US20080038263A1 - Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas - Google Patents
Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas Download PDFInfo
- Publication number
- US20080038263A1 US20080038263A1 US11/888,881 US88888107A US2008038263A1 US 20080038263 A1 US20080038263 A1 US 20080038263A1 US 88888107 A US88888107 A US 88888107A US 2008038263 A1 US2008038263 A1 US 2008038263A1
- Authority
- US
- United States
- Prior art keywords
- oxo
- dihydro
- amino
- isoindol
- administered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- PSCKACLVTVMCPP-UHFFFAOYSA-N [H]N1C(=C)CCC(N2CC3=C(C=CC=C3N)C2=O)C1=O Chemical compound [H]N1C(=C)CCC(N2CC3=C(C=CC=C3N)C2=O)C1=O PSCKACLVTVMCPP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/454—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
Definitions
- This invention relates to methods of treating, preventing or managing certain types of lymphomas with an immunomodulatory compound having the chemical name of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione, which is also known as or lenalidomide, Revlimid® or Revimid®.
- this invention encompasses methods of treating, preventing or managing non-Hodgkin's lymphomas, including but not limited to, mantle cell lymphoma (MCL), lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated lymphocytic lymphoma, PDL, centrocytic lymphoma, diffuse small-cleaved cell lymphoma, DSCCL, and mentle zone lymphoma, using the compound alone as a therapeutic.
- MCL mantle cell lymphoma
- ILL diffuse poorly differentiated lymphocytic lymphoma
- PDL centrocytic lymphoma
- DSCCL diffuse small-cleaved cell lymphoma
- mentle zone lymphoma using the compound alone as a therapeutic.
- the invention also encompasses the use of specific combinations or “cocktails” of Revlimid® and other therapy, e.g., radiation or other chemotherapeutics, including but not limited to, anti-cancer agents, immunosuppressive agents, and anti-inflammatories such as steroids.
- therapy e.g., radiation or other chemotherapeutics, including but not limited to, anti-cancer agents, immunosuppressive agents, and anti-inflammatories such as steroids.
- chemotherapeutics including but not limited to, anti-cancer agents, immunosuppressive agents, and anti-inflammatories such as steroids.
- the invention also relates to pharmaceutical compositions and dosing regimens with said compound alone that is as a therapeutic.
- Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, or lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis).
- Clinical data and molecular biologic studies indicate that cancer is a multistep process that begins with minor preneoplastic changes, which may under certain conditions progress to neoplasia.
- the neoplastic lesion may evolve clonally and develop an increasing capacity for invasion, growth, metastasis, and heterogeneity, especially under conditions in which the neoplastic cells escape the host's immune surveillance.
- Lymphoma is a heterogenous group of neoplasms arising in the reticuloendothelial and lymphatic systems.
- NDL Non-Hodgkin's lymphoma
- GI gastrointestinal
- Mantle cell lymphoma is a distinct entity among the non-Hodgkin's lymphomas. Drach J.; et al., Expert Review of Anticancer Therapy, 2005, 5(3), pp. 477-485. In the International Lymphoma Classification Project, MCL accounted for 8% of all non-Hodgkin lymphomas. MCL is recognized in the Revised European-American Lymphoma and World Health Organization classifications as a distinct clinicopathologic entity. MCL was not recognized by previous lymphoma classification schemes; and it was frequently categorized as diffuse small-cleaved cell lymphoma by the International Working Formulation or centrocytic lymphoma by the Kiel classification. The Merck Manual , at 958-959.
- MCL is a lymphoproliferative disorder derived from a subset of naive pregerminal center cells localized in primary follicles or in the mantle region of secondary follicles. MCL is characterized by a specific chromosomal translocation, the t(11; 14)(q13;q32). Drach J.; et al., Expert Review of Anticancer Therapy, 2005, 5(3), pp. 477-485. This translocation involves the immunoglobulin heavy-chain gene on chromosome 14 and the BCL1 locus on chromosome 11. Drach J.; et al., p 477.
- Cyclin D1 plays a key role in cell cycle regulation and progression of cells from G1 phase to S phase by activation of cyclin-dependent kinases. Id.
- NHL has been associated with viral infection (Ebstein-Barr virus, HIV, human T-lymphotropic virus type 1, human herpesvirus 6), environmental factors (pesticides, hair dyes), and primary and secondary immunodeficiency. No causative factor has been identified for MCL or for most patients with NHL of other types.
- MCL has poor clinical outcome and is an incurable lymphoma with limited therapeutic options for patients with relapsed or refractory disease.
- This invention encompasses methods of treating, preventing or managing certain types of lymphomas, including primary and metastatic cancer, as well as cancers that are relapsed, refractory or resistant to conventional chemotherapy.
- methods of this invention encompass methods of treating, preventing or managing various forms of lymphomas such as mantle cell lymphoma, MCL, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated lymphocytic lymphoma, PDL, centrocytic lymphoma, diffuse small-cleaved cell lymphoma, DSCCL, follicular lymphoma, and mentle zone lymphoma, including lymphomas that are relapsed, refractory or resistant.
- the methods comprise administering to a patient in need of such treatment, prevention or management a therapeutically or prophylactically effective amount of an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof.
- an immunomodulatory compound of the invention or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof.
- the immunomodulatory compound is used alone, that is without other chemotherapeutics.
- an immunomodulatory compound of the invention is administered in combination with a therapy conventionally used to treat, prevent or manage lymphomas.
- a therapy conventionally used to treat, prevent or manage lymphomas include, but are not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy, immunotherapy and combinations thereof.
- compositions which comprise an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, and a second, or additional, active agent or ingredient.
- Second active agents or ingredients include specific combinations, or “cocktails,” of drugs or therapy, or both.
- the preferred compound to be used in the methods and composition is 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (Revlimid®).
- a first embodiment of the invention encompasses methods of treating, managing, or preventing certain types of lymphomas which comprises administering to a patient in need of such treatment, management or prevention a therapeutically or prophylactically effective amount of an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof.
- an immunomodulatory compound of the invention or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof.
- methods of this invention encompass methods of treating, preventing or managing various forms of lymphomas, including but not limited to, mantle cell lymphoma, MCL, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated lymphocytic lymphoma, PDL, centrocytic lymphoma, diffuse small-cleaved cell lymphoma, DSCCL, follicular lymphoma, and any type of the mantle cell lymphomas that can be seen under the microscope (nodular, diffuse, blastic and mentle zone lymphoma).
- the lymphoma is refractory, relapsed, or is resistant to chemotherapy other than an immunomodulatory compound of the invention.
- the immunomodulatory compound of the invention is administered in combination with another drug (“second active agent or ingredient”) or another therapy for treating, managing, or preventing cancer.
- Second active agents include small molecules and large molecules (e.g., proteins and antibodies), examples of which are provided herein, as well as stem cells or cord blood.
- Methods, or therapies, that can be used in combination with the administration of an immunomodulatory compound of the invention include, but are not limited to, surgery, blood transfusions, immunotherapy, biological therapy, radiation therapy, and other non-drug based therapies presently used to treat, prevent or manage cancer.
- compositions e.g., single unit dosage forms
- pharmaceutical compositions comprise an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, and a second active agent or ingredient.
- Compounds used in the invention include compounds that are racemic, stereomerically enriched or stereomerically pure.
- pharmaceutically acceptable salts, solvates (e.g., hydrate), clathrates, and prodrugs thereof are included.
- Preferred compounds used in the invention are small organic molecules having a molecular weight less than about 1,000 g/mol, and are not proteins, peptides, oligonucleotides, oligosaccharides or other macromolecules.
- immunomodulatory compounds and “IMiDs®” (Celgene Corporation) encompasses small organic molecules that markedly inhibit TNF- ⁇ , LPS induced monocyte IL1 ⁇ and IL12, and partially inhibit IL6 production. Specific immunomodulatory compounds of the invention are discussed below.
- an immunomodulatory compound of the invention refers to 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide, also known as Revlimid® or Revimid®).
- the compound 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione has the following chemical structure:
- immunomodulatory compounds include, but are not limited to, cyano and carboxy derivatives of substituted styrenes such as those disclosed in U.S. Pat. No. 5,929,117; 1-oxo-2-(2,6-dioxo-3-fluoropiperidin-3-yl) isoindolines and 1,3-dioxo-2-(2,6-dioxo-3-fluoropiperidine-3-yl) isoindolines such as those described in U.S. Pat. No. 5,874,448; the tetra substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines described in U.S. Pat. No.
- thalidomide analogs including hydrolysis products, metabolites, and precursors of thalidomide, such as those described in U.S. Pat. Nos. 5,593,990, 5,629,327, and 6,071,948 to D'Amato; and isoindole-imide compounds such as those described in U.S. patent publication no. 2003/0096841, and International Application No. PCT/US01/50401 (International Publication No. WO 02/059106). The entireties of each of the patents and patent applications identified herein are incorporated herein by reference. Immunomodulatory compounds of the invention do not include thalidomide.
- the immunomodulatory compounds of the invention can either be commercially purchased or prepared according to the methods described in the patents or patent publications disclosed herein (see e.g., U.S. Pat. No. 5,635,517, incorporated herein by reference). Further, optically pure compounds can be asymmetrically synthesized or resolved using known resolving agents or chiral columns as well as other standard synthetic organic chemistry techniques.
- the term “pharmaceutically acceptable salt” encompasses non-toxic acid and base addition salts of the compound to which the term refers.
- Acceptable non-toxic acid addition salts include those derived from organic and inorganic acids or bases know in the art, which include, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulphonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embolic acid, enanthic acid, and the like.
- bases that can be used to prepare pharmaceutically acceptable base addition salts of such acidic compounds are those that form non-toxic base addition salts, i.e., salts containing pharmacologically acceptable cations such as, but not limited to, alkali metal or alkaline earth metal salts and the calcium, magnesium, sodium or potassium salts in particular.
- Suitable organic bases include, but are not limited to, N,N-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumaine (N-methylglucamine), lysine, and procaine.
- prodrug means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide the compound.
- prodrugs include, but are not limited to, derivatives of immunomodulatory compounds of the invention that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues.
- prodrugs include derivatives of immunomodulatory compounds of the invention that comprise —NO, —NO 2 , —ONO, or —ONO 2 moieties.
- Prodrugs can typically be prepared using well-known methods, such as those described in 1 Burger's Medicinal Chemistry and Drug Discovery, 172-178, 949-982 (Manfred E. Wolff ed., 5th ed. 1995), and Design of Prodrugs (H. Bundgaard ed., Elselvier, N.Y. 1985).
- biohydrolyzable amide As used herein and unless otherwise indicated, the terms “biohydrolyzable amide,” “biohydrolyzable ester,” “biohydrolyzable carbamate,” “biohydrolyzable carbonate,” “biohydrolyzable ureide,” “biohydrolyzable phosphate” mean an amide, ester, carbamate, carbonate, ureide, or phosphate, respectively, of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound.
- biohydrolyzable esters include, but are not limited to, lower alkyl esters, lower acyloxyalkyl esters (such as acetoxylmethyl, acetoxyethyl, aminocarbonyloxymethyl, pivaloyloxymethyl, and pivaloyloxyethyl esters), lactonyl esters (such as phthalidyl and thiophthalidyl esters), lower alkoxyacyloxyalkyl esters (such as methoxycarbonyl-oxymethyl, ethoxycarbonyloxyethyl and isopropoxycarbonyloxyethyl esters), alkoxyalkyl esters, choline esters, and acylamino alkyl esters (such as acetamidomethyl esters).
- lower alkyl esters such as acetoxylmethyl, acetoxyethyl, aminocarbonyloxymethyl, pivaloyloxymethyl, and pivaloyloxyethyl est
- biohydrolyzable amides include, but are not limited to, lower alkyl amides, ⁇ -amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.
- biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, amino acids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
- the immunomodulatory compound of the invention contains a chiral center, and thus can exist as a racemic mixture of R and S enantiomers.
- This invention encompasses the use of stereomerically pure forms of this compound, as well as the use of mixtures of those forms.
- mixtures comprising equal or unequal amounts of the enantiomers may be used in methods and compositions of the invention.
- These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents. See, e.g., Jacques, J., et al., Enantiomers, Racemates and Resolutions (Wiley-Interscience, New York, 1981); Wilen, S.
- stereomerically pure means a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomers of that compound.
- a stereomerically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
- a stereomerically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound.
- a typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
- the term “stereomerically enriched” means a composition that comprises greater than about 60% by weight of one stereoisomer of a compound, preferably greater than about 70% by weight, more preferably greater than about 80% by weight of one stereoisomer of a compound.
- the term “enantiomerically pure” means a stereomerically pure composition of a compound having one chiral center.
- the term “stereomerically enriched” means a stereomerically enriched composition of a compound having one chiral center.
- the invention encompasses the use of the R or S enantiomer of immunomodulatory compound in the methods.
- An immunomodulatory compound of the invention can be used with or combined with other pharmacologically active compounds (“second active agents or ingredients”) in methods and compositions of the invention. It is believed that certain combinations work synergistically in the treatment of particular types of lymphomas. Immunomodulatory compounds of the invention can also work to alleviate adverse effects associated with certain second active agents, and some second active agents can be used to alleviate adverse effects associated with immunomodulatory compounds of the invention.
- second active agents or ingredients pharmacologically active compounds
- Second active ingredients or agents can be used in the methods and compositions of the invention together with an immunomodulatory compound of the invention.
- Second active agents can be large molecules (e.g., proteins) or small molecules (e.g., synthetic inorganic, organometallic, or organic molecules).
- large molecule active agents include, but are not limited to, hematopoietic growth factors, cytokines, and monoclonal and polyclonal antibodies.
- Typical large molecule active agents are biological molecules, such as naturally occurring or artificially made proteins. Proteins that are particularly useful in this invention include proteins that stimulate the survival and/or proliferation of hematopoietic precursor cells and immunologically active poietic cells in vitro or in vivo. Others stimulate the division and differentiation of committed erythroid progenitors in cells in vitro or in vivo.
- interleukins such as IL-2 (including recombinant IL-II (“rIL2”) and canarypox IL-2), IL-10, IL-12, and IL-18
- interferons such as interferon alfa-2a, interferon alfa-2b, interferon alfa-n1, interferon alfa-n3, interferon beta-I a, and interferon gamma-I b
- GM-CF and GM-CSF GM-CF and GM-CSF
- EPO EPO
- Recombinant and mutated forms of GM-CSF can be prepared as described in U.S. Pat. Nos. 5,391,485; 5,393,870; and 5,229,496; all of which are incorporated herein by reference.
- Recombinant and mutated forms of G-CSF can be prepared as described in U.S. Pat. Nos. 4,810,643; 4,999,291; 5,528,823; and 5,580,755; all of which are incorporated herein by reference.
- This invention encompasses the use of native, naturally occurring, and recombinant proteins.
- the invention further encompasses mutants and derivatives (e.g., modified forms) of naturally occurring proteins that exhibit, in vivo, at least some of the pharmacological activity of the proteins upon which they are based.
- mutants include, but are not limited to, proteins that have one or more amino acid residues that differ from the corresponding residues in the naturally occurring forms of the proteins.
- mutants include, but are not limited to, proteins that have one or more amino acid residues that differ from the corresponding residues in the naturally occurring forms of the proteins.
- mutants include, but are not limited to, proteins that have one or more amino acid residues that differ from the corresponding residues in the naturally occurring forms of the proteins.
- mutants include carbohydrate moieties normally present in their naturally occurring forms (e.g., nonglycosylated forms).
- derivatives include, but are not limited to, pegylated derivatives and fusion proteins, such as proteins formed by fusing IgG1 or IgG3 to the protein or active portion of the protein of interest. See, e.g., Penichet, M. L. and Morrison, S. L., J. Immunol. Methods 248:91-101 (2001).
- Antibodies that can be used in combination with compounds of the invention include monoclonal and polyclonal antibodies.
- antibodies include, but are not limited to, trastuzumab (Herceptin®), rituximab (Rituxan®), bevacizumab (Avastin®), pertuzumab (Omnitarg®), tositumomab (Bexxar®), edrecolomab (Panorex®), and G250.
- Compounds of the invention can also be combined with, or used in combination with, anti-TNF- ⁇ antibodies.
- cytokines such as IL-2, G-CSF, and GM-CSF
- cytokines such as IL-2, G-CSF, and GM-CSF
- IL-2, G-CSF, and GM-CSF can be used in the methods, pharmaceutical compositions, and kits of the invention. See, e.g., Emens, L. A., et al., Curr. Opinion Mol. Ther. 3(1):77-84 (2001).
- the large molecule active agent reduces, eliminates, or prevents an adverse effect associated with the administration of an immunomodulatory compound of the invention.
- adverse effects can include, but are not limited to, drowsiness and somnolence, dizziness and orthostatic hypotension, neutropenia, infections that result from neutropenia, increased HIV-viral load, bradycardia, Stevens-Johnson Syndrome and toxic epidermal necrolysis, and seizures (e.g., grand mal convulsions).
- a specific adverse effect is neutropenia.
- Second active agents that are small molecules can also be used to alleviate adverse effects associated with the administration of an immunomodulatory compound of the invention. However, like some large molecules, many are believed to be capable of providing a synergistic effect when administered with (e.g., before, after or simultaneously) an immunomodulatory compound of the invention.
- small molecule second active agents include, but are not limited to, anti-cancer agents, antibiotics, immunosuppressive agents, and steroids.
- anti-cancer agents include, but are not limited to: acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin; ametantrone acetate; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; bortezomib (Velcade®); brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesin; cedefin
- anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA;
- Specific second active agents include, but are not limited to, rituximab, bortezomib, oblimersen (Genasense®), remicade, docetaxel, celecoxib, melphalan, dexamethasone (Decadron®), steroids, gemcitabine, cisplatinum, temozolomide, etoposide, cyclophosphamide, temodar, carboplatin, procarbazine, gliadel, tamoxifen, topotecan, methotrexate, Arisa®, taxol, taxotere, fluorouracil, leucovorin, irinotecan, xeloda, CPT-11, interferon alpha, pegylated interferon alpha (e.g., PEG INTRON-A), capecitabine, cisplatin, thiotepa, fludarabine, carboplatin, liposomal
- Methods of this invention encompass methods of treating, preventing or managing various types of lymphomas.
- methods of this invention encompass methods of treating, preventing or managing various types of lymphomas, including but not limited to, mantle cell lymphoma, MCL, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated lymphocytic lymphoma, PDL, centrocytic lymphoma, diffuse small-cleaved cell lymphoma, DSCCL, follicular lymphoma, and any type of the mantle cell lymphomas that can be seen under the microscope (nodular, diffuse, blastic and mentle zone lymphoma).
- the term “treating” refers to the administration of a compound of the invention, or other additional active agent, after the onset of symptoms of the particular cancer.
- the term “preventing” refers to the administration prior to the onset of symptoms, particularly to patients at risk of cancer, and in particular lymphoma.
- prevention includes the inhibition of a symptom of the particular cancer. Patients with familial history of cancer or lymphoma in particular are preferred candidates for preventive regimens.
- the term “managing” encompasses preventing the recurrence of the particular cancer in a patient who had suffered from it, lengthening the time a patient who had suffered from the cancer remains in remission, and/or reducing mortality rates of the patients.
- cancer includes, but is not limited to, solid tumors and blood born tumors.
- cancer refers to disease of skin tissues, organs, blood, and vessels, including, but not limited to, cancers of the bladder, bone or blood, brain, breast, cervix, chest, colon, endrometrium, esophagus, eye, head, kidney, liver, lymph nodes, lung, mouth, neck, ovaries, pancreas, prostate, rectum, stomach, testis, throat, and uterus.
- lymphoid refers a heterogenous group of neoplasms arising in the reticuloendothelial and lymphatic systems.
- NHL Non-Hodgkin's lymphoma
- the NHL includes, but is not limited to, mantle cell lymphoma, MCL, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated lymphocytic lymphoma, PDL, centrocytic lymphoma, diffuse small-cleaved cell lymphoma, DSCCL, follicular lymphoma, and any type of the mantle cell lymphomas that can be seen under the microscope (nodular, diffuse, blastic and mentle zone lymphoma).
- relapsed refers to a situation where patients who have had a remission of cancer after therapy have a return of lymphoid cells in the immune systems.
- refractory or resistant refers to a circumstance where patients, even after intensive treatment, have residual lymphoid cells in the immune systems.
- This invention encompasses methods of treating patients who have been previously treated for cancer, but are non-responsive to standard therapies, as well as those who have not previously been treated.
- the invention also encompasses methods of treating patients regardless of patient's age, although some cancers are more common in certain age groups.
- the invention further encompasses methods of treating patients who have undergone surgery in an attempt to treat the cancer at issue, as well as those who have not. Because patients with cancer have heterogenous clinical manifestations and varying clinical outcomes, the treatment given to a patient may vary, depending on his/her prognosis. The skilled clinician will be able to readily determine without undue experimentation specific secondary agents, types of surgery, and types of non-drug based standard therapy that can be effectively used to treat an individual patient with cancer.
- Methods encompassed by this invention comprise administering one or more immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, to a patient (e.g., a human) suffering, or likely to suffer, from cancer, particularly mantle cell lymphoma.
- an immunomodulatory compound of the invention can be administered orally and in single or divided daily doses in an amount of from about 0.10 to about 150 mg/day.
- 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl-piperidine-2,6-dione (Revlimid®) may be administered in an amount of from about 0.10 to 150 mg per day, from about 1 to about 50 mg per day, or from about 5 to about 25 mg per day.
- Specific doses per day include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 mg per day.
- 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl-piperidine-2,6-dione may be administered in an amount of from about 1 to 50 mg per day, or from about 5 to about 25 mg per day to patients with various types of non-Hodgkin's lymphomas such as mantle cell lymphoma, MCL, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated lymphocytic lymphoma, PDL, centrocytic lymphoma, diffuse small-cleaved cell lymphoma, DSCCL, diffuse large cell lymphoma, follicular lymphoma, and mentle zone lymphoma.
- non-Hodgkin's lymphomas such as mantle cell lymphoma, MCL, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated
- 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl-piperidine-2,6-dione may be administered to patients with mantle cell lymphoma in an amount of from about 1 to 50 mg per day, or from about 5 to about 25 mg per day.
- 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl-piperidine-2,6-dione (Revlimid®) may be administered to patients with mantle cell lymphoma in an amount of about 10, 15, 20, 25 or 50 mg per day.
- Revlimid® can be administered in an amount of about 25 mg per day to patients with mantle cell lymphoma.
- the recommended starting dose of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione is 10 mg per day.
- the dose can be escalated every week to 15, 20, 25, 30, 35, 40, 45 and 50 mg per day.
- the patients who are dosed initially at 10 mg and who experience thrombocytopenia or neutropenia that develops within or after the first four weeks of starting Revlimid® therapy may have their dosage adjusted according to a platelet count or absolute neutrophil count (ANC).
- ANC absolute neutrophil count
- Specific methods of the invention comprise administering an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, in combination with one or more second active agents, and/or in combination with radiation therapy, blood transfusions, or surgery.
- an immunomodulatory compound of the invention or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, in combination with one or more second active agents, and/or in combination with radiation therapy, blood transfusions, or surgery.
- immunomodulatory compounds of the invention are disclosed herein (see, e.g., section 4.1).
- second active agents are also disclosed herein (see, e.g., section 4.2).
- Administration of an immunomodulatory compound of the invention and the second active agents to a patient can occur simultaneously or sequentially by the same or different routes of administration.
- the suitability of a particular route of administration employed for a particular active agent will depend on the active agent itself (e.g., whether it can be administered orally without decomposing prior to entering the blood stream) and the disease being treated.
- a preferred route of administration for an immunomodulatory compound of the invention is orally.
- Preferred routes of administration for the second active agents or ingredients of the invention are known to those of ordinary skill in the art. See, e.g., Physicians' Desk Reference , (2006).
- the second active agent is administered intravenously or subcutaneously and once or twice daily in an amount of from about 1 to about 1,000 mg, from about 5 to about 500 mg, from about 10 to about 375 mg, or from about 50 to about 200 mg.
- the specific amount of the second active agent will depend on the specific agent used, the type of disease being treated or managed, the severity and stage of disease, and the amount(s) of immunomodulatory compounds of the invention and any optional additional active agents concurrently administered to the patient.
- the second active agent is rituximab, bortezomib, oblimersen (Genasense®), GM-CSF, G-CSF, EPO, taxotere, irinotecan, dacarbazine, transretinoic acid, topotecan, pentoxifylline, ciprofloxacin, dexamethasone, vincristine, doxorubicin, COX-2 inhibitor, IL2, IL8, IL18, IFN, Ara-C, vinorelbine, or a combination thereof.
- an immunomodulatory compound of the invention is administered in combination with rituximab to patients with mantle cell lymphomas.
- Revlimid® is administered to patients with mantle cell lymphoma in an amount of from about 5 to about 25 mg per day in combination with rituximab in an amount of 375 mg/m 2 by intravenous infusion weekly.
- Revlimid® is administered alone or in combination with rituximab to patients with various types of non-Hodgkin's lymphomas, including, but not limited to, mantle cell lymphoma, MCL, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma, ILL, diffuse poorly differentiated lymphocytic lymphoma, PDL, centrocytic lymphoma, diffuse small-cleaved cell lymphoma, DSCCL, diffuse large cell lymphoma, follicular lymphoma, and mentle zone lymphoma.
- MCL mantle cell lymphoma
- MCL lymphocytic lymphoma of intermediate differentiation
- intermediate lymphocytic lymphoma ILL
- diffuse poorly differentiated lymphocytic lymphoma PDL
- centrocytic lymphoma diffuse small-cleaved cell lymphoma
- DSCCL diffuse large cell lymphoma
- an immunomodulatory compound of the invention is administered alone or in combination with a second active ingredient such as vinblastine or fludarabine to patients with various types of lymphomas, including, but not limited to, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous T-Cell lymphoma, cutaneous B-Cell lymphoma, diffuse large B-Cell lymphoma or relapsed or refractory low grade follicular lymphoma.
- a second active ingredient such as vinblastine or fludarabine
- GM-CSF, G-CSF or EPO is administered subcutaneously during about five days in a four or six week cycle in an amount of from about 1 to about 750 mg/m 2 /day, preferably in an amount of from about 25 to about 500 mg/m 2 /day, more preferably in an amount of from about 50 to about 250 mg/m 2 /day, and most preferably in an amount of from about 50 to about 200 mg/m 2 /day.
- GM-CSF may be administered in an amount of from about 60 to about 500 mcg/m 2 intravenously over 2 hours, or from about 5 to about 12 mcg/m 2 /day subcutaneously.
- G-CSF may be administered subcutaneously in an amount of about 1 mcg/kg/day initially and can be adjusted depending on rise of total granulocyte counts.
- the maintenance dose of G-CSF may be administered in an amount of about 300 (in smaller patients) or 480 mcg subcutaneously.
- EPO may be administered subcutaneously in an amount of 10,000 Unit 3 times per week.
- This invention also encompasses a method of increasing the dosage of an anti-cancer drug or agent that can be safely and effectively administered to a patient, which comprises administering to a patient (e.g., a human) an immunomodulatory compound of the invention, or a pharmaceutically acceptable derivative, salt, solvate (e.g., hydrate), or prodrug thereof.
- Patients that can benefit by this method are those likely to suffer from an adverse effect associated with anti-cancer drugs for treating a specific cancer of the blood, skin, subcutaneous tissue, lymph nodes, brain, lung, liver, bone, intestine, colon, heart, pancreas, adrenal, kidney, prostate, breast, colorectal, or combinations thereof.
- the administration of an immunomodulatory compound of the invention alleviates or reduces adverse effects which are of such severity that it would otherwise limit the amount of anti-cancer drug.
- an immunomodulatory compound of the invention can be administered orally and daily in an amount of from about 0.10 to about 150 mg, and preferably from about 1 to about 50 mg, more preferably from about 5 to about 25 mg prior to, during, or after the occurrence of the adverse effect associated with the administration of an anti-cancer drug to a patient.
- an immunomodulatory compound of the invention is administered in combination with specific agents such as heparin, aspirin, coumadin, or G-CSF to avoid adverse effects that are associated with anti-cancer drugs such as but not limited to neutropenia or thrombocytopenia.
- this invention encompasses a method of treating, preventing and/or managing lymphoma, which comprises administering an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, in conjunction with (e.g., before, during, or after) conventional therapy including, but not limited to, surgery, immunotherapy, biological therapy, radiation therapy, or other non-drug based therapy presently used to treat, prevent or manage cancer.
- conventional therapy including, but not limited to, surgery, immunotherapy, biological therapy, radiation therapy, or other non-drug based therapy presently used to treat, prevent or manage cancer.
- the invention encompasses a method of reducing, treating and/or preventing adverse or undesired effects associated with conventional therapy including, but not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy and immunotherapy.
- An immunomodulatory compound of the invention and other active ingredient can be administered to a patient prior to, during, or after the occurrence of the adverse effect associated with conventional therapy.
- an immunomodulatory compound of the invention can be administered in an amount of from about 0.10 to about 150 mg, and preferably from about 1 to about 50 mg, more preferably from about 5 to about 25 mg orally and daily alone, or in combination with a second active agent disclosed herein (see, e.g., section 4.2), prior to, during, or after the use of conventional therapy.
- the invention encompasses a method of treating, preventing and/or managing cancer, which comprises administering the immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, in conjunction with transplantation therapy.
- a pharmaceutically acceptable salt, solvate e.g., hydrate
- stereoisomer e.g., clathrate
- prodrug thereof e.g., hydrate
- an immunomodulatory compound of the invention exhibits immunomodulatory activity that may provide additive or synergistic effects when given concurrently with transplantation therapy in patients with cancer.
- An immunomodulatory compound of the invention can work in combination with transplantation therapy reducing complications associated with the invasive procedure of transplantation and risk of GVHD.
- This invention encompasses a method of treating, preventing and/or managing cancer which comprises administering to a patient (e.g., a human) an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof, before, during, or after the transplantation of umbilical cord blood, placental blood, peripheral blood stem cell, hematopoietic stem cell preparation or bone marrow.
- stem cells suitable for use in the methods of the invention are disclosed in U.S. patent publication nos. 2002/0123141, 2003/0235909 and 2003/0032179, by R. Hariri et al., the entireties of which are incorporated herein by reference.
- an immunomodulatory compound of the invention is administered to patients with lymphomas before, during, or after the transplantation of autologous peripheral blood progenitor cell.
- an immunomodulatory compound of the invention is administered to patients with relapsed lymphoma after the stem cell transplantation.
- the prophylactic or therapeutic agents of the invention are cyclically administered to a patient. Cycling therapy involves the administration of an active agent for a period of time, followed by a rest for a period of time, and repeating this sequential administration. Cycling therapy can reduce the development of resistance to one or more of the therapies, avoid or reduce the side effects of one of the therapies, and/or improves the efficacy of the treatment.
- an immunomodulatory compound of the invention is administered daily in a single or divided doses in a four to six week cycle with a rest period of about a week or two weeks.
- the invention further allows the frequency, number, and length of dosing cycles to be increased.
- another specific embodiment of the invention encompasses the administration of an immunomodulatory compound of the invention for more cycles than are typical when it is administered alone.
- an immunomodulatory compound of the invention is administered for a greater number of cycles that would typically cause dose-limiting toxicity in a patient to whom a second active ingredient is not also being administered.
- an immunomodulatory compound of the invention is administered daily and continuously for three or four weeks at a dose of from about 0.10 to about 150 mg/d followed by a break of one or two weeks.
- an immunomodulatory compound of the invention is administered in an amount of from about 1 to about 50 mg/day, preferably in an amount of about 25 mg/day for three to four weeks, followed by one week or two weeks of rest in a four or six week cycle.
- 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione is administered to patients with various types of lymphomas such as mantle cell lymphoma, follicullar lymphoma and diffuse large cell lymphoma, in an amount of about 10 mg, 15 mg, 20 mg, 25 mg or 30 mg per day for 21 days followed by seven days rest in a 28 day cycle.
- 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (Revlimid®) is administered to patients with refractory or relapsed mantle cell lymphoma in an amount of about 25 mg per day for 21 days followed by seven days rest in a 28 day cycle.
- an immunomodulatory compound of the invention and a second active agent or ingredient are administered orally, with administration of an immunomodulatory compound of the invention occurring 30 to 60 minutes prior to a second active ingredient, during a cycle of four to six weeks.
- an immunomodulatory compound of the invention is administered orally and a second active ingredient is administered by intravenous infusion.
- one cycle comprises the administration of from about 10 to about 25 mg/day of Revlimid® and from about 50 to about 750 mg/m 2 /day of a second active ingredient daily for three to four weeks and then one or two weeks of rest.
- rituximab can be administered in an amount of 375 mg/m 2 as an additional active agent to patients with various types of lymphomas such as mantle cell lymphoma, follicullar lymphoma and diffuse large cell lymphoma.
- rituximab can be administered in an amount of 375 mg/m 2 as an additional active agent to patients with refractory or relapsed mantle cell lymphoma.
- one cycle comprises the administration of Revlimid® given orally daily for 21 days followed by 7 days of rest and 375 mg/m 2 of rituximab by intravenous infusion weekly for four weeks.
- the number of cycles during which the combinatorial treatment is administered to a patient will be from about one to about 24 cycles, more typically from about two to about 16 cycles, and even more typically from about four to about three cycles.
- compositions can be used in the preparation of individual, single unit dosage forms.
- Pharmaceutical compositions and dosage forms of the invention comprise an immunomodulatory compound of the invention, or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof.
- Pharmaceutical compositions and dosage forms of the invention can further comprise one or more excipients.
- compositions and dosage forms of the invention can also comprise one or more additional active ingredients. Consequently, pharmaceutical compositions and dosage forms of the invention comprise the active ingredients disclosed herein (e.g., an immunomodulatory compound of the invention and a second active agent). Examples of optional second, or additional, active ingredients are disclosed herein (see, e.g., section 5.2).
- Single unit dosage forms of the invention are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient.
- mucosal e.g., nasal, sublingual, vaginal, buccal, or rectal
- parenteral e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial
- topical e.g., eye drops or other ophthalmic preparations
- transdermal or transcutaneous administration e.g., transcutaneous administration to a patient.
- dosage forms include, but are not limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches; lozenges; dispersions; suppositories; powders; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or mucosal administration to a patient, including suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions, or a water-in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; eye drops or other ophthalmic preparations suitable for topical administration; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
- suspensions e.g., aqueous or non-aqueous liquid suspensions, oil-in-water e
- composition, shape, and type of dosage forms of the invention will typically vary depending on their use.
- a dosage form used in the acute treatment of a disease may contain larger amounts of one or more of the active ingredients it comprises than a dosage form used in the chronic treatment of the same disease.
- a parenteral dosage form may contain smaller amounts of one or more of the active ingredients it comprises than an oral dosage form used to treat the same disease.
- Typical pharmaceutical compositions and dosage forms comprise one or more excipients.
- Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient.
- oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms.
- the suitability of a particular excipient may also depend on the specific active ingredients in the dosage form. For example, the decomposition of some active ingredients may be accelerated by some excipients such as lactose, or when exposed to water.
- lactose-free means that the amount of lactose present, if any, is insufficient to substantially increase the degradation rate of an active ingredient.
- Lactose-free compositions of the invention can comprise excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002).
- lactose-free compositions comprise active ingredients, a binder/filler, and a lubricant in pharmaceutically compatible and pharmaceutically acceptable amounts.
- Preferred lactose-free dosage forms comprise active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
- This invention further encompasses anhydrous pharmaceutical compositions and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds.
- water e.g., 5%
- water is widely accepted in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T. Carstensen, Drug Stability. Principles & Practice, 2d. Ed., Marcel Dekker, NY, N.Y., 1995, pp. 379-80.
- water and heat accelerate the decomposition of some compounds.
- the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.
- Anhydrous pharmaceutical compositions and dosage forms of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
- Pharmaceutical compositions and dosage forms that comprise lactose and at least one active ingredient that comprises a primary or secondary amine are preferably anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.
- anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are preferably packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g., vials), blister packs, and strip packs.
- compositions and dosage forms that comprise one or more compounds that reduce the rate by which an active ingredient will decompose.
- compounds which are referred to herein as “stabilizers,” include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers.
- dosage forms of the invention comprise an immunomodulatory compound of the invention or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof in an amount of from about 0.10 to about 150 mg.
- Typical dosage forms comprise an immunomodulatory compound of the invention or a pharmaceutically acceptable salt, solvate (e.g., hydrate), stereoisomer, clathrate, or prodrug thereof in an amount of about 0.1, 1, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 50, 100, 150 or 200 mg.
- a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (Revlimid®) in an amount of about 1, 2.5, 5, 10, 15, 20, 25 or 50 mg.
- Typical dosage forms comprise the second active ingredient in an amount of 1 to about 1000 mg, from about 5 to about 500 mg, from about 10 to about 350 mg, or from about 50 to about 200 mg.
- the specific amount of the anti-cancer drug will depend on the specific agent used, the type of cancer being treated or managed, and the amount(s) of an immunomodulatory compound of the invention and any optional additional active agents concurrently administered to the patient.
- compositions of the invention that are suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups).
- dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1990).
- a preferred dosage form is a capsule or tablet comprising 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (Revlimid®) in an amount of about 1, 2.5, 5, 10, 15, 20, 25 or 50 mg.
- a preferred capsule or tablet dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (Revlimid®) in an amount of about 5 or 10 mg.
- Typical oral dosage forms of the invention are prepared by combining the active ingredients in an intimate admixture with at least one excipient according to conventional pharmaceutical compounding techniques.
- Excipients can take a wide variety of forms depending on the form of preparation desired for administration.
- excipients suitable for use in oral liquid or aerosol dosage forms include, but are not limited to, water, glycols, oils, alcohols, flavoring agents, preservatives, and coloring agents.
- excipients suitable for use in solid oral dosage forms include, but are not limited to, starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents.
- tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid excipients are employed. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by any of the methods of pharmacy. In general, pharmaceutical compositions and dosage forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided solid carriers, or both, and then shaping the product into the desired presentation if necessary.
- a tablet can be prepared by compression or molding.
- Compressed tablets can be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as powder or granules, optionally mixed with an excipient.
- Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- excipients that can be used in oral dosage forms of the invention include, but are not limited to, binders, fillers, disintegrants, and lubricants.
- Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, (e.g., Nos. 2208, 2906, 2910), microcrystalline cellulose, and mixtures thereof.
- Suitable forms of microcrystalline cellulose include, but are not limited to, the materials sold as AVICEL-PH-101, AVICEL-PH-103 AVICEL RC-581, AVICEL-PH-105 (available from FMC Corporation, American Viscose Division, Avicel Sales, Marcus Hook, Pa.), and mixtures thereof.
- An specific binder is a mixture of microcrystalline cellulose and sodium carboxymethyl cellulose sold as AVICEL RC-581.
- Suitable anhydrous or low moisture excipients or additives include AVICEL-PH-103TM and Starch 1500 LM.
- fillers suitable for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
- the binder or filler in pharmaceutical compositions of the invention is typically present in from about 50 to about 99 weight percent of the pharmaceutical composition or dosage form.
- Disintegrants are used in the compositions of the invention to provide tablets that disintegrate when exposed to an aqueous environment. Tablets that contain too much disintegrant may disintegrate in storage, while those that contain too little may not disintegrate at a desired rate or under the desired conditions. Thus, a sufficient amount of disintegrant that is neither too much nor too little to detrimentally alter the release of the active ingredients should be used to form solid oral dosage forms of the invention.
- the amount of disintegrant used varies based upon the type of formulation, and is readily discernible to those of ordinary skill in the art.
- Typical pharmaceutical compositions comprise from about 0.5 to about 15 weight percent of disintegrant, preferably from about 1 to about 5 weight percent of disintegrant.
- Disintegrants that can be used in pharmaceutical compositions and dosage forms of the invention include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums, and mixtures thereof.
- Lubricants that can be used in pharmaceutical compositions and dosage forms of the invention include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, and mixtures thereof.
- Additional lubricants include, for example, a syloid silica gel (AEROSIL200, manufactured by W.
- lubricants are typically used in an amount of less than about 1 weight percent of the pharmaceutical compositions or dosage forms into which they are incorporated.
- a preferred solid oral dosage form of the invention comprises an immunomodulatory compound of the invention, anhydrous lactose, microcrystalline cellulose, polyvinylpyrrolidone, stearic acid, colloidal anhydrous silica, and gelatin.
- Active ingredients of the invention can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719, 5,674,533, 5,059,595, 5,591,767, 5,120,548, 5,073,543, 5,639,476, 5,354,556, and 5,733,566, each of which is incorporated herein by reference.
- Such dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
- Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients of the invention.
- the invention thus encompasses single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled-release.
- controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts.
- the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time.
- Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance.
- controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.
- Controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time.
- the drug In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
- Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.
- Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions.
- Suitable vehicles that can be used to provide parenteral dosage forms of the invention are well known to those skilled in the art. Examples include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
- water for Injection USP Water for Injection USP
- aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride
- cyclodextrin and its derivatives can be used to increase the solubility of an immunomodulatory compound of the invention and its derivatives. See, e.g., U.S. Pat. No. 5,134,127, which is incorporated herein by reference.
- a single-center, open label, phase I/II study was conducted to determine the maximum tolerated dose (MTD) and to evaluate the efficacy of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidin-2,6-dione (lenalidomide or Revlimid®) in combination with rituximab for relapsed or refractory mantle cell lymphoma (MCL).
- MCL mantle cell lymphoma
- Each cycle (28 days) of treatment comprises administration of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidin-2,6-dione (Revlimid®) given orally daily for 21 days followed by 7 days of rest and 375 mg/m 2 of rituximab by intravenous infusion weekly for four weeks.
- a standard phase I dose escalation was used to determine MTD with dose levels at 10 mg, 15 mg, 20 mg, and 25 mg of Revlimid®.
- Dose-limiting toxicity (DLT) was defined as grade 3 or 4 non-hematologic or grade 4 hematologic toxicity during the first cycle.
- Revlimid® is effective in treating mantle cell lymphoma, particularly relapsed or refractory mantle cell lymphoma.
- a multi-center, open-label, Phase II study was conducted in patients with relapsed and refractory aggressive non-Hodgkin's lymphoma (NHL).
- the trial was designed to evaluate the therapeutic potential and safety of oral monotherapy with 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidin-2,6-dione (Revlimid® or lenalidomide) in 40 patients with relapsed and refractory aggressive NHL following one or more prior treatment regimen with measurable disease.
- Patients in the study received lenalidomide in an amount of 25 mg orally once daily for days one to 21 in a 28-day cycle and continued therapy for 52 weeks as tolerated or until disease progression.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Endocrinology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Dermatology (AREA)
- Hematology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Plural Heterocyclic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/888,881 US20080038263A1 (en) | 2006-08-03 | 2007-08-01 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US12/621,502 US8741929B2 (en) | 2006-08-03 | 2009-11-19 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US14/291,364 US20140271638A1 (en) | 2006-08-03 | 2014-05-30 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US15/178,440 US20170027923A1 (en) | 2006-08-03 | 2016-06-09 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US15/984,018 US20180263968A1 (en) | 2006-08-03 | 2018-05-18 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US16/546,983 US20190374529A1 (en) | 2006-08-03 | 2019-08-21 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of intermediate lymphocytic lymphoma |
US15/930,845 US20200276175A1 (en) | 2006-08-03 | 2020-05-13 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of intermediate lymphocytic lymphoma |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83575206P | 2006-08-03 | 2006-08-03 | |
US11/888,881 US20080038263A1 (en) | 2006-08-03 | 2007-08-01 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/621,502 Continuation US8741929B2 (en) | 2006-08-03 | 2009-11-19 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080038263A1 true US20080038263A1 (en) | 2008-02-14 |
Family
ID=38691762
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/888,881 Abandoned US20080038263A1 (en) | 2006-08-03 | 2007-08-01 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US12/621,502 Active 2028-03-08 US8741929B2 (en) | 2006-08-03 | 2009-11-19 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US14/291,364 Abandoned US20140271638A1 (en) | 2006-08-03 | 2014-05-30 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US15/178,440 Abandoned US20170027923A1 (en) | 2006-08-03 | 2016-06-09 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US15/984,018 Abandoned US20180263968A1 (en) | 2006-08-03 | 2018-05-18 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US16/546,983 Abandoned US20190374529A1 (en) | 2006-08-03 | 2019-08-21 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of intermediate lymphocytic lymphoma |
US15/930,845 Abandoned US20200276175A1 (en) | 2006-08-03 | 2020-05-13 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of intermediate lymphocytic lymphoma |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/621,502 Active 2028-03-08 US8741929B2 (en) | 2006-08-03 | 2009-11-19 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US14/291,364 Abandoned US20140271638A1 (en) | 2006-08-03 | 2014-05-30 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US15/178,440 Abandoned US20170027923A1 (en) | 2006-08-03 | 2016-06-09 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US15/984,018 Abandoned US20180263968A1 (en) | 2006-08-03 | 2018-05-18 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas |
US16/546,983 Abandoned US20190374529A1 (en) | 2006-08-03 | 2019-08-21 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of intermediate lymphocytic lymphoma |
US15/930,845 Abandoned US20200276175A1 (en) | 2006-08-03 | 2020-05-13 | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of intermediate lymphocytic lymphoma |
Country Status (26)
Country | Link |
---|---|
US (7) | US20080038263A1 (el) |
EP (1) | EP2046331B1 (el) |
JP (2) | JP5465005B2 (el) |
KR (2) | KR20140082859A (el) |
CN (2) | CN102908346A (el) |
AR (1) | AR062265A1 (el) |
AT (1) | ATE486601T1 (el) |
AU (1) | AU2007282027B2 (el) |
CA (2) | CA2659774C (el) |
CL (1) | CL2007002218A1 (el) |
CY (1) | CY1110989T1 (el) |
DE (1) | DE602007010303D1 (el) |
DK (1) | DK2046331T3 (el) |
ES (1) | ES2351069T3 (el) |
HR (1) | HRP20100664T1 (el) |
IL (1) | IL196885A (el) |
ME (1) | ME01937B (el) |
MX (1) | MX2009001268A (el) |
PE (1) | PE20081311A1 (el) |
PL (1) | PL2046331T3 (el) |
PT (1) | PT2046331E (el) |
RS (1) | RS51567B (el) |
RU (1) | RU2446804C2 (el) |
SI (1) | SI2046331T1 (el) |
TW (1) | TWI430797B (el) |
WO (1) | WO2008019065A1 (el) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110280913A1 (en) * | 2008-07-31 | 2011-11-17 | The Ohio State University | Methods and Compositions for Delivering Therapeutic Agents in the Treatment of B-Cell Related Disorders |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CL2007002218A1 (es) * | 2006-08-03 | 2008-03-14 | Celgene Corp Soc Organizada Ba | Uso de 3-(4-amino-1-oxo-1,3-dihidro-isoindol-2-il)-piperidina 2,6-diona para la preparacion de un medicamento util para el tratamiento de linfoma de celula de capa. |
EA201071058A1 (ru) * | 2008-03-11 | 2011-02-28 | Др. Редди'С Лабораторис Лтд. | Получение леналидомида |
CN103068386A (zh) * | 2010-03-12 | 2013-04-24 | 细胞基因公司 | 使用来那度胺治疗非霍奇金淋巴瘤的方法及作为预测因子的基因和蛋白质生物标记 |
MX2014013256A (es) | 2012-05-03 | 2015-01-16 | Janssen R & D Ireland | Formulaciones de acido poliinosinico-policitidilico (poli(i:c)) para el tratamiento de infecciones de las vias respiratorias altas. |
CN104004056B (zh) * | 2014-06-23 | 2016-08-17 | 王方杰 | 一种关于Cyclin D蛋白抑制剂多肽及其应用 |
CN104004060B (zh) * | 2014-06-23 | 2016-04-13 | 重庆医科大学 | Cyclin D蛋白抑制剂多肽及其应用 |
CN104031122B (zh) * | 2014-06-23 | 2016-05-11 | 常州市肿瘤医院 | 有关Cyclin D蛋白抑制剂多肽及其应用 |
WO2018129533A1 (en) | 2017-01-09 | 2018-07-12 | Shuttle Pharmaceuticals, Llc | Selective histone deacetylase inhibitors for the treatment of human disease |
US11584733B2 (en) | 2017-01-09 | 2023-02-21 | Shuttle Pharmaceuticals, Inc. | Selective histone deacetylase inhibitors for the treatment of human disease |
CN111372585A (zh) | 2017-11-16 | 2020-07-03 | C4医药公司 | 用于靶蛋白降解的降解剂和降解决定子 |
US10537585B2 (en) | 2017-12-18 | 2020-01-21 | Dexcel Pharma Technologies Ltd. | Compositions comprising dexamethasone |
ES2983284T3 (es) | 2018-01-09 | 2024-10-22 | Shuttle Pharmaceuticals Inc | Inhibidores selectivos de histona deacetilasa para el tratamiento de enfermedades humanas |
CN111902141A (zh) | 2018-03-26 | 2020-11-06 | C4医药公司 | 用于ikaros降解的羟脑苷脂结合剂 |
CN112312904B (zh) | 2018-04-16 | 2025-01-07 | C4医药公司 | 螺环化合物 |
EP3578561A1 (en) | 2018-06-04 | 2019-12-11 | F. Hoffmann-La Roche AG | Spiro compounds |
EP3846800A4 (en) | 2018-09-04 | 2022-08-24 | C4 Therapeutics, Inc. | Compounds for the degradation of brd9 or mth1 |
EP3897631A4 (en) | 2018-12-20 | 2022-11-23 | C4 Therapeutics, Inc. | TARGETED PROTEIN DEGRADATION |
WO2020181232A1 (en) | 2019-03-06 | 2020-09-10 | C4 Therapeutics, Inc. | Heterocyclic compounds for medical treatment |
JP2023538517A (ja) | 2020-08-05 | 2023-09-08 | シーフォー セラピューティクス, インコーポレイテッド | Retの標的分解のための化合物 |
Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2845770A (en) * | 1956-09-26 | 1958-08-05 | William F Fessler | Baled hay rack and carrier |
US3536809A (en) * | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
US3598123A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3636809A (en) * | 1969-07-10 | 1972-01-25 | Nippon Musical Instruments Mfg | Stringed musical instrument |
US3845770A (en) * | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) * | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US4008719A (en) * | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US4810643A (en) * | 1985-08-23 | 1989-03-07 | Kirin- Amgen Inc. | Production of pluripotent granulocyte colony-stimulating factor |
US4999291A (en) * | 1985-08-23 | 1991-03-12 | Amgen Inc. | Production of human pluripotent granulocyte colony-stimulating factor |
US5059595A (en) * | 1989-03-22 | 1991-10-22 | Bioresearch, S.P.A. | Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances |
US5073543A (en) * | 1988-07-21 | 1991-12-17 | G. D. Searle & Co. | Controlled release formulations of trophic factors in ganglioside-lipsome vehicle |
US5120548A (en) * | 1989-11-07 | 1992-06-09 | Merck & Co., Inc. | Swelling modulated polymeric drug delivery device |
US5134127A (en) * | 1990-01-23 | 1992-07-28 | University Of Kansas | Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof |
US5229496A (en) * | 1985-08-06 | 1993-07-20 | Immunex Corporation | Analogs of human granulocyte-macrophage colony stimulating factor |
US5354556A (en) * | 1984-10-30 | 1994-10-11 | Elan Corporation, Plc | Controlled release powder and process for its preparation |
US5385901A (en) * | 1991-02-14 | 1995-01-31 | The Rockefeller University | Method of treating abnormal concentrations of TNF α |
US5528823A (en) * | 1992-12-24 | 1996-06-25 | The Whitaker Corporation | Method for retaining wires in a current mode coupler |
US5591767A (en) * | 1993-01-25 | 1997-01-07 | Pharmetrix Corporation | Liquid reservoir transdermal patch for the administration of ketorolac |
US5593990A (en) * | 1993-03-01 | 1997-01-14 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US5635517A (en) * | 1996-07-24 | 1997-06-03 | Celgene Corporation | Method of reducing TNFα levels with amino substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxo-and 1,3-dioxoisoindolines |
US5639476A (en) * | 1992-01-27 | 1997-06-17 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5674533A (en) * | 1994-07-07 | 1997-10-07 | Recordati, S.A., Chemical And Pharmaceutical Company | Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension |
US5698579A (en) * | 1993-07-02 | 1997-12-16 | Celgene Corporation | Cyclic amides |
US5731325A (en) * | 1995-06-06 | 1998-03-24 | Andrulis Pharmaceuticals Corp. | Treatment of melanomas with thalidomide alone or in combination with other anti-melanoma agents |
US5733566A (en) * | 1990-05-15 | 1998-03-31 | Alkermes Controlled Therapeutics Inc. Ii | Controlled release of antiparasitic agents in animals |
US5798368A (en) * | 1996-08-22 | 1998-08-25 | Celgene Corporation | Tetrasubstituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines and method of reducing TNFα levels |
US5874448A (en) * | 1997-11-18 | 1999-02-23 | Celgene Corporation | Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels |
US5929117A (en) * | 1996-08-12 | 1999-07-27 | Celgene Corporation | Immunotherapeutic agents |
US5955476A (en) * | 1997-11-18 | 1999-09-21 | Celgene Corporation | Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels |
US6020358A (en) * | 1998-10-30 | 2000-02-01 | Celgene Corporation | Substituted phenethylsulfones and method of reducing TNFα levels |
US6114355A (en) * | 1993-03-01 | 2000-09-05 | D'amato; Robert | Methods and compositions for inhibition of angiogenesis |
US6228879B1 (en) * | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
US6281230B1 (en) * | 1996-07-24 | 2001-08-28 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
US20010018445A1 (en) * | 2000-02-02 | 2001-08-30 | Tty Biopharm Company Limited | Pharmaceutical composition for the treatment of hepatocellular carcinoma |
US6326388B1 (en) * | 1999-12-21 | 2001-12-04 | Celgene Corporation | Substituted 1,3,4-oxadiazoles and a method of reducing TNF-alpha level |
US20010056114A1 (en) * | 2000-11-01 | 2001-12-27 | D'amato Robert | Methods for the inhibition of angiogenesis with 3-amino thalidomide |
US20020035090A1 (en) * | 2000-05-15 | 2002-03-21 | Zeldis Jerome B. | Compositions and methods for the treatment of cancer |
US6380239B1 (en) * | 1999-03-18 | 2002-04-30 | Celgene Corporation | Substituted 1-oxo- and 1,3-dioxoisoindoline and method of reducing inflammatory cytokine levels |
US20020054899A1 (en) * | 1999-12-15 | 2002-05-09 | Zeldis Jerome B. | Methods and compositions for the prevention and treatment of atherosclerosis, restenosis and related disorders |
US6395754B1 (en) * | 1997-05-30 | 2002-05-28 | Celgene Corporation, Et Al. | Substituted 2-(2,6-dioxopiperidin-3-yl)- phthalimides and 1-oxoisoindolines and method of reducing TNFα levels |
US6403613B1 (en) * | 1998-03-16 | 2002-06-11 | Hon-Wah Man | 1-oxo-and 1,3-dioxoisoindolines |
US20020128228A1 (en) * | 2000-12-01 | 2002-09-12 | Wen-Jen Hwu | Compositions and methods for the treatment of cancer |
US6458810B1 (en) * | 2000-11-14 | 2002-10-01 | George Muller | Pharmaceutically active isoindoline derivatives |
US20030013739A1 (en) * | 1998-12-23 | 2003-01-16 | Pharmacia Corporation | Methods of using a combination of cyclooxygenase-2 selective inhibitors and thalidomide for the treatment of neoplasia |
US20030045552A1 (en) * | 2000-12-27 | 2003-03-06 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
US20030096841A1 (en) * | 2000-12-27 | 2003-05-22 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
US20030139451A1 (en) * | 2001-08-06 | 2003-07-24 | Shah Jamshed H. | Synthesis and anti-tumor activity of nitrogen substituted thalidomide analogs |
US20030191098A1 (en) * | 1996-11-05 | 2003-10-09 | D'amato Robert J. | Methods and compositions for inhibition of angiogenesis |
US20030235909A1 (en) * | 2002-04-12 | 2003-12-25 | Hariri Robert J. | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US6673828B1 (en) * | 1998-05-11 | 2004-01-06 | Children's Medical Center Corporation | Analogs of 2-Phthalimidinoglutaric acid |
US20040029832A1 (en) * | 2002-05-17 | 2004-02-12 | Zeldis Jerome B. | Methods and compositions using immunomodulatory compounds for treatment and management of cancers and other diseases |
US20040077685A1 (en) * | 2001-02-27 | 2004-04-22 | Figg William D. | Analogs of thalidomide as potential angiogenesis inhibitors |
US20040077686A1 (en) * | 2000-03-31 | 2004-04-22 | Dannenberg Andrew J. | Inhibition of cyclooxygenase-2 activity |
US20040087546A1 (en) * | 2002-11-06 | 2004-05-06 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myeloproliferative diseases |
US20040091455A1 (en) * | 2002-10-31 | 2004-05-13 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration |
US20040266809A1 (en) * | 2003-05-19 | 2004-12-30 | David Emanuel | Method of treating multiple myeloma |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5A (en) * | 1836-08-10 | Thomas Blanchard | Machine for mortising solid wooden shells of ships' tackle-blocks | |
ATE530542T1 (de) | 1996-07-24 | 2011-11-15 | Celgene Corp | Amino substituierte 2-(2,6-dioxopiperidin-3-yl)- phthalimide zur verringerung der tnf-alpha-stufen |
US20020016285A1 (en) | 2000-03-17 | 2002-02-07 | Rama Bhatt | Polyglutamic acid-camptothecin conjugates and methods of preparation |
DK1353672T3 (da) | 2000-11-30 | 2008-01-21 | Childrens Medical Center | Syntese af 4-amino-thalidomidenantiomerer |
CA2481387A1 (en) | 2002-04-12 | 2003-10-23 | Celgene Corporation | Methods for identification of modulators of angiogenesis, compounds discovered thereby, and methods of treatment using the compounds |
CN103494817A (zh) * | 2002-05-17 | 2014-01-08 | 细胞基因公司 | 用于治疗和控制多发性骨髓瘤的方法及组合物 |
CL2007002218A1 (es) * | 2006-08-03 | 2008-03-14 | Celgene Corp Soc Organizada Ba | Uso de 3-(4-amino-1-oxo-1,3-dihidro-isoindol-2-il)-piperidina 2,6-diona para la preparacion de un medicamento util para el tratamiento de linfoma de celula de capa. |
US7893045B2 (en) * | 2007-08-07 | 2011-02-22 | Celgene Corporation | Methods for treating lymphomas in certain patient populations and screening patients for said therapy |
-
2007
- 2007-07-31 CL CL200702218A patent/CL2007002218A1/es unknown
- 2007-08-01 TW TW096128250A patent/TWI430797B/zh active
- 2007-08-01 US US11/888,881 patent/US20080038263A1/en not_active Abandoned
- 2007-08-02 CA CA2659774A patent/CA2659774C/en active Active
- 2007-08-02 SI SI200730446T patent/SI2046331T1/sl unknown
- 2007-08-02 CA CA2836006A patent/CA2836006A1/en not_active Abandoned
- 2007-08-02 RS RS20100541A patent/RS51567B/en unknown
- 2007-08-02 AT AT07811048T patent/ATE486601T1/de active
- 2007-08-02 CN CN2012103235264A patent/CN102908346A/zh active Pending
- 2007-08-02 ME MEP-2010-541A patent/ME01937B/me unknown
- 2007-08-02 KR KR1020147014837A patent/KR20140082859A/ko not_active Ceased
- 2007-08-02 EP EP07811048A patent/EP2046331B1/en active Active
- 2007-08-02 ES ES07811048T patent/ES2351069T3/es active Active
- 2007-08-02 CN CN200780036550.7A patent/CN101583359B/zh active Active
- 2007-08-02 JP JP2009522882A patent/JP5465005B2/ja active Active
- 2007-08-02 RU RU2009107535/15A patent/RU2446804C2/ru not_active IP Right Cessation
- 2007-08-02 DE DE602007010303T patent/DE602007010303D1/de active Active
- 2007-08-02 MX MX2009001268A patent/MX2009001268A/es active IP Right Grant
- 2007-08-02 AU AU2007282027A patent/AU2007282027B2/en active Active
- 2007-08-02 KR KR1020097004393A patent/KR101483802B1/ko not_active Expired - Fee Related
- 2007-08-02 DK DK07811048.3T patent/DK2046331T3/da active
- 2007-08-02 PT PT07811048T patent/PT2046331E/pt unknown
- 2007-08-02 PL PL07811048T patent/PL2046331T3/pl unknown
- 2007-08-02 WO PCT/US2007/017343 patent/WO2008019065A1/en active Application Filing
- 2007-08-03 AR ARP070103447A patent/AR062265A1/es unknown
- 2007-08-03 PE PE2007001016A patent/PE20081311A1/es not_active Application Discontinuation
-
2009
- 2009-02-03 IL IL196885A patent/IL196885A/en active IP Right Grant
- 2009-11-19 US US12/621,502 patent/US8741929B2/en active Active
-
2010
- 2010-12-02 HR HR20100664T patent/HRP20100664T1/hr unknown
- 2010-12-10 CY CY20101101137T patent/CY1110989T1/el unknown
-
2013
- 2013-08-15 JP JP2013168932A patent/JP2013256514A/ja not_active Withdrawn
-
2014
- 2014-05-30 US US14/291,364 patent/US20140271638A1/en not_active Abandoned
-
2016
- 2016-06-09 US US15/178,440 patent/US20170027923A1/en not_active Abandoned
-
2018
- 2018-05-18 US US15/984,018 patent/US20180263968A1/en not_active Abandoned
-
2019
- 2019-08-21 US US16/546,983 patent/US20190374529A1/en not_active Abandoned
-
2020
- 2020-05-13 US US15/930,845 patent/US20200276175A1/en not_active Abandoned
Patent Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2845770A (en) * | 1956-09-26 | 1958-08-05 | William F Fessler | Baled hay rack and carrier |
US3536809A (en) * | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
US3598123A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3636809A (en) * | 1969-07-10 | 1972-01-25 | Nippon Musical Instruments Mfg | Stringed musical instrument |
US3845770A (en) * | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) * | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US4008719A (en) * | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US5354556A (en) * | 1984-10-30 | 1994-10-11 | Elan Corporation, Plc | Controlled release powder and process for its preparation |
US5393870A (en) * | 1985-08-06 | 1995-02-28 | Immunex Corporation | Analogs of human granulocyte-macrophage colony stimulating factor |
US5391485A (en) * | 1985-08-06 | 1995-02-21 | Immunex Corporation | DNAs encoding analog GM-CSF molecules displaying resistance to proteases which cleave at adjacent dibasic residues |
US5229496A (en) * | 1985-08-06 | 1993-07-20 | Immunex Corporation | Analogs of human granulocyte-macrophage colony stimulating factor |
US4810643A (en) * | 1985-08-23 | 1989-03-07 | Kirin- Amgen Inc. | Production of pluripotent granulocyte colony-stimulating factor |
US4999291A (en) * | 1985-08-23 | 1991-03-12 | Amgen Inc. | Production of human pluripotent granulocyte colony-stimulating factor |
US5580755A (en) * | 1985-08-23 | 1996-12-03 | Amgen Inc. | Human pluripotent granulocyte colony-stimulating factor |
US5073543A (en) * | 1988-07-21 | 1991-12-17 | G. D. Searle & Co. | Controlled release formulations of trophic factors in ganglioside-lipsome vehicle |
US5059595A (en) * | 1989-03-22 | 1991-10-22 | Bioresearch, S.P.A. | Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances |
US5120548A (en) * | 1989-11-07 | 1992-06-09 | Merck & Co., Inc. | Swelling modulated polymeric drug delivery device |
US5134127A (en) * | 1990-01-23 | 1992-07-28 | University Of Kansas | Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof |
US5733566A (en) * | 1990-05-15 | 1998-03-31 | Alkermes Controlled Therapeutics Inc. Ii | Controlled release of antiparasitic agents in animals |
US5385901A (en) * | 1991-02-14 | 1995-01-31 | The Rockefeller University | Method of treating abnormal concentrations of TNF α |
US5639476A (en) * | 1992-01-27 | 1997-06-17 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5528823A (en) * | 1992-12-24 | 1996-06-25 | The Whitaker Corporation | Method for retaining wires in a current mode coupler |
US5591767A (en) * | 1993-01-25 | 1997-01-07 | Pharmetrix Corporation | Liquid reservoir transdermal patch for the administration of ketorolac |
US6469045B1 (en) * | 1993-03-01 | 2002-10-22 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis with EM-138 |
US20020052398A1 (en) * | 1993-03-01 | 2002-05-02 | D'amato Robert J. | Pharmaceutical composition of 6-amino EM-12 |
US6114355A (en) * | 1993-03-01 | 2000-09-05 | D'amato; Robert | Methods and compositions for inhibition of angiogenesis |
US6071948A (en) * | 1993-03-01 | 2000-06-06 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US5712291A (en) * | 1993-03-01 | 1998-01-27 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US6235756B1 (en) * | 1993-03-01 | 2001-05-22 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis by thalidomide |
US5593990A (en) * | 1993-03-01 | 1997-01-14 | The Children's Medical Center Corporation | Methods and compositions for inhibition of angiogenesis |
US20020161023A1 (en) * | 1993-03-01 | 2002-10-31 | D'amato Robert | Method of treating diseases using 3-amino thalidomide |
US5629327A (en) * | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
US6420414B1 (en) * | 1993-03-01 | 2002-07-16 | The Children's Medical Center Corporation | Amino derivatives of EM-138 and methods of treating angiogenesis with same |
US20030187024A1 (en) * | 1993-03-01 | 2003-10-02 | D'amato Robert | Methods and compositions for inhibition of angiogenesis |
US20020061923A1 (en) * | 1993-03-01 | 2002-05-23 | D'amato Robert | Methods and compositions for inhibition of angiogenesis with EM-138 |
US5877200A (en) * | 1993-07-02 | 1999-03-02 | Celgene Corporation | Cyclic amides |
US5698579A (en) * | 1993-07-02 | 1997-12-16 | Celgene Corporation | Cyclic amides |
US5674533A (en) * | 1994-07-07 | 1997-10-07 | Recordati, S.A., Chemical And Pharmaceutical Company | Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension |
US5731325A (en) * | 1995-06-06 | 1998-03-24 | Andrulis Pharmaceuticals Corp. | Treatment of melanomas with thalidomide alone or in combination with other anti-melanoma agents |
US6140346A (en) * | 1995-06-06 | 2000-10-31 | Andrulis Pharmaceuticals Corp. | Treatment of cancer with thalidomide alone or in combination with other anti-cancer agents |
US6281230B1 (en) * | 1996-07-24 | 2001-08-28 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
US5635517A (en) * | 1996-07-24 | 1997-06-03 | Celgene Corporation | Method of reducing TNFα levels with amino substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxo-and 1,3-dioxoisoindolines |
US20030144325A1 (en) * | 1996-07-24 | 2003-07-31 | Muller George W. | Isoindolines, method of use, and pharmaceutical compositions |
US6555554B2 (en) * | 1996-07-24 | 2003-04-29 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
US6316471B1 (en) * | 1996-07-24 | 2001-11-13 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
US20020183360A1 (en) * | 1996-07-24 | 2002-12-05 | Muller George W. | Substituted 2-(2,6-dioxopiperidin-3-YL)-phthalimides and -1-oxoisoindolines and method of reducing TNFalpha levels |
US6476052B1 (en) * | 1996-07-24 | 2002-11-05 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
US6335349B1 (en) * | 1996-07-24 | 2002-01-01 | Celgene Corporation | Substituted 2(2,6-dioxopiperidin-3-yl)isoindolines |
US5635517B1 (en) * | 1996-07-24 | 1999-06-29 | Celgene Corp | Method of reducing TNFalpha levels with amino substituted 2-(2,6-dioxopiperidin-3-YL)-1-oxo-and 1,3-dioxoisoindolines |
US20020045643A1 (en) * | 1996-07-24 | 2002-04-18 | Muller George W. | Isoindolines, method of use, and pharmaceutical compositions |
US5929117A (en) * | 1996-08-12 | 1999-07-27 | Celgene Corporation | Immunotherapeutic agents |
US5798368A (en) * | 1996-08-22 | 1998-08-25 | Celgene Corporation | Tetrasubstituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines and method of reducing TNFα levels |
US20030191098A1 (en) * | 1996-11-05 | 2003-10-09 | D'amato Robert J. | Methods and compositions for inhibition of angiogenesis |
US20020173658A1 (en) * | 1997-05-30 | 2002-11-21 | Muller George W. | Substituted 2-(2,6-dioxopiperidin-3-yl)-phthalimides and-1-oxoisoindolines and method of reducing TNFalpha levels |
US6395754B1 (en) * | 1997-05-30 | 2002-05-28 | Celgene Corporation, Et Al. | Substituted 2-(2,6-dioxopiperidin-3-yl)- phthalimides and 1-oxoisoindolines and method of reducing TNFα levels |
US6228879B1 (en) * | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
US20030181428A1 (en) * | 1997-10-16 | 2003-09-25 | Green Shawn J. | Methods and compositions for inhibition of angiogenesis |
US6518298B2 (en) * | 1997-10-16 | 2003-02-11 | Entremed, Inc. | Methods and compositions for inhibition of angiogenesis with EM-138 |
US5955476A (en) * | 1997-11-18 | 1999-09-21 | Celgene Corporation | Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels |
US5874448A (en) * | 1997-11-18 | 1999-02-23 | Celgene Corporation | Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels |
US6403613B1 (en) * | 1998-03-16 | 2002-06-11 | Hon-Wah Man | 1-oxo-and 1,3-dioxoisoindolines |
US20030028028A1 (en) * | 1998-03-16 | 2003-02-06 | Hon-Wah Man | 1-oxo- and 1,3-dioxoisoindolines and method of reducing inflammatory cytokine levels |
US6673828B1 (en) * | 1998-05-11 | 2004-01-06 | Children's Medical Center Corporation | Analogs of 2-Phthalimidinoglutaric acid |
US6020358A (en) * | 1998-10-30 | 2000-02-01 | Celgene Corporation | Substituted phenethylsulfones and method of reducing TNFα levels |
US20030013739A1 (en) * | 1998-12-23 | 2003-01-16 | Pharmacia Corporation | Methods of using a combination of cyclooxygenase-2 selective inhibitors and thalidomide for the treatment of neoplasia |
US6380239B1 (en) * | 1999-03-18 | 2002-04-30 | Celgene Corporation | Substituted 1-oxo- and 1,3-dioxoisoindoline and method of reducing inflammatory cytokine levels |
US20020054899A1 (en) * | 1999-12-15 | 2002-05-09 | Zeldis Jerome B. | Methods and compositions for the prevention and treatment of atherosclerosis, restenosis and related disorders |
US6326388B1 (en) * | 1999-12-21 | 2001-12-04 | Celgene Corporation | Substituted 1,3,4-oxadiazoles and a method of reducing TNF-alpha level |
US20010018445A1 (en) * | 2000-02-02 | 2001-08-30 | Tty Biopharm Company Limited | Pharmaceutical composition for the treatment of hepatocellular carcinoma |
US20040077686A1 (en) * | 2000-03-31 | 2004-04-22 | Dannenberg Andrew J. | Inhibition of cyclooxygenase-2 activity |
US20020035090A1 (en) * | 2000-05-15 | 2002-03-21 | Zeldis Jerome B. | Compositions and methods for the treatment of cancer |
US20010056114A1 (en) * | 2000-11-01 | 2001-12-27 | D'amato Robert | Methods for the inhibition of angiogenesis with 3-amino thalidomide |
US20040122052A1 (en) * | 2000-11-14 | 2004-06-24 | Celgene Corporation | Pharmaceutically active isoindoline derivatives |
US20030069428A1 (en) * | 2000-11-14 | 2003-04-10 | George Muller | Pharmaceutically active isoindoline derivatives |
US6458810B1 (en) * | 2000-11-14 | 2002-10-01 | George Muller | Pharmaceutically active isoindoline derivatives |
US20020128228A1 (en) * | 2000-12-01 | 2002-09-12 | Wen-Jen Hwu | Compositions and methods for the treatment of cancer |
US20030045552A1 (en) * | 2000-12-27 | 2003-03-06 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
US20030096841A1 (en) * | 2000-12-27 | 2003-05-22 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
US20040077685A1 (en) * | 2001-02-27 | 2004-04-22 | Figg William D. | Analogs of thalidomide as potential angiogenesis inhibitors |
US20030139451A1 (en) * | 2001-08-06 | 2003-07-24 | Shah Jamshed H. | Synthesis and anti-tumor activity of nitrogen substituted thalidomide analogs |
US20030235909A1 (en) * | 2002-04-12 | 2003-12-25 | Hariri Robert J. | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US20040029832A1 (en) * | 2002-05-17 | 2004-02-12 | Zeldis Jerome B. | Methods and compositions using immunomodulatory compounds for treatment and management of cancers and other diseases |
US20040091455A1 (en) * | 2002-10-31 | 2004-05-13 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration |
US20040087546A1 (en) * | 2002-11-06 | 2004-05-06 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myeloproliferative diseases |
US20040266809A1 (en) * | 2003-05-19 | 2004-12-30 | David Emanuel | Method of treating multiple myeloma |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110280913A1 (en) * | 2008-07-31 | 2011-11-17 | The Ohio State University | Methods and Compositions for Delivering Therapeutic Agents in the Treatment of B-Cell Related Disorders |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8741929B2 (en) | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of mantle cell lymphomas | |
US9498472B2 (en) | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias | |
CA2907908A1 (en) | Methods and compositions using 4-amino-2-(2,6-dioxo-piperidine-3-yl)-isoindoline-1,3-dione for treatment and management of central nervous system cancers | |
AU2016204119B2 (en) | Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CELGENE CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZELDIS, JEROME B.;REEL/FRAME:020049/0685 Effective date: 20070808 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |