[go: up one dir, main page]

TWI867701B - 諧振轉換器及其操作方法 - Google Patents

諧振轉換器及其操作方法 Download PDF

Info

Publication number
TWI867701B
TWI867701B TW112131633A TW112131633A TWI867701B TW I867701 B TWI867701 B TW I867701B TW 112131633 A TW112131633 A TW 112131633A TW 112131633 A TW112131633 A TW 112131633A TW I867701 B TWI867701 B TW I867701B
Authority
TW
Taiwan
Prior art keywords
control signal
switch
control
resonant converter
resonant
Prior art date
Application number
TW112131633A
Other languages
English (en)
Other versions
TW202510480A (zh
Inventor
楊上凱
王賢凱
林彥瑋
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW112131633A priority Critical patent/TWI867701B/zh
Application granted granted Critical
Publication of TWI867701B publication Critical patent/TWI867701B/zh
Publication of TW202510480A publication Critical patent/TW202510480A/zh

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

一種諧振轉換器轉換直流電壓為輸出電壓,且諧振轉換器包括變壓器、初級側電路及控制模組。初級側電路接收直流電壓,且包括諧振電路。諧振電路耦接變壓器的初級側繞組,以形成諧振模組。控制模組控制初級側電路轉換直流電壓,以於諧振模組二端產生繞組電壓。當控制模組偵測諧振轉換器的輸出電流介於預定電流與額定電流的電流區間時,控制模組將繞組電壓的佔空比調整一變化量,以通過調整佔空比來控制諧振轉換器的EMI數值符合規範值。

Description

諧振轉換器及其操作方法
本發明係有關一種諧振轉換器及其操作方法,尤指一種具有頻率抖動功能之諧振轉換器及其操作方法。
隨著資訊產業的快速發展,電源供應器已扮演著不可或缺的角色。資訊和家用電器的輸入電壓分為交流電壓和直流電壓,且電源供應器一般可分為兩個級別。一般前級通常為AC/DC轉換器、功率因數校正器或DC/DC轉換器,且後級通常為諧振轉換器。如圖1A所示,當電源供應器應用於交流的市電電壓Vac輸入時,前級AC/DC轉換器的輸出電壓Vo具有兩倍頻的市電電壓Vac特性。後級DC/DC轉換器為了調節輸出電壓,其操作頻率如圖1B所示,會在額定功率約為85kHz下的±6kHz的頻率範圍R1變化,這種頻率±6kHz的變動類似頻率抖動(frequency Gitter)的特性。這樣的特性可以使DC/DC轉換器所產生的EMI能量能夠平均分散在±6kHz的頻率範圍R1,以及兩倍頻約170kHz±12kHz範圍。因此,能夠獲得較好的抑制EMI的特性。
然而,如圖1C所示,在電源供應器應用於直流電壓Vdc輸入時,在前級DC/DC轉換器的輸出電壓Vo中不會出現兩倍頻的市電電壓。因 此,後級諧振轉換器調整後的操作頻率(如圖1D所示)會呈現±0.2kHz的頻率範圍R2小幅度的變化。由於操作頻率變動量很小,因此DC/DC轉換器所產生的EMI能量會集中於當下的操作頻率的N倍(N=1、2、3…)。由於沒有頻率抖動的特性,使得抑制EMI的效果極差。
因此,習知技術解決上述問題的現有方式為:1.增強EMI衰減能力,但這將會導致諧振轉換器的設計更困難,且無法縮小電路體積以及降低電路成本。2.通過調整諧振轉換器的操作頻率,避開安規最低限制的規範值(150kHz)。例如,操作頻率設計在70kHz,則兩倍頻為140kHz,仍小於150kHz的規範值。因此,會導致諧振轉換器在設計上受到限制。3.特地產生頻率抖動(frequency Gitter)效果。此作法係將前級輸出電壓Vout固定,且將諧振轉換器的操作頻率特地的變動±6kHz。但是,由於操作頻率被特地變動,因此會造成DC/DC輸出電壓Vout存在一個低頻電壓漣波。
所以,如何設計出一種諧振轉換器及其操作方法,以使得諧振轉換器有較佳的EMI抑制效果,使諧振轉換器所測得的EMI數值符合規範值,乃為本案創作人所欲行研究的一大課題。
為了解決上述問題,本揭露係提供一種諧振轉換器,以克服習知技術的問題。因此,本揭露的諧振轉換器轉換直流電壓為輸出電壓,且諧振轉換器包括變壓器、初級側電路及控制模組。變壓器包括初級側繞組,且初級側電路接收該直流電壓。初級側電路包括諧振電路,且諧振電路耦接初級側繞組,以形成諧振模組。控制模組耦接初級側電路,且控制初級側電路轉換直流電壓,以於 諧振模組二端產生繞組電壓。其中,當控制模組偵測諧振轉換器的輸出電流介於預定電流與額定電流的電流區間時,控制模組將繞組電壓的佔空比調整一變化量,以通過調整佔空比來控制諧振轉換器的EMI數值符合規範值。
為了解決上述問題,本揭露係提供一種諧振轉換器的操作方法,以克服習知技術的問題。因此,本揭露的諧振轉換器包括變壓器與初級側電路,且初級側電路包括諧振電路。諧振電路耦接變壓器的初級側繞組,以形成諧振模組,且諧振轉換器的操作方法係包括下列步驟:(a)控制初級側電路轉換直流電壓,以控制諧振轉換器將直流電壓轉換為輸出電壓,且於諧振模組二端產生繞組電壓。(b)偵測諧振轉換器的輸出電流,且判斷輸出電流介於預定電流與額定電流的電流區間時,將繞組電壓的佔空比調整一變化量。(c)通過調整佔空比來控制諧振轉換器的操作頻率於頻率範圍內變化,且頻率範圍正相關於變化量。
本揭露之主要目的及功效在於,控制模組係在偵測到輸出電流上升至某一程度時,控制模組將繞組電壓的佔空比調整一變化量,來達成頻率抖動(frequency Gitter)的功能,以降低EMI數值而使EMI數值符合規範值。
為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。
100:諧振轉換器
1:變壓器
12:初級側繞組
122:諧振模組
a:第一端
b:第二端
14:次級側繞組
2:初級側電路
2A:諧振電路
22:第一橋臂
Q1:第一開關
Q2:第二開關
24:第二橋臂
Q3:第三開關
Q4:第四開關
Cr:諧振電容
Lr:諧振電感
3:次級側電路
4:控制模組
42:比較器
44:電壓控制器
46:脈寬調變器
48:佔空比調整模組
5:驅動電路
200:前級電路
300:負載
Vac:市電電壓
Vdc:直流電壓
Vo:輸出電壓
Vab:繞組電壓
Vref:參考電壓
Io:輸出電流
Io_stop:預定電流
Io_max:額定電流
Ci:電流區間
R1、R2、△fsw:頻率範圍
fsw:操作頻率
Sc1、Sc2、Sc3、Sc4:控制訊號
Sfb:回授訊號
Ser:誤差訊號
D:佔空比
Dp:預定值
Dl:臨界值
Vpwm:脈寬調變值
Vm:變化值
M:變化量
I、II、III:區間
Vs:相移量
DT:死區時間
(S100)~(S360):步驟
圖1A為習知的電源供應器應用於交流的市電電壓輸入時的波形圖; 圖1B為習知的諧振轉換器應用於交流的市電電壓輸入時的頻率特性圖;圖1C為習知的電源供應器應用於直流電壓輸入時的波形圖;圖1D為習知的諧振轉換器應用於直流電壓輸入時的頻率特性圖;圖2A為本揭露具有頻率抖動功能之諧振轉換器的電路方塊圖;圖2B為本揭露諧振轉換器第一實施例的電流-頻率曲線圖;圖3A為本揭露諧振轉換器第二實施例的電流-頻率曲線圖;圖3B為本揭露諧振轉換器第三實施例的電流-頻率曲線圖;圖4A為本揭露具有頻率抖動功能之諧振轉換器第一實施例的電路方塊圖;圖4B為本揭露具有頻率抖動功能之諧振轉換器第一實施例的訊號波形圖;圖4C為本揭露具有頻率抖動功能之諧振轉換器第一實施例控制模組的電路方塊圖;圖5A為本揭露具有頻率抖動功能之諧振轉換器第二實施例的電路方塊圖;圖5B為本揭露具有頻率抖動功能之諧振轉換器第二實施例的訊號波形圖;圖5C為本揭露具有頻率抖動功能之諧振轉換器第二實施例控制模組的電路方塊圖;圖6A為本揭露具有頻率抖動功能之諧振轉換器第一實施例的操作方法之方法流程圖;及 圖6B為本揭露具有頻率抖動功能之諧振轉換器第二實施例的操作方法之方法流程圖。
茲有關本發明之技術內容及詳細說明,配合圖式說明如下:請參閱圖2A為本揭露具有頻率抖動功能之諧振轉換器的電路方塊圖、圖2B為本揭露諧振轉換器第一實施例的電流-頻率曲線圖,復配合參閱圖1A~1D。諧振轉換器100耦接前級電路200與負載300,且前級電路200可以例如但不限於,為AC/DC轉換電路、DC/DC轉換電路或為直流輸入源等直流電源提供者。諧振轉換器100轉換直流電壓Vdc為輸出電壓Vo,且基於負載300的用電需求,提供輸出電流Io至負載300。諧振轉換器100包括變壓器1、初級側電路2、次級側電路3及控制模組4,且變壓器1包括初級側繞組12與次級側繞組14。初級側電路2包括諧振電路2A,諧振電路2A耦接初級側繞組12而形成諧振模組122,且次級側電路3耦接次級側繞組14。值得一提,於一實施例中,諧振電路2A包括諧振電容Cr與諧振電感Lr,圖中雖以串聯形式呈現,但其僅為示意性的範例,並不以此為限,其諧振電容Cr與諧振電感Lr亦可為並聯形式連接。
控制模組4耦接初級側電路2與次級側電路3,且控制模組4通過控制初級側電路2與次級側電路3而控制諧振轉換器100將直流電壓Vdc轉換為輸出電壓Vo。值得一提,於一實施例中,控制模組4可包括控制器(例如但不限於,微控制器、中央處理器等)與用以偵測諧振轉換器100各點(例如但不限 於,輸入端、輸出端等)的電壓、電流等偵測電路(例如但不限於電流感測器、電壓感測器等)。
在圖2B中,Io_min為無載時的輸出電流,且Io_max為滿載時的輸出電流(或稱額定電流)。當輸出電流Io越低時,諧振轉換器100的操作頻率fsw越高。反之,當輸出電流Io越高時,諧振轉換器100的操作頻率fsw越低。在此變頻操作下(即操作頻率fsw隨輸出電流Io的大小而變動),一般的諧振轉換器100將直流電壓Vdc轉換為輸出電壓Vo時,諧振模組122二端會產生繞組電壓Vab(可稱之為有效輸入電壓),且繞組電壓Vab的佔空比D通常會保持在預定值Dp(例如但不限於,50%的上限值,但也可以為45%、40%等數值,其可以依照實際需求調整)。然而,如圖1A~1D的先前技術所示,當電源供應器應用於直流電壓Vdc輸入且輸出電流Io上升至某一程度時,由於諧振轉換器100沒有頻率抖動(frequency gitter)的功能,使得諧振轉換器100抑制EMI的效果極差,容易導致諧振轉換器100所測得的EMI數值不符合規範值(例如但不限於,國際電工委員會IEC的國際標準)。
因此,為了使諧振轉換器100所測得的EMI數值符合規範值,本揭露係在輸出電流Io上升至某一程度時,使用頻率抖動的功能來降低EMI數值,以使EMI數值符合規範值。具體而言,當控制模組4偵測諧振轉換器100的輸出電流Io介於預定電流Io_stop與額定電流Io_max的電流區間Ci時,控制模組4提供頻率抖動的功能。意即,控制模組4將繞組電壓Vab的佔空比D調整一變化量M而使佔空比D不要保持於預定值Dp。當變化量M越大時,則佔空比D越小,反之則佔空比D越大。其中,變化量M根據控制模組4的計算,於預定值Dp與臨界值Dl之間變動,且臨界值Dl的曲線可依諧振轉換器100的需 求,做適應性的調整(以虛線表示)。例如但不限於,當變化量M為10%,且佔空比D為上限值50%時,則佔空比D會於50%的預定值Dp與40%的臨界值Dl之間變動。亦或者,當變化量M為5%,且佔空比D為45%時,則佔空比D會於45%的預定值Dp與40%的臨界值Dl之間,或於45%的預定值Dp與50%的臨界值Dl之間變動,依此類推。
另外一方面,由於諧振轉換器100使用頻率抖動的功能,因此當輸出電流Io為固定值時,諧振轉換器100的操作頻率fsw會隨著變化量M的變動而相應地變動。因此,當輸出電流Io於電流區間Ci時,操作頻率fsw會於特定的頻率範圍△fsw內變化,且頻率範圍△fsw正相關於變化量M。舉例而言,當輸出電流Io固定於10A(10A在電流區間Ci內),且當前操作頻率fsw為85kHz時,調整的變化量M根據控制模組4的計算,於預定值Dp與變化量M的臨界值Dl之間變動,且操作頻率fsw根據變化量M的變動,於85kHz至75kHz之間或85kHz至95kHz變動。
因此,當控制模組4所計算的變化量M較小時,為了保持繞組電壓Vab固定,則操作頻率fsw變化的幅度也較小。反之,當控制模組4計算的變化量M較大時,為了保持繞組電壓Vab固定,則操作頻率fsw變化的幅度會較大。另外一方面,由轉換器的EMI特性(包括DC/DC轉換器)可以知道,輸出電流Io愈大,當前轉換器產生的N階諧波能量愈大。反之,輸出電流Io愈小,轉換器產生的N階諧波能量愈小。這種特性在EMI規範限制中,當輸出電流Io愈大,產生的諧波能量愈大,使得EMI數值越靠近最大限制值。反之,當輸出電流Io愈小,產生的諧波能量愈小,使得EMI數值與最大限制值越遠。因此, 在輸出電流Io較大時(即大於等於預定電流Io_stop),通過將佔空比D調整一變化量M,即可控制諧振轉換器100的EMI數值符合規範值。
請參閱圖3A為本揭露諧振轉換器第二實施例的電流-頻率曲線圖,復配合參閱圖2A~2B。本揭露係因應輸出電流Io的不同,利用了改變繞組電壓Vab的佔空比D,搭配轉換器本身的EMI特性,來進行諧振轉換器100的操作。當輸出電流Io較大時,產生的諧波能量也大。因此,為了符合法規限制,變化量M的調整較大。反之,當輸出電流Io較小時,產生的諧波能量也小,變化量M的調整較小或可以保持不變。因此,當控制模組4偵測輸出電流Io小於預定電流Io_stop(區間I)或大於額定電流Io_max(區間III)時,控制模組固定佔空比D為預定值Dp(例如但不限於50%),即可使諧振轉換器100的EMI數值符合規範值。意即,在輸出電流Io不在電流區間Ci時,控制模組4控制變化量M為零,使得佔空比D被固定於預定值Dp。因此在區間I、III時,操作頻率fsw為變頻,其依照輸出電流Io的增減而變動,且在輸出電流Io為固定值時,操作頻率fsw大致上為定值。
當控制模組4偵測輸出電流Io在電流區間Ci(區間II)時,繞組電壓Vab的佔空比D為預定值Dp減去變化量M,且控制模組4設定變化量M的臨界值Dl為固定值(即臨界值Dl為水平線)。同理,頻率範圍△fsw相應於臨界值Dl而呈特定範圍。因此在區間II時,操作頻率fsw依然為變頻,其依照輸出電流Io的增減而變動。除此之外,在區間II,且輸出電流Io為固定值時,變化量M根據控制模組4的計算,於預定值Dp與臨界值Dl之間變動,且操作頻率fsw會隨著變化量M的變動而相應地於特定範圍內變動。因此,在區間II中,假設佔空比的預定值Dp為50%的上限值,且變化量M為10%,則臨界值Dl即 為40%(即50%減去10%)。相應的,當預定值Dp為50%的上限值時,所對應的操作頻率fsw為85kHz,且頻率範圍△fsw相應於10%的變化量M為10kHZ,則操作頻率fsw根據變化量M的變動,於85kHz至75kHz之間變動。值得一提,於一實施例中,當佔空比的預定值Dp為其他數值時,可依上述邏輯類推,在此不再加以贅述。
請參閱圖3B為本揭露諧振轉換器第三實施例的電流-頻率曲線圖,復配合參閱圖2A~3A。本實施例與圖3A實施例的差異在於,當控制模組4偵測輸出電流Io在電流區間Ci(區間II)時,控制模組4設定變化量M的臨界值Dl依輸出電流Io的遞增而遞減(即臨界值Dl為負斜率的曲線)。同理,頻率範圍△fsw相應於臨界值Dl的遞減而擴大。具體而言,由於輸出電流Io愈大,當前轉換器產生的N階諧波能量愈大。因此,變化量M的臨界值Dl依輸出電流Io的遞增而遞減可以使輸出電流Io較大時,具有較佳的EMI抑制效果,使得EMI數值較不易靠近最大限制值。值得一提,於一實施例中,圖3B未敘明的技術內容,同於圖3A,在此不再加以贅述。
請參閱圖4A為本揭露具有頻率抖動功能之諧振轉換器第一實施例的電路方塊圖、圖4B為本揭露具有頻率抖動功能之諧振轉換器第一實施例的訊號波形圖,復配合參閱圖2A~3B。在圖4A中,諧振轉換器100為全橋式諧振轉換器,且初級側電路2更包括並聯的第一橋臂22與第二橋臂24。第一橋臂22包括串聯的第一開關Q1與第二開關Q2,且第二橋臂24包括串聯的第三開關Q3與第四開關Q4。諧振模組122的第一端a耦接第一開關Q1與第二開關Q2之間,且諧振模組122的第二端b耦接第三開關Q3與第四開關Q4之間。控制模組4提供第一控制訊號Sc1控制第一開關Q1,提供第二控制訊號Sc2控制第 二開關Q2,提供第三控制訊號Sc3控制第三開關Q3,且提供第四控制訊號Sc4控制第四開關Q4。因此,如圖4A所示,通過控制模組4的控制,使初級側電路2可轉換直流電壓Vdc,且於諧振模組122的第一端a與第二端b之間產生繞組電壓Vab。
在圖4B的波形圖中,左半邊的訊號波形對應圖3A或3B的區間I或III,在右半邊的訊號波形對應圖3A或3B的區間II。以佔空比D為50%的預定值Dp為例,當控制模組4偵測輸出電流Io不在電流區間Ci時(即在區間I或III中),控制模組4提供相位相同的第一控制訊號Sc1與第四控制訊號Sc4,且提供與第一控制訊號Sc1互補的第二控制訊號Sc2,以及提供與第四控制訊號Sc4互補的第三控制訊號Sc3。因此,繞組電壓Vab形成正/負電壓變化的波形,且無死區時間。然控制訊號不以完全互補為限,在二互補的控制訊號之間也可包括額外的死區時間。
當控制模組4偵測輸出電流Io於電流區間Ci時,控制模組4控制第一控制訊號Sc1與第四控制訊號Sc4具有相位變化的相移量Vs,使得繞組電壓Vab的正半週佔空比D因第一控制訊號Sc1與第四控制訊號Sc4的總和而下降(即二者同時導通時,方有電流路徑而產生繞組電壓Vab),進而通過調整相移量Vs而調整變化量M。其中,第一控制訊號Sc1與第二控制訊號Sc2為對應相反的訊號,且第四控制訊號Sc4與第三控制訊號Sc3為對應相反的訊號,因此控制第一控制訊號Sc1或第四控制訊號Sc4即可使得第二控制訊號Sc2或第三控制訊號Sc3做相應的調整。
另外一方面,當控制模組4偵測輸出電流Io於電流區間Ci時,控制模組4控制第二控制訊號Sc2與第三控制訊號Sc3具有相位變化的相移量 Vs,也可使得繞組電壓Vab的負半週佔空比D因第二控制訊號Sc2與第三控制訊號Sc3的總和而下降,進而通過調整相移量Vs而調整變化量M。其操作方式與上述第一控制訊號Sc1與第四控制訊號Sc4大致相同,在此不再加以贅述。於圖4B中,雖僅揭露控制第一控制訊號Sc1超前第四控制訊號Sc4一個相移量Vs,或控制第二控制訊號Sc2超前第三控制訊號Sc3一個相移量Vs的示意性範例,然而不排除多種實施方式的可能。意即,可通過反向思考,使用落後相位的方式來進行控制。其原理相似,在此不再加以贅述。
請參閱圖4C為本揭露具有頻率抖動功能之諧振轉換器第一實施例控制模組的電路方塊圖,復配合參閱圖2A~4B。控制模組4包括比較器42、電壓控制器44、脈寬調變器46及佔空比調整模組48。比較器42比較相應於輸出電壓Vo的回授訊號Sfb與參考電壓Vref而提供誤差訊號Ser,且電壓控制器44根據誤差訊號Ser而產生脈寬調變值Vpwm與相應於變化量M的變化值Vm。其中,由於脈寬調變值Vpwm係根據回授訊號Sfb與參考電壓Vref之間的誤差量所產生,輸出電壓Vo又會隨著負載300的所抽取的輸出電流Io而有所變化,因此脈寬調變值Vpwm即反應了輸出電流Io的大小。因此,脈寬調變值Vpwm與變化值Vm可依據輸出電流Io的大小而改變。
脈寬調變器46根據脈寬調變值Vpwm調製第一控制訊號Sc1、第二控制訊號Sc2、第三控制訊號Sc3及第四控制訊號Sc4,且上述控制訊號Sc1、Sc2、Sc3、Sc4即為脈寬調變訊號。佔空比調整模組48根據變化值Vm調整控制訊號Sc1、Sc2、Sc3、Sc4的相移量Vs,使繞組電壓Vab的佔空比D調整一變化量M而使佔空比D不要保持於預定值Dp。其中,佔空比調整模組48可以例如但不限於,為相位調整電路等用以相移(即控制超前/落後)控制訊號Sc1、Sc2、 Sc3、Sc4的電路,但並不以此為限。值得一提,於一實施例中,脈寬調變器46與初級側電路2之間更可包括驅動電路5。驅動電路5乃為順利利用弱電訊號驅動大功率開關的驅動裝置,當控制訊號Sc1、Sc2、Sc3、Sc4無須驅動電路5而可順利驅動第一橋臂22與第二橋臂24時,則可不需要加裝驅動電路5。此外,於本發明之一實施例中,並不限定控制模組4內之元件必須依此架構實施,舉凡可實現相同功能(例如比較功能並不限定僅能使用比較器)的元件、電路或軟體程式(及利用寫入控制軟體程式而使控制器據此程式控制諧振轉換器)皆應包含在本實施例之範疇當中。
請參閱圖5A為本揭露具有頻率抖動功能之諧振轉換器第二實施例的電路方塊圖、圖5B為本揭露具有頻率抖動功能之諧振轉換器第二實施例的訊號波形圖,復配合參閱圖2A~4C。在圖5A中,諧振轉換器100為半橋式諧振轉換器,且初級側電路2更包括第一橋臂22。第一橋臂22包括串聯的第一開關Q1與第二開關Q2,且諧振模組122並聯第二開關Q2。控制模組4提供第一控制訊號Sc1控制第一開關Q1,且提供第二控制訊號Sc2控制第二開關Q2。因此,如圖5B所示,通過控制模組4的控制,使初級側電路2可轉換直流電壓Vdc,且於諧振模組122的第一端a與第二端b之間產生繞組電壓Vab。
在圖5B的波形圖中,其左半邊的訊號波形之技術內容相似於圖4B,在此不再加以贅述。在右半邊的訊號波形中,由於第一控制訊號Sc1與第二控制訊號Sc2無法進行相移,因此可使用死區時間來調整變化量M。具體而言,當控制模組4偵測輸出電流Io於電流區間Ci時,調整第一控制訊號Sc1與該第二控制訊號Sc2之間的死區時間DT,使得繞組電壓Vab的正負半週佔空比D因死區時間DT的調整而下降,進而通過調整死區時間DT而調整變化量M。 其中,第一控制訊號Sc1與第二控制訊號Sc2為對應相反的訊號,因此控制第一控制訊號Sc1即可使得第二控制訊號Sc2做相應的調整。
請參閱圖5C為本揭露具有頻率抖動功能之諧振轉換器第二實施例控制模組的電路方塊圖,復配合參閱圖2A~5B。圖5C實施例之控制模組4與圖4C的控制模組4差異在於,脈寬調變器46根據該脈寬調變值Vpwm調製第一控制訊號Sc1與第二控制訊號Sc2,且佔空比調整模組48根據變化值Vm調整控制訊號Sc1、Sc2的死區時間DT。其中,佔空比調整模組48可以例如但不限於,時間延遲電路等用以產生死區時間DT的電路,但並不以此為限。值得一提,於一實施例中,圖5C未敘明的技術內容,同於圖4C,在此不再加以贅述。另外一方面,於一實施例中,諧振轉換器100並不以圖4A、5A的LLC架構為限,舉凡可利用諧振來進行直流轉換功能之轉換器,皆應包含在本揭露之範疇當中。
請參閱圖6A為本揭露具有頻率抖動功能之諧振轉換器第一實施例的操作方法之方法流程圖,復配合參閱圖2A~5C。於圖6A中的操作方法主要是配合圖3A的曲線圖,且諧振轉換器100的控制模組4可預先設定預定電流Io_stop、預定值Dp、臨界值Dl等參數,且諧振轉換器100的操作方法包括,判斷輸出電流是否小於預定電流(S100)。當控制模組4判斷輸出電流Io小於預定電流Io_stop(區間I)時,控制變化量為零(S120)。當控制模組4判斷輸出電流Io未小於預定電流Io_stop(區間I)時,則判斷輸出電流是否大於額定電流(S200)。控制模組4判斷輸出電流Io大於額定電流Io_max(區間III)時,控制變化量為零(S220)。其中,步驟(S100)與(S200)的先後順序可以對調,且當步驟(S100)與(S200) 的判斷結果皆為”否”時,則代表輸出電流Io於電流區間Ci。因此,計算變化量(S320)。最後,調整控制訊號的相移量而調整變化量(S340)。
由於在步驟(S120)與(S220)中的變化量M為零,使得步驟(S340)不用相移控制訊號Sc1、Sc2、Sc3、Sc4,使得佔空比D被固定於預定值Dp。在步驟(S320)中,由於變化量M非為零,因此於步驟(S340)中,控制模組4基於計算出的變化值Vm(相應於變化量M)調整控制訊號Sc1、Sc2、Sc3、Sc4的相移量Vs,使繞組電壓Vab的佔空比D在預定值Dp減去變化量M及預定值Dp的範圍內變化。如此,即可使諧振轉換器100由無載至滿載的EMI數值皆符合規範值。值得一提,於一實施例中,諧振轉換器100的細部操作方法,可配合參閱圖2A~5C,在此不再加以贅述。
請參閱圖6B為本揭露具有頻率抖動功能之諧振轉換器第二實施例的操作方法之方法流程圖,復配合參閱圖2A~6A。於圖6B中的操作方法主要是配合圖3B的曲線圖,且圖6B的操作方法與圖6A的操作方法差異在於,調整控制訊號的死區時間而調整變化量(S360)。在步驟(S320)中,由於變化量M非為零,因此於步驟(S360)中,控制模組4基於計算出的變化值Vm(相應於變化量M)調整控制訊號Sc1、Sc2的死區時間DT,使繞組電壓Vab的佔空比D在預定值Dp減去變化量M及預定值Dp的範圍內變化。如此,即可使諧振轉換器100由無載至滿載的EMI數值皆符合規範值。值得一提,於一實施例中,圖6B未描述的步驟同於圖6A,且諧振轉換器100的細部操作方法,同樣可配合參閱圖2A~5C,在此不再加以贅述。
惟,以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下 述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包括於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。
(S100)~(S340):步驟

Claims (19)

  1. 一種諧振轉換器,轉換一直流電壓為一輸出電壓,該諧振轉換器包括:一變壓器,包括一初級側繞組;一初級側電路,接收該直流電壓,且包括一諧振電路,該諧振電路耦接該初級側繞組,以形成一諧振模組;及一控制模組,耦接該初級側電路,且控制該初級側電路轉換該直流電壓,以於該諧振模組二端產生一繞組電壓;其中,當該控制模組偵測該諧振轉換器的一輸出電流介於一預定電流與一額定電流的一電流區間,且該輸出電流為固定值時,該控制模組調整該繞組電壓的一佔空比具有一變化量。
  2. 如申請專利範圍第1項所述之諧振轉換器,其中當該控制模組偵測該輸出電流小於該預定電流或大於該額定電流時,該控制模組固定該佔空比為一預定值。
  3. 如申請專利範圍第1項所述之諧振轉換器,其中當該控制模組偵測該輸出電流於該電流區間時,該控制模組控制該諧振轉換器的一操作頻率於一頻率範圍內變化,且該頻率範圍正相關於該變化量。
  4. 如申請專利範圍第3項所述之諧振轉換器,其中該控制模組設定該變化量的一臨界值為一固定值,且該頻率範圍相應於該臨界值而呈一特定範圍。
  5. 如申請專利範圍第3項所述之諧振轉換器,其中該控制模組設定該變化量的一臨界值依該輸出電流的遞增而遞減,且該頻率範圍根據該臨界值的遞減而擴大。
  6. 如申請專利範圍第1項所述之諧振轉換器,其中該諧振轉換器為一全橋式諧振轉換器,且該初級側電路更包括:一第一橋臂,包括串聯的一第一開關與一第二開關,且該諧振模組的一第一端耦接該第一開關與該第二開關之間;及一第二橋臂,並聯該第一橋臂,且包括串聯的一第三開關與一第四開關,該諧振模組的一第二端耦接該第三開關與該第四開關之間;其中,該控制模組提供一第一控制訊號控制該第一開關,提供一第二控制訊號控制該第二開關,提供一第三控制訊號控制該第三開關,且提供一第四控制訊號控制該第四開關;及當該控制模組偵測該輸出電流於該電流區間時,該控制模組控制該第一控制訊號與該第四控制訊號具有相位變化的一相移量而調整該變化量;或當該控制模組偵測該輸出電流於該電流區間時,該控制模組控制該第二控制訊號與該第三控制訊號具有相位變化的該相移量而調整該變化量。
  7. 如申請專利範圍第6項所述之諧振轉換器,其中當該控制模組偵測該輸出電流不在該電流區間時,該第二控制訊號與該第一控制訊號為互補訊號,且該第三控制訊號與該第四控制訊號為互補訊號。
  8. 如申請專利範圍第6項所述之諧振轉換器,其中該控制模組包括: 一比較器,比較相應於該輸出電壓的一回授訊號與一參考電壓而提供一誤差訊號;一電壓控制器,根據該誤差訊號而產生一脈寬調變值與相應於該變化量的一變化值;一脈寬調變器,根據該脈寬調變值調製該第一控制訊號、該第二控制訊號、該第三控制訊號及該第四控制訊號;及一佔空比調整模組,根據該變化值調整該相移量。
  9. 如申請專利範圍第1項所述之諧振轉換器,其中該諧振轉換器為一半橋式諧振轉換器,且該初級側電路更包括:一第一橋臂,包括串聯的一第一開關與一第二開關,且該諧振模組並聯該第二開關;其中,該控制模組提供一第一控制訊號控制該第一開關,且提供一第二控制訊號控制該第二開關;當該控制模組偵測該輸出電流於該電流區間時,該控制模組調整該第一控制訊號與該第二控制訊號之間的一死區時間而調整該變化量。
  10. 如申請專利範圍第9項所述之諧振轉換器,其中當該控制模組偵測該輸出電流不在該電流區間時,該第二控制訊號與該第一控制訊號為互補訊號。
  11. 如申請專利範圍第9項所述之諧振轉換器,其中該控制模組包括:一比較器,比較相應於該輸出電壓的一回授訊號與一參考電壓而提供一誤差訊號; 一電壓控制器,根據該誤差訊號而產生一脈寬調變值與相應於該變化量的一變化值;一脈寬調變器,根據該脈寬調變值調製該第一控制訊號與該第二控制訊號;一佔空比調整模組,根據該變化值調整該死區時間。
  12. 一種諧振轉換器的操作方法,該諧振轉換器包括一變壓器與一初級側電路,且該初級側電路包括一諧振電路,該諧振電路耦接該變壓器的一初級側繞組,以形成一諧振模組,且該操作方法係包括下列步驟:控制該初級側電路轉換一直流電壓,以控制該諧振轉換器將該直流電壓轉換為一輸出電壓,且於該諧振模組二端產生一繞組電壓;偵測該諧振轉換器的一輸出電流,且判斷該輸出電流介於一預定電流與一額定電流的一電流區間時,調整該繞組電壓的一佔空比具有一變化量;及通過調整該佔空比來控制該諧振轉換器的一操作頻率於一頻率範圍內變化,且該頻率範圍正相關於該變化量。
  13. 如申請專利範圍第12項所述之操作方法,更包括下列步驟:當該輸出電流小於該預定電流或大於該額定電流時,固定該佔空比為一預定值。
  14. 如申請專利範圍第12項所述之操作方法,更包括下列步驟:設定該變化量的一臨界值為一固定值,且該頻率範圍相應於該臨界值而呈一特定範圍。
  15. 如申請專利範圍第12項所述之操作方法,更包括下列步驟: 設定該變化量的一臨界值依該輸出電流的遞增而遞減,且該頻率範圍根據該臨界值的遞減而擴大。
  16. 如申請專利範圍第12項所述之操作方法,該初級側電路包括並聯的一第一橋臂與一第二橋臂,該第一橋臂包括一第一開關與一第二開關,且該第二橋臂包括一第三開關與一第四開關,該操作方法更包括下列步驟:提供一第一控制訊號控制該第一開關,提供一第二控制訊號控制該第二開關,提供一第三控制訊號控制該第三開關,且提供一第四控制訊號控制該第四開關;當該輸出電流於該電流區間時,控制該第一控制訊號與該第四控制訊號具有相位變化的一相移量而調整該變化量;或當該輸出電流於該電流區間時,控制該第二控制訊號與該第三控制訊號具有相位變化的該相移量而調整該變化量。
  17. 如申請專利範圍第16項所述之操作方法,更包括下列步驟:比較相應於該輸出電壓的一回授訊號與一參考電壓而提供一誤差訊號;根據該誤差訊號而產生一脈寬調變值與相應於該變化量的一變化值;根據該脈寬調變值調製該第一控制訊號、該第二控制訊號、該第三控制訊號及該第四控制訊號;及根據該變化值調整該相移量。
  18. 如申請專利範圍第12項所述之操作方法,該初級側電路包括一第一橋臂,且該第一橋臂包括一第一開關與一第二開關,該操作方法更包括下列步驟: 提供一第一控制訊號控制該第一開關,且提供一第二控制訊號控制該第二開關;及當該輸出電流於該電流區間時,調整該第一控制訊號與該第二控制訊號之間的一死區時間而調整該變化量。
  19. 如申請專利範圍第18項所述之操作方法,更包括下列步驟:比較相應於該輸出電壓的一回授訊號與一參考電壓而提供一誤差訊號;根據該誤差訊號而產生一脈寬調變值與相應於該變化量的一變化值;根據該脈寬調變值調製該第一控制訊號與該第二控制訊號;及根據該變化值調整該死區時間。
TW112131633A 2023-08-23 2023-08-23 諧振轉換器及其操作方法 TWI867701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112131633A TWI867701B (zh) 2023-08-23 2023-08-23 諧振轉換器及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112131633A TWI867701B (zh) 2023-08-23 2023-08-23 諧振轉換器及其操作方法

Publications (2)

Publication Number Publication Date
TWI867701B true TWI867701B (zh) 2024-12-21
TW202510480A TW202510480A (zh) 2025-03-01

Family

ID=94769513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112131633A TWI867701B (zh) 2023-08-23 2023-08-23 諧振轉換器及其操作方法

Country Status (1)

Country Link
TW (1) TWI867701B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202037054A (zh) * 2019-03-20 2020-10-01 龍華科技大學 一種具混合調變控制機制之全橋llc諧振轉換器
US20210067046A1 (en) * 2019-08-29 2021-03-04 Stmicroelectronics S.R.L. Driver circuit for a resonant converter, related integrated circuit, electronic converter and method
CN116073664A (zh) * 2022-12-27 2023-05-05 广州金升阳科技有限公司 一种谐振变换器的控制方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202037054A (zh) * 2019-03-20 2020-10-01 龍華科技大學 一種具混合調變控制機制之全橋llc諧振轉換器
US20210067046A1 (en) * 2019-08-29 2021-03-04 Stmicroelectronics S.R.L. Driver circuit for a resonant converter, related integrated circuit, electronic converter and method
CN116073664A (zh) * 2022-12-27 2023-05-05 广州金升阳科技有限公司 一种谐振变换器的控制方法及系统

Similar Documents

Publication Publication Date Title
RU2427953C2 (ru) Адаптивная схема для управления схемой преобразования
US10680510B2 (en) AC/DC PFC converter using a half bridge resonant converter, and corresponding conversion method
TWI672896B (zh) 主動鉗位反馳式電源轉換器與相關之控制方法
US8736237B2 (en) Controller with punctuated switching control circuit
CN112117890A (zh) 开关电源的控制电路和方法
US10720829B1 (en) Totem-pole bridgeless PFC conversion device and method of operating the same
JP2006067730A (ja) 力率改善回路
JP2011526478A (ja) 共振型電力コンバータ
US8599579B2 (en) Method of controlling a PFC stage operating in boundary conduction mode, a PFC stage, and an SMPS
JP2011044442A (ja) オン/オフ制御を備えたブースト変換器を有する照明バラスト、及びバラスト動作方法
KR101858059B1 (ko) 스위치 제어 회로, 및 이를 포함하는 역률 보상기 및 그 구동 방법
US11658584B2 (en) LLC resonance converter and method of controlling the same
CN117501604A (zh) 一种用于宽输入/输出电压调节的充电器
TWI867701B (zh) 諧振轉換器及其操作方法
TWI617126B (zh) 電源轉換器及其控制方法
TW202510480A (zh) 諧振轉換器及其操作方法
US20150009722A1 (en) Power supply
US20250070655A1 (en) Resonant converter and method of operating the same
US20080291704A1 (en) Driving device and method for providing an ac driving signal to a load
KR101339172B1 (ko) 제어모드 변환을 통한 스위칭 제어방법 그리고 이를 이용한 스위칭 제어기 및 역률보정 제어기
CN2884682Y (zh) 可变输入电压的全共振电源电路装置
TW201433064A (zh) 單級高功因零電流偵測變頻式非對稱半橋轉換器
TWI844453B (zh) 電磁干擾抑制方法
US20090289570A1 (en) Method for supplying a gas discharge lamp, and a ballast circuit for such lamp
TW202510481A (zh) 電磁干擾抑制方法