[go: up one dir, main page]

TWI868962B - Semiconductor device and fabricating method thereof - Google Patents

Semiconductor device and fabricating method thereof Download PDF

Info

Publication number
TWI868962B
TWI868962B TW112137797A TW112137797A TWI868962B TW I868962 B TWI868962 B TW I868962B TW 112137797 A TW112137797 A TW 112137797A TW 112137797 A TW112137797 A TW 112137797A TW I868962 B TWI868962 B TW I868962B
Authority
TW
Taiwan
Prior art keywords
trench
region
layer
semiconductor device
source
Prior art date
Application number
TW112137797A
Other languages
Chinese (zh)
Inventor
李文山
李宗曄
陳富信
Original Assignee
世界先進積體電路股份有限公司
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Application granted granted Critical
Publication of TWI868962B publication Critical patent/TWI868962B/en

Links

Images

Abstract

A semiconductor device includes a substrate, a gate pad and a source pad laterally separated from each other and both disposed above a first surface of the substrate, and a drain region disposed on a second surface of the substrate. A first trench is disposed in the substrate and directly under the gate pad. A conductive portion fills up the first trench and a dielectric liner is disposed in the first trench to surround the conductive portion. A first doped region is disposed on sides of the first trench. A second trench is disposed in the substrate and directly under the source pad. A gate electrode fills up the second trench, and a gate dielectric layer is disposed in the second trench to surround the gate electrode. A source region is disposed on sides of the second trench. The first doped region and the source region have the same conductivity type.

Description

半導體裝置及其製造方法 Semiconductor device and method for manufacturing the same

本揭露係關於半導體技術,特別是關於包含溝槽型功率電晶體之半導體裝置及其製造方法。 This disclosure relates to semiconductor technology, and in particular to semiconductor devices including trench-type power transistors and methods for manufacturing the same.

在電力電子系統中通常會使用功率電晶體作為功率開關、轉換器等功率元件,功率電晶體是指在高電壓、大電流的條件下工作的電晶體,最常見的功率電晶體例如為功率金屬氧化物半導體場效電晶體(power metal-oxide-semiconductor field effect transistor,power MOSFET),其包含水平式結構,例如橫向擴散金屬氧化物半導體(laterally-diffused MOS,LDMOS)場效電晶體(FET),以及垂直式結構,例如平面型閘極金屬氧化物半導體場效電晶體(planar gate MOSFET)、溝槽型閘極金屬氧化物半導體場效電晶體(trench gate MOSFET),其中溝槽型閘極MOSFET係將閘極設置於溝槽內,相較於平面型閘極MOSFET,溝槽型閘極MOSFET具有縮小元件單元尺寸的好處,但是習知的溝槽型閘極MOSFET仍有許多待改善的需求,例如降低導通電阻(on-resistance,Ron)、降低各種寄生電容等。 In power electronics systems, power transistors are usually used as power components such as power switches and converters. Power transistors refer to transistors that work under high voltage and high current conditions. The most common power transistors are power metal-oxide-semiconductor field effect transistors (power MOSFETs), which include horizontal structures such as laterally-diffused MOS (LDMOS) field effect transistors (FETs), and vertical structures such as planar gate MOSFETs, trench gate MOSFETs, and MOSFETs. MOSFET), in which the gate is set in the trench. Compared with the planar gate MOSFET, the trench gate MOSFET has the advantage of reducing the size of the component unit. However, the known trench gate MOSFET still has many needs to be improved, such as reducing the on-resistance (Ron) and reducing various parasitic capacitances.

有鑑於此,本揭露提出一種半導體裝置及其製造方法,於閘極接墊(gate pad)正下方設置多個溝槽,在這些溝槽內設置介電襯層和導電部,並且在這些溝槽的側邊設置摻雜區,藉此可在閘極接墊的正下方增加有效溝槽型功率電晶體的數目,進而降低半導體裝置的特性導通電阻(specific on-resistance,Ron,sp)。此外,在這些溝槽底部具有厚的氧化物層,藉此可降低在閘極接墊下方的閘極-汲極電容(Cgd)。另外,在溝槽側邊的摻雜區上採用自對準接觸(self-aligned contact)的金屬矽化物(silicide)層,藉此可進一步縮小溝槽型功率電晶體的單元間距(cell pitch),有助於降低半導體裝置的特性導通電阻。 In view of this, the present disclosure proposes a semiconductor device and a manufacturing method thereof, wherein a plurality of trenches are disposed directly below a gate pad, a dielectric liner and a conductive portion are disposed in the trenches, and a doping region is disposed on the sides of the trenches, thereby increasing the number of effective trench-type power transistors directly below the gate pad, thereby reducing the specific on-resistance (Ron,sp) of the semiconductor device. In addition, a thick oxide layer is provided at the bottom of the trenches, thereby reducing the gate-drain capacitance (Cgd) below the gate pad. In addition, a self-aligned contact metal silicide layer is used on the doped region on the side of the trench, which can further reduce the cell pitch of the trench power transistor and help reduce the characteristic on-resistance of the semiconductor device.

根據本揭露的一實施例,提供一種半導體裝置,包括基底、閘極接墊、源極接墊、汲極區、第一溝槽、導電部、介電襯層、第一摻雜區、第二溝槽、閘極電極、閘極介電層以及源極區。基底具有第一表面和第二表面,閘極接墊和源極接墊彼此側向分離,且均設置於基底的第一表面之上,汲極區設置於基底的第二表面。第一溝槽設置於基底中,位於閘極接墊的正下方,導電部填充於第一溝槽內,介電襯層設置於第一溝槽內且圍繞導電部,第一摻雜區位於第一溝槽的側邊。第二溝槽設置於基底中,位於源極接墊的正下方,閘極電極填充於第二溝槽內,閘極介電層設置於第二溝槽內且圍繞閘極電極,源極區位於第二溝槽的側邊,其中第一摻雜區和源極區具有相同的導電類型。 According to an embodiment of the present disclosure, a semiconductor device is provided, including a substrate, a gate pad, a source pad, a drain region, a first trench, a conductive portion, a dielectric liner, a first doped region, a second trench, a gate electrode, a gate dielectric layer, and a source region. The substrate has a first surface and a second surface, the gate pad and the source pad are laterally separated from each other and are both disposed on the first surface of the substrate, and the drain region is disposed on the second surface of the substrate. The first trench is arranged in the substrate, directly below the gate pad, the conductive part is filled in the first trench, the dielectric liner is arranged in the first trench and surrounds the conductive part, and the first doped region is arranged on the side of the first trench. The second trench is arranged in the substrate, directly below the source pad, the gate electrode is filled in the second trench, the gate dielectric layer is arranged in the second trench and surrounds the gate electrode, and the source region is arranged on the side of the second trench, wherein the first doped region and the source region have the same conductive type.

根據本揭露的一實施例,提供一種半導體裝置的製造方法,包括以下步驟:提供基底,包括形成汲極區和在汲極區上形成磊晶層;對磊晶層進行離子佈植製程,以形成第一摻雜區和源極區,均具有第一導電類型;在磊晶層內形成第一溝槽和第二溝槽,分別鄰接第一摻雜區和源極區;在第一溝槽和第二溝槽內分別形成介電襯層和閘極介電層;在第一溝槽和第二溝槽內分別形成導電部和閘極電極,其中介電襯層圍繞導電部,閘極介電層圍繞閘極電極;以及在磊晶層之上形成彼此側向分離的閘極接墊和源極接墊,且分別位於第一溝 槽和第二溝槽正上方。 According to an embodiment of the present disclosure, a method for manufacturing a semiconductor device is provided, comprising the following steps: providing a substrate, including forming a drain region and forming an epitaxial layer on the drain region; performing an ion implantation process on the epitaxial layer to form a first doped region and a source region, both of which have a first conductivity type; forming a first trench and a second trench in the epitaxial layer, adjacent to the first doped region and the source region, respectively; region; forming a dielectric liner and a gate dielectric layer in the first trench and the second trench respectively; forming a conductive portion and a gate electrode in the first trench and the second trench respectively, wherein the dielectric liner surrounds the conductive portion and the gate dielectric layer surrounds the gate electrode; and forming a gate pad and a source pad laterally separated from each other on the epitaxial layer, and located directly above the first trench and the second trench respectively.

為了讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下。 In order to make the features of this disclosure clear and easy to understand, the following is a detailed description of the embodiments with the accompanying drawings.

100:半導體裝置 100:Semiconductor devices

100G:閘極接墊區 100G: Gate pad area

100S:源極接墊區 100S: Source pad area

101:磊晶層 101: Epitaxial layer

101-1:第一磊晶層 101-1: First epitaxial layer

101-2:第二磊晶層 101-2: Second epitaxial layer

102:遮蔽區 102: Sheltered area

103:汲極區 103: Drain area

105:井區 105: Well area

107:N型重摻雜區 107: N-type heavily doped region

107-1:第一摻雜區 107-1: The first mixed area

107-2:源極區 107-2: Source region

109:P型重摻雜區 109: P-type heavily doped region

109-1:第二摻雜區 109-1: Second mixed area

109-2:基體區 109-2: Matrix area

110:基底 110: Base

110F:第一表面 110F: First surface

110B:第二表面 110B: Second surface

111:金屬矽化物層 111: Metal silicide layer

120-1:第一溝槽 120-1: First groove

120-2:第二溝槽 120-2: Second groove

120i:初始溝槽 120i: Initial groove

120iB:底面 120iB: Bottom

120s:子溝槽 120s: sub-groove

121:導電部 121: Conductive part

122:閘極電極 122: Gate electrode

123:介電襯層 123: Dielectric liner

123S:第一部份 123S: Part 1

123B:第二部份 123B: Part 2

125:閘極介電層 125: Gate dielectric layer

125S:第三部份 125S: Part 3

125B:第四部份 125B: Part 4

131:第一金屬層 131: First metal layer

132:第二金屬層 132: Second metal layer

133:介電層 133: Dielectric layer

133-1:介電層的一部分 133-1: Part of the dielectric layer

133-2:介電層的另一部份 133-2: Another part of the dielectric layer

134:開口 134: Open your mouth

135:導通孔 135: Conductive hole

137:閘極接墊 137: Gate pad

137E:延伸部 137E: Extension

139:源極接墊 139: Source pad

140:硬遮罩 140: Hard mask

141:襯墊氧化物層 141: Pad oxide layer

142:第一間隔材料層 142: First spacer material layer

142S:間隔物 142S: Spacer

143:第二間隔材料層 143: Second spacer material layer

143S:另一間隔物 143S: Another partition

145:介電層 145: Dielectric layer

T1、T2、T3、T4:厚度 T1, T2, T3, T4: thickness

S101、S103、S105、S107、S109、S111、S113、S115、S117、S119、S121、S123、S125、S127、S129、:步驟 S101, S103, S105, S107, S109, S111, S113, S115, S117, S119, S121, S123, S125, S127, S129,: Steps

為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 In order to make the following easier to understand, the drawings and their detailed text descriptions can be referred to at the same time when reading this disclosure. Through the specific embodiments in this article and reference to the corresponding drawings, the specific embodiments of this disclosure are explained in detail and the working principles of the specific embodiments of this disclosure are explained. In addition, for the sake of clarity, the features in the drawings may not be drawn according to the actual scale, so the size of some features in some drawings may be deliberately enlarged or reduced.

第1圖是根據本揭露一實施例所繪示的半導體裝置的剖面示意圖。 Figure 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present disclosure.

第2圖是根據本揭露一實施例所繪示的半導體裝置的閘極接墊和源極接墊的俯視示意圖。 FIG. 2 is a schematic top view of a gate pad and a source pad of a semiconductor device according to an embodiment of the present disclosure.

第3圖、第4圖、第5圖、第6圖、第7圖、第8圖、第9圖和第10圖是根據本揭露一實施例所繪示半導體裝置的製造方法之一些階段的剖面示意圖。 Figures 3, 4, 5, 6, 7, 8, 9 and 10 are cross-sectional schematic diagrams showing some stages of a method for manufacturing a semiconductor device according to an embodiment of the present disclosure.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考 符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 The present disclosure provides several different embodiments that can be used to implement different features of the present disclosure. For the purpose of simplifying the description, the present disclosure also describes examples of specific components and arrangements. The purpose of providing these embodiments is only for illustration and not for limitation. For example, the description below of "a first feature is formed on or above a second feature" may refer to "the first feature and the second feature are in direct contact" or "there are other features between the first feature and the second feature", so that the first feature and the second feature are not in direct contact. In addition, various embodiments in the present disclosure may use repeated reference symbols and/or text annotations. These repeated reference symbols and annotations are used to make the description more concise and clear, rather than to indicate the relationship between different embodiments and/or configurations.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「上」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的方位外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能方位。隨著半導體裝置的方位的不同(旋轉90度或其它方位),用以描述其方位的空間相關敘述亦應透過類似的方式予以解釋。 In addition, for the spatially related descriptive terms mentioned in this disclosure, such as "under", "low", "down", "above", "above", "up", "top", "bottom" and similar terms, for the convenience of description, their usage is to describe the relative relationship between one element or feature and another (or multiple) elements or features in the drawings. In addition to the orientation shown in the drawings, these spatially related terms are also used to describe the possible orientations of semiconductor devices during use and operation. As the orientation of the semiconductor device is different (rotated 90 degrees or other orientations), the spatially related descriptions used to describe its orientation should also be interpreted in a similar manner.

雖然本揭露使用第一、第二、第三等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。 Although the present disclosure uses the terms first, second, third, etc. to describe various elements, components, regions, layers, and/or sections, it should be understood that these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish a certain element, component, region, layer, and/or section from another element, component, region, layer, and/or section, and they do not imply or represent any previous sequence of the element, nor do they represent the arrangement order of a certain element and another element, or the order of the manufacturing method. Therefore, without departing from the scope of the specific embodiments of the present disclosure, the first element, component, region, layer, or section discussed below can also be referred to as the second element, component, region, layer, or section.

本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。 The terms "about" or "substantially" mentioned in this disclosure generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, in the absence of specific description of "about" or "substantially", the meaning of "about" or "substantially" can still be implied.

本揭露中所提及的「耦接」、「耦合」、「電連接」一詞包含任何直接及間接的電氣連接手段。舉例而言,若文中描述第一部件耦接於第二部件,則 代表第一部件可直接電氣連接於第二部件,或透過其他裝置或連接手段間接地電氣連接至該第二部件。 The terms "coupling", "coupling", and "electrical connection" mentioned in this disclosure include any direct and indirect electrical connection means. For example, if the text describes that a first component is coupled to a second component, it means that the first component can be directly electrically connected to the second component, or indirectly electrically connected to the second component through other devices or connection means.

雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。 Although the invention disclosed herein is described below by means of specific embodiments, the invention principles disclosed herein can also be applied to other embodiments. In addition, in order not to obscure the spirit of the invention, certain details will be omitted, and these omitted details belong to the knowledge scope of those with ordinary knowledge in the relevant technical field.

本揭露係關於包含溝槽型功率電晶體(trench power transistor)之半導體裝置及其製造方法,本揭露的實施例在閘極接墊的正下方設置多個溝槽,於這些溝槽內設置介電襯層和導電部,並且於這些溝槽的側邊設置摻雜區,藉此可以在閘極接墊的正下方增加有效溝槽型功率電晶體的數目,進而降低半導體裝置的特性導通電阻(Ron,sp),同時還可以大幅減少源極電極與漂移區(drift region)接觸面積,進而有效降低汲極-源極電容(Cds)。此外,於本揭露的實施例中,在各溝槽底部均具有厚的氧化物層,可以降低因為在閘極接墊正下方設置溝槽型功率電晶體所增加的閘極-汲極電容(Cgd),進而減少開關損耗。另外,於本揭露的實施例中,在各溝槽側邊的摻雜區上採用自對準接觸(self-aligned contact)的金屬矽化物(silicide)層,可以縮小溝槽型功率電晶體的單元間距(cell pitch),有助於降低特性導通電阻。 The present disclosure relates to a semiconductor device including a trench power transistor and a manufacturing method thereof. In an embodiment of the present disclosure, a plurality of trenches are disposed directly below a gate pad, a dielectric liner and a conductive portion are disposed in the trenches, and a doped region is disposed on the side of the trenches, thereby increasing the number of effective trench power transistors directly below the gate pad, thereby reducing the characteristic on-resistance (Ron,sp) of the semiconductor device, and at the same time, significantly reducing the contact area between the source electrode and the drift region, thereby effectively reducing the drain-source capacitance (Cds). In addition, in the embodiments disclosed herein, a thick oxide layer is provided at the bottom of each trench, which can reduce the gate-drain capacitance (Cgd) increased by arranging the trench power transistor directly below the gate pad, thereby reducing the switch loss. In addition, in the embodiments disclosed herein, a self-aligned contact metal silicide layer is used on the doped region on the side of each trench, which can reduce the cell pitch of the trench power transistor, and help reduce the characteristic on-resistance.

第1圖是本揭露一實施例之半導體裝置100的剖面示意圖,半導體裝置100包含閘極接墊(gate pad)區100G和源極接墊(source pad)區100S。第2圖是本揭露一實施例之半導體裝置100的閘極接墊137和源極接墊139的俯視示意圖,其中第1圖的閘極接墊區100G係沿著第2圖的剖面線A-A’繪製,第1圖的源極接墊區100S係沿著第2圖的剖面線B-B’繪製。參閱第1圖,半導體裝置100包含基底110,其具有相對的第一表面110F(例如正面)和第二表面110B(例如背面),基底110可包含汲極區103設置於基底的第二表面110B,汲極區103具有第一導電類型,例如為 N型重摻雜區(N+)。基底110還包含磊晶層101位於汲極區103上,磊晶層101具有第一導電類型,例如為N型磊晶層。於一些實施例中,汲極區103的組成例如為N型重摻雜的碳化矽基板(N+ SiC substrate),磊晶層101的組成例如為N型碳化矽磊晶層(N SiC epitaxial layer),但不限於此。 FIG. 1 is a cross-sectional schematic diagram of a semiconductor device 100 according to an embodiment of the present disclosure, wherein the semiconductor device 100 includes a gate pad region 100G and a source pad region 100S. FIG. 2 is a top view schematic diagram of a gate pad 137 and a source pad 139 of the semiconductor device 100 according to an embodiment of the present disclosure, wherein the gate pad region 100G of FIG. 1 is drawn along the section line AA' of FIG. 2, and the source pad region 100S of FIG. 1 is drawn along the section line BB' of FIG. 2. Referring to FIG. 1 , the semiconductor device 100 includes a substrate 110 having a first surface 110F (e.g., a front surface) and a second surface 110B (e.g., a back surface) opposite to each other. The substrate 110 may include a drain region 103 disposed on the second surface 110B of the substrate. The drain region 103 has a first conductivity type, such as an N-type heavily doped region (N + ). The substrate 110 further includes an epitaxial layer 101 disposed on the drain region 103. The epitaxial layer 101 has a first conductivity type, such as an N-type epitaxial layer. In some embodiments, the drain region 103 is composed of, for example, an N-type heavily doped silicon carbide substrate (N + SiC substrate), and the epitaxial layer 101 is composed of, for example, an N-type silicon carbide epitaxial layer (N SiC epitaxial layer), but is not limited thereto.

仍參閱第1圖,半導體裝置100包含閘極接墊137和源極接墊139,兩者均設置於基底110的第一表面110F之上,如第2圖所示,閘極接墊137和源極接墊139在同一平面(例如XY平面)上彼此側向分離。如第1圖所示,半導體裝置100包含多個第一溝槽120-1設置於基底110中,且位於閘極接墊137的正下方,以及多個第二溝槽120-2設置於基底110中,且位於源極接墊139的正下方。以第2圖的俯視角度觀看,這些第一溝槽120-1和第二溝槽120-2的長軸係沿著相同方向(例如Y軸方向)延伸,而且在閘極接墊137正下方的一個第一溝槽120-1可以與在源極接墊139正下方的一個第二溝槽120-2對齊排列在同一直線上。 Still referring to FIG. 1 , the semiconductor device 100 includes a gate pad 137 and a source pad 139, both of which are disposed on the first surface 110F of the substrate 110. As shown in FIG. 2 , the gate pad 137 and the source pad 139 are laterally separated from each other on the same plane (e.g., XY plane). As shown in FIG. 1 , the semiconductor device 100 includes a plurality of first trenches 120-1 disposed in the substrate 110 and located directly below the gate pad 137, and a plurality of second trenches 120-2 disposed in the substrate 110 and located directly below the source pad 139. From the top view of FIG. 2, the long axes of the first trenches 120-1 and the second trenches 120-2 extend in the same direction (e.g., the Y-axis direction), and a first trench 120-1 directly below the gate pad 137 can be aligned with a second trench 120-2 directly below the source pad 139 and arranged on the same straight line.

如第1圖所示,在閘極接墊137正下方的第一溝槽120-1之側壁和底面上設置有介電襯層123,介電襯層123包含位於第一溝槽120-1之側壁上的第一部份123S和底面上的第二部份123B,且第二部份123B在Z軸方向上的厚度T1大於第一部份123S在X軸方向上的厚度T2。導電部121填充於第一溝槽120-1內,且介電襯層123圍繞導電部121。另外,在源極接墊139正下方的第二溝槽120-2之側壁和底面上設置有閘極介電層125,閘極介電層125包含位於第二溝槽120-2之側壁上的第三部份125S和底面上的第四部份125B,同樣地,第四部份125B在Z軸方向上的厚度T1大於第三部份125S在X軸方向上的厚度T2。閘極電極122填充於第二溝槽120-2內,且閘極介電層125圍繞閘極電極122。 As shown in FIG. 1 , a dielectric liner 123 is disposed on the sidewall and bottom of the first trench 120-1 directly below the gate pad 137. The dielectric liner 123 includes a first portion 123S located on the sidewall of the first trench 120-1 and a second portion 123B on the bottom, and the thickness T1 of the second portion 123B in the Z-axis direction is greater than the thickness T2 of the first portion 123S in the X-axis direction. The conductive portion 121 is filled in the first trench 120-1, and the dielectric liner 123 surrounds the conductive portion 121. In addition, a gate dielectric layer 125 is disposed on the sidewall and bottom surface of the second trench 120-2 directly below the source pad 139. The gate dielectric layer 125 includes a third portion 125S located on the sidewall of the second trench 120-2 and a fourth portion 125B on the bottom surface. Similarly, the thickness T1 of the fourth portion 125B in the Z-axis direction is greater than the thickness T2 of the third portion 125S in the X-axis direction. The gate electrode 122 is filled in the second trench 120-2, and the gate dielectric layer 125 surrounds the gate electrode 122.

此外,半導體裝置100包含井區105設置在磊晶層101中,井區105具有第二導電類型,例如為P型井區(p-well),且井區105從閘極接墊137的正下方側向延伸至源極接墊139的正下方。另外,在閘極接墊137正下方的井區105中設置有 第一摻雜區107-1和第二摻雜區109-1,第一摻雜區107-1具有第一導電類型,例如為N型重摻雜區(N+),第二摻雜區109-1具有第二導電類型,例如為P型重摻雜區(P+),其中第一摻雜區107-1鄰接第一溝槽120-1的兩側,第二摻雜區109-1位於兩個第一摻雜區107-1之間,且鄰接第一摻雜區107-1。另外,在源極接墊139正下方的井區105中設置有源極區107-2和基體(bulk)區109-2,源極區107-2具有第一導電類型,例如為N型重摻雜區(N+),基體區109-2具有第二導電類型,例如為P型重摻雜區(P+),其中源極區107-2鄰接第二溝槽120-2的兩側,基體區109-2位於兩個源極區107-2之間,且鄰接源極區107-2。此外,半導體裝置100還包含採用自對準接觸(self-aligned contact)的金屬矽化物(silicide)層111,其設置在第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2上,且金屬矽化物層111接觸上述各區的頂面。半導體裝置100還包含遮蔽區102位於磊晶層101中,遮蔽區102對應設置於各第一溝槽120-1和各第二溝槽120-2的正下方,且包圍各第一溝槽120-1和各第二溝槽120-2的底部,遮蔽區102具有第二導電類型,例如為P型重摻雜區(P+),遮蔽區102可提供電場遮蔽作用,進而提高半導體裝置的崩潰電壓。 In addition, the semiconductor device 100 includes a well region 105 disposed in the epitaxial layer 101. The well region 105 has a second conductivity type, such as a P-type well region (p-well), and the well region 105 extends laterally from directly below the gate pad 137 to directly below the source pad 139. In addition, a first doped region 107-1 and a second doped region 109-1 are provided in the well region 105 directly below the gate pad 137. The first doped region 107-1 has a first conductivity type, such as an N-type heavily doped region (N + ), and the second doped region 109-1 has a second conductivity type, such as a P-type heavily doped region (P + ). The first doped region 107-1 is adjacent to both sides of the first trench 120-1, and the second doped region 109-1 is located between the two first doped regions 107-1 and is adjacent to the first doped region 107-1. In addition, a source region 107-2 and a bulk region 109-2 are provided in the well region 105 directly below the source pad 139, the source region 107-2 has a first conductivity type, for example, an N-type heavily doped region (N + ), and the bulk region 109-2 has a second conductivity type, for example, a P-type heavily doped region (P + ), wherein the source region 107-2 is adjacent to both sides of the second trench 120-2, and the bulk region 109-2 is located between the two source regions 107-2 and adjacent to the source region 107-2. In addition, the semiconductor device 100 further includes a metal silicide layer 111 using a self-aligned contact, which is disposed on the first doped region 107-1, the second doped region 109-1, the source region 107-2 and the body region 109-2, and the metal silicide layer 111 contacts the top surfaces of the above regions. The semiconductor device 100 further includes a shielding region 102 in the epitaxial layer 101. The shielding region 102 is correspondingly disposed directly below each first trench 120-1 and each second trench 120-2 and surrounds the bottom of each first trench 120-1 and each second trench 120-2. The shielding region 102 has a second conductivity type, such as a P-type heavily doped region (P + ). The shielding region 102 can provide an electric field shielding effect, thereby increasing the breakdown voltage of the semiconductor device.

仍參閱第1圖,半導體裝置100還包含第一金屬層131設置於源極接墊139的正下方,且第一金屬層131直接接觸位於源極接墊139正下方的金屬矽化物層111。此外,第一金屬層131的垂直投影區域和閘極接墊137的垂直投影區域不重疊,以俯視角度觀看,第一金屬層131和閘極接墊137在XY平面上不重疊。另外,半導體裝置100包含介電層133覆蓋第一金屬層131和金屬矽化物層111,介電層133的一部分133-1位於閘極接墊137的正下方,介電層133的另一部分133-2位於源極接墊139的正下方,且介電層133的一部分133-1的厚度T3大於介電層133的另一部分133-2的厚度T4。於一實施例,導通孔135設置於介電層133的另一部分133-2中,閘極接墊137和源極接墊139設置於介電層133上,閘極接墊137的頂面和源極接墊139的頂面可在同一平面上,且閘極接墊137、源極接墊139和導通孔135可均 由第二金屬層132構成,源極接墊139可經由導通孔(via)135電連接至第一金屬層131。於此實施例中,第一金屬層131的設置有助於源極接墊139電連接至源極區107-2和基體區109-2,並且可降低製作源極接墊139和導通孔135時在剖面結構上的高低落差程度,讓源極接墊139和導通孔135的製程較容易進行。 Still referring to FIG. 1 , the semiconductor device 100 further includes a first metal layer 131 disposed directly below the source pad 139, and the first metal layer 131 directly contacts the metal silicide layer 111 located directly below the source pad 139. In addition, the vertical projection area of the first metal layer 131 and the vertical projection area of the gate pad 137 do not overlap, and when viewed from a top view, the first metal layer 131 and the gate pad 137 do not overlap on the XY plane. In addition, the semiconductor device 100 includes a dielectric layer 133 covering the first metal layer 131 and the metal silicide layer 111, a portion 133-1 of the dielectric layer 133 is located directly below the gate pad 137, another portion 133-2 of the dielectric layer 133 is located directly below the source pad 139, and a thickness T3 of the portion 133-1 of the dielectric layer 133 is greater than a thickness T4 of the other portion 133-2 of the dielectric layer 133. In one embodiment, the via 135 is disposed in another portion 133-2 of the dielectric layer 133, the gate pad 137 and the source pad 139 are disposed on the dielectric layer 133, the top surface of the gate pad 137 and the top surface of the source pad 139 may be on the same plane, and the gate pad 137, the source pad 139 and the via 135 may all be formed by the second metal layer 132, and the source pad 139 may be electrically connected to the first metal layer 131 through the via 135. In this embodiment, the provision of the first metal layer 131 helps the source pad 139 to be electrically connected to the source region 107-2 and the substrate region 109-2, and can reduce the height difference in the cross-sectional structure when manufacturing the source pad 139 and the via 135, making the manufacturing process of the source pad 139 and the via 135 easier to carry out.

於一實施例中,閘極電極122和導電部121可均電耦接至閘極接墊137而具有閘極電位,其中位於源極接墊139正下方的閘極電極122可經由設置在介電層133的另一部分133-2中的其他導通孔和導線(未繪示)以及穿過位於閘極電極122上方的介電層145的導通孔(未繪示),以電耦接至第2圖中的閘極接墊137的延伸部137E,進而電連接至閘極接墊137。此外,位於閘極接墊137正下方的導電部121則可經由穿過介電層133的一部分133-1和穿過位於導電部121上方的介電層145的其他導通孔(未繪示),以電耦接至閘極接墊137。另外,位於第一溝槽120-1側邊的第一摻雜區107-1可經由金屬矽化物層111和設置在介電層133的一部分133-1中的導通孔和導線(未繪示),以電耦接至源極接墊139,位於第二溝槽120-2側邊的源極區107-2則可經由金屬矽化物層111、第一金屬層131和導通孔135電耦接至源極接墊139。於此實施例中,在閘極接墊137正下方的第一溝槽120-1內的導電部121和介電襯層123,以及位於第一溝槽120-1側邊的第一摻雜區107-1可構成溝槽型功率電晶體,因此可以在閘極接墊137的正下方增加有效溝槽型功率電晶體的數目,進而降低半導體裝置100的特性導通電阻(Ron,sp)。 In one embodiment, the gate electrode 122 and the conductive portion 121 can both be electrically coupled to the gate pad 137 and have a gate potential, wherein the gate electrode 122 located directly below the source pad 139 can be electrically coupled to the extension portion 137E of the gate pad 137 in Figure 2 via other conductive holes and wires (not shown) provided in another portion 133-2 of the dielectric layer 133 and conductive holes (not shown) passing through the dielectric layer 145 located above the gate electrode 122, and thereby electrically connected to the gate pad 137. In addition, the conductive portion 121 located directly below the gate pad 137 can be electrically coupled to the gate pad 137 via other conductive vias (not shown) penetrating a portion 133 - 1 of the dielectric layer 133 and the dielectric layer 145 located above the conductive portion 121 . In addition, the first doped region 107-1 located on the side of the first trench 120-1 can be electrically coupled to the source pad 139 via the metal silicide layer 111 and the conductive via and the conductive wire (not shown) disposed in a portion 133-1 of the dielectric layer 133, and the source region 107-2 located on the side of the second trench 120-2 can be electrically coupled to the source pad 139 via the metal silicide layer 111, the first metal layer 131 and the conductive via 135. In this embodiment, the conductive portion 121 and the dielectric liner 123 in the first trench 120-1 directly below the gate pad 137, and the first doped region 107-1 located on the side of the first trench 120-1 can constitute a trench-type power transistor, so that the number of effective trench-type power transistors can be increased directly below the gate pad 137, thereby reducing the characteristic on-resistance (Ron,sp) of the semiconductor device 100.

相較於在閘極接墊137的正下方未設置溝槽型功率電晶體的其他半導體裝置,本揭露之實施例的半導體裝置100的特性導通電阻(Ron,sp)可降低約5%至10%,但不限於此。當閘極接墊137佔晶粒的整體面積之比例越大時,在閘極接墊137的正下方可以增加的有效溝槽型功率電晶體的數目就越多,使得半導體裝置100的特性導通電阻(Ron,sp)的降低幅度越大,特別是針對小尺寸的晶粒,因為閘極接墊所佔的面積比例更高,因此降低特性導通電阻的效果更顯著。 另外,於其他實施例中,也可以視半導體裝置100的不同電性需求,讓第一溝槽120-1內的導電部121電耦接至閘極以外的其他電位,例如可電耦接至源極電位或接地端。 Compared to other semiconductor devices that do not have a trench power transistor directly under the gate pad 137, the characteristic on-resistance (Ron,sp) of the semiconductor device 100 of the embodiment of the present disclosure can be reduced by about 5% to 10%, but not limited thereto. When the gate pad 137 occupies a larger proportion of the overall area of the die, the more effective trench power transistors can be added directly under the gate pad 137, so that the characteristic on-resistance (Ron,sp) of the semiconductor device 100 is reduced to a greater extent, especially for small-sized die, because the gate pad occupies a higher proportion of the area, so the effect of reducing the characteristic on-resistance is more significant. In addition, in other embodiments, depending on the different electrical requirements of the semiconductor device 100, the conductive portion 121 in the first trench 120-1 can be electrically coupled to other potentials other than the gate, for example, it can be electrically coupled to the source potential or the ground terminal.

此外,相較於在閘極接墊137下方未設置任何溝槽的其他半導體裝置,根據本揭露的一些實施例,在閘極接墊137下方設置多個第一溝槽120-1還可以有效降低汲極-源極電容(Cds)。另外,根據本揭露的一些實施例,在閘極接墊137下方的第一溝槽120-1的底部具有厚的氧化物層(亦即介電襯層123的第二部份123B),藉此可以降低因為在閘極接墊137正下方設置溝槽型功率電晶體所增加的閘極-汲極電容(Cgd),進而減少半導體裝置100的開關損耗。此外,根據本揭露的一些實施例,在第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2上採用自對準接觸(self-aligned contact)的金屬矽化物層111,還可以進一步縮小溝槽型功率電晶體的單元間距(cell pitch),其有助於降低半導體裝置100的特性導通電阻(Ron,sp)。 In addition, compared to other semiconductor devices that do not have any trenches disposed under the gate pad 137, according to some embodiments of the present disclosure, a plurality of first trenches 120-1 disposed under the gate pad 137 can also effectively reduce the drain-source capacitance (Cds). In addition, according to some embodiments of the present disclosure, the bottom of the first trench 120-1 under the gate pad 137 has a thick oxide layer (i.e., the second portion 123B of the dielectric liner 123), thereby reducing the gate-drain capacitance (Cgd) increased by disposing a trench-type power transistor directly under the gate pad 137, thereby reducing the switching loss of the semiconductor device 100. In addition, according to some embodiments of the present disclosure, a self-aligned contact metal silicide layer 111 is used on the first doped region 107-1, the second doped region 109-1, the source region 107-2 and the body region 109-2, and the cell pitch of the trench power transistor can be further reduced, which helps to reduce the characteristic on-resistance (Ron,sp) of the semiconductor device 100.

第3圖、第4圖、第5圖、第6圖、第7圖、第8圖、第9圖和第10圖是本揭露一實施例之半導體裝置100的製造方法之一些階段的剖面示意圖,於第3圖、第4圖、第5圖和第6圖中,半導體裝置100的閘極接墊區100G和源極接墊區100S具有相同的剖面結構,於第7圖、第8圖、第9圖和第10圖中,半導體裝置100的閘極接墊區100G和源極接墊區100S的剖面結構開始產生差異。參閱第3圖,首先提供晶圓,其包含汲極區103和磊晶成長於汲極區103上的第一磊晶層101-1。於一實施例中,汲極區103例如為N型重摻雜的碳化矽基板(N+ SiC substrate),第一磊晶層101-1例如為N型碳化矽磊晶層(N SiC epitaxial layer)。然後,經由離子佈植製程和使用圖案化光阻,在第一磊晶層101-1內形成遮蔽區102,例如為P型重摻雜遮蔽區(P+ shield region),遮蔽區102的摻雜濃度例如為1E17至1E19atoms/cm3,但不限於此。 Figures 3, 4, 5, 6, 7, 8, 9 and 10 are cross-sectional schematic diagrams of some stages of a method for manufacturing a semiconductor device 100 according to an embodiment of the present disclosure. In Figures 3, 4, 5 and 6, the gate pad region 100G and the source pad region 100S of the semiconductor device 100 have the same cross-sectional structure. In Figures 7, 8, 9 and 10, the cross-sectional structures of the gate pad region 100G and the source pad region 100S of the semiconductor device 100 begin to differ. Referring to FIG. 3 , a wafer is first provided, which includes a drain region 103 and a first epitaxial layer 101-1 epitaxially grown on the drain region 103. In one embodiment, the drain region 103 is, for example, an N-type heavily doped silicon carbide substrate (N + SiC substrate), and the first epitaxial layer 101-1 is, for example, an N-type silicon carbide epitaxial layer (N SiC epitaxial layer). Then, through an ion implantation process and using a patterned photoresist, a shield region 102 is formed in the first epitaxial layer 101-1, such as a P-type heavily doped shield region (P + shield region), and the doping concentration of the shield region 102 is, for example, 1E17 to 1E19 atoms/cm 3 , but is not limited thereto.

繼續參閱第3圖,於步驟S101,在第一磊晶層101-1上磊晶成長第二磊晶層101-2,使得遮蔽區102被埋置在由第一磊晶層101-1和第二磊晶層101-2組成的磊晶層101中,並且汲極區103和形成在汲極區103上的磊晶層101提供半導體裝置100的基底110。於一實施例中,第二磊晶層101-2例如為N型碳化矽磊晶層,且第二磊晶層101-2的摻雜濃度可大致上相等於或高於第一磊晶層101-1的摻雜濃度,於一實施例中,第一磊晶層101-1的摻雜濃度可為約1E14至1E16atoms/cm3,第二磊晶層101-2的摻雜濃度可為約1E15至1E17atoms/cm3,但不限於此。 Continuing to refer to FIG. 3 , in step S101, a second epitaxial layer 101-2 is epitaxially grown on the first epitaxial layer 101-1, so that the shielding area 102 is buried in the epitaxial layer 101 composed of the first epitaxial layer 101-1 and the second epitaxial layer 101-2, and the drain region 103 and the epitaxial layer 101 formed on the drain region 103 provide a substrate 110 of the semiconductor device 100. In one embodiment, the second epitaxial layer 101-2 is, for example, an N-type silicon carbide epitaxial layer, and the doping concentration of the second epitaxial layer 101-2 may be substantially equal to or higher than the doping concentration of the first epitaxial layer 101-1. In one embodiment, the doping concentration of the first epitaxial layer 101-1 may be approximately 1E14 to 1E16 atoms/cm 3 , and the doping concentration of the second epitaxial layer 101-2 may be approximately 1E15 to 1E17 atoms/cm 3 , but is not limited thereto.

接著,仍參閱第3圖,於步驟S103,經由離子佈植製程和使用硬遮罩,先在第二磊晶層101-2內形成井區105,例如為P型井區。然後,經由另一離子佈植製程和使用另一硬遮罩,在井區105內形成P型重摻雜區(P+)109,其摻雜濃度高於井區105的摻雜濃度,P型重摻雜區109後續係作為閘極接墊區100G的第二摻雜區109-1和源極接墊區100S的基體區109-2。然後,再經由另一離子佈植製程和使用另一硬遮罩,在井區105內形成N型重摻雜區(N+)107,其摻雜濃度高於井區105的摻雜濃度,且N型重摻雜區107與P型重摻雜區109相鄰,N型重摻雜區107後續係作為閘極接墊區100G的第一摻雜區107-1和源極接墊區100S的源極區107-2。之後,可進行高溫活化製程,以活化N型重摻雜區107和P型重摻雜區109內的摻雜離子。 Next, still referring to FIG. 3, in step S103, a well region 105, such as a P-type well region, is first formed in the second epitaxial layer 101-2 through an ion implantation process and using a hard mask. Then, a P-type heavily doped region (P + ) 109 is formed in the well region 105 through another ion implantation process and using another hard mask, and its doping concentration is higher than that of the well region 105. The P-type heavily doped region 109 is subsequently used as the second doping region 109-1 of the gate pad region 100G and the body region 109-2 of the source pad region 100S. Then, through another ion implantation process and using another hard mask, an N-type heavily doped region (N + ) 107 is formed in the well region 105, and its doping concentration is higher than the doping concentration of the well region 105, and the N-type heavily doped region 107 is adjacent to the P-type heavily doped region 109. The N-type heavily doped region 107 subsequently serves as the first doping region 107-1 of the gate pad region 100G and the source region 107-2 of the source pad region 100S. Afterwards, a high temperature activation process can be performed to activate the doping ions in the N-type heavily doped region 107 and the P-type heavily doped region 109.

接著,參閱第4圖,於步驟S105,經由沉積、光微影和蝕刻製程,在N型重摻雜區107和P型重摻雜區109上形成圖案化的襯墊氧化物(pad oxide)層141和圖案化的硬遮罩140,然後經由襯墊氧化物層141和硬遮罩140的開口,使用蝕刻製程在磊晶層101內形成初始溝槽120i,其穿過N型重摻雜區107和井區105向下延伸,但未到達遮蔽區102。其中,位於閘極接墊區100G的初始溝槽120i可稱為第一初始溝槽,位於源極接墊區100S的初始溝槽120i可稱為第二初始溝槽。同時參閱第1圖和第4圖,在閘極接墊區100G,第一摻雜區107-1位於初始溝槽120i的兩 側,第二摻雜區109-1位於兩個第一摻雜區107-1之間。類似地,在源極接墊區100S,源極區107-2位於初始溝槽120i的兩側,基體區109-2位於兩個源極區107-2之間。 Next, referring to FIG. 4 , in step S105, a patterned pad oxide layer 141 and a patterned hard mask 140 are formed on the N-type heavily doped region 107 and the P-type heavily doped region 109 through deposition, photolithography and etching processes, and then an initial trench 120i is formed in the epitaxial layer 101 through the openings of the pad oxide layer 141 and the hard mask 140 using an etching process, which extends downward through the N-type heavily doped region 107 and the well region 105 but does not reach the shielding region 102. Among them, the initial trench 120i located in the gate pad region 100G can be called the first initial trench, and the initial trench 120i located in the source pad region 100S can be called the second initial trench. Referring to Figures 1 and 4 at the same time, in the gate pad region 100G, the first doping region 107-1 is located on both sides of the initial trench 120i, and the second doping region 109-1 is located between the two first doping regions 107-1. Similarly, in the source pad region 100S, the source region 107-2 is located on both sides of the initial trench 120i, and the base region 109-2 is located between the two source regions 107-2.

繼續參閱第4圖,於步驟S107,先使用熱氧化製程在初始溝槽120i的側壁和底面上順向地(conformally)形成第一間隔材料層142,例如為氧化矽層。然後,使用沉積製程在初始溝槽120i的側壁和底面上順向地形成第二間隔材料層143,以覆蓋第一間隔材料層142,第二間隔材料層143例如為氮化矽層。仍參閱第4圖,於步驟S109,使用蝕刻製程移除位於初始溝槽120i的底面上的第二間隔材料層143和第一間隔材料層142,以暴露出初始溝槽120i的底面120iB,並且形成位於初始溝槽120i側壁上的間隔物142S和另一間隔物143S。其中,在閘極接墊區100G,位於初始溝槽120i側壁上的間隔物142S可稱為第一間隔物。在源極接墊區100S,位於初始溝槽120i側壁上的間隔物142S可稱為第二間隔物。另外,在閘極接墊區100G,位於初始溝槽120i側壁上的另一間隔物143S可稱為第三間隔物,其中第三間隔物(間隔物143S)覆蓋第一間隔物(間隔物142S)。在源極接墊區100S,位於初始溝槽120i側壁上的另一間隔物143S可稱為第四間隔物,其中第四間隔物(間隔物143S)覆蓋第二間隔物(間隔物142S)。 Continuing to refer to FIG. 4, in step S107, a first spacer material layer 142, such as a silicon oxide layer, is firstly formed conformally on the sidewalls and bottom surface of the initial trench 120i using a thermal oxidation process. Then, a second spacer material layer 143 is formed conformally on the sidewalls and bottom surface of the initial trench 120i using a deposition process to cover the first spacer material layer 142. The second spacer material layer 143 is, for example, a silicon nitride layer. Still referring to FIG. 4 , in step S109 , an etching process is used to remove the second spacer material layer 143 and the first spacer material layer 142 on the bottom surface of the initial trench 120i to expose the bottom surface 120iB of the initial trench 120i, and to form a spacer 142S and another spacer 143S on the sidewall of the initial trench 120i. In the gate pad region 100G, the spacer 142S on the sidewall of the initial trench 120i can be referred to as a first spacer. In the source pad region 100S, the spacer 142S on the sidewall of the initial trench 120i can be referred to as a second spacer. In addition, in the gate pad region 100G, another spacer 143S located on the sidewall of the initial trench 120i can be called a third spacer, wherein the third spacer (spacer 143S) covers the first spacer (spacer 142S). In the source pad region 100S, another spacer 143S located on the sidewall of the initial trench 120i can be called a fourth spacer, wherein the fourth spacer (spacer 143S) covers the second spacer (spacer 142S).

接著,參閱第5圖,於步驟S111,經由初始溝槽120i之暴露出的底面120iB(如第4圖所示),使用蝕刻製程移除位於初始溝槽120i正下方的磊晶層101的一部分,以形成子溝槽(sub-trench)120s。子溝槽120s與初始溝槽120i連通,且子溝槽120s的底面位於遮蔽區102中。其中,位於閘極接墊區100G的子溝槽120s可稱為第一子溝槽,位於源極接墊區100S的子溝槽120s可稱為第二子溝槽。 Next, referring to FIG. 5, in step S111, a portion of the epitaxial layer 101 directly below the initial trench 120i is removed by an etching process through the exposed bottom surface 120iB of the initial trench 120i (as shown in FIG. 4) to form a sub-trench 120s. The sub-trench 120s is connected to the initial trench 120i, and the bottom surface of the sub-trench 120s is located in the shielding area 102. Among them, the sub-trench 120s located in the gate pad area 100G can be called the first sub-trench, and the sub-trench 120s located in the source pad area 100S can be called the second sub-trench.

繼續參閱第5圖,於步驟S113,使用熱氧化製程在子溝槽120s內形成氧化物層145。其中,在閘極接墊區100G,位於第一子溝槽內的氧化物層145可稱為第一氧化物層,在源極接墊區100S,位於第二子溝槽內的氧化物層145可稱為 第二氧化物層。在步驟S113的熱氧化製程期間,位於初始溝槽120i側壁上的間隔物142S被另一間隔物143S覆蓋,因此熱氧化製程之後間隔物142S的厚度T2與熱氧化製程之前間隔物142S的厚度T2大致上相同。此外,藉由控制步驟S113的熱氧化製程的製程參數,例如控制通入的氧氣量、加熱溫度和時間,可以讓子溝槽120s內形成的氧化物層145具有厚度T1,且氧化物層145的厚度T1遠大於間隔物142S的厚度T2。如第5圖所示,於步驟S113之後可形成閘極接墊區100G的第一溝槽120-1和源極接墊區100S的第二溝槽120-2的輪廓。 Continuing to refer to FIG. 5, in step S113, a thermal oxidation process is used to form an oxide layer 145 in the sub-trench 120s. In the gate pad region 100G, the oxide layer 145 located in the first sub-trench can be referred to as a first oxide layer, and in the source pad region 100S, the oxide layer 145 located in the second sub-trench can be referred to as a second oxide layer. During the thermal oxidation process of step S113, the spacer 142S located on the sidewall of the initial trench 120i is covered by another spacer 143S, so that the thickness T2 of the spacer 142S after the thermal oxidation process is substantially the same as the thickness T2 of the spacer 142S before the thermal oxidation process. In addition, by controlling the process parameters of the thermal oxidation process in step S113, such as controlling the amount of oxygen introduced, the heating temperature and time, the oxide layer 145 formed in the sub-trench 120s can have a thickness T1, and the thickness T1 of the oxide layer 145 is much greater than the thickness T2 of the spacer 142S. As shown in FIG. 5, after step S113, the outlines of the first trench 120-1 of the gate pad region 100G and the second trench 120-2 of the source pad region 100S can be formed.

之後,仍參閱第5圖,於步驟S115,使用剝離製程,例如使用磷酸溶液進行溼蝕刻製程,以移除硬遮罩140以及位於第一溝槽120-1和第二溝槽120-2側壁上的間隔物143S,留下在第一溝槽120-1和第二溝槽120-2側壁上的間隔物142S,並且還可留下在井區105中的各摻雜區上的襯墊氧化物層141。其中,位於第一溝槽120-1側壁上的間隔物142S(第一間隔物)和底面上的氧化物層145(第一氧化物層)構成第一溝槽120-1內的介電襯層123,位於第二溝槽120-2側壁上的間隔物142S(第二間隔物)和底面上的氧化物層145(第二氧化物層)則構成第二溝槽120-2內的閘極介電層125。 Thereafter, still referring to FIG. 5 , in step S115 , a stripping process is used, such as a wet etching process using a phosphoric acid solution, to remove the hard mask 140 and the spacers 143S on the sidewalls of the first trench 120 - 1 and the second trench 120 - 2 , leaving the spacers 142S on the sidewalls of the first trench 120 - 1 and the second trench 120 - 2 , and also leaving the liner oxide layer 141 on each doped region in the well region 105 . The spacer 142S (first spacer) on the sidewall of the first trench 120-1 and the oxide layer 145 (first oxide layer) on the bottom surface constitute the dielectric liner 123 in the first trench 120-1, and the spacer 142S (second spacer) on the sidewall of the second trench 120-2 and the oxide layer 145 (second oxide layer) on the bottom surface constitute the gate dielectric layer 125 in the second trench 120-2.

之後,參閱第6圖,於步驟S117,使用沉積製程在襯墊氧化物層141上沉積導電材料層,並且填充第一溝槽120-1和第二溝槽120-2,於一實施例中,導電材料層的組成例如為摻雜的多晶矽。然後,對導電材料層進行回蝕刻製程,以在第一溝槽120-1內形成導電部121,同時在第二溝槽120-2內形成閘極電極122。其中,導電部121的底面和閘極電極122的底面均低於井區105的底面,並且在第一溝槽120-1內的介電襯層123圍繞導電部121,在第二溝槽120-2內的閘極介電層125圍繞閘極電極122。於此實施例中,低於井區105的底面之導電部121的下方部份和閘極電極122的下方部份可以作為場板,具有分散電場的作用,進而提高半導體裝置的崩潰電壓。 Then, referring to FIG. 6 , in step S117, a conductive material layer is deposited on the liner oxide layer 141 by a deposition process, and fills the first trench 120-1 and the second trench 120-2. In one embodiment, the conductive material layer is composed of, for example, doped polysilicon. Then, the conductive material layer is etched back to form a conductive portion 121 in the first trench 120-1, and a gate electrode 122 in the second trench 120-2. The bottom surface of the conductive part 121 and the bottom surface of the gate electrode 122 are both lower than the bottom surface of the well region 105, and the dielectric liner 123 in the first trench 120-1 surrounds the conductive part 121, and the gate dielectric layer 125 in the second trench 120-2 surrounds the gate electrode 122. In this embodiment, the lower part of the conductive part 121 and the lower part of the gate electrode 122 below the bottom surface of the well region 105 can be used as a field plate, which has the function of dispersing the electric field, thereby increasing the breakdown voltage of the semiconductor device.

繼續參閱第6圖,於步驟S119,可使用熱氧化製程在導電部121和閘極電極122上形成介電層145。在介電層145形成之後,導電部121和閘極電極122的頂面可稍微低於井區105中的各摻雜區的頂面。然後,可藉由形成圖案化光阻和使用蝕刻製程,移除位於井區105中的各摻雜區上的襯墊氧化物層141,以暴露出閘極接墊區100G的第一摻雜區107-1和第二摻雜區109-1,並且暴露出源極接墊區100S的源極區107-2和基體區109-2。 6, in step S119, a dielectric layer 145 may be formed on the conductive portion 121 and the gate electrode 122 using a thermal oxidation process. After the dielectric layer 145 is formed, the top surfaces of the conductive portion 121 and the gate electrode 122 may be slightly lower than the top surfaces of the doped regions in the well region 105. Then, the liner oxide layer 141 on each doped region in the well region 105 can be removed by forming a patterned photoresist and using an etching process to expose the first doped region 107-1 and the second doped region 109-1 of the gate pad region 100G, and expose the source region 107-2 and the body region 109-2 of the source pad region 100S.

然後,仍參閱第6圖,於步驟S121,經由沉積製程先在第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2上沉積金屬材料(未繪示),例如鈦(Ti)、鈷(Co)、鎳鉑(NiPt)或其他合適的金屬阻障材料,然後進行快速熱處理(rapid thermal processing,RTP),使得金屬材料與第一摻雜區107-1、第二摻雜區109-1、源極區107-2和基體區109-2中的矽反應,以形成位於閘極接墊區100G和源極接墊區100S的金屬矽化物層111。之後,移除未反應的金屬材料。 Then, still referring to FIG. 6, in step S121, a metal material (not shown), such as titanium (Ti), cobalt (Co), nickel platinum (NiPt) or other suitable metal barrier materials, is deposited on the first doped region 107-1, the second doped region 109-1, the source region 107-2 and the base region 109-2 by a deposition process, and then a rapid thermal treatment (RTP) is performed. Processing (RTP) is performed to make the metal material react with the silicon in the first doped region 107-1, the second doped region 109-1, the source region 107-2 and the body region 109-2 to form a metal silicide layer 111 located in the gate pad region 100G and the source pad region 100S. Afterwards, the unreacted metal material is removed.

接著,參閱第7圖,於步驟S123,經由沉積製程在閘極接墊區100G和源極接墊區100S形成第一金屬層131,其覆蓋金屬矽化物層111以及導電部121和閘極電極122上的介電層145。於一實施例中,第一金屬層131的組成例如為鋁矽銅(AlSiCu),但不限於此,採用鋁矽銅(AlSiCu)可以避免第一金屬層131與碳化矽的基底110之間發生接面尖凸(junction spike)現象。 Next, referring to FIG. 7, in step S123, a first metal layer 131 is formed on the gate pad region 100G and the source pad region 100S by a deposition process, which covers the metal silicide layer 111 and the dielectric layer 145 on the conductive portion 121 and the gate electrode 122. In one embodiment, the composition of the first metal layer 131 is, for example, aluminum silicon copper (AlSiCu), but is not limited thereto. The use of aluminum silicon copper (AlSiCu) can avoid the occurrence of junction spikes between the first metal layer 131 and the silicon carbide substrate 110.

然後,參閱第8圖,於步驟S125,形成圖案化光阻覆蓋位於源極接墊區100S的第一金屬層131,並且使用蝕刻製程移除位於閘極接墊區100G的第一金屬層131,使得閘極接墊區100G的第一摻雜區107-1和第二摻雜區109-1上的金屬矽化物層111暴露出來,並且留下位於源極接墊區100S的第一金屬層131,使得第一金屬層131電連接至位於源極區107-2和基體區109-2上的金屬矽化物層111。移除位於閘極接墊區100G的第一金屬層131,可以避免第一金屬層131與後續形成的閘極接墊之間產生寄生電容。 Then, referring to FIG. 8 , in step S125, a patterned photoresist is formed to cover the first metal layer 131 located in the source pad region 100S, and an etching process is used to remove the first metal layer 131 located in the gate pad region 100G, so that the metal silicide layer 111 on the first doped region 107-1 and the second doped region 109-1 of the gate pad region 100G is exposed, and the first metal layer 131 located in the source pad region 100S is left, so that the first metal layer 131 is electrically connected to the metal silicide layer 111 located on the source region 107-2 and the body region 109-2. Removing the first metal layer 131 located in the gate pad region 100G can avoid the generation of parasitic capacitance between the first metal layer 131 and the gate pad formed subsequently.

之後,參閱第9圖,於步驟S127,在閘極接墊區100G和源極接墊區100S沉積介電材料層,覆蓋閘極接墊區100G的金屬矽化物層111和源極接墊區100S的第一金屬層131。然後,對介電材料層進行化學機械平坦化製程(chemical mechanical planarization,CMP),以形成介電層133,其中在閘極接墊區100G的介電層133的厚度T3大於在源極接墊區100S的介電層133的厚度T4。 Afterwards, referring to FIG. 9, in step S127, a dielectric material layer is deposited in the gate pad region 100G and the source pad region 100S to cover the metal silicide layer 111 of the gate pad region 100G and the first metal layer 131 of the source pad region 100S. Then, a chemical mechanical planarization (CMP) process is performed on the dielectric material layer to form a dielectric layer 133, wherein the thickness T3 of the dielectric layer 133 in the gate pad region 100G is greater than the thickness T4 of the dielectric layer 133 in the source pad region 100S.

接著,參閱第10圖,於步驟S129,形成圖案化光阻和使用蝕刻製程,於源極接墊區100S的介電層133內形成開口134,以暴露出第一金屬層131。然後,在介電層133上和開口134內沉積第二金屬層132,其中填充在開口134內的第二金屬層132形成導通孔(via)135。於一實施例中,第二金屬層132的組成例如為鋁銅(AlCu),但不限於此。之後,形成另一圖案化光阻和使用另一蝕刻製程,將介電層133上的第二金屬層132圖案化,以形成如第2圖所示彼此側向分離的閘極接墊137和源極接墊139,並且完成半導體裝置100。其中,閘極接墊137位於第一溝槽120-1正上方,源極接墊139位於第二溝槽120-2正上方。此外,形成於介電層133之平坦表面上的閘極接墊137的頂面和源極接墊139的頂面在同一平面上。於此實施例中,閘極接墊137、源極接墊139和導通孔135均由第二金屬層132構成。 Next, referring to FIG. 10 , in step S129, a patterned photoresist is formed and an etching process is used to form an opening 134 in the dielectric layer 133 of the source pad region 100S to expose the first metal layer 131. Then, a second metal layer 132 is deposited on the dielectric layer 133 and in the opening 134, wherein the second metal layer 132 filled in the opening 134 forms a via 135. In one embodiment, the composition of the second metal layer 132 is, for example, aluminum copper (AlCu), but is not limited thereto. Thereafter, another patterned photoresist is formed and another etching process is used to pattern the second metal layer 132 on the dielectric layer 133 to form a gate pad 137 and a source pad 139 that are laterally separated from each other as shown in FIG. 2, and the semiconductor device 100 is completed. The gate pad 137 is located directly above the first trench 120-1, and the source pad 139 is located directly above the second trench 120-2. In addition, the top surface of the gate pad 137 and the top surface of the source pad 139 formed on the flat surface of the dielectric layer 133 are on the same plane. In this embodiment, the gate pad 137, the source pad 139 and the via 135 are all formed by the second metal layer 132.

根據本揭露的一些實施例,半導體裝置之閘極接墊區和源極接墊區的結構可以在相同的製程步驟中同時形成,因此不需要額外增加光罩數量和製程步驟,就可以在閘極接墊正下方增加有效溝槽型功率電晶體的數目,達到提昇半導體裝置的電性效能之目的,同時還可以節省半導體裝置的製造成本。 According to some embodiments of the present disclosure, the structures of the gate pad region and the source pad region of the semiconductor device can be formed simultaneously in the same process step, so there is no need to increase the number of masks and process steps, and the number of effective trench-type power transistors can be increased directly below the gate pad, thereby achieving the purpose of improving the electrical performance of the semiconductor device and saving the manufacturing cost of the semiconductor device.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made within the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:半導體裝置 100:Semiconductor devices

100G:閘極接墊區 100G: Gate pad area

100S:源極接墊區 100S: Source pad area

101:磊晶層 101: Epitaxial layer

102:遮蔽區 102: Sheltered area

103:汲極區 103: Drain area

105:井區 105: Well area

107-1:第一摻雜區 107-1: The first mixed area

107-2:源極區 107-2: Source region

109-1:第二摻雜區 109-1: Second mixed area

109-2:基體區 109-2: Matrix area

110:基底 110: Base

110F:第一表面 110F: First surface

110B:第二表面 110B: Second surface

111:金屬矽化物層 111: Metal silicide layer

120-1:第一溝槽 120-1: First groove

120-2:第二溝槽 120-2: Second groove

121:導電部 121: Conductive part

122:閘極電極 122: Gate electrode

123:介電襯層 123: Dielectric liner

123S:第一部份 123S: Part 1

123B:第二部份 123B: Part 2

125:閘極介電層 125: Gate dielectric layer

125S:第三部份 125S: Part 3

125B:第四部份 125B: Part 4

131:第一金屬層 131: First metal layer

132:第二金屬層 132: Second metal layer

133:介電層 133: Dielectric layer

133-1:介電層的一部分 133-1: Part of the dielectric layer

133-2:介電層的另一部份 133-2: Another part of the dielectric layer

135:導通孔 135: Conductive hole

137:閘極接墊 137: Gate pad

139:源極接墊 139: Source pad

145:介電層 145: Dielectric layer

T1、T2、T3、T4:厚度 T1, T2, T3, T4: thickness

Claims (19)

一種半導體裝置,包括:一基底,具有一第一表面和一第二表面,該基底包括一磊晶層;一井區,設置於該磊晶層中;一基體區,設置於該井區中,且具有一第二導電類型;一閘極接墊和一源極接墊,彼此側向分離,均設置於該基底的該第一表面之上;一汲極區,設置於該基底的該第二表面,其中該磊晶層位於該汲極區上;一第一溝槽,設置於該基底中,位於該閘極接墊的正下方;一導電部,填充於該第一溝槽內;一介電襯層,設置於該第一溝槽內且圍繞該導電部;一第一摻雜區,位於該第一溝槽的側邊;一第二摻雜區,具有該第二導電類型,且該第二摻雜區設置於該井區中,其中該第二摻雜區鄰接該第一摻雜區;一第二溝槽,設置於該基底中,位於該源極接墊的正下方;一閘極電極,填充於該第二溝槽內;一閘極介電層,設置於該第二溝槽內且圍繞該閘極電極;以及一源極區,位於該第二溝槽的側邊,其中該第一摻雜區和該源極區具有相同的導電類型,且該基體區鄰接該源極區,其中該第一摻雜區和該源極區均具有一第一導電類型,該井區具有該第二導電類型。 A semiconductor device comprises: a substrate having a first surface and a second surface, the substrate comprising an epitaxial layer; a well region disposed in the epitaxial layer; a body region disposed in the well region and having a second conductivity type; a gate pad and a source pad, which are laterally separated from each other and are both disposed on the first surface of the substrate; a drain region disposed on the second surface of the substrate, wherein the epitaxial layer is located on the drain region; a first trench disposed in the substrate and directly below the gate pad; a conductive portion filled in the first trench; a dielectric liner disposed in the first trench and surrounding the conductive portion; a first doped region disposed in the substrate; a second doped region having the second conductivity type and disposed in the well region, wherein the second doped region is adjacent to the first doped region; a second trench disposed in the substrate and directly below the source pad; a gate electrode filled in the second trench; a gate dielectric layer disposed The first doped region and the source region are disposed in the second trench and surround the gate electrode; and a source region is located on the side of the second trench, wherein the first doped region and the source region have the same conductivity type, and the body region is adjacent to the source region, wherein the first doped region and the source region both have a first conductivity type, and the well region has the second conductivity type. 如請求項1所述之半導體裝置,其中該介電襯層包括一第一部份和一第二部份,分別位於該第一溝槽的側壁和底面上,且該第二部份的厚度大於 該第一部份的厚度,該閘極介電層包括一第三部份和一第四部份,分別位於該第二溝槽的側壁和底面上,且該第四部份的厚度大於該第三部份的厚度。 A semiconductor device as described in claim 1, wherein the dielectric liner includes a first portion and a second portion, which are respectively located on the sidewall and bottom surface of the first trench, and the thickness of the second portion is greater than the thickness of the first portion, and the gate dielectric layer includes a third portion and a fourth portion, which are respectively located on the sidewall and bottom surface of the second trench, and the thickness of the fourth portion is greater than the thickness of the third portion. 如請求項1所述之半導體裝置,其中該閘極電極和該導電部均電耦接至該閘極接墊,且該第一摻雜區和該源極區均電耦接至該源極接墊。 A semiconductor device as described in claim 1, wherein the gate electrode and the conductive portion are both electrically coupled to the gate pad, and the first doped region and the source region are both electrically coupled to the source pad. 如請求項1所述之半導體裝置,其中該井區從該閘極接墊的正下方側向延伸至該源極接墊的正下方,其中該汲極區和該磊晶層均具有該第一導電類型,且該第一摻雜區和該源極區均設置於該井區中。 A semiconductor device as described in claim 1, wherein the well region extends laterally from directly below the gate pad to directly below the source pad, wherein the drain region and the epitaxial layer both have the first conductivity type, and the first doped region and the source region are both disposed in the well region. 如請求項4所述之半導體裝置,還包括一金屬矽化物層,直接接觸該第一摻雜區、該第二摻雜區、該源極區和該基體區的頂面。 The semiconductor device as described in claim 4 further includes a metal silicide layer directly contacting the top surfaces of the first doped region, the second doped region, the source region and the base region. 如請求項5所述之半導體裝置,還包括一第一金屬層,設置於該源極接墊的正下方,且直接接觸該金屬矽化物層,其中該源極接墊電連接至該第一金屬層,且該第一金屬層的垂直投影區域和該閘極接墊的垂直投影區域不重疊。 The semiconductor device as described in claim 5 further includes a first metal layer disposed directly below the source pad and directly contacting the metal silicide layer, wherein the source pad is electrically connected to the first metal layer, and the vertical projection area of the first metal layer and the vertical projection area of the gate pad do not overlap. 如請求項6所述之半導體裝置,還包括一介電層,覆蓋該第一金屬層和該金屬矽化物層,該介電層的一部分位於該閘極接墊的正下方,該介電層的另一部分位於該源極接墊的正下方,且該介電層的該部分的厚度大於該介電層的該另一部分的厚度。 The semiconductor device as described in claim 6 further includes a dielectric layer covering the first metal layer and the metal silicide layer, a portion of the dielectric layer is located directly below the gate pad, another portion of the dielectric layer is located directly below the source pad, and the thickness of the portion of the dielectric layer is greater than the thickness of the other portion of the dielectric layer. 如請求項7所述之半導體裝置,其中該閘極接墊和該源極接墊由一 第二金屬構成,且該閘極接墊的頂面和該源極接墊的頂面在同一平面上。 A semiconductor device as described in claim 7, wherein the gate pad and the source pad are formed of a second metal, and the top surface of the gate pad and the top surface of the source pad are on the same plane. 如請求項4所述之半導體裝置,還包括一遮蔽區,設置於該第一溝槽和該第二溝槽的正下方,具有與該第一摻雜區和該源極區相反的導電類型。 The semiconductor device as described in claim 4 further includes a shielding region disposed directly below the first trench and the second trench, and having a conductivity type opposite to that of the first doped region and the source region. 一種半導體裝置的製造方法,包括:提供一基底,包括形成一汲極區和一磊晶層在該汲極區上;對該磊晶層進行一離子佈植製程,以形成一第一摻雜區和一源極區,均具有一第一導電類型;對該磊晶層進行該離子佈植製程之後,在該磊晶層內形成一第一溝槽和一第二溝槽,分別鄰接該第一摻雜區和該源極區;在該第一溝槽和該第二溝槽內分別形成一介電襯層和一閘極介電層;在該第一溝槽和該第二溝槽內分別形成一導電部和一閘極電極,其中該介電襯層圍繞該導電部,該閘極介電層圍繞該閘極電極;以及在該磊晶層之上形成彼此側向分離的一閘極接墊和一源極接墊,且分別位於該第一溝槽和該第二溝槽正上方。 A method for manufacturing a semiconductor device includes: providing a substrate, forming a drain region and an epitaxial layer on the drain region; performing an ion implantation process on the epitaxial layer to form a first doped region and a source region, both of which have a first conductivity type; after performing the ion implantation process on the epitaxial layer, forming a first trench and a second trench in the epitaxial layer, adjacent to the first doped region and the source region respectively; A dielectric liner and a gate dielectric layer are formed in the first trench and the second trench respectively; a conductive portion and a gate electrode are formed in the first trench and the second trench respectively, wherein the dielectric liner surrounds the conductive portion and the gate dielectric layer surrounds the gate electrode; and a gate pad and a source pad are formed on the epitaxial layer and are laterally separated from each other and are located directly above the first trench and the second trench respectively. 如請求項10所述之半導體裝置的製造方法,其中在該第一溝槽和該第二溝槽內分別形成該介電襯層和該閘極介電層包括:在該磊晶層內形成一第一初始溝槽和一第二初始溝槽;在該第一初始溝槽的側壁上和該第二初始溝槽的側壁上分別形成一第一間隔物和一第二間隔物,且暴露出該第一初始溝槽的底面和該第二初始溝槽的底面;移除位於該第一初始溝槽的正下方和該第二初始溝槽的正下方的該磊晶層 的一部分,以形成一第一子溝槽和一第二子溝槽,分別連通至該第一初始溝槽和該第二初始溝槽;以及在該第一子溝槽和該第二子溝槽進行一熱氧化製程,以分別形成一第一氧化物層和一第二氧化物層,其中該第一間隔物和該第一氧化物層構成該介電襯層,該第二間隔物和該第二氧化物層構成該閘極介電層。 The method for manufacturing a semiconductor device as described in claim 10, wherein the dielectric liner and the gate dielectric layer are formed in the first trench and the second trench, respectively, comprising: forming a first initial trench and a second initial trench in the epitaxial layer; forming a first spacer and a second spacer on the sidewalls of the first initial trench and the sidewalls of the second initial trench, respectively, and exposing the bottom surface of the first initial trench and the bottom surface of the second initial trench; removing the dielectric liner and the gate dielectric layer in the first ... A portion of the epitaxial layer directly below and directly below the second initial trench to form a first sub-trench and a second sub-trench, which are connected to the first initial trench and the second initial trench respectively; and a thermal oxidation process is performed in the first sub-trench and the second sub-trench to form a first oxide layer and a second oxide layer respectively, wherein the first spacer and the first oxide layer constitute the dielectric liner, and the second spacer and the second oxide layer constitute the gate dielectric layer. 如請求項11所述之半導體裝置的製造方法,其中該第一氧化物層的厚度大於該第一間隔物的厚度,該第二氧化物層的厚度大於該第二間隔物的厚度。 A method for manufacturing a semiconductor device as described in claim 11, wherein the thickness of the first oxide layer is greater than the thickness of the first spacer, and the thickness of the second oxide layer is greater than the thickness of the second spacer. 如請求項11所述之半導體裝置的製造方法,其中在形成該第一子溝槽和該第二子溝槽之前,還包括形成一第三間隔物覆蓋該第一間隔物,以及形成一第四間隔物覆蓋該第二間隔物,並且在形成該第一氧化物層和該第二氧化物層之後,以及在形成該導電部和該閘極電極之前,移除該第三間隔物和該第四間隔物。 The method for manufacturing a semiconductor device as described in claim 11, wherein before forming the first sub-trench and the second sub-trench, a third spacer is formed to cover the first spacer, and a fourth spacer is formed to cover the second spacer, and after forming the first oxide layer and the second oxide layer, and before forming the conductive part and the gate electrode, the third spacer and the fourth spacer are removed. 如請求項11所述之半導體裝置的製造方法,還包括在該磊晶層中形成一遮蔽區,具有一第二導電類型,其中該第一子溝槽的底面和該第二子溝槽的底面均位於該遮蔽區中。 The method for manufacturing a semiconductor device as described in claim 11 further includes forming a shielding area in the epitaxial layer, having a second conductivity type, wherein the bottom surface of the first sub-trench and the bottom surface of the second sub-trench are both located in the shielding area. 如請求項10所述之半導體裝置的製造方法,還包括在該磊晶層中形成一井區,具有一第二導電類型,該第一摻雜區和該源極區均形成於該井區中,且該導電部的底面和該閘極電極的底面均低於該井區的底面。 The method for manufacturing a semiconductor device as described in claim 10 further includes forming a well region in the epitaxial layer, having a second conductivity type, the first doped region and the source region are both formed in the well region, and the bottom surface of the conductive portion and the bottom surface of the gate electrode are both lower than the bottom surface of the well region. 如請求項15所述之半導體裝置的製造方法,還包括在該井區中形成一第二摻雜區和一基體區,均具有該第二導電類型,且該第二摻雜區鄰接該第一摻雜區,該基體區鄰接該源極區。 The method for manufacturing a semiconductor device as described in claim 15 further includes forming a second doped region and a base region in the well region, both of which have the second conductivity type, and the second doped region is adjacent to the first doped region, and the base region is adjacent to the source region. 如請求項16所述之半導體裝置的製造方法,還包括在該第一摻雜區、該第二摻雜區、該源極區和該基體區上沉積一金屬材料,且該金屬材料與該第一摻雜區、該第二摻雜區、該源極區和該基體區中的矽反應,以形成一金屬矽化物層。 The method for manufacturing a semiconductor device as described in claim 16 further includes depositing a metal material on the first doped region, the second doped region, the source region and the base region, and the metal material reacts with silicon in the first doped region, the second doped region, the source region and the base region to form a metal silicide layer. 如請求項17所述之半導體裝置的製造方法,還包括:在該金屬矽化物層上沉積一第一金屬層;移除位於該閘極接墊的一預定形成區的該第一金屬層;形成一介電層,覆蓋該第一金屬層和該閘極接墊的該預定形成區;形成一開口於該介電層內,以暴露出該第一金屬層;沉積一第二金屬層於該介電層上和該開口內;以及圖案化該第二金屬層,以形成該閘極接墊和該源極接墊。 The method for manufacturing a semiconductor device as described in claim 17 further includes: depositing a first metal layer on the metal silicide layer; removing the first metal layer in a predetermined formation region of the gate pad; forming a dielectric layer covering the first metal layer and the predetermined formation region of the gate pad; forming an opening in the dielectric layer to expose the first metal layer; depositing a second metal layer on the dielectric layer and in the opening; and patterning the second metal layer to form the gate pad and the source pad. 如請求項18所述之半導體裝置的製造方法,其中形成該介電層包括:沉積一介電材料層於該閘極接墊的該預定形成區和該第一金屬層上;以及對該介電材料層進行一平坦化製程,以形成該介電層,其中形成於該介電層上的該閘極接墊的頂面和該源極接墊的頂面在同一平面上。 A method for manufacturing a semiconductor device as described in claim 18, wherein forming the dielectric layer comprises: depositing a dielectric material layer on the predetermined formation region of the gate pad and the first metal layer; and performing a planarization process on the dielectric material layer to form the dielectric layer, wherein the top surface of the gate pad and the top surface of the source pad formed on the dielectric layer are on the same plane.
TW112137797A 2023-10-03 Semiconductor device and fabricating method thereof TWI868962B (en)

Publications (1)

Publication Number Publication Date
TWI868962B true TWI868962B (en) 2025-01-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220328658A1 (en) 2019-11-28 2022-10-13 China Resources Microelectronics (Chongqing) Co., Ltd. Trench field effect transistor structure and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220328658A1 (en) 2019-11-28 2022-10-13 China Resources Microelectronics (Chongqing) Co., Ltd. Trench field effect transistor structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN101395719B (en) Trench field plate termination for power devices
US9450091B2 (en) Semiconductor device with enhanced mobility and method
US8008716B2 (en) Inverted-trench grounded-source FET structure with trenched source body short electrode
US20070120194A1 (en) Semiconductor device and a method of manufacturing the same
CN101908562A (en) Structures and methods for forming shielded gate trench FETs
CN107910267B (en) Power semiconductor device and manufacturing method thereof
CN111092123A (en) Lateral double diffused transistor and method of making the same
CN107910269B (en) Power semiconductor device and method of manufacturing the same
CN107910266B (en) Power semiconductor device and method of manufacturing the same
TW202215548A (en) Ldmos transistor and manufacturing method thereof
US20120126312A1 (en) Vertical dmos-field effect transistor
JP4025063B2 (en) Semiconductor device
CN107910270B (en) Power semiconductor device and method for manufacturing the same
US20210376145A1 (en) Ldmos device and manufacturing method thereof
CN107910268B (en) Power semiconductor device and method of manufacturing the same
CN103022104A (en) Trench type power transistor device and method of fabricating the same
TWI868962B (en) Semiconductor device and fabricating method thereof
JP2007281512A (en) Semiconductor device
CN107910271B (en) Power semiconductor device and manufacturing method thereof
JP2003051594A (en) Semiconductor device and manufacturing method therefor
US11342425B2 (en) Semiconductor device having needle-shape field plate trenches and needle-shaped gate trenches
KR100734143B1 (en) DMOS transistor and manufacturing method
KR101271066B1 (en) Method of forming a low capacitance semiconductor device and structure therefor
TWI860883B (en) Semiconductor device and manufacturing method thereof
TWI854618B (en) Semiconductor device and fabrication method thereof