US20120315113A1 - Substrate holder, substrate transfer apparatus, and substrate processing apparatus - Google Patents
Substrate holder, substrate transfer apparatus, and substrate processing apparatus Download PDFInfo
- Publication number
- US20120315113A1 US20120315113A1 US13/577,019 US201113577019A US2012315113A1 US 20120315113 A1 US20120315113 A1 US 20120315113A1 US 201113577019 A US201113577019 A US 201113577019A US 2012315113 A1 US2012315113 A1 US 2012315113A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- transfer
- substrate holder
- semiconductor wafer
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G49/00—Conveying systems characterised by their application for specified purposes not otherwise provided for
- B65G49/05—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
- B65G49/06—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
- B65G49/061—Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67742—Mechanical parts of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68707—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68735—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2249/00—Aspects relating to conveying systems for the manufacture of fragile sheets
- B65G2249/04—Arrangements of vacuum systems or suction cups
- B65G2249/045—Details of suction cups suction cups
Definitions
- the present invention relates to a substrate holder for holding a target substrate on a transfer arm, and a single type substrate transfer apparatus and single type substrate processing apparatus using the substrate holder.
- a manufacture line of a semiconductor device or flat panel display employs a single type process for processing target substrates (semiconductor wafers, glass substrates, etc.) one by one.
- target substrates semiconductor wafers, glass substrates, etc.
- a multi single type inline process system where a plurality of process units are integrally arranged along or around a transfer path of a transfer system is being widely used.
- Such a transfer system for a single type process unit or for a multi single type inline process system uses a single type substrate transfer apparatus which holds substrates one by one, and carries the substrates into or out of each process unit one by one.
- a type of substrate transfer apparatus is configured as a transfer robot, and includes one or several transfer arms capable of holding substrates to face upward one by one and performing rotating motion, elevating movement, and advancing and retreating movement.
- the transfer arm of such a substrate transfer apparatus includes a substrate holding portion (holder or holding mechanism) that prevents a substrate from being misaligned or from falling during transfer.
- a substrate holding portion holder or holding mechanism
- a rear surface friction method, a taper pad method, a dropping method, or a vacuum adhesion method is used.
- a plurality of holding pads having a plate or block shape are discretely attached to a top surface or holding surface of the transfer arm. Then, the substrate is placed on the holding pad to face upward, and is held by using a frictional force between a rear surface of the substrate and a pad surface (for example, refer to FIG. 8 and descriptions thereof in Patent Reference 1). Elastomer, ceramic, or the like is used as a material of such a holding pad.
- a plurality of holding pads having a tapered side surface are discretely attached to a holding surface of the transfer arm at predetermined intervals such as to surround the substrate. Then, a periphery portion of the substrate is fastened to the tapered side surface of the holding pads such that the substrate is held facing upward (for example, refer to FIG. 4 and descriptions thereof in Patent Reference 1).
- the substrate is dropped along the tapered side surface from a location higher than a top surface of the holding pad, above the holding surface of the transfer arm, and thus the substrate is held in line-contact to a location on the tapered side surface where gravity of the substrate and a reaction from the holding pad are balanced.
- a pick portion of the transfer arm is formed as a fork slightly larger than an outline shape of the substrate along the outline shape of the substrate, and a plurality of claw portions protruding from and extending inward the fork to surround the substrate at predetermined intervals adhere to the fork. Then, the substrate is dropped down to a bottom surface (holding surface) of the claw portions along an inclined surface formed on an inner side of the claw portions, so as to hold the substrate facing upward in surface-contact at the bottom surface of the claw portion (for example, refer to FIG. 4 and descriptions thereof in Patent Reference 2).
- a plurality of suction holes are provided on a holding surface of the transfer arm, a rear surface of the substrate is placed on the suction holes, and a vacuum suction apparatus connected to the suction holes through an air passage performs vacuum suction, thereby fixing the substrate to the transfer arm at the suction holes (for example, refer to FIG. 3 and descriptions thereof in Patent Reference 2).
- Patent Reference 1 Japanese Laid-Open Patent Publication No. 2000-3951
- Patent Reference 2 Japanese Laid-Open Patent Publication No. 2002-64057
- a substrate transfer technology is important in increasing production efficiency, and a transfer speed of a substrate transfer apparatus is making steady progress.
- an operation of a transfer arm which holds a substrate is speeding up by not only including a slide movement and an elevating movement, but also a rotating motion. Meanwhile, it is easy for a leading end portion of the transfer arm to tilt forward due to gravity of the substrate, according to an increased size of the substrate.
- a substrate holding force is essentially weak, and thus the substrate may slide and fall from the transfer arm.
- the coefficient of friction i.e., a holding force, varies according to a rear surface state of the substrate, and it is difficult to hold the substrate when the substrate is bent.
- the substrate may be placed on the pad or claw portion and easily tilt askew.
- the substrate tilts askew on the transfer arm it is easy for the substrate to fall, and even if the substrate does not fall, it is difficult to detect the location of the substrate on the transfer arm by using an optical sensor.
- the taper pad method requires the suitable coefficient of friction between the tapered side surface of the holding pad and the substrate, and thus often uses elastomer as the material of the holding pad.
- elastomer as the material of the holding pad.
- transfer of the substrate under a high temperature process such as chemical vapor deposition (CVD)
- CVD chemical vapor deposition
- a heat resistant temperature of elastomer is low (about 300° C.)
- ceramic is used as a material of the holding pad.
- the rear surface friction method when a contact type holding pad is made of ceramic, the substrate easily slides, and thus stable holding is difficult.
- the vacuum adsorption method does not cause any problem in terms of a substrate holding force, but is practically disadvantageous since a structure of the transfer arm and equipment of the substrate transfer apparatus are complicated and highly priced. Also, the vacuum adsorption method has a limitation in use since it does not function in a vacuum transfer apparatus which operates under decompression. Further, particles are easily adhered.
- the present invention provides a substrate holder which is simply adhered to a transfer body, such as a transfer arm, at a low price without any special work, is not affected by a rear surface state or bending of a substrate, and is capable of stably holding the substrate at a proper position, even when a location of the substrate is somewhat misaligned on a holding surface of the transfer body, and a single type substrate transfer apparatus and substrate processing apparatus using the substrate holder.
- a substrate holder which is attached to a holding surface of a transfer body for transferring a target substrate, and holds the substrate by contacting a periphery portion of the substrate
- the substrate holder including: a pad main body which has a plate or block shape and is fixed to the holding surface of the transfer body; and a plurality of protruding portions which extend from the pad main body and are elastically transformable, wherein some of the plurality of protruding portions hold a rear surface of the substrate, and others of the protruding portions hold a side surface of the substrate.
- a substrate holder which is attached to a holding surface of a transfer body for transferring a target substrate by placing the target substrate to face upward, and holds the substrate by contacting a periphery portion of the substrate
- the substrate holder including: a pad main body which has a plate or block shape and is fixed to a holding surface of the transfer body; and a plurality of protruding portions which extend upward from a top surface of the pad main body, and are elastically transformable, wherein some of the plurality of protruding portions hold the substrate mainly in a direction perpendicular to a plate surface of the substrate by contacting a rear surface of the substrate, and others of the protruding portions hold the substrate mainly in a direction parallel to the plate surface of the substrate by contacting a side surface of the substrate.
- the protruding portions hiding beneath the substrate hold the rear surface of the substrate, and some of protruding portions exposed near the periphery portion of the substrate hold side surface of the substrate.
- a substrate transfer apparatus which transfers a target substrate
- the substrate transfer apparatus including: a transfer base portion which is configured to be moveable inside a chamber under atmospheric pressure or decompression; a transfer arm which is configured to be loaded on the transfer base portion and to support the substrate by placing the substrate on the transfer arm; an arm driving portion for moving the transfer arm on the transfer base portion in a predetermined direction; and a substrate holding portion which is attached to the transfer arm to hold the substrate, and including the substrate holder above.
- a substrate processing apparatus including: a single type process unit which performs a predetermined process on a target substrate under atmospheric pressure or decompression; and a substrate transfer mechanism which includes a transfer arm to which the substrate holder above is attached, places the substrate on the transfer arm, and transfers the substrate to carry the substrate into or out of the process unit.
- a substrate holder of the present invention can be simply attached to a transfer body, such as a transfer arm, at a low price without any special work, is not affected by a rear surface state or bending of a substrate, and can stably hold the substrate at a proper position even when a location of the substrate is somewhat misaligned on a holding surface of the transfer body.
- a substrate transfer apparatus of the present invention can arbitrarily and freely select an arm position, an arm moving trajectory, and a transfer speed while holding and transferring a substrate to a transfer arm without being limited by a substrate holding portion, thereby improving transfer capability.
- a substrate processing apparatus of the present invention can improve transfer efficiency, thereby improving throughput.
- FIG. 1 is a plan view showing a structure of a substrate processing apparatus according to an embodiment of the present invention
- FIG. 3 is a perspective view schematically showing an external structure of a substrate holder according to a first embodiment
- FIG. 4 is a side view schematically showing an operation of the substrate holder
- FIGS. 5A and 5B are side views schematically showing an operation of the substrate holder
- FIG. 6 is a side view schematically showing an operation of the substrate holder
- FIG. 7 is a perspective view schematically showing an external structure of a substrate holder according to a modified example of the first embodiment
- FIG. 8 is a plan view schematically showing an external structure of a substrate holder according to a second embodiment
- FIG. 9 is a perspective view showing a structure of a protruding portion of the substrate holder.
- FIG. 10 is a partially cross-sectioned side view schematically showing a structure of the substrate holder
- FIG. 11 is a side view schematically showing an operation of the substrate holder
- FIG. 12 is a side view schematically showing an operation of the substrate holder
- FIG. 13 is a view (side view and partially magnified cross-sectional view) showing a structure of a substrate holder according to a first modified example of the second embodiment
- FIG. 14 is a plan view schematically showing an external structure of a substrate holder according to a second modified example of the second embodiment
- FIG. 15 is a magnified plan view showing the external structure of the substrate holder according to the second modified example.
- FIG. 16 is a view (side view and partially magnified cross-sectional view) showing the structure of the substrate holder according to the second modified example.
- FIG. 17 is a plan view showing an example of adhering a substrate holder according to an embodiment to a transfer arm for transferring a rectangular substrate for FPD.
- FIGS. 1 and 2 show a structure of a substrate processing apparatus, according to an embodiment of the present invention.
- the substrate processing apparatus is configured as a cluster tool type vacuum processing apparatus, which is a type of a multi single type inline process system.
- the cluster tool type vacuum processing apparatus is provided in a clean room, and arranges six vacuum process chambers PC 1 , PC 2 , PC 3 , PC 4 , PC 5 , and PC 6 , and two load lock chambers LLC a and LLC b in a cluster shape around a vacuum platform (vacuum transfer chamber) PH having a hexagonal shape, wherein a pair of sides extending in an apparatus depth direction is about twice longer than other sides.
- two process chambers PC 1 and PC 2 are connected to a first long side through gate valves GV 1 and GV 2
- process chambers PC 3 and PC 4 are respectively connected to first and second short sides through gate valves GV 3 and GV 4
- two process chambers PC 5 and PC 6 are connected to a second long side through gate valves GV 5 and GV 6
- the load lock chambers LLC a and LLC b are respectively connected to third and fourth short sides through gate valves GV a and GV b .
- Each of the process chambers PC 1 through PC 6 is connected to an exclusive vacuum exhaust apparatus (not shown), and thus the interior of each chamber is always maintained in a decompressed state at a variable pressure.
- a target object for example, a semiconductor wafer W
- a required single type process for example, a vacuum film forming process, such as CVD, atomic layer deposition (ALD), or sputter, a thermal process, a cleaning process of a semiconductor wafer surface, or a dry etching process, is performed by using a predetermined power (process gas, high frequency, or the like).
- the platform PH is connected to an exclusive vacuum exhaust apparatus (not shown), and thus the interior of the platform PH is always maintained in a decompressed state generally at a constant pressure.
- Each of the load lock chambers LLC a and LLC b is connected to an exclusive vacuum exhaust apparatus (not shown) through an opening/closing valve, and thus the interior of each chamber may be frequently switched between an atmospheric pressure state and a vacuum state.
- the load lock chambers LLC a and LLC b are connected to a loader transfer chamber LM under an atmospheric pressure respectively through gate valves GV c and GV d , from an opposite side viewed from the platform PH.
- a delivery stand 18 on which the semiconductor wafer W under retention is placed is provided at a center portion in each of the load lock chambers LLC a and LLC b .
- a load port LP and a location adjusting mechanism ORT are provided adjacent to the loader transfer chamber LM.
- the load port LP is used for inserting and discharging of a wafer cassette CR capable of accommodating, for example, twenty five semiconductor wafers W in one batch, between an external transfer vehicle.
- the wafer cassette CR is configured as a front open unified pod (FOUP), a standard mechanical interface (SMIF) box, or the like.
- the location adjusting mechanism ORT is used to adjust a notch of the semiconductor wafer W or an orientation flat to a predetermined location or direction.
- a single type atmosphere transfer robot (substrate transfer apparatus) 20 provided in the loader transfer chamber LM includes a pair of stretchable transfer arms 22 and 24 vertically overlapping in two stages, is capable of elevating and rotating as well as moving in a horizontal direction on a linear guide 28 of a linear motor 26 , and transfers the semiconductor wafer W one by one (or in a batch unit) by moving among the load port LP, the location adjusting mechanism ORT, and the load lock chambers LLC a and LLC b .
- the atmosphere transfer robot 20 carries the semiconductor wafer W into the loader transfer chamber LM while each LP door 25 provided on a front surface of the wafer cassette CR is opened.
- the linear guide 28 includes, for example, a magnet made of a permanent magnet, a driving magnetic coil, and a scale head, and controls a linear movement of the atmosphere transfer robot 20 according to a command from a controller 30 .
- the atmosphere transfer robot 20 in the loader transfer chamber LM takes out one semiconductor wafer W from the wafer cassette CR on the load port LP, performs location adjustment by transferring the semiconductor wafer W to the location adjusting mechanism ORT, and then transfers the semiconductor wafer W to any one (for example, the load lock chamber LLC a ) of the load lock chambers LLC a and LLC b .
- the load lock chamber LLC a at a transfer place receives the semiconductor wafer W in an atmospheric pressure state, is vacuum-sucked after receiving the semiconductor wafer W, and transfers the semiconductor wafer W to the vacuum transfer robot 16 of the platform PH in a decompression state.
- the vacuum transfer robot 16 carries the semiconductor wafer W taken out from the load lock chamber LLC a into a first process chamber (for example, the process chamber PC 1 ), by using one of the transfer arms 12 and 14 .
- a first process chamber for example, the process chamber PC 1
- a single type process of a first operation is performed under predetermined process conditions (gas, pressure, power, time, etc), according to a predetermined recipe.
- the vacuum transfer robot 16 carries the semiconductor wafer W out of the process chamber PC 1 , and then carries the carried out semiconductor wafer W into a following second process chamber (for example, the process chamber PC 2 ). Also in the second process chamber PC 2 , a single type process of a second operation is performed under predetermined process conditions according to a predetermined recipe.
- the vacuum transfer robot 16 carries the semiconductor wafer W out of the second process chamber PC 2 , and carries the carried out semiconductor wafer W into a third process chamber (for example, the process chamber PC 3 ) if there is a following operation, and transfers the carried out semiconductor wafer to one of the load lock chambers LLC a and LLC b if there is no following operation.
- a process is performed in a process chamber (for example, the process chamber PC 5 ) after the third one, the semiconductor wafer W is carried into a process chamber (for example, the process chamber PC 6 ) at a following stage if there is a following operation, and is returned back to one of the load lock chambers LLC a and LLC b if there is no following operation.
- the vacuum transfer robot 16 of the platform PH may be configured to perform a pick and place operation, where the pair of transfer arms 12 and 14 access each of the process chambers PC 1 through PC 6 or each of the load lock chambers LLC a and LLC b around the vacuum transfer robot 16 , and are alternatively used to initially carry the semiconductor wafer W out of the module and then to carry another semiconductor wafer W into the module by replacing the semiconductor wafer W.
- the atmosphere transfer robot 20 in the loader transfer chamber LM takes out the semiconductor wafer W from the load lock chamber LLC b in an atmospheric pressure state, and returns the semiconductor wafer W back to the corresponding wafer cassette CR.
- heating or cooling process may be performed under a desired atmosphere on the semiconductor wafer W in the load lock chamber LLC a and LLC b .
- the cluster tool type vacuum processing apparatus is capable of continuously performing a series of vacuum processes inline on the semiconductor wafer W by sequentially transferring one semiconductor wafer W to a plurality of process chambers through the platform PH under decompression, and specifically in a vacuum film forming process, is capable of depositing desired thin films inline by continuously performing different film forming processes in a plurality of process chambers.
- a pair of guide rails 32 and a transfer screw 36 of a ball thread mechanism 34 are built parallel to each other in a length direction of the platform PH inside the platform PH, and the vacuum transfer robot 16 is capable of sliding on the guide rail 32 according to a straight driving of the ball thread mechanism 34 .
- the transfer screw 36 is combined to a motor 38 .
- the vacuum transfer robot 16 includes a transfer base portion 40 performing a slide operation, and an arm stretch driving portion 42 that moves pick portions 12 a and 14 a of the transfer arms 12 and 14 back and forth in a straight line or advances and retreats the pick portions 12 a and 14 a , in a direction parallel to a rotating radius.
- the arm stretch driving portion 42 stretches the transfer arms 12 and 14 formed of horizontal multi-joint robot, thereby performing a carry in and out or pick and place operation of the semiconductor wafer W as described above. Operations of each of the arm stretch driving portion 42 , a rotating driving portion and an elevating driving portion in the transfer base portion 40 , and the ball thread mechanism 34 (motor 38 ) are controlled by the controller 30 .
- Each of the transfer arms 12 and 14 of the vacuum transfer robot 16 attaches a substrate holder (not shown in FIG. 1 ) of the present invention to it for stably holding the semiconductor wafer W, so that a rotating motion, an elevating movement, or an advancing and retreating movement is arbitrarily performed at a high speed while the semiconductor wafer W is placed facing upward.
- a plurality of (four in the shown example) substrate holders 50 according to the present invention are discretely attached to predetermined places, i.e., base portions and leading end portions of the pick portions 12 a and 14 a having a fork shape, so as to hold the periphery portion of the semiconductor wafer W at suitable intervals.
- the vacuum transfer robot 16 by attaching the substrate holder 50 of the present invention described below to each of the transfer arms 12 and 14 , it is possible to arbitrarily and freely select an arm position, an arm moving trajectory, and a transfer speed when each of the transfer arms 12 and 14 holds and transfers the semiconductor wafer W without being restricted by a substrate holding portion, thereby improving transfer capability.
- FIG. 3 shows an external structure of the substrate holder 50 according to a first embodiment of the present invention.
- FIGS. 4 through 6 show operations of the substrate holder 50 .
- the substrate holder 50 in the present embodiment includes a pad main body 52 fixed to the holding surface of the transfer arm 12 ( 14 ) via screw or adhesion, and a plurality of (preferably many or countless) grass shaped (specifically like a straight hair type artificial lawn) protruding portions 54 .
- the substrate holders 50 are provided at predetermined places of the transfer arm 12 ( 14 ) such that some of the grass shaped protruding portions 54 on the pad main body 52 hide beneath the semiconductor wafer W and others of the grass shaped protruding portion 54 are exposed outside the semiconductor wafer W when the substrate holders 50 hold the periphery portion of the semiconductor wafer W.
- the pad main body 52 of the substrate holder 50 has a piece of plate shape (for example, a circular plate shape) or a block shape (for example, a cylindrical shape). A top surface of the pad main body 52 may be parallel to the holding surface of the transfer arm 12 ( 14 ).
- a material of the pad main body 52 may be a metal or ceramic, but alternatively, a resin, such as Teflon (registered mark) or PEEK (brand name), may be suitably used.
- the grass shaped protruding portion 54 of the substrate holder 50 includes a base 54 a fixed to the top surface of the pad main body 52 , and a contact portion or free end 54 b extending upward askew from the base 54 a and capable of being elastically transformed or displaced according to external force or external energy (gravity, pressure, thermal energy, or the like from the semiconductor wafer W).
- the protruding portion 54 may be integrally molded with the pad main body 52 .
- the contact portion 54 b of the protruding portion 54 may be long and thin like a leaf of grass and have a leading end portion in a tapered shape.
- the leading end portion may tilt askew (preferably at an angle from 30° to 60°) with respect to a direction crossing the holding surface of the transfer arm 12 ( 14 ) at right angles when the contact portion 54 b does not contact the semiconductor wafer W, and may face inward of the outline of the semiconductor wafer W when the contact portion 54 b contacts the semiconductor wafer W.
- the protruding portions 54 may have suitable rigidity and elastic modulus since the protruding portions 54 are individually elastically transformable with respect to external force. Specifically, as an elastic function of the protruding portion 54 , the protruding portion 54 may be easily bent (small elastic modulus) with respect to force F V in a vertical direction from the top as shown in FIG. 5A , while the protruding portion 54 may be difficult to be bent (high elastic modulus) with respect to a force F H in a horizontal direction from the side as shown in FIG. 5B .
- the protruding portion 54 may have a thin leading portion to be easily bent with respect to the force F V in the vertical direction, and may have a thick base to be bent with difficulty with respect to the force F H in the horizontal direction.
- a material of the protruding portion 54 may be a rubber-shaped elastic body capable of elastic transformation in an arbitrary direction, and specifically be fluoro rubber having excellent thermal resistance and chemical resistance.
- resin capable of elastic transformation in a predetermined direction according to a shape for example, Teflon (registered mark) or PEEK, may be suitably used.
- the semiconductor wafer W on the transfer arm 12 ( 14 ) when the semiconductor wafer W on the transfer arm 12 ( 14 ) is placed on the substrate holder 50 at the periphery portion, the semiconductor wafer W sinks by a suitable depth on the grass shaped protruding portion 54 as shown in FIG. 4 .
- each contact portion 54 b contacts a rear surface W B of the semiconductor wafer W, and holds the semiconductor wafer W mainly in the length direction, i.e., in a direction perpendicular to the plate surface of the semiconductor wafer W (or the holding surfaces of the transfer arms 12 and 14 ), resistively to force (gravity) in the length direction from the semiconductor wafer W as the contact portion 54 b bends downward as shown in FIG. 5A .
- the number of protruding portions 54 contacting the rear surface W B of the semiconductor wafer W is relatively high, and thus a contact area is large, holding force in the width direction by contact friction is somewhat obtained.
- a rounding work is generally performed on the periphery portion of the semiconductor wafer W, and thus as shown in FIG. 4 , some of the grass shaped protruding portions 54 may contact an peripheral round incline W R .
- the grass shaped protruding portion 54 contacting the peripheral round incline W R of the semiconductor wafer W as such is located in the middle between the protruding portion 54 contacting the rear surface W B of the semiconductor wafer W and the protruding portion 54 contacting the side surface W S of the semiconductor wafer W, and holds the semiconductor wafer W in directions perpendicular and parallel to the plate surface of the semiconductor wafer W by taking a middle elastic transformation position.
- the peripheral round incline W R of the semiconductor wafer W has a surface for both wafer side surface and wafer rear surface.
- the substrate holder 50 of the present embodiment includes the pad main body 52 fixed to the holding surface of the transfer arm 12 ( 14 ), and the plurality of grass shaped protruding portion 54 provided on the top surface of the pad main body 52 , where some of the grass shaped protruding portions 54 on the pad main body 52 hide beneath the semiconductor wafer W and others of the grass shaped protruding portions 54 are exposed outside the semiconductor wafer W, while holding the periphery portion of the semiconductor wafer W.
- the protruding portions 54 hiding beneath the semiconductor wafer W contact the rear surface W B of the semiconductor wafer W and are transformed or displaced relatively largely downward by using a relatively small elastic modulus, so that the protruding portions 54 hold the semiconductor wafer W mainly in the length direction by sinking the semiconductor wafer W to a suitable depth via gravity. Also, some of the protruding portions 54 exposed near the periphery portion of the semiconductor wafer W contact the side surface W S of the semiconductor wafer W and are transformed a little to the width direction by using a high elastic modulus, thereby holding the semiconductor wafer W mainly in the width direction.
- some of the protruding portions 54 that do not directly contact the side surface W S of the semiconductor wafer W support the protruding portions 54 contacting the side surface W S of the semiconductor wafer W from the back, and thus the number of the protruding portions 54 holding mainly the semiconductor wafer W in the width direction is never small. Thicknesses, heights, shapes, arrangement density, and elastic forces of the grass shaped protruding portions 54 , a weight of the semiconductor wafer W, etc. may be set as parameters so as to arbitrarily adjust wafer holding force from each of the length and width directions.
- the substrate holder 50 of the present embodiment stably and definitely holds the semiconductor wafer W facing upward on the transfer arm 12 ( 14 ) according to the above structures and operations.
- the substrate holder 50 elastically displaces the protruding portions 54 hiding beneath the semiconductor wafer W downward to sink the semiconductor wafer W in a horizontal position, even when a location of the semiconductor wafer W placed on the transfer arm 12 ( 14 ) is somewhat misaligned, the semiconductor wafer W does not tilt and is held by the substrate holder 50 in the horizontal position as long as the periphery portion of the semiconductor wafer W is placed on some of the grass shaped protruding portions 54 of each substrate holder 50 .
- the protruding portions 54 mainly affect (contact) the side surface W S of the semiconductor wafer W to hold the semiconductor wafer W by elastic force, the coefficient of friction between the semiconductor wafer W and the protruding portion 54 is not important, and thus materials and shapes of the protruding portions 54 may be freely selected.
- each grass shaped protruding portion 54 holds the semiconductor wafer W in the length direction by being transformed in the same direction when hiding beneath the semiconductor wafer W, and holds the semiconductor wafer W in the width direction without being transformed so much when contacting the wafer side surface from outside the semiconductor wafer W. Accordingly, even when a loading location of the semiconductor wafer W is somewhat misaligned, each grass shaped protruding portion 54 may flexibly deal with the misalignment.
- the periphery portion of the semiconductor wafer W is sunken by a suitable depth via a self-weight on each substrate holder 50 , even if the semiconductor wafer W is bent, the semiconductor wafer W is stably and definitely held as if there is no bending.
- the substrate holder 50 can definitely stably hold the semiconductor wafer W.
- a transfer arm of a vacuum transfer apparatus is long and is easily tilted forward by a self-weight when the transfer arm is stretched while transferring a substrate to a process chamber, and thus it is a conventional problem that the substrate is easily misaligned on the arm.
- the substrate holder 50 since the substrate holder 50 has sufficiently high holding force even in the width direction with respect to the semiconductor wafer W on the transfer arm 12 ( 14 ), location misalignment of the semiconductor wafer W can be prevented even when the transfer arm 12 ( 14 ) is tilted forward.
- the semiconductor wafer W is not tilted or misaligned on the transfer arm 12 ( 14 ). Accordingly, the semiconductor wafer W does not slide and fall, and precision and reliability of detecting the location of the semiconductor wafer W on the transfer arm 12 ( 14 ) by using an optical sensor are also improved.
- the substrate holder 50 since the substrate holder 50 only contacts the periphery portion of the semiconductor wafer W, even when a rear surface state of the semiconductor wafer W is changed according to a process performed in a process chamber PC, the wafer holding force of the substrate holder 50 is not affected at all.
- the substrate holder 50 is detachable or freely and simply replaceable as a holding pad at a predetermined place of the holding surface of the transfer arm 12 ( 14 ), and is attached thereto at a low price.
- a special process is not required in the transfer arm 12 ( 14 ), and a special control apparatus for turning on or off substrate holding is not necessary at all.
- an outer protruding portion 54 on which the semiconductor wafer W is not placed on the substrate holder 50 may be configured to be thick (strong) so as to definitely prevent misalignment of the semiconductor wafer W during transfer.
- the protruding portion 54 of the substrate holder 50 has a shape similar to straight hair type artificial lawn, but may alternatively have a shape similar to another artificial lawn.
- the protruding portion 54 may have a small thin piece shape, and for example, as shown in FIG. 7 , a protruding portion 56 having a scale shape may be suitably employed.
- the scale shaped protruding portion 56 extends upward and askew from the top surface of the pad main body 52 , and is elastically displaced according to an external force, i.e., gravity or pressure from the semiconductor wafer W, and thus may have the same operation as the grass shaped protruding portion 54 described above in holding the semiconductor wafer W.
- some of the protruding portions 56 exposed near the periphery portion of the semiconductor wafer W contact the side surface W S or the peripheral round incline W R of the semiconductor wafer W to be elastically displaced a little in the width direction with a high elastic modulus, thereby holding the semiconductor wafer W mainly in the width direction by preventing the semiconductor wafer W from being misaligned to sideways.
- Sizes, heights, arrangement density, and elastic forces of the scale shaped protruding portions 56 , the weight of the semiconductor wafer W, etc. are set as parameters so as to arbitrarily adjust the wafer holding force in each of the length and width directions.
- the substrate holder 50 includes a pad main body 60 detachably fixed to the holding surface of the transfer arm 12 ( 14 ) by using, for example, a bolt 58 ( FIG. 8 ), and a plurality of (preferably many) protruding portions 62 standing and provided close together at uniform density or pitches on a top surface of the pad main body 60 , where each protruding portion 62 includes a spring member formed of a metal material, as shown in FIGS. 8 through 10 .
- a volute spring is used as the spring member, where a cap 66 integrally covers a top portion of the volute spring 64 ( FIG. 9 ).
- the volute spring 64 is provided on the top surface of the pad main body 60 to extend in a direction perpendicular to the holding surface of the transfer arm 12 ( 14 ), and a base portion of the volute spring 64 is buried in and fixed to the pad main body 60 ( FIG. 10 ).
- the pad main body 60 may have the same shape and be formed of the same material as the pad main body 52 of the first embodiment.
- the cap 66 may have a long container portion covering not only the top portion of the volute spring 64 but also a middle portion of the volute spring 64 , and for example, a resin, such as Teflon (registered mark) or PEEK, may be suitably used as a material.
- the volute spring 64 may have a small size where an entire length is less than or equal to 1 cm, and may be any one of a product on the market and a custom-ordered product.
- protruding portions 62 hiding beneath the semiconductor wafer W from among the spring-adhered protruding portions 62 on the pad main body 60 contact the rear surface W B of the semiconductor wafer W at a apex portion of the cap 66 , and hold the semiconductor wafer mainly in the length direction, i.e., in the direction perpendicular to the plate surface of the semiconductor wafer W (or the holding surfaces of the transfer arms 12 and 14 ) resistively to force (weight) in the length direction from the semiconductor wafer W as the volute spring 64 is compressed and transformed in an axis direction.
- some of the protruding portion 62 exposed near the periphery portion of the semiconductor wafer W from among the spring-adhered protruding portion 62 on the pad main body 60 contact the side surface W S or the peripheral round incline W R of the semiconductor wafer W at a portion lower than the apex portion of the cap 66 , and hold the semiconductor wafer W mainly in the direction parallel to the plate surface of the semiconductor wafer resistively to force (pressure) facing sideways from the semiconductor wafer W.
- the volute spring 64 is scarcely (or a little) compressed and transformed ( FIG. 11 ).
- the spring-adhered protruding portion 62 where a head portion of the cap 66 contacts the peripheral round incline W R of the semiconductor wafer W receives a weight in the axis direction, the volute spring 64 is a little compressed and transformed ( FIG. 12 ).
- the substrate holder 50 includes the pad main body 60 fixed to the holding surface of the transfer arm 12 ( 14 ), and the plurality of spring-adhered protruding portions 62 standing and provided close together on the top surface of the pad main body 60 , where some of the spring-adhered protruding portions 62 on the pad main body 60 hide beneath the semiconductor wafer W and others of the spring-adhered protruding portions 62 are exposed outside the semiconductor wafer W while holding the periphery portion of the semiconductor wafer W.
- the spring-adhered protruding portion 62 hiding beneath the semiconductor wafer W contacts the rear surface W B of the semiconductor wafer W, and the volute spring 64 is compressed and transformed in the axis direction, thereby sinking the semiconductor wafer W by a suitable depth via gravity so as to hold the semiconductor wafer W mainly in the length direction. Also, some of the spring-adhered protruding portions 62 exposed near the periphery portion of the semiconductor wafer W contact the side surface W S or the peripheral round incline W R of the semiconductor wafer W, and the volute spring 64 is compressed and transformed scarcely or a little in the axis direction, and thus the semiconductor wafer W is held mainly in the width direction.
- Diameters, heights, cap shapes, arrangement density, and spring coefficients of the spring-adhered protruding portions 62 , the weight of the semiconductor wafer W, etc. may be set as parameters to arbitrarily adjust the wafer holding force in each of the length and width directions.
- the weight thereof is 130 g.
- a moving speed of the transfer arm 12 ( 14 ) is 0.5 m/sec and stops at 1 second
- acceleration at the stop is 0.5 m/sec 2
- the number of protruding portions 62 resisting against the force in the width direction with respect to two substrate holders 50 in an arm front portion is, for example, 20, a load per one is about 3 gm/sec 2 . Accordingly, the strength of the protruding portion 62 may be designed such as to endure the load of about 3 gm/sec 2 in the width direction.
- the sunken amount of the semiconductor wafer W may be less than or equal to the thickness thereof (for example, 0.8 mm).
- the number of protruding portions 62 receiving the weight of the semiconductor wafer W in the example of FIG. 2 , the number of protruding portions 62 receiving the weight of the semiconductor wafer W with respect to the four substrate holders 50 at arm front and rear portions
- an elastic characteristic of the protruding portion 62 may be designed such that the protruding portion 62 is definitely transformed or displaced downward by the sunken amount less than or equal to 0.8 mm with respect to the load of about 0.5 g.
- the strength in the width direction and the elastic characteristic in the length direction with respect to the protruding portion 62 described above are equally applied to the protruding portion 54 according to the first embodiment.
- the substrate holder 50 of the second embodiment is capable of showing the same operation as the substrate holder of the first embodiment, is detachably and simply attached to the transfer arm 12 ( 14 ) at a low price without any special work, is not affected by the rear surface state or bending of the semiconductor wafer W, and stably holds the substrate at a proper position even if a holding location of the semiconductor wafer W on the holding surface of the transfer arm 12 ( 14 ) is somewhat misaligned.
- the substrate holder 50 of the second embodiment since elastic displacement of the protruding portion 62 is performed by a spring made of a metal material, the substrate holder 50 has high advantages in realization, stability, and durability of substrate holding.
- the substrate holder 50 of the second embodiment is formed of metal or ceramic
- the substrate holder 50 has advantages of maintaining a holding force of a substrate while having high thermal resistance.
- the substrate holder 50 may be formed of a softer material than a semiconductor wafer, for example, thermal resistant plastic.
- the protruding portions 62 of the substrate holder 50 may be grounded. Accordingly, a spark may be prevented from being generated between the semiconductor wafer W charged after a plasma process, and an element in the processing apparatus.
- the spring of the protruding portion 62 is not limited to the volute spring, and for example, as shown in FIG. 13 , a compressed coil spring 68 may also be used.
- the compressed coil spring 68 is accommodated in a counterbore hole 70 formed in the length direction on the top surface of the pad main body 60 , and elastically transforms in the length direction with respect to weight or pressure applied form the semiconductor wafer W, i.e., in the direction perpendicular to the holding surface of the transfer arm 12 ( 14 ).
- a bottom of the compressed coil spring 68 is fixed to a bottom of the counterbore hole 70 , and the cap 66 having a cylindrical shape covers a top portion of the compressed coil spring 68 .
- An inner wall of the counterbore hole 70 includes a container shape guide portion for guiding the cap 66 in the length direction, and a stopper for defining an uppermost location of a shoulder portion 66 a (further, the apex portion) of the cap 66 .
- FIG. 14 shows an external structure of the substrate holder 50 in the second modified example
- FIG. 15 is a magnified view thereof.
- the substrate holder 50 in the second modified example also includes the pad main body 60 detachably fixed to the top surface of the transfer arm 12 ( 14 ), for example, by using the bolt 58 , and the plurality of (preferably many) protruding portions 62 capable of being elastically displaced and accommodated in the counterbore hole 70 on the top surface of the pad main body 60 , where each protruding portion 62 includes the spring member.
- a main difference from the first modified example is that the number of protruding portions 62 is largely reduced and an arrangement pattern of the protruding portions 62 are intently considered.
- the total number of protruding portions 62 provided on a top surface of the pad main body 60 is reduced to, for example, less than or equal to 10, and arrangement density is reduced, thereby reducing spring power of the protruding portion 62 receiving the weight of the semiconductor wafer W. Accordingly, the semiconductor wafer W can be further definitely sunken.
- the sunken amount D may be equal to the thickness T of the semiconductor wafer W.
- the plurality of protruding portions 62 are arranged at regular intervals on a V-shaped line, where a peak in an axial symmetric to a straight line N passing through a center point O of the holding surface of the entire arm (or the center point at a reference wafer holding location) and a center of the pad main body 60 faces the center point O, and a V pattern is provided in a plurality of rows (two rows in the shown example) along the straight line N.
- the pad main body 60 is attached in a recess portion 72 formed on the top surface of the transfer arm 12 ( 14 ), and accordingly, the transfer arm 12 ( 14 ) including the substrate holder 50 is thinned.
- a chamfering operation or an R operation 66 b may be suitably performed on the apex portion of the cap 66 of the protruding portion 62 as shown in FIG.
- a structure with rotatably burying a rigid ball in the apex portion of the cap 66 such that only a top portion thereof is exposed (ball joint) may be employed.
- the protruding portions 62 that are sunken after the semiconductor wafer W is placed thereon may not be completely sunken in the pad main body 60 (i.e., the apex portion of the cap 66 may stick up a little).
- side clearance in the counterbore hole 70 of the pad main body 60 may be suitably increased.
- a metal is preferable in terms of durability
- resin specifically, Teflon (registered trademark) or PEEK (brand name)
- ceramic silicon carbide or alumina
- quartz is preferable in terms of thermal resistance
- a ceramic spring or a carbon spring is used so as to form all parts or elements of the substrate holder 50 from a ceramic or carbon material.
- the substrate holder 50 of the above embodiment may be applied to the transfer arms 22 and 24 of the single type atmosphere transfer robot (substrate transfer robot) 20 provided in the loader transfer chamber LM.
- a target substrate in the present invention is not limited to a semiconductor wafer, and may be any one of various substrates for FPD (specifically organic EL and liquid crystal panel), a photo mask, a print substrate, etc. Accordingly, for example, as shown in FIG. 17 , the substrate holder 50 of the above embodiment may be attached to a transfer arm 74 of a substrate transfer apparatus for FPD.
- FPD organic EL and liquid crystal panel
- the transfer arm 74 of FIG. 17 includes a pair of outer support portion 78 and a pair of inner support portion 80 extending forward in parallel from an arm body 76 .
- a claw portion 78 a protruding inward to hold a periphery portion on right and left sides of a rectangular substrate G for FPD is formed at a leading end of the outer support portion 78 that is relatively short, where the substrate holder 50 is attached to a top surface of the claw portion 78 a .
- leading end portion 80 a of the inner support portion 80 that is relatively long sticks out a little than a front periphery portion of the rectangular substrate G, and thus the substrate holder 50 is also attached to the leading end portion 80 a .
- a base portion 80 b of the inner support portion 80 sticks out a little than a rear periphery portion of the rectangular substrate G, and thus the substrate holder 50 is also attached to the base portion 80 b .
- rectangular or circular openings 82 provided in places on the arm body 76 are holes for a light weight.
- the substrate transfer apparatus for FPD can arbitrarily and freely select an arm position, an arm moving trajectory, and a transfer speed when the transfer arm 74 holds and transfers the rectangular substrate G, without being restricted by the substrate holding portion, and thus transfer capability can be improved. Also, since the transfer capability of the substrate transfer apparatus is improved, throughput of the substrate processing apparatus for FPD or the multi single type inline process system is improved.
- substrate holders attached to a transfer arm do not all have to be the substrate holder of the present invention, and a conventional substrate holder and the substrate holder of the present invention may be used together. Accordingly, for example, in the transfer arm 12 ( 14 ) of FIG. 2 or the transfer arm 74 of FIG. 17 , only a substrate holder attached to an arm leading end portion that easily tilts forward may be the substrate holder of the present invention, and conventional, for example, tapered pad type substrate holders may be used for other substrate holders.
- the substrate holder of the present invention is not limited to the transfer arm of the substrate transfer apparatus, and may be applied to a arbitrary transfer body or moving body transferring or moving a substrate or plate shaped body by holding the substrate or plate shaped body.
- the substrate or plate shaped body held by the substrate holder of the present invention on the transfer body or moving body is not limited to a horizontal position or a position facing upward, and may have a position where a main or target surface faces downward or a largely tilted position, or extremely, may have a vertical position.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Robotics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Manipulator (AREA)
Abstract
In the substrate holder, while holding a periphery portion of a semiconductor wafer, some of protruding portions having a grass shape on a pad main body hide beneath the semiconductor wafer, and the others of the protruding portions are exposed outside the semiconductor wafer. Also, the protruding portions hiding beneath the semiconductor wafer contact a rear surface of the semiconductor wafer, and sink the semiconductor wafer to a suitable depth via gravity, thereby holding the semiconductor wafer mainly in a length direction. In addition, some of protruding portions exposed near the periphery portion of the semiconductor wafer contact a side surface of the semiconductor wafer, thereby holding the semiconductor wafer mainly in a width direction.
Description
- The present invention relates to a substrate holder for holding a target substrate on a transfer arm, and a single type substrate transfer apparatus and single type substrate processing apparatus using the substrate holder.
- Today, a manufacture line of a semiconductor device or flat panel display (FPD) employs a single type process for processing target substrates (semiconductor wafers, glass substrates, etc.) one by one. Specifically, recently, in order to promote consistency, connectivity, or complexity of processes, a multi single type inline process system where a plurality of process units are integrally arranged along or around a transfer path of a transfer system is being widely used.
- Such a transfer system for a single type process unit or for a multi single type inline process system uses a single type substrate transfer apparatus which holds substrates one by one, and carries the substrates into or out of each process unit one by one. Generally, such a type of substrate transfer apparatus is configured as a transfer robot, and includes one or several transfer arms capable of holding substrates to face upward one by one and performing rotating motion, elevating movement, and advancing and retreating movement.
- The transfer arm of such a substrate transfer apparatus includes a substrate holding portion (holder or holding mechanism) that prevents a substrate from being misaligned or from falling during transfer. For such a conventional type of substrate holding portion, a rear surface friction method, a taper pad method, a dropping method, or a vacuum adhesion method is used.
- In the rear surface friction method, a plurality of holding pads having a plate or block shape are discretely attached to a top surface or holding surface of the transfer arm. Then, the substrate is placed on the holding pad to face upward, and is held by using a frictional force between a rear surface of the substrate and a pad surface (for example, refer to
FIG. 8 and descriptions thereof in Patent Reference 1). Elastomer, ceramic, or the like is used as a material of such a holding pad. - In the taper pad method, a plurality of holding pads having a tapered side surface (having a trapezoid longitudinal section) are discretely attached to a holding surface of the transfer arm at predetermined intervals such as to surround the substrate. Then, a periphery portion of the substrate is fastened to the tapered side surface of the holding pads such that the substrate is held facing upward (for example, refer to
FIG. 4 and descriptions thereof in Patent Reference 1). According to this method, the substrate is dropped along the tapered side surface from a location higher than a top surface of the holding pad, above the holding surface of the transfer arm, and thus the substrate is held in line-contact to a location on the tapered side surface where gravity of the substrate and a reaction from the holding pad are balanced. - In the dropping method, a pick portion of the transfer arm is formed as a fork slightly larger than an outline shape of the substrate along the outline shape of the substrate, and a plurality of claw portions protruding from and extending inward the fork to surround the substrate at predetermined intervals adhere to the fork. Then, the substrate is dropped down to a bottom surface (holding surface) of the claw portions along an inclined surface formed on an inner side of the claw portions, so as to hold the substrate facing upward in surface-contact at the bottom surface of the claw portion (for example, refer to
FIG. 4 and descriptions thereof in Patent Reference 2). - In the vacuum adsorption method, a plurality of suction holes are provided on a holding surface of the transfer arm, a rear surface of the substrate is placed on the suction holes, and a vacuum suction apparatus connected to the suction holes through an air passage performs vacuum suction, thereby fixing the substrate to the transfer arm at the suction holes (for example, refer to
FIG. 3 and descriptions thereof in Patent Reference 2). - (Patent Reference 1) Japanese Laid-Open Patent Publication No. 2000-3951
- (Patent Reference 2) Japanese Laid-Open Patent Publication No. 2002-64057
- In a manufacture line of a semiconductor device or an FPD, a substrate transfer technology is important in increasing production efficiency, and a transfer speed of a substrate transfer apparatus is making steady progress. Specifically, in a single type substrate transfer apparatus used in a multi single type inline process system, an operation of a transfer arm which holds a substrate is speeding up by not only including a slide movement and an elevating movement, but also a rotating motion. Meanwhile, it is easy for a leading end portion of the transfer arm to tilt forward due to gravity of the substrate, according to an increased size of the substrate.
- Under such a technical background, performance or functionality of a substrate holding portion for holding a substrate on a transfer arm while the substrate faces upward has become an important technical factor that affects not only transfer capability of a substrate transfer apparatus but also throughput of a substrate processing apparatus or process system.
- In this regard, according to the rear friction method above, since the substrate is held only by using the frictional force between the rear surface of the substrate and the pad surface, a substrate holding force is essentially weak, and thus the substrate may slide and fall from the transfer arm. Also, the coefficient of friction, i.e., a holding force, varies according to a rear surface state of the substrate, and it is difficult to hold the substrate when the substrate is bent.
- Meanwhile, according to the taper pad method or dropping method, if a location of the substrate is misaligned when the substrate is placed on the transfer arm, the substrate may be placed on the pad or claw portion and easily tilt askew. When the substrate tilts askew on the transfer arm, it is easy for the substrate to fall, and even if the substrate does not fall, it is difficult to detect the location of the substrate on the transfer arm by using an optical sensor. As a result, it is difficult to adjust a location when the substrate is transferred from the transfer arm to another substrate supporting unit (for example, a substrate holding stage in a process unit).
- Also, the taper pad method requires the suitable coefficient of friction between the tapered side surface of the holding pad and the substrate, and thus often uses elastomer as the material of the holding pad. However, regarding transfer of the substrate under a high temperature process, such as chemical vapor deposition (CVD), since a heat resistant temperature of elastomer is low (about 300° C.), ceramic is used as a material of the holding pad. However, also applied to the rear surface friction method, when a contact type holding pad is made of ceramic, the substrate easily slides, and thus stable holding is difficult.
- The vacuum adsorption method does not cause any problem in terms of a substrate holding force, but is practically disadvantageous since a structure of the transfer arm and equipment of the substrate transfer apparatus are complicated and highly priced. Also, the vacuum adsorption method has a limitation in use since it does not function in a vacuum transfer apparatus which operates under decompression. Further, particles are easily adhered.
- In order to overcome such problems of the prior art, the present invention provides a substrate holder which is simply adhered to a transfer body, such as a transfer arm, at a low price without any special work, is not affected by a rear surface state or bending of a substrate, and is capable of stably holding the substrate at a proper position, even when a location of the substrate is somewhat misaligned on a holding surface of the transfer body, and a single type substrate transfer apparatus and substrate processing apparatus using the substrate holder.
- According to an aspect of the present invention, there is provided a substrate holder which is attached to a holding surface of a transfer body for transferring a target substrate, and holds the substrate by contacting a periphery portion of the substrate, the substrate holder including: a pad main body which has a plate or block shape and is fixed to the holding surface of the transfer body; and a plurality of protruding portions which extend from the pad main body and are elastically transformable, wherein some of the plurality of protruding portions hold a rear surface of the substrate, and others of the protruding portions hold a side surface of the substrate.
- According to another aspect of the present invention, there is provided a substrate holder which is attached to a holding surface of a transfer body for transferring a target substrate by placing the target substrate to face upward, and holds the substrate by contacting a periphery portion of the substrate, the substrate holder including: a pad main body which has a plate or block shape and is fixed to a holding surface of the transfer body; and a plurality of protruding portions which extend upward from a top surface of the pad main body, and are elastically transformable, wherein some of the plurality of protruding portions hold the substrate mainly in a direction perpendicular to a plate surface of the substrate by contacting a rear surface of the substrate, and others of the protruding portions hold the substrate mainly in a direction parallel to the plate surface of the substrate by contacting a side surface of the substrate.
- In the substrate holder of the present invention, while holding the periphery portion of the target substrate on the holding surface of the transfer body, the protruding portions hiding beneath the substrate hold the rear surface of the substrate, and some of protruding portions exposed near the periphery portion of the substrate hold side surface of the substrate. By setting shape, sizes, arrangement density, and elastic forces of the protruding portions as parameters, a substrate holding force in each of a length direction and a width direction may be arbitrarily adjusted.
- According to another aspect of the present invention, there is provided a substrate transfer apparatus which transfers a target substrate, the substrate transfer apparatus including: a transfer base portion which is configured to be moveable inside a chamber under atmospheric pressure or decompression; a transfer arm which is configured to be loaded on the transfer base portion and to support the substrate by placing the substrate on the transfer arm; an arm driving portion for moving the transfer arm on the transfer base portion in a predetermined direction; and a substrate holding portion which is attached to the transfer arm to hold the substrate, and including the substrate holder above.
- According to another aspect of the present invention, there is provided a substrate processing apparatus including: a single type process unit which performs a predetermined process on a target substrate under atmospheric pressure or decompression; and a substrate transfer mechanism which includes a transfer arm to which the substrate holder above is attached, places the substrate on the transfer arm, and transfers the substrate to carry the substrate into or out of the process unit.
- According to the above structures and effects, a substrate holder of the present invention can be simply attached to a transfer body, such as a transfer arm, at a low price without any special work, is not affected by a rear surface state or bending of a substrate, and can stably hold the substrate at a proper position even when a location of the substrate is somewhat misaligned on a holding surface of the transfer body.
- By using the substrate holder of the present invention, a substrate transfer apparatus of the present invention can arbitrarily and freely select an arm position, an arm moving trajectory, and a transfer speed while holding and transferring a substrate to a transfer arm without being limited by a substrate holding portion, thereby improving transfer capability.
- By using the substrate holder of the present invention, a substrate processing apparatus of the present invention can improve transfer efficiency, thereby improving throughput.
-
FIG. 1 is a plan view showing a structure of a substrate processing apparatus according to an embodiment of the present invention; -
FIG. 2 is a perspective view showing an external structure of core elements of a transfer arm of a substrate transfer apparatus used in the substrate processing apparatus; -
FIG. 3 is a perspective view schematically showing an external structure of a substrate holder according to a first embodiment; -
FIG. 4 is a side view schematically showing an operation of the substrate holder; -
FIGS. 5A and 5B are side views schematically showing an operation of the substrate holder; -
FIG. 6 is a side view schematically showing an operation of the substrate holder; -
FIG. 7 is a perspective view schematically showing an external structure of a substrate holder according to a modified example of the first embodiment; -
FIG. 8 is a plan view schematically showing an external structure of a substrate holder according to a second embodiment; -
FIG. 9 is a perspective view showing a structure of a protruding portion of the substrate holder; -
FIG. 10 is a partially cross-sectioned side view schematically showing a structure of the substrate holder; -
FIG. 11 is a side view schematically showing an operation of the substrate holder; -
FIG. 12 is a side view schematically showing an operation of the substrate holder; -
FIG. 13 is a view (side view and partially magnified cross-sectional view) showing a structure of a substrate holder according to a first modified example of the second embodiment; -
FIG. 14 is a plan view schematically showing an external structure of a substrate holder according to a second modified example of the second embodiment; -
FIG. 15 is a magnified plan view showing the external structure of the substrate holder according to the second modified example; -
FIG. 16 is a view (side view and partially magnified cross-sectional view) showing the structure of the substrate holder according to the second modified example; and -
FIG. 17 is a plan view showing an example of adhering a substrate holder according to an embodiment to a transfer arm for transferring a rectangular substrate for FPD. - Hereinafter, suitable embodiments of the present invention will be described with reference to accompanying drawings.
-
FIGS. 1 and 2 show a structure of a substrate processing apparatus, according to an embodiment of the present invention. The substrate processing apparatus is configured as a cluster tool type vacuum processing apparatus, which is a type of a multi single type inline process system. - The cluster tool type vacuum processing apparatus is provided in a clean room, and arranges six vacuum process chambers PC1, PC2, PC3, PC4, PC5, and PC6, and two load lock chambers LLCa and LLCb in a cluster shape around a vacuum platform (vacuum transfer chamber) PH having a hexagonal shape, wherein a pair of sides extending in an apparatus depth direction is about twice longer than other sides.
- In more detail, in the platform PH, in a clockwise order on the drawing, two process chambers PC1 and PC2 are connected to a first long side through gate valves GV1 and GV2, process chambers PC3 and PC4 are respectively connected to first and second short sides through gate valves GV3 and GV4, two process chambers PC5 and PC6 are connected to a second long side through gate valves GV5 and GV6, and the load lock chambers LLCa and LLCb are respectively connected to third and fourth short sides through gate valves GVa and GVb.
- Each of the process chambers PC1 through PC6 is connected to an exclusive vacuum exhaust apparatus (not shown), and thus the interior of each chamber is always maintained in a decompressed state at a variable pressure. Generally, a target object, for example, a semiconductor wafer W, is placed on a holding
stage 10 arranged at a center portion inside each chamber, and a required single type process, for example, a vacuum film forming process, such as CVD, atomic layer deposition (ALD), or sputter, a thermal process, a cleaning process of a semiconductor wafer surface, or a dry etching process, is performed by using a predetermined power (process gas, high frequency, or the like). - The platform PH is connected to an exclusive vacuum exhaust apparatus (not shown), and thus the interior of the platform PH is always maintained in a decompressed state generally at a constant pressure. A single type vacuum transfer robot (substrate transfer apparatus) 16 including a pair of
stretchable transfer arms - Each of the load lock chambers LLCa and LLCb is connected to an exclusive vacuum exhaust apparatus (not shown) through an opening/closing valve, and thus the interior of each chamber may be frequently switched between an atmospheric pressure state and a vacuum state. The load lock chambers LLCa and LLCb are connected to a loader transfer chamber LM under an atmospheric pressure respectively through gate valves GVc and GVd, from an opposite side viewed from the platform PH. A delivery stand 18 on which the semiconductor wafer W under retention is placed is provided at a center portion in each of the load lock chambers LLCa and LLCb.
- A load port LP and a location adjusting mechanism ORT are provided adjacent to the loader transfer chamber LM. The load port LP is used for inserting and discharging of a wafer cassette CR capable of accommodating, for example, twenty five semiconductor wafers W in one batch, between an external transfer vehicle. Here, the wafer cassette CR is configured as a front open unified pod (FOUP), a standard mechanical interface (SMIF) box, or the like. The location adjusting mechanism ORT is used to adjust a notch of the semiconductor wafer W or an orientation flat to a predetermined location or direction.
- A single type atmosphere transfer robot (substrate transfer apparatus) 20 provided in the loader transfer chamber LM includes a pair of
stretchable transfer arms linear motor 26, and transfers the semiconductor wafer W one by one (or in a batch unit) by moving among the load port LP, the location adjusting mechanism ORT, and the load lock chambers LLCa and LLCb. The atmosphere transfer robot 20 carries the semiconductor wafer W into the loader transfer chamber LM while eachLP door 25 provided on a front surface of the wafer cassette CR is opened. The linear guide 28 includes, for example, a magnet made of a permanent magnet, a driving magnetic coil, and a scale head, and controls a linear movement of the atmosphere transfer robot 20 according to a command from acontroller 30. - Here, a basic wafer transfer sequence for performing a series of processes in this cluster tool on one wafer in the wafer cassette CR inserted into the load port LP is explained.
- The atmosphere transfer robot 20 in the loader transfer chamber LM takes out one semiconductor wafer W from the wafer cassette CR on the load port LP, performs location adjustment by transferring the semiconductor wafer W to the location adjusting mechanism ORT, and then transfers the semiconductor wafer W to any one (for example, the load lock chamber LLCa) of the load lock chambers LLCa and LLCb. The load lock chamber LLCa at a transfer place receives the semiconductor wafer W in an atmospheric pressure state, is vacuum-sucked after receiving the semiconductor wafer W, and transfers the semiconductor wafer W to the
vacuum transfer robot 16 of the platform PH in a decompression state. - The
vacuum transfer robot 16 carries the semiconductor wafer W taken out from the load lock chamber LLCa into a first process chamber (for example, the process chamber PC1), by using one of thetransfer arms - After the single type process of the first operation is ended, the
vacuum transfer robot 16 carries the semiconductor wafer W out of the process chamber PC1, and then carries the carried out semiconductor wafer W into a following second process chamber (for example, the process chamber PC2). Also in the second process chamber PC2, a single type process of a second operation is performed under predetermined process conditions according to a predetermined recipe. - After the single type process of the second operation is ended, the
vacuum transfer robot 16 carries the semiconductor wafer W out of the second process chamber PC2, and carries the carried out semiconductor wafer W into a third process chamber (for example, the process chamber PC3) if there is a following operation, and transfers the carried out semiconductor wafer to one of the load lock chambers LLCa and LLCb if there is no following operation. When a process is performed in a process chamber (for example, the process chamber PC5) after the third one, the semiconductor wafer W is carried into a process chamber (for example, the process chamber PC6) at a following stage if there is a following operation, and is returned back to one of the load lock chambers LLCa and LLCb if there is no following operation. - The
vacuum transfer robot 16 of the platform PH may be configured to perform a pick and place operation, where the pair oftransfer arms vacuum transfer robot 16, and are alternatively used to initially carry the semiconductor wafer W out of the module and then to carry another semiconductor wafer W into the module by replacing the semiconductor wafer W. - As described above, when the semiconductor wafer W on which the series of processes are performed in the plurality of process chambers PC1, PC2, and so on in the cluster tool is carried into one of the load lock chambers (for example, the load lock chamber LLCb), a decompression state in the load lock chamber LLCb is switched to an atmospheric pressure state. Then, the atmosphere transfer robot 20 in the loader transfer chamber LM takes out the semiconductor wafer W from the load lock chamber LLCb in an atmospheric pressure state, and returns the semiconductor wafer W back to the corresponding wafer cassette CR. Also, heating or cooling process may be performed under a desired atmosphere on the semiconductor wafer W in the load lock chamber LLCa and LLCb.
- As described above, the cluster tool type vacuum processing apparatus is capable of continuously performing a series of vacuum processes inline on the semiconductor wafer W by sequentially transferring one semiconductor wafer W to a plurality of process chambers through the platform PH under decompression, and specifically in a vacuum film forming process, is capable of depositing desired thin films inline by continuously performing different film forming processes in a plurality of process chambers.
- According to the cluster tool type vacuum processing apparatus, a pair of
guide rails 32 and atransfer screw 36 of aball thread mechanism 34 are built parallel to each other in a length direction of the platform PH inside the platform PH, and thevacuum transfer robot 16 is capable of sliding on theguide rail 32 according to a straight driving of theball thread mechanism 34. In theball thread mechanism 34, one end of thetransfer screw 36 is combined to a motor 38. - The
vacuum transfer robot 16 includes a transfer base portion 40 performing a slide operation, and an arm stretch driving portion 42 that moves pickportions transfer arms pick portions transfer arms controller 30. - Hereinafter, in the cluster tool type vacuum processing apparatus, a substrate holder according to an embodiment of the present invention applied to the
transfer arms vacuum transfer robot 16 will be described. - Each of the
transfer arms vacuum transfer robot 16 attaches a substrate holder (not shown inFIG. 1 ) of the present invention to it for stably holding the semiconductor wafer W, so that a rotating motion, an elevating movement, or an advancing and retreating movement is arbitrarily performed at a high speed while the semiconductor wafer W is placed facing upward. - In detail, as shown in
FIG. 2 , in the top or holding surface of thepick portion 12 a (14 a) having a fork shape of the transfer arm 12 (14), a plurality of (four in the shown example)substrate holders 50 according to the present invention are discretely attached to predetermined places, i.e., base portions and leading end portions of thepick portions - In the
vacuum transfer robot 16, by attaching thesubstrate holder 50 of the present invention described below to each of thetransfer arms transfer arms - Also, as the transfer capability of the
vacuum transfer robot 16 operated in the platform PH is improved, throughput of an entire system in the cluster tool type vacuum processing apparatus is improved. -
FIG. 3 shows an external structure of thesubstrate holder 50 according to a first embodiment of the present invention.FIGS. 4 through 6 show operations of thesubstrate holder 50. - The
substrate holder 50 in the present embodiment includes a padmain body 52 fixed to the holding surface of the transfer arm 12 (14) via screw or adhesion, and a plurality of (preferably many or countless) grass shaped (specifically like a straight hair type artificial lawn) protrudingportions 54. - As shown in
FIGS. 2 and 3 , thesubstrate holders 50 are provided at predetermined places of the transfer arm 12 (14) such that some of the grass shaped protrudingportions 54 on the padmain body 52 hide beneath the semiconductor wafer W and others of the grass shaped protrudingportion 54 are exposed outside the semiconductor wafer W when thesubstrate holders 50 hold the periphery portion of the semiconductor wafer W. - The pad
main body 52 of thesubstrate holder 50 has a piece of plate shape (for example, a circular plate shape) or a block shape (for example, a cylindrical shape). A top surface of the padmain body 52 may be parallel to the holding surface of the transfer arm 12 (14). A material of the padmain body 52 may be a metal or ceramic, but alternatively, a resin, such as Teflon (registered mark) or PEEK (brand name), may be suitably used. - The grass shaped protruding
portion 54 of thesubstrate holder 50 includes a base 54 a fixed to the top surface of the padmain body 52, and a contact portion orfree end 54 b extending upward askew from the base 54 a and capable of being elastically transformed or displaced according to external force or external energy (gravity, pressure, thermal energy, or the like from the semiconductor wafer W). - As a structure for fixing the base 54 a of the protruding
portion 54 to the padmain body 52, for example, as shown inFIG. 4 , a method of burying and planting the base 54 a in the padmain body 52 like a root of grass may be suitably employed. Alternatively, the protrudingportion 54 may be integrally molded with the padmain body 52. - The
contact portion 54 b of the protrudingportion 54, as shown inFIG. 4 , may be long and thin like a leaf of grass and have a leading end portion in a tapered shape. The leading end portion may tilt askew (preferably at an angle from 30° to 60°) with respect to a direction crossing the holding surface of the transfer arm 12 (14) at right angles when thecontact portion 54 b does not contact the semiconductor wafer W, and may face inward of the outline of the semiconductor wafer W when thecontact portion 54 b contacts the semiconductor wafer W. - The protruding
portions 54 may have suitable rigidity and elastic modulus since the protrudingportions 54 are individually elastically transformable with respect to external force. Specifically, as an elastic function of the protrudingportion 54, the protrudingportion 54 may be easily bent (small elastic modulus) with respect to force FV in a vertical direction from the top as shown inFIG. 5A , while the protrudingportion 54 may be difficult to be bent (high elastic modulus) with respect to a force FH in a horizontal direction from the side as shown inFIG. 5B . For example, the protrudingportion 54 may have a thin leading portion to be easily bent with respect to the force FV in the vertical direction, and may have a thick base to be bent with difficulty with respect to the force FH in the horizontal direction. - A material of the protruding
portion 54 may be a rubber-shaped elastic body capable of elastic transformation in an arbitrary direction, and specifically be fluoro rubber having excellent thermal resistance and chemical resistance. Alternatively, resin capable of elastic transformation in a predetermined direction according to a shape, for example, Teflon (registered mark) or PEEK, may be suitably used. - In the
substrate holder 50 according to the present embodiment, according to the elastic function of the protrudingportion 54 described above, when the semiconductor wafer W on the transfer arm 12 (14) is placed on thesubstrate holder 50 at the periphery portion, the semiconductor wafer W sinks by a suitable depth on the grass shaped protrudingportion 54 as shown inFIG. 4 . The sunken amount D may be smaller than a thickness T of the semiconductor wafer W, and preferably about half of the thickness T (D=0.4 to 0.6 T). Also, the thickness T is 0.8 mm in the semiconductor wafer W having a diameter of, for example, 300 mm. Considering insufficient bending or sinking of the semiconductor wafer W, the maximum value of the sunken amount may be about the thickness of the semiconductor wafer W. - Here, in the protruding
portions 54 hiding beneath the semiconductor wafer W from among the grass shaped protrudingportion 54 on the padmain body 52, eachcontact portion 54 b contacts a rear surface WB of the semiconductor wafer W, and holds the semiconductor wafer W mainly in the length direction, i.e., in a direction perpendicular to the plate surface of the semiconductor wafer W (or the holding surfaces of thetransfer arms 12 and 14), resistively to force (gravity) in the length direction from the semiconductor wafer W as thecontact portion 54 b bends downward as shown inFIG. 5A . Also, since the number of protrudingportions 54 contacting the rear surface WB of the semiconductor wafer W is relatively high, and thus a contact area is large, holding force in the width direction by contact friction is somewhat obtained. - Some of the protruding
portions 54 exposed near the periphery portion of the semiconductor wafer W from among the grass shaped protrudingportions 54 on the padmain body 52 contact a side surface WSof the semiconductor wafer W, and hold the semiconductor wafer W mainly in a direction parallel to the plate surface of the semiconductor wafer W resistively to force (pressure) facing sideways from the semiconductor wafer W as thecontact portion 54 b is elastically transformed to retreat sideways a little as shown inFIG. 5B . Also, since the number of protrudingportions 54 contacting the side surface WS of the semiconductor wafer W is relatively low, and thus a contact area is small, contact friction or reaction in the length direction is small. - Also, a rounding work is generally performed on the periphery portion of the semiconductor wafer W, and thus as shown in
FIG. 4 , some of the grass shaped protrudingportions 54 may contact an peripheral round incline WR. The grass shaped protrudingportion 54 contacting the peripheral round incline WR of the semiconductor wafer W as such is located in the middle between the protrudingportion 54 contacting the rear surface WB of the semiconductor wafer W and the protrudingportion 54 contacting the side surface WS of the semiconductor wafer W, and holds the semiconductor wafer W in directions perpendicular and parallel to the plate surface of the semiconductor wafer W by taking a middle elastic transformation position. In this regard, the peripheral round incline WR of the semiconductor wafer W has a surface for both wafer side surface and wafer rear surface. - As shown in
FIG. 6 , when the semiconductor wafer W is separated relatively upward from the transfer arms 12 (14) so as to be transferred outside, the protrudingportions 54 elastically transformed by contacting the semiconductor wafer W until then are returned back to original (no-load) state or original position according to elastic restoring force. - As described above, the
substrate holder 50 of the present embodiment includes the padmain body 52 fixed to the holding surface of the transfer arm 12 (14), and the plurality of grass shaped protrudingportion 54 provided on the top surface of the padmain body 52, where some of the grass shaped protrudingportions 54 on the padmain body 52 hide beneath the semiconductor wafer W and others of the grass shaped protrudingportions 54 are exposed outside the semiconductor wafer W, while holding the periphery portion of the semiconductor wafer W. Also, the protrudingportions 54 hiding beneath the semiconductor wafer W contact the rear surface WB of the semiconductor wafer W and are transformed or displaced relatively largely downward by using a relatively small elastic modulus, so that the protrudingportions 54 hold the semiconductor wafer W mainly in the length direction by sinking the semiconductor wafer W to a suitable depth via gravity. Also, some of the protrudingportions 54 exposed near the periphery portion of the semiconductor wafer W contact the side surface WS of the semiconductor wafer W and are transformed a little to the width direction by using a high elastic modulus, thereby holding the semiconductor wafer W mainly in the width direction. Also, some of the protrudingportions 54 that do not directly contact the side surface WS of the semiconductor wafer W support the protrudingportions 54 contacting the side surface WS of the semiconductor wafer W from the back, and thus the number of the protrudingportions 54 holding mainly the semiconductor wafer W in the width direction is never small. Thicknesses, heights, shapes, arrangement density, and elastic forces of the grass shaped protrudingportions 54, a weight of the semiconductor wafer W, etc. may be set as parameters so as to arbitrarily adjust wafer holding force from each of the length and width directions. - The
substrate holder 50 of the present embodiment stably and definitely holds the semiconductor wafer W facing upward on the transfer arm 12 (14) according to the above structures and operations. - In other words, since the
substrate holder 50 elastically displaces the protrudingportions 54 hiding beneath the semiconductor wafer W downward to sink the semiconductor wafer W in a horizontal position, even when a location of the semiconductor wafer W placed on the transfer arm 12 (14) is somewhat misaligned, the semiconductor wafer W does not tilt and is held by thesubstrate holder 50 in the horizontal position as long as the periphery portion of the semiconductor wafer W is placed on some of the grass shaped protrudingportions 54 of eachsubstrate holder 50. - In the width direction, since some of the protruding
portions 54 mainly affect (contact) the side surface WS of the semiconductor wafer W to hold the semiconductor wafer W by elastic force, the coefficient of friction between the semiconductor wafer W and the protrudingportion 54 is not important, and thus materials and shapes of the protrudingportions 54 may be freely selected. - In the
substrate holder 50 of the present embodiment, each grass shaped protrudingportion 54 holds the semiconductor wafer W in the length direction by being transformed in the same direction when hiding beneath the semiconductor wafer W, and holds the semiconductor wafer W in the width direction without being transformed so much when contacting the wafer side surface from outside the semiconductor wafer W. Accordingly, even when a loading location of the semiconductor wafer W is somewhat misaligned, each grass shaped protrudingportion 54 may flexibly deal with the misalignment. - Also, since the periphery portion of the semiconductor wafer W is sunken by a suitable depth via a self-weight on each
substrate holder 50, even if the semiconductor wafer W is bent, the semiconductor wafer W is stably and definitely held as if there is no bending. - Also, even if the pick portion of the transfer arm 12 (14) is tilted forward during transfer, the
substrate holder 50 can definitely stably hold the semiconductor wafer W. Specifically in a cluster tool processing apparatus, a transfer arm of a vacuum transfer apparatus is long and is easily tilted forward by a self-weight when the transfer arm is stretched while transferring a substrate to a process chamber, and thus it is a conventional problem that the substrate is easily misaligned on the arm. However, in the present embodiment, since thesubstrate holder 50 has sufficiently high holding force even in the width direction with respect to the semiconductor wafer W on the transfer arm 12 (14), location misalignment of the semiconductor wafer W can be prevented even when the transfer arm 12 (14) is tilted forward. - As such, the semiconductor wafer W is not tilted or misaligned on the transfer arm 12 (14). Accordingly, the semiconductor wafer W does not slide and fall, and precision and reliability of detecting the location of the semiconductor wafer W on the transfer arm 12 (14) by using an optical sensor are also improved.
- Also, since the
substrate holder 50 only contacts the periphery portion of the semiconductor wafer W, even when a rear surface state of the semiconductor wafer W is changed according to a process performed in a process chamber PC, the wafer holding force of thesubstrate holder 50 is not affected at all. - Also, the
substrate holder 50 is detachable or freely and simply replaceable as a holding pad at a predetermined place of the holding surface of the transfer arm 12 (14), and is attached thereto at a low price. In the substrate transfer apparatus, a special process is not required in the transfer arm 12 (14), and a special control apparatus for turning on or off substrate holding is not necessary at all. - In the first embodiment described above, it is possible to change a shape or thickness of the protruding
portion 54 on thesubstrate holder 50. For example, an outer protrudingportion 54 on which the semiconductor wafer W is not placed on thesubstrate holder 50 may be configured to be thick (strong) so as to definitely prevent misalignment of the semiconductor wafer W during transfer. - Also, in the first embodiment described above, the protruding
portion 54 of thesubstrate holder 50 has a shape similar to straight hair type artificial lawn, but may alternatively have a shape similar to another artificial lawn. Alternatively, the protrudingportion 54 may have a small thin piece shape, and for example, as shown inFIG. 7 , a protrudingportion 56 having a scale shape may be suitably employed. - In
FIG. 7 , the scale shaped protrudingportion 56 extends upward and askew from the top surface of the padmain body 52, and is elastically displaced according to an external force, i.e., gravity or pressure from the semiconductor wafer W, and thus may have the same operation as the grass shaped protrudingportion 54 described above in holding the semiconductor wafer W. - In other words, while holding the periphery portion of the semiconductor wafer W, some of the scale shaped protruding
portions 56 on the padmain body 52 hide beneath the semiconductor wafer W, and others of the scale shaped protrudingportions 56 are exposed outside the semiconductor wafer W. Also, the protrudingportions 56 hiding beneath the semiconductor wafer W contact the rear surface WB of the semiconductor wafer W to suitably sink the semiconductor wafer W in the horizontal position via gravity, thereby holding the semiconductor wafer W mainly in the length direction. Also, some of the protrudingportions 56 exposed near the periphery portion of the semiconductor wafer W contact the side surface WS or the peripheral round incline WR of the semiconductor wafer W to be elastically displaced a little in the width direction with a high elastic modulus, thereby holding the semiconductor wafer W mainly in the width direction by preventing the semiconductor wafer W from being misaligned to sideways. Sizes, heights, arrangement density, and elastic forces of the scale shaped protrudingportions 56, the weight of the semiconductor wafer W, etc. are set as parameters so as to arbitrarily adjust the wafer holding force in each of the length and width directions. - Next, a structure and operations of the
substrate holder 50 according to a second embodiment of the present invention are described with reference toFIGS. 8 through 12 . - The
substrate holder 50 according to the second embodiment includes a padmain body 60 detachably fixed to the holding surface of the transfer arm 12 (14) by using, for example, a bolt 58 (FIG. 8 ), and a plurality of (preferably many) protrudingportions 62 standing and provided close together at uniform density or pitches on a top surface of the padmain body 60, where each protrudingportion 62 includes a spring member formed of a metal material, as shown inFIGS. 8 through 10 . - In the protruding
portion 62 of thesubstrate holder 50, for example, a volute spring is used as the spring member, where acap 66 integrally covers a top portion of the volute spring 64 (FIG. 9 ). Thevolute spring 64 is provided on the top surface of the padmain body 60 to extend in a direction perpendicular to the holding surface of the transfer arm 12 (14), and a base portion of thevolute spring 64 is buried in and fixed to the pad main body 60 (FIG. 10 ). - The pad
main body 60 may have the same shape and be formed of the same material as the padmain body 52 of the first embodiment. Thecap 66 may have a long container portion covering not only the top portion of thevolute spring 64 but also a middle portion of thevolute spring 64, and for example, a resin, such as Teflon (registered mark) or PEEK, may be suitably used as a material. Thevolute spring 64 may have a small size where an entire length is less than or equal to 1 cm, and may be any one of a product on the market and a custom-ordered product. - In the
substrate holder 50 of the present embodiment, when the periphery portion of the semiconductor wafer W on the transfer arm 12 (14) is placed on thesubstrate holder 50, the semiconductor wafer W is sunken to a suitable depth on the spring-adhered protrudingportions 62 as shown inFIG. 11 or 12. A sunken amount D may be smaller than the thickness T of the semiconductor wafer W, and is most preferably about a half of the thickness T (D=0.4 to 0.6 T). - Here, protruding
portions 62 hiding beneath the semiconductor wafer W from among the spring-adhered protrudingportions 62 on the padmain body 60 contact the rear surface WB of the semiconductor wafer W at a apex portion of thecap 66, and hold the semiconductor wafer mainly in the length direction, i.e., in the direction perpendicular to the plate surface of the semiconductor wafer W (or the holding surfaces of thetransfer arms 12 and 14) resistively to force (weight) in the length direction from the semiconductor wafer W as thevolute spring 64 is compressed and transformed in an axis direction. - Also, some of the protruding
portion 62 exposed near the periphery portion of the semiconductor wafer W from among the spring-adhered protrudingportion 62 on the padmain body 60 contact the side surface WS or the peripheral round incline WR of the semiconductor wafer W at a portion lower than the apex portion of thecap 66, and hold the semiconductor wafer W mainly in the direction parallel to the plate surface of the semiconductor wafer resistively to force (pressure) facing sideways from the semiconductor wafer W. - Here, since the spring-adhered protruding
portion 62 contacting the side surface WS of the semiconductor wafer W from a cylindrical shaped body portion of thecap 66 is scarcely affected by a weight in an axis direction, thevolute spring 64 is scarcely (or a little) compressed and transformed (FIG. 11 ). Meanwhile, since the spring-adhered protrudingportion 62 where a head portion of thecap 66 contacts the peripheral round incline WR of the semiconductor wafer W receives a weight in the axis direction, thevolute spring 64 is a little compressed and transformed (FIG. 12 ). - As such, the
substrate holder 50 according to the second embodiment includes the padmain body 60 fixed to the holding surface of the transfer arm 12 (14), and the plurality of spring-adhered protrudingportions 62 standing and provided close together on the top surface of the padmain body 60, where some of the spring-adhered protrudingportions 62 on the padmain body 60 hide beneath the semiconductor wafer W and others of the spring-adhered protrudingportions 62 are exposed outside the semiconductor wafer W while holding the periphery portion of the semiconductor wafer W. Also, the spring-adhered protrudingportion 62 hiding beneath the semiconductor wafer W contacts the rear surface WB of the semiconductor wafer W, and thevolute spring 64 is compressed and transformed in the axis direction, thereby sinking the semiconductor wafer W by a suitable depth via gravity so as to hold the semiconductor wafer W mainly in the length direction. Also, some of the spring-adhered protrudingportions 62 exposed near the periphery portion of the semiconductor wafer W contact the side surface WS or the peripheral round incline WR of the semiconductor wafer W, and thevolute spring 64 is compressed and transformed scarcely or a little in the axis direction, and thus the semiconductor wafer W is held mainly in the width direction. Diameters, heights, cap shapes, arrangement density, and spring coefficients of the spring-adhered protrudingportions 62, the weight of the semiconductor wafer W, etc. may be set as parameters to arbitrarily adjust the wafer holding force in each of the length and width directions. - For example, when the semiconductor wafer W has a diameter of 300 mm, the weight thereof is 130 g. In the
vacuum transfer robot 16, assuming that a moving speed of the transfer arm 12 (14) is 0.5 m/sec and stops at 1 second, acceleration at the stop is 0.5 m/sec2, and force in the width direction applied to the semiconductor wafer W is 130 g ×0.5 m/sec2=65 gm/sec2. When the number of protrudingportions 62 resisting against the force in the width direction from among the protrudingportions 62 contacting the semiconductor wafer W (in the example ofFIG. 2 , the number of protrudingportions 62 resisting against the force in the width direction with respect to twosubstrate holders 50 in an arm front portion) is, for example, 20, a load per one is about 3 gm/sec2. Accordingly, the strength of the protrudingportion 62 may be designed such as to endure the load of about 3 gm/sec2 in the width direction. - In the length direction, the sunken amount of the semiconductor wafer W may be less than or equal to the thickness thereof (for example, 0.8 mm). In this case, when the number of protruding
portions 62 receiving the weight of the semiconductor wafer W (in the example ofFIG. 2 , the number of protrudingportions 62 receiving the weight of the semiconductor wafer W with respect to the foursubstrate holders 50 at arm front and rear portions) is 240, a load per one is 130 g/240=about 0.5 g/one. Accordingly, in the length direction, an elastic characteristic of the protrudingportion 62 may be designed such that the protrudingportion 62 is definitely transformed or displaced downward by the sunken amount less than or equal to 0.8 mm with respect to the load of about 0.5 g. - The strength in the width direction and the elastic characteristic in the length direction with respect to the protruding
portion 62 described above are equally applied to the protrudingportion 54 according to the first embodiment. - The
substrate holder 50 of the second embodiment is capable of showing the same operation as the substrate holder of the first embodiment, is detachably and simply attached to the transfer arm 12 (14) at a low price without any special work, is not affected by the rear surface state or bending of the semiconductor wafer W, and stably holds the substrate at a proper position even if a holding location of the semiconductor wafer W on the holding surface of the transfer arm 12 (14) is somewhat misaligned. - Furthermore, in the
substrate holder 50 of the second embodiment, since elastic displacement of the protrudingportion 62 is performed by a spring made of a metal material, thesubstrate holder 50 has high advantages in realization, stability, and durability of substrate holding. - Also, when the
substrate holder 50 of the second embodiment is formed of metal or ceramic, thesubstrate holder 50 has advantages of maintaining a holding force of a substrate while having high thermal resistance. Also, considering metal contamination, thesubstrate holder 50 may be formed of a softer material than a semiconductor wafer, for example, thermal resistant plastic. - Also, in order to remove charges of the semiconductor wafer W, the protruding
portions 62 of thesubstrate holder 50 may be grounded. Accordingly, a spark may be prevented from being generated between the semiconductor wafer W charged after a plasma process, and an element in the processing apparatus. - In the
substrate holder 50 of the second embodiment, the spring of the protrudingportion 62 is not limited to the volute spring, and for example, as shown inFIG. 13 , acompressed coil spring 68 may also be used. - The
compressed coil spring 68 is accommodated in acounterbore hole 70 formed in the length direction on the top surface of the padmain body 60, and elastically transforms in the length direction with respect to weight or pressure applied form the semiconductor wafer W, i.e., in the direction perpendicular to the holding surface of the transfer arm 12 (14). A bottom of thecompressed coil spring 68 is fixed to a bottom of thecounterbore hole 70, and thecap 66 having a cylindrical shape covers a top portion of thecompressed coil spring 68. An inner wall of thecounterbore hole 70 includes a container shape guide portion for guiding thecap 66 in the length direction, and a stopper for defining an uppermost location of ashoulder portion 66 a (further, the apex portion) of thecap 66. - Next, a second modified example of the second embodiment including the spring-adhered protruding
portion 62 is described with reference toFIGS. 14 through 16 .FIG. 14 shows an external structure of thesubstrate holder 50 in the second modified example, andFIG. 15 is a magnified view thereof. - Like the first modified example (
FIG. 13 ) described above, thesubstrate holder 50 in the second modified example also includes the padmain body 60 detachably fixed to the top surface of the transfer arm 12 (14), for example, by using thebolt 58, and the plurality of (preferably many) protrudingportions 62 capable of being elastically displaced and accommodated in thecounterbore hole 70 on the top surface of the padmain body 60, where each protrudingportion 62 includes the spring member. A main difference from the first modified example is that the number of protrudingportions 62 is largely reduced and an arrangement pattern of the protrudingportions 62 are intently considered. - In more detail, as shown in
FIG. 15 , the total number of protrudingportions 62 provided on a top surface of the padmain body 60 is reduced to, for example, less than or equal to 10, and arrangement density is reduced, thereby reducing spring power of the protrudingportion 62 receiving the weight of the semiconductor wafer W. Accordingly, the semiconductor wafer W can be further definitely sunken. Also, as shown inFIG. 16 , for example, the sunken amount D may be equal to the thickness T of the semiconductor wafer W. By increasing the sunken amount D as such, sufficiently stable wafer holding force may be obtained even if the bending or sinking is not sufficient in the semiconductor wafer W. - Also, as shown in
FIG. 15 , the plurality of protrudingportions 62 are arranged at regular intervals on a V-shaped line, where a peak in an axial symmetric to a straight line N passing through a center point O of the holding surface of the entire arm (or the center point at a reference wafer holding location) and a center of the padmain body 60 faces the center point O, and a V pattern is provided in a plurality of rows (two rows in the shown example) along the straight line N. According to such a protruding portion arrangement pattern, the side surface of the semiconductor wafer W is efficiently and stably held by one protrudingportion 62 on the straight line N or a pair of protrudingportions 62 on two sides of the straight line N according to constant pitches p (for example, p=0.2 mm) with respect to the location misalignment of the semiconductor wafer W, and all protrudingportions 62 constituting the basis of the semiconductor wafer W may be sunken to a definitely sufficient depth. - The present embodiment includes other several features. For example, as shown in
FIG. 16 , the padmain body 60 is attached in arecess portion 72 formed on the top surface of the transfer arm 12 (14), and accordingly, the transfer arm 12 (14) including thesubstrate holder 50 is thinned. - It is possible to integrally form the pad
main body 60 with the transfer arm 12 (14). Accordingly, by reducing the number of parts, a cleaning operation of the transfer arm 12 (14) may be easily performed. - Also, in order not to damage the rear surface of the semiconductor wafer W on the
substrate holder 50, a chamfering operation or anR operation 66 b may be suitably performed on the apex portion of thecap 66 of the protrudingportion 62 as shown in FIG. - 16. Alternatively, although not shown, a structure with rotatably burying a rigid ball in the apex portion of the
cap 66 such that only a top portion thereof is exposed (ball joint) may be employed. - Also, as shown in
FIG. 16 , the protrudingportions 62 that are sunken after the semiconductor wafer W is placed thereon may not be completely sunken in the pad main body 60 (i.e., the apex portion of thecap 66 may stick up a little). Also, in order for thecap 66 to be displaced in the width direction, side clearance in thecounterbore hole 70 of the padmain body 60 may be suitably increased. Thus, according to motion of the semiconductor wafer W, the protrudingportions 62 holding the semiconductor wafer W also move together to the side, thereby further improving the holding force in the width direction with respect to the semiconductor wafer W. - Regarding a material of the
substrate holder 50, a metal is preferable in terms of durability, resin (specifically, Teflon (registered trademark) or PEEK (brand name)) is preferable in terms of chemical resistance, and ceramic (silicon carbide or alumina), quartz, polyimide, or carbon is preferable in terms of thermal resistance. Specifically, according to ceramic or carbon, a ceramic spring or a carbon spring is used so as to form all parts or elements of thesubstrate holder 50 from a ceramic or carbon material. - While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
- For example, in the cluster tool type vacuum processing apparatus according to the above embodiment (
FIG. 1 ), thesubstrate holder 50 of the above embodiment may be applied to thetransfer arms - Also, a target substrate in the present invention is not limited to a semiconductor wafer, and may be any one of various substrates for FPD (specifically organic EL and liquid crystal panel), a photo mask, a print substrate, etc. Accordingly, for example, as shown in
FIG. 17 , thesubstrate holder 50 of the above embodiment may be attached to atransfer arm 74 of a substrate transfer apparatus for FPD. - The
transfer arm 74 ofFIG. 17 includes a pair ofouter support portion 78 and a pair ofinner support portion 80 extending forward in parallel from anarm body 76. Here, aclaw portion 78 a protruding inward to hold a periphery portion on right and left sides of a rectangular substrate G for FPD is formed at a leading end of theouter support portion 78 that is relatively short, where thesubstrate holder 50 is attached to a top surface of theclaw portion 78 a. Also, leadingend portion 80 a of theinner support portion 80 that is relatively long sticks out a little than a front periphery portion of the rectangular substrate G, and thus thesubstrate holder 50 is also attached to theleading end portion 80 a. Also, a base portion 80 b of theinner support portion 80 sticks out a little than a rear periphery portion of the rectangular substrate G, and thus thesubstrate holder 50 is also attached to the base portion 80 b. Also, rectangular orcircular openings 82 provided in places on thearm body 76 are holes for a light weight. - As such, by attaching the
substrate holder 50 to thetransfer arm 74, the substrate transfer apparatus for FPD can arbitrarily and freely select an arm position, an arm moving trajectory, and a transfer speed when thetransfer arm 74 holds and transfers the rectangular substrate G, without being restricted by the substrate holding portion, and thus transfer capability can be improved. Also, since the transfer capability of the substrate transfer apparatus is improved, throughput of the substrate processing apparatus for FPD or the multi single type inline process system is improved. - Also, according to the substrate transfer apparatus of the present invention, substrate holders attached to a transfer arm do not all have to be the substrate holder of the present invention, and a conventional substrate holder and the substrate holder of the present invention may be used together. Accordingly, for example, in the transfer arm 12 (14) of
FIG. 2 or thetransfer arm 74 ofFIG. 17 , only a substrate holder attached to an arm leading end portion that easily tilts forward may be the substrate holder of the present invention, and conventional, for example, tapered pad type substrate holders may be used for other substrate holders. - Also, the substrate holder of the present invention is not limited to the transfer arm of the substrate transfer apparatus, and may be applied to a arbitrary transfer body or moving body transferring or moving a substrate or plate shaped body by holding the substrate or plate shaped body. In this case, the substrate or plate shaped body held by the substrate holder of the present invention on the transfer body or moving body is not limited to a horizontal position or a position facing upward, and may have a position where a main or target surface faces downward or a largely tilted position, or extremely, may have a vertical position.
- 12, 14: Transfer Arm
- 16: Vacuum Transfer Robot
- 20: atmosphere Transfer Robot
- 50: Substrate Holder
- 52: Pad Main Body
- 54: Protruding Portion
- 56: Protruding Portion
- 62: Protruding Portion
Claims (31)
1. A substrate holder which is attached to a holding surface of a transfer body for transferring a target substrate and holds the substrate by contacting a periphery portion of the substrate, the substrate holder comprising:
a pad main body which has a plate or block shape and is fixed to the holding surface of the transfer body; and
a plurality of protruding portions which extend from the pad main body and are elastically transformable,
wherein some of the plurality of protruding portions hold a rear surface of the substrate, and other of the protruding portions hold a side surface of the substrate.
2. A substrate holder which is attached to a holding surface of a transfer body for transferring a target substrate by placing the target substrate to face upward, and holds the substrate by contacting a periphery portion of the substrate, the substrate holder comprising:
a pad main body which has a plate or block shape and is fixed to the holding surface of the transfer body; and
a plurality of protruding portions which extend upward from a top surface of the pad main body and are elastically transformable,
wherein some of the plurality of protruding portions hold the substrate mainly in a direction perpendicular to a plate surface of the substrate by contacting a rear surface of the substrate, and
other of the protruding portions hold the substrate mainly in a direction parallel to the plate surface of the substrate by contacting a side surface of the substrate.
3. The substrate holder of claim 1 , further comprising a spring member at the protruding portion.
4. The substrate holder of claim 3 , wherein the spring member is elastically transformably attached to the protruding portion in a direction perpendicular to the holding surface of the transfer body.
5. The substrate holder of claim 3 , wherein at least a base portion of the spring member is buried in the pad main body.
6. The substrate holder of claim 3 , wherein the protruding portion comprises a cap portion covering a top portion of the spring member.
7. The substrate holder of claim 6 , wherein the cap portion comprises a container portion covering a middle portion of the spring member.
8. The substrate holder of claim 6 , wherein the cap portion is made of resin.
9. The substrate holder of claim 7 , wherein the cap portion is formed of a conductive material and is electrically grounded.
10. The substrate holder of claim 6 , wherein a container shape guide portion for guiding the cap portion in a direction perpendicular to the holding surface of the transfer body is provided in the pad main body.
11. The substrate holder of claim 6 , wherein the cap portion is provided capable of being displaced in a direction parallel to the holding surface of the transfer body.
12. The substrate holder of claim 1 , wherein the pad main body is attached to the inside of a recess portion that is formed on the holding surface of the transfer body.
13. The substrate holder of claim 1 , wherein the pad main body is integrally formed to the transfer body.
14. The substrate holder of claim 1 , wherein the plurality of protruding portions are arranged at regular intervals on a V-shaped line having a peak facing a center point of the holding surface of the whole transfer body, on the pad main body.
15. The substrate holder of claim 1 , wherein the protruding portion is formed in a glass shape or a small thin piece shape.
16. The substrate holder of claim 15 , wherein the protruding portion is formed in a scale shape.
17. The substrate holder of claim 15 , wherein a leading end portion of the protruding portion is tilted askew with respect to a direction crossing the holding surface of the transfer body at right angles.
18. The substrate holder of claim 15 , wherein the protruding portion is formed such that the leading end portion thereof faces the inside of an outline of the substrate placed on the transfer body.
19. The substrate holder of claim 15 , wherein elasticity of the protruding portion is provided such that an elastic modulus in a direction parallel to the plate surface of the substrate is higher than an elastic modulus in a direction perpendicular to the plate surface of the substrate, with respect to a force applied from the substrate.
20. The substrate holder of claim 1 , wherein a base of the protruding portion is buried in the pad main body.
21. The substrate holder of claim 1 , wherein the protruding portion is integrally molded with the pad main body.
22. The substrate holder of claim 1 , wherein the protruding portion is made of a rubber-shaped elastic body.
23. The substrate holder of claim 22 , wherein the protruding portion is made of fluoro rubber.
24. The substrate holder of claim 1 , wherein the protruding portion is made of resin.
25. The substrate holder of claim 1 , wherein a depth in which the substrate sinks due to elastic displacement of the protruding portion contacting the rear surface of the substrate is smaller than a thickness of the substrate.
26. The substrate holder of claim 1 , wherein the pad main body is provided at a predetermined place of the transfer body such that some of the plurality of protruding portions hide beneath the substrate and the other of the protruding portions are exposed outside the substrate while the pad main body holds the periphery portion of the substrate.
27. A substrate transfer apparatus for transferring a target substrate, the substrate transfer apparatus comprising:
a transfer base portion which is configured to be moveable inside a chamber under atmospheric pressure or decompression;
a transfer arm which is loaded on the transfer base portion and configured to support the substrate by placing the substrate on the transfer arm;
an arm driving portion for moving the transfer arm on the transfer base portion in a predetermined direction; and
a substrate holding portion which is attached to the transfer arm to hold the substrate, and comprising the substrate holder of claim 1 .
28. The substrate transfer apparatus of claim 27 , wherein the transfer arm is configured to rotate in a horizontal surface and to advance and retreat in a direction parallel to a radius of a rotating circle.
29. The substrate transfer apparatus of claim 27 , wherein the substrate holder is detachably attached to the transfer arm.
30. A substrate processing apparatus comprising:
a single type process unit which performs a predetermined process on a target substrate under atmospheric pressure or decompression; and
a substrate transfer mechanism which comprises a transfer arm to which the substrate holder of claim 1 is attached, places the substrate on the transfer arm, and transfers the substrate to carry the substrate into or out of the process unit.
31. The substrate processing apparatus of claim 30 , wherein the substrate holder is detachably attached to the transfer arm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010024283 | 2010-02-05 | ||
JP2010-024283 | 2010-02-05 | ||
PCT/JP2011/000576 WO2011096208A1 (en) | 2010-02-05 | 2011-02-02 | Substrate holder, substrate transfer apparatus, and substrate processing apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000576 A-371-Of-International WO2011096208A1 (en) | 2010-02-05 | 2011-02-02 | Substrate holder, substrate transfer apparatus, and substrate processing apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/091,639 Continuation US9406539B2 (en) | 2010-02-05 | 2013-11-27 | Substrate transfer apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120315113A1 true US20120315113A1 (en) | 2012-12-13 |
Family
ID=44355223
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/577,019 Abandoned US20120315113A1 (en) | 2010-02-05 | 2011-02-02 | Substrate holder, substrate transfer apparatus, and substrate processing apparatus |
US14/091,639 Active 2032-02-10 US9406539B2 (en) | 2010-02-05 | 2013-11-27 | Substrate transfer apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/091,639 Active 2032-02-10 US9406539B2 (en) | 2010-02-05 | 2013-11-27 | Substrate transfer apparatus |
Country Status (6)
Country | Link |
---|---|
US (2) | US20120315113A1 (en) |
JP (1) | JP5258981B2 (en) |
KR (1) | KR101259862B1 (en) |
CN (1) | CN102741995A (en) |
TW (1) | TWI412101B (en) |
WO (1) | WO2011096208A1 (en) |
Cited By (394)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120306137A1 (en) * | 2011-06-03 | 2012-12-06 | Arthur Keigler | Parallel single substrate processing system |
US20130078059A1 (en) * | 2011-09-22 | 2013-03-28 | Tokyo Electron Limited | Substrate processing apparatus, substrate processing method and storage medium |
US20140127881A1 (en) * | 2012-11-02 | 2014-05-08 | Toyota Jidosha Kabushiki Kaisha | Support disk fixing apparatus, manufacturing method for a semiconductor device using this apparatus, and semiconductor manufacturing apparatus |
US20140284321A1 (en) * | 2013-03-21 | 2014-09-25 | Tokyo Electron Limited | Magnetic annealing apparatus |
US20140306474A1 (en) * | 2013-04-12 | 2014-10-16 | Varian Semiconductor Equipment Associates, Inc. | Spring retained end effector contact pad |
US20150183117A1 (en) * | 2013-12-27 | 2015-07-02 | Fanuc Corporation | Object conveyance system including retracting device |
US20150200122A1 (en) * | 2014-01-13 | 2015-07-16 | Psk Inc. | Substrate transfer apparatus and method, and substrate processing apparatus |
EP2791034A4 (en) * | 2011-12-16 | 2015-07-29 | Brooks Automation Inc | TRANSPORTER |
US20150287626A1 (en) * | 2014-04-03 | 2015-10-08 | Asm Ip Holding B.V. | Anti-Slip End Effector For Transporting Workpiece Using Van Der Waals Force |
US9324811B2 (en) | 2012-09-26 | 2016-04-26 | Asm Ip Holding B.V. | Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same |
US9384987B2 (en) | 2012-04-04 | 2016-07-05 | Asm Ip Holding B.V. | Metal oxide protective layer for a semiconductor device |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US9404587B2 (en) | 2014-04-24 | 2016-08-02 | ASM IP Holding B.V | Lockout tagout for semiconductor vacuum valve |
US9412564B2 (en) | 2013-07-22 | 2016-08-09 | Asm Ip Holding B.V. | Semiconductor reaction chamber with plasma capabilities |
US20160240425A1 (en) * | 2015-02-16 | 2016-08-18 | Tokyo Electron Limited | Substrate holding mechanism and substrate processing apparatus using the same |
US9447498B2 (en) | 2014-03-18 | 2016-09-20 | Asm Ip Holding B.V. | Method for performing uniform processing in gas system-sharing multiple reaction chambers |
US9455138B1 (en) | 2015-11-10 | 2016-09-27 | Asm Ip Holding B.V. | Method for forming dielectric film in trenches by PEALD using H-containing gas |
US9478415B2 (en) | 2015-02-13 | 2016-10-25 | Asm Ip Holding B.V. | Method for forming film having low resistance and shallow junction depth |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9543180B2 (en) | 2014-08-01 | 2017-01-10 | Asm Ip Holding B.V. | Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum |
US9556516B2 (en) | 2013-10-09 | 2017-01-31 | ASM IP Holding B.V | Method for forming Ti-containing film by PEALD using TDMAT or TDEAT |
US9558931B2 (en) | 2012-07-27 | 2017-01-31 | Asm Ip Holding B.V. | System and method for gas-phase sulfur passivation of a semiconductor surface |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9605342B2 (en) | 2012-09-12 | 2017-03-28 | Asm Ip Holding B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US9607837B1 (en) | 2015-12-21 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming silicon oxide cap layer for solid state diffusion process |
US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US9640416B2 (en) | 2012-12-26 | 2017-05-02 | Asm Ip Holding B.V. | Single-and dual-chamber module-attachable wafer-handling chamber |
US9647114B2 (en) | 2015-08-14 | 2017-05-09 | Asm Ip Holding B.V. | Methods of forming highly p-type doped germanium tin films and structures and devices including the films |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
CN106856186A (en) * | 2015-12-08 | 2017-06-16 | 上海微电子装备有限公司 | A kind of silicon chip handing-over precision control device, silicon chip absorptive table, silicon chip transmission system and silicon chip handover method |
US9711345B2 (en) | 2015-08-25 | 2017-07-18 | Asm Ip Holding B.V. | Method for forming aluminum nitride-based film by PEALD |
US9735024B2 (en) | 2015-12-28 | 2017-08-15 | Asm Ip Holding B.V. | Method of atomic layer etching using functional group-containing fluorocarbon |
US9754779B1 (en) | 2016-02-19 | 2017-09-05 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US9793115B2 (en) | 2013-08-14 | 2017-10-17 | Asm Ip Holding B.V. | Structures and devices including germanium-tin films and methods of forming same |
US9793148B2 (en) | 2011-06-22 | 2017-10-17 | Asm Japan K.K. | Method for positioning wafers in multiple wafer transport |
US9790595B2 (en) | 2013-07-12 | 2017-10-17 | Asm Ip Holding B.V. | Method and system to reduce outgassing in a reaction chamber |
US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9892908B2 (en) | 2011-10-28 | 2018-02-13 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9891521B2 (en) | 2014-11-19 | 2018-02-13 | Asm Ip Holding B.V. | Method for depositing thin film |
US9899291B2 (en) | 2015-07-13 | 2018-02-20 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US9899405B2 (en) | 2014-12-22 | 2018-02-20 | Asm Ip Holding B.V. | Semiconductor device and manufacturing method thereof |
US9905420B2 (en) | 2015-12-01 | 2018-02-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium tin films and structures and devices including the films |
US9909214B2 (en) | 2015-10-15 | 2018-03-06 | Asm Ip Holding B.V. | Method for depositing dielectric film in trenches by PEALD |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US9969551B2 (en) | 2014-11-12 | 2018-05-15 | Daifuku Co., Ltd. | Article transport facility |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10087525B2 (en) | 2015-08-04 | 2018-10-02 | Asm Ip Holding B.V. | Variable gap hard stop design |
US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
US20180311832A1 (en) * | 2016-12-15 | 2018-11-01 | Jabil Inc. | Apparatus, system and method for providing a conformable vacuum cup for an end effector |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10179947B2 (en) | 2013-11-26 | 2019-01-15 | Asm Ip Holding B.V. | Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10249577B2 (en) | 2016-05-17 | 2019-04-02 | Asm Ip Holding B.V. | Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method |
US10262859B2 (en) | 2016-03-24 | 2019-04-16 | Asm Ip Holding B.V. | Process for forming a film on a substrate using multi-port injection assemblies |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
CN109786312A (en) * | 2017-11-15 | 2019-05-21 | 福建钧石能源有限公司 | A kind of solar battery support plate |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10361201B2 (en) | 2013-09-27 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor structure and device formed using selective epitaxial process |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395961B2 (en) | 2016-09-29 | 2019-08-27 | SCREEN Holdings Co., Ltd. | Posture changing device |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10707106B2 (en) | 2011-06-06 | 2020-07-07 | Asm Ip Holding B.V. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10714335B2 (en) | 2017-04-25 | 2020-07-14 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US10734497B2 (en) | 2017-07-18 | 2020-08-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10734244B2 (en) | 2017-11-16 | 2020-08-04 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by the same |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US10804098B2 (en) | 2009-08-14 | 2020-10-13 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10928731B2 (en) | 2017-09-21 | 2021-02-23 | Asm Ip Holding B.V. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10934619B2 (en) | 2016-11-15 | 2021-03-02 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11056567B2 (en) | 2018-05-11 | 2021-07-06 | Asm Ip Holding B.V. | Method of forming a doped metal carbide film on a substrate and related semiconductor device structures |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11348823B2 (en) * | 2013-09-16 | 2022-05-31 | Applied Materials, Inc. | Compliant robot blade for substrate support and transfer |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11376744B2 (en) * | 2017-05-22 | 2022-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of handling a substrate |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11993843B2 (en) | 2017-08-31 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US12051602B2 (en) | 2020-05-04 | 2024-07-30 | Asm Ip Holding B.V. | Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US12125700B2 (en) | 2020-01-16 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
US12131885B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Plasma treatment device having matching box |
US12129545B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Precursor capsule, a vessel and a method |
US12148609B2 (en) | 2020-09-16 | 2024-11-19 | Asm Ip Holding B.V. | Silicon oxide deposition method |
US12154824B2 (en) | 2020-08-14 | 2024-11-26 | Asm Ip Holding B.V. | Substrate processing method |
US12159788B2 (en) | 2020-12-14 | 2024-12-03 | Asm Ip Holding B.V. | Method of forming structures for threshold voltage control |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
US12195852B2 (en) | 2020-11-23 | 2025-01-14 | Asm Ip Holding B.V. | Substrate processing apparatus with an injector |
US12211742B2 (en) | 2020-09-10 | 2025-01-28 | Asm Ip Holding B.V. | Methods for depositing gap filling fluid |
US12209308B2 (en) | 2020-11-12 | 2025-01-28 | Asm Ip Holding B.V. | Reactor and related methods |
US12217946B2 (en) | 2020-10-15 | 2025-02-04 | Asm Ip Holding B.V. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT |
US12218269B2 (en) | 2020-02-13 | 2025-02-04 | Asm Ip Holding B.V. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
US12218000B2 (en) | 2020-09-25 | 2025-02-04 | Asm Ip Holding B.V. | Semiconductor processing method |
US12217954B2 (en) | 2020-08-25 | 2025-02-04 | Asm Ip Holding B.V. | Method of cleaning a surface |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
US12221357B2 (en) | 2020-04-24 | 2025-02-11 | Asm Ip Holding B.V. | Methods and apparatus for stabilizing vanadium compounds |
US12230531B2 (en) | 2018-04-09 | 2025-02-18 | Asm Ip Holding B.V. | Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method |
US12241158B2 (en) | 2020-07-20 | 2025-03-04 | Asm Ip Holding B.V. | Method for forming structures including transition metal layers |
US12243742B2 (en) | 2020-04-21 | 2025-03-04 | Asm Ip Holding B.V. | Method for processing a substrate |
US12243747B2 (en) | 2020-04-24 | 2025-03-04 | Asm Ip Holding B.V. | Methods of forming structures including vanadium boride and vanadium phosphide layers |
US12243757B2 (en) | 2020-05-21 | 2025-03-04 | Asm Ip Holding B.V. | Flange and apparatus for processing substrates |
US12247286B2 (en) | 2019-08-09 | 2025-03-11 | Asm Ip Holding B.V. | Heater assembly including cooling apparatus and method of using same |
US12252785B2 (en) | 2019-06-10 | 2025-03-18 | Asm Ip Holding B.V. | Method for cleaning quartz epitaxial chambers |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
US12266524B2 (en) | 2020-06-16 | 2025-04-01 | Asm Ip Holding B.V. | Method for depositing boron containing silicon germanium layers |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
US12278129B2 (en) | 2021-03-03 | 2025-04-15 | Asm Ip Holding B.V. | Alignment fixture for a reactor system |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9004564B2 (en) * | 2013-03-13 | 2015-04-14 | Varian Semiconductor Equipment Associates, Inc. | Wafer handling apparatus |
WO2016017485A1 (en) * | 2014-07-29 | 2016-02-04 | シャープ株式会社 | Substrate processing device |
JP2017035743A (en) * | 2015-08-07 | 2017-02-16 | 日東電工株式会社 | Transport device |
JP6777985B2 (en) * | 2015-11-19 | 2020-10-28 | 株式会社荏原製作所 | Board holding device |
JP6357187B2 (en) * | 2016-03-31 | 2018-07-11 | キヤノン株式会社 | Conveying apparatus, lithographic apparatus, and article manufacturing method |
JP6298099B2 (en) * | 2016-05-18 | 2018-03-20 | キヤノントッキ株式会社 | Substrate transfer device |
CN109791363B (en) | 2016-07-06 | 2021-01-08 | Asml荷兰有限公司 | Substrate holder and method of manufacturing a substrate holder |
JP6774714B2 (en) * | 2016-07-25 | 2020-10-28 | 株式会社アドテックエンジニアリング | Work stage and exposure equipment |
US10600668B2 (en) * | 2017-03-30 | 2020-03-24 | Sharp Kabushiki Kaisha | Adsorption device, conveyance device, and EL device manufacturing device |
CN108983552B (en) * | 2017-05-31 | 2020-01-24 | 上海微电子装备(集团)股份有限公司 | Moving-in and moving-out mechanism and photoetching machine workpiece table moving-in and moving-out device |
KR20180133335A (en) * | 2017-06-06 | 2018-12-14 | 템프레스 아이피 비.브이. | Wafer gripper assembly, system and use thereof |
KR102206687B1 (en) * | 2017-06-26 | 2021-01-22 | 니뽄 도쿠슈 도교 가부시키가이샤 | Substrate holding member |
KR102492533B1 (en) | 2017-09-21 | 2023-01-30 | 삼성전자주식회사 | Support substrate, Method of fabricating a semiconductor Package and Method of fabricating an electronic device |
JP6353969B1 (en) * | 2017-11-29 | 2018-07-04 | 株式会社ユー・エム・アイ | Transport tool, transport method and transport tool unit |
CN108706342A (en) * | 2018-07-30 | 2018-10-26 | 安徽旭能电力股份有限公司 | A kind of protection conveying equipment of adjustable solar glass |
JP7131334B2 (en) * | 2018-11-29 | 2022-09-06 | 株式会社安川電機 | Substrate support device, substrate transfer robot and aligner device |
CN109625970B (en) * | 2019-01-23 | 2020-10-30 | 深圳市华星光电技术有限公司 | Substrate carrying manipulator |
US11600580B2 (en) * | 2019-02-27 | 2023-03-07 | Applied Materials, Inc. | Replaceable end effector contact pads, end effectors, and maintenance methods |
CN110112588A (en) * | 2019-06-19 | 2019-08-09 | 广东电网有限责任公司 | A kind of ground line five-preventing system |
KR102301114B1 (en) * | 2019-09-06 | 2021-09-10 | 주식회사 글린트머티리얼즈 | Anti-slip pad with dual structure and robot to transfer wafer having the same |
JP7256728B2 (en) * | 2019-10-04 | 2023-04-12 | 株式会社荏原製作所 | Substrate holder and substrate processing equipment |
CN112682465A (en) * | 2019-10-17 | 2021-04-20 | 夏泰鑫半导体(青岛)有限公司 | Carrier device and loading member of semiconductor manufacturing apparatus |
CN111334782B (en) * | 2020-02-28 | 2022-05-27 | 北京北方华创微电子装备有限公司 | Semiconductor device and electrode device thereof |
KR20220027475A (en) * | 2020-08-27 | 2022-03-08 | 주식회사 글린트머티리얼즈 | Robot arm blade including through hole for transfering semiconductor wafer and anti-slip pad mounted thereon |
KR102720251B1 (en) * | 2024-01-11 | 2024-10-24 | 한국야스카와전기(주) | Passive grip module for anti-sway of wafer on end-effector |
CN117721429B (en) * | 2024-02-08 | 2024-04-23 | 成都国泰真空设备有限公司 | Magnetron sputtering coating equipment |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5722646A (en) * | 1995-08-29 | 1998-03-03 | Cna Manufacturing Systems, Inc. | Flexible tooling apparatus |
US5984293A (en) * | 1997-06-25 | 1999-11-16 | Mcms, Inc. | Apparatus for holding printed circuit board assemblies in manufacturing processes |
US6056026A (en) * | 1998-12-01 | 2000-05-02 | Asyst Technologies, Inc. | Passively activated valve for carrier purging |
US20020071756A1 (en) * | 2000-12-13 | 2002-06-13 | Gonzalez Jose R. | Dual wafer edge gripping end effector and method therefor |
US6497403B2 (en) * | 2000-12-28 | 2002-12-24 | Memc Electronic Materials, Inc. | Semiconductor wafer holder |
US20040020789A1 (en) * | 2000-02-17 | 2004-02-05 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US6726195B1 (en) * | 1998-10-13 | 2004-04-27 | Dek International Gmbh | Method for ensuring planarity when using a flexible, self conforming, workpiece support system |
US20050063800A1 (en) * | 2002-02-22 | 2005-03-24 | Applied Materials, Inc. | Substrate support |
US7147795B2 (en) * | 2003-09-30 | 2006-12-12 | Seiko Epson Corporation | Method for surface treatment |
US20060291988A1 (en) * | 2005-06-28 | 2006-12-28 | Wataru Machiyama | Transfer apparatus for target object |
US20080181750A1 (en) * | 2007-01-26 | 2008-07-31 | Tokyo Electron Limited | Gate valve cleaning method and substrate processing system |
US7490878B1 (en) * | 2003-12-29 | 2009-02-17 | Storage Technology Corporation | ESD safe vacuum wand tip |
US7950639B2 (en) * | 2004-06-17 | 2011-05-31 | Siemens Aktiengesellschaft | Device for placing an object |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3097720B2 (en) * | 1993-03-29 | 2000-10-10 | 大日本スクリーン製造株式会社 | Substrate support arm |
US5626675A (en) * | 1993-11-18 | 1997-05-06 | Tokyo Electron Limited | Resist processing apparatus, substrate processing apparatus and method of transferring a processed article |
JP3437559B2 (en) | 1993-12-24 | 2003-08-18 | 東京エレクトロン株式会社 | Processing equipment |
JP2000003951A (en) * | 1998-06-16 | 2000-01-07 | Tokyo Electron Ltd | Transfer device |
JP2003077980A (en) * | 2001-09-06 | 2003-03-14 | Yaskawa Electric Corp | Wafer carrying hand |
JP4038653B2 (en) * | 2001-12-03 | 2008-01-30 | 株式会社安川電機 | Wafer transfer fork |
JP4841183B2 (en) * | 2005-06-28 | 2011-12-21 | 東京エレクトロン株式会社 | Substrate processing apparatus, transfer apparatus, and control method of transfer apparatus |
JP4740414B2 (en) * | 2007-04-24 | 2011-08-03 | 東京エレクトロン株式会社 | Substrate transfer device |
JP4922915B2 (en) * | 2007-12-28 | 2012-04-25 | 大日本スクリーン製造株式会社 | Substrate processing apparatus and substrate alignment method |
JP5357694B2 (en) * | 2009-07-03 | 2013-12-04 | 東京エレクトロン株式会社 | Position shift prevention device, substrate holder provided with the same, substrate transport device, and substrate transport method |
KR101208644B1 (en) * | 2009-07-03 | 2012-12-06 | 도쿄엘렉트론가부시키가이샤 | Position deviation preventing device, substrate holding member including the same, substrate transfer apparatus and substrate transfer method |
-
2011
- 2011-02-02 JP JP2011552694A patent/JP5258981B2/en active Active
- 2011-02-02 CN CN2011800082877A patent/CN102741995A/en active Pending
- 2011-02-02 KR KR1020127020462A patent/KR101259862B1/en active Active
- 2011-02-02 WO PCT/JP2011/000576 patent/WO2011096208A1/en active Application Filing
- 2011-02-02 US US13/577,019 patent/US20120315113A1/en not_active Abandoned
- 2011-02-08 TW TW100104151A patent/TWI412101B/en active
-
2013
- 2013-11-27 US US14/091,639 patent/US9406539B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5722646A (en) * | 1995-08-29 | 1998-03-03 | Cna Manufacturing Systems, Inc. | Flexible tooling apparatus |
US5984293A (en) * | 1997-06-25 | 1999-11-16 | Mcms, Inc. | Apparatus for holding printed circuit board assemblies in manufacturing processes |
US6726195B1 (en) * | 1998-10-13 | 2004-04-27 | Dek International Gmbh | Method for ensuring planarity when using a flexible, self conforming, workpiece support system |
US6056026A (en) * | 1998-12-01 | 2000-05-02 | Asyst Technologies, Inc. | Passively activated valve for carrier purging |
US20040020789A1 (en) * | 2000-02-17 | 2004-02-05 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
US20020071756A1 (en) * | 2000-12-13 | 2002-06-13 | Gonzalez Jose R. | Dual wafer edge gripping end effector and method therefor |
US6497403B2 (en) * | 2000-12-28 | 2002-12-24 | Memc Electronic Materials, Inc. | Semiconductor wafer holder |
US20050063800A1 (en) * | 2002-02-22 | 2005-03-24 | Applied Materials, Inc. | Substrate support |
US7147795B2 (en) * | 2003-09-30 | 2006-12-12 | Seiko Epson Corporation | Method for surface treatment |
US7490878B1 (en) * | 2003-12-29 | 2009-02-17 | Storage Technology Corporation | ESD safe vacuum wand tip |
US7950639B2 (en) * | 2004-06-17 | 2011-05-31 | Siemens Aktiengesellschaft | Device for placing an object |
US20060291988A1 (en) * | 2005-06-28 | 2006-12-28 | Wataru Machiyama | Transfer apparatus for target object |
US20080181750A1 (en) * | 2007-01-26 | 2008-07-31 | Tokyo Electron Limited | Gate valve cleaning method and substrate processing system |
Cited By (528)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US10844486B2 (en) | 2009-04-06 | 2020-11-24 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US10480072B2 (en) | 2009-04-06 | 2019-11-19 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10804098B2 (en) | 2009-08-14 | 2020-10-13 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US20120306137A1 (en) * | 2011-06-03 | 2012-12-06 | Arthur Keigler | Parallel single substrate processing system |
US9293356B2 (en) * | 2011-06-03 | 2016-03-22 | Tel Nexx, Inc. | Parallel single substrate processing system |
US10707106B2 (en) | 2011-06-06 | 2020-07-07 | Asm Ip Holding B.V. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US9793148B2 (en) | 2011-06-22 | 2017-10-17 | Asm Japan K.K. | Method for positioning wafers in multiple wafer transport |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US8985929B2 (en) * | 2011-09-22 | 2015-03-24 | Tokyo Electron Limited | Substrate processing apparatus, substrate processing method and storage medium |
US20130078059A1 (en) * | 2011-09-22 | 2013-03-28 | Tokyo Electron Limited | Substrate processing apparatus, substrate processing method and storage medium |
US10832903B2 (en) | 2011-10-28 | 2020-11-10 | Asm Ip Holding B.V. | Process feed management for semiconductor substrate processing |
US9892908B2 (en) | 2011-10-28 | 2018-02-13 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
EP2791034A4 (en) * | 2011-12-16 | 2015-07-29 | Brooks Automation Inc | TRANSPORTER |
US10137576B2 (en) | 2011-12-16 | 2018-11-27 | Brooks Automation, Inc. | Transport apparatus |
US10556351B2 (en) | 2011-12-16 | 2020-02-11 | Brooks Automation, Inc. | Transport apparatus |
US11420337B2 (en) | 2011-12-16 | 2022-08-23 | Brooks Automation Us, Llc | Transport apparatus |
US9384987B2 (en) | 2012-04-04 | 2016-07-05 | Asm Ip Holding B.V. | Metal oxide protective layer for a semiconductor device |
US9558931B2 (en) | 2012-07-27 | 2017-01-31 | Asm Ip Holding B.V. | System and method for gas-phase sulfur passivation of a semiconductor surface |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US10566223B2 (en) | 2012-08-28 | 2020-02-18 | Asm Ip Holdings B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9605342B2 (en) | 2012-09-12 | 2017-03-28 | Asm Ip Holding B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10023960B2 (en) | 2012-09-12 | 2018-07-17 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US9324811B2 (en) | 2012-09-26 | 2016-04-26 | Asm Ip Holding B.V. | Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US9011632B2 (en) * | 2012-11-02 | 2015-04-21 | Toyota Jidosha Kabushiki Kaisha | Support disk fixing apparatus, manufacturing method for a semiconductor device using this apparatus, and semiconductor manufacturing apparatus |
US20140127881A1 (en) * | 2012-11-02 | 2014-05-08 | Toyota Jidosha Kabushiki Kaisha | Support disk fixing apparatus, manufacturing method for a semiconductor device using this apparatus, and semiconductor manufacturing apparatus |
US9640416B2 (en) | 2012-12-26 | 2017-05-02 | Asm Ip Holding B.V. | Single-and dual-chamber module-attachable wafer-handling chamber |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US10340125B2 (en) | 2013-03-08 | 2019-07-02 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US10366864B2 (en) | 2013-03-08 | 2019-07-30 | Asm Ip Holding B.V. | Method and system for in-situ formation of intermediate reactive species |
US20140284321A1 (en) * | 2013-03-21 | 2014-09-25 | Tokyo Electron Limited | Magnetic annealing apparatus |
US10297481B2 (en) * | 2013-03-21 | 2019-05-21 | Tokyo Electron Limited | Magnetic annealing apparatus |
US20140306474A1 (en) * | 2013-04-12 | 2014-10-16 | Varian Semiconductor Equipment Associates, Inc. | Spring retained end effector contact pad |
US8864202B1 (en) * | 2013-04-12 | 2014-10-21 | Varian Semiconductor Equipment Associates, Inc. | Spring retained end effector contact pad |
US9790595B2 (en) | 2013-07-12 | 2017-10-17 | Asm Ip Holding B.V. | Method and system to reduce outgassing in a reaction chamber |
US9412564B2 (en) | 2013-07-22 | 2016-08-09 | Asm Ip Holding B.V. | Semiconductor reaction chamber with plasma capabilities |
US9793115B2 (en) | 2013-08-14 | 2017-10-17 | Asm Ip Holding B.V. | Structures and devices including germanium-tin films and methods of forming same |
US11348823B2 (en) * | 2013-09-16 | 2022-05-31 | Applied Materials, Inc. | Compliant robot blade for substrate support and transfer |
US10361201B2 (en) | 2013-09-27 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor structure and device formed using selective epitaxial process |
US9556516B2 (en) | 2013-10-09 | 2017-01-31 | ASM IP Holding B.V | Method for forming Ti-containing film by PEALD using TDMAT or TDEAT |
US10179947B2 (en) | 2013-11-26 | 2019-01-15 | Asm Ip Holding B.V. | Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition |
US20150183117A1 (en) * | 2013-12-27 | 2015-07-02 | Fanuc Corporation | Object conveyance system including retracting device |
US20150200122A1 (en) * | 2014-01-13 | 2015-07-16 | Psk Inc. | Substrate transfer apparatus and method, and substrate processing apparatus |
US9390957B2 (en) * | 2014-01-13 | 2016-07-12 | Psk Inc. | Substrate transfer apparatus and method, and substrate processing apparatus |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US9447498B2 (en) | 2014-03-18 | 2016-09-20 | Asm Ip Holding B.V. | Method for performing uniform processing in gas system-sharing multiple reaction chambers |
US10604847B2 (en) | 2014-03-18 | 2020-03-31 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US20150287626A1 (en) * | 2014-04-03 | 2015-10-08 | Asm Ip Holding B.V. | Anti-Slip End Effector For Transporting Workpiece Using Van Der Waals Force |
US9343350B2 (en) * | 2014-04-03 | 2016-05-17 | Asm Ip Holding B.V. | Anti-slip end effector for transporting workpiece using van der waals force |
US9404587B2 (en) | 2014-04-24 | 2016-08-02 | ASM IP Holding B.V | Lockout tagout for semiconductor vacuum valve |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9543180B2 (en) | 2014-08-01 | 2017-01-10 | Asm Ip Holding B.V. | Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum |
US10787741B2 (en) | 2014-08-21 | 2020-09-29 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10561975B2 (en) | 2014-10-07 | 2020-02-18 | Asm Ip Holdings B.V. | Variable conductance gas distribution apparatus and method |
US11795545B2 (en) | 2014-10-07 | 2023-10-24 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
TWI660903B (en) * | 2014-11-12 | 2019-06-01 | Daifuku Co., Ltd. | Article transport facility |
US9969551B2 (en) | 2014-11-12 | 2018-05-15 | Daifuku Co., Ltd. | Article transport facility |
US9891521B2 (en) | 2014-11-19 | 2018-02-13 | Asm Ip Holding B.V. | Method for depositing thin film |
US9899405B2 (en) | 2014-12-22 | 2018-02-20 | Asm Ip Holding B.V. | Semiconductor device and manufacturing method thereof |
US10438965B2 (en) | 2014-12-22 | 2019-10-08 | Asm Ip Holding B.V. | Semiconductor device and manufacturing method thereof |
US9478415B2 (en) | 2015-02-13 | 2016-10-25 | Asm Ip Holding B.V. | Method for forming film having low resistance and shallow junction depth |
KR102137855B1 (en) * | 2015-02-16 | 2020-07-24 | 도쿄엘렉트론가부시키가이샤 | Substrate holding mechanism and substrate processing apparatus using the same |
KR20160100828A (en) * | 2015-02-16 | 2016-08-24 | 도쿄엘렉트론가부시키가이샤 | Substrate holding mechanism and substrate processing apparatus using the same |
US10790182B2 (en) * | 2015-02-16 | 2020-09-29 | Tokyo Electron Limited | Substrate holding mechanism and substrate processing apparatus using the same |
US20160240425A1 (en) * | 2015-02-16 | 2016-08-18 | Tokyo Electron Limited | Substrate holding mechanism and substrate processing apparatus using the same |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US9899291B2 (en) | 2015-07-13 | 2018-02-20 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10087525B2 (en) | 2015-08-04 | 2018-10-02 | Asm Ip Holding B.V. | Variable gap hard stop design |
US9647114B2 (en) | 2015-08-14 | 2017-05-09 | Asm Ip Holding B.V. | Methods of forming highly p-type doped germanium tin films and structures and devices including the films |
US9711345B2 (en) | 2015-08-25 | 2017-07-18 | Asm Ip Holding B.V. | Method for forming aluminum nitride-based film by PEALD |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10312129B2 (en) | 2015-09-29 | 2019-06-04 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US9909214B2 (en) | 2015-10-15 | 2018-03-06 | Asm Ip Holding B.V. | Method for depositing dielectric film in trenches by PEALD |
US11233133B2 (en) | 2015-10-21 | 2022-01-25 | Asm Ip Holding B.V. | NbMC layers |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US9455138B1 (en) | 2015-11-10 | 2016-09-27 | Asm Ip Holding B.V. | Method for forming dielectric film in trenches by PEALD using H-containing gas |
US9905420B2 (en) | 2015-12-01 | 2018-02-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium tin films and structures and devices including the films |
CN106856186A (en) * | 2015-12-08 | 2017-06-16 | 上海微电子装备有限公司 | A kind of silicon chip handing-over precision control device, silicon chip absorptive table, silicon chip transmission system and silicon chip handover method |
US9607837B1 (en) | 2015-12-21 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming silicon oxide cap layer for solid state diffusion process |
US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US9735024B2 (en) | 2015-12-28 | 2017-08-15 | Asm Ip Holding B.V. | Method of atomic layer etching using functional group-containing fluorocarbon |
US11956977B2 (en) | 2015-12-29 | 2024-04-09 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US9754779B1 (en) | 2016-02-19 | 2017-09-05 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10720322B2 (en) | 2016-02-19 | 2020-07-21 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top surface |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US12240760B2 (en) | 2016-03-18 | 2025-03-04 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10262859B2 (en) | 2016-03-24 | 2019-04-16 | Asm Ip Holding B.V. | Process for forming a film on a substrate using multi-port injection assemblies |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10851456B2 (en) | 2016-04-21 | 2020-12-01 | Asm Ip Holding B.V. | Deposition of metal borides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10665452B2 (en) | 2016-05-02 | 2020-05-26 | Asm Ip Holdings B.V. | Source/drain performance through conformal solid state doping |
US11101370B2 (en) | 2016-05-02 | 2021-08-24 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10249577B2 (en) | 2016-05-17 | 2019-04-02 | Asm Ip Holding B.V. | Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US11749562B2 (en) | 2016-07-08 | 2023-09-05 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US10541173B2 (en) | 2016-07-08 | 2020-01-21 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US11094582B2 (en) | 2016-07-08 | 2021-08-17 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11694892B2 (en) | 2016-07-28 | 2023-07-04 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11107676B2 (en) | 2016-07-28 | 2021-08-31 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10741385B2 (en) | 2016-07-28 | 2020-08-11 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
US10395961B2 (en) | 2016-09-29 | 2019-08-27 | SCREEN Holdings Co., Ltd. | Posture changing device |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US10943771B2 (en) | 2016-10-26 | 2021-03-09 | Asm Ip Holding B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10720331B2 (en) | 2016-11-01 | 2020-07-21 | ASM IP Holdings, B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10644025B2 (en) | 2016-11-07 | 2020-05-05 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10622375B2 (en) | 2016-11-07 | 2020-04-14 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10934619B2 (en) | 2016-11-15 | 2021-03-02 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US11396702B2 (en) | 2016-11-15 | 2022-07-26 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11970766B2 (en) | 2016-12-15 | 2024-04-30 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US10518422B2 (en) * | 2016-12-15 | 2019-12-31 | Jabil Inc. | Apparatus, system and method for providing a conformable vacuum cup for an end effector |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11027437B2 (en) * | 2016-12-15 | 2021-06-08 | Jabil Inc. | Apparatus, system and method for providing a conformable vacuum cup for an end effector |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11851755B2 (en) | 2016-12-15 | 2023-12-26 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US20180311832A1 (en) * | 2016-12-15 | 2018-11-01 | Jabil Inc. | Apparatus, system and method for providing a conformable vacuum cup for an end effector |
US12000042B2 (en) | 2016-12-15 | 2024-06-04 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11251035B2 (en) | 2016-12-22 | 2022-02-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10784102B2 (en) | 2016-12-22 | 2020-09-22 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US12043899B2 (en) | 2017-01-10 | 2024-07-23 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US12106965B2 (en) | 2017-02-15 | 2024-10-01 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10468262B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US11658030B2 (en) | 2017-03-29 | 2023-05-23 | Asm Ip Holding B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
US10714335B2 (en) | 2017-04-25 | 2020-07-14 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10950432B2 (en) | 2017-04-25 | 2021-03-16 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US11848200B2 (en) | 2017-05-08 | 2023-12-19 | Asm Ip Holding B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US12109681B2 (en) | 2017-05-22 | 2024-10-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Substrate handling device and processing chamber |
US11376744B2 (en) * | 2017-05-22 | 2022-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of handling a substrate |
US11752638B2 (en) | 2017-05-22 | 2023-09-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Substrate handling device and processing chamber |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11976361B2 (en) | 2017-06-28 | 2024-05-07 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
US11695054B2 (en) | 2017-07-18 | 2023-07-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10734497B2 (en) | 2017-07-18 | 2020-08-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11004977B2 (en) | 2017-07-19 | 2021-05-11 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10672636B2 (en) | 2017-08-09 | 2020-06-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11581220B2 (en) | 2017-08-30 | 2023-02-14 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11993843B2 (en) | 2017-08-31 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing apparatus |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
US10928731B2 (en) | 2017-09-21 | 2021-02-23 | Asm Ip Holding B.V. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US11094546B2 (en) | 2017-10-05 | 2021-08-17 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US12033861B2 (en) | 2017-10-05 | 2024-07-09 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10734223B2 (en) | 2017-10-10 | 2020-08-04 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US12040184B2 (en) | 2017-10-30 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
CN109786312A (en) * | 2017-11-15 | 2019-05-21 | 福建钧石能源有限公司 | A kind of solar battery support plate |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US10734244B2 (en) | 2017-11-16 | 2020-08-04 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by the same |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11682572B2 (en) | 2017-11-27 | 2023-06-20 | Asm Ip Holdings B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11501973B2 (en) | 2018-01-16 | 2022-11-15 | Asm Ip Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US12119228B2 (en) | 2018-01-19 | 2024-10-15 | Asm Ip Holding B.V. | Deposition method |
US11972944B2 (en) | 2018-01-19 | 2024-04-30 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD913980S1 (en) | 2018-02-01 | 2021-03-23 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US11735414B2 (en) | 2018-02-06 | 2023-08-22 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11387106B2 (en) | 2018-02-14 | 2022-07-12 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US12173402B2 (en) | 2018-02-15 | 2024-12-24 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US11939673B2 (en) | 2018-02-23 | 2024-03-26 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
US11398382B2 (en) | 2018-03-27 | 2022-07-26 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US12020938B2 (en) | 2018-03-27 | 2024-06-25 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US12230531B2 (en) | 2018-04-09 | 2025-02-18 | Asm Ip Holding B.V. | Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
US11056567B2 (en) | 2018-05-11 | 2021-07-06 | Asm Ip Holding B.V. | Method of forming a doped metal carbide film on a substrate and related semiconductor device structures |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11908733B2 (en) | 2018-05-28 | 2024-02-20 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11837483B2 (en) | 2018-06-04 | 2023-12-05 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11296189B2 (en) | 2018-06-21 | 2022-04-05 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11952658B2 (en) | 2018-06-27 | 2024-04-09 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11814715B2 (en) | 2018-06-27 | 2023-11-14 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755923B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US12276023B2 (en) | 2018-07-23 | 2025-04-15 | Asm Ip Holding B.V. | Showerhead assembly for distributing a gas within a reaction chamber |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11804388B2 (en) | 2018-09-11 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11735445B2 (en) | 2018-10-31 | 2023-08-22 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11866823B2 (en) | 2018-11-02 | 2024-01-09 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11244825B2 (en) | 2018-11-16 | 2022-02-08 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US11411088B2 (en) | 2018-11-16 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11798999B2 (en) | 2018-11-16 | 2023-10-24 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11769670B2 (en) | 2018-12-13 | 2023-09-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11959171B2 (en) | 2019-01-17 | 2024-04-16 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US12176243B2 (en) | 2019-02-20 | 2024-12-24 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11798834B2 (en) | 2019-02-20 | 2023-10-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11615980B2 (en) | 2019-02-20 | 2023-03-28 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11901175B2 (en) | 2019-03-08 | 2024-02-13 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US12195855B2 (en) | 2019-06-06 | 2025-01-14 | Asm Ip Holding B.V. | Gas-phase reactor system including a gas detector |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11453946B2 (en) | 2019-06-06 | 2022-09-27 | Asm Ip Holding B.V. | Gas-phase reactor system including a gas detector |
US12252785B2 (en) | 2019-06-10 | 2025-03-18 | Asm Ip Holding B.V. | Method for cleaning quartz epitaxial chambers |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11908684B2 (en) | 2019-06-11 | 2024-02-20 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11746414B2 (en) | 2019-07-03 | 2023-09-05 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US12107000B2 (en) | 2019-07-10 | 2024-10-01 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11996304B2 (en) | 2019-07-16 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing device |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
US12129548B2 (en) | 2019-07-18 | 2024-10-29 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11876008B2 (en) | 2019-07-31 | 2024-01-16 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
US12247286B2 (en) | 2019-08-09 | 2025-03-11 | Asm Ip Holding B.V. | Heater assembly including cooling apparatus and method of using same |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US12040229B2 (en) | 2019-08-22 | 2024-07-16 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US12033849B2 (en) | 2019-08-23 | 2024-07-09 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane |
US11827978B2 (en) | 2019-08-23 | 2023-11-28 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11898242B2 (en) | 2019-08-23 | 2024-02-13 | Asm Ip Holding B.V. | Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US12230497B2 (en) | 2019-10-02 | 2025-02-18 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US12266695B2 (en) | 2019-11-05 | 2025-04-01 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US12119220B2 (en) | 2019-12-19 | 2024-10-15 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US12125700B2 (en) | 2020-01-16 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US12218269B2 (en) | 2020-02-13 | 2025-02-04 | Asm Ip Holding B.V. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11837494B2 (en) | 2020-03-11 | 2023-12-05 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US12243742B2 (en) | 2020-04-21 | 2025-03-04 | Asm Ip Holding B.V. | Method for processing a substrate |
US12221357B2 (en) | 2020-04-24 | 2025-02-11 | Asm Ip Holding B.V. | Methods and apparatus for stabilizing vanadium compounds |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US12130084B2 (en) | 2020-04-24 | 2024-10-29 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US12243747B2 (en) | 2020-04-24 | 2025-03-04 | Asm Ip Holding B.V. | Methods of forming structures including vanadium boride and vanadium phosphide layers |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11798830B2 (en) | 2020-05-01 | 2023-10-24 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US12051602B2 (en) | 2020-05-04 | 2024-07-30 | Asm Ip Holding B.V. | Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US12243757B2 (en) | 2020-05-21 | 2025-03-04 | Asm Ip Holding B.V. | Flange and apparatus for processing substrates |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US12266524B2 (en) | 2020-06-16 | 2025-04-01 | Asm Ip Holding B.V. | Method for depositing boron containing silicon germanium layers |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12055863B2 (en) | 2020-07-17 | 2024-08-06 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US12241158B2 (en) | 2020-07-20 | 2025-03-04 | Asm Ip Holding B.V. | Method for forming structures including transition metal layers |
US12154824B2 (en) | 2020-08-14 | 2024-11-26 | Asm Ip Holding B.V. | Substrate processing method |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US12217954B2 (en) | 2020-08-25 | 2025-02-04 | Asm Ip Holding B.V. | Method of cleaning a surface |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12211742B2 (en) | 2020-09-10 | 2025-01-28 | Asm Ip Holding B.V. | Methods for depositing gap filling fluid |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
US12148609B2 (en) | 2020-09-16 | 2024-11-19 | Asm Ip Holding B.V. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12218000B2 (en) | 2020-09-25 | 2025-02-04 | Asm Ip Holding B.V. | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US12217946B2 (en) | 2020-10-15 | 2025-02-04 | Asm Ip Holding B.V. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US12209308B2 (en) | 2020-11-12 | 2025-01-28 | Asm Ip Holding B.V. | Reactor and related methods |
US12195852B2 (en) | 2020-11-23 | 2025-01-14 | Asm Ip Holding B.V. | Substrate processing apparatus with an injector |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
US12159788B2 (en) | 2020-12-14 | 2024-12-03 | Asm Ip Holding B.V. | Method of forming structures for threshold voltage control |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US12129545B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Precursor capsule, a vessel and a method |
US12131885B2 (en) | 2020-12-22 | 2024-10-29 | Asm Ip Holding B.V. | Plasma treatment device having matching box |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US12278129B2 (en) | 2021-03-03 | 2025-04-15 | Asm Ip Holding B.V. | Alignment fixture for a reactor system |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Also Published As
Publication number | Publication date |
---|---|
US9406539B2 (en) | 2016-08-02 |
TWI412101B (en) | 2013-10-11 |
JP5258981B2 (en) | 2013-08-07 |
KR101259862B1 (en) | 2013-05-02 |
WO2011096208A1 (en) | 2011-08-11 |
TW201227868A (en) | 2012-07-01 |
US20140093336A1 (en) | 2014-04-03 |
KR20120096599A (en) | 2012-08-30 |
CN102741995A (en) | 2012-10-17 |
JPWO2011096208A1 (en) | 2013-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9406539B2 (en) | Substrate transfer apparatus | |
US9343350B2 (en) | Anti-slip end effector for transporting workpiece using van der waals force | |
TWI446477B (en) | Apparatus and methods for transporting and processing substrates | |
US6408537B1 (en) | Substrate cooling system | |
US20180019107A1 (en) | Focus ring replacement method and plasma processing system | |
US20030135302A1 (en) | Method of calibrating a wafer edge gripping end effector | |
US8293066B2 (en) | Apparatus and methods for transporting and processing substrates | |
US20170110352A1 (en) | Substrate carrier system | |
CN104271474A (en) | Transport apparatus | |
US20210050242A1 (en) | Thin plate substrate-holding device and transfer robot provided with this holding device | |
WO2011037647A1 (en) | Automatic substrate loading station | |
US9589822B2 (en) | Substrate transfer method with a second positioning step | |
US4816116A (en) | Semiconductor wafer transfer method and arm mechanism | |
KR20110029092A (en) | Edge grip end effector | |
US12183612B2 (en) | Substrate transfer apparatus, substrate transfer method, and substrate processing system | |
US4842680A (en) | Advanced vacuum processor | |
KR101409752B1 (en) | Multi Chamber Substrate Processing Apparatus using Robot for Transferring Substrate | |
JP2021145091A (en) | Substrate carrier, film forming device, and film forming method | |
US20150249029A1 (en) | Load station | |
US20040043513A1 (en) | Method of transferring processed body and processing system for processed body | |
US20040013503A1 (en) | Robotic hand with multi-wafer end effector | |
JP2010239023A (en) | Substrate transfer device, and substrate processing device | |
KR20230041617A (en) | End effector and substrate processing apparatus including end effector | |
US20240203777A1 (en) | Apparatus for treating substrate | |
JP2021145096A (en) | Substrate carrier, film forming device, substrate carrier conveyance method, and film forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOKYO ELECTRON LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIROKI, TSUTOMU;REEL/FRAME:028853/0371 Effective date: 20120820 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |