TWI868962B - Semiconductor device and fabricating method thereof - Google Patents
Semiconductor device and fabricating method thereof Download PDFInfo
- Publication number
- TWI868962B TWI868962B TW112137797A TW112137797A TWI868962B TW I868962 B TWI868962 B TW I868962B TW 112137797 A TW112137797 A TW 112137797A TW 112137797 A TW112137797 A TW 112137797A TW I868962 B TWI868962 B TW I868962B
- Authority
- TW
- Taiwan
- Prior art keywords
- trench
- region
- layer
- semiconductor device
- source
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 45
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims description 63
- 239000002184 metal Substances 0.000 claims description 63
- 125000006850 spacer group Chemical group 0.000 claims description 50
- 230000008569 process Effects 0.000 claims description 28
- 229910021332 silicide Inorganic materials 0.000 claims description 21
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 210000000746 body region Anatomy 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 239000003989 dielectric material Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 3
- 238000000059 patterning Methods 0.000 claims 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 10
- 229910010271 silicon carbide Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000005137 deposition process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- -1 aluminum silicon copper Chemical compound 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910016570 AlCu Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Abstract
Description
本揭露係關於半導體技術,特別是關於包含溝槽型功率電晶體之半導體裝置及其製造方法。 This disclosure relates to semiconductor technology, and in particular to semiconductor devices including trench-type power transistors and methods for manufacturing the same.
在電力電子系統中通常會使用功率電晶體作為功率開關、轉換器等功率元件,功率電晶體是指在高電壓、大電流的條件下工作的電晶體,最常見的功率電晶體例如為功率金屬氧化物半導體場效電晶體(power metal-oxide-semiconductor field effect transistor,power MOSFET),其包含水平式結構,例如橫向擴散金屬氧化物半導體(laterally-diffused MOS,LDMOS)場效電晶體(FET),以及垂直式結構,例如平面型閘極金屬氧化物半導體場效電晶體(planar gate MOSFET)、溝槽型閘極金屬氧化物半導體場效電晶體(trench gate MOSFET),其中溝槽型閘極MOSFET係將閘極設置於溝槽內,相較於平面型閘極MOSFET,溝槽型閘極MOSFET具有縮小元件單元尺寸的好處,但是習知的溝槽型閘極MOSFET仍有許多待改善的需求,例如降低導通電阻(on-resistance,Ron)、降低各種寄生電容等。 In power electronics systems, power transistors are usually used as power components such as power switches and converters. Power transistors refer to transistors that work under high voltage and high current conditions. The most common power transistors are power metal-oxide-semiconductor field effect transistors (power MOSFETs), which include horizontal structures such as laterally-diffused MOS (LDMOS) field effect transistors (FETs), and vertical structures such as planar gate MOSFETs, trench gate MOSFETs, and MOSFETs. MOSFET), in which the gate is set in the trench. Compared with the planar gate MOSFET, the trench gate MOSFET has the advantage of reducing the size of the component unit. However, the known trench gate MOSFET still has many needs to be improved, such as reducing the on-resistance (Ron) and reducing various parasitic capacitances.
有鑑於此,本揭露提出一種半導體裝置及其製造方法,於閘極接墊(gate pad)正下方設置多個溝槽,在這些溝槽內設置介電襯層和導電部,並且在這些溝槽的側邊設置摻雜區,藉此可在閘極接墊的正下方增加有效溝槽型功率電晶體的數目,進而降低半導體裝置的特性導通電阻(specific on-resistance,Ron,sp)。此外,在這些溝槽底部具有厚的氧化物層,藉此可降低在閘極接墊下方的閘極-汲極電容(Cgd)。另外,在溝槽側邊的摻雜區上採用自對準接觸(self-aligned contact)的金屬矽化物(silicide)層,藉此可進一步縮小溝槽型功率電晶體的單元間距(cell pitch),有助於降低半導體裝置的特性導通電阻。 In view of this, the present disclosure proposes a semiconductor device and a manufacturing method thereof, wherein a plurality of trenches are disposed directly below a gate pad, a dielectric liner and a conductive portion are disposed in the trenches, and a doping region is disposed on the sides of the trenches, thereby increasing the number of effective trench-type power transistors directly below the gate pad, thereby reducing the specific on-resistance (Ron,sp) of the semiconductor device. In addition, a thick oxide layer is provided at the bottom of the trenches, thereby reducing the gate-drain capacitance (Cgd) below the gate pad. In addition, a self-aligned contact metal silicide layer is used on the doped region on the side of the trench, which can further reduce the cell pitch of the trench power transistor and help reduce the characteristic on-resistance of the semiconductor device.
根據本揭露的一實施例,提供一種半導體裝置,包括基底、閘極接墊、源極接墊、汲極區、第一溝槽、導電部、介電襯層、第一摻雜區、第二溝槽、閘極電極、閘極介電層以及源極區。基底具有第一表面和第二表面,閘極接墊和源極接墊彼此側向分離,且均設置於基底的第一表面之上,汲極區設置於基底的第二表面。第一溝槽設置於基底中,位於閘極接墊的正下方,導電部填充於第一溝槽內,介電襯層設置於第一溝槽內且圍繞導電部,第一摻雜區位於第一溝槽的側邊。第二溝槽設置於基底中,位於源極接墊的正下方,閘極電極填充於第二溝槽內,閘極介電層設置於第二溝槽內且圍繞閘極電極,源極區位於第二溝槽的側邊,其中第一摻雜區和源極區具有相同的導電類型。 According to an embodiment of the present disclosure, a semiconductor device is provided, including a substrate, a gate pad, a source pad, a drain region, a first trench, a conductive portion, a dielectric liner, a first doped region, a second trench, a gate electrode, a gate dielectric layer, and a source region. The substrate has a first surface and a second surface, the gate pad and the source pad are laterally separated from each other and are both disposed on the first surface of the substrate, and the drain region is disposed on the second surface of the substrate. The first trench is arranged in the substrate, directly below the gate pad, the conductive part is filled in the first trench, the dielectric liner is arranged in the first trench and surrounds the conductive part, and the first doped region is arranged on the side of the first trench. The second trench is arranged in the substrate, directly below the source pad, the gate electrode is filled in the second trench, the gate dielectric layer is arranged in the second trench and surrounds the gate electrode, and the source region is arranged on the side of the second trench, wherein the first doped region and the source region have the same conductive type.
根據本揭露的一實施例,提供一種半導體裝置的製造方法,包括以下步驟:提供基底,包括形成汲極區和在汲極區上形成磊晶層;對磊晶層進行離子佈植製程,以形成第一摻雜區和源極區,均具有第一導電類型;在磊晶層內形成第一溝槽和第二溝槽,分別鄰接第一摻雜區和源極區;在第一溝槽和第二溝槽內分別形成介電襯層和閘極介電層;在第一溝槽和第二溝槽內分別形成導電部和閘極電極,其中介電襯層圍繞導電部,閘極介電層圍繞閘極電極;以及在磊晶層之上形成彼此側向分離的閘極接墊和源極接墊,且分別位於第一溝 槽和第二溝槽正上方。 According to an embodiment of the present disclosure, a method for manufacturing a semiconductor device is provided, comprising the following steps: providing a substrate, including forming a drain region and forming an epitaxial layer on the drain region; performing an ion implantation process on the epitaxial layer to form a first doped region and a source region, both of which have a first conductivity type; forming a first trench and a second trench in the epitaxial layer, adjacent to the first doped region and the source region, respectively; region; forming a dielectric liner and a gate dielectric layer in the first trench and the second trench respectively; forming a conductive portion and a gate electrode in the first trench and the second trench respectively, wherein the dielectric liner surrounds the conductive portion and the gate dielectric layer surrounds the gate electrode; and forming a gate pad and a source pad laterally separated from each other on the epitaxial layer, and located directly above the first trench and the second trench respectively.
為了讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下。 In order to make the features of this disclosure clear and easy to understand, the following is a detailed description of the embodiments with the accompanying drawings.
100:半導體裝置 100:Semiconductor devices
100G:閘極接墊區 100G: Gate pad area
100S:源極接墊區 100S: Source pad area
101:磊晶層 101: Epitaxial layer
101-1:第一磊晶層 101-1: First epitaxial layer
101-2:第二磊晶層 101-2: Second epitaxial layer
102:遮蔽區 102: Sheltered area
103:汲極區 103: Drain area
105:井區 105: Well area
107:N型重摻雜區 107: N-type heavily doped region
107-1:第一摻雜區 107-1: The first mixed area
107-2:源極區 107-2: Source region
109:P型重摻雜區 109: P-type heavily doped region
109-1:第二摻雜區 109-1: Second mixed area
109-2:基體區 109-2: Matrix area
110:基底 110: Base
110F:第一表面 110F: First surface
110B:第二表面 110B: Second surface
111:金屬矽化物層 111: Metal silicide layer
120-1:第一溝槽 120-1: First groove
120-2:第二溝槽 120-2: Second groove
120i:初始溝槽 120i: Initial groove
120iB:底面 120iB: Bottom
120s:子溝槽 120s: sub-groove
121:導電部 121: Conductive part
122:閘極電極 122: Gate electrode
123:介電襯層 123: Dielectric liner
123S:第一部份 123S: Part 1
123B:第二部份 123B: Part 2
125:閘極介電層 125: Gate dielectric layer
125S:第三部份 125S: Part 3
125B:第四部份 125B: Part 4
131:第一金屬層 131: First metal layer
132:第二金屬層 132: Second metal layer
133:介電層 133: Dielectric layer
133-1:介電層的一部分 133-1: Part of the dielectric layer
133-2:介電層的另一部份 133-2: Another part of the dielectric layer
134:開口 134: Open your mouth
135:導通孔 135: Conductive hole
137:閘極接墊 137: Gate pad
137E:延伸部 137E: Extension
139:源極接墊 139: Source pad
140:硬遮罩 140: Hard mask
141:襯墊氧化物層 141: Pad oxide layer
142:第一間隔材料層 142: First spacer material layer
142S:間隔物 142S: Spacer
143:第二間隔材料層 143: Second spacer material layer
143S:另一間隔物 143S: Another partition
145:介電層 145: Dielectric layer
T1、T2、T3、T4:厚度 T1, T2, T3, T4: thickness
S101、S103、S105、S107、S109、S111、S113、S115、S117、S119、S121、S123、S125、S127、S129、:步驟 S101, S103, S105, S107, S109, S111, S113, S115, S117, S119, S121, S123, S125, S127, S129,: Steps
為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 In order to make the following easier to understand, the drawings and their detailed text descriptions can be referred to at the same time when reading this disclosure. Through the specific embodiments in this article and reference to the corresponding drawings, the specific embodiments of this disclosure are explained in detail and the working principles of the specific embodiments of this disclosure are explained. In addition, for the sake of clarity, the features in the drawings may not be drawn according to the actual scale, so the size of some features in some drawings may be deliberately enlarged or reduced.
第1圖是根據本揭露一實施例所繪示的半導體裝置的剖面示意圖。 Figure 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present disclosure.
第2圖是根據本揭露一實施例所繪示的半導體裝置的閘極接墊和源極接墊的俯視示意圖。 FIG. 2 is a schematic top view of a gate pad and a source pad of a semiconductor device according to an embodiment of the present disclosure.
第3圖、第4圖、第5圖、第6圖、第7圖、第8圖、第9圖和第10圖是根據本揭露一實施例所繪示半導體裝置的製造方法之一些階段的剖面示意圖。 Figures 3, 4, 5, 6, 7, 8, 9 and 10 are cross-sectional schematic diagrams showing some stages of a method for manufacturing a semiconductor device according to an embodiment of the present disclosure.
本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考 符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 The present disclosure provides several different embodiments that can be used to implement different features of the present disclosure. For the purpose of simplifying the description, the present disclosure also describes examples of specific components and arrangements. The purpose of providing these embodiments is only for illustration and not for limitation. For example, the description below of "a first feature is formed on or above a second feature" may refer to "the first feature and the second feature are in direct contact" or "there are other features between the first feature and the second feature", so that the first feature and the second feature are not in direct contact. In addition, various embodiments in the present disclosure may use repeated reference symbols and/or text annotations. These repeated reference symbols and annotations are used to make the description more concise and clear, rather than to indicate the relationship between different embodiments and/or configurations.
另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「上」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的方位外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能方位。隨著半導體裝置的方位的不同(旋轉90度或其它方位),用以描述其方位的空間相關敘述亦應透過類似的方式予以解釋。 In addition, for the spatially related descriptive terms mentioned in this disclosure, such as "under", "low", "down", "above", "above", "up", "top", "bottom" and similar terms, for the convenience of description, their usage is to describe the relative relationship between one element or feature and another (or multiple) elements or features in the drawings. In addition to the orientation shown in the drawings, these spatially related terms are also used to describe the possible orientations of semiconductor devices during use and operation. As the orientation of the semiconductor device is different (rotated 90 degrees or other orientations), the spatially related descriptions used to describe its orientation should also be interpreted in a similar manner.
雖然本揭露使用第一、第二、第三等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。 Although the present disclosure uses the terms first, second, third, etc. to describe various elements, components, regions, layers, and/or sections, it should be understood that these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish a certain element, component, region, layer, and/or section from another element, component, region, layer, and/or section, and they do not imply or represent any previous sequence of the element, nor do they represent the arrangement order of a certain element and another element, or the order of the manufacturing method. Therefore, without departing from the scope of the specific embodiments of the present disclosure, the first element, component, region, layer, or section discussed below can also be referred to as the second element, component, region, layer, or section.
本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。 The terms "about" or "substantially" mentioned in this disclosure generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, in the absence of specific description of "about" or "substantially", the meaning of "about" or "substantially" can still be implied.
本揭露中所提及的「耦接」、「耦合」、「電連接」一詞包含任何直接及間接的電氣連接手段。舉例而言,若文中描述第一部件耦接於第二部件,則 代表第一部件可直接電氣連接於第二部件,或透過其他裝置或連接手段間接地電氣連接至該第二部件。 The terms "coupling", "coupling", and "electrical connection" mentioned in this disclosure include any direct and indirect electrical connection means. For example, if the text describes that a first component is coupled to a second component, it means that the first component can be directly electrically connected to the second component, or indirectly electrically connected to the second component through other devices or connection means.
雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。 Although the invention disclosed herein is described below by means of specific embodiments, the invention principles disclosed herein can also be applied to other embodiments. In addition, in order not to obscure the spirit of the invention, certain details will be omitted, and these omitted details belong to the knowledge scope of those with ordinary knowledge in the relevant technical field.
本揭露係關於包含溝槽型功率電晶體(trench power transistor)之半導體裝置及其製造方法,本揭露的實施例在閘極接墊的正下方設置多個溝槽,於這些溝槽內設置介電襯層和導電部,並且於這些溝槽的側邊設置摻雜區,藉此可以在閘極接墊的正下方增加有效溝槽型功率電晶體的數目,進而降低半導體裝置的特性導通電阻(Ron,sp),同時還可以大幅減少源極電極與漂移區(drift region)接觸面積,進而有效降低汲極-源極電容(Cds)。此外,於本揭露的實施例中,在各溝槽底部均具有厚的氧化物層,可以降低因為在閘極接墊正下方設置溝槽型功率電晶體所增加的閘極-汲極電容(Cgd),進而減少開關損耗。另外,於本揭露的實施例中,在各溝槽側邊的摻雜區上採用自對準接觸(self-aligned contact)的金屬矽化物(silicide)層,可以縮小溝槽型功率電晶體的單元間距(cell pitch),有助於降低特性導通電阻。 The present disclosure relates to a semiconductor device including a trench power transistor and a manufacturing method thereof. In an embodiment of the present disclosure, a plurality of trenches are disposed directly below a gate pad, a dielectric liner and a conductive portion are disposed in the trenches, and a doped region is disposed on the side of the trenches, thereby increasing the number of effective trench power transistors directly below the gate pad, thereby reducing the characteristic on-resistance (Ron,sp) of the semiconductor device, and at the same time, significantly reducing the contact area between the source electrode and the drift region, thereby effectively reducing the drain-source capacitance (Cds). In addition, in the embodiments disclosed herein, a thick oxide layer is provided at the bottom of each trench, which can reduce the gate-drain capacitance (Cgd) increased by arranging the trench power transistor directly below the gate pad, thereby reducing the switch loss. In addition, in the embodiments disclosed herein, a self-aligned contact metal silicide layer is used on the doped region on the side of each trench, which can reduce the cell pitch of the trench power transistor, and help reduce the characteristic on-resistance.
第1圖是本揭露一實施例之半導體裝置100的剖面示意圖,半導體裝置100包含閘極接墊(gate pad)區100G和源極接墊(source pad)區100S。第2圖是本揭露一實施例之半導體裝置100的閘極接墊137和源極接墊139的俯視示意圖,其中第1圖的閘極接墊區100G係沿著第2圖的剖面線A-A’繪製,第1圖的源極接墊區100S係沿著第2圖的剖面線B-B’繪製。參閱第1圖,半導體裝置100包含基底110,其具有相對的第一表面110F(例如正面)和第二表面110B(例如背面),基底110可包含汲極區103設置於基底的第二表面110B,汲極區103具有第一導電類型,例如為
N型重摻雜區(N+)。基底110還包含磊晶層101位於汲極區103上,磊晶層101具有第一導電類型,例如為N型磊晶層。於一些實施例中,汲極區103的組成例如為N型重摻雜的碳化矽基板(N+ SiC substrate),磊晶層101的組成例如為N型碳化矽磊晶層(N SiC epitaxial layer),但不限於此。
FIG. 1 is a cross-sectional schematic diagram of a
仍參閱第1圖,半導體裝置100包含閘極接墊137和源極接墊139,兩者均設置於基底110的第一表面110F之上,如第2圖所示,閘極接墊137和源極接墊139在同一平面(例如XY平面)上彼此側向分離。如第1圖所示,半導體裝置100包含多個第一溝槽120-1設置於基底110中,且位於閘極接墊137的正下方,以及多個第二溝槽120-2設置於基底110中,且位於源極接墊139的正下方。以第2圖的俯視角度觀看,這些第一溝槽120-1和第二溝槽120-2的長軸係沿著相同方向(例如Y軸方向)延伸,而且在閘極接墊137正下方的一個第一溝槽120-1可以與在源極接墊139正下方的一個第二溝槽120-2對齊排列在同一直線上。
Still referring to FIG. 1 , the
如第1圖所示,在閘極接墊137正下方的第一溝槽120-1之側壁和底面上設置有介電襯層123,介電襯層123包含位於第一溝槽120-1之側壁上的第一部份123S和底面上的第二部份123B,且第二部份123B在Z軸方向上的厚度T1大於第一部份123S在X軸方向上的厚度T2。導電部121填充於第一溝槽120-1內,且介電襯層123圍繞導電部121。另外,在源極接墊139正下方的第二溝槽120-2之側壁和底面上設置有閘極介電層125,閘極介電層125包含位於第二溝槽120-2之側壁上的第三部份125S和底面上的第四部份125B,同樣地,第四部份125B在Z軸方向上的厚度T1大於第三部份125S在X軸方向上的厚度T2。閘極電極122填充於第二溝槽120-2內,且閘極介電層125圍繞閘極電極122。
As shown in FIG. 1 , a
此外,半導體裝置100包含井區105設置在磊晶層101中,井區105具有第二導電類型,例如為P型井區(p-well),且井區105從閘極接墊137的正下方側向延伸至源極接墊139的正下方。另外,在閘極接墊137正下方的井區105中設置有
第一摻雜區107-1和第二摻雜區109-1,第一摻雜區107-1具有第一導電類型,例如為N型重摻雜區(N+),第二摻雜區109-1具有第二導電類型,例如為P型重摻雜區(P+),其中第一摻雜區107-1鄰接第一溝槽120-1的兩側,第二摻雜區109-1位於兩個第一摻雜區107-1之間,且鄰接第一摻雜區107-1。另外,在源極接墊139正下方的井區105中設置有源極區107-2和基體(bulk)區109-2,源極區107-2具有第一導電類型,例如為N型重摻雜區(N+),基體區109-2具有第二導電類型,例如為P型重摻雜區(P+),其中源極區107-2鄰接第二溝槽120-2的兩側,基體區109-2位於兩個源極區107-2之間,且鄰接源極區107-2。此外,半導體裝置100還包含採用自對準接觸(self-aligned contact)的金屬矽化物(silicide)層111,其設置在第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2上,且金屬矽化物層111接觸上述各區的頂面。半導體裝置100還包含遮蔽區102位於磊晶層101中,遮蔽區102對應設置於各第一溝槽120-1和各第二溝槽120-2的正下方,且包圍各第一溝槽120-1和各第二溝槽120-2的底部,遮蔽區102具有第二導電類型,例如為P型重摻雜區(P+),遮蔽區102可提供電場遮蔽作用,進而提高半導體裝置的崩潰電壓。
In addition, the
仍參閱第1圖,半導體裝置100還包含第一金屬層131設置於源極接墊139的正下方,且第一金屬層131直接接觸位於源極接墊139正下方的金屬矽化物層111。此外,第一金屬層131的垂直投影區域和閘極接墊137的垂直投影區域不重疊,以俯視角度觀看,第一金屬層131和閘極接墊137在XY平面上不重疊。另外,半導體裝置100包含介電層133覆蓋第一金屬層131和金屬矽化物層111,介電層133的一部分133-1位於閘極接墊137的正下方,介電層133的另一部分133-2位於源極接墊139的正下方,且介電層133的一部分133-1的厚度T3大於介電層133的另一部分133-2的厚度T4。於一實施例,導通孔135設置於介電層133的另一部分133-2中,閘極接墊137和源極接墊139設置於介電層133上,閘極接墊137的頂面和源極接墊139的頂面可在同一平面上,且閘極接墊137、源極接墊139和導通孔135可均
由第二金屬層132構成,源極接墊139可經由導通孔(via)135電連接至第一金屬層131。於此實施例中,第一金屬層131的設置有助於源極接墊139電連接至源極區107-2和基體區109-2,並且可降低製作源極接墊139和導通孔135時在剖面結構上的高低落差程度,讓源極接墊139和導通孔135的製程較容易進行。
Still referring to FIG. 1 , the
於一實施例中,閘極電極122和導電部121可均電耦接至閘極接墊137而具有閘極電位,其中位於源極接墊139正下方的閘極電極122可經由設置在介電層133的另一部分133-2中的其他導通孔和導線(未繪示)以及穿過位於閘極電極122上方的介電層145的導通孔(未繪示),以電耦接至第2圖中的閘極接墊137的延伸部137E,進而電連接至閘極接墊137。此外,位於閘極接墊137正下方的導電部121則可經由穿過介電層133的一部分133-1和穿過位於導電部121上方的介電層145的其他導通孔(未繪示),以電耦接至閘極接墊137。另外,位於第一溝槽120-1側邊的第一摻雜區107-1可經由金屬矽化物層111和設置在介電層133的一部分133-1中的導通孔和導線(未繪示),以電耦接至源極接墊139,位於第二溝槽120-2側邊的源極區107-2則可經由金屬矽化物層111、第一金屬層131和導通孔135電耦接至源極接墊139。於此實施例中,在閘極接墊137正下方的第一溝槽120-1內的導電部121和介電襯層123,以及位於第一溝槽120-1側邊的第一摻雜區107-1可構成溝槽型功率電晶體,因此可以在閘極接墊137的正下方增加有效溝槽型功率電晶體的數目,進而降低半導體裝置100的特性導通電阻(Ron,sp)。
In one embodiment, the
相較於在閘極接墊137的正下方未設置溝槽型功率電晶體的其他半導體裝置,本揭露之實施例的半導體裝置100的特性導通電阻(Ron,sp)可降低約5%至10%,但不限於此。當閘極接墊137佔晶粒的整體面積之比例越大時,在閘極接墊137的正下方可以增加的有效溝槽型功率電晶體的數目就越多,使得半導體裝置100的特性導通電阻(Ron,sp)的降低幅度越大,特別是針對小尺寸的晶粒,因為閘極接墊所佔的面積比例更高,因此降低特性導通電阻的效果更顯著。
另外,於其他實施例中,也可以視半導體裝置100的不同電性需求,讓第一溝槽120-1內的導電部121電耦接至閘極以外的其他電位,例如可電耦接至源極電位或接地端。
Compared to other semiconductor devices that do not have a trench power transistor directly under the
此外,相較於在閘極接墊137下方未設置任何溝槽的其他半導體裝置,根據本揭露的一些實施例,在閘極接墊137下方設置多個第一溝槽120-1還可以有效降低汲極-源極電容(Cds)。另外,根據本揭露的一些實施例,在閘極接墊137下方的第一溝槽120-1的底部具有厚的氧化物層(亦即介電襯層123的第二部份123B),藉此可以降低因為在閘極接墊137正下方設置溝槽型功率電晶體所增加的閘極-汲極電容(Cgd),進而減少半導體裝置100的開關損耗。此外,根據本揭露的一些實施例,在第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2上採用自對準接觸(self-aligned contact)的金屬矽化物層111,還可以進一步縮小溝槽型功率電晶體的單元間距(cell pitch),其有助於降低半導體裝置100的特性導通電阻(Ron,sp)。
In addition, compared to other semiconductor devices that do not have any trenches disposed under the
第3圖、第4圖、第5圖、第6圖、第7圖、第8圖、第9圖和第10圖是本揭露一實施例之半導體裝置100的製造方法之一些階段的剖面示意圖,於第3圖、第4圖、第5圖和第6圖中,半導體裝置100的閘極接墊區100G和源極接墊區100S具有相同的剖面結構,於第7圖、第8圖、第9圖和第10圖中,半導體裝置100的閘極接墊區100G和源極接墊區100S的剖面結構開始產生差異。參閱第3圖,首先提供晶圓,其包含汲極區103和磊晶成長於汲極區103上的第一磊晶層101-1。於一實施例中,汲極區103例如為N型重摻雜的碳化矽基板(N+ SiC substrate),第一磊晶層101-1例如為N型碳化矽磊晶層(N SiC epitaxial layer)。然後,經由離子佈植製程和使用圖案化光阻,在第一磊晶層101-1內形成遮蔽區102,例如為P型重摻雜遮蔽區(P+ shield region),遮蔽區102的摻雜濃度例如為1E17至1E19atoms/cm3,但不限於此。
Figures 3, 4, 5, 6, 7, 8, 9 and 10 are cross-sectional schematic diagrams of some stages of a method for manufacturing a
繼續參閱第3圖,於步驟S101,在第一磊晶層101-1上磊晶成長第二磊晶層101-2,使得遮蔽區102被埋置在由第一磊晶層101-1和第二磊晶層101-2組成的磊晶層101中,並且汲極區103和形成在汲極區103上的磊晶層101提供半導體裝置100的基底110。於一實施例中,第二磊晶層101-2例如為N型碳化矽磊晶層,且第二磊晶層101-2的摻雜濃度可大致上相等於或高於第一磊晶層101-1的摻雜濃度,於一實施例中,第一磊晶層101-1的摻雜濃度可為約1E14至1E16atoms/cm3,第二磊晶層101-2的摻雜濃度可為約1E15至1E17atoms/cm3,但不限於此。
Continuing to refer to FIG. 3 , in step S101, a second epitaxial layer 101-2 is epitaxially grown on the first epitaxial layer 101-1, so that the
接著,仍參閱第3圖,於步驟S103,經由離子佈植製程和使用硬遮罩,先在第二磊晶層101-2內形成井區105,例如為P型井區。然後,經由另一離子佈植製程和使用另一硬遮罩,在井區105內形成P型重摻雜區(P+)109,其摻雜濃度高於井區105的摻雜濃度,P型重摻雜區109後續係作為閘極接墊區100G的第二摻雜區109-1和源極接墊區100S的基體區109-2。然後,再經由另一離子佈植製程和使用另一硬遮罩,在井區105內形成N型重摻雜區(N+)107,其摻雜濃度高於井區105的摻雜濃度,且N型重摻雜區107與P型重摻雜區109相鄰,N型重摻雜區107後續係作為閘極接墊區100G的第一摻雜區107-1和源極接墊區100S的源極區107-2。之後,可進行高溫活化製程,以活化N型重摻雜區107和P型重摻雜區109內的摻雜離子。
Next, still referring to FIG. 3, in step S103, a
接著,參閱第4圖,於步驟S105,經由沉積、光微影和蝕刻製程,在N型重摻雜區107和P型重摻雜區109上形成圖案化的襯墊氧化物(pad oxide)層141和圖案化的硬遮罩140,然後經由襯墊氧化物層141和硬遮罩140的開口,使用蝕刻製程在磊晶層101內形成初始溝槽120i,其穿過N型重摻雜區107和井區105向下延伸,但未到達遮蔽區102。其中,位於閘極接墊區100G的初始溝槽120i可稱為第一初始溝槽,位於源極接墊區100S的初始溝槽120i可稱為第二初始溝槽。同時參閱第1圖和第4圖,在閘極接墊區100G,第一摻雜區107-1位於初始溝槽120i的兩
側,第二摻雜區109-1位於兩個第一摻雜區107-1之間。類似地,在源極接墊區100S,源極區107-2位於初始溝槽120i的兩側,基體區109-2位於兩個源極區107-2之間。
Next, referring to FIG. 4 , in step S105, a patterned
繼續參閱第4圖,於步驟S107,先使用熱氧化製程在初始溝槽120i的側壁和底面上順向地(conformally)形成第一間隔材料層142,例如為氧化矽層。然後,使用沉積製程在初始溝槽120i的側壁和底面上順向地形成第二間隔材料層143,以覆蓋第一間隔材料層142,第二間隔材料層143例如為氮化矽層。仍參閱第4圖,於步驟S109,使用蝕刻製程移除位於初始溝槽120i的底面上的第二間隔材料層143和第一間隔材料層142,以暴露出初始溝槽120i的底面120iB,並且形成位於初始溝槽120i側壁上的間隔物142S和另一間隔物143S。其中,在閘極接墊區100G,位於初始溝槽120i側壁上的間隔物142S可稱為第一間隔物。在源極接墊區100S,位於初始溝槽120i側壁上的間隔物142S可稱為第二間隔物。另外,在閘極接墊區100G,位於初始溝槽120i側壁上的另一間隔物143S可稱為第三間隔物,其中第三間隔物(間隔物143S)覆蓋第一間隔物(間隔物142S)。在源極接墊區100S,位於初始溝槽120i側壁上的另一間隔物143S可稱為第四間隔物,其中第四間隔物(間隔物143S)覆蓋第二間隔物(間隔物142S)。
Continuing to refer to FIG. 4, in step S107, a first
接著,參閱第5圖,於步驟S111,經由初始溝槽120i之暴露出的底面120iB(如第4圖所示),使用蝕刻製程移除位於初始溝槽120i正下方的磊晶層101的一部分,以形成子溝槽(sub-trench)120s。子溝槽120s與初始溝槽120i連通,且子溝槽120s的底面位於遮蔽區102中。其中,位於閘極接墊區100G的子溝槽120s可稱為第一子溝槽,位於源極接墊區100S的子溝槽120s可稱為第二子溝槽。
Next, referring to FIG. 5, in step S111, a portion of the
繼續參閱第5圖,於步驟S113,使用熱氧化製程在子溝槽120s內形成氧化物層145。其中,在閘極接墊區100G,位於第一子溝槽內的氧化物層145可稱為第一氧化物層,在源極接墊區100S,位於第二子溝槽內的氧化物層145可稱為
第二氧化物層。在步驟S113的熱氧化製程期間,位於初始溝槽120i側壁上的間隔物142S被另一間隔物143S覆蓋,因此熱氧化製程之後間隔物142S的厚度T2與熱氧化製程之前間隔物142S的厚度T2大致上相同。此外,藉由控制步驟S113的熱氧化製程的製程參數,例如控制通入的氧氣量、加熱溫度和時間,可以讓子溝槽120s內形成的氧化物層145具有厚度T1,且氧化物層145的厚度T1遠大於間隔物142S的厚度T2。如第5圖所示,於步驟S113之後可形成閘極接墊區100G的第一溝槽120-1和源極接墊區100S的第二溝槽120-2的輪廓。
Continuing to refer to FIG. 5, in step S113, a thermal oxidation process is used to form an
之後,仍參閱第5圖,於步驟S115,使用剝離製程,例如使用磷酸溶液進行溼蝕刻製程,以移除硬遮罩140以及位於第一溝槽120-1和第二溝槽120-2側壁上的間隔物143S,留下在第一溝槽120-1和第二溝槽120-2側壁上的間隔物142S,並且還可留下在井區105中的各摻雜區上的襯墊氧化物層141。其中,位於第一溝槽120-1側壁上的間隔物142S(第一間隔物)和底面上的氧化物層145(第一氧化物層)構成第一溝槽120-1內的介電襯層123,位於第二溝槽120-2側壁上的間隔物142S(第二間隔物)和底面上的氧化物層145(第二氧化物層)則構成第二溝槽120-2內的閘極介電層125。
Thereafter, still referring to FIG. 5 , in step S115 , a stripping process is used, such as a wet etching process using a phosphoric acid solution, to remove the
之後,參閱第6圖,於步驟S117,使用沉積製程在襯墊氧化物層141上沉積導電材料層,並且填充第一溝槽120-1和第二溝槽120-2,於一實施例中,導電材料層的組成例如為摻雜的多晶矽。然後,對導電材料層進行回蝕刻製程,以在第一溝槽120-1內形成導電部121,同時在第二溝槽120-2內形成閘極電極122。其中,導電部121的底面和閘極電極122的底面均低於井區105的底面,並且在第一溝槽120-1內的介電襯層123圍繞導電部121,在第二溝槽120-2內的閘極介電層125圍繞閘極電極122。於此實施例中,低於井區105的底面之導電部121的下方部份和閘極電極122的下方部份可以作為場板,具有分散電場的作用,進而提高半導體裝置的崩潰電壓。
Then, referring to FIG. 6 , in step S117, a conductive material layer is deposited on the
繼續參閱第6圖,於步驟S119,可使用熱氧化製程在導電部121和閘極電極122上形成介電層145。在介電層145形成之後,導電部121和閘極電極122的頂面可稍微低於井區105中的各摻雜區的頂面。然後,可藉由形成圖案化光阻和使用蝕刻製程,移除位於井區105中的各摻雜區上的襯墊氧化物層141,以暴露出閘極接墊區100G的第一摻雜區107-1和第二摻雜區109-1,並且暴露出源極接墊區100S的源極區107-2和基體區109-2。
6, in step S119, a
然後,仍參閱第6圖,於步驟S121,經由沉積製程先在第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2上沉積金屬材料(未繪示),例如鈦(Ti)、鈷(Co)、鎳鉑(NiPt)或其他合適的金屬阻障材料,然後進行快速熱處理(rapid thermal processing,RTP),使得金屬材料與第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2中的矽反應,以形成位於閘極接墊區100G和源極接墊區100S的金屬矽化物層111。之後,移除未反應的金屬材料。
Then, still referring to FIG. 6, in step S121, a metal material (not shown), such as titanium (Ti), cobalt (Co), nickel platinum (NiPt) or other suitable metal barrier materials, is deposited on the first doped region 107-1, the second doped region 109-1, the source region 107-2 and the base region 109-2 by a deposition process, and then a rapid thermal treatment (RTP) is performed. Processing (RTP) is performed to make the metal material react with the silicon in the first doped region 107-1, the second doped region 109-1, the source region 107-2 and the body region 109-2 to form a
接著,參閱第7圖,於步驟S123,經由沉積製程在閘極接墊區100G和源極接墊區100S形成第一金屬層131,其覆蓋金屬矽化物層111以及導電部121和閘極電極122上的介電層145。於一實施例中,第一金屬層131的組成例如為鋁矽銅(AlSiCu),但不限於此,採用鋁矽銅(AlSiCu)可以避免第一金屬層131與碳化矽的基底110之間發生接面尖凸(junction spike)現象。
Next, referring to FIG. 7, in step S123, a
然後,參閱第8圖,於步驟S125,形成圖案化光阻覆蓋位於源極接墊區100S的第一金屬層131,並且使用蝕刻製程移除位於閘極接墊區100G的第一金屬層131,使得閘極接墊區100G的第一摻雜區107-1和第二摻雜區109-1上的金屬矽化物層111暴露出來,並且留下位於源極接墊區100S的第一金屬層131,使得第一金屬層131電連接至位於源極區107-2和基體區109-2上的金屬矽化物層111。移除位於閘極接墊區100G的第一金屬層131,可以避免第一金屬層131與後續形成的閘極接墊之間產生寄生電容。
Then, referring to FIG. 8 , in step S125, a patterned photoresist is formed to cover the
之後,參閱第9圖,於步驟S127,在閘極接墊區100G和源極接墊區100S沉積介電材料層,覆蓋閘極接墊區100G的金屬矽化物層111和源極接墊區100S的第一金屬層131。然後,對介電材料層進行化學機械平坦化製程(chemical mechanical planarization,CMP),以形成介電層133,其中在閘極接墊區100G的介電層133的厚度T3大於在源極接墊區100S的介電層133的厚度T4。
Afterwards, referring to FIG. 9, in step S127, a dielectric material layer is deposited in the
接著,參閱第10圖,於步驟S129,形成圖案化光阻和使用蝕刻製程,於源極接墊區100S的介電層133內形成開口134,以暴露出第一金屬層131。然後,在介電層133上和開口134內沉積第二金屬層132,其中填充在開口134內的第二金屬層132形成導通孔(via)135。於一實施例中,第二金屬層132的組成例如為鋁銅(AlCu),但不限於此。之後,形成另一圖案化光阻和使用另一蝕刻製程,將介電層133上的第二金屬層132圖案化,以形成如第2圖所示彼此側向分離的閘極接墊137和源極接墊139,並且完成半導體裝置100。其中,閘極接墊137位於第一溝槽120-1正上方,源極接墊139位於第二溝槽120-2正上方。此外,形成於介電層133之平坦表面上的閘極接墊137的頂面和源極接墊139的頂面在同一平面上。於此實施例中,閘極接墊137、源極接墊139和導通孔135均由第二金屬層132構成。
Next, referring to FIG. 10 , in step S129, a patterned photoresist is formed and an etching process is used to form an
根據本揭露的一些實施例,半導體裝置之閘極接墊區和源極接墊區的結構可以在相同的製程步驟中同時形成,因此不需要額外增加光罩數量和製程步驟,就可以在閘極接墊正下方增加有效溝槽型功率電晶體的數目,達到提昇半導體裝置的電性效能之目的,同時還可以節省半導體裝置的製造成本。 According to some embodiments of the present disclosure, the structures of the gate pad region and the source pad region of the semiconductor device can be formed simultaneously in the same process step, so there is no need to increase the number of masks and process steps, and the number of effective trench-type power transistors can be increased directly below the gate pad, thereby achieving the purpose of improving the electrical performance of the semiconductor device and saving the manufacturing cost of the semiconductor device.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made within the scope of the patent application of the present invention shall fall within the scope of the present invention.
100:半導體裝置 100:Semiconductor devices
100G:閘極接墊區 100G: Gate pad area
100S:源極接墊區 100S: Source pad area
101:磊晶層 101: Epitaxial layer
102:遮蔽區 102: Sheltered area
103:汲極區 103: Drain area
105:井區 105: Well area
107-1:第一摻雜區 107-1: The first mixed area
107-2:源極區 107-2: Source region
109-1:第二摻雜區 109-1: Second mixed area
109-2:基體區 109-2: Matrix area
110:基底 110: Base
110F:第一表面 110F: First surface
110B:第二表面 110B: Second surface
111:金屬矽化物層 111: Metal silicide layer
120-1:第一溝槽 120-1: First groove
120-2:第二溝槽 120-2: Second groove
121:導電部 121: Conductive part
122:閘極電極 122: Gate electrode
123:介電襯層 123: Dielectric liner
123S:第一部份 123S: Part 1
123B:第二部份 123B: Part 2
125:閘極介電層 125: Gate dielectric layer
125S:第三部份 125S: Part 3
125B:第四部份 125B: Part 4
131:第一金屬層 131: First metal layer
132:第二金屬層 132: Second metal layer
133:介電層 133: Dielectric layer
133-1:介電層的一部分 133-1: Part of the dielectric layer
133-2:介電層的另一部份 133-2: Another part of the dielectric layer
135:導通孔 135: Conductive hole
137:閘極接墊 137: Gate pad
139:源極接墊 139: Source pad
145:介電層 145: Dielectric layer
T1、T2、T3、T4:厚度 T1, T2, T3, T4: thickness
Claims (19)
Publications (1)
Publication Number | Publication Date |
---|---|
TWI868962B true TWI868962B (en) | 2025-01-01 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220328658A1 (en) | 2019-11-28 | 2022-10-13 | China Resources Microelectronics (Chongqing) Co., Ltd. | Trench field effect transistor structure and manufacturing method thereof |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220328658A1 (en) | 2019-11-28 | 2022-10-13 | China Resources Microelectronics (Chongqing) Co., Ltd. | Trench field effect transistor structure and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101395719B (en) | Trench field plate termination for power devices | |
US9450091B2 (en) | Semiconductor device with enhanced mobility and method | |
US8008716B2 (en) | Inverted-trench grounded-source FET structure with trenched source body short electrode | |
US20070120194A1 (en) | Semiconductor device and a method of manufacturing the same | |
CN101908562A (en) | Structures and methods for forming shielded gate trench FETs | |
CN107910267B (en) | Power semiconductor device and manufacturing method thereof | |
CN111092123A (en) | Lateral double diffused transistor and method of making the same | |
CN107910269B (en) | Power semiconductor device and method of manufacturing the same | |
CN107910266B (en) | Power semiconductor device and method of manufacturing the same | |
TW202215548A (en) | Ldmos transistor and manufacturing method thereof | |
US20120126312A1 (en) | Vertical dmos-field effect transistor | |
JP4025063B2 (en) | Semiconductor device | |
CN107910270B (en) | Power semiconductor device and method for manufacturing the same | |
US20210376145A1 (en) | Ldmos device and manufacturing method thereof | |
CN107910268B (en) | Power semiconductor device and method of manufacturing the same | |
CN103022104A (en) | Trench type power transistor device and method of fabricating the same | |
TWI868962B (en) | Semiconductor device and fabricating method thereof | |
JP2007281512A (en) | Semiconductor device | |
CN107910271B (en) | Power semiconductor device and manufacturing method thereof | |
JP2003051594A (en) | Semiconductor device and manufacturing method therefor | |
US11342425B2 (en) | Semiconductor device having needle-shape field plate trenches and needle-shaped gate trenches | |
KR100734143B1 (en) | DMOS transistor and manufacturing method | |
KR101271066B1 (en) | Method of forming a low capacitance semiconductor device and structure therefor | |
TWI860883B (en) | Semiconductor device and manufacturing method thereof | |
TWI854618B (en) | Semiconductor device and fabrication method thereof |