US20040194570A1 - Electric steering column device - Google Patents
Electric steering column device Download PDFInfo
- Publication number
- US20040194570A1 US20040194570A1 US10/484,499 US48449904A US2004194570A1 US 20040194570 A1 US20040194570 A1 US 20040194570A1 US 48449904 A US48449904 A US 48449904A US 2004194570 A1 US2004194570 A1 US 2004194570A1
- Authority
- US
- United States
- Prior art keywords
- steering column
- joint element
- feed screw
- electrically
- electric motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
- F16C11/0619—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
- F16C11/0623—Construction or details of the socket member
- F16C11/0657—Construction or details of the socket member the socket member being mainly made of plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/16—Steering columns
- B62D1/18—Steering columns yieldable or adjustable, e.g. tiltable
- B62D1/181—Steering columns yieldable or adjustable, e.g. tiltable with power actuated adjustment, e.g. with position memory
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/16—Steering columns
- B62D1/18—Steering columns yieldable or adjustable, e.g. tiltable
- B62D1/185—Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/20—Land vehicles
- F16C2326/24—Steering systems, e.g. steering rods or columns
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/45—Flexibly connected rigid members
- Y10T403/455—Elastomer interposed between radially spaced members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20012—Multiple controlled elements
- Y10T74/20018—Transmission control
- Y10T74/2003—Electrical actuator
Definitions
- the present invention relates generally to an electrically-driven steering column apparatus, and more particularly to a technology scheming to configure the apparatus in a compact size and to reduce a manufacturing costs thereof, and so on.
- a steering apparatus of an automobile is used (steered) by a multiplicity of unspecified drivers, and it is therefore desired that a position of a steering wheel be easily adjusted corresponding to an individual physique, a driving posture, etc.
- the electrically-driven tilt type steering column apparatus is an apparatus for adjusting the position of the steering wheel in up-and-down directions.
- the electrically-driven tilt type steering column apparatus is constructed of a steering shaft, a steering column divided into a swing-side column and a fixed-side column, a tilt pivot about which the swing-side column swings, and a tilt driving means composed of an electric motor, a screw mechanism, etc. (refer to, for example, Japanese Utility Model Post-Exam. Publication No.6-1503 (pp.2-3 and FIGS. 1 and 2) and Japanese Patent Application Laid-Open Publication No.2000-238647 (p.4 and FIG. 1)).
- the electrically-driven telescopic type steering column apparatus is constructed of an outer column attached to a car body side, a steering shaft, a lower column supporting the steering shaft and slidably fitted in the outer column, and a telescopic driving means composed of an electric motor, a screw mechanism, etc. (refer to, for example, Japanese Utility Model Laid-Open Publication No.63-165269 (p.1 and FIGS. 6 and 7) and Japanese Patent Application Laid-Open Publication No.13-18809 (p.3 and FIGS. 1 and 2)).
- the tilt driving means and the telescopic driving means have the electric motors defined as power sources, and power transmission means for converting rotational driving forces of the electric motors into a tilt motion driving force for the swing-side column and into a telescopic motion driving force for the inner column.
- the power transmission means includes, e.g., a worm gear mechanism for decelerating rotations of the electric motor, a feed screw mechanism for converting a rotational driving force into a rectilinear driving force, and so on.
- the tilt motion driving means further includes a link mechanism for converting the rectilinear driving force into a swing driving force for the swing-side column.
- the link mechanism, etc. explained above becomes large in scale in terms of swinging the swing-side column having a comparatively heavy weight about the tilt pivot as a fulcrum, and therefore the configuration of the whole apparatus has no alternative but to become complicated and large in scale.
- the apparatus disclosed in Japanese Utility Mode Post-Exam. Publication No.6-1503 takes such a structure that the worm wheel (nut member) of the worm gear mechanism is made swingable as an inner race of an angular bearing, and an end of a screw shaft screw-engaged to the worm wheel is connected to a bracket on an undersurface of the swing-side column.
- the electric motor, the worm gear mechanism and the feed screw mechanism are unitized and thus connected in a swingable manner to the fixed-side column, and a front side end of an actuator rod of the feed screw mechanism is connected to a tilt swing member supported in the swingable manner to the sing-side column.
- the electrically-driven telescopic type steering column apparatus has a variety of problems derived from the power transmission means.
- a telescopic motion of an inner column through the screw shaft and a support bracket involves elongating a transmission route for the driving force given from the electric motor, with the result that vibrations and noises are rarely caused because of the screw shaft and the support bracket being flexed.
- the screw shaft is not allowed to increase much of a diameter for the reasons of saving a space, a weight and a cost, and hence its strength inevitably decreases.
- the apparatus disclosed in Japanese Patent Application Laid-Open Publication No.13-18809 given above has less of such inconveniences, however, on the occasion of engaging the feed screw mechanism as a driving rod with the bracket, if not precisely attached so that the driving rod becomes parallel with the telescopic direction of the inner column, it happens that those components do not move smoothly as an excessive force acts thereon when in the telescopic operation. Therefore, a high accuracy is required of positioning the components such as the bracket defined as the engaging member of the feed mechanism, etc.
- an electrically-driven steering column apparatus comprises a steering shaft having its rear end to which a steering wheel is attached, a steering column, for rotatably holding the steering shaft, capable of adjusting a tilt position about a tilt pivot as a fulcrum on the basis of a car-body-side member, an electric motor for a tilt motion of the steering column, and a power transmission mechanism for transmitting to the steering column a rotational driving force of the electric motor as a tilt motion driving force for the steering column, wherein the power transmission mechanism includes a joint constructed of a spherical joint element and a cylindrical joint element in which the spherical joint element is slidably fitted, on within a driving force transmission route from the electric motor to the steering column.
- the spherical joint element is fixed to or molded integrally with the slider of the feed screw mechanism attached to the steering column.
- the cylindrical joint element in which this spherical joint element is fitted can be fixed to or molded integrally with the bracket on the car body side.
- the slider is driven into the rectilinear motions in the up-and-down directions by the screw mechanism, etc., whereby an upward or downward driving force is transmitted to the cylindrical joint element via the spherical joint element.
- the spherical joint element rotates and slides within the cylindrical joint element, and the steering column swings, accompanied with such rotations and slides, up and down with respect to the bracket.
- an electrically-driven steering column apparatus comprises a steering shaft having its rear end to which a steering wheel is attached, a steering column, for rotatably holding the steering shaft, capable of adjusting a telescopic position on the basis of a car-body-side member, an electric motor for a telescopic motion of the steering column, and a power transmission mechanism for transmitting to the steering column a rotational driving force of the electric motor as a telescopic motion driving force for the steering column, wherein the power transmission mechanism includes a joint constructed of a spherical joint element and a cylindrical joint element in which the spherical joint element is slidably fitted, on within a driving force transmission route from the electric motor to the steering column.
- the spherical joint element is fixed to or molded integrally with the slider of the feed screw mechanism attached to the car-body-side member.
- the cylindrical joint element in which this spherical joint element is fitted can be fixed to or molded integrally with the steering column.
- the slider is driven into the rectilinear motions in the back-and-forth directions by the screw mechanism, etc., whereby a forward or backward driving force is transmitted to the cylindrical joint element via the spherical joint element.
- a flexure, etc. of the screw shaft is absorbed as the spherical joint element rotates and slides within the cylindrical joint element, whereby the steering column makes smooth telescopic motions.
- a synthetic resin member may be interposed between the spherical joint element and the cylindrical joint element.
- the synthetic resin member may be formed as a sleeve fitted in the cylindrical joint element.
- the synthetic resin member may be formed as a slider having a concave spherical surface in which the spherical joint element is fitted.
- an elasticity of the synthetic resin member makes it difficult to cause a backlash between the spherical joint element and the cylindrical joint element, and, in addition, it is possible to restrain an emission of noises and an occurrence of abrasion due to a metal-to-metal contact.
- the power transmission mechanism may include a feed screw mechanism constructed of a feed screw shaft connected to the electric motor and of a plurality of feed nuts screw-engaged to the feed screw shaft, and a backlash adjusting means for changing an axial distance between the feed nuts in order to make a backlash of the feed screw mechanism adjustable.
- the power transmission mechanism may include a feed screw mechanism constructed of a feed screw shaft connected to the electric motor and of a feed nut formed with a slit and screw-engaged to the feed screw shaft, and a backlash adjusting means for changing a width of the slit in order to make a backlash of the feed screw mechanism adjustable.
- FIG. 1 is a perspective view showing car-room-side components of a hydraulic power steering apparatus in an embodiment of the present invention
- FIG. 2 is a schematic view showing a configuration of the electrically-driven tilt type steering column apparatus in the first embodiment of the present invention
- FIG. 3 is a sectional view taken along the line A-A in FIG. 2;
- FIG. 4 is a sectional view taken along the line B-B in FIG. 2;
- FIG. 5 is an explanatory view showing a tilt operation in the embodiment
- FIG. 6 is an explanatory view showing the tilt operation in the embodiment
- FIG. 7 is an explanatory view showing a state of how a ball stud engages with a sleeve
- FIG. 8 is a side view showing an electrically-driven telescopic type steering apparatus in a second embodiment of the present invention.
- FIG. 9 is a bottom plan view of the steering apparatus in the second embodiment.
- FIG. 10 is an explanatory view showing a state of how the ball stud engages with the sleeve in the second embodiment
- FIG. 11 is a view showing how the steering apparatus in the second embodiment operates
- FIG. 12 is a vertical sectional view showing principal components of the electrically-driven apparatus in a third embodiment of the present invention.
- FIG. 13 is a vertical sectional view showing principal components of the electrically-driven apparatus in a fourth embodiment of the present invention.
- FIG. 14 is a view showing a method of assembling a joint in the fourth embodiment
- FIG. 15 is a view showing a method of manufacturing a synthetic resin slider in the fourth embodiment
- FIG. 16 is an explanatory view showing an operation in the fourth embodiment
- FIG. 17 is a side view showing a synthetic resin sleeve in a fifth embodiment of the present invention.
- FIG. 18 is a front view of the same synthetic resin sleeve in the fifth embodiment.
- FIG. 19 is a side view showing a feed screw mechanism in a sixth embodiment of the present invention.
- FIG. 20 is a view taken along the arrowed line C in FIG. 19;
- FIG. 21 is a sectional view taken along the line D-D in FIG. 20;
- FIG. 22 is a side view showing the feed screw mechanism in a seventh embodiment of the present invention.
- FIG. 23 is a sectional view taken along the line E-E in FIG. 22;
- FIG. 24 is a cross sectional view showing the feed screw mechanism in an eighth embodiment of the present invention.
- FIG. 25 is a cross sectional view showing the feed screw mechanism in a ninth embodiment of the present invention.
- FIG. 26 is an explanatory view showing an operation in the eighth embodiment
- FIG. 27 is an explanatory view showing the operation in the eighth embodiment.
- FIG. 28 is an explanatory view showing a state where the slider in the seventh embodiment tilts
- FIG. 29 is a side view showing the feed screw mechanism in a tenth embodiment of the present invention.
- FIG. 30 is a side view showing the feed screw mechanism in an eleventh embodiment.
- FIG. 1 is a perspective view showing car-room-side components of a hydraulic power steering apparatus in accordance with a first embodiment.
- a member designated by the numeral 1 in FIG. 1 is a steering column that rotatably supports an upper steering shaft 3 .
- a steering wheel 5 is attached to an upper end of the upper steering shaft 3 , and a lower steering shaft 9 is connected via a universal joint 7 to a lower end thereof.
- a steering gear 11 constructed of a rack & pinion mechanism, a hydraulic power assist mechanism, etc. is further connected to a lower end of the lower steering shaft 9 .
- the numeral 13 represents a column cover for covering the steering column 1
- the numeral 15 denotes a tie rod connected to right and left ends of the steering gear 11 .
- FIG. 2 is a schematic view showing a configuration of the electrically-driven tilt type steering column apparatus in the first embodiment of the present invention.
- FIG. 3 is a sectional view taken along the line A-A in FIG. 2.
- FIG. 4 is a sectional view taken along the line B-B in FIG. 2. Note that a left side in FIG. 2 corresponds to a front part, a left side in each of FIGS. 3 and 4 corresponds to a left part, and an upper side in each of FIGS. 1 through 3 corresponds to an upper part in the description of the apparatus.
- the steering column 1 is supported on a column bracket 23 that is a steel plate press molded product fixed to a car-body-side member 21 in a swingable manner about a pivot pin 25 serving as a fulcrum and defined as a tilt pivot.
- the column bracket 23 is constructed of a fitting member 22 fixed to the car-body-side member 21 , a pivot member 27 extending downwards from a front side end of the fitting member 22 , and a column support member 29 extending downwards from a rear end of the fitting member 22 .
- a side surface of the steering column 1 is fitted with an electric motor 33 having a motor shaft (unillustrated) to which a worm gear 31 is fixed and with a feed screw mechanism 35 defined as a power transmission means.
- the feed screw mechanism 35 includes a feed screw shaft 39 to which a worm wheel 37 meshing with the worm gear 31 is fixed, and a slider 41 defined as a feed nut screw-engaged onto the feed screw shaft 39 .
- a ball stud 43 defined as a spherical joint element is fixed to a rear side of the slider 41 on one hand, and a sleeve 45 defined as cylindrical joint element is fixed to the column support member 29 of the column bracket 23 on the other hand, wherein the ball stud 43 is slidably fitted in the sleeve 45 , thereby configuring a joint 47 .
- a member designated by the numeral 51 in FIGS. 2 and 3 is a bracket used for supporting the electric motor 33 and the feed screw shaft 39 .
- the feed screw shaft 39 is rotatably supported on an unillustrated rolling bearing held by the bracket 51 .
- the numeral 53 in FIG. 4 represents an elongate hole formed in the column support member 29 of the column bracket 23 , and the steering column 1 , when in a tilt operation, loosely moves within this elongate hole 53 .
- the electric motor 33 is rotationally driven in one of forward and reverse directions by manipulating an unillustrated switch. Thereupon, rotations of the electric motor 33 are decelerated and transmitted to the worm wheel 37 from the worm gear 31 , with the result that the feed screw shaft 39 integral with the worm wheel 37 rotates, whereby, e.g., the slider 41 descends with respect to the steering column 1 .
- the ball stud 43 on the occasion of the tilting motion of the steering column 1 , as in FIG. 7 showing an enlarged view, moves back and forth while rotating within the sleeve 45 .
- the ball stud 43 defined as the spherical joint element rotates with no obstruction within the sleeve 45 defined as the cylindrical joint element and slides in the axial directions thereof, and hence there is neither a hindrance to the tilting motion of the steering column 1 nor occurrences of unnecessary stress on and friction against the respective constructive members.
- the electrically-driven tilt type steering column apparatus in the first embodiment does not necessitate an angular bearing and a link mechanism that have been employed so far in the conventional apparatuses, whereby an extremely compact framework of the apparatus can be attained and the smooth operation can be actualized in a way that remarkably reduces the number of the constructive members.
- the sleeve 45 may be fixed to the slider 41 , and the ball stud 43 may also be fixed to the column support member 29 of the column bracket 23 .
- FIGS. 8 and 9 are views of an electrically-driven telescopic type steering apparatus as viewed respectively from sideways and from under according to a second embodiment of the present invention.
- an inner column 63 is slidably fitted in an outer column 61 .
- An opening 65 taking a substantially rectangular shape is formed in a lower portion of the outer column 61 , and, through this opening 65 , the sleeve 45 defined as the cylindrical joint element protrudes downwards and outwards from the inner column 63 .
- the opening 65 performs a function as a stopper when in a telescopic operation and also a function as a rotation preventer in a rotating direction of the inner column 63 .
- a steering shaft 3 provided with the steering wheel 5 at its front end is rotatably sustained in the inner column 63 .
- the lower steering shaft is connected via the universal joint to a lower side end of the steering shaft 3 , and further the rack & pinion mechanism and the hydraulic power steering mechanism are connected to the lower side end thereof.
- Support holders 71 , 73 extending downwards and protruding outwards are provided at front and rear portions of the outer column 61 with the opening 65 interposed therebetween, and both ends of the axially-extended feed screw shaft 39 structuring the feed screw mechanism 35 , are rotatably supported by these support holders 71 , 73 .
- the worm wheel 37 fixed to the feed screw shaft 39 and the worm gear 31 fixed to an output shaft of the electric motor 33 are interposed between the feed screw shaft 39 and the output shaft of the electric motor 33 , whereby the rotations of the electric motor 33 are decelerated and transmitted to the feed screw shaft 39 .
- the electric motor 33 is attached to the outer column 61 .
- the slider 41 defined as the feed nut structuring the feed screw mechanism 35 is screw-engaged onto the feed screw shaft 39 , whereby the slider 41 moves in the axial directions (as a set of arrowheads indicated in FIG. 8) when the feed screw shaft 39 rotates.
- the ball stud 43 defined as the spherical joint element is fixed on the side of the steering shaft 3 . This ball stud 43 is slidably fitted in the sleeve 45 and, when the feed screw shaft 39 rotates, moves the sleeve 45 in the axial directions (as another set of arrowheads indicated in FIG. 8).
- the sleeve 45 is provided on the side of the inner column 63 , and the ball stud 43 slidably fitted in the interior of the sleeve 45 is provided on the side of the outer column 61 .
- the joint 47 composed of the ball stud 43 and the sleeve 45 relatively slides, thereby absorbing this axis deviation.
- a ball unit 43 autonomously rotates and slides within the sleeve 45 when in the telescopic operation, thereby absorbing this deviation and also a deviation in parallelism that might occur when assembling the components. Further, if there occurs a deviation in axis-to-axis distance between the feed screw shaft 39 and the steering shaft 3 , the ball stud 43 slides in the axial directions within the sleeve 45 , thereby absorbing the deviation in axis-to-axis distance that might be caused when assembling the components, and so on. Hence, even if the deviation between the feed screw shaft 39 and the steering shaft 3 occurs due to an error, etc. in assembly of the components and if there occur the deviations in parallelism and in axis-to-axis distance, these deviations are absorbed by the ball stud 43 rotating and sliding within the sleeve 45 .
- the sleeve may be provided on the side of the outer column 61
- the ball stud may be provided on the side of the inner column 63
- the ball stud may be engaged with the sleeve.
- the same operation and effects as those in the second embodiment can be exhibited.
- a synthetic resin member is interposed between the ball stud 43 defined as the spherical joint element and the sleeve 45 defined as the cylindrical joint element.
- the synthetic resin member in the third through fifth embodiments is formed by injection molding, a cutting work, etc.
- a variety of materials, which can be adopted for the synthetic resin member are a polyacetal resin, a polyamide resin, an oil-impregnated resin, an ethylene tetrafluoride and a resin mixed with a low-friction material such as ethylene tetrafluoride, etc.
- FIG. 12 is a vertical sectional view showing principal components of the electrically-driven steering apparatus in the third embodiment of the present invention.
- a cylindrical synthetic resin sleeve 81 formed by the injection molding, the cutting work, etc. is fitted in and fixed to the sleeve 45 .
- Dimensions of minor and major diameters of the synthetic resin sleeve 81 are properly set corresponding to a major diameter of the ball stud 43 and a minor diameter of the sleeve 45 .
- the sleeve 81 is fitted with a predetermined slack to the ball stud 43 but is, on the other hand, fitted by fastening to the sleeve 45 .
- the third embodiment adopts this contrivance, thereby making it possible to substantially eliminate a backlash caused when the ball stud 43 rotates and slides in the axial directions within the sleeve 45 and to, at the same time, prevent an emission of noises and an occurrence of abrasion due to a metal-to-metal contact.
- FIG. 13 is a vertical sectional view showing principal components of the electrically-driven steering apparatus in the fourth embodiment of the present invention.
- a synthetic resin slider 85 having a concave spherical surface 83 and fitted on the ball stud 43 , is slidably fitted in the sleeve 45 .
- the synthetic resin slider 85 may be, as shown in FIG. 14, formed by the injection molding in accordance with a length of fitting thereof to the ball stud 43 , wherein the ball stud 43 is press-fitted in the thus formed slider 85 ; and the synthetic resin slider 85 may be formed by the injection molding in a way that, as shown in FIG.
- the fourth embodiment adopts this configuration, thereby preventing the backlash, the emission of noises and the occurrence of abrasion as in the third embodiment and further, as shown in FIG. 16, preventing the deviation between the ball stud 43 and the synthetic resin slider 85 even when the ball stud 43 slides within the sleeve 45 , with the result that the ball stud 43 smoothly rotates within the synthetic resin slider 85 .
- FIG. 17 is a side view showing a synthetic resin sleeve in fifth embodiment of the present invention.
- FIG. 18 is a front view showing the same.
- the synthetic resin sleeve 81 is formed by the injection molding, the cutting work, etc. and is formed partially with, as shown in FIGS. 17 and 18, a slit 89 extending in the axial directions thereof.
- the fifth embodiment adopts this configuration, whereby the synthetic resin sleeve 81 is easily flexed in the radial directions, which eliminates the necessity of precisely setting the dimensions of the minor and major diameters with respect to the minor diameter of the sleeve 45 and the major diameter of the ball stud 43 and makes an operational defect, etc. hard to occur due to a thermal expansion and so on.
- FIG. 19 is a side view showing the feed screw mechanism in the sixth embodiment.
- FIG. 20 is a view taken along the arrowed line C in FIG. 19.
- FIG. 21 s a sectional view taken along the line D-D in FIG. 20.
- the whole configuration of the apparatus is the same as the first and second embodiments described above have, however, a dodecagonal drive adjust nut 91 defined as a second feed nut is attached to a side end surface (upper side in FIG. 19) of the slider 41 defined as the feed nut.
- the adjust nut 91 is screw-engaged onto the feed screw shaft 39 and advances towards or recedes away from the slider 41 as the adjust nut 91 rotates.
- the adjust nut 91 is fixed to the end surface (upper side in FIG. 19) of the slider 41 through a fixing ring 93 defined as a backlash adjusting means and through a locking screw 95 .
- the fixing ring 93 includes a dodecagonal hole 97 into which the adjust nut is fitted and an elongate hole 99 through which the locking screw 95 penetrates.
- the adjust nut 91 may involve using a hexagonal drive nut, a square drive nut, etc. as a substitute for the dodecagonal drive nut
- the fixing ring 93 may involve using a ring formed with a hexagonal hole, a square hole, etc. as a substitute for the dodecagonal hole.
- the sixth embodiment if an excessive backlash exists between the slider 41 and the feed screw shaft 39 , an assembly worker advances the adjust nut 91 towards the slider 41 by use of spanner, etc. and fixes the adjust nut 91 by use of the fixing ring 93 and the locking screw 95 just when a proper backlash is acquired.
- the fixing ring 93 has the dodecagonal hole 97 and the elongate hole 99 , and hence the adjust nut 91 can be fixed to the slider 41 at a desired rotational angle.
- the sixth embodiment adopts this configuration, thereby restraining a tilt, etc. of the slider 41 to the feed screw shaft 39 when the feed screw mechanism 35 operates and improving a support rigidity, etc. of the steering column 1 .
- FIG. 22 is a side view showing the feed screw mechanism in the seventh embodiment of the present invention.
- FIG. 23 is a sectional view taken along the line E-E in FIG. 22.
- the slider 41 is formed with a slit 101 extending along an axis of the feed screw shaft 39 in a position where there is a 180° phase difference from the ball stud 43 , and is provided with an adjust screw 103 defined as a backlash adjusting means for adjusting a width of this slit 101 .
- the assembly worker narrows the width of the slit 101 by fastening the adjust screw 103 with a hexagonal wrench, etc., thereby reducing the backlash between the feed screw shaft 39 and the slider 41 .
- FIG. 24 is a cross sectional view showing the feed screw mechanism in the eighth embodiment of the present invention.
- FIG. 25 is a cross sectional view showing the feed screw mechanism in the ninth embodiment of the present invention.
- the eighth and ninth embodiments adopt substantially the same configuration as the seventh embodiment has, however, positions where the slits 101 are formed are different.
- the slit 101 is formed in a position where there is a 90° phase difference from the ball stud 43 .
- the slit 101 is formed in a position where there is a 120° phase difference from the ball stud 43 .
- the phase difference of the slit 101 from the ball stud 43 is not limited to 90° and 120°, but arbitrary angles are available.
- each of the eighth and ninth embodiments is substantially the same as that in the seventh embodiment, however, as a state of deformation of the slider 41 in the eighth embodiment is illustrated in exaggeration in FIG. 26, when fastening the adjust screw 103 , the slider 41 elastically deforms in the right-and-left directions in FIG. 26 so as to eliminate a gap between the feed screw shaft 39 and the slider 41 itself.
- FIG. 28 shows a state the slider 41 tilts due to the input of the bending moment from the ball stud 43 in the seventh embodiment.
- FIG. 29 is a side view showing the feed screw mechanism in the tenth embodiment of the present invention.
- FIG. 30 is a side view showing the feed screw mechanism in the eleventh embodiment.
- the whole configuration of the apparatus in each of the tenth and eleventh embodiments is the same as the first and second embodiments have, however, the slider 41 is formed with the slit 101 extending in directions that are right-angled to the axis of the feed screw shaft 39 , and an adjust screw 103 for adjusting a width of this slit 101 is provided as a backlash adjusting means.
- the assembly worker narrows the width of the slit 101 by fastening the adjust screw 103 with the hexagonal wrench, etc., thereby reducing the backlash between the feed screw shaft 39 and the slider 41 as in the seventh embodiment discussed above.
- the slit 101 shows a well-balanced condition in upper-and-lower directions, and the slider 41 comes to have a high strength, however, a high torque is required of fastening the adjust screw 103 .
- the slider 41 is easy to elastically deform in an upper part of the slit 101 , and hence the torque required of fastening the adjust screw 103 decreases with the result that the adjustment of the backlash is facilitated.
- the mode of the present invention is not limited to the embodiments discussed above.
- the present invention is applied to the electrically-driven tilt type or electrically-driven telescopic type steering column apparatus.
- the present invention may be, however, applied to an electrically-driven tilt/telescopic type steering column apparatus.
- the worm gear mechanism may involve using a mechanism constructed of the worm gear and a helical gear in addition to the mechanism constructed of the worm gear and the worm wheel.
- the spherical joint element and the cylindrical joint element may be, in addition to their being fixed to the slider, the column bracket, etc., formed integrally with these components; or alternatively, the cylindrical joint element may be fixed to the slider, while the spherical joint element may be attached to a member on the face-to-face side.
- the embodiments discussed above have exemplified the hydraulic power steering apparatus to which the present invention is applied, however, the present invention may be applied to the steering apparatuses such as the electrically-driven power steering apparatus, a manual steering apparatus and so forth. Still further, the whole configurations of the steering apparatus and of the electrically-driven steering column apparatus and the shapes of the respective members, can be properly changed if these changes fall within the range that does not deviate from the gist of the present invention.
- the present invention enables the apparatus to be configured in a compact size and the smooth operation to be actualized while reducing the number of the members.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Steering Controls (AREA)
- Power Steering Mechanism (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/826,183 US7444900B2 (en) | 2002-03-20 | 2007-07-12 | Electrically-driven steering column apparatus |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002078447 | 2002-03-20 | ||
JP2002-078447 | 2002-03-20 | ||
JP2002-250301 | 2002-08-29 | ||
JP2002250301 | 2002-08-29 | ||
JP2003002454 | 2003-01-08 | ||
JP2003-02454 | 2003-01-08 | ||
PCT/JP2003/003094 WO2003078234A1 (fr) | 2002-03-20 | 2003-03-14 | Dispositif a colonne de direction electrique |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/826,183 Division US7444900B2 (en) | 2002-03-20 | 2007-07-12 | Electrically-driven steering column apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040194570A1 true US20040194570A1 (en) | 2004-10-07 |
Family
ID=28046105
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/484,499 Abandoned US20040194570A1 (en) | 2002-03-20 | 2003-03-14 | Electric steering column device |
US11/826,183 Expired - Lifetime US7444900B2 (en) | 2002-03-20 | 2007-07-12 | Electrically-driven steering column apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/826,183 Expired - Lifetime US7444900B2 (en) | 2002-03-20 | 2007-07-12 | Electrically-driven steering column apparatus |
Country Status (5)
Country | Link |
---|---|
US (2) | US20040194570A1 (ja) |
EP (1) | EP1486395B1 (ja) |
JP (1) | JP4325403B2 (ja) |
DE (1) | DE60324397D1 (ja) |
WO (1) | WO2003078234A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040144192A1 (en) * | 1998-12-25 | 2004-07-29 | Nsk Ltd. | Electric steering column apparatus |
US20070180945A1 (en) * | 2006-02-09 | 2007-08-09 | Nsk Ltd. | Electric steering device |
US20080047382A1 (en) * | 2006-08-24 | 2008-02-28 | Nsk Ltd. | Steering apparatus |
US20080128197A1 (en) * | 2006-11-30 | 2008-06-05 | Nsk Ltd. | Electric steering apparatus |
US20080167778A1 (en) * | 2007-01-10 | 2008-07-10 | Yuichiro Tsukasaki | Left-right independent steering device for steering left and right wheels independently |
US20090308189A1 (en) * | 2006-06-29 | 2009-12-17 | Nsk Ltd. | Steering device |
US20110121552A1 (en) * | 2009-11-25 | 2011-05-26 | Zf Systemes De Direction Nacam Sas | Device for adjusting a steering column |
US20110174100A1 (en) * | 2010-01-18 | 2011-07-21 | Smc Kabushiki Kaisha | Feed screw mechanism |
AT511962B1 (de) * | 2012-03-06 | 2013-04-15 | Thyssenkrupp Presta Ag | Lenksäule für ein Kraftfahrzeug |
DE102011001765B4 (de) * | 2011-04-04 | 2013-10-17 | Zf Lenksysteme Gmbh | Lenksäulenhersteller unabhängige Adaption für Schnittstelle Lenksäule/Aktuator |
EP2412607A3 (en) * | 2010-07-27 | 2013-12-11 | Fujikiko Co., Ltd. | Steering column device |
US8991861B1 (en) | 2012-05-25 | 2015-03-31 | Nsk Ltd. | Electric position adjustment apparatus for steering wheel |
US11041521B2 (en) * | 2018-01-19 | 2021-06-22 | Nsk, Ltd. | Nut, feed screw mechanism, and electric position adjustment device for steering wheel |
EP4144615A1 (de) * | 2021-09-02 | 2023-03-08 | Oechsler AG | Aktuator, lenksäule für ein kraftfahrzeug sowie verfahren zum herstellen und/oder montieren eines aktuators |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4487624B2 (ja) * | 2004-05-06 | 2010-06-23 | 日本精工株式会社 | 電動式ステアリングコラム装置 |
JP4648809B2 (ja) * | 2005-09-26 | 2011-03-09 | 富士機工株式会社 | 電動チルトテレスコステアリングコラム装置 |
JP5471354B2 (ja) * | 2009-11-24 | 2014-04-16 | 株式会社ジェイテクト | ステアリング装置 |
JP2012218455A (ja) * | 2011-04-04 | 2012-11-12 | Aisin Seiki Co Ltd | 車両のステアリング装置 |
US8899622B2 (en) * | 2012-03-09 | 2014-12-02 | Nsk Americas, Inc. | Internally collapsible steering column assembly |
KR101894853B1 (ko) * | 2012-05-29 | 2018-10-24 | 엘지이노텍 주식회사 | 스위블 액츄에이터 |
FR3001940A1 (fr) * | 2013-02-12 | 2014-08-15 | Zf Systemes De Direction Nacam Sas | Dispositif d'escamotage d'une colonne de direction. |
EP3405379B1 (en) * | 2016-02-12 | 2020-05-27 | NSK Americas, Inc. | Self-aligning drive gear |
US11001291B2 (en) * | 2016-11-17 | 2021-05-11 | Robert Bosch Automotive Steering Llc | Power column rake slider mechanism |
DE102016225297A1 (de) | 2016-12-16 | 2018-06-21 | Thyssenkrupp Ag | Lenkrad für eine Kraftfahrzeuglenkung und Lenksäule für ein Kraftfahrzeug |
US11358627B2 (en) * | 2019-11-06 | 2022-06-14 | Steering Solutions Ip Holding Corporation | System, method and apparatus for a telescopic lead screw for a steering column |
US11358626B2 (en) * | 2019-11-06 | 2022-06-14 | Steering Solutions Ip Holding Corporation | System, method and apparatus for a telescopic jacket for a steering column |
WO2021099606A1 (fr) * | 2019-11-22 | 2021-05-27 | Robert Bosch Automotive Steering Vendôme | Fourreau de colonne de direction comportant un systeme de reglage d'une position relative entre deux tubes |
JP7597372B2 (ja) | 2020-10-13 | 2024-12-10 | Nskステアリング&コントロール株式会社 | ナット及びその製造方法、並びに、送りねじ装置 |
GB2619365A (en) | 2022-06-01 | 2023-12-06 | Zf Steering Systems Poland Sp Zo O | A steer by wire steering column assembly |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3252350A (en) * | 1963-11-06 | 1966-05-24 | Gen Motors Corp | Tilting steering wheel |
US5590565A (en) * | 1995-02-08 | 1997-01-07 | General Motors Corporation | Motor vehicle steering column |
US20010036080A1 (en) * | 2000-03-14 | 2001-11-01 | Katsutada Shirai | Vehicular headlamp with movable reflector |
US6343888B1 (en) * | 1997-03-26 | 2002-02-05 | Brueninghaus Hydromatik Gmbh | Method for the production of a ball jointed connection |
US20020124677A1 (en) * | 1998-12-25 | 2002-09-12 | Nsk Ltd. | Electric steering column apparatus |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4602520A (en) * | 1983-06-23 | 1986-07-29 | Aisin Seiki Kabushiki Kaisha | Telescopic steering column assembly |
DE3618266C1 (en) * | 1986-05-30 | 1987-10-15 | Lemfoerder Metallwaren Ag | Adjustable steering column for motor vehicles |
JPH061503Y2 (ja) * | 1986-09-25 | 1994-01-12 | 日本精工株式会社 | 電動式チルトステアリング装置 |
JP2505182B2 (ja) | 1986-12-27 | 1996-06-05 | ミノルタ株式会社 | 画像形成装置 |
JPH01145768A (ja) | 1987-12-01 | 1989-06-07 | Fujitsu Ltd | 自動引き落とし情報提供システム |
JPH01145768U (ja) * | 1988-03-30 | 1989-10-06 | ||
JPH0244566A (ja) | 1988-08-05 | 1990-02-14 | Alpine Electron Inc | 光ディスクプレーヤのサーボ回路 |
JP2510110Y2 (ja) * | 1988-09-22 | 1996-09-11 | トヨタ自動車株式会社 | ねじ送り機構 |
US5112153A (en) * | 1990-07-17 | 1992-05-12 | Maremont Corporation | End connector assembly with ball held captive in socket bearing and shell housing and method of assembly |
JPH0529979A (ja) | 1991-07-24 | 1993-02-05 | Clarion Co Ltd | フイルタを用いたfm信号検出装置 |
DE4204550A1 (de) | 1992-02-15 | 1993-08-19 | Will E C H Gmbh & Co | Steuerung der bahnspannung einer bewegten materialbahn |
DE4235588A1 (de) * | 1992-10-22 | 1994-04-28 | Stabilus Gmbh | Hydropneumatisches Verstellelement |
JPH10181613A (ja) * | 1996-12-24 | 1998-07-07 | Toyota Motor Corp | ステアリング装置の位置調整装置 |
JP3800869B2 (ja) * | 1999-07-01 | 2006-07-26 | 日本精工株式会社 | 電動テレスコ式ステアリング装置 |
JP2000238647A (ja) * | 1998-12-25 | 2000-09-05 | Nsk Ltd | 電動式ステアリングコラム装置 |
-
2003
- 2003-03-14 EP EP03708629A patent/EP1486395B1/en not_active Expired - Lifetime
- 2003-03-14 WO PCT/JP2003/003094 patent/WO2003078234A1/ja active Application Filing
- 2003-03-14 DE DE60324397T patent/DE60324397D1/de not_active Expired - Lifetime
- 2003-03-14 US US10/484,499 patent/US20040194570A1/en not_active Abandoned
- 2003-03-14 JP JP2003576256A patent/JP4325403B2/ja not_active Expired - Fee Related
-
2007
- 2007-07-12 US US11/826,183 patent/US7444900B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3252350A (en) * | 1963-11-06 | 1966-05-24 | Gen Motors Corp | Tilting steering wheel |
US5590565A (en) * | 1995-02-08 | 1997-01-07 | General Motors Corporation | Motor vehicle steering column |
US6343888B1 (en) * | 1997-03-26 | 2002-02-05 | Brueninghaus Hydromatik Gmbh | Method for the production of a ball jointed connection |
US20020124677A1 (en) * | 1998-12-25 | 2002-09-12 | Nsk Ltd. | Electric steering column apparatus |
US20010036080A1 (en) * | 2000-03-14 | 2001-11-01 | Katsutada Shirai | Vehicular headlamp with movable reflector |
US6543916B2 (en) * | 2000-03-14 | 2003-04-08 | Koito Manufacturing Co., Ltd. | Vehicular headlamp with movable reflector |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7191679B2 (en) * | 1998-12-25 | 2007-03-20 | Nsk Ltd. | Electric steering column apparatus |
US20040144192A1 (en) * | 1998-12-25 | 2004-07-29 | Nsk Ltd. | Electric steering column apparatus |
US20070180945A1 (en) * | 2006-02-09 | 2007-08-09 | Nsk Ltd. | Electric steering device |
US7886630B2 (en) * | 2006-02-09 | 2011-02-15 | Nsk Ltd. | Electric steering device |
US20090308189A1 (en) * | 2006-06-29 | 2009-12-17 | Nsk Ltd. | Steering device |
US20080047382A1 (en) * | 2006-08-24 | 2008-02-28 | Nsk Ltd. | Steering apparatus |
US20080128197A1 (en) * | 2006-11-30 | 2008-06-05 | Nsk Ltd. | Electric steering apparatus |
US8364347B2 (en) * | 2007-01-10 | 2013-01-29 | Fuji Jukogyo Kabushiki Kaisha | Left-right independent steering device for steering left and right wheels independently |
US20080167778A1 (en) * | 2007-01-10 | 2008-07-10 | Yuichiro Tsukasaki | Left-right independent steering device for steering left and right wheels independently |
US20110121552A1 (en) * | 2009-11-25 | 2011-05-26 | Zf Systemes De Direction Nacam Sas | Device for adjusting a steering column |
US8448986B2 (en) * | 2009-11-25 | 2013-05-28 | Zf Systemes De Direction Nacam Sas | Device for adjusting a steering column |
CN102146993A (zh) * | 2010-01-18 | 2011-08-10 | Smc株式会社 | 馈送螺纹机构 |
US20110174100A1 (en) * | 2010-01-18 | 2011-07-21 | Smc Kabushiki Kaisha | Feed screw mechanism |
US8973453B2 (en) * | 2010-01-18 | 2015-03-10 | Smc Kabushiki Kaisha | Feed screw mechanism |
EP2412607A3 (en) * | 2010-07-27 | 2013-12-11 | Fujikiko Co., Ltd. | Steering column device |
DE102011001765B4 (de) * | 2011-04-04 | 2013-10-17 | Zf Lenksysteme Gmbh | Lenksäulenhersteller unabhängige Adaption für Schnittstelle Lenksäule/Aktuator |
AT511962B1 (de) * | 2012-03-06 | 2013-04-15 | Thyssenkrupp Presta Ag | Lenksäule für ein Kraftfahrzeug |
AT511962A4 (de) * | 2012-03-06 | 2013-04-15 | Thyssenkrupp Presta Ag | Lenksäule für ein Kraftfahrzeug |
US8991861B1 (en) | 2012-05-25 | 2015-03-31 | Nsk Ltd. | Electric position adjustment apparatus for steering wheel |
US11041521B2 (en) * | 2018-01-19 | 2021-06-22 | Nsk, Ltd. | Nut, feed screw mechanism, and electric position adjustment device for steering wheel |
EP4144615A1 (de) * | 2021-09-02 | 2023-03-08 | Oechsler AG | Aktuator, lenksäule für ein kraftfahrzeug sowie verfahren zum herstellen und/oder montieren eines aktuators |
Also Published As
Publication number | Publication date |
---|---|
US7444900B2 (en) | 2008-11-04 |
EP1486395B1 (en) | 2008-10-29 |
DE60324397D1 (de) | 2008-12-11 |
US20070262576A1 (en) | 2007-11-15 |
EP1486395A4 (en) | 2005-10-19 |
EP1486395A1 (en) | 2004-12-15 |
WO2003078234A1 (fr) | 2003-09-25 |
JP4325403B2 (ja) | 2009-09-02 |
JPWO2003078234A1 (ja) | 2005-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7444900B2 (en) | Electrically-driven steering column apparatus | |
US20080047382A1 (en) | Steering apparatus | |
US20090308189A1 (en) | Steering device | |
JP5076908B2 (ja) | ステアリングコラム装置 | |
EP2857282B1 (en) | Position adjustment device for electric steering wheel | |
EP1693279B1 (en) | Motor-driven position adjustment apparatus for steering wheel | |
EP2012025A1 (en) | Fastening tool, and steering device | |
US20090031844A1 (en) | Tilt-type steering apparatus | |
US20020079685A1 (en) | Electric tilt adjustable steering apparatus for a vehicle | |
JP5338844B2 (ja) | 電動式ステアリング装置 | |
JP2008024229A (ja) | 電動テレスコ調整式ステアリング装置 | |
JP2009196388A (ja) | 電動チルト式ステアリング装置 | |
KR20090091850A (ko) | 길이 자동 조정형 타이로드와 이를 구비한 자동차의조향장치 | |
JP4483459B2 (ja) | 電動式ステアリングコラム装置 | |
JP2008087583A (ja) | ステアリング装置及びステアリング装置の組立方法 | |
JP2009120133A (ja) | ステアリング装置 | |
JP2008057595A (ja) | ステアリング装置 | |
JP2008018876A (ja) | ステアリング装置 | |
JP2009107557A (ja) | 電動テレスコ調整式ステアリング装置 | |
JPH078156U (ja) | 電動調節式ステアリングコラムの動力伝達装置 | |
KR100969297B1 (ko) | 자동차용 파워 틸트 앤 텔레스코프 칼럼의 틸팅 구조 | |
JP2005319925A (ja) | ステアリングコラム装置 | |
JP2008087661A (ja) | 電動チルト式ステアリング装置 | |
JP2009096381A (ja) | ステアリング装置 | |
KR19990025475U (ko) | 조향 장치의 래크 조임력 조정 구조 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NSK LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOMARU, MASAKI;MITSUHASHI, CHIE;FUJIWARA, TAKESHI;AND OTHERS;REEL/FRAME:015485/0030;SIGNING DATES FROM 20031202 TO 20031203 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |