). Hence, the powerlevel of the plasma should be optimized so that surface radicals are created, but no serious damage is made to the bulk.
- a preferred method of generating a plasma is described in the applicant's European patent application No. EP 96610018.2.
- gas is subjected to an electric field generated by an electrode system comprising n electrodes, n being an integer greater than or equal to 3, preferably between 3 and 30, each of the n electrodes being connected to one of the following AC voltages:
- f is a frequency in the range from 10 to 10000 Hz, preferably from 30 to 200 Hz, more preferably from 50 to 60 Hz
- U 0 is a voltage in the range from 50 to 10000 V
- At least one electrode being connected to U r , at least one electrode being connected to U s , and at least one electrode being connected to U t .
- the electrode is preferably placed in a circle.
- the gas can be any inert gas or mixtures thereof, preferably a gas selected between He, Ne, Ar and Kr.
- inert gas is meant a gas that does not react chemically with the polymer surface.
- the monomer or monomer mixture preferably comprises one or more of 2- C 1 -C 10 alkyl cyano acrylate and diisocyanate, and more preferably one or more of 2-ethyl cyano acrylate and toluene 2,4-diisocyanate.
- the monomer mixture may also comprise one or more of acrylic acid, methyl acrylate, 2-hydroxy-ethylacrylate, N-ethyl-2-methyl allylamine, glycidyl methacrylate, diallylamine, and/or other vinyl group containing monomers.
- the monomer vapour comprises 60 mole % or more of 2-ethyl cyano acrylate vapour, most preferably 90 mole % or more of 2-ethyl cyano acrylate vapour.
- the monomer mixture prior to vaporization consists essentially of a mixture of 2-ethyl cyano acrylate, a water free acid preferably having a partial vapour pressure which is lower than the partial vapour pressure of 2-ethyl cyano acrylate, and up to 40 weight-% of another filler, preferably a mixture of 2-ethyl cyano acrylate and an acid having a partial vapour pressure in the plasma which is lower than half the partial vapour pressure of 2-ethyl cyano acrylate, most preferably a mixture of 2-ethyl cyano acrylate and a polyphosphoric acid.
- filler is meant a material which does not act as a monomer under the treatment conditions.
- the monomer mixture prior to vaporization consists of a mixture of 60 to 97 weight-% of 2-ethyl cyano acrylate, up to 10 weight-% of polyphosphoric acid and up to 40 weight-% of another filler.
- the method is preferably carried out in a reactor which may be at least partly evacuated from air and water vapour. Further, the reactor should have a channel for feeding the inert gas, and a channel for feeding the monomer or monomer mixture.
- the monomer or monomer mixture is introduced as a gas, e.g. by evaporation from a bottle or by injection, e.g. through a nozzle.
- the substrate is placed in the reactor, and some or all of the air and optionally water vapour are evacuated.
- Inert gas is fed into the reactor, and the plasma is generated (step a)). Before, simultaneously or shortly thereafter monomer or monomer mixture is fed into the reactor (step b)).
- the generation step a) is preferably carried out for a period of between 0,01 and 1000 seconds and the treatment step b) is preferably carried out for a period of between 0,1 and 1000 seconds.
- the generation step a) is preferably carried out for a period which is equal to or longer than the period of the treatment step b).
- the treatment step b) may continue when step a) has ended, even though there no longer is generated radicals on the substrate surface. This continuation of step b) will then result in a polymerisation of monomers onto the monomers which already have been bound to the polymer surface.
- step a) is preferably carried out for more than 30 seconds, and step b) is started 10 to 30 seconds after step a) so as to clean the surface before the monomers are polymerized onto the substrate surface.
- step a) and b) are preferably ended simultaneously.
- the partial pressure of the inert gas or the plasma in step a) is preferably between 0.1 and 10000 Pa.
- the monomer pressure in step b) is preferably between 0,1 and 100000 Pa, more preferably between 10 and 1000 Pa.
- the total pressure i.e. the sum of the partial pressures of the air, optionally water vapour, the inert gas or plasma and the monomer, under step a) is preferably equal to the total pressure under step b), the total pressure is preferably between 0,2 and 100000 Pa, more preferably between 0,2 and 10000 Pa, and most preferably between 10 and 1000 Pa.
- the temperature is not so important and should preferably be the same under both step a) and step b). Normally the temperature will rise a little under the generation step a).
- the temperature under both step a) and step b) is between 250 and 450 K, most preferably between 280 and 330 K.
- the substrate and such an organic binder material may be bonded to each other to create a strong bonding.
- the present invention therefore also concerns a method of binding an organic binder material to a surface of a solid polymer substrate. This method comprises the steps of
- the modifying step i) is carried out not more than 24 hours before the contacting step ii), most preferably the modifying step i) is carried out between immediately before and 1 hour before the contacting step ii).
- the organic binder material may be any organic material which is either solid or is able to solidify e.g. by evaporation of a solvent, or by a chemical hardening.
- Preferred binder material is a paint, an adhesive or another polymer material, preferably selected between a crosslinkable thermoplastic and a crosslinkable rubber.
- the organic binder material may as well be a substrate which may also be surface modified by the method defined in claims 1 to 15.
- the organic binder material is subjected to a plasma treatment immediately. before the contacting step ii).
- the invention also relates to the polymer substrate modified according to the method as defined in claims 1 to 15 as well as the polymer bonded to an organic material by the method as defined in claims 16 and 17.
- the invention relates to a polymer composite material as defined in claim 20, wherein the polymer substrate is a polymer fiber, a polymer thread or a polymer filler and the organic material is another polymer,
- the electrodes are made from aluminium rods, having a diameter of 20 mm and a length of 30 cm.
- U r , U s and U t When describing the voltage between the electrodes, reference is made to the voltages U r , U s and U t as described above.
- All pretreatments were carried out by placing the samples in the centre of the vacuum-vessel.
- the chamber is evacuated by use of an Edwards EH 250 Roots-blower, backed by an Alcatel rotary vane pump.
- the pressure is monitored using an Alcatel pirani-gauge, mounted on the start of the pumping-line.
- the chamber of the vacuum-vessel comprises as mentioned a channel through which it is possible to evaporate 2-ethyl cyano acrylate into the plasma system.
- the strips were after treatment bonded to an aluminium strip using an epoxy-based adhesive (Araldit Rapid). This test was carried out according to the ISO 4587 test for measurement of the shear-strength of adhesives.
- a flow of 2 sccm Ar is established, and pumping is carried out until a steady-state situation is reached. After this, the plasma is ignited at a voltage of 280 V. After 20 s the 2-ethyl cyano acrylate containing bottle is opened, and the system is run for a further 30 s. After treatment the PTFE-strips were glued to sand-blasted Al-strips using the adhesive mentioned above.
- the shear-strength of the bond was measured to be in excess of 2 N/mm 2 , which is considerably higher than the value of 0.1 N/mm which is measured for untreated strips.
- the 3-phase plasma is ignited at a voltage of 280V. After 10 s the voltage is reduced to 240 V, and the valve to the 2-ethyl cyano acrylate bottle (Bison Super glue) is opened. After further 30 s the voltage is reduced to 0V. After further 20 s the 2-ethyl cyano acrylate bottle is closed, and air is let into the vacuum vessel.
- the sample is painted using the paint mentioned above.
- test result obtained according to the ISO 2409 standard is determined to be "0-1".
- test result is determined to be "5".
- test results are determined in accordance with ISO 2409 by subjecting the material to a peel test and visually determining how strong the bonding between the substrate and the paint is. The lower the character, the better the bonding.
- the procedure for pretreatment was exactly as described in example 1. The only difference is that the ethyl cyanoacrylate in the vaporizer was substituted with the compound mentioned above.
- the tensile strength of the bonding and not the shear strength was used to quantizize the improvement.
- the tensile strength of the bonding between untreated PTFE and epoxy was below the resolution of the used test equipment.
- the tensile strength of the bond between treated PTFE and epoxy was measured to be 7.6 N/mm 2 . Failure of the bonding was due to cohesive failure in the PTFE material itself, and not due to debonding between PTFE and epoxy.
- Polypropylene (PP) was treated according to the procedure described in example 2. The only difference is that the ethyl cyanoacrylate in the vaporizer was substituted with the compound mentioned above. In this, later experiment the improvement of bondstrength was quantified according to the procedure described in example 3. The measured tensile strength in this experiment was 14.8 N/mm 2 i.e. comparable to the theoretical strength of the used epoxy adhesive. No tests were carried out on non-treated PP samples, as it is known that it is not possible to achieve a bond between PP and epoxy.
- test specimens The surface of injection moulded glas fibre reinforced polyamide 6.6 curved test specimens was modified as described in example 1. Seven days after this treatment the test specimens were painted with polyurethane lacquer: Alexit 341-83, 401-83, 401-54 and 412-00 from Mankiewicz GmbH, Hamburg).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/255,517 USRE39000E1 (en) | 1996-06-28 | 1997-06-27 | Method of modifying the surface of a solid polymer substrate and the product obtained |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO962772 | 1996-06-28 | ||
NO962772A NO304234B1 (no) | 1996-06-28 | 1996-06-28 | FremgangsmÕte for modifisering av overflaten av fast polymersubstrat, det derved oppnÕdde produktet samt anvendelse av fremgangsmÕten |
PCT/DK1997/000279 WO1998000457A1 (en) | 1996-06-28 | 1997-06-27 | A method of modifying the surface of a solid polymer substrate and the product obtained |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10255517 Reissue | 1997-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US6126776A true US6126776A (en) | 2000-10-03 |
Family
ID=19899580
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/202,516 Ceased US6126776A (en) | 1996-06-28 | 1997-06-27 | Method of modifying the surface of a solid polymer substrate and the product obtained |
US10/255,517 Expired - Fee Related USRE39000E1 (en) | 1996-06-28 | 1997-06-27 | Method of modifying the surface of a solid polymer substrate and the product obtained |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/255,517 Expired - Fee Related USRE39000E1 (en) | 1996-06-28 | 1997-06-27 | Method of modifying the surface of a solid polymer substrate and the product obtained |
Country Status (8)
Country | Link |
---|---|
US (2) | US6126776A (no) |
EP (1) | EP0912629B1 (no) |
JP (1) | JP2000514848A (no) |
AT (1) | ATE274547T1 (no) |
AU (1) | AU3167097A (no) |
DE (1) | DE69730431T2 (no) |
NO (1) | NO304234B1 (no) |
WO (1) | WO1998000457A1 (no) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003068846A1 (en) * | 2002-02-18 | 2003-08-21 | Nkt Research & Innovation A/S | Methods of treating polymeric substrates |
US20040050493A1 (en) * | 2000-10-27 | 2004-03-18 | Bjorn Winther-Jensen | Method and an apparatus for excitation of a plasma |
WO2004030703A2 (en) * | 2002-10-02 | 2004-04-15 | Super Absorbent Company | Irradiated absorbent materials |
US20040086660A1 (en) * | 2000-12-29 | 2004-05-06 | Bjorn Winther-Jensen | Method for the preparation of a substrate for immobilising chemical compounds and the substrate and the use thereof |
US6774168B2 (en) | 2001-11-21 | 2004-08-10 | Ppg Industries Ohio, Inc. | Adhesion promoting surface treatment or surface cleaner for metal substrates |
US20040185260A1 (en) * | 2003-02-07 | 2004-09-23 | Clemson University | Surface modification of substrates |
US20040265505A1 (en) * | 2000-05-10 | 2004-12-30 | Bjorn Winther-Jensen | Method of coating the surface of an inorganic substrates with an organic material and the product obtained |
US20070017897A1 (en) * | 2004-08-09 | 2007-01-25 | Applied Materials, Inc. | Multi-frequency plasma enhanced process chamber having a toroidal plasma source |
US20070042520A1 (en) * | 2005-08-17 | 2007-02-22 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing vertical GaN-based light emitting diode |
US20100028561A1 (en) * | 2007-04-02 | 2010-02-04 | Vlaamese Instelling Voor Technologisch Onderzoek N .V. (VITO) | Method for producing a coating by atmospheric pressure plasma technology |
WO2011029777A1 (de) | 2009-09-11 | 2011-03-17 | Basf Se | Verfahren zur herstellung von beschichteten polymerfasern |
CN101287584B (zh) * | 2005-10-14 | 2012-02-29 | 株式会社Lg生命科学 | 用等离子体工艺生产塑料基底的方法及用该方法生产的塑料基底 |
CN111518304A (zh) * | 2020-06-23 | 2020-08-11 | 南昌航空大学 | 一种提高硫化天然橡胶表面粘接性能的方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100752245B1 (ko) * | 1999-12-28 | 2007-08-29 | 카나자와 히토시 | 고분자재료의 개질방법 및 그 용도 |
JP5013242B2 (ja) * | 2005-04-25 | 2012-08-29 | 旭硝子株式会社 | 着色されたフッ素樹脂成形体 |
EP1934035A4 (en) * | 2005-10-14 | 2010-11-17 | Lg Chemical Ltd | METHOD FOR PRODUCING A PLASTIC SUBSTRATE BY PLASMA PROCESS AND PLASTIC SUBSTRATE PRODUCED THEREFOR |
JP2009013310A (ja) * | 2007-07-05 | 2009-01-22 | Nippon Valqua Ind Ltd | フッ素樹脂系成形物の表面改質方法 |
WO2014083662A1 (ja) * | 2012-11-29 | 2014-06-05 | 国立大学法人岐阜大学 | 成形用治具の製造方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977954A (en) * | 1973-08-22 | 1976-08-31 | The Regents Of The University Of California | Sensitized vapor phase photo-grafting of monomers onto surfaces |
JPS55131026A (en) * | 1979-03-31 | 1980-10-11 | Agency Of Ind Science & Technol | Surface modification of polytetrafluoroethylene |
US4333963A (en) * | 1980-12-30 | 1982-06-08 | Rohm And Haas Company | Radiation curable compositions containing β-cyanoethoxyalkyl acrylates |
JPS60229933A (ja) * | 1984-04-28 | 1985-11-15 | Yoshito Ikada | 高分子材料の表面改質方法 |
JPS6189236A (ja) * | 1984-10-09 | 1986-05-07 | Kuraray Co Ltd | 表面改質法 |
EP0191680A1 (en) * | 1985-01-30 | 1986-08-20 | Shin-Etsu Chemical Co., Ltd. | An aromatic polyamide fiber-based composite prepreg |
US4752426A (en) * | 1985-06-27 | 1988-06-21 | Yoshito Ikada | Process for manufacture of plastic resinous tubes |
JPS63215737A (ja) * | 1987-03-04 | 1988-09-08 | Asahi Chem Ind Co Ltd | 表面を改質した成形体の製造法 |
JPH04159337A (ja) * | 1990-10-23 | 1992-06-02 | Terumo Corp | 表面が改質された高分子材料およびその製造方法 |
JPH04159336A (ja) * | 1990-10-23 | 1992-06-02 | Terumo Corp | 表面が改質された高分子材料およびその製造方法 |
JPH05309131A (ja) * | 1992-05-11 | 1993-11-22 | Terumo Corp | 表面重合により表面改質された医療用具 |
EP0574352A1 (en) * | 1992-06-09 | 1993-12-15 | Ciba-Geigy Ag | Process for graft polymerization on surfaces of preformed substrates to modify surface properties |
JPH0687964A (ja) * | 1992-09-09 | 1994-03-29 | Mitsubishi Electric Corp | 樹脂表面の改質方法および無電解メッキ形成方法および前記方法を用いて製造された小型電子回路基板 |
US5348772A (en) * | 1991-06-10 | 1994-09-20 | Institut Textile De France | Use of amino groups, obtained on a polymer material by an electric treatment under nitrogen atmosphere, for accelerating a grafting reaction |
EP0741404A1 (en) * | 1995-05-02 | 1996-11-06 | Nkt Research Center A/S | A method and an electrode system for excitation of a plasma |
-
1996
- 1996-06-28 NO NO962772A patent/NO304234B1/no unknown
-
1997
- 1997-06-27 EP EP97927023A patent/EP0912629B1/en not_active Expired - Lifetime
- 1997-06-27 AU AU31670/97A patent/AU3167097A/en not_active Abandoned
- 1997-06-27 US US09/202,516 patent/US6126776A/en not_active Ceased
- 1997-06-27 WO PCT/DK1997/000279 patent/WO1998000457A1/en active IP Right Grant
- 1997-06-27 US US10/255,517 patent/USRE39000E1/en not_active Expired - Fee Related
- 1997-06-27 JP JP10503760A patent/JP2000514848A/ja not_active Abandoned
- 1997-06-27 DE DE69730431T patent/DE69730431T2/de not_active Expired - Fee Related
- 1997-06-27 AT AT97927023T patent/ATE274547T1/de not_active IP Right Cessation
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977954A (en) * | 1973-08-22 | 1976-08-31 | The Regents Of The University Of California | Sensitized vapor phase photo-grafting of monomers onto surfaces |
JPS55131026A (en) * | 1979-03-31 | 1980-10-11 | Agency Of Ind Science & Technol | Surface modification of polytetrafluoroethylene |
US4333963A (en) * | 1980-12-30 | 1982-06-08 | Rohm And Haas Company | Radiation curable compositions containing β-cyanoethoxyalkyl acrylates |
JPS60229933A (ja) * | 1984-04-28 | 1985-11-15 | Yoshito Ikada | 高分子材料の表面改質方法 |
JPS6189236A (ja) * | 1984-10-09 | 1986-05-07 | Kuraray Co Ltd | 表面改質法 |
EP0191680A1 (en) * | 1985-01-30 | 1986-08-20 | Shin-Etsu Chemical Co., Ltd. | An aromatic polyamide fiber-based composite prepreg |
US4752426A (en) * | 1985-06-27 | 1988-06-21 | Yoshito Ikada | Process for manufacture of plastic resinous tubes |
JPS63215737A (ja) * | 1987-03-04 | 1988-09-08 | Asahi Chem Ind Co Ltd | 表面を改質した成形体の製造法 |
JPH04159337A (ja) * | 1990-10-23 | 1992-06-02 | Terumo Corp | 表面が改質された高分子材料およびその製造方法 |
JPH04159336A (ja) * | 1990-10-23 | 1992-06-02 | Terumo Corp | 表面が改質された高分子材料およびその製造方法 |
US5348772A (en) * | 1991-06-10 | 1994-09-20 | Institut Textile De France | Use of amino groups, obtained on a polymer material by an electric treatment under nitrogen atmosphere, for accelerating a grafting reaction |
JPH05309131A (ja) * | 1992-05-11 | 1993-11-22 | Terumo Corp | 表面重合により表面改質された医療用具 |
EP0574352A1 (en) * | 1992-06-09 | 1993-12-15 | Ciba-Geigy Ag | Process for graft polymerization on surfaces of preformed substrates to modify surface properties |
JPH0687964A (ja) * | 1992-09-09 | 1994-03-29 | Mitsubishi Electric Corp | 樹脂表面の改質方法および無電解メッキ形成方法および前記方法を用いて製造された小型電子回路基板 |
EP0741404A1 (en) * | 1995-05-02 | 1996-11-06 | Nkt Research Center A/S | A method and an electrode system for excitation of a plasma |
Non-Patent Citations (6)
Title |
---|
"Grafting organic coupounds onto fibrous textile materials, " Malcik, et al. Czech., CAPLUS accession No. 1982:53774. |
"Modification of Polyolefin Surfaces by Plasma-Induced Grafting," Johnsen, et al. Journal of Applied Polymer Science, vol. 59, No. 30, Mar. 1996, 1651-1657. |
"Surface structures and adhesion characteristics of poly(tetrafluorethylene) films after modification by graft copolymerization, " J. Adhes, Sci. Technol. 1996, 725-743. |
Grafting organic coupounds onto fibrous textile materials, Malcik, et al. Czech., CAPLUS accession No. 1982:53774. * |
Modification of Polyolefin Surfaces by Plasma Induced Grafting, Johnsen, et al. Journal of Applied Polymer Science, vol. 59, No. 30, Mar. 1996, 1651 1657. * |
Surface structures and adhesion characteristics of poly(tetrafluorethylene) films after modification by graft copolymerization, J. Adhes, Sci. Technol. 1996, 725 743. * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7238395B2 (en) | 2000-05-10 | 2007-07-03 | Nkt Research A/S | Method of coating the surface of an inorganic substrates with an organic material and the product obtained |
US20040265505A1 (en) * | 2000-05-10 | 2004-12-30 | Bjorn Winther-Jensen | Method of coating the surface of an inorganic substrates with an organic material and the product obtained |
US20040050493A1 (en) * | 2000-10-27 | 2004-03-18 | Bjorn Winther-Jensen | Method and an apparatus for excitation of a plasma |
US20040086660A1 (en) * | 2000-12-29 | 2004-05-06 | Bjorn Winther-Jensen | Method for the preparation of a substrate for immobilising chemical compounds and the substrate and the use thereof |
US6774168B2 (en) | 2001-11-21 | 2004-08-10 | Ppg Industries Ohio, Inc. | Adhesion promoting surface treatment or surface cleaner for metal substrates |
US20040224168A1 (en) * | 2001-11-21 | 2004-11-11 | Jennings Robert E. | Adhesion promoting surface treatment or surface cleaner for metal substrates |
WO2003068846A1 (en) * | 2002-02-18 | 2003-08-21 | Nkt Research & Innovation A/S | Methods of treating polymeric substrates |
US20050158472A1 (en) * | 2002-02-18 | 2005-07-21 | Joachim Karthauser | Methods of treating polymeric subtrates |
WO2004030703A2 (en) * | 2002-10-02 | 2004-04-15 | Super Absorbent Company | Irradiated absorbent materials |
WO2004030703A3 (en) * | 2002-10-02 | 2004-05-06 | Super Absorbent Company | Irradiated absorbent materials |
US7026014B2 (en) | 2003-02-07 | 2006-04-11 | Clemson University | Surface modification of substrates |
US20060154081A1 (en) * | 2003-02-07 | 2006-07-13 | Luzinov Igor A | Surface modification of substrates |
US20040185260A1 (en) * | 2003-02-07 | 2004-09-23 | Clemson University | Surface modification of substrates |
US7261938B2 (en) | 2003-02-07 | 2007-08-28 | Clemson University | Surface modification of substrates |
US20070017897A1 (en) * | 2004-08-09 | 2007-01-25 | Applied Materials, Inc. | Multi-frequency plasma enhanced process chamber having a toroidal plasma source |
US20070042520A1 (en) * | 2005-08-17 | 2007-02-22 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing vertical GaN-based light emitting diode |
CN101287584B (zh) * | 2005-10-14 | 2012-02-29 | 株式会社Lg生命科学 | 用等离子体工艺生产塑料基底的方法及用该方法生产的塑料基底 |
US20100028561A1 (en) * | 2007-04-02 | 2010-02-04 | Vlaamese Instelling Voor Technologisch Onderzoek N .V. (VITO) | Method for producing a coating by atmospheric pressure plasma technology |
WO2011029777A1 (de) | 2009-09-11 | 2011-03-17 | Basf Se | Verfahren zur herstellung von beschichteten polymerfasern |
CN111518304A (zh) * | 2020-06-23 | 2020-08-11 | 南昌航空大学 | 一种提高硫化天然橡胶表面粘接性能的方法 |
CN111518304B (zh) * | 2020-06-23 | 2022-09-02 | 南昌航空大学 | 一种提高硫化天然橡胶表面粘接性能的方法 |
Also Published As
Publication number | Publication date |
---|---|
ATE274547T1 (de) | 2004-09-15 |
NO962772D0 (no) | 1996-06-28 |
EP0912629B1 (en) | 2004-08-25 |
EP0912629A1 (en) | 1999-05-06 |
DE69730431D1 (de) | 2004-09-30 |
JP2000514848A (ja) | 2000-11-07 |
NO962772L (no) | 1997-12-29 |
NO304234B1 (no) | 1998-11-16 |
AU3167097A (en) | 1998-01-21 |
USRE39000E1 (en) | 2006-03-07 |
WO1998000457A1 (en) | 1998-01-08 |
DE69730431T2 (de) | 2005-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6126776A (en) | Method of modifying the surface of a solid polymer substrate and the product obtained | |
US5755913A (en) | Adhesive-free adhesion between polymer surfaces | |
Comyn et al. | Plasma-treatment of polyetheretherketone (PEEK) for adhesive bonding | |
van der Leeden et al. | Surface properties of plastic materials in relation to their adhering performance | |
Wang et al. | Surface structures and adhesion enhancement of poly (tetrafluoroethylene) films after modification by graft copolymerization with glycidyl methacrylate | |
Kang et al. | Surface modification of polymers for adhesion enhancement | |
Blais et al. | Effects of corona treatment on composite formation. Adhesion between incompatible polymers | |
KR20180107254A (ko) | 코로나 처리를 이용하여 접착제 실리콘 물질을 플루오로폴리머 필름에 접착시키는 방법 | |
CN108189525A (zh) | 一种提高复合薄膜粘接性能的方法 | |
Kaplan et al. | Plasma processes and adhesive bonding of polytetrafluoroethylene | |
Occhiello et al. | Adhesion properties of plasma-treated carbon/PEEK composites | |
Kang et al. | Surface modification of polymer films by graft copolymerization for adhesive-free adhesion | |
Zhang et al. | Thermal graft copolymerization with concurrent lamination of low density polyethylene and poly (tetrafluoroethylene) films | |
JPS62235339A (ja) | プラスチツク表面改質方法 | |
JP3044206B2 (ja) | 接着剤によらない重合体表面の接着 | |
Inagaki et al. | Surface modification of aromatic polyamide film by plasma graft copolymerization of glycidylmethacrylate for epoxy adhesion | |
AU750205B2 (en) | Plasma polymerization on surface of material | |
Kang et al. | Surface modification and functionalization of polytetrafluoroethylene films via graft copolymerization | |
Zhang et al. | Adhesion improvement of a poly (tetrafluoroethylene)-copper laminate by thermal graft copolymerization | |
Brewis et al. | Adhesion to fluoropolymers | |
Kang et al. | Surface modification of polytetrafluoroethylene films via graft copolymerization for auto‐adhesion | |
Kaner et al. | Effect of surface pre-treatments and ageing on the adhesive strength of polymer joints | |
Zhang et al. | Adhesion improvement of polytetrafluoroethylene/metal interface by graft copolymerization | |
Liu et al. | Lamination of polytetrafluoroethylene films via surface thermal graft copolymerization with ionic and zwitterionic monomers | |
Bhatnagar | Plasma surface treatment to enhance adhesive bonding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NKT RESEARCH CENTER A/S, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLEJBOL, KRISTIAN;WINTHER-JENSEN, BJORN;REEL/FRAME:010098/0382 Effective date: 19981203 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: NKT RESEARCH A/S, DENMARK Free format text: CHANGE OF NAME;ASSIGNOR:NKT RESEARCH CENTER A/S;REEL/FRAME:011284/0247 Effective date: 20000921 |
|
RF | Reissue application filed |
Effective date: 20020925 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed |