US20010001296A1 - Method of making MOS transistor for high-speed operation - Google Patents
Method of making MOS transistor for high-speed operation Download PDFInfo
- Publication number
- US20010001296A1 US20010001296A1 US09/757,747 US75774701A US2001001296A1 US 20010001296 A1 US20010001296 A1 US 20010001296A1 US 75774701 A US75774701 A US 75774701A US 2001001296 A1 US2001001296 A1 US 2001001296A1
- Authority
- US
- United States
- Prior art keywords
- gate
- insulating layer
- gate insulator
- edge
- ldd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims 2
- 239000012212 insulator Substances 0.000 claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 9
- 241000293849 Cordylanthus Species 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/608—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having non-planar bodies, e.g. having recessed gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
- H10D64/516—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
Definitions
- the present invention relates to a semiconductor device for high-speed operation and, particularly, to a structure of the gate region for enhancing the performance of a MOSFET.
- Some conventional MOS structures have a lightly doped LDD region to prevent deterioration of the structures' reliability due to the hot carrier effect, which is caused by high electric field at the edge of the drain.
- the concentration of dopants used in the LDD region also increases.
- the electric field at the edge of the gate increases, which tends to intensify the hot carrier effect.
- GPOX gate poly oxidation
- FIG. 1 contains a schematic cross-sectional diagram of a prior art MOSFET structure which is fabricated using a GPOX step.
- the structure is subjected to formation of a gate poly pattern to form the gate 3 of the device and then to a subsequent GPOX step.
- the GPOX step changes the thickness of the gate oxide layer 2 at the edge of the gate poly 3 , which results in the formation of a thickened “bird's beak” region 10 at the edge of the gate oxide 2 .
- Such a structure can reduce the hot carrier effect for a long MOSFET channel device but, in case of a short channel, such as those found in submicron devices, adversely affects the high-speed performance properties of the device because of a resulting reduction in the drain saturation current l dsat .
- the prior art MOSFET structure as shown in FIG. 1 is manufactured by the following process.
- the gate oxide layer 2 is formed on a p-type silicon wafer 1 , followed by a deposition of polysilicon on the gate oxide layer 2 .
- the polysilicon layer is patterned by use of a gate pattern mask (not shown) to form a gate poly 3 .
- the resulting structure is then subjected to the to gate poly oxidation (GPOX) step, which forms an oxide layer having a thickness in the range of 7 to 17 nm.
- GPOX gate poly oxidation
- the gate oxide layer 2 is much thicker at the edge of the gate poly 3 , resulting in the relatively thick bird's beak region 10 .
- n ⁇ region 4 by a subsequent LDD ion-implantation step, sidewalls 5 are formed on both sides of the gate poly 3 .
- An n + region is formed by a second ion-implantation such that the source and drain regions of the LDD structure are completed.
- the structure is subjected to heat treatment in a furnace to form an oxide layer region at the edge of the gate that is much thicker than the remainder of the gate oxide layer.
- the oxidant source e.g., H 2 O 2
- the oxidant source is diffused from the edge to the center of the gate poly along the interfaces between the gate poly 3 and the gate oxide layer 2 .
- Oxidant diffusion also takes place between the gate oxide layer 2 and the silicon bulk. The result of this diffusion is formation of the relatively thick oxide region 10 which impairs the drain saturation current of the MOS device and consequently inhibits high-speed operation.
- the conventional GPOX process reduces the hot carrier effect but also results in the thickened oxide region 10 formed deep under the lateral side of the gate, which causes a deterioration of the MOS device's properties, decreases the drain saturation current, and thereby hinders the high-speed driving of the circuit.
- the present invention is directed to a structure of a MOS transistor for high-speed operation that substantially obviates one or more of the problems due to limitations and disadvantages of the prior art.
- An object of the present invention is to provide a structure of a MOS device which realizes high-speed operation by reducing the deterioration of the MOS device's properties caused by oxidation of the gate poly.
- the present invention is directed to a structure of a MOS transistor for high-speed operation in a MOS device with an LDD structure.
- the device of the invention includes a gate formed from a gate insulating layer overlaying a channel region of a semiconductor substrate and an insulating layer formed on both sides of the gate insulating layer at the edge of the gate and thicker than the gate insulating layer.
- the insulating layer at the edge of the gate extends toward the channel region but does not extend beyond the LDD region. The device thus reduces the hot carrier effect while increasing the current driving capacity.
- the present invention is directed to another MOS transistor structure for high-speed operation in a MOS device having an LDD structure.
- This device also includes a gate formed from a gate insulating layer which overlays a channel region of a semiconductor substrate and an insulating layer formed on both sides of the gate insulating layer at the edge of the gate and thicker than the gate insulating layer.
- the thicker insulating layer at the edge of the gate insulating layer is formed such that it extends toward the channel region beyond the LDD region.
- the thicker gate insulating layer extends beyond the LDD region but is positioned in the channel region within a distance of not more than 10 nm from the end point of the LDD region.
- FIG. 1 is a schematic cross-sectional view of the structure of a prior art MOS device with an LDD structure
- FIG. 2 is a schematic cross-sectional view of the structure of a MOS device having an LDD structure in accordance with an embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view of the structure of a MOS device having an LDD structure in accordance with another embodiment of the present invention.
- the present invention is directed to a MOS structure in which thickened regions or “bird's beaks” of an insulating layer are formed at the edge of a gate without either deviating from the LDD region of the MOS device or impairing the properties of the MOS device.
- the present invention is also directed to a MOS structure that has a gate oxide layer formed by the oxidation of a gate poly so as to reduce high electric field at the edge of the gate and at the bird's beak of the gate poly, which, in one embodiment, is formed without deviating from the LDD region of the MOS device.
- the structure improves the drain saturation current property of the MOS device while also realizing a high-speed circuit. Consequently, the drain saturation current can be prevented from being detrimentally reduced without changing the initial thickness of the gate oxide layer in the MOS device's gate channel region.
- FIG. 2 includes a schematic cross-sectional diagram of one embodiment of a MOS structure in accordance with the present invention.
- a gate insulating layer 2 is formed over a semiconductor substrate 1
- a gate poly pattern 3 is formed over the gate insulating layer 2 .
- a relatively thick insulating layer 2 ′ having similar properties to those of the gate insulating layer 2 , or being formed of the same material as the gate insulating layer 2 , is locally formed at the edge of the gate poly pattern 3 .
- the relatively thick insulating layer 2 ′ extends from the edge of the gate poly pattern 3 into the channel of the device under the gate poly 3 .
- the relatively thick insulating layer 2 ′ does not extend into the channel region beyond the LDD region 4 .
- FIG. 3 is a schematic diagram of another preferred embodiment of the present invention, in which the relatively thick insulating layer 2 ′, having similar properties to those of gate insulating layer 2 or made from the same material as the gate insulating layer, is formed partially within the channel region of the device and beyond the LDD region 4 .
- the gate insulating layer 2 ′ preferably extends beyond the LLD region 4 a distance of not more than 10 nm from the end point of the LDD region 4 .
- N-MOSFET drain saturation current I dsat is typically between 580 and 600 ⁇ A/ ⁇ m.
- N-MOSFET drain saturation current I dsat is between 650 and 710 ⁇ A/ ⁇ m.
- the device properties are even more enhanced when the device includes a relatively short channel.
- the bird's beak at the edge of the gate occupies an increasing larger area with respect to the gate as the length of the gate is reduced, for example, to the submicron range and specifically to about one-half micron.
- the structure of the invention has a more significant effect upon the performance properties of the MOS device. For example, the drain saturation current, which depends heavily on the length of the bird's beak region at the edge of the gate, becomes higher with decreasing length of the gate. Therefore, the thickened insulator structure at the edge of the gate according to the present invention will become even more significant with the development of devices that have smaller gate lengths.
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
A MOS transistor for high-speed operation includes a gate insulator formed over a semiconductor substrate and a gate formed over the gate insulator. An insulating layer is formed on both sides of the gate insulator at the edge of the gate and thicker than the gate insulator. The device is also formed with LDD regions which form an LDD structure in the semiconductor substrate at least partially under the gate. The LDD structure defines a channel region under the gate insulator between the LDD regions. In one embodiment, the insulating layer formed on both sides of the gate extends toward the channel region but not beyond the LDD regions. In another embodiment, the insulating layer does extend beyond the LDD region but for a distance of less than 10 nm.
Description
- 1. 1. Field of the Invention
- 2. The present invention relates to a semiconductor device for high-speed operation and, particularly, to a structure of the gate region for enhancing the performance of a MOSFET.
- 3. 2. Discussion of Related Art
- 4. Some conventional MOS structures have a lightly doped LDD region to prevent deterioration of the structures' reliability due to the hot carrier effect, which is caused by high electric field at the edge of the drain. However, as the demand for high-speed operation increases, the concentration of dopants used in the LDD region also increases. As a result, the electric field at the edge of the gate increases, which tends to intensify the hot carrier effect.
- 5. One prior method used to counteract the problem involves gate poly oxidation (GPOX), which is partial oxidation in the vicinity of the edge of the gate. This partial oxidation tends to reduce the electric field near the edge of the gate, with a consequent reduction in the hot carrier effect. This method has been widely used for the gate structures of MOSFETs, attaining the above advantage in regard to the hot carrier effect. However, the increase in the size of the oxidation layer can cause a reduction in the speed of operation of the resulting device.
- 6.FIG. 1 contains a schematic cross-sectional diagram of a prior art MOSFET structure which is fabricated using a GPOX step. The structure is subjected to formation of a gate poly pattern to form the
gate 3 of the device and then to a subsequent GPOX step. The GPOX step changes the thickness of thegate oxide layer 2 at the edge of thegate poly 3, which results in the formation of a thickened “bird's beak”region 10 at the edge of thegate oxide 2. Such a structure can reduce the hot carrier effect for a long MOSFET channel device but, in case of a short channel, such as those found in submicron devices, adversely affects the high-speed performance properties of the device because of a resulting reduction in the drain saturation current ldsat. - 7. The prior art MOSFET structure as shown in FIG. 1 is manufactured by the following process. The
gate oxide layer 2 is formed on a p-type silicon wafer 1, followed by a deposition of polysilicon on thegate oxide layer 2. The polysilicon layer is patterned by use of a gate pattern mask (not shown) to form agate poly 3. The resulting structure is then subjected to the to gate poly oxidation (GPOX) step, which forms an oxide layer having a thickness in the range of 7 to 17 nm. Thegate oxide layer 2 is much thicker at the edge of thegate poly 3, resulting in the relatively thick bird'sbeak region 10. - 8. Following formation of an n−region 4 by a subsequent LDD ion-implantation step,
sidewalls 5 are formed on both sides of thegate poly 3. An n+region is formed by a second ion-implantation such that the source and drain regions of the LDD structure are completed. - 9. In the conventional GPOX process, the structure is subjected to heat treatment in a furnace to form an oxide layer region at the edge of the gate that is much thicker than the remainder of the gate oxide layer. During this oxidation step, the oxidant source, e.g., H2O2, is diffused from the edge to the center of the gate poly along the interfaces between the
gate poly 3 and thegate oxide layer 2. Oxidant diffusion also takes place between thegate oxide layer 2 and the silicon bulk. The result of this diffusion is formation of the relativelythick oxide region 10 which impairs the drain saturation current of the MOS device and consequently inhibits high-speed operation. - 10. Hence, the conventional GPOX process reduces the hot carrier effect but also results in the thickened
oxide region 10 formed deep under the lateral side of the gate, which causes a deterioration of the MOS device's properties, decreases the drain saturation current, and thereby hinders the high-speed driving of the circuit. - 11. Accordingly, the present invention is directed to a structure of a MOS transistor for high-speed operation that substantially obviates one or more of the problems due to limitations and disadvantages of the prior art.
- 12. An object of the present invention is to provide a structure of a MOS device which realizes high-speed operation by reducing the deterioration of the MOS device's properties caused by oxidation of the gate poly.
- 13. To achieve these and other objects, the present invention is directed to a structure of a MOS transistor for high-speed operation in a MOS device with an LDD structure. The device of the invention includes a gate formed from a gate insulating layer overlaying a channel region of a semiconductor substrate and an insulating layer formed on both sides of the gate insulating layer at the edge of the gate and thicker than the gate insulating layer. In one embodiment, the insulating layer at the edge of the gate extends toward the channel region but does not extend beyond the LDD region. The device thus reduces the hot carrier effect while increasing the current driving capacity.
- 14. In another embodiment, the present invention is directed to another MOS transistor structure for high-speed operation in a MOS device having an LDD structure. This device also includes a gate formed from a gate insulating layer which overlays a channel region of a semiconductor substrate and an insulating layer formed on both sides of the gate insulating layer at the edge of the gate and thicker than the gate insulating layer. In this embodiment, the thicker insulating layer at the edge of the gate insulating layer is formed such that it extends toward the channel region beyond the LDD region. In this embodiment, the thicker gate insulating layer extends beyond the LDD region but is positioned in the channel region within a distance of not more than 10 nm from the end point of the LDD region.
- 15. The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
- 16.FIG. 1 is a schematic cross-sectional view of the structure of a prior art MOS device with an LDD structure;
- 17.FIG. 2 is a schematic cross-sectional view of the structure of a MOS device having an LDD structure in accordance with an embodiment of the present invention; and
- 18.FIG. 3 is a schematic cross-sectional view of the structure of a MOS device having an LDD structure in accordance with another embodiment of the present invention.
- 19. Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
- 20. In one embodiment, the present invention is directed to a MOS structure in which thickened regions or “bird's beaks” of an insulating layer are formed at the edge of a gate without either deviating from the LDD region of the MOS device or impairing the properties of the MOS device. The present invention is also directed to a MOS structure that has a gate oxide layer formed by the oxidation of a gate poly so as to reduce high electric field at the edge of the gate and at the bird's beak of the gate poly, which, in one embodiment, is formed without deviating from the LDD region of the MOS device. The structure improves the drain saturation current property of the MOS device while also realizing a high-speed circuit. Consequently, the drain saturation current can be prevented from being detrimentally reduced without changing the initial thickness of the gate oxide layer in the MOS device's gate channel region.
- 21.FIG. 2 includes a schematic cross-sectional diagram of one embodiment of a MOS structure in accordance with the present invention. As shown in FIG. 2, a
gate insulating layer 2 is formed over asemiconductor substrate 1, and agate poly pattern 3 is formed over thegate insulating layer 2. A relatively thickinsulating layer 2′, having similar properties to those of thegate insulating layer 2, or being formed of the same material as thegate insulating layer 2, is locally formed at the edge of thegate poly pattern 3. In this embodiment, the relatively thickinsulating layer 2′ extends from the edge of thegate poly pattern 3 into the channel of the device under thegate poly 3. However, the relatively thickinsulating layer 2′ does not extend into the channel region beyond theLDD region 4. - 22.FIG. 3 is a schematic diagram of another preferred embodiment of the present invention, in which the relatively thick
insulating layer 2′, having similar properties to those ofgate insulating layer 2 or made from the same material as the gate insulating layer, is formed partially within the channel region of the device and beyond theLDD region 4. In this case, thegate insulating layer 2′ preferably extends beyond the LLD region 4 a distance of not more than 10 nm from the end point of theLDD region 4. - 23. In accordance with the invention, when the insulating
layer 2′ is formed at the edge of the gate by a GPOX process designed to form an oxide layer in the 2 to 3 nm thickness range, an increase in drain saturation current of about 15% has been observed, when compared to prior art devices in which the oxide layer is 7 to 17 nm in thickness. In such a typical prior art structure, N-MOSFET drain saturation current Idsat is typically between 580 and 600 μA/μm. In the MOS structure of the invention, N-MOSFET drain saturation current Idsat is between 650 and 710 μA/μm. Such a performance enhancement in the MOS device of the invention is as effective as a scale-down of 80% in size of the gate poly. However, in the structure of the invention, the negative effects of reducing the size of the gate poly are avoided. - 24. In the MOS structure of the present invention in which the thickened region of the insulating layer at the edge of the gate does not extend beyond the LDD region, the device properties are even more enhanced when the device includes a relatively short channel. This is due to the fact that the bird's beak at the edge of the gate occupies an increasing larger area with respect to the gate as the length of the gate is reduced, for example, to the submicron range and specifically to about one-half micron. At such a small gate length, the structure of the invention has a more significant effect upon the performance properties of the MOS device. For example, the drain saturation current, which depends heavily on the length of the bird's beak region at the edge of the gate, becomes higher with decreasing length of the gate. Therefore, the thickened insulator structure at the edge of the gate according to the present invention will become even more significant with the development of devices that have smaller gate lengths.
- 25. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the following claims.
Claims (9)
1. A MOS transistor, comprising:
a semiconductor substrate;
a gate insulator formed over the semiconductor substrate;
a gate formed over the gate insulator;
first and second LDD regions defining an LDD structure formed in the semiconductor substrate at least partially under the gate, the LDD structure defining a channel region under the gate insulator between the LDD regions; and
an insulating layer formed on both sides of the gate insulator at the edge of the gate and thicker than the gate insulator, the insulating layer at the edge of the gate extending toward the channel region but not extending beyond the LDD regions.
2. The MOS transistor of , wherein the insulating layer at the edge of the gate comprises the same material of which the gate insulator is formed.
claim 1
3. The MOS transistor of , wherein the insulating layer at the edge of the gate is formed by a gate poly oxidation (GPOX) process.
claim 1
4. A method of making a MOS transistor comprising:
forming a gate insulator over a semiconductor substrate;
forming a gate over the gate insulator;
forming first and second LDD regions in the semiconductor substrate to define an LDD structure at least partially under the gate, the LDD structure defining a channel region under the gate insulator between the LDD regions; and
forming an insulating layer on both sides of the gate insulator at the edge of the gate and thicker than the gate insulator, such that the insulating layer extends toward the channel region but not beyond the LDD regions.
5. The method of wherein the insulating layer is formed of the same material of which the gate insulator is formed.
claim 4
6. The method of wherein the step of forming an insulating layer comprises performing a gate poly oxidation (GPOX) process.
claim 4
7. A MOS transistor, comprising:
a semiconductor substrate;
a gate insulator formed over the semiconductor substrate;
a gate formed over the gate insulator;
first and second LDD regions defining an LDD structure formed in the semiconductor substrate at least partially under the gate, the LDD structure defining a channel region under the gate insulator between the LDD regions; and
an insulating layer formed on both sides of the gate insulator at the edge of the gate and thicker than the gate insulator, the insulating layer at the edge of the gate extending toward the channel region, but not extending beyond the LDD regions by a distance of greater than 10 nm.
8. The MOS transistor of , wherein the insulating layer at the edge of the gate comprises the same material of which the gate insulator is formed.
claim 7
9. The MOS transistor of , wherein the insulating layer at the edge of the gate is formed by a gate poly oxidation (GPOX) process.
claim 1
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/757,747 US20010001296A1 (en) | 1997-10-08 | 2001-01-10 | Method of making MOS transistor for high-speed operation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR97-51507 | 1997-10-08 | ||
KR1019970051507A KR19990030993A (en) | 1997-10-08 | 1997-10-08 | Most transistor structure for high speed operation |
US09/149,642 US6218715B1 (en) | 1997-10-08 | 1998-09-08 | MOS transistor for high-speed operation |
US09/757,747 US20010001296A1 (en) | 1997-10-08 | 2001-01-10 | Method of making MOS transistor for high-speed operation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/149,642 Division US6218715B1 (en) | 1997-10-08 | 1998-09-08 | MOS transistor for high-speed operation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010001296A1 true US20010001296A1 (en) | 2001-05-17 |
Family
ID=19522349
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/149,642 Expired - Lifetime US6218715B1 (en) | 1997-10-08 | 1998-09-08 | MOS transistor for high-speed operation |
US09/757,747 Abandoned US20010001296A1 (en) | 1997-10-08 | 2001-01-10 | Method of making MOS transistor for high-speed operation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/149,642 Expired - Lifetime US6218715B1 (en) | 1997-10-08 | 1998-09-08 | MOS transistor for high-speed operation |
Country Status (3)
Country | Link |
---|---|
US (2) | US6218715B1 (en) |
JP (1) | JP3602963B2 (en) |
KR (1) | KR19990030993A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050202643A1 (en) * | 2004-03-11 | 2005-09-15 | Hynix Semiconductor Inc. | Transistor and method for manufacturing the same |
US20090072299A1 (en) * | 2004-12-31 | 2009-03-19 | Dongbu Hitek Co., Ltd. | Semiconductor device having high voltage mos transistor and fabrication method thereof |
DE10235793B4 (en) * | 2001-08-07 | 2009-08-20 | Samsung Electronics Co., Ltd., Suwon | Method for producing a semiconductor device (MOS transistor) |
US20120161245A1 (en) * | 2009-12-21 | 2012-06-28 | Panasonic Corporation | Semiconductor device and method for fabricating the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355580B1 (en) * | 1998-09-03 | 2002-03-12 | Micron Technology, Inc. | Ion-assisted oxidation methods and the resulting structures |
KR100393205B1 (en) * | 2000-05-30 | 2003-07-31 | 삼성전자주식회사 | Memory merged logic semiconductor device of salicided dual gate structure including embedded memory of self-aligned contact structure and Method of manufacturing the same |
KR20030044343A (en) * | 2001-11-29 | 2003-06-09 | 주식회사 하이닉스반도체 | Transistor in a semiconductor device and a method of manufacturing the same |
US20070241372A1 (en) * | 2006-04-18 | 2007-10-18 | Ching-Hung Kao | Image sensor device and method of manufacturing the same |
KR100840661B1 (en) * | 2006-09-13 | 2008-06-24 | 동부일렉트로닉스 주식회사 | Semiconductor device and manufacturing method thereof |
US11195754B2 (en) | 2018-10-09 | 2021-12-07 | International Business Machines Corporation | Transistor with reduced gate resistance and improved process margin of forming self-aligned contact |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146291A (en) * | 1988-08-31 | 1992-09-08 | Mitsubishi Denki Kabushiki Kaisha | MIS device having lightly doped drain structure |
US5543646A (en) * | 1988-09-08 | 1996-08-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor with a shaped gate electrode |
KR970011744B1 (en) * | 1992-11-04 | 1997-07-15 | 마쯔시다덴기산교 가부시기가이샤 | Mosfet of ldd type and a method for fabricating the same |
US5554544A (en) * | 1995-08-09 | 1996-09-10 | United Microelectronics Corporation | Field edge manufacture of a T-gate LDD pocket device |
-
1997
- 1997-10-08 KR KR1019970051507A patent/KR19990030993A/en not_active Application Discontinuation
-
1998
- 1998-03-19 JP JP06974998A patent/JP3602963B2/en not_active Expired - Fee Related
- 1998-09-08 US US09/149,642 patent/US6218715B1/en not_active Expired - Lifetime
-
2001
- 2001-01-10 US US09/757,747 patent/US20010001296A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10235793B4 (en) * | 2001-08-07 | 2009-08-20 | Samsung Electronics Co., Ltd., Suwon | Method for producing a semiconductor device (MOS transistor) |
US20050202643A1 (en) * | 2004-03-11 | 2005-09-15 | Hynix Semiconductor Inc. | Transistor and method for manufacturing the same |
US7220651B2 (en) * | 2004-03-11 | 2007-05-22 | Hynix Semiconductor, Inc | Transistor and method for manufacturing the same |
US20090072299A1 (en) * | 2004-12-31 | 2009-03-19 | Dongbu Hitek Co., Ltd. | Semiconductor device having high voltage mos transistor and fabrication method thereof |
US20120161245A1 (en) * | 2009-12-21 | 2012-06-28 | Panasonic Corporation | Semiconductor device and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
JPH11121738A (en) | 1999-04-30 |
KR19990030993A (en) | 1999-05-06 |
US6218715B1 (en) | 2001-04-17 |
JP3602963B2 (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3221766B2 (en) | Method for manufacturing field effect transistor | |
US6087237A (en) | Method of manufacturing a MOSFET by forming a single oxide layer doping with either an oxide accelerator or an oxide inhibitor producing asymmetric thickness | |
JP2735041B2 (en) | Semiconductor device and manufacturing method thereof | |
US6713355B2 (en) | Semiconductor processing method | |
US6218715B1 (en) | MOS transistor for high-speed operation | |
US6057582A (en) | Semiconductor device with gate electrode having end portions to reduce hot carrier effects | |
JPH1187704A (en) | Semiconductor device and manufacturing method thereof | |
US5527725A (en) | Method for fabricating a metal oxide semiconductor field effect transistor | |
US5502322A (en) | Transistor having a nonuniform doping channel | |
JPS58153368A (en) | Insulated gate field effect transistor | |
JPH06177146A (en) | MOS FET manufacturing method | |
JPS6025028B2 (en) | Manufacturing method of semiconductor device | |
KR960000229B1 (en) | Making method of vertical channel mosfet using trench structure | |
JPH1050994A (en) | Method for manufacturing semiconductor device | |
JP2001250941A (en) | Semiconductor device and its manufacturing method | |
JPS6161465A (en) | MOS type field effect transistor and its manufacturing method | |
KR101004807B1 (en) | Structure of High Voltage Transistor of Curved Channel with Increased Channel Punch Resistance and Its Manufacturing Method | |
JPH05136403A (en) | Manufacture of mos type semiconductor device | |
KR960013947B1 (en) | Mos transistor | |
JP3017838B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS61139070A (en) | semiconductor equipment | |
JPH07263691A (en) | Carrier injection transistor | |
KR940010926B1 (en) | MOS transistor semiconductor device and manufacturing method thereof | |
JP2000100964A (en) | Semiconductor device | |
JPH0244734A (en) | Manufacture of mis transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |