[go: up one dir, main page]

JP2010239023A - Substrate transfer device, and substrate processing device - Google Patents

Substrate transfer device, and substrate processing device Download PDF

Info

Publication number
JP2010239023A
JP2010239023A JP2009087107A JP2009087107A JP2010239023A JP 2010239023 A JP2010239023 A JP 2010239023A JP 2009087107 A JP2009087107 A JP 2009087107A JP 2009087107 A JP2009087107 A JP 2009087107A JP 2010239023 A JP2010239023 A JP 2010239023A
Authority
JP
Japan
Prior art keywords
wafer
substrate
holding
holding member
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009087107A
Other languages
Japanese (ja)
Inventor
Masahito Ozawa
雅仁 小沢
Yoshiaki Sasaki
義明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009087107A priority Critical patent/JP2010239023A/en
Priority to PCT/JP2010/055579 priority patent/WO2010113881A1/en
Publication of JP2010239023A publication Critical patent/JP2010239023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate transfer device which hardly causes a position shift of a substrate during transfer and is capable of suppressing production of particles, and to provide a substrate processing device provided with the same. <P>SOLUTION: The substrate transfer device is equipped with a holding member 10 that is capable of holding and horizontally moving a substrate W, wherein the holding member 10 has a plurality of holding surfaces 13, 14 which have a concave surface with an arc-shaped cross section in the vertical direction and which are provided along the periphery of the substrate W mounting areas in order to hold the periphery on the bottom surface side of the substrate W. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基板の処理時に当該基板を搬送する基板搬送装置及びこれを備えた基板処理装置に係り、特に、真空チャックなどの適用が困難な真空雰囲気下などで基板を搬送する技術に関する。   The present invention relates to a substrate transport apparatus that transports a substrate during substrate processing and a substrate processing apparatus including the substrate, and more particularly to a technique for transporting a substrate in a vacuum atmosphere where it is difficult to apply a vacuum chuck or the like.

半導体装置の製造工程などには、例えば加熱された半導体ウエハ(以下、ウエハという)の表面に真空雰囲気下で原料ガスを供給し、当該ウエハの表面に成膜を行うCVD(Chemical Vapor Deposition)などの熱処理があり、膜厚の面内均一性を高める目的などから、真空容器内に一枚ずつウエハを搬入してから熱処理を実行する枚葉式の基板処理装置が利用されている。   In the manufacturing process of a semiconductor device, for example, CVD (Chemical Vapor Deposition) or the like is performed by supplying a source gas in a vacuum atmosphere to the surface of a heated semiconductor wafer (hereinafter referred to as a wafer) and forming a film on the surface of the wafer. For the purpose of increasing the in-plane uniformity of the film thickness, etc., a single-wafer type substrate processing apparatus is used in which wafers are carried into a vacuum container one by one and then heat treatment is performed.

枚葉式の基板処理装置には、真空容器などからなる複数の処理モジュールを共通の搬送室に接続し、この搬送室を真空雰囲気として、各処理モジュールと外部との間でウエハを搬送することによりスループットの向上を図ったマルチチャンバー、クラスタツールなどと呼ばれるタイプのものがある。   In a single-wafer type substrate processing apparatus, a plurality of processing modules composed of vacuum containers or the like are connected to a common transfer chamber, and the transfer chamber is used as a vacuum atmosphere to transfer wafers between each processing module and the outside. There are types called multi-chambers, cluster tools, etc. that have improved throughput.

マルチチャンバーの搬送室内には保持部材を備えたウエハの搬送装置が設けられており、ウエハはこの保持部材に保持された状態で搬送室内を介して各処理モジュールと外部との間を搬送される。この保持部材は、真空雰囲気下でウエハを搬送することから真空チャックなどによりウエハを固定することが困難であり、また処理モジュールとの間でウエハの迅速な受け渡しを行う必要があることからメカニカルチャックを設けることも現実的でない。このため、例えばフォーク形状をしたセラミック製の保持部材上に例えば扁平な小片状の円板からなるウエハ支持部を複数箇所に設け、これらのウエハ支持部の上にウエハを載置しただけの状態でウエハを搬送するタイプの保持部材がある。   A wafer transfer device having a holding member is provided in the transfer chamber of the multi-chamber, and the wafer is transferred between each processing module and the outside through the transfer chamber while being held by the holding member. . Since this holding member conveys the wafer in a vacuum atmosphere, it is difficult to fix the wafer by a vacuum chuck or the like, and it is necessary to quickly transfer the wafer to and from the processing module. It is also not realistic to provide For this reason, for example, a fork-shaped ceramic holding member is provided with a plurality of wafer support portions made of, for example, flat small discs, and a wafer is simply placed on these wafer support portions. There is a holding member of a type that conveys a wafer in a state.

他方、マルチチャンバー型の基板処理装置は、更なるスループットの向上が求められており、これに伴ってより高速でウエハを搬送する必要も生じている。このとき保持部材が動き出す際の加速時や、停止する際の減速時には、ウエハには水平方向の慣性力が加わり、搬送速度の高速化によってウエハに加わる慣性力も従来よりも大きくなる可能性が高い。しかしながら既述のようにウエハ支持部上にウエハを載置するだけの保持部材では、こうした慣性力に抗する力がウエハ-ウエハ支持部間に働く摩擦力しかないためウエハの位置ずれなどが発生しやすく、場合によってはウエハが落下するおそれもある。このため、必要な速度までウエハの搬送速度を上げられず、スループット向上の制約となる場合もあり、また例えばウエハに急激な慣性力が加わらないように、予め決めた速度カーブに沿って加速、減速を実行するなどの高度な加速度制御を行わなければならず、装置構成が複雑になってしまう場合もある。   On the other hand, the multi-chamber type substrate processing apparatus is required to further improve the throughput, and accordingly, the wafer needs to be transferred at a higher speed. At this time, at the time of acceleration when the holding member starts to move or at the time of deceleration when it stops, the wafer is subjected to a horizontal inertial force, and the inertial force applied to the wafer by increasing the transfer speed is likely to be larger than before. . However, as described above, with a holding member that simply mounts the wafer on the wafer support, there is only a frictional force acting between the wafer and the wafer support so that the wafer can be displaced. In some cases, the wafer may fall. For this reason, the wafer transfer speed cannot be increased to the required speed, which may be a limitation on throughput improvement.For example, acceleration is performed along a predetermined speed curve so that a sudden inertia force is not applied to the wafer. Advanced acceleration control such as executing deceleration must be performed, which may complicate the device configuration.

こうした問題に対して、例えば特許文献1には互いに直交する水平面及び垂直面を備えた規制部材と、傾斜面を備えた傾斜部材とを一組として、例えばウエハの中心を挟んで規制部材と傾斜部材とを対向させて2組配置し、各組の規制部材側の垂直面及び傾斜部材の傾斜面にてウエハの水平方向のずれを規制しつつ、規制部材の水平面及び傾斜部材の傾斜面にてウエハを下面側から支持することによりウエハの位置決めを行う保持部材が記載されている。また特許文献2にはウエハの水平方向の位置決めを行うため、ウエハの外側面に沿って湾曲する側壁面が形成された基板支持ブロックを備えると共に、ウエハの底面を支持する保持部材が記載されている。さらに特許文献3には、例えば4箇所に山型に突起するウエハ保持部材を設け、この山型のウエハ保持部材の傾斜面にてウエハを保持して、ウエハを底面側及び外周方向から押さえ、ウエハのずれを生じにくくした保持部材が記載されている。   For example, Japanese Patent Application Laid-Open No. H10-228688 discloses a set of a regulating member having a horizontal plane and a vertical plane orthogonal to each other and an inclined member having an inclined surface, and for example, the regulating member and the inclined surface sandwiching the center of the wafer. Two sets are arranged facing each other, and the horizontal displacement of the wafer is regulated by the vertical surface on the regulating member side of each set and the inclined surface of the inclined member, while the horizontal surface of the regulating member and the inclined surface of the inclined member are regulated. A holding member that positions the wafer by supporting the wafer from the lower surface side is described. In addition, Patent Document 2 describes a holding member that supports a bottom surface of a wafer and includes a substrate support block having a side wall surface that is curved along the outer surface of the wafer in order to perform horizontal positioning of the wafer. Yes. Furthermore, in Patent Document 3, for example, wafer holding members that protrude in a mountain shape are provided at four locations, the wafer is held by the inclined surface of the mountain wafer holding member, and the wafer is pressed from the bottom surface side and the outer peripheral direction. A holding member that makes it difficult for the wafer to shift is described.

特開2003−282670号公報:0036段落、0039段落〜0043段落、図5、図6JP 2003-282670 A: 0036 paragraph, 0039 paragraph to 0043 paragraph, FIGS. 5 and 6 特開2005−123642号公報:0020段落、0053段落、図3JP 2005-123642 A: 0020 paragraph, 0053 paragraph, FIG. 特開2000−3951号公報:0019段落、図4JP 2000-3951 A: paragraph 0019, FIG.

上述の特許文献1〜特許文献3に記載された保持部材は、ウエハの底面を水平面(特許文献1の規制部材の水平面、特許文献2の保持部材本体)または傾斜面(特許文献1の傾斜部材、特許文献3のウエハ保持部材)で支えることによりウエハを支持しつつ、垂直方向に伸びる面(特許文献1の規制部材の垂直面、特許文献2の側壁面)または傾斜面(特許文献1の傾斜部材、特許文献3のウエハ保持部材)にてウエハを外側から押さえることにより加速、減速時などにおけるウエハの水平方向の位置ずれを防止している。   In the holding members described in Patent Documents 1 to 3, the bottom surface of the wafer is a horizontal surface (horizontal surface of the regulating member of Patent Document 1, the holding member body of Patent Document 2) or an inclined surface (the inclined member of Patent Document 1). While supporting the wafer by supporting it with the wafer holding member of Patent Document 3, the surface (vertical surface of the restricting member of Patent Document 1, the side wall surface of Patent Document 2) or the inclined surface (Patent Document 1) The wafer is prevented from being displaced in the horizontal direction during acceleration and deceleration by pressing the wafer from the outside with an inclined member (wafer holding member of Patent Document 3).

ここで例えば上述のCVDにて成膜されたウエハには、例えばウエハの周縁部や側周面にも膜が形成されており、この部分が保持部材と接触すると膜が削れてパーティクル発生の要因となることから、ウエハと保持部材との接触部は可能な限り小さいことが好ましい。しかしながら特許文献1や特許文献2に記載の底面側からウエハを支え、垂直方向に伸びる面にてウエハのずれを抑える保持部材では、ウエハを保持している部材に着目すると、保持部材とウエハとが少なくとも2箇所で接する前提となっており、接触箇所が多く、ここでパーティクルを生じるおそれが高い。   Here, for example, on the wafer formed by the above-described CVD, a film is also formed on, for example, the peripheral edge or the side peripheral surface of the wafer, and when this part comes into contact with the holding member, the film is scraped and causes the generation of particles. Therefore, the contact portion between the wafer and the holding member is preferably as small as possible. However, in the holding member that supports the wafer from the bottom surface side described in Patent Document 1 and Patent Document 2 and suppresses the wafer shift on the surface extending in the vertical direction, when attention is paid to the member holding the wafer, the holding member and the wafer Is a premise to contact at least two places, and there are many contact places, and there is a high possibility that particles are generated here.

一方、特許文献1や特許文献3に記載の傾斜面でウエハを支える保持部材では、底面及び側面を保持する保持部材に比べてウエハとの接触箇所は少ない。しかしながらウエハには、ベベル部と呼ばれる傾斜面の形成された領域が設けられており、このベベル部の形状は公差の範囲内でウエハ毎に異なっている。このため、ウエハを支える保持部材の傾斜面に近い傾きを持つベベル部の形成されたウエハにおいては、これら傾斜面とベベル部との接触面積が大きくなってパーティクルが発生しやすくなるおそれもある。また、半導体装置の製造過程でウエハに反りを生じた場合などにおいても傾斜面とベベル部との接触面積が大きくなってしまう場合がある。   On the other hand, in the holding member that supports the wafer with the inclined surface described in Patent Document 1 or Patent Document 3, the number of contact points with the wafer is smaller than the holding member that holds the bottom surface and the side surface. However, the wafer is provided with a region having an inclined surface called a bevel portion, and the shape of the bevel portion varies from wafer to wafer within a tolerance. For this reason, in a wafer in which a bevel portion having an inclination close to the inclined surface of the holding member that supports the wafer is formed, the contact area between the inclined surface and the bevel portion may be increased, and particles may be easily generated. Further, even when the wafer is warped during the manufacturing process of the semiconductor device, the contact area between the inclined surface and the bevel portion may increase.

これらに加え特許文献3に記載の保持部材では、山型に突起するウエハ保持部材をセラミックなどで形成することは、面取りや位置決めの加工精度を確保することが困難なことから、ウエハ保持部材はエラストマー製となっている。しかしながらエストラマーはウエハよりもやわらかいためこの場合にはウエハ保持部材側が削れてパーティクルを生じるおそれもある。また、ウエハに対してCVDを行う場合にはプロセス温度が高いことから、耐熱性の小さいエストラマー製の保持部は使用できない場合がある。   In addition to the above, in the holding member described in Patent Document 3, it is difficult to secure the processing accuracy of chamfering and positioning because it is difficult to form the wafer holding member protruding in a chevron shape with ceramics. Made of elastomer. However, the elastomer is softer than the wafer, and in this case, the wafer holding member side may be scraped to generate particles. In addition, when CVD is performed on a wafer, since the process temperature is high, a holder made of elastomer having low heat resistance may not be used.

本発明はこのような事情の下になされたものであり、その目的は、搬送中に基板の位置ずれが生じにくく、且つ、パーティクルの発生を抑えた基板搬送装置及びこの基板搬送装置を備えた基板処理装置を提供することにある。   The present invention has been made under such circumstances, and an object of the present invention is to provide a substrate transport device that is less likely to be displaced during transport and suppresses generation of particles, and the substrate transport device. It is to provide a substrate processing apparatus.

本発明に係る基板搬送装置は、基板を保持して水平方向に移動可能な保持部材と、
基板の下面側の周縁部を保持するために前記保持部材に基板の載置領域の周方向に沿って複数設けられ、垂直方向の断面が円弧状の凹曲面である保持面と、を備えたことを特徴とする。
A substrate transport apparatus according to the present invention includes a holding member that holds a substrate and is movable in a horizontal direction;
In order to hold the peripheral portion on the lower surface side of the substrate, the holding member is provided with a plurality of holding surfaces along the circumferential direction of the mounting region of the substrate, and a holding surface whose vertical section is an arc-shaped concave curved surface It is characterized by that.

前記基板搬送装置は、以下の特徴を備えていてもよい。
(a)前記保持部材は、周縁部にベベル部が形成された円形基板である基板の底面と、ベベル部の傾斜面とが交差する稜線を前記保持面にて支持することにより当該基板を保持すること。
(b)前記保持部材は、基端部から先端側に複数分岐して伸びるフォーク形状に形成され、各分岐部分に前記保持面が形成される共に、基端部に横長の前記保持面が形成されていること。
(c)前記保持部材はセラミック製であること。
The substrate transfer device may have the following features.
(A) The holding member holds the substrate by supporting, on the holding surface, a ridge line where a bottom surface of the substrate, which is a circular substrate having a bevel portion formed on a peripheral portion, and an inclined surface of the bevel portion intersect. To do.
(B) The holding member is formed in a fork shape extending in a plurality of branches from the base end portion to the tip side, and the holding surface is formed at each branch portion, and the horizontally long holding surface is formed at the base end portion. is being done.
(C) The holding member is made of ceramic.

また他の発明に係る基板処理装置は、真空雰囲気で基板に対する熱処理を実行する処理モジュールと、
この処理モジュールに気密に接続され、真空雰囲気下で前記処理モジュールとの間で基板の搬入出を行うための搬送室と、
この搬送室内に設けられた上述の各基板搬送装置と、を備えたことを特徴とする。
Further, a substrate processing apparatus according to another invention includes a processing module for performing a heat treatment on a substrate in a vacuum atmosphere,
A transfer chamber that is hermetically connected to the processing module and carries the substrate in and out of the processing module in a vacuum atmosphere;
And the above-described substrate transfer devices provided in the transfer chamber.

本発明によれば、保持部材に設けられた基板を保持する保持面の形状は、垂直方向の断面が円弧状の凹曲面となるように形成されているので、この凹曲面にて基板の下方側の周縁部を支持することにより、基板には当該凹曲面から基板の中央側へ向かう水平方向の力が働き、基板搬送時の加速、減速の際などに働く慣性力に抗して基板の位置ずれの発生を抑えることができる。さらに、基板形状にばらつきがある場合や、基板に反りを生じた場合などであっても基板と保持部材との接触部分の面積が小さく保たれ、パーティクルの発生を抑えることができる。   According to the present invention, the shape of the holding surface for holding the substrate provided on the holding member is formed so that the vertical cross-section is an arc-shaped concave curved surface. By supporting the peripheral edge of the substrate, a horizontal force from the concave curved surface toward the center of the substrate acts on the substrate, and resists the inertial force that acts when accelerating or decelerating the substrate. The occurrence of misalignment can be suppressed. Furthermore, even when the substrate shape varies or when the substrate is warped, the area of the contact portion between the substrate and the holding member is kept small, and generation of particles can be suppressed.

本発明の実施の形態に係る成膜装置の平面図である。It is a top view of the film-forming apparatus which concerns on embodiment of this invention. 前記成膜装置の第2の搬送室に設けられている保持アームの構成を示す斜視図である。It is a perspective view which shows the structure of the holding arm provided in the 2nd conveyance chamber of the said film-forming apparatus. 前記保持アームの先端部に設けられているウエハ保持部材の構成を示す平面図及び側面図である。It is the top view and side view which show the structure of the wafer holding member provided in the front-end | tip part of the said holding arm. 前記ウエハ保持部材にてウエハを保持した状態を示す斜視図である。It is a perspective view which shows the state which hold | maintained the wafer with the said wafer holding member. 前記ウエハ保持部材にてウエハを保持した状態を示す説明図である。It is explanatory drawing which shows the state holding the wafer with the said wafer holding member. 前記ウエハ保持部材の保持面とウエハとの接触状態を示す拡大図である。It is an enlarged view which shows the contact state of the holding surface of the said wafer holding member, and a wafer. ウエハ形状がばらついたときの前記保持面とウエハとの接触状態を示す拡大図である。It is an enlarged view which shows the contact state of the said holding surface and wafer when a wafer shape varies. 前記ウエハ保持部材にて、傾いた状態のウエハを保持している様子を示す説明図である。It is explanatory drawing which shows a mode that the wafer of the inclined state is hold | maintained with the said wafer holding member. 前記ウエハ保持部材の保持面と傾いた状態のウエハとの接触状態を示す拡大図である。It is an enlarged view which shows the contact state of the holding surface of the said wafer holding member, and the wafer of the inclined state. 前記ウエハ保持部材にて、中央部が上方向へと突き出る反りが発生した状態のウエハを保持している様子を示す説明図である。It is explanatory drawing which shows a mode that the wafer of the state which the curvature which the center part protruded upwards generate | occur | produced in the said wafer holding member was hold | maintained. 前記ウエハ保持部材の保持面と上方向へ反った状態のウエハとの接触状態を示す拡大図である。It is an enlarged view which shows the contact state of the wafer of the state which curved the holding surface of the said wafer holding member, and the upper direction. 前記ウエハ保持部材にて、中央部が下方向へと突き出る反りが発生した状態のウエハを保持している様子を示す説明図である。It is explanatory drawing which shows a mode that the wafer of the state which the curvature which the center part protrudes in the downward direction generate | occur | produced in the said wafer holding member was hold | maintained. 前記ウエハ保持部材の保持面と下方向へ反った状態のウエハとの接触状態を示す拡大図である。It is an enlarged view which shows the contact state of the wafer of the state which curved the holding surface of the said wafer holding member, and the downward direction. 比較例に係る前記ウエハ保持部材の構成を示す斜視図である。It is a perspective view which shows the structure of the said wafer holding member which concerns on a comparative example.

以下、本発明の実施の形態に係る基板搬送装置及びこれを備えた基板処理装置について、マルチチャンバー型の成膜装置2を例に挙げて説明する。図1は、本実施の形態に係る成膜装置2の平面図である。成膜装置2は、処理対象のウエハWを所定枚数格納したFOUP4を載置する例えば3個の載置台21と、FOUP4から取り出したウエハWを大気雰囲気下で搬送する第1の搬送室22と、室内を大気雰囲気と真空雰囲気とに切り替えてウエハWを待機させるための、例えば左右に2個並んで配置されたロードロック室25と、真空雰囲気下でウエハWを搬送する第2の搬送室26と、搬入されたウエハWに成膜処理を施すための例えば4個の真空容器28a〜28dと、を備えている。これらの機器は、ウエハWの搬入方向に対して、載置台21、第1の搬送室22、ロードロック室25、第2の搬送室26、真空容器28a〜28dの順で並んでおり、隣り合う機器同士は開閉扉221やゲートバルブG1〜G3を介して気密に接続されている。以下の説明では載置台21の設けられている向きを手前側として説明する。   Hereinafter, a substrate transport apparatus according to an embodiment of the present invention and a substrate processing apparatus including the same will be described by taking a multi-chamber type film forming apparatus 2 as an example. FIG. 1 is a plan view of a film forming apparatus 2 according to the present embodiment. The film forming apparatus 2 includes, for example, three mounting tables 21 on which a FOUP 4 storing a predetermined number of wafers W to be processed is mounted, and a first transfer chamber 22 that transfers the wafer W taken out of the FOUP 4 in an air atmosphere. For example, two load lock chambers 25 arranged side by side on the left and right sides for switching the chamber between an air atmosphere and a vacuum atmosphere to wait for the wafer W, and a second transfer chamber for transferring the wafer W in a vacuum atmosphere 26 and, for example, four vacuum vessels 28a to 28d for performing a film forming process on the loaded wafer W. These devices are arranged in the order of the mounting table 21, the first transfer chamber 22, the load lock chamber 25, the second transfer chamber 26, and the vacuum containers 28 a to 28 d with respect to the loading direction of the wafer W. The matching devices are connected in an airtight manner through the open / close door 221 and the gate valves G1 to G3. In the following description, the direction in which the mounting table 21 is provided will be described as the front side.

第1の搬送室22の側壁面には、載置台21に載置された各FOUP4に対応して開閉扉221が設けられている。各開閉扉221は、FOUP4に対向する位置と、その下方側の退避位置との間で昇降可能に構成されると共に、この昇降動作の際にFOUP4の側面に設けられた蓋体が開閉し、第1の搬送室22とFOUP4との間でのウエハWの取り出しや収納を可能にする。   On the side wall surface of the first transfer chamber 22, an opening / closing door 221 is provided corresponding to each FOUP 4 mounted on the mounting table 21. Each open / close door 221 is configured to be movable up and down between a position facing the FOUP 4 and a retracted position on the lower side thereof, and a lid provided on a side surface of the FOUP 4 is opened and closed during the lifting operation. The wafer W can be taken out and stored between the first transfer chamber 22 and the FOUP 4.

第1の搬送室22内にはFOUP4からウエハWを1枚ずつ取り出して搬送するための、回転、伸縮、昇降及び走行軌道232に沿って左右方向へ移動自在な搬送装置である第1の搬送装置23が設置されている。第1の搬送装置23は例えば2台のスカラ型の多関節アームからなる保持アーム231a、231bを備えており、これらの保持アーム231a、231bは、各FOUP4、後述のアライメント室24並びにロードロック室25の間でウエハWを搬送することができる。図1に示すように各保持アーム231a、231bは、二股に分かれたフォーク形状のウエハ保持部材を備えており、これらのウエハ保持部材のウエハWとの接触面には不図示の真空チャックが設けられていて、ウエハWを高速で搬送する場合においても加速、減速時に働く慣性力に抗してウエハWを固定して保持することができる。   The first transfer chamber 22 is a transfer device that is movable in the left-right direction along rotation, expansion and contraction, and travel track 232 for taking out and transferring the wafers W from the FOUP 4 one by one in the first transfer chamber 22. A device 23 is installed. The first transfer device 23 includes, for example, holding arms 231a and 231b made of two SCARA-type multi-joint arms, and these holding arms 231a and 231b are the FOUPs 4, alignment chambers 24 and load lock chambers described later. The wafer W can be transferred between 25. As shown in FIG. 1, each holding arm 231a, 231b is provided with a fork-shaped wafer holding member divided into two forks, and a vacuum chuck (not shown) is provided on the contact surface of these wafer holding members with the wafer W. Even when the wafer W is transferred at a high speed, the wafer W can be fixed and held against the inertial force acting during acceleration and deceleration.

第1の搬送室22の手前側から見て例えば左手の側壁面には、ウエハWの位置合わせを行うためのアライメント室24が設けられている。アライメント室24内には、例えばウエハWに設けられたノッチやオリエンテーションフラットを検出するための光学センサと、ウエハWの位置合わせを実行する回転台とを備えたオリエンタ241が設けられており、各FOUP4から取り出されたウエハWをロードロック室25へと搬送する前に、ウエハWの向きを予め定めた方向に整える位置合わせを実行することができる。   An alignment chamber 24 for aligning the wafer W is provided, for example, on the side wall surface of the left hand as viewed from the front side of the first transfer chamber 22. In the alignment chamber 24, for example, an orienter 241 including an optical sensor for detecting notches and orientation flats provided on the wafer W and a turntable for performing alignment of the wafer W is provided. Before the wafer W taken out from the FOUP 4 is transferred to the load lock chamber 25, alignment for adjusting the orientation of the wafer W in a predetermined direction can be executed.

また、第1の搬送室22の天井部には室内に大気を送り込むファンとその大気を清浄化するフィルタとからなる不図示のファンフィルタユニットを備え、またこれと対向する床部には不図示の排気ユニットを備えていることにより、第1の搬送室22内には清浄空気の下降気流が形成されるようになっている。   The ceiling portion of the first transfer chamber 22 is provided with a fan filter unit (not shown) composed of a fan that sends air into the room and a filter that cleans the air, and a floor portion that faces this is not shown. By providing this exhaust unit, a descending air flow of clean air is formed in the first transfer chamber 22.

第1の搬送室22の後段には、各々ゲートバルブG1を介して左右に2つのロードロック室25が設けられており、各ロードロック室25はウエハWを載置するためのステージ251を備えると共に、ロードロック室25内を大気雰囲気と真空雰囲気とに切り替えるための図示しない真空ポンプ及びリーク弁が接続されている。   In the rear stage of the first transfer chamber 22, two load lock chambers 25 are provided on the left and right via gate valves G 1, respectively. Each load lock chamber 25 includes a stage 251 for placing a wafer W thereon. In addition, a vacuum pump and a leak valve (not shown) for switching the inside of the load lock chamber 25 between an air atmosphere and a vacuum atmosphere are connected.

これら2つのロードロック室25は、ゲートバルブG2を介して共通の第2の搬送室26に接続されている。ロードロック室25は、図1に示すようにその平面形状が例えば六角形状の筐体として構成され、六角形の手前側の2辺をなす側壁面は既述のロードロック室25と接続される一方、残る4辺をなす側壁面にはウエハWに対して熱処理である成膜処理が実行される真空容器28a〜28dが接続されている。第2の搬送室26内には、ロードロック室25と各真空容器28a〜28dとの間で真空雰囲気にてウエハWを搬送するための、回転及び伸縮自在に構成された本発明の基板搬送装置である第2の搬送装置27が設置され、また第2の搬送室26は、その内部を真空雰囲気に保つための図示しない真空ポンプと接続されている。   These two load lock chambers 25 are connected to a common second transfer chamber 26 via a gate valve G2. As shown in FIG. 1, the load lock chamber 25 is configured as a casing having a hexagonal shape, for example, and the side wall surfaces forming the two sides on the front side of the hexagon are connected to the load lock chamber 25 described above. On the other hand, vacuum vessels 28a to 28d in which a film forming process, which is a heat treatment, is performed on the wafer W are connected to the remaining four side walls. In the second transfer chamber 26, the substrate transfer of the present invention configured to be rotatable and extendable to transfer the wafer W in a vacuum atmosphere between the load lock chamber 25 and each of the vacuum containers 28a to 28d. A second transfer device 27, which is a device, is installed, and the second transfer chamber 26 is connected to a vacuum pump (not shown) for keeping the inside of the second transfer chamber 26 in a vacuum atmosphere.

各真空容器28a〜28dは例えば、ウエハWが載置されると共に、当該ウエハWを加熱するための熱源を備えたステージ281と、プロセスガスの供給される不図示のガス供給機構とを備えており、不図示の真空ポンプと接続され、真空雰囲気下で行われる熱処理、例えば成膜ガスを用いた熱CVDやALD(Atomic Layer Deposition)などによる成膜処理の行われる処理モジュールとして構成されている。各真空容器28a〜28dにおいては、上述の成膜処理のほか、エッチングガスによるエッチング処理やアッシングガスによるアッシング処理を行ってもよく、これらの真空容器28a〜28dにて実行されるプロセス処理の内容は、互いに同じであってもよいし、異なる処理を行うように構成してもよい。   Each of the vacuum vessels 28a to 28d includes, for example, a stage 281 provided with a heat source for heating the wafer W and a gas supply mechanism (not shown) to which process gas is supplied. In addition, it is connected to a vacuum pump (not shown), and is configured as a processing module that performs a heat treatment performed in a vacuum atmosphere, for example, a film forming process by thermal CVD using a film forming gas or ALD (Atomic Layer Deposition). . In each of the vacuum vessels 28a to 28d, in addition to the film forming process described above, an etching process using an etching gas or an ashing process using an ashing gas may be performed, and the contents of the process performed in these vacuum containers 28a to 28d May be the same as each other or may be configured to perform different processes.

以上に説明した構成を備えた成膜装置2において、第2の搬送室26内に設けられた第2の搬送装置27は、真空チャックの適用が困難な真空雰囲気において高速でウエハWを搬送してもウエハWの位置ずれや落下が発生しにくく、且つ、ウエハW形状のばらつきやウエハWの反りが発生した場合であっても、ウエハWとの接触部の面積を小さく保ち、パーティクルの発生を抑えることができる構成となっている。以下、その詳細な構成について説明する。   In the film forming apparatus 2 having the configuration described above, the second transfer device 27 provided in the second transfer chamber 26 transfers the wafer W at a high speed in a vacuum atmosphere to which a vacuum chuck is difficult to apply. Even if the wafer W is not easily displaced or dropped, and even when the wafer W is uneven or warped, the area of the contact portion with the wafer W is kept small, and particles are generated. It is the structure which can suppress. The detailed configuration will be described below.

第2の搬送装置27は、例えば2台の保持アーム1a、1bを備えており、各保持アーム1a、1bは例えば図2に示すように、旋回アーム部18と中段アーム部17と支持アーム部16とが基端部側からこの順に、不図示の回転軸を介して互いに接続されたスカラ型の多関節アームとして構成されている。旋回アーム部18の基端部側は、旋回軸19を介して第2の搬送装置27の本体に旋回可能に接続される一方、支持アーム部16の先端部にはウエハWを保持するための保持部材であるウエハ保持部材10が固定されている。   The second transfer device 27 includes, for example, two holding arms 1a and 1b, and each holding arm 1a and 1b includes, for example, a swing arm portion 18, a middle arm portion 17, and a support arm portion as shown in FIG. 16 are configured as SCARA-type articulated arms connected to each other in this order from the base end side via a rotating shaft (not shown). The base end side of the swing arm portion 18 is pivotally connected to the main body of the second transfer device 27 via the swing shaft 19, while the front end portion of the support arm portion 16 holds the wafer W. A wafer holding member 10 which is a holding member is fixed.

また旋回軸19内には、各アーム部16〜18を延伸、縮退させるための回転軸が設けられており、モータによりこの回転軸を回転させることで各アーム部16〜18の関節部に設けたプーリがベルトを介して回転し、ウエハ保持部材10を水平方向に直線移動させることができる。これら回転軸、モータ、プーリ等は図示していないが、ウエハ保持部材10を進退させる進退機構を構成している。またこれら2台の保持アーム1a、1bを備えた第2の搬送装置27は、図1に示すように第2の搬送装置27自体が第2の搬送室26内で垂直軸まわりに回転することができる。   In addition, a rotating shaft for extending and retracting the arm portions 16 to 18 is provided in the turning shaft 19. The rotating shaft is rotated by a motor to be provided at a joint portion of each arm portion 16 to 18. The pulled pulley rotates through the belt, and the wafer holding member 10 can be linearly moved in the horizontal direction. Although these rotating shafts, motors, pulleys and the like are not shown, they constitute an advance / retreat mechanism for moving the wafer holding member 10 back and forth. Further, in the second transfer device 27 having these two holding arms 1a and 1b, the second transfer device 27 itself rotates around the vertical axis in the second transfer chamber 26 as shown in FIG. Can do.

図3(a)、図3(b)は、保持アーム1a、1bの先端部に設けられた本実施の形態に係るウエハ保持部材10を上面側から見た平面図及び側面図である。ウエハ保持部材10は、例えば図2に示す支持アーム部16側から見て左右に広がる扁平な部材からなる基端部材11と、この基端部材11との接続位置を基端部として、当該基端部から先端部へ向けて前方に複数、例えば2つに分岐して伸びる扁平で細長い部材からなる分岐部分である支持部材12とが一体に形成され、二股に分かれたフォーク形状の外観を有する部材として構成されている。ウエハ保持部材10は、例えばアルミナなどのセラミック製の焼結体を切削加工することなどにより形成される。   FIGS. 3A and 3B are a plan view and a side view of the wafer holding member 10 according to the present embodiment provided at the tip of the holding arms 1a and 1b as viewed from the upper surface side. The wafer holding member 10 has, for example, a base end member 11 made of a flat member that extends left and right when viewed from the support arm portion 16 side shown in FIG. A fork-shaped appearance is formed integrally with a support member 12 that is a flat and elongated branch portion that is a plurality of, for example, two branches extending from the end portion toward the front end portion. It is configured as a member. The wafer holding member 10 is formed by, for example, cutting a ceramic sintered body such as alumina.

図3(b)の側面図に示すように、2本の支持部材12は各々基端部材11と接続されている基端部及び先端部の厚さ「h」が例えば4mm程度、これら基端部及び先端部に挟まれた領域の厚さ「h」が例えば2mm程度となっており、これらの厚さの異なる領域の境界は凹曲面にて連続的に接続されており、これらの凹曲面がウエハWの保持面13、14となっている。 As shown in the side view of FIG. 3B, each of the two support members 12 has a base end portion connected to the base end member 11 and a thickness “h 1 ” of the front end portion of about 4 mm. The thickness “h 2 ” of the region sandwiched between the end portion and the tip portion is, for example, about 2 mm, and the boundary between the regions having different thicknesses is continuously connected by a concave curved surface. The concave curved surfaces are the holding surfaces 13 and 14 of the wafer W.

以下、基端部側の保持面を基端側保持面13、先端部側の保持面を先端側保持面14と呼ぶと、基端側保持面13は図3(a)に示すように2本の支持部材12の間の領域に亘って伸びる横長の連続面として基端部材11に形成されており、この連続面は、上面側から見ると、例えば直径300mmのウエハWを底面側から支持することができる円環状の領域Sの一部を切り取った細長い円弧形状となっている。一方、2本に分岐した分岐部分である支持部材12の先端部に設けられた各々の先端側保持面14についても、前記基端側保持面13側の円弧形状の領域と共通する円環状の領域Sの一部を切り取った短い円弧形状に形成されている。また基端側保持面13の外周領域に当該基端側保持面13に沿って形成された肉厚部分は、ウエハ保持部材10の強度を保つためのリブ15である。   Hereinafter, when the holding surface on the base end side is referred to as the base end holding surface 13 and the holding surface on the tip end side is referred to as the tip holding surface 14, the base end holding surface 13 is 2 as shown in FIG. The base end member 11 is formed on the base end member 11 as a horizontally long continuous surface extending over a region between the support members 12. When viewed from the top surface side, the continuous surface supports, for example, a wafer W having a diameter of 300 mm from the bottom surface side. It has an elongated arc shape obtained by cutting off a part of the annular region S that can be formed. On the other hand, each of the distal end holding surfaces 14 provided at the distal end portion of the support member 12 that is a bifurcated portion is also an annular shape common to the arc-shaped region on the proximal end holding surface 13 side. It is formed in a short arc shape obtained by cutting a part of the region S. Further, the thick portion formed along the base end side holding surface 13 in the outer peripheral region of the base end side holding surface 13 is a rib 15 for maintaining the strength of the wafer holding member 10.

上述の構成を備えることによりウエハ保持部材10は、図4の斜視図に示すように基端側保持面13及び先端側保持面14にてウエハWを底面側から支持した状態で保持し、この状態にてスカラ型の保持アーム1a、1bを作動させることにより、第2の搬送室26内におけるウエハWの搬送を実行することができる。言い替えると、本ウエハ保持部材10はウエハWの載置領域の周方向に沿って複数の保持面13、14が設けられていることになる。ここで基端側保持面13及び先端側保持面14を構成する凹曲面は、以下に説明する特徴を備えることにより、ウエハW搬送時の位置ずれの抑え、またウエハWとの接触面積を小さくした構造となっている。   By providing the above-described configuration, the wafer holding member 10 holds the wafer W in a state where it is supported from the bottom side by the base end side holding surface 13 and the tip end side holding surface 14 as shown in the perspective view of FIG. The wafer W can be transferred in the second transfer chamber 26 by operating the scalar holding arms 1a and 1b in this state. In other words, the wafer holding member 10 is provided with a plurality of holding surfaces 13 and 14 along the circumferential direction of the mounting area of the wafer W. Here, the concave curved surfaces constituting the proximal end holding surface 13 and the distal end holding surface 14 have the characteristics described below, thereby suppressing misalignment during transfer of the wafer W and reducing the contact area with the wafer W. It has a structure.

図5に模式的に示すように、ウエハ保持部材10の基端部材11及び支持部材12に形成された保持面13、14の凹曲面は、中心Oからの距離Rが例えば390mm程度の球の内面の一部として構成されており、当該凹曲面の垂直方向の断面が円弧状となっている。またこれらの凹曲面は、ウエハ保持部材10上にウエハWを例えば水平に載置したときに、ウエハWの底面とベベル部の傾斜面とが交差する稜線を支持可能な曲率を持っている。   As schematically shown in FIG. 5, the concave curved surfaces of the holding surfaces 13 and 14 formed on the base end member 11 and the support member 12 of the wafer holding member 10 are spheres having a distance R from the center O of about 390 mm, for example. It is comprised as a part of inner surface, and the cross section of the perpendicular direction of the said concave curved surface is circular arc shape. Further, these concave curved surfaces have a curvature capable of supporting a ridge line where the bottom surface of the wafer W and the inclined surface of the bevel portion intersect when the wafer W is placed on the wafer holding member 10 horizontally, for example.

さらにこれらの凹曲面の形状について詳細に述べておくと、当該凹曲面は図5に示すように高さHが約2mm、保持面13、14の開口径Lが約305mm、保持面13、14の底部側の径Lが295mmとなる、図3に示した既述の円環状の領域Sに沿って形成されており、図8に示すように載置時や搬送中にウエハWが傾いた場合でも保持面13、14にてウエハWを支持することができるようになっている。 Further, when it is noted in detail the shape of these concave surface, the concave surface height H of about 2mm as shown in FIG. 5, the opening diameter L 1 of about 305mm of the holding surface 13 and 14, the holding surface 13, 14 diameter L 2 of the bottom side is 295mm in, is formed along the area S of the aforementioned annular shown in FIG. 3, the wafer W during the mounting standing time and transported as shown in FIG. 8 Even when tilted, the holding surfaces 13 and 14 can support the wafer W.

成膜装置2全体の説明に戻ると、成膜装置2は例えば図1に示すように制御部3を備えている。制御部3は例えば図示しないCPUと記憶部とを備えたコンピュータからなり、記憶部には当該成膜装置2の作用、即ち、載置台21上に載置されたFOUP4からウエハWを取り出して各真空容器28a〜28d内に搬入しCVDやALDなどの熱処理を行い、その後、再びFOUP4内にウエハWを格納するまでの動作に係わる制御についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。   Returning to the description of the film forming apparatus 2 as a whole, the film forming apparatus 2 includes a control unit 3 as shown in FIG. The control unit 3 includes, for example, a computer having a CPU and a storage unit (not shown). The storage unit operates the film forming apparatus 2, that is, takes out the wafer W from the FOUP 4 mounted on the mounting table 21. A program in which a group of steps (commands) related to the operation until the wafer W is stored in the FOUP 4 after being carried into the vacuum containers 28a to 28d and subjected to heat treatment such as CVD or ALD is recorded. ing. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.

以下、本実施の形態に係る成膜装置2の動作について説明する。載置台21上のFOUP4に格納されたウエハWは、第1の搬送装置23によってFOUP4から取り出され第1の搬送室22内を搬送される途中でアライメント室24内にて位置決めをされた後、左右いずれかのロードロック室25に受け渡されて待機する。そしてロードロック室25内が真空雰囲気となったら、ウエハWは第2の搬送装置27の保持アーム1a、1bによってロードロック室25から取り出され、第2の搬送室26内を搬送されて、いずれかの真空容器28a〜28dにて所定の熱処理、例えば本例ではCVDやALDによる成膜処理を受ける。またここで真空容器28a〜28dにて異なる連続処理が行われる場合には、ウエハWは第2の搬送室26との間を往復しながら連続処理に必要な真空容器28a〜28d間を搬送される。そして必要な処理を終えたウエハWは、搬入時とは反対の経路を搬送され(アライメント室24を除く)再びFOUP4へと格納される。   Hereinafter, the operation of the film forming apparatus 2 according to the present embodiment will be described. The wafer W stored in the FOUP 4 on the mounting table 21 is taken out of the FOUP 4 by the first transfer device 23 and positioned in the alignment chamber 24 while being transferred in the first transfer chamber 22. It is delivered to the left or right load lock chamber 25 and waits. When the inside of the load lock chamber 25 is in a vacuum atmosphere, the wafer W is taken out of the load lock chamber 25 by the holding arms 1a and 1b of the second transfer device 27 and transferred into the second transfer chamber 26. These vacuum vessels 28a to 28d are subjected to a predetermined heat treatment, for example, a film forming process by CVD or ALD in this example. When different continuous processing is performed in the vacuum containers 28a to 28d, the wafer W is transferred between the vacuum containers 28a to 28d necessary for the continuous processing while reciprocating between the second transfer chamber 26 and the wafer W. The Then, the wafer W that has undergone the necessary processing is transported along a path opposite to that at the time of loading (except for the alignment chamber 24), and stored in the FOUP 4 again.

このような順路を経て成膜装置2内を搬送されるウエハWは、第2の搬送室26内において第2の搬送装置27の保持アーム1a、1bのウエハ保持部材10上に保持され、図5に示すように垂直方向の断面が円弧状の凹曲面をなす保持面13、14にて支持される。このとき保持面13、14からウエハWには、ウエハWから保持面13、14に向けて加わる力に応じた反力が働き、この反力の水平成分はウエハWの中央側へ向かって働いている。このため例えば保持アーム1a、1bを高速で水平移動させる際に働く慣性力に抗してウエハWを押さえつけ、ウエハWの位置ずれや落下の発生を抑えることができる。   The wafer W transferred through the film forming apparatus 2 through such a normal path is held on the wafer holding member 10 of the holding arms 1a and 1b of the second transfer apparatus 27 in the second transfer chamber 26. As shown in FIG. 5, the vertical cross section is supported by holding surfaces 13 and 14 having an arcuate concave curved surface. At this time, a reaction force corresponding to a force applied from the wafer W toward the holding surfaces 13 and 14 is applied to the wafer W from the holding surfaces 13 and 14, and a horizontal component of the reaction force is applied toward the center side of the wafer W. ing. For this reason, for example, the wafer W can be pressed against the inertial force that acts when the holding arms 1a and 1b are horizontally moved at a high speed, and the occurrence of positional deviation and dropping of the wafer W can be suppressed.

また本例に係るウエハ保持部材10は、図6に示すようにウエハWの底面とベベル部の傾斜面とが交差する稜線にてウエハWを支持しており、この稜線(以下、第1の稜線という)は例えばウエハWの側周面とベベル部の底面側の傾斜面とが交差する稜線(同じく第2の稜線という)に比べて鈍角となっている。このため比較的鋭角な第1の稜線を保持する場合と比較してセラミック製のウエハ保持部材10と接するウエハWが削れにくく、パーティクルが発生しにくいという利点もある。   Further, as shown in FIG. 6, the wafer holding member 10 according to this example supports the wafer W at a ridge line where the bottom surface of the wafer W and the inclined surface of the bevel portion intersect, and this ridge line (hereinafter referred to as a first ridge line). For example, the ridge line is an obtuse angle compared to the ridge line (also referred to as the second ridge line) where the side peripheral surface of the wafer W and the inclined surface on the bottom surface side of the bevel intersect. For this reason, there is an advantage that the wafer W in contact with the ceramic wafer holding member 10 is less likely to be cut and particles are less likely to be generated than in the case of holding the first edge having a relatively acute angle.

また既述のように基端側保持面13及び先端側保持面14は共通の内面として構成されているところ、この球と平坦なウエハWの底面との交線は円形になる。従って、例えば公差の範囲内でウエハWの大きさやベベル部の大きさがばらついた結果、第1の稜線(底面側から見ればこの第1の稜線の形状も円となっている)の大きさが変化した場合でも、例えば図7に実線及び一点鎖線で示すように、各々の第1の稜線に対応する位置にてウエハWを支えることが可能であり、この結果、位置ずれやパーティクルの発生しにくい状態でウエハWを保持することができる。   Further, as described above, the base end side holding surface 13 and the tip end side holding surface 14 are configured as a common inner surface, and the intersection line between the sphere and the bottom surface of the flat wafer W is circular. Therefore, for example, as a result of variations in the size of the wafer W and the size of the bevel within a tolerance range, the size of the first ridge line (the shape of the first ridge line is also a circle when viewed from the bottom side) is obtained. Can change the position of the wafer W at the position corresponding to each first ridge line, as shown by, for example, the solid line and the alternate long and short dash line in FIG. The wafer W can be held in a state where it is difficult to do.

さらにはウエハ保持部材10の保持面13、14が凹曲面となっていることにより、当該凹曲面に外接する面の水平方向に対する傾きは、外側に行くほど大きくなる。このため図8に実線で示すように例えばウエハWが傾いた状態で載置されたり、また搬送中のウエハWに働く慣性力が大きく、凹曲面にて支持されているにも拘らずウエハWがずれて傾いたりした場合であっても、ずれた方向の保持面13、14からウエハWに向けて働く水平方向の反力が大きくなるので、ウエハWは中心方向へ押し戻され易くなる。   Furthermore, since the holding surfaces 13 and 14 of the wafer holding member 10 are concave curved surfaces, the inclination of the surface circumscribing the concave curved surfaces with respect to the horizontal direction increases toward the outside. For this reason, as indicated by a solid line in FIG. 8, for example, the wafer W is placed in an inclined state, or the inertial force acting on the wafer W being transferred is large and supported by the concave curved surface. Even in the case where the wafer W is shifted and tilted, the horizontal reaction force acting from the holding surfaces 13 and 14 in the shifted direction toward the wafer W is increased, so that the wafer W is easily pushed back toward the center.

さらには、ウエハ保持部材10の保持面13、14が凹曲面となっていることにより、図8の実線で示すようにウエハWが傾いた場合であっても、例えば保持面13a、14aが単なる傾斜面からなる図9(b)の場合に比べて図9(a)に示すように凹曲面はより奥側に向けて凹んでいる。このためウエハWの第2の稜線と保持面13、14とが接しにくく、ウエハWと保持面13、14との接触面が大きくならずに済み、この点でもパーティクルが発生しにくい。   Further, since the holding surfaces 13 and 14 of the wafer holding member 10 are concave curved surfaces, even when the wafer W is inclined as shown by the solid line in FIG. 8, for example, the holding surfaces 13a and 14a are simply As shown in FIG. 9A, the concave curved surface is recessed further toward the back than in the case of FIG. For this reason, the second ridge line of the wafer W and the holding surfaces 13 and 14 do not easily come into contact with each other, and the contact surface between the wafer W and the holding surfaces 13 and 14 does not need to be large.

また図10は、ウエハWの中央部が上方向へと突き出る反りが発生した状態のウエハWをウエハ保持部材10に保持した状態を模式的に示している。このような反りを生じると、ウエハWのベベル部の傾斜面が水平方向に対してなす角度は、反りが大きくなるにつれて次第に小さくなってくる。このため前記傾斜面はウエハ保持部材10の保持面13、14に次第に近づいてくることになるが、ウエハWが傾いて載置された場合と同様に、これら保持面13、14は単なる傾斜面に比べてより奥側に向けて凹んでいることから、ウエハWの傾斜面と保持面13、14とが接触しにくくなっている。   FIG. 10 schematically shows a state in which the wafer W is held by the wafer holding member 10 in a state where the warp in which the central portion of the wafer W protrudes upward is generated. When such a warp occurs, the angle formed by the inclined surface of the bevel portion of the wafer W with respect to the horizontal direction gradually decreases as the warp increases. For this reason, the inclined surfaces gradually approach the holding surfaces 13 and 14 of the wafer holding member 10, but the holding surfaces 13 and 14 are merely inclined surfaces as in the case where the wafer W is inclined and placed. Compared to the above, since it is recessed toward the back side, the inclined surface of the wafer W and the holding surfaces 13 and 14 are less likely to contact each other.

また仮にウエハWの反りがさらに大きくなってベベル部の傾斜面がこれらの保持面13、14に接触したとしても、図11に拡大図示したようにベベル部の傾斜面の接触領域は第1、第2の稜線のみであり、傾斜面全体が接触する場合に比べてパーティクル発生のおそれは小さい。   Further, even if the warpage of the wafer W is further increased and the inclined surface of the bevel portion comes into contact with the holding surfaces 13 and 14, the contact area of the inclined surface of the bevel portion is first, as shown in FIG. Only the second ridge line is present, and the risk of particle generation is small as compared to the case where the entire inclined surface contacts.

次に図12は、ウエハWの中央部が下方向へと突き出る反りが発生した状態のウエハWをウエハ保持部材10に保持した状態を模式的に示している。このうような反りの場合にはウエハWの底面が保持面13、14へ向けて近づいてくることになるが、これら保持面13、14が下側に向けて凹んでいることにより、例えば平坦な水平面でウエハWを底面側から支持する場合と比較して、図13に示すようにウエハWの底面が保持面13、14と接しにくく、この点でもパーティクルが発生しにくい。
以上、図10〜図13を用いて説明したように、本実施の形態に係るウエハ保持部材10は、ウエハWが上下いずれの方向への反りを生じた場合でもウエハWとウエハ保持部材10の保持面13、14とが比較的接触しにくい構成であるといえる。
Next, FIG. 12 schematically shows a state in which the wafer W is held by the wafer holding member 10 in a state where the warp in which the central portion of the wafer W protrudes downward occurs. In the case of such warpage, the bottom surface of the wafer W approaches the holding surfaces 13 and 14, but the holding surfaces 13 and 14 are recessed downward, for example, flat. Compared to the case where the wafer W is supported from the bottom side on a flat horizontal surface, the bottom surface of the wafer W is less likely to contact the holding surfaces 13 and 14 as shown in FIG.
As described above with reference to FIGS. 10 to 13, the wafer holding member 10 according to the present embodiment has the wafer W and the wafer holding member 10 even when the wafer W is warped in any direction. It can be said that the holding surfaces 13 and 14 are relatively difficult to contact.

本実施の形態に係るウエハ保持部材10によれば以下の効果がある。ウエハ保持部材10に設けられたウエハWを保持する保持面13、14の形状が例えば球の内面の一部を構成しており、その垂直方向の断面が円弧状の凹曲面となるように形成されている。このため、保持面13、14にてウエハWの下方側の周縁部、例えばウエハWの底面とベベル部の傾斜面とが交差する稜線を支持することにより、ウエハWには保持面13、14からウエハWの中央側へ向かう水平方向の力が働き、ウエハW搬送時の加速、減速の際に働く慣性力に抗してウエハWの位置ずれの発生を抑えることができる。この結果、真空雰囲気であり、真空チャック等を用いることが困難な第2の搬送室26内でも高速でウエハWを搬送することが可能となり、成膜装置2のスループットの向上に貢献することができる。   The wafer holding member 10 according to the present embodiment has the following effects. The shape of the holding surfaces 13 and 14 that hold the wafer W provided on the wafer holding member 10 constitutes a part of the inner surface of a sphere, for example, and the vertical cross section is formed as an arcuate concave curved surface. Has been. For this reason, the holding surfaces 13 and 14 support the lower peripheral edge of the wafer W, for example, the ridge line where the bottom surface of the wafer W and the inclined surface of the bevel portion intersect, thereby holding the holding surface 13 and 14 on the wafer W. A horizontal force from the wafer W toward the center of the wafer W acts, and the occurrence of positional deviation of the wafer W can be suppressed against the inertial force acting during acceleration and deceleration during the wafer W transfer. As a result, the wafer W can be transferred at high speed even in the second transfer chamber 26 which is in a vacuum atmosphere and it is difficult to use a vacuum chuck or the like, which contributes to the improvement of the throughput of the film forming apparatus 2. it can.

さらに、ウエハW形状に公差範囲内でばらつきがある場合や、ウエハWに反りを生じた場合などであっても、保持面13、14が凹曲面となっていることによりウエハWとウエハ保持部材10との接触部分の面積が小さく保たれ、パーティクルの発生を抑えることができる。   Further, even when the wafer W shape varies within the tolerance range, or when the wafer W is warped, the holding surfaces 13 and 14 are concavely curved, so that the wafer W and the wafer holding member are The area of the contact portion with 10 can be kept small, and the generation of particles can be suppressed.

ここで保持面13、14を構成する凹曲面は、上述の実施の形態中に例示した球の内面の一部を構成するように形成されている場合に限られない。例えば垂直方向に縦長の楕円球や水平方向に横長の楕円球の一部でもよく、また基端部材11側の基端側保持面13と支持部材12の先端部側の先端側保持面14とで互いに曲率が異なる凹曲面であってもよい。このように、本発明における「垂直方向の断面が円弧状の凹曲面」の「円弧」とは、真円の一部を切り取った円弧に限らず、楕円などの種々の弓なりの形状の弧を含んでいる。このような凹曲面の場合にも、図5〜図13を用いて説明した球の内面の場合とほぼ同様の理由により、搬送時にウエハWの位置ずれが発生しにくく、ウエハWとの接触面が小さいことからパーティクルが発生しにくいウエハ保持部材10を構成することができる。   Here, the concave curved surfaces constituting the holding surfaces 13 and 14 are not limited to being formed so as to constitute a part of the inner surface of the sphere exemplified in the above embodiment. For example, it may be a vertically long elliptical sphere or a part of a horizontally long elliptical sphere, a proximal end holding surface 13 on the proximal end member 11 side, and a distal end holding surface 14 on the distal end side of the support member 12. Concave surfaces with different curvatures may be used. As described above, the “arc” of the “concave curved surface having a circular cross section in the vertical direction” in the present invention is not limited to an arc obtained by cutting a part of a perfect circle, but arcs having various bow shapes such as an ellipse. Contains. Even in the case of such a concave curved surface, for the same reason as in the case of the inner surface of the sphere described with reference to FIGS. Therefore, the wafer holding member 10 in which particles are hardly generated can be configured.

また図3(a)に示したウエハ保持部材10では、基端部の基端部材11側に形成されている基端側保持面13は、2本の支持部材12の間の領域に亘って伸びる連続面として構成されているが、当該保持面13の構成はこの例に限られるものではない。例えば支持部材12側の2つの先端側保持面14に対してウエハWの中央領域を挟んで対向する位置に一箇所ずつ、先端側保持面14と同程度の大きさを持つ小型の基端側保持面13を設けて、ウエハWを例えば4点で支持する構成としてもよいし、図3(a)に示すようにV字状に切り込みが入って、基端側保持面13が切り欠かれている位置に、この例とは反対に基端側保持面13を設けてウエハWを3点で支持してもよい。基端側保持面13を小さくすることにより、ウエハWとの接触面積を小さくして、パーティクルの発生をさらに抑えることができる。この場合には、例えば4点支持を例に挙げると、まずセラミック製の焼結体の切削加工により図3(a)に示す連続面を備えた基端側保持面13を有するウエハ保持部材10を製作してから、不要な基端側保持面13をさらに切削して小型の基端側保持面13を残すなどの手法により形成される。   In the wafer holding member 10 shown in FIG. 3A, the base end side holding surface 13 formed on the base end member 11 side of the base end portion extends over a region between the two support members 12. Although it is configured as an extended continuous surface, the configuration of the holding surface 13 is not limited to this example. For example, a small base end side having the same size as that of the front end side holding surface 14 at a position facing the two front end side holding surfaces 14 on the support member 12 side across the central region of the wafer W. For example, the holding surface 13 may be provided to support the wafer W at four points, for example, or a V-shaped cut may be made as shown in FIG. In contrast to this example, the base end side holding surface 13 may be provided at a position where the wafer W is supported to support the wafer W at three points. By making the proximal end holding surface 13 small, the contact area with the wafer W can be reduced, and generation of particles can be further suppressed. In this case, for example, taking a four-point support as an example, first, the wafer holding member 10 having the base-side holding surface 13 having the continuous surface shown in FIG. 3A by cutting a ceramic sintered body. Then, the unnecessary proximal end holding surface 13 is further cut to leave a small proximal end holding surface 13.

さらに例えばフォーク形状のウエハ保持部材10は、2本に分岐した支持部材12を設ける場合に限らず、3本以上に分岐させてもよい。さらに、ウエハWの載置領域の周方向に沿って複数設けられる保持面とは、図3等に示したウエハ保持部材10のように、基端部材11や支持部材12に離れ離れに設けられている場合のみならず、こうした保持面をウエハWの周方向に限りなく増やしていったときに形成される円環状の保持面も含んでいる。   Further, for example, the fork-shaped wafer holding member 10 is not limited to the case where the support member 12 branched into two is provided, and may be branched into three or more. Further, a plurality of holding surfaces provided along the circumferential direction of the mounting area of the wafer W are provided apart from the base end member 11 and the support member 12 like the wafer holding member 10 shown in FIG. It also includes an annular holding surface formed when such holding surfaces are increased in the circumferential direction of the wafer W as much as possible.

(実験)
実施の形態に係るウエハ保持部材10を備えた保持アーム1(既述の保持アーム1a、1bのいずれか一方)及び、小片状のウエハ支持部の上にウエハWを載置する従来型のウエハ保持部材を備えた保持アーム1にて大気雰囲気下で以下の搬送動作を実行し、ウエハWの位置ずれが許容される範囲内での最短の搬送時間を求める実験を行った。
搬送動作:(1)ロードロック室25のゲートバルブG2を開く→(2)保持アーム1前進させロードロック室25に進入する→(3)ステージ251のリフターを降下させてウエハ保持部材10にウエハWを受け渡す→(4)保持アーム1を後退させロードロック室25から退出する→(5)保持アーム1を旋回させ真空容器28(既述の真空容器28a〜28dのいずれか1つ)に対向させる→(6)保持アーム1を前進させ真空容器1内に進入する→(7)リフターを上昇させてウエハWをステージ281にウエハWを受け渡す→(8)保持アーム1を後退させ真空容器1から退出する→(9)真空容器28のゲートバルブG3を閉じる。
(Experiment)
A holding arm 1 (any one of the holding arms 1a and 1b described above) provided with the wafer holding member 10 according to the embodiment and a conventional type in which the wafer W is placed on a small wafer support portion. The following transfer operation was executed in the atmospheric atmosphere by the holding arm 1 provided with the wafer holding member, and an experiment was performed to obtain the shortest transfer time within a range where the positional deviation of the wafer W is allowed.
Transfer operation: (1) Open the gate valve G2 of the load lock chamber 25 → (2) Advance the holding arm 1 and enter the load lock chamber 25 → (3) Lower the lifter of the stage 251 and move the wafer to the wafer holding member 10 W is transferred → (4) The holding arm 1 is moved backward to exit from the load lock chamber 25 → (5) The holding arm 1 is swung to the vacuum container 28 (any one of the previously described vacuum containers 28a to 28d). (6) Advance the holding arm 1 to enter the vacuum chamber 1 → (7) Raise the lifter and transfer the wafer W to the stage 281 → (8) Retract the holding arm 1 and vacuum Retreat from the container 1 → (9) Close the gate valve G3 of the vacuum container 28.

A.実験条件
(実施例) 図3、図4に示したウエハ保持部材10を備えた保持アーム1にウエハWを載置し、図1に示した成膜装置2において上述の搬送動作に要する時間を測定した。そして、保持アーム1の動作速度を上げながらウエハWの搬送を複数回行い、ウエハWの位置ずれが±0.05mmに収まる範囲内での最短の所要時間を調べた。
(比較例) 図14に示したウエハ保持部材100を備えた保持アーム1にてウエハWを保持し、(実施例)と同様の実験を行った。図14中、101はウエハWを底面側から支持するウエハ支持部である。
A. Experimental conditions
Example The wafer W was placed on the holding arm 1 having the wafer holding member 10 shown in FIGS. 3 and 4, and the time required for the above-described transfer operation was measured in the film forming apparatus 2 shown in FIG. . Then, the wafer W was transported a plurality of times while increasing the operating speed of the holding arm 1, and the shortest required time within the range where the positional deviation of the wafer W was within ± 0.05 mm was examined.
(Comparative Example) The wafer W was held by the holding arm 1 provided with the wafer holding member 100 shown in FIG. 14, and an experiment similar to (Example) was performed. In FIG. 14, reference numeral 101 denotes a wafer support unit that supports the wafer W from the bottom surface side.

B.実験結果
(実施例)、(比較例)の結果を以下の(表1)に示す。同表中、制御、通信時間は、(1)〜(9)の各動作間で制御部3での判断や通信に要した時間である。
(表1)

Figure 2010239023
既述の搬送動作のうち、(1)、(9)のゲートバルブG2、G3の開閉時間、(3)、(7)のリフター昇降時間(ウエハWの受け渡し時間)は(実施例)及び(比較例)にて共通の動作であり、当該搬送動作全体に要する時間(合計時間)は保持アーム1の動作時間の違いによって差が現れる。 B. Experimental result
The results of (Example) and (Comparative Example) are shown in the following (Table 1). In the table, the control and communication times are times required for judgment and communication in the control unit 3 between the operations (1) to (9).
(Table 1)
Figure 2010239023
Among the transfer operations described above, the opening / closing time of the gate valves G2 and G3 in (1) and (9), and the lifter lifting / lowering time (wafer W transfer time) in (3) and (7) are (Example) and ( This is a common operation in the comparative example), and the time required for the entire transfer operation (total time) differs depending on the operation time of the holding arm 1.

(実施例)の結果によれば前記の搬送動作全体に要する時間は13.88秒であり、このうち保持アーム1の動作に要した時間の合計は8.88秒であった。これに対して(比較例)では搬送動作全体に要した時間が16.00秒、このうち保持アーム1の動作に要した時間の合計は11.00秒であり、双方の保持アーム1の動作時間を比較すると(実施例)の方が(比較例)よりも約20%短かった。このことは、凹曲面にてウエハWの下方側の周縁部を保持する本実施の形態に係るウエハ保持部材10の方が、ウエハWを底面側から支えるだけの従来型のウエハ保持部材100に比べてウエハWの位置ずれが発生しにくく、より高速でウエハWを搬送することができることを示している。そしてこのことは、ウエハWに対して空気抵抗が働かない真空雰囲気内においても同様であるといえる。   According to the result of (Example), the time required for the entire transfer operation was 13.88 seconds, and the total time required for the operation of the holding arm 1 was 8.88 seconds. On the other hand, in the (comparative example), the time required for the entire transfer operation is 16.00 seconds, of which the total time required for the operation of the holding arm 1 is 11.00 seconds. When comparing the time, the (Example) was about 20% shorter than the (Comparative Example). This is because the wafer holding member 10 according to the present embodiment that holds the lower peripheral portion of the wafer W with a concave curved surface is a conventional wafer holding member 100 that only supports the wafer W from the bottom surface side. Compared to this, the wafer W is less likely to be displaced, and the wafer W can be transferred at a higher speed. This can also be said to be the same in a vacuum atmosphere in which no air resistance acts on the wafer W.

G1〜G3 ゲートバルブ
W ウエハ
100 ウエハ保持部材
101 ウエハ支持部
1、1a、1b 保持アーム
10 ウエハ保持部材
11 基端部材
12 支持部材
13、13a
基端側保持面
14、14a
先端側保持面
2 成膜装置
22 第1の搬送室
23 第1の搬送装置
26 第2の搬送室
27 第2の搬送装置
3 制御部
G1 to G3 Gate valve W Wafer 100 Wafer holding member 101 Wafer support portion 1, 1a, 1b Holding arm 10 Wafer holding member 11 Base end member 12 Support members 13, 13a
Proximal holding surface 14, 14a
Front holding surface 2 Film forming device 22 First transfer chamber 23 First transfer device 26 Second transfer chamber 27 Second transfer device 3 Control unit

Claims (5)

基板を保持して水平方向に移動可能な保持部材と、
基板の下面側の周縁部を保持するために前記保持部材に基板の載置領域の周方向に沿って複数設けられ、垂直方向の断面が円弧状の凹曲面である保持面と、を備えたことを特徴とする基板搬送装置。
A holding member that holds the substrate and is movable in the horizontal direction;
In order to hold the peripheral portion on the lower surface side of the substrate, the holding member is provided with a plurality of holding surfaces along the circumferential direction of the mounting region of the substrate, and a holding surface whose vertical section is an arc-shaped concave curved surface A substrate transfer apparatus.
前記保持部材は、周縁部にベベル部が形成された円形基板である基板の底面と、ベベル部の傾斜面とが交差する稜線を前記保持面にて支持することにより当該基板を保持することを特徴とする請求項1に記載の基板搬送装置。   The holding member holds the substrate by supporting, on the holding surface, a ridge line where a bottom surface of the substrate, which is a circular substrate having a bevel portion formed on a peripheral portion, and an inclined surface of the bevel portion intersect. The substrate transfer apparatus according to claim 1, wherein 前記保持部材は、基端部から先端側に複数分岐して伸びるフォーク形状に形成され、各分岐部分に前記保持面が形成される共に、基端部に横長の前記保持面が形成されていることを特徴とする請求項1または2に記載の基板搬送装置。   The holding member is formed in a fork shape extending in a plurality of branches from the proximal end portion to the distal end side, the holding surface is formed at each branch portion, and the horizontally long holding surface is formed at the proximal end portion. The substrate transfer apparatus according to claim 1, wherein: 前記保持部材はセラミック製であることを特徴とする請求項1ないし3のいずれか一つに記載の基板搬送装置。   The substrate transfer apparatus according to claim 1, wherein the holding member is made of ceramic. 真空雰囲気で基板に対する熱処理を実行する処理モジュールと、
この処理モジュールに気密に接続され、真空雰囲気下で前記処理モジュールとの間で基板の搬入出を行うための搬送室と、
この搬送室内に設けられ、請求項1ないし4のいずれか一つに記載の基板搬送装置と、を備えたことを特徴とする基板処理装置。
A processing module for performing a heat treatment on the substrate in a vacuum atmosphere;
A transfer chamber that is hermetically connected to the processing module and carries the substrate in and out of the processing module in a vacuum atmosphere;
A substrate processing apparatus, comprising: the substrate transport apparatus according to claim 1 provided in the transport chamber.
JP2009087107A 2009-03-31 2009-03-31 Substrate transfer device, and substrate processing device Pending JP2010239023A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009087107A JP2010239023A (en) 2009-03-31 2009-03-31 Substrate transfer device, and substrate processing device
PCT/JP2010/055579 WO2010113881A1 (en) 2009-03-31 2010-03-29 Substrate transfer device and substrate processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087107A JP2010239023A (en) 2009-03-31 2009-03-31 Substrate transfer device, and substrate processing device

Publications (1)

Publication Number Publication Date
JP2010239023A true JP2010239023A (en) 2010-10-21

Family

ID=42828170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087107A Pending JP2010239023A (en) 2009-03-31 2009-03-31 Substrate transfer device, and substrate processing device

Country Status (2)

Country Link
JP (1) JP2010239023A (en)
WO (1) WO2010113881A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003598A1 (en) * 2014-07-03 2016-01-07 Applied Materials, Inc. Substrate transfer robot end effector
WO2018079351A1 (en) * 2016-10-27 2018-05-03 川崎重工業株式会社 Substrate gripping hand and substrate conveying device comprising same
CN109461693A (en) * 2017-09-06 2019-03-12 台湾积体电路制造股份有限公司 Wafer transfer apparatus and wafer processing system
JP2021036080A (en) * 2020-11-20 2021-03-04 株式会社荏原製作所 Substrate holder, carrier system carrying substrate in electronic device manufacturing installation and electronic device manufacturing installation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116394640B (en) * 2023-03-30 2024-12-31 江苏利元亨智能装备有限公司 Drying furnace conveying device and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233587A (en) * 1998-02-09 1999-08-27 Toshiba Ceramics Co Ltd Ic transferring fork
JP3917313B2 (en) * 1999-01-26 2007-05-23 ローム株式会社 Transfer jig for semiconductor manufacturing products
JP2004327934A (en) * 2003-04-28 2004-11-18 Applied Materials Inc Wafer blade
JP2005235906A (en) * 2004-02-18 2005-09-02 Shin Etsu Handotai Co Ltd Wafer holding jig and vapor phase growing apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169334B2 (en) 2014-07-03 2022-11-10 アプライド マテリアルズ インコーポレイテッド Substrate transfer robot end effector
US9425076B2 (en) 2014-07-03 2016-08-23 Applied Materials, Inc. Substrate transfer robot end effector
KR20170026595A (en) * 2014-07-03 2017-03-08 어플라이드 머티어리얼스, 인코포레이티드 Substrate transfer robot end effector
CN106489194A (en) * 2014-07-03 2017-03-08 应用材料公司 Substrate transfer robot end effector
JP2017522738A (en) * 2014-07-03 2017-08-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate transfer robot end effector
KR102509442B1 (en) * 2014-07-03 2023-03-10 어플라이드 머티어리얼스, 인코포레이티드 Substrate transfer robot end effector
WO2016003598A1 (en) * 2014-07-03 2016-01-07 Applied Materials, Inc. Substrate transfer robot end effector
JP2021048406A (en) * 2014-07-03 2021-03-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate transfer robot end effector
WO2018079351A1 (en) * 2016-10-27 2018-05-03 川崎重工業株式会社 Substrate gripping hand and substrate conveying device comprising same
JP2018073942A (en) * 2016-10-27 2018-05-10 川崎重工業株式会社 Substrate gripping hand and substrate transport apparatus including the same
TWI788397B (en) * 2017-09-06 2023-01-01 台灣積體電路製造股份有限公司 Wafer transmission device, wafer processing system and method
US11380569B2 (en) 2017-09-06 2022-07-05 Taiwan Semiconductor Manufacturing Co., Ltd. Shiftless wafer blades
CN109461693A (en) * 2017-09-06 2019-03-12 台湾积体电路制造股份有限公司 Wafer transfer apparatus and wafer processing system
CN109461693B (en) * 2017-09-06 2023-06-02 台湾积体电路制造股份有限公司 Wafer transfer device, wafer processing system and method
US11688620B2 (en) 2017-09-06 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Shiftless wafer blades
JP2021036080A (en) * 2020-11-20 2021-03-04 株式会社荏原製作所 Substrate holder, carrier system carrying substrate in electronic device manufacturing installation and electronic device manufacturing installation

Also Published As

Publication number Publication date
WO2010113881A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4912253B2 (en) Substrate transport apparatus, substrate processing apparatus, and substrate transport method
KR101274897B1 (en) Support structure, load lock apparatus, processing apparatus and transfer mechanism
TWI398335B (en) Workpiece conveying system
JP5853991B2 (en) Substrate transfer robot, substrate transfer system, and substrate transfer method
JP6045869B2 (en) Substrate processing apparatus and substrate processing method
JP4707749B2 (en) Substrate replacement method and substrate processing apparatus
US20080025835A1 (en) Bernoulli wand
JP2011071293A (en) Process module, substrate processing apparatus, and method of transferring substrate
CN102414810A (en) Automatic substrate loading station
TW201015659A (en) Work-piece transfer systems and methods
JP2020038880A (en) Substrate conveyance mechanism, substrate processing apparatus, and substrate conveyance method
JP5454286B2 (en) Substrate processing equipment
US10535513B2 (en) Apparatus and methods for backside passivation
US20240213057A1 (en) Transfer apparatus
JP2010080469A (en) Vacuum processing apparatus and vacuum carrier
JP2010239023A (en) Substrate transfer device, and substrate processing device
KR20230152116A (en) Vacuum robotic device for variable pitch approach
KR20140034318A (en) Method and apparatus for cooling subject to be processed, and computer-readable storage medium
JP2011086795A (en) Substrate conveying apparatus and vacuum processing system with the substrate conveying apparatus
US20120257948A1 (en) Loading unit and processing system
JP4207530B2 (en) Conveyance mechanism for workpieces
US20180033663A1 (en) Carrier transport device and carrier transport method
US20160086835A1 (en) Cover opening/closing apparatus and cover opening/closing method
CN109461693B (en) Wafer transfer device, wafer processing system and method
US9803924B2 (en) Vertical heat treatment apparatus