JPH11121738A - MOS transistor - Google Patents
MOS transistorInfo
- Publication number
- JPH11121738A JPH11121738A JP10069749A JP6974998A JPH11121738A JP H11121738 A JPH11121738 A JP H11121738A JP 10069749 A JP10069749 A JP 10069749A JP 6974998 A JP6974998 A JP 6974998A JP H11121738 A JPH11121738 A JP H11121738A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- gate
- region
- mos transistor
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/608—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having non-planar bodies, e.g. having recessed gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
- H10D64/516—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
(57)【要約】
【課題】 ホットキャリヤ効果を防止しながら、ドレイ
ン飽和電流特性も良好となるMOSトランジスタを提供
すること。
【解決手段】 ホットキャリヤ効果を防止する厚い絶縁
膜14は、ポリシリコンゲート13のエッジからチャン
ネル方向にLDD領域であるn- 領域15を越えない範
囲で形成される。
[PROBLEMS] To provide a MOS transistor having a good drain saturation current characteristic while preventing a hot carrier effect. SOLUTION: A thick insulating film 14 for preventing a hot carrier effect is formed in a range not exceeding an n − region 15 which is an LDD region in a channel direction from an edge of a polysilicon gate 13.
Description
【0001】[0001]
【発明の属する技術分野】本発明はMOSトランジスタ
に係り、特にゲート領域構造に関するものである。[0001] 1. Field of the Invention [0002] The present invention relates to a MOS transistor, and more particularly to a gate region structure.
【0002】[0002]
【従来の技術】既存のMOSトランジスタにおいては、
ドレインエッジでの高電界によるホットキャリヤ効果に
起因する信頼性低下を改善するために、一般にLDD領
域を形成した。しかし、素子の高速特性を追求してLD
D領域のドーピング濃度が増加することに伴い、ゲート
エッジで再度電界が増加した。そこで、ゲートエッジ付
近を部分的に酸化(GPOX:gate poly oxidation )
させて、ゲートエッジ部のゲート絶縁膜両端部のゲート
絶縁膜を厚くすることにより、この部分の電界を最小化
させてホットキャリヤ効果を抑制させることが行われて
おり、これをGPOX構造と呼ぶ。2. Description of the Related Art In existing MOS transistors,
An LDD region is generally formed in order to improve the reliability reduction caused by the hot carrier effect due to the high electric field at the drain edge. However, in pursuit of high-speed characteristics of the device, LD
As the doping concentration of the D region increased, the electric field increased again at the gate edge. Therefore, partial oxidation near the gate edge (GPOX: gate poly oxidation)
By increasing the thickness of the gate insulating film at both ends of the gate insulating film at the gate edge, the electric field in this portion is minimized to suppress the hot carrier effect. This is called a GPOX structure. .
【0003】図3は、GPOX構造を採用した従来のM
OSトランジスタを示す。この図において、1はp型シ
リコン基板であり、このシリコン基板1のチャンネル領
域上にゲート絶縁膜2を介してポリシリコンゲート3が
形成される。このポリシリコンゲート3エッジのゲート
絶縁膜2両端部およびその外側の基板1表面部には厚い
絶縁膜4が形成される。この絶縁膜4の下において、シ
リコン基板1内には、ソースおよびドレインを構成する
n- 領域5とn+ 領域6が形成される。ポリシリコンゲ
ート3の側面には側壁7が形成される。FIG. 3 is a diagram showing a conventional M-type structure employing a GPOX structure.
3 illustrates an OS transistor. In FIG. 1, reference numeral 1 denotes a p-type silicon substrate, and a polysilicon gate 3 is formed on a channel region of the silicon substrate 1 via a gate insulating film 2. A thick insulating film 4 is formed on both ends of the gate insulating film 2 at the edge of the polysilicon gate 3 and on the surface of the substrate 1 outside the both ends. Under the insulating film 4, an n − region 5 and an n + region 6 forming a source and a drain are formed in the silicon substrate 1. Side walls 7 are formed on the side surfaces of the polysilicon gate 3.
【0004】このようなMOSトランジスタは、次のよ
うな工程により製造される。まず、p型シリコン基板1
上にゲート絶縁膜2を形成した後、ポリシリコンをその
上に堆積し、所定のゲートパターンマスク(図示せず)
を用いて前記ポリシリコン層をパターニングしてポリシ
リコンゲート3を形成する。次いで、ゲートポリ酸化工
程を施して7〜17nmほどの厚い酸化膜4を形成す
る。次いで、LDDイオン注入工程を実施してn- 領域
5を形成した後、ポリシリコンゲート3の側面に側壁7
を形成し、しかる後、再びイオン注入工程を施してn+
領域6を形成することによりLDD構造のソースおよび
ドレインを完成させる。[0004] Such a MOS transistor is manufactured by the following steps. First, the p-type silicon substrate 1
After forming the gate insulating film 2 thereon, polysilicon is deposited thereon, and a predetermined gate pattern mask (not shown)
Then, the polysilicon layer is patterned to form a polysilicon gate 3. Next, a gate poly-oxidation process is performed to form a thick oxide film 4 having a thickness of about 7 to 17 nm. Next, after performing an LDD ion implantation step to form an n − region 5, a side wall 7 is formed on the side surface of the polysilicon gate 3.
Is formed, and then an ion implantation process is performed again to obtain n +
By forming the region 6, the source and the drain of the LDD structure are completed.
【0005】[0005]
【発明が解決しようとする課題】上記のような従来の構
造および方法において、厚い絶縁膜4は、ゲート絶縁膜
2よりも相当に厚く形成されるため、この絶縁膜4を形
成するためのGPOX工程は、長時間の熱酸化工程とな
る。しかるに、熱酸化工程時間が長くなると、酸化時の
酸化源のH2 /O2 がポリシリコンゲートとゲート絶縁
膜の界面、およびゲート絶縁膜とシリコン基板の界面に
沿ってポリシリコンゲート3のエッジからポリシリコン
ゲート3の中央部側に拡散するため、図3に示すよう
に、厚い絶縁膜4にバーズビークBBが発生し、厚い絶
縁膜4がポリシリコンゲート3のエッジから内側に深く
入り込むようになる。この従来例のように厚い絶縁膜4
を7〜17nm厚に形成した場合、厚い絶縁膜4は、ポ
リシリコンゲート3のエッジから50nmも深く入り込
み、n- 領域5(LDD領域)を越えてその内側のチャ
ンネル領域まで入り込む。したがって、従来のMOSト
ランジスタでは、GPOX構造によりホットキャリヤ効
果は改善されるが、厚い絶縁膜4がポリシリコンゲート
3の内側に深く形成される結果、動作速度を代弁するド
レイン飽和電流(Idsat) 特性が劣化し、高速回路を実現
する上で障害が発生する問題点があった。In the conventional structure and method as described above, the thick insulating film 4 is formed to be considerably thicker than the gate insulating film 2, so that GPOX for forming the insulating film 4 is used. The process is a long-time thermal oxidation process. However, when the thermal oxidation process time is prolonged, the oxidation source H 2 / O 2 at the time of the oxidation is increased along the interface between the polysilicon gate and the gate insulating film and the interface between the gate insulating film and the silicon substrate along the edge of the polysilicon gate 3. 3, the bird's beak BB occurs in the thick insulating film 4 as shown in FIG. 3, and the thick insulating film 4 penetrates deeply from the edge of the polysilicon gate 3 to the inside. Become. Thick insulating film 4 as in this conventional example
Is formed to a thickness of 7 to 17 nm, the thick insulating film 4 penetrates as deep as 50 nm from the edge of the polysilicon gate 3, crosses the n − region 5 (LDD region), and enters the channel region inside. Therefore, in the conventional MOS transistor, although the hot carrier effect is improved by the GPOX structure, the thick insulating film 4 is formed deep inside the polysilicon gate 3, and as a result, the drain saturation current (Idsat) characteristic which substitutes the operation speed is obtained. However, there has been a problem that a failure occurs in realizing a high-speed circuit.
【0006】本発明は上記の点に鑑みなされたもので、
ホットキャリヤ効果を防止しながら、ドレイン飽和電流
特性も良好となるMOSトランジスタを提供することを
目的とする。[0006] The present invention has been made in view of the above points,
It is an object of the present invention to provide a MOS transistor having a good drain saturation current characteristic while preventing a hot carrier effect.
【0007】[0007]
【課題を解決するための手段】本発明は上述の課題を解
決するために、LDD構造を有するMOSトランジスタ
において、半導体基板のチャンネル領域上にゲート絶縁
膜を介してゲートを形成し、該ゲートエッジ部のゲート
絶縁膜両端部にゲート絶縁膜よりも厚い絶縁膜を形成
し、該厚い絶縁膜は前記チャンネル領域側にLDD領域
を越えない範囲で形成されることを特徴とするMOSト
ランジスタとする。According to the present invention, in order to solve the above-mentioned problems, in a MOS transistor having an LDD structure, a gate is formed on a channel region of a semiconductor substrate via a gate insulating film, and the gate edge is formed. A MOS transistor characterized in that an insulating film thicker than the gate insulating film is formed at both ends of the gate insulating film, and the thick insulating film is formed on the channel region side so as not to exceed the LDD region.
【0008】また、本発明は、LDD構造を有するMO
Sトランジスタにおいて、半導体基板のチャンネル領域
上にゲート絶縁膜を介してゲートを形成し、該ゲートエ
ッジ部のゲート絶縁膜両端部にゲート絶縁膜よりも厚い
絶縁膜を形成し、該厚い絶縁膜は、LDD領域が終わる
地点からチャンネル領域側に10nm以内に位置するこ
とを特徴とするMOSトランジスタとする。Further, the present invention relates to an MO having an LDD structure.
In the S transistor, a gate is formed on a channel region of a semiconductor substrate via a gate insulating film, and an insulating film thicker than the gate insulating film is formed at both ends of the gate insulating film at the gate edge. , The MOS transistor is located within 10 nm from the point where the LDD region ends to the channel region side.
【0009】[0009]
【発明の実施の形態】次に添付図面を参照して本発明の
MOSトランジスタの実施の形態を詳細に説明する。図
1は本発明の第1の実施の形態を示す断面図である。こ
の図において、11はp型シリコン基板であり、このシ
リコン基板11のチャンネル領域上にゲート絶縁膜12
を介してポリシリコンゲート13が形成される。このポ
リシリコンゲート13エッジのゲート絶縁膜12両端部
およびその外側の基板11表面部には厚い絶縁膜14が
形成される。この絶縁膜14は、ゲート絶縁膜12と類
似の性質の絶縁膜であり、例えばシリコン酸化膜であ
る。前記ポリシリコンゲート13のエッジ部分の下にお
いてシリコン基板11の表面部内には、LDD領域であ
るn- 領域15が形成される。さらに、このn- 領域1
5に接続して、その外側の基板11表面部内にはn+ 領
域16が形成される。このn- 領域15とn+ 領域16
とによりソースおよびドレイン領域が形成される。ポリ
シリコンゲート13の側面には側壁17が形成される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a MOS transistor according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a first embodiment of the present invention. In this figure, reference numeral 11 denotes a p-type silicon substrate, and a gate insulating film 12 is formed on a channel region of the silicon substrate 11.
, A polysilicon gate 13 is formed. A thick insulating film 14 is formed on both ends of the gate insulating film 12 at the edge of the polysilicon gate 13 and on the surface of the substrate 11 outside thereof. The insulating film 14 is an insulating film having properties similar to those of the gate insulating film 12, and is, for example, a silicon oxide film. An n − region 15, which is an LDD region, is formed in the surface portion of the silicon substrate 11 below the edge portion of the polysilicon gate 13. Furthermore, this n - region 1
5 and an n + region 16 is formed in the surface portion of the substrate 11 outside thereof. The n − region 15 and the n + region 16
Thus, source and drain regions are formed. Side walls 17 are formed on the side surfaces of the polysilicon gate 13.
【0010】以上のような構造において、厚い絶縁膜1
4は、ポリシリコンゲート13のエッジからポリシリコ
ンゲート13の中央部(内側)に入り込んで形成される
が、図1の第1の実施の形態では、厚い絶縁膜14は、
LDD領域であるn- 領域15を越えない範囲で形成さ
れる。例えばポリシリコンゲート13のエッジからn-
領域15の縁までを25nmとすると、厚い絶縁膜14
は、ポリシリコンゲート13のエッジからチャンネル方
向に20nm未満の位置まで形成される。すなわち、厚
い絶縁膜14は、n- 領域15の内側のチャンネル領域
には形成されないようにする。その結果、図1の第1の
実施の形態では、ホットキャリヤ効果を防止できる上
に、チャンネル領域でのゲート絶縁膜12の厚さを元来
の厚さのままとすることによりドレイン飽和電流特性を
向上させることができ、高速回路を実現できる。なお、
厚い絶縁膜14を2〜3nmの厚さに形成することによ
り、上記のような入り込み状態で厚い絶縁膜14を形成
できる。In the above structure, the thick insulating film 1
4 is formed by penetrating into the central portion (inside) of the polysilicon gate 13 from the edge of the polysilicon gate 13, but in the first embodiment of FIG.
It is formed in a range not exceeding n − region 15 which is an LDD region. For example, n − from the edge of the polysilicon gate 13
Assuming that the region up to the edge of the region 15 is 25 nm, the thick insulating film 14 is formed.
Is formed from the edge of the polysilicon gate 13 to a position less than 20 nm in the channel direction. That is, the thick insulating film 14 is prevented from being formed in the channel region inside the n − region 15. As a result, in the first embodiment shown in FIG. 1, the hot carrier effect can be prevented and the drain saturation current characteristic can be reduced by keeping the gate insulating film 12 in the channel region at the original thickness. And a high-speed circuit can be realized. In addition,
By forming the thick insulating film 14 to have a thickness of 2 to 3 nm, the thick insulating film 14 can be formed in the above-described indented state.
【0011】図2は本発明の第2の実施の形態を示す。
この第2の実施の形態において、図1と同一部分は図1
と同一符号を付してその説明を省略する。この第2の実
施の形態では、ポリシリコンゲート13のエッジからポ
リシリコンゲート13の中央部方向へのn- 領域15の
入り込みが少ないため、厚い絶縁膜14がn- 領域15
を越えてチャンネル領域側まで入り込んでいるが、この
ように入り込んでも、n- 領域15が終わった地点から
チャンネル領域側に10nm以内に入り込み部が留まる
ように厚い絶縁膜14が形成される。したがって、この
第2の実施の形態においても、ホットキャリヤ効果を防
止でき、かつ、ドレイン飽和電流特性を向上させること
ができる。FIG. 2 shows a second embodiment of the present invention.
In the second embodiment, the same parts as those in FIG.
The same reference numerals are given and the description is omitted. In the second embodiment, since the n − region 15 is less penetrated from the edge of the polysilicon gate 13 toward the center of the polysilicon gate 13, the thick insulating film 14 is formed in the n − region 15.
However, even if such a penetration occurs, a thick insulating film 14 is formed such that the penetration portion remains within 10 nm from the point where the n − region 15 ends to the channel region side. Therefore, also in the second embodiment, the hot carrier effect can be prevented and the drain saturation current characteristics can be improved.
【0012】シミュレーションで、厚い絶縁膜14の厚
さを2〜3nmにして、図1および図2の厚い絶縁膜1
4の形成状態でMOSトランジスタを製造したところ、
厚い絶縁膜の厚さを7〜17nmにして図3の状態で厚
い絶縁膜を形成した従来のMOSトランジスタに比較し
て、ドレイン飽和電流が約15%以上向上することを確
認した。従来の構造ではN−MOSFETで Idsat=5
80μA/μm であり、本発明の構造ではIdsat=650μ
A/μm の結果が得られた。また、実際製造した場合は、
従来の構造がN−MOSFETで Idsat=600μA/μ
m 、本発明の構造がIdsat=710μA/μm であり、実際
製造時は前記のシミュレーションの結果よりも一層良好
な結果を本発明は得た。このような本発明での性能向上
はポリシリコンゲートの大きさが80%スケールダウン
される効果と同様な効果を生み出すものであって、本発
明の構造によればスケールダウンに伴う特性劣化を防止
し得る。In the simulation, the thickness of the thick insulating film 14 was set to 2-3 nm, and the thickness of the thick insulating film 1 shown in FIGS.
When a MOS transistor was manufactured in the formation state of No. 4,
It has been confirmed that the drain saturation current is improved by about 15% or more as compared with the conventional MOS transistor in which the thickness of the thick insulating film is 7 to 17 nm and the thick insulating film is formed in the state of FIG. In the conventional structure, Idsat = 5 with N-MOSFET
80 μA / μm, and Idsat = 650 μm in the structure of the present invention.
A / μm results were obtained. Also, when actually manufactured,
Conventional structure is N-MOSFET and Idsat = 600μA / μ
m, the structure of the present invention is Idsat = 710 μA / μm, and the present invention actually obtained a better result than that of the above-mentioned simulation at the time of manufacture. Such performance improvement in the present invention produces an effect similar to the effect that the size of the polysilicon gate is reduced by 80%. According to the structure of the present invention, deterioration of characteristics due to scale down is prevented. I can do it.
【0013】また、本発明によるMOSトランジスタ特
性の改善効果はショ−トチャンネル構造になればなるほ
ど一層大きくなる。これはゲート長さが1/2サブミク
ロンになるに従い、ゲート長さに対する絶縁膜のバーズ
ビーク長さが占める比重が大きくなり、バーズビークが
MOSトランジスタ特性に与える影響が大きくなるため
である。ゲート長さが短くなればなるほどバーズビーク
長さに伴うドレイン飽和電流の変化は一層大きくなる。
したがって、本発明の構造は、ゲート長さが1/2サブ
ミクロンの素子になるに従い一層重要な要素として作用
する。Further, the effect of improving the MOS transistor characteristics according to the present invention becomes larger as the short channel structure becomes. This is because, as the gate length becomes ミ ク ロ ン submicron, the specific gravity occupied by the bird's beak length of the insulating film with respect to the gate length increases, and the influence of the bird's beak on the MOS transistor characteristics increases. The shorter the gate length, the greater the change in drain saturation current with bird's beak length.
Therefore, the structure of the present invention acts as a more important factor as the gate length becomes a half submicron device.
【0014】なお、本発明は、上述の実施の形態に限定
されるものではなく、本発明の技術的思想を外れない限
り多様な置換、変形および変更が可能であることは本発
明の属する技術分野で通常の知識を有する者においては
明白である。It should be noted that the present invention is not limited to the above-described embodiment, and that various substitutions, modifications and changes can be made without departing from the technical idea of the present invention. It is obvious to those having ordinary knowledge in the field.
【0015】[0015]
【発明の効果】以上詳述したように本発明のMOSトラ
ンジスタによれば、ホットキャリヤ効果を防止しなが
ら、ドレイン飽和電流特性も良好となり、高速回路を実
現できる。As described in detail above, according to the MOS transistor of the present invention, the hot carrier effect is prevented, the drain saturation current characteristics are improved, and a high-speed circuit can be realized.
【図1】本発明のMOSトランジスタの第1の実施の形
態を示す断面図。FIG. 1 is a sectional view showing a MOS transistor according to a first embodiment of the present invention;
【図2】本発明のMOSトランジスタの第2の実施の形
態を示す断面図。FIG. 2 is a sectional view showing a MOS transistor according to a second embodiment of the present invention;
【図3】従来のMOSトランジスタを示す断面図。FIG. 3 is a sectional view showing a conventional MOS transistor.
11 p型シリコン基板 12 ゲート絶縁膜 13 ポリシリコンゲート 14 絶縁膜 15 n- 領域 16 n+ 領域Reference Signs List 11 p-type silicon substrate 12 gate insulating film 13 polysilicon gate 14 insulating film 15 n - region 16 n + region
Claims (4)
において、 半導体基板のチャンネル領域上にゲート絶縁膜を介して
ゲートを形成し、該ゲートエッジ部のゲート絶縁膜両端
部にゲート絶縁膜よりも厚い絶縁膜を形成し、該厚い絶
縁膜は前記チャンネル領域側にLDD領域を越えない範
囲で形成されることを特徴とするMOSトランジスタ。In a MOS transistor having an LDD structure, a gate is formed on a channel region of a semiconductor substrate via a gate insulating film, and an insulating film thicker than the gate insulating film is formed on both ends of the gate insulating film at the gate edge. Wherein the thick insulating film is formed on the channel region side so as not to exceed the LDD region.
類似な性質を有することを特徴とする請求項1記載のM
OSトランジスタ。2. The semiconductor device according to claim 1, wherein the thick insulating film has properties similar to those of the gate insulating film.
OS transistor.
において、 半導体基板のチャンネル領域上にゲート絶縁膜を介して
ゲートを形成し、該ゲートエッジ部のゲート絶縁膜両端
部にゲート絶縁膜よりも厚い絶縁膜を形成し、該厚い絶
縁膜は、LDD領域が終わる地点からチャンネル領域側
に10nm以内に位置することを特徴とするMOSトラ
ンジスタ。3. A MOS transistor having an LDD structure, wherein a gate is formed on a channel region of a semiconductor substrate via a gate insulating film, and an insulating film thicker than the gate insulating film at both ends of the gate insulating film at the gate edge. Wherein the thick insulating film is located within 10 nm from the point where the LDD region ends to the channel region side.
類似な性質を有することを特徴とする請求項3記載のM
OSトランジスタ。4. The M according to claim 3, wherein the thick insulating film has properties similar to those of the gate insulating film.
OS transistor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1997P-51507 | 1997-10-08 | ||
KR1019970051507A KR19990030993A (en) | 1997-10-08 | 1997-10-08 | Most transistor structure for high speed operation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11121738A true JPH11121738A (en) | 1999-04-30 |
JP3602963B2 JP3602963B2 (en) | 2004-12-15 |
Family
ID=19522349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06974998A Expired - Fee Related JP3602963B2 (en) | 1997-10-08 | 1998-03-19 | MOS transistor |
Country Status (3)
Country | Link |
---|---|
US (2) | US6218715B1 (en) |
JP (1) | JP3602963B2 (en) |
KR (1) | KR19990030993A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030044343A (en) * | 2001-11-29 | 2003-06-09 | 주식회사 하이닉스반도체 | Transistor in a semiconductor device and a method of manufacturing the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355580B1 (en) * | 1998-09-03 | 2002-03-12 | Micron Technology, Inc. | Ion-assisted oxidation methods and the resulting structures |
KR100393205B1 (en) * | 2000-05-30 | 2003-07-31 | 삼성전자주식회사 | Memory merged logic semiconductor device of salicided dual gate structure including embedded memory of self-aligned contact structure and Method of manufacturing the same |
KR100438772B1 (en) * | 2001-08-07 | 2004-07-05 | 삼성전자주식회사 | Method for manufacturing semiconductor device capable to prevent bubble defects |
KR100557531B1 (en) * | 2004-03-11 | 2006-03-03 | 주식회사 하이닉스반도체 | Semiconductor device and manufacturing method thereof |
KR100628642B1 (en) * | 2004-12-31 | 2006-09-26 | 동부일렉트로닉스 주식회사 | Formation method of high voltage MOS transistor and high voltage MOS transistor |
US20070241372A1 (en) * | 2006-04-18 | 2007-10-18 | Ching-Hung Kao | Image sensor device and method of manufacturing the same |
KR100840661B1 (en) * | 2006-09-13 | 2008-06-24 | 동부일렉트로닉스 주식회사 | Semiconductor device and manufacturing method thereof |
JP5435720B2 (en) * | 2009-12-21 | 2014-03-05 | パナソニック株式会社 | Semiconductor device |
US11195754B2 (en) | 2018-10-09 | 2021-12-07 | International Business Machines Corporation | Transistor with reduced gate resistance and improved process margin of forming self-aligned contact |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146291A (en) * | 1988-08-31 | 1992-09-08 | Mitsubishi Denki Kabushiki Kaisha | MIS device having lightly doped drain structure |
US5543646A (en) * | 1988-09-08 | 1996-08-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor with a shaped gate electrode |
KR970011744B1 (en) * | 1992-11-04 | 1997-07-15 | 마쯔시다덴기산교 가부시기가이샤 | Mosfet of ldd type and a method for fabricating the same |
US5554544A (en) * | 1995-08-09 | 1996-09-10 | United Microelectronics Corporation | Field edge manufacture of a T-gate LDD pocket device |
-
1997
- 1997-10-08 KR KR1019970051507A patent/KR19990030993A/en not_active Application Discontinuation
-
1998
- 1998-03-19 JP JP06974998A patent/JP3602963B2/en not_active Expired - Fee Related
- 1998-09-08 US US09/149,642 patent/US6218715B1/en not_active Expired - Lifetime
-
2001
- 2001-01-10 US US09/757,747 patent/US20010001296A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030044343A (en) * | 2001-11-29 | 2003-06-09 | 주식회사 하이닉스반도체 | Transistor in a semiconductor device and a method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR19990030993A (en) | 1999-05-06 |
US6218715B1 (en) | 2001-04-17 |
JP3602963B2 (en) | 2004-12-15 |
US20010001296A1 (en) | 2001-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04225529A (en) | Improved method of fabricating integrated circuit structures with lightly doped drains (LDDs) | |
JP3602963B2 (en) | MOS transistor | |
JP3057436B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS5925242A (en) | Semiconductor device | |
JP4592193B2 (en) | Manufacturing method of semiconductor device | |
JPH06268057A (en) | Manufacture of semiconductor device | |
JPS5917865B2 (en) | hand tai souchi no seizou houhou | |
JPS6197967A (en) | Semiconductor device and its manufacturing method | |
JPS6025028B2 (en) | Manufacturing method of semiconductor device | |
JPH036863A (en) | semiconductor equipment | |
JPS63241965A (en) | Insulated gate field effect transistor and its manufacturing method | |
JPS6126264A (en) | Manufacturing method of semiconductor device | |
JPH11163163A (en) | Manufacture of semiconductor device | |
JPS59224141A (en) | Manufacture of semiconductor device | |
JPH09307102A (en) | Semiconductor device | |
JPH1126766A (en) | Mos field effect transistor and manufacture thereof | |
JPS63122272A (en) | Mos type field effect transistor and its manufacture | |
JPS626664B2 (en) | ||
JPH033245A (en) | Manufacturing method of semiconductor device | |
JPH02240934A (en) | Manufacture of mos semiconductor device | |
JPH04137735A (en) | Semiconductor device and its manufacturing method | |
JPH01270272A (en) | Manufacturing method of MIS type semiconductor device | |
JPS63292679A (en) | Manufacture of mos transistor | |
JPH01289168A (en) | Manufacture of semiconductor device | |
JPH06104427A (en) | Semiconductor device and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040927 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091001 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111001 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121001 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |