US3902357A - Ultra sound examining device - Google Patents
Ultra sound examining device Download PDFInfo
- Publication number
- US3902357A US3902357A US367145A US36714573A US3902357A US 3902357 A US3902357 A US 3902357A US 367145 A US367145 A US 367145A US 36714573 A US36714573 A US 36714573A US 3902357 A US3902357 A US 3902357A
- Authority
- US
- United States
- Prior art keywords
- impulses
- ultra sound
- time
- echo
- impulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 69
- 239000002243 precursor Substances 0.000 claims abstract description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000002592 echocardiography Methods 0.000 description 8
- 230000003111 delayed effect Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/06—Systems determining the position data of a target
- G01S15/42—Simultaneous measurement of distance and other co-ordinates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
- G01N29/0618—Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
- G01N29/0627—Cathode-ray tube displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/34—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
- G01N29/348—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/84—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves with indication presented on cathode-ray tubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Definitions
- An ultra sound examining device operating according to the impulse echo process and used for medical purposes comprises an ultra sound sending-receiving systern the sender of which transmitsultra sound impulses in predetermined time intervals into the object being examined through a precursor stretch connected in front of the system, for example, water precursor stretch.
- an echo impulse representing device operated depending upon the transmitted impulses which represents echo impulses of each transmitted impulse received by the receiver one after the other corresponding to the time sequence of their appearance.
- the invention is particularly characterized in that the time interval between two transmitted impulses of the ultra sound sender which follow each other has a value which is smaller than the sum of the ultra sound impulses in the precursor time in the precursor stretch and the representation time of the echo impulses in the image representing device. However, even the smallest value is not less than the representation time.
- the device includes an ultra sound sending-receiving system the sender of which transmits ultra sound impulses in predetermined intervals into the object being examined through a precursor stretch connected in front of the system, for example, a water precursor stretch.
- the device also includes an echo impulse representing device operated depending upon the transmitted impulses which represents as images echo impulses of each transmitted impulse received by the receiver one after. the other corresponding to the time sequence of their appearance.
- the time period in which the echo impulse representing device represents echo impulses pertaining to a transmitted impulse is described hereinafter as the rep resenting time period.
- A-scan or B-scan devices for example, for examination of materials or in medical diagnosis to investigate or to make an image of internal body layer structures, for example, pictures of sections through internal organs or the like.
- the switching of a precursor stretch between the ultra sound sending-receiving system and the object being examined makes possible the work in the remote zone of the system in which there are specific intensity relations within the direction characteristic of the ultra sound sender. On the other hand it serves to eliminate image falsifying multiple echoes from the image range of the echo imagery.
- Cathode ray tubes are generally used for the representation of echo impulses whereby depending upon the use (B-scan or A-scan) the electronic ray of the tube is deviated depending upon the ultra sound transmitted impulses either line by line over the tube image screen or merely periodically over its time axis; the representation of the echo impulses takes place by intensity modulation or analogous vertical deviation of the electronic ray whenever an echo impulse is received.
- the normal time period of a sending or representing cycle in known devices is one which corresponds to the specific time period after the transmitting of an ultra sound impulse. This time period corresponds to the precursor time period of the ultra sound impulses in the precursorstretch.
- the normal time period of the cycle releases a line for line movement or a time deviation of the electronic ray of the tube (beginning of the representation time period whereby during this line by line movement or during this time axis deviation the echo impulses pertaining to the transmitted impulse will be represented. Furthermore, at the end of the line by line movement or time axis deviation (end of representation time period) a new impulse is transmitted and thus a further transmitting and representing cycle is started.
- a transmitting and representing cycle with this time sequence has substantial drawbacks in view of the usually long precursor stretches in known devices. It is known that to properly eliminate multiple echoes from image representation the precursor stretch must be at least somewhat longer than the desired maximum representation depth in the region being examined. The drawback is that long precursor stretches extend the precursor time period of ultra sound impulses so that the ineffective time period between the transmitting of impulse rays and the representation of corresponding echo impulses is increased and thus image representation upon the CR. tube screen is undesirably delayed.
- multiple echoes is used herein to describe echoes which come from the examining object to the receiver and are partly reflected back to the object and then again reach the receiver.
- An object of the present invention is to eliminate such drawbacks by providing a device of the described type wherein despite long precursor stretches the imaging takes place faster than in known devices.
- the time interval between two sent impulses of the ultra sound sender which follow each other has a value which is smaller than the sum of the ultra sound impulses in the precursor time in the precursor stretch and the representation time period of the echo impulses in the image representing device.
- the smallest value should not be less than the representation time.
- the sending of a further ultra sound impulse does not take place only after termination of an echo impulse representation pertaining to the previous transmitted impulse, but at an earlier time still located in the sending or representation cycle of this preceding transmitted impulse.
- image formation in the CR. tube screen is faster than in known devices.
- the present invention provides that time intervals between transmitted impulses are advantageously so selected that already during the precursor time period the representing device is at least once activated to provide a complete representation of echo impulses.
- This selection of time intervals of transmitted impulses at least doubles the speed of image formation as compared to known devices. If in addition the transmitted'impulse frequency is wobbled, for example with 50 Hz for characterizing possibly not yet eliminated despite of precursor stretch (multiple echoes appear in image representation as light points moving back and forth with the sweep frequency) then advantageously the representing device is always activated depending upon the transmitted impulse the echo impulses of which are to be represented.
- the proper time activation takes place by the transmitted impulse supplied to the representation device with a delay by the precursor time or by an activating signal produced depending upon the transmitted impulse and delayed relatively to its appearance time by the precursor time period. On the other hand if the time spaces of the transmitted impulses are constant. then the activation of the representing device can take place also without delays by each individual transmitted impulse directly at the time or after its appearance.
- pulse running chains or monostable multivibrators are used for delayed supply of transmitted impulses to the representing device or for delayedv producing of activating signals.
- the delayed activation of the representing device can lie carried out in accordance with the present invention with simplest and cheapest means by a total of two monostable multivibrators which alternately are triggered by sent impulse following each other in time and which producewith these pressures a voltage impulse of the duration of the precursor time period. the end of which releases the activation.
- a bistable multivibrator is connected in front of said multivibrators and is switched alternately in time with the transmitted impulses from its one stable condition to its other stable condition. whereby during change into-onc stable condition it presses one monostable multivibrator and during change into the other one of the stable conditions it presses the other monostable multivibrator.
- This delay switch circuit consisting of two monostable multivibrators and one bistable multivibrator provides that each individual transmitted impulse will positively actuate 'the representing device after the desired delaying time.
- the best image following frequencies are produced for precursor time periods which are smaller than the double inscribing duration by selecting the average time interval between two following each other transmitted impulses to be equal to the sum of the regular imaging time.
- the transmitted impulse width and (for wobbled sent impulse frequency) to be at least one-half of the frequency sweep width.
- FIG. 1 is a diagrammatic sectional view of an ultra sound sending-receiving system with a precursor stretch for an ultra sound examining device of the pres ent invention.
- FIG. 2 shows a diagrammatic switch circuit of an embodiment of the ultra sound examining device of the present invention with an ultra sound sending-receiving system according to FIG. I as well as a cathode ray tube as the image producing device for the echo impulses.
- FIG. 3 shows diagrams of variations in time of important voltages appearing at different locations of the circuit of FIG. 2.
- FIG. 1 shows an ultra sound sending-receiving system I which is located in the focal line 2 of a cylindrical parabolic reflector 3 and is rotatable about this focal point as axis in the direction of the arrow 4.
- the system I and the reflector 3 are completely located in a container 5 filled with water. which is sealed by a sealing diaphragm 6 with reference to the object 7 being examined. such as a human body.
- the sender of this system transmits ultra sound impulses S in the direction toward the reflector 3, from which they are reflected and radiated into the body 7.
- the radiation of the ultra sound transmitted impulses, such as S S- upon the reflector 3 can take place with immovable system I.
- the path of the impulses through water.
- the stretch in water of the ultra sound impulses (broken lines 8 and I0) is shown as being somewhat longer than the desired maximum representation depth (for example. lines 9 and 11) in the object 7 being examined (echoes from this depth should be just suitable for representation).
- the precursor time ofimpulses in the water container (sum of running time of the transmitted impulses from sender to the diaphragm 6-and of the echo impulses from the diaphragm 6 to the receiver) is indicated as r,. and the representation time of echo impulses at the representing device (oscillograph tube) as I
- the sender 12 is connected to a high frequency generator 14 which supplies to the sender I2 high frequency impulses U,(I) according to FIG. 3.
- Each high frequency impulse produced by the generator 14 causes the delivery of an ultra sound impulse 5(1) through the sender 12 according to FIG. 3.
- the frequency sequence of the impulses U,(l) and S(r) can be wobbled for example with 50 Hz by a swinging or wobble device 15.
- the average time space t between two successive impulses U (r) or S(t) corresponds to the sum of the desired echo impulse representation time I the impulse width t of the ultra sound transmitted impulse 5(1) as well as an additional time which corresponds to the transmission time from one echo impulse representation to the next one and in which is taken into consideration the wobble stroke and in a possibly changing precursor stretch also the variation of the precursor time.
- Ultra sound impulses reflected in the object being examined are received as echo impulses EU) (FIG. 3) by receiver 13 of the system 1 and after being amplified in the inlet amplifier 16 are transmitted to the Wehnelt cylinder 17 of a cathode ray tube 18. Each echo impulse striking the Wehnelt cylinder 17 makes bright for a short time the electronic ray of the tube 18.
- the proper successive sequence of echo impulses of a transmitted impulse at the tube screen 19 takes place depending upon the entry time period of the corresponding transmitted impulse by a release signal U (l) according to FIG. 3., the creation of which is delayed by the precursor time period r,. of the impulses in the water container 5. for the release of horizontal deviation of the electronic ray.
- the delayed release of electronic ray deviation takes place by an impulse delay device 20 switched by high frequency generator 14 and consisting of a bistable multivibrator 21.
- two (or more) monostaole multivibrators 22 and 23 separately connected to the two outlets of the bistable tipping stage 21, as well as another monostable multivibrator 24 connected behind the two monostable multivibrators 22, 23.
- the bis table multivibrator 21 is alternately switched from one stable condition to another stable condition in measure by actuating impulses U 0) according to FIG. 3 produced by high frequency impulse generator 14 from high frequency impulses U,(! or ultra sound transmitted impulses S(t).
- the switch impulses U 0) and U (t) located at the two outlets of the multivibrator 21 strike with their positive rising flank alternately the monostable multivibrator 22 or 23.
- Each struck multivibrator 22 or 23 produces at its outlet a voltage impulse U U) or U,,(r) according to FIG.
- the monostable multivibrator 24 is struck with the end of a voltage impulse U,-, or U and it produces for the horizontal deflecting generator 25 of the cathode ray tube 18 the trigger impulse U;(!) the duration 1,, of which is variable for changing the additional time 1
- the deviating generator 25 produces a saw tooth voltage U,,( I) according to FIG. 3 at the horizontal deviating plate pair 26 of the tube 18 with the yield of a trigger impulse U (I) at the tipping stage 25, whereby the voltage U,,(t) deviates the electronic ray of the tube in horizontal direction .over the tube diaphragm 19 with a speed corresponding to the running speed of ultra sound impulses in the object being examined.
- the time period from the beginning of a horizontal deviation of the electronic ray to the time period of the maximum deviation corresponds to the desired representation time period I of the echo impulses, so that all echo impulses dropping during this time period on the Wehnelt cylinder 17 of the tube 18 are represented as spaced in time points of light.
- a further sawtooth generator 28 is switched to the vertical pair of deviating plates 27 which in case of B- scan operation deviates the electronic ray of the tube 18 in time synchronization with the rotary drive 29 for the ultra sound sending-receiving system 1 with a speed corresponding to the speed of the parallel shifting of the ultra sound sent ray in the object 7 being examined, the deviation taking place in vertical direction over the screen 19. ln this manner an echo image formed of lines is produced on the X-ray tube screen 19, which shows the inner structure of the sectional surface of the object 7 being examined which had been felt line by line with the ultra sound ray.
- the time interval i between the following each other ultra sound transmitted impulses S(I) corresponds substantially to the total duration of a horizontal deviation of the electronic ray of the tube 18 over the tube diaphragm 19. Since each impulse sent after the time 1,. which is only a little larger than the time distance I between the transmitted impulses, releases a horizontal deviation of the electronic ray, it follows that the ultra sound examining device according to FIGS, 1 to 3 of the present invention produces an image representation twice as quickly as the known ultra sound examining devices.
- An observer desires an image flow which should be continuous without any great image flickering.
- image flow takes place at an image sequence frequency of about 24 images per second.
- the ultra sound period in the human body amounts to about 250p.sec.
- the water precursor time period for scattering disturbing echoes must be at least equally long. This produces a total running time of about SOOusee. which results in a maximum of lines per image and a maximum image frequency of 16 images per second. This is'a comparatively small image release with image flickering due to low image frequency.
- the device of the present invention avoids all these drawbacks as follows:
- the sending frequency of the ultra sound sender is so set that the time period (r between the sent im pulses which follow each other is at all times smaller than the sum of the precursor time (t,.) and the representation time but is at least as long as the representation time (L b.
- actuating means control the representing device depending upon the impulses of the sender in such manner that the echo impulses (E1, E2, E )ofa sent impulse (8,, S S are represented in the precursor stretch always directly during the precursor time (I,.) of the following sent insects (S S 5,.
- An increase in sending frequency according to (a) results in that the body being examined is more quickly tested with impulses during a time unit, and thus, echo impulses follow each other correspondingly faster.
- image frequency when image frequency remains the same, the image line number can be double to 240 lines. This results in a higher image release degree.
- image-following frequency up to about 35 images per second. There is no image flickering.
- the control according to (b) prevents overlappings in echo signal indication. as indicated in FlG. 3.
- An ultra sound examining device particularly for medical purposes, operating according to the impulseecho process, said device comprising an ultra sound sending and receiving system having an ultra sound sender and a receiver, a precursor stretch, such as water delay coupling means connected to the front of.
- said actuating means actuatcs said echo impulses representation device by each sent impulse directly at the time of or after its appearance.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Pathology (AREA)
- Remote Sensing (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2230940A DE2230940C3 (de) | 1972-06-23 | 1972-06-23 | Nach dem Impuls-Echo-Verfahren arbeitendes Ultraschalluntersuchungsgerät |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/555,359 Continuation-In-Part US3974682A (en) | 1972-06-23 | 1975-03-05 | Ultra sound examining device |
Publications (1)
Publication Number | Publication Date |
---|---|
US3902357A true US3902357A (en) | 1975-09-02 |
Family
ID=5848665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US367145A Expired - Lifetime US3902357A (en) | 1972-06-23 | 1973-06-05 | Ultra sound examining device |
Country Status (7)
Country | Link |
---|---|
US (1) | US3902357A (de) |
AT (1) | AT352854B (de) |
CH (1) | CH557036A (de) |
DE (1) | DE2230940C3 (de) |
DK (2) | DK138202B (de) |
FR (1) | FR2189748B1 (de) |
GB (1) | GB1425082A (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2356157A1 (fr) * | 1976-06-25 | 1978-01-20 | Siemens Ag | Appareil de visualisation d'images obtenues au moyen d'ultrasons, fonctionnant suivant le procede a echos d'impulsions |
US4119891A (en) * | 1975-12-19 | 1978-10-10 | Siemens Aktiengesellschaft | Oscilloscope for the image display of sectional planes of a body |
US4580251A (en) * | 1983-11-09 | 1986-04-01 | Honeywell Inc. | Ultrasonic distance sensor |
US4596006A (en) * | 1984-03-16 | 1986-06-17 | Honeywell Inc. | Ultrasonic object detector |
US20110162455A1 (en) * | 2008-06-13 | 2011-07-07 | Ge Sensing & Inspection Technologies Gmbh | Method for non-destructive ultrasonic testing as well as device for the implementation of the method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2651001A1 (de) * | 1976-11-08 | 1978-05-11 | Siemens Ag | Nach dem impuls-echo-verfahren arbeitendes ultraschalluntersuchungsgeraet, |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2467301A (en) * | 1945-07-23 | 1949-04-12 | Sperry Prod Inc | Supersonic inspection for flaws lying near the surface of apart |
US2682766A (en) * | 1950-08-17 | 1954-07-06 | Sperry Prod Inc | Ultrasonic inspection device |
US3690154A (en) * | 1969-07-21 | 1972-09-12 | Atomic Energy Authority Uk | Apparatus for measuring thickness |
-
1972
- 1972-06-23 DE DE2230940A patent/DE2230940C3/de not_active Expired
-
1973
- 1973-05-16 DK DK269673AA patent/DK138202B/da unknown
- 1973-05-16 DK DK269673A patent/DK138202C/da active
- 1973-05-23 AT AT447873A patent/AT352854B/de not_active IP Right Cessation
- 1973-06-05 US US367145A patent/US3902357A/en not_active Expired - Lifetime
- 1973-06-20 GB GB2940473A patent/GB1425082A/en not_active Expired
- 1973-06-21 FR FR7322702A patent/FR2189748B1/fr not_active Expired
- 1973-06-22 CH CH915373A patent/CH557036A/de not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2467301A (en) * | 1945-07-23 | 1949-04-12 | Sperry Prod Inc | Supersonic inspection for flaws lying near the surface of apart |
US2682766A (en) * | 1950-08-17 | 1954-07-06 | Sperry Prod Inc | Ultrasonic inspection device |
US3690154A (en) * | 1969-07-21 | 1972-09-12 | Atomic Energy Authority Uk | Apparatus for measuring thickness |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4119891A (en) * | 1975-12-19 | 1978-10-10 | Siemens Aktiengesellschaft | Oscilloscope for the image display of sectional planes of a body |
FR2356157A1 (fr) * | 1976-06-25 | 1978-01-20 | Siemens Ag | Appareil de visualisation d'images obtenues au moyen d'ultrasons, fonctionnant suivant le procede a echos d'impulsions |
US4580251A (en) * | 1983-11-09 | 1986-04-01 | Honeywell Inc. | Ultrasonic distance sensor |
US4596006A (en) * | 1984-03-16 | 1986-06-17 | Honeywell Inc. | Ultrasonic object detector |
US20110162455A1 (en) * | 2008-06-13 | 2011-07-07 | Ge Sensing & Inspection Technologies Gmbh | Method for non-destructive ultrasonic testing as well as device for the implementation of the method |
CN102124327A (zh) * | 2008-06-13 | 2011-07-13 | 通用电气传感与检测科技有限公司 | 非破坏性超声测试方法以及用于实现该方法的设备 |
Also Published As
Publication number | Publication date |
---|---|
DE2230940A1 (de) | 1974-01-17 |
GB1425082A (en) | 1976-02-18 |
DK138202B (da) | 1978-07-31 |
DE2230940C3 (de) | 1978-06-22 |
DK138202C (da) | 1979-01-02 |
AT352854B (de) | 1979-10-10 |
DE2230940B2 (de) | 1977-11-03 |
CH557036A (de) | 1974-12-13 |
ATA447873A (de) | 1979-03-15 |
FR2189748A1 (de) | 1974-01-25 |
FR2189748B1 (de) | 1977-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3156110A (en) | Ultrasonic detection and visualization of internal structure | |
US3881466A (en) | Ultrasonic cross-sectional imaging system | |
US4294119A (en) | Ultrasonic applicator for ultrasonic scanning of bodies | |
US3023611A (en) | Ultrasonic method and apparatus for investigating the interior structure of solid bodies | |
US4177679A (en) | Ultrasonic applicator for ultrasonic scanning of bodies and method of using the same | |
US6790182B2 (en) | Ultrasound system and ultrasound diagnostic apparatus for imaging scatterers in a medium | |
US3888238A (en) | Ultrasonic blood vessel imaging system and method | |
US4185501A (en) | Ultrasonic sector scanner | |
US3367173A (en) | Device for sonic and ultrasonic internal scanning of solid and fluid media | |
KR20020079560A (ko) | 초음파 송수신 방법, 초음파 송수신 장치, 초음파 촬영방법 및 초음파 촬영 장치 | |
US4103677A (en) | Ultrasonic camera | |
DE2413465B2 (de) | Verfahren und Vorrichtung zum Beobachten bzw. Abbilden von in undurchsichtigen Medien befindlichen Gegenständen, insbesondere von inneren Organen | |
DE4209394A1 (de) | Ultraschallgeraet, sonde fuer ein solches und ultraschall-diagnoseverfahren | |
JPS62114539A (ja) | 超音波利用の流動表示装置 | |
FR2619448A1 (fr) | Procede et dispositif de caracterisation tissulaire par reflexion d'impulsions ultrasonores a large bande de frequences, transposition du spectre de frequence des echos dans une gamme audible et diagnostic par ecoute | |
DE2343721A1 (de) | Verfahren und geraet zur visuellen abbildung von ultraschall-echosignalen unter verwendung eines einzigen senders | |
US3902357A (en) | Ultra sound examining device | |
US3256733A (en) | Ultrasonic pulse-echo apparatus for internal exploration | |
US4337661A (en) | Equipment for ultrasonic examination | |
US3974682A (en) | Ultra sound examining device | |
US3624744A (en) | Ultrasonic tester | |
US4161122A (en) | Apparatus for examining bodies through scanning by means of ultrasound | |
US3238767A (en) | Ultrasonic pulse-echo system for internal exploration | |
EP0000067B1 (de) | Vorrichtung zur Ultraschalluntersuchung und Darstellung eines Objekts | |
US4157665A (en) | Formation of acoustical images |