[go: up one dir, main page]

TWI863041B - Method for estimating real-time wafer processing quality and an electronic device - Google Patents

Method for estimating real-time wafer processing quality and an electronic device Download PDF

Info

Publication number
TWI863041B
TWI863041B TW111145715A TW111145715A TWI863041B TW I863041 B TWI863041 B TW I863041B TW 111145715 A TW111145715 A TW 111145715A TW 111145715 A TW111145715 A TW 111145715A TW I863041 B TWI863041 B TW I863041B
Authority
TW
Taiwan
Prior art keywords
processing
wafer
machine learning
state signal
learning model
Prior art date
Application number
TW111145715A
Other languages
Chinese (zh)
Other versions
TW202422725A (en
Inventor
鄭志鈞
程文男
林盟弼
李奇峰
蔣子凡
陳韋任
陳建宏
梁修啟
施英汝
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Priority to TW111145715A priority Critical patent/TWI863041B/en
Priority to CN202311229804.4A priority patent/CN118116817A/en
Publication of TW202422725A publication Critical patent/TW202422725A/en
Application granted granted Critical
Publication of TWI863041B publication Critical patent/TWI863041B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Embodiments of the disclosure provide a method for estimating real-time wafer processing quality and an electronic device. The method includes: obtaining a processing state signal generated by a wafer processing equipment during performing a processing operation on a wafer; and obtaining real-time processing quality of the processing operation via inputting the processing state signal into a machine learning model, wherein the machine learning model estimates the real-time processing quality of the processing operation in response to the processing state signal.

Description

即時晶圓加工品質估測的方法及電子裝置Method and electronic device for real-time wafer processing quality estimation

本發明是有關於一種管理晶圓加工品質的技術,且特別是有關於一種即時晶圓加工品質估測的方法及電子裝置。The present invention relates to a technology for managing wafer processing quality, and more particularly to a method and an electronic device for real-time wafer processing quality estimation.

在完成矽晶圓的研磨加工之後,檢測人員會對矽晶圓的各項規格(例如矽晶圓表面的潔淨度、粗糙度、總厚度變異(total thickness variation,TTV)、翹曲度(Bow)及彎曲度(Warp))進行檢查。在檢查矽晶圓表面的粗糙度時,檢測人員一般是使用粗糙度儀進行量測。針對TTV、翹曲度、彎曲度等規格,檢測人員則是利用非接觸式晶圓量測儀進行檢測,以確保矽晶圓表面的精度或品質符合要求。After the silicon wafer is ground, the inspectors will check the various specifications of the silicon wafer, such as the cleanliness, roughness, total thickness variation (TTV), bow and warp of the silicon wafer surface. When checking the roughness of the silicon wafer surface, the inspectors generally use a roughness meter for measurement. For specifications such as TTV, bow and warp, the inspectors use non-contact wafer measurement instruments to ensure that the accuracy or quality of the silicon wafer surface meets the requirements.

由於晶圓研磨加工屬於大量生產,但目前的檢測人力無法負擔全面檢測,因此多半改為採用抽樣的方式進行晶圓精度或品質的檢測。然而,此作法將無法因應於加工過程的異常現象而進行即時調校,因此難以保證每一片晶片都符合需求。Since wafer grinding is a mass production process, but the current inspection manpower cannot afford comprehensive inspection, most of them use sampling to inspect wafer accuracy or quality. However, this method cannot make real-time adjustments in response to abnormal phenomena in the processing process, so it is difficult to ensure that every chip meets the requirements.

有鑑於此,本發明提供一種即時晶圓加工品質估測的方法及電子裝置,其可用於解決上述技術問題。In view of this, the present invention provides a method and an electronic device for real-time wafer processing quality estimation, which can be used to solve the above technical problems.

本發明實施例提供一種即時晶圓加工品質估測的方法,適於一電子裝置,包括:取得一晶圓加工設備在對一晶圓進行一加工操作時所產生的至少一加工狀態信號;以及透過將至少一加工狀態信號輸入至少一機器學習模型而取得加工操作的至少一即時加工品質,其中至少一機器學習模型因應於至少一加工狀態信號而估計加工操作的至少一即時加工品質。An embodiment of the present invention provides a method for real-time wafer processing quality estimation, which is suitable for an electronic device, comprising: obtaining at least one processing status signal generated by a wafer processing equipment when performing a processing operation on a wafer; and obtaining at least one real-time processing quality of the processing operation by inputting at least one processing status signal into at least one machine learning model, wherein at least one machine learning model estimates at least one real-time processing quality of the processing operation in response to the at least one processing status signal.

本發明實施例提供一種電子裝置,包括儲存電路及處理器。儲存電路儲存一程式碼。處理器耦接儲存電路並存取程式碼以執行:取得一晶圓加工設備在對一晶圓進行一加工操作時所產生的至少一加工狀態信號;以及透過將至少一加工狀態信號輸入至少一機器學習模型而取得加工操作的至少一即時加工品質,其中至少一機器學習模型因應於至少一加工狀態信號而估計加工操作的至少一即時加工品質。The present invention provides an electronic device, including a storage circuit and a processor. The storage circuit stores a program code. The processor is coupled to the storage circuit and accesses the program code to execute: obtaining at least one processing state signal generated by a wafer processing device when performing a processing operation on a wafer; and obtaining at least one real-time processing quality of the processing operation by inputting the at least one processing state signal into at least one machine learning model, wherein the at least one machine learning model estimates the at least one real-time processing quality of the processing operation in response to the at least one processing state signal.

請參照圖1,其是依據本發明之一實施例繪示的電子裝置示意圖。在不同的實施例中,電子裝置100例如是各式智慧型裝置及/或電腦裝置。在一些實施例中,電子裝置100亦可整合至晶圓加工設備內以作為晶圓加工設備內的處理裝置/人機介面使用,但可不限於此。Please refer to FIG. 1, which is a schematic diagram of an electronic device according to an embodiment of the present invention. In different embodiments, the electronic device 100 is, for example, various smart devices and/or computer devices. In some embodiments, the electronic device 100 can also be integrated into a wafer processing device to be used as a processing device/human-machine interface in the wafer processing device, but is not limited thereto.

在圖1中,電子裝置100包括儲存電路102及處理器104。儲存電路102例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個程式碼或模組。In FIG1 , the electronic device 100 includes a storage circuit 102 and a processor 104. The storage circuit 102 is, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory, hard disk or other similar devices or a combination of these devices, and can be used to record multiple program codes or modules.

處理器104耦接於儲存電路102,並可為一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。The processor 104 is coupled to the storage circuit 102 and may be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), any other type of integrated circuit, a state machine, an Advanced RISC Machine (ARM) based processor, and the like.

在本發明的實施例中,處理器104可存取儲存電路102中記錄的模組、程式碼來實現本發明提出的即時晶圓加工品質估測的方法,其細節詳述如下。In an embodiment of the present invention, the processor 104 can access the modules and program codes recorded in the storage circuit 102 to implement the method of real-time wafer processing quality estimation proposed by the present invention, the details of which are described as follows.

請參照圖2,其是依據本發明之一實施例繪示的即時晶圓加工品質估測的方法流程圖。本實施例的方法可由圖1的電子裝置100執行,以下即搭配圖1所示的元件說明圖2各步驟的細節。Please refer to FIG. 2 , which is a flowchart of a method for real-time wafer processing quality estimation according to an embodiment of the present invention. The method of this embodiment can be executed by the electronic device 100 of FIG. 1 . The following is a description of the details of each step of FIG. 2 with reference to the components shown in FIG. 1 .

首先,在步驟S210中,處理器104取得晶圓加工設備在對晶圓進行加工操作時所產生的加工狀態信號。在一些實施例中,上述由晶圓加工設備對晶圓進行的加工操作例如包括晶圓加工設備對晶圓進行的研磨。First, in step S210, the processor 104 obtains a processing state signal generated by the wafer processing equipment when performing a processing operation on the wafer. In some embodiments, the processing operation performed by the wafer processing equipment on the wafer includes, for example, grinding the wafer by the wafer processing equipment.

請參照圖3,其是依據本發明之一實施例繪示的晶圓加工設備示意圖。在圖3中,晶圓加工設備300可包括轉台310及磨輪320。在一實施例中,轉台310可用於承載待研磨的晶圓330(其例如具有半徑 ),並可以轉速 旋轉,進而帶動晶圓330以轉速 旋轉。磨輪320(其例如具有半徑 )可具有主軸321及研磨部322,其中主軸321可以轉速 旋轉,而研磨部322上可設置有用於研磨晶圓330的磨粒。 Please refer to FIG. 3, which is a schematic diagram of a wafer processing device according to an embodiment of the present invention. In FIG. 3, the wafer processing device 300 may include a turntable 310 and a grinding wheel 320. In one embodiment, the turntable 310 may be used to carry a wafer 330 to be ground (e.g., having a radius of ), and can rotate Rotation, thereby driving the wafer 330 at a rotation speed The grinding wheel 320 (which has a radius ) may have a main shaft 321 and a grinding part 322, wherein the main shaft 321 may rotate at a speed The grinding portion 322 may be rotated, and abrasive grains for grinding the wafer 330 may be disposed on the grinding portion 322 .

在一些實施例中,磨輪320上可具有參考點A、B、C,而操作人員可藉由調整參考點A、B、C的位置來設定磨輪320研磨晶圓330時的傾斜角度。並且,轉速 、轉速 、磨輪320的磨輪進給率(feed rate)以及轉台310與主軸321之間的偏心距離(offset)也皆可由操作人員依需求而設定。藉此,晶圓加工設備300即可依據操作人員的上述設定對晶圓330進行相應的研磨加工。 In some embodiments, the grinding wheel 320 may have reference points A, B, and C, and the operator may adjust the positions of the reference points A, B, and C to set the tilt angle of the grinding wheel 320 when grinding the wafer 330. , Speed The feed rate of the grinding wheel 320 and the offset between the turntable 310 and the spindle 321 can also be set by the operator according to the needs. Thus, the wafer processing equipment 300 can perform corresponding grinding processing on the wafer 330 according to the above settings of the operator.

然而,在一些實施例中,若操作人員未能適當地進行上述數值的設定,則在晶圓加工設備300完成對晶圓330的研磨加工之後,可能會令晶圓330的各項規格出現不符需求的情況。However, in some embodiments, if the operator fails to properly set the above values, after the wafer processing equipment 300 completes the grinding process on the wafer 330, the various specifications of the wafer 330 may not meet the requirements.

為避免出現上述情形,處理器104在步驟S210中可即時取得晶圓加工設備300對晶圓330進行研磨加工時所產生的加工狀態信號。To avoid the above situation, the processor 104 can instantly obtain the processing status signal generated when the wafer processing equipment 300 performs a grinding process on the wafer 330 in step S210.

在不同的實施例中,上述加工狀態信號可依設計者的需求而包括各式信號。在第一實施例中,主軸321上可裝設有第一加速規。在此情況下,在磨輪320研磨晶圓330的過程中,將相應地令主軸321產生振動,進而讓第一加速規偵測到對應的第一振動信號(下稱V1)。基此,在磨輪320研磨晶圓330的過程中,處理器104可從此第一加速規取得第一振動信號V1,以作為加工狀態信號。In different embodiments, the processing status signal may include various signals according to the designer's needs. In the first embodiment, a first accelerometer may be installed on the spindle 321. In this case, during the process of the grinding wheel 320 grinding the wafer 330, the spindle 321 will vibrate accordingly, and the first accelerometer will detect the corresponding first vibration signal (hereinafter referred to as V1). Based on this, during the process of the grinding wheel 320 grinding the wafer 330, the processor 104 can obtain the first vibration signal V1 from the first accelerometer as a processing status signal.

在第二實施例中,轉台310的主軸上可裝設有第二加速規。在此情況下,在磨輪320研磨晶圓330的過程中,將相應地令轉台310的主軸產生振動,進而讓第二加速規偵測到對應的第二振動信號(下稱V2)。基此,在磨輪320研磨晶圓330的過程中,處理器104可從此第二加速規取得第二振動信號V2,以作為加工狀態信號。In the second embodiment, a second accelerometer may be installed on the main shaft of the turntable 310. In this case, when the grinding wheel 320 grinds the wafer 330, the main shaft of the turntable 310 will vibrate accordingly, and the second accelerometer will detect the corresponding second vibration signal (hereinafter referred to as V2). Therefore, when the grinding wheel 320 grinds the wafer 330, the processor 104 can obtain the second vibration signal V2 from the second accelerometer as a processing status signal.

在第三實施例中,晶圓加工設備300附近可設置有麥克風裝置,而此麥克風裝置可用於收集晶圓加工設備300在對晶圓330進行加工操作的過程中所產生的聲音。基此,在磨輪320研磨晶圓330的過程中,處理器104可從此麥克風裝置取得聲音信號(下稱AU1),以作為加工狀態信號。In the third embodiment, a microphone device may be disposed near the wafer processing equipment 300, and the microphone device may be used to collect the sound generated by the wafer processing equipment 300 during the processing operation on the wafer 330. Therefore, during the process of the grinding wheel 320 grinding the wafer 330, the processor 104 may obtain a sound signal (hereinafter referred to as AU1) from the microphone device as a processing status signal.

在第四實施例中,處理器104也可取第一振動信號V1、第二振動信號V2及聲音信號AU1的任意組合作為所考慮的加工狀態信號,但可不限於此。In the fourth embodiment, the processor 104 may also take any combination of the first vibration signal V1, the second vibration signal V2 and the sound signal AU1 as the considered processing state signal, but is not limited thereto.

在取得所考慮的加工狀態信號之後,在步驟S220中,處理器104透過將加工狀態信號輸入機器學習模型而取得上述加工操作的即時加工品質。After obtaining the processing state signal under consideration, in step S220, the processor 104 obtains the real-time processing quality of the above-mentioned processing operation by inputting the processing state signal into the machine learning model.

在本發明的實施例中,上述即時加工品質例如包括晶圓330的即時表面粗糙度、總厚度變異、翹曲度及彎曲度的至少其中之一。在一些實施例中,上述即時加工品質可理解為由機器學習模型依據加工狀態信號估測而得。In an embodiment of the present invention, the real-time processing quality includes, for example, at least one of the real-time surface roughness, total thickness variation, warp and curvature of the wafer 330. In some embodiments, the real-time processing quality can be understood as being estimated by a machine learning model based on a processing state signal.

在一實施例中,不同的即時加工品質可對應於不同的機器學習模型。舉例而言,即時表面粗糙度、總厚度變異、翹曲度及彎曲度可分別對應於第一機器學習模型、第二機器學習模型、第三機器學習模型及第四機器學習模型。在此情況下,處理器104可將所考慮的加工狀態信號個別輸入第一機器學習模型、第二機器學習模型、第三機器學習模型及第四機器學習模型,以由第一機器學習模型、第二機器學習模型、第三機器學習模型及第四機器學習模型分別因應於加工狀態信號而提供估測的即時表面粗糙度、總厚度變異、翹曲度及彎曲度。In one embodiment, different real-time processing qualities may correspond to different machine learning models. For example, real-time surface roughness, total thickness variation, warp, and curvature may correspond to a first machine learning model, a second machine learning model, a third machine learning model, and a fourth machine learning model, respectively. In this case, the processor 104 may input the considered processing state signal into the first machine learning model, the second machine learning model, the third machine learning model, and the fourth machine learning model, respectively, so that the first machine learning model, the second machine learning model, the third machine learning model, and the fourth machine learning model provide estimated real-time surface roughness, total thickness variation, warp, and curvature in response to the processing state signal, respectively.

在另一實施例中,不同的即時加工品質亦可同時由同一個機器學習模型估測。舉例而言,即時表面粗糙度、總厚度變異、翹曲度及彎曲度(或其任意組合)可同時對應於一特定機器學習模型。在此情況下,處理器104可將所考慮的加工狀態信號輸入所述特定機器學習模型,以由所述特定機器學習模型因應於加工狀態信號而同時提供估測的即時表面粗糙度、總厚度變異、翹曲度及彎曲度,但可不限於此。In another embodiment, different real-time processing qualities may also be estimated by the same machine learning model at the same time. For example, real-time surface roughness, total thickness variation, warp and curvature (or any combination thereof) may correspond to a specific machine learning model at the same time. In this case, the processor 104 may input the considered processing state signal into the specific machine learning model so that the specific machine learning model can simultaneously provide estimated real-time surface roughness, total thickness variation, warp and curvature in response to the processing state signal, but is not limited thereto.

在一實施例中,為使各機器學習模型具備上述能力,在各機器學習模型的訓練過程中,設計者可將經特殊設計的訓練資料饋入各機器學習模型,以讓各機器學習模型進行相應的學習。舉例而言,在取得某筆已標註為對應於某個表面粗糙度(以R表示)的加工狀態信號(例如是量測自對某晶圓進行研磨加工的過程)之後,處理器104可據以產生對應的特徵向量,並將其饋入對應於表面粗糙度的第一機器學習模型。藉此,可讓第一機器學習模型從此特徵向量中學習有關於上述表面粗糙度(即,R)的加工狀態信號的相關特徵。在此情況下,當第一機器學習模型日後接收對應於上述加工狀態信號的特徵向量時,第一機器學習模型即可相應地估測當下正被研磨的晶圓的表面粗糙度為R,但可不限於此。In one embodiment, in order to enable each machine learning model to have the above capabilities, during the training process of each machine learning model, the designer can feed specially designed training data into each machine learning model so that each machine learning model can perform corresponding learning. For example, after obtaining a processing state signal that has been labeled as corresponding to a certain surface roughness (represented by R) (for example, measured from the process of grinding a certain wafer), the processor 104 can generate a corresponding feature vector based on it and feed it into the first machine learning model corresponding to the surface roughness. In this way, the first machine learning model can learn the relevant features of the processing state signal related to the above surface roughness (i.e., R) from this feature vector. In this case, when the first machine learning model receives the feature vector corresponding to the above-mentioned processing state signal in the future, the first machine learning model can accordingly estimate the surface roughness of the wafer being polished as R, but it is not limited to this.

舉另一例而言,在取得某筆已標註為對應於某個總厚度變異(以T表示)的加工狀態信號(例如是量測自對某晶圓進行研磨加工的過程)之後,處理器104可據以產生對應的特徵向量,並將其饋入對應於總厚度變異的第二機器學習模型。藉此,可讓第二機器學習模型從此特徵向量中學習有關於某個總厚度變異(即,T)的加工狀態信號的相關特徵。在此情況下,當第二機器學習模型日後接收對應於上述加工狀態信號的特徵向量時,第二機器學習模型即可相應地估測當下正被研磨的晶圓的總厚度變異為T,但可不限於此。For another example, after obtaining a processing state signal that has been labeled as corresponding to a total thickness variation (represented by T) (for example, measured from a grinding process of a wafer), the processor 104 can generate a corresponding feature vector and feed it into the second machine learning model corresponding to the total thickness variation. In this way, the second machine learning model can learn the relevant features of the processing state signal related to the total thickness variation (i.e., T) from this feature vector. In this case, when the second machine learning model receives the feature vector corresponding to the above-mentioned processing state signal in the future, the second machine learning model can accordingly estimate the total thickness variation of the wafer being ground as T, but it is not limited to this.

舉再一例而言,在取得某筆已標註為對應於某個表面粗糙度(例如R)、總厚度變異(例如T)、翹曲度(以BW表示)及彎曲度(以W表示)的加工狀態信號(例如是量測自對某晶圓進行研磨加工的過程)之後,處理器104可據以產生對應的特徵向量,並將其饋入對應的特定機器學習模型。藉此,可讓特定機器學習模型從此特徵向量中學習有關於上述表面粗糙度(即,R)、總厚度變異(即,T)、翹曲度(即,BW)及彎曲度(即,W)的加工狀態信號的相關特徵。在此情況下,當特定機器學習模型日後接收對應於上述加工狀態信號的特徵向量時,特定機器學習模型即可相應地估測當下正被研磨的晶圓的表面粗糙度為R、總厚度變異為T、翹曲度為BW及彎曲度為W,但可不限於此。For another example, after obtaining a processing state signal (e.g., measured during a grinding process of a wafer) labeled as corresponding to a certain surface roughness (e.g., R), total thickness variation (e.g., T), curvature (represented by BW), and curvature (represented by W), the processor 104 can generate a corresponding feature vector and feed it into the corresponding specific machine learning model. In this way, the specific machine learning model can learn the relevant features of the processing state signal related to the above-mentioned surface roughness (i.e., R), total thickness variation (i.e., T), curvature (i.e., BW), and curvature (i.e., W) from the feature vector. In this case, when the specific machine learning model receives the feature vector corresponding to the above-mentioned processing state signal in the future, the specific machine learning model can accordingly estimate the surface roughness of the wafer being polished as R, the total thickness variation as T, the curvature as BW and the curvature as W, but it is not limited to this.

在一實施例中,處理器104在步驟S210中所取得的加工狀態信號的態樣/成分需相同於用於訓練機器學習模型的訓練資料。In one embodiment, the pattern/component of the processing state signal obtained by the processor 104 in step S210 must be the same as the training data used to train the machine learning model.

舉例而言,若在訓練某機器學習模型時所用的訓練資料係由對應於第一振動信號V1的第三振動信號(例如是在晶圓加工設備300對某晶圓進行加工操作時由第一加速規所測得)組成,則處理器104在步驟S210中所取得的加工狀態信號即需由第一振動信號V1組成。For example, if the training data used when training a machine learning model is composed of a third vibration signal corresponding to the first vibration signal V1 (for example, measured by the first accelerometer when the wafer processing equipment 300 performs a processing operation on a wafer), then the processing state signal obtained by the processor 104 in step S210 must be composed of the first vibration signal V1.

舉另一例而言,若在訓練某機器學習模型時所用的訓練資料係由上述第三振動信號及對應於第二振動信號V2的第四振動信號(例如是在晶圓加工設備300對某晶圓進行加工操作時由第二加速規所測得)組成,則處理器104在步驟S210中所取得的加工狀態信號即需由第一振動信號V1及第二振動信號V2組成。For another example, if the training data used when training a machine learning model is composed of the third vibration signal mentioned above and a fourth vibration signal corresponding to the second vibration signal V2 (for example, measured by the second accelerometer when the wafer processing equipment 300 performs a processing operation on a wafer), then the processing state signal obtained by the processor 104 in step S210 must be composed of the first vibration signal V1 and the second vibration signal V2.

舉再一例而言,若在訓練某機器學習模型時所用的訓練資料係由上述第三振動信號、第四振動信號及對應於聲音信號AU1的另一聲音信號(例如是在晶圓加工設備300對某晶圓進行加工操作時由麥克風裝置所測得)組成,則處理器104在步驟S210中所取得的加工狀態信號即需由第一振動信號V1、第二振動信號V2及聲音訊號AU1組成。For another example, if the training data used when training a machine learning model is composed of the third vibration signal, the fourth vibration signal and another sound signal corresponding to the sound signal AU1 (for example, measured by a microphone device when the wafer processing equipment 300 performs a processing operation on a wafer), then the processing status signal obtained by the processor 104 in step S210 must be composed of the first vibration signal V1, the second vibration signal V2 and the sound signal AU1.

在不同的實施例中,上述各機器學習模型可依設計者的需求而基於現有的各式機器學習演算法實現。為便於說明,以下假設上述第一、第二、第三、第四機器學習模型皆基於隨機森林演算法實現,但可不限於此。In different embodiments, the above machine learning models can be implemented based on various existing machine learning algorithms according to the needs of the designer. For the convenience of explanation, it is assumed below that the first, second, third, and fourth machine learning models are all implemented based on the random forest algorithm, but it is not limited to this.

在本發明的實施例中,處理器104可先基於隨機搜尋(random search)及5折交叉驗證(5-fold Cross-validation)來從多個第一超參數組合中篩選出適合用於進行(對應於表面粗糙度的)第一機器學習模型的訓練的一者。在一實施例中,上述第一超參數組合中的前10名可如下表1所例示,而表1中各參數的涵義可如表2所例示。 編號 參數1 參數2 參數3 參數4 參數5 參數6 0 24 18 77 True 0.091369 1 1 41 12 55 True 0.084644 2 2 121 20 33 True 0.082841 3 3 70 12 33 True 0.080626 4 4 63 14 66 True 0.080136 5 5 124 14 22 True 0.077544 6 6 144 8 55 True 0.077255 7 7 137 14 33 True 0.076922 8 8 180 16 44 True 0.073233 9 9 79 4 66 True 0.072590 10 表1 參數 涵義 參數1(n_estimators) 森林中樹木的數量,預設為100 參數2(min_samples_split) 內部節點再劃分時所需的最小樣本數(即,至少有多少資料才能再分) 參數3(max_depth) 決策樹最大深度 參數4(booststrap) 自助抽樣方法,在自身樣本中採樣來估計真實分佈的問題 參數5(mean_test_score) 平均測試分數 參數6(rank_test_score) 測試分數排名 表2 In an embodiment of the present invention, the processor 104 may first select one suitable for training the first machine learning model (corresponding to surface roughness) from a plurality of first hyperparameter combinations based on random search and 5-fold cross-validation. In one embodiment, the top 10 of the first hyperparameter combinations may be illustrated in Table 1 below, and the meaning of each parameter in Table 1 may be illustrated in Table 2. No. Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 0 twenty four 18 77 True 0.091369 1 1 41 12 55 True 0.084644 2 2 121 20 33 True 0.082841 3 3 70 12 33 True 0.080626 4 4 63 14 66 True 0.080136 5 5 124 14 twenty two True 0.077544 6 6 144 8 55 True 0.077255 7 7 137 14 33 True 0.076922 8 8 180 16 44 True 0.073233 9 9 79 4 66 True 0.072590 10 Table 1 Parameters Meaning Parameter 1 (n_estimators) The number of trees in the forest. Default is 100. Parameter 2 (min_samples_split) The minimum number of samples required for internal node subdivision (i.e., how much data is required to subdivide) Parameter 3 (max_depth) Maximum depth of decision tree Parameter 4 (booststrap) The problem of bootstrapping, sampling from one's own sample to estimate the true distribution Parameter 5 (mean_test_score) Average test score Parameter 6 (rank_test_score) Test score ranking Table 2

在表1情境中,編號0的第一超參數組合例如可用於作為訓練第一機器學習模型的最佳超參數組合,但可不限於此。In the scenario of Table 1, the first hyperparameter combination numbered 0 can be used as the optimal hyperparameter combination for training the first machine learning model, but is not limited thereto.

在一實施例中,處理器104可先基於隨機搜尋及5折交叉驗證來從多個第二超參數組合中篩選出適合用於進行(對應於TTV的)第二機器學習模型的訓練的一者。在一實施例中,上述第二超參數組合中的前10名可如下表3所例示,而表3中各參數的涵義可參照表2的內容。 編號 參數1 參數2 參數3 參數4 參數5 參數6 0 20 6 22 True 0.046149 1 1 121 2 22 True 0.042938 2 2 126 8 88 True 0.036442 3 3 6 10 33 True 0.033491 4 4 27 8 99 True 0.032685 5 5 148 14 22 True 0.032246 6 6 61 18 99 True 0.031406 7 7 113 2 66 True 0.031187 8 8 150 16 22 True 0.028614 9 9 179 4 33 True 0.027713 10 表3 In one embodiment, the processor 104 may first select one suitable for training the second machine learning model (corresponding to TTV) from multiple second hyperparameter combinations based on random search and 5-fold cross validation. In one embodiment, the top 10 of the second hyperparameter combinations may be shown in Table 3 below, and the meaning of each parameter in Table 3 may refer to the content of Table 2. No. Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 0 20 6 twenty two True 0.046149 1 1 121 2 twenty two True 0.042938 2 2 126 8 88 True 0.036442 3 3 6 10 33 True 0.033491 4 4 27 8 99 True 0.032685 5 5 148 14 twenty two True 0.032246 6 6 61 18 99 True 0.031406 7 7 113 2 66 True 0.031187 8 8 150 16 twenty two True 0.028614 9 9 179 4 33 True 0.027713 10 Table 3

在表3情境中,編號0的第二超參數組合例如可用於作為訓練第二機器學習模型的最佳超參數組合,但可不限於此。In the scenario of Table 3, the second hyperparameter combination numbered 0 can be used as the optimal hyperparameter combination for training the second machine learning model, but is not limited to this.

在一實施例中,處理器104可先基於隨機搜尋及5折交叉驗證來從多個第三超參數組合中篩選出適合用於進行(對應於翹曲度的)第三機器學習模型的訓練的一者。在一實施例中,上述第三超參數組合中的前10名可如下表4所例示,而表4中各參數的涵義可參照表2的內容。 編號 參數1 參數2 參數3 參數4 參數5 參數6 0 25 14 88 True 0.025933 1 1 128 4 1 True -0.009232 2 2 101 12 1 True -0.010955 3 3 156 18 1 True -0.014757 4 4 113 18 22 True -0.020440 5 5 101 2 1 True -0.020785 6 6 68 14 88 True -0.022272 7 7 176 12 1 True -0.022826 8 8 142 16 66 True -0.022875 9 9 127 18 1 True -0.022938 10 表4 In one embodiment, the processor 104 may first select one suitable for training the third machine learning model (corresponding to the curvature) from multiple third hyperparameter combinations based on random search and 5-fold cross validation. In one embodiment, the top 10 of the third hyperparameter combinations may be shown in Table 4 below, and the meaning of each parameter in Table 4 may refer to the content of Table 2. No. Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 0 25 14 88 True 0.025933 1 1 128 4 1 True -0.009232 2 2 101 12 1 True -0.010955 3 3 156 18 1 True -0.014757 4 4 113 18 twenty two True -0.020440 5 5 101 2 1 True -0.020785 6 6 68 14 88 True -0.022272 7 7 176 12 1 True -0.022826 8 8 142 16 66 True -0.022875 9 9 127 18 1 True -0.022938 10 Table 4

在表4情境中,編號0的第三超參數組合例如可用於作為訓練第三機器學習模型的最佳超參數組合,但可不限於此。In the scenario of Table 4, the third hyperparameter combination numbered 0 can be used as the optimal hyperparameter combination for training the third machine learning model, but is not limited thereto.

在一實施例中,處理器104可先基於隨機搜尋及5折交叉驗證來從多個第四超參數組合中篩選出適合用於進行(對應於彎曲度的)第四機器學習模型的訓練的一者。在一實施例中,上述第四超參數組合中的前10名可如下表5所例示,而表5中各參數的涵義可參照表2的內容。 編號 參數1 參數2 參數3 參數4 參數5 參數6 0 6 12 55 True -0.304832 1 1 15 20 11 True -0.317027 2 2 11 20 22 True -0.417495 3 3 44 2 1 True -0.434407 4 4 28 6 110 True -0.438435 5 5 33 6 33 True -0.486140 6 6 8 18 1 True -0.501083 7 7 133 4 33 True -0.541256 8 8 67 2 44 True -0.552761 9 9 75 6 1 True -0.555465 10 表5 In one embodiment, the processor 104 may first select one suitable for training the fourth machine learning model (corresponding to the curvature) from multiple fourth hyperparameter combinations based on random search and 5-fold cross validation. In one embodiment, the top 10 of the fourth hyperparameter combinations may be shown in Table 5 below, and the meaning of each parameter in Table 5 may refer to the content of Table 2. No. Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 0 6 12 55 True -0.304832 1 1 15 20 11 True -0.317027 2 2 11 20 twenty two True -0.417495 3 3 44 2 1 True -0.434407 4 4 28 6 110 True -0.438435 5 5 33 6 33 True -0.486140 6 6 8 18 1 True -0.501083 7 7 133 4 33 True -0.541256 8 8 67 2 44 True -0.552761 9 9 75 6 1 True -0.555465 10 Table 5

在表5情境中,編號0的第四超參數組合例如可用於作為訓練第四機器學習模型的最佳超參數組合,但可不限於此。In the scenario of Table 5, the fourth hyperparameter combination numbered 0 can be used as the optimal hyperparameter combination for training the fourth machine learning model, for example, but is not limited to this.

請再次參照圖2,在取得加工操作的即時加工品質之後,處理器104還可進一步判斷所取得的即時加工品質是否異常。在一實施例中,反應於判定即時加工品質為異常,處理器104可提供警示訊息(步驟S230)。2 again, after obtaining the real-time processing quality of the processing operation, the processor 104 may further determine whether the obtained real-time processing quality is abnormal. In one embodiment, in response to determining that the real-time processing quality is abnormal, the processor 104 may provide a warning message (step S230).

舉例而言,若所取得的即時加工品質為估測的表面粗糙度,則處理器104可將此估測的表面粗糙度與表面粗糙度閾值進行比較。若此估測的表面粗糙度高於表面粗糙度閾值,則處理器104例如可判定即時加工品質為異常,進而提供相應的警示訊息供相關人員參考並採取對應的改善措施。For example, if the real-time processing quality obtained is an estimated surface roughness, the processor 104 may compare the estimated surface roughness with the surface roughness threshold. If the estimated surface roughness is higher than the surface roughness threshold, the processor 104 may, for example, determine that the real-time processing quality is abnormal, and then provide a corresponding warning message for the relevant personnel to refer to and take corresponding improvement measures.

舉另一例而言,若所取得的即時加工品質為估測的TTV及翹曲度,則處理器104可將此估測的TTV及翹曲度分別與TTV閾值及翹曲度閾值進行比較。若此估測的TTV高於TTV閾值,或是估測的翹曲度高於翹曲度閾值,則處理器104例如可判定即時加工品質為異常,進而提供相應的警示訊息供相關人員參考並採取對應的改善措施。For another example, if the real-time processing quality obtained is the estimated TTV and curvature, the processor 104 may compare the estimated TTV and curvature with the TTV threshold and curvature threshold, respectively. If the estimated TTV is higher than the TTV threshold, or the estimated curvature is higher than the curvature threshold, the processor 104 may, for example, determine that the real-time processing quality is abnormal, and then provide corresponding warning messages for reference by relevant personnel and take corresponding improvement measures.

綜上所述,本發明的實施例可依據晶圓加工設備在對晶圓進行加工操作時所產生的加工狀態信號而判定對應的即時加工品質。藉此,可對所有加工中的晶圓進行即時檢測。並且,本發明實施例還可在判定晶圓的即時加工品質出現異常時提供警示訊息,以令相關人員可據以進行相應的調校,進而讓此晶圓能夠滿足規格上的需求。In summary, the embodiment of the present invention can determine the corresponding real-time processing quality according to the processing status signal generated by the wafer processing equipment when the wafer is processed. In this way, all wafers in processing can be inspected in real time. In addition, the embodiment of the present invention can also provide a warning message when it is determined that the real-time processing quality of the wafer is abnormal, so that relevant personnel can make corresponding adjustments accordingly, so that the wafer can meet the specification requirements.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above by the embodiments, they are not intended to limit the present invention. Any person with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be defined by the scope of the attached patent application.

100:電子裝置 102:儲存電路 104:處理器 300:晶圓加工設備 310:轉台 320:磨輪 321:主軸 322:研磨部 330:晶圓 S210~S230:步驟 A、B、C:參考點 :半徑 :轉速 100: electronic device 102: storage circuit 104: processor 300: wafer processing equipment 310: turntable 320: grinding wheel 321: spindle 322: grinding part 330: wafer S210~S230: steps A, B, C: reference point , :Radius , :Speed

圖1是依據本發明之一實施例繪示的電子裝置示意圖。 圖2是依據本發明之一實施例繪示的即時晶圓加工品質估測的方法流程圖。 圖3是依據本發明之一實施例繪示的晶圓加工設備示意圖。 FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present invention. FIG. 2 is a flow chart of a method for real-time wafer processing quality estimation according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a wafer processing equipment according to an embodiment of the present invention.

S210~S230:步驟 S210~S230: Steps

Claims (5)

一種即時晶圓加工品質估測的方法,適於一電子裝置,包括:取得一晶圓加工設備在對一晶圓進行一加工操作時所產生的一個加工狀態信號,其中該加工狀態信號包括一第一振動信號、一第二振動信號及一聲音信號的其中之一,且取得該晶圓加工設備在對該晶圓進行該加工操作時所產生的該加工狀態信號的步驟包括:從裝設於該晶圓加工設備的一磨輪主軸上的一第一加速規取得該第一振動信號;從裝設於一轉台的一轉台主軸上的一第二加速規取得該第二振動信號,其中該轉台承載該晶圓;或者從一麥克風裝置取得該聲音信號,其中該麥克風裝置用於收集該晶圓加工設備在對該晶圓進行該加工操作的過程中所產生的聲音;以及透過將該加工狀態信號輸入至少一機器學習模型而取得該加工操作的至少一即時加工品質,包括:將該加工狀態信號輸入第一機器學習模型,其中該第一機器學習模型因應於該加工狀態信號提供即時表面粗糙度;將該加工狀態信號輸入第二機器學習模型,其中該第二機器學習模型因應於該加工狀態信號提供即時總厚度變異;將該加工狀態信號輸入第三機器學習模型,其中該第三 機器學習模型因應於該加工狀態信號提供即時翹曲度;以及將該加工狀態信號輸入第四機器學習模型,其中該第四機器學習模型因應於該加工狀態信號提供即時彎曲度。 A method for real-time wafer processing quality estimation, suitable for an electronic device, comprises: obtaining a processing state signal generated by a wafer processing device when performing a processing operation on a wafer, wherein the processing state signal comprises one of a first vibration signal, a second vibration signal and a sound signal, and the step of obtaining the processing state signal generated by the wafer processing device when performing the processing operation on the wafer comprises: obtaining the first vibration signal from a first accelerometer installed on a grinding wheel spindle of the wafer processing device; obtaining the second vibration signal from a second accelerometer installed on a turntable spindle of a turntable, wherein the turntable carries the wafer; or obtaining the sound signal from a microphone device, wherein the microphone device is used to collect the sound signal generated by the wafer processing device when performing the processing operation on the wafer. The sound generated during the processing operation; and obtaining at least one real-time processing quality of the processing operation by inputting the processing state signal into at least one machine learning model, including: inputting the processing state signal into a first machine learning model, wherein the first machine learning model provides real-time surface roughness in response to the processing state signal; inputting the processing state signal into a second machine learning model, wherein the second machine learning model provides real-time total thickness variation in response to the processing state signal; inputting the processing state signal into a third machine learning model, wherein the third machine learning model provides real-time curvature in response to the processing state signal; and inputting the processing state signal into a fourth machine learning model, wherein the fourth machine learning model provides real-time curvature in response to the processing state signal. 如請求項1所述的方法,其中該加工操作包括由該晶圓加工設備的該磨輪對位於該轉台上的該晶圓進行的一研磨加工。 The method as claimed in claim 1, wherein the processing operation includes a grinding process performed by the grinding wheel of the wafer processing equipment on the wafer located on the turntable. 如請求項1所述的方法,更包括:反應於判定該至少一即時加工品質為異常,提供一警示訊息。 The method as claimed in claim 1 further includes: providing a warning message in response to determining that at least one real-time processing quality is abnormal. 如請求項1所述的方法,其中各該機器學習模型是基於以隨機搜尋及5折交叉驗證而從多個第一超參數組合中篩選出的超參數組合進行訓練。 The method as claimed in claim 1, wherein each of the machine learning models is trained based on a hyperparameter combination selected from a plurality of first hyperparameter combinations by random search and 5-fold cross validation. 一種電子裝置,包括:一儲存電路,其儲存一程式碼;以及一處理器,其耦接該儲存電路並存取該程式碼以執行:取得一晶圓加工設備在對一晶圓進行一加工操作時所產生的一個加工狀態信號,其中該加工狀態信號包括一第一振動信號、一第二振動信號及一聲音信號的其中之一,且取得該晶圓加工設備在對該晶圓進行該加工操作時所產生的該加工狀態信號驟包括:從裝設於該晶圓加工設備的一磨輪主軸上的一第一加速規取得該第一振動信號;從裝設於一轉台的一轉台主軸上的一第二加速規取得 該第二振動信號,其中該轉台承載該晶圓;或者從一麥克風裝置取得該聲音信號,其中該麥克風裝置用於收集該晶圓加工設備在對該晶圓進行該加工操作的過程中所產生的聲音;以及透過將該加工狀態信號輸入至少一機器學習模型而取得該加工操作的至少一即時加工品質,包括:將該加工狀態信號輸入第一機器學習模型,其中該第一機器學習模型因應於該加工狀態信號提供即時表面粗糙度;將該加工狀態信號輸入第二機器學習模型,其中該第二機器學習模型因應於該加工狀態信號提供即時總厚度變異;將該加工狀態信號輸入第三機器學習模型,其中該第三機器學習模型因應於該加工狀態信號提供即時翹曲度;以及將該加工狀態信號輸入第四機器學習模型,其中該第四機器學習模型因應於該加工狀態信號提供即時彎曲度。 An electronic device includes: a storage circuit storing a program code; and a processor coupled to the storage circuit and accessing the program code to execute: obtaining a processing state signal generated by a wafer processing device when performing a processing operation on a wafer, wherein the processing state signal includes one of a first vibration signal, a second vibration signal and a sound signal, and obtaining the processing state signal generated by the wafer processing device when performing a processing operation on a wafer. The processing state signal generated when the wafer is subjected to the processing operation includes: obtaining the first vibration signal from a first accelerometer mounted on a grinding wheel spindle of the wafer processing equipment; obtaining the second vibration signal from a second accelerometer mounted on a turntable spindle of a turntable, wherein the turntable carries the wafer; or obtaining the sound signal from a microphone device, wherein the microphone device is used to collect the sound generated by the wafer processing equipment during the processing operation on the wafer; and obtaining at least one real-time processing quality of the processing operation by inputting the processing state signal into at least one machine learning model, including: inputting the processing state signal into the first machine learning model, wherein the first machine learning model provides real-time surface roughness in response to the processing state signal; inputting the processing state signal into the second machine learning model; The processing state signal is input into a third machine learning model, wherein the second machine learning model provides real-time total thickness variation in response to the processing state signal; the processing state signal is input into a third machine learning model, wherein the third machine learning model provides real-time curvature in response to the processing state signal; and the processing state signal is input into a fourth machine learning model, wherein the fourth machine learning model provides real-time curvature in response to the processing state signal.
TW111145715A 2022-11-29 2022-11-29 Method for estimating real-time wafer processing quality and an electronic device TWI863041B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111145715A TWI863041B (en) 2022-11-29 2022-11-29 Method for estimating real-time wafer processing quality and an electronic device
CN202311229804.4A CN118116817A (en) 2022-11-29 2023-09-22 Real-time wafer processing quality estimation method and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111145715A TWI863041B (en) 2022-11-29 2022-11-29 Method for estimating real-time wafer processing quality and an electronic device

Publications (2)

Publication Number Publication Date
TW202422725A TW202422725A (en) 2024-06-01
TWI863041B true TWI863041B (en) 2024-11-21

Family

ID=91216161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111145715A TWI863041B (en) 2022-11-29 2022-11-29 Method for estimating real-time wafer processing quality and an electronic device

Country Status (2)

Country Link
CN (1) CN118116817A (en)
TW (1) TWI863041B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112106182A (en) * 2018-03-20 2020-12-18 东京毅力科创株式会社 Self-sensing corrective heterogeneous platform incorporating integrated semiconductor processing modules and methods of use thereof
TWI776509B (en) * 2016-09-30 2022-09-01 日商荏原製作所股份有限公司 Grinding device and grinding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776509B (en) * 2016-09-30 2022-09-01 日商荏原製作所股份有限公司 Grinding device and grinding method
CN112106182A (en) * 2018-03-20 2020-12-18 东京毅力科创株式会社 Self-sensing corrective heterogeneous platform incorporating integrated semiconductor processing modules and methods of use thereof

Also Published As

Publication number Publication date
CN118116817A (en) 2024-05-31
TW202422725A (en) 2024-06-01

Similar Documents

Publication Publication Date Title
US20240419568A1 (en) Leveraging low power states for fault testing of processing cores at runtime
CN117270514B (en) Production process whole-flow fault detection method based on industrial Internet of things
US20200357106A1 (en) Method for detecting defects, electronic device, and computer readable medium
JPWO2019168167A1 (en) Verification method, verification device, computer program, and verification system
CN112884697B (en) Wafer image recognition method and computer readable recording medium
CN105702595A (en) Wafer yield judging method and wafer qualification test multivariable detection method
US9153502B2 (en) Semiconductor chip testing method and semiconductor chip testing device
TWI863041B (en) Method for estimating real-time wafer processing quality and an electronic device
CN113902697A (en) Defect detection method and related device
CN113077430A (en) Laser chip defect detection and classification method and system based on SSD algorithm
CN103632232B (en) The detection method and equipment of a kind of product
US20240009790A1 (en) Method of monitoring machine tool and method of determining a standard for evaluating abnormality of a machine tool
TW202424472A (en) Method and device for identifying wafer edge defect type, medium and wafer processing method
CN105204967B (en) A kind of method and device detecting hard disk
US7379836B2 (en) Method of using automated test equipment to screen for leakage inducing defects after calibration to intrinsic leakage
CN116646281A (en) Abnormal test structure acquisition method, verification method and related device
TWI472939B (en) Yield loss prediction method and associated computer readable medium
CN110763493A (en) Method and device for determining fault type
US12057355B2 (en) Semiconductor device manufacture with in-line hotspot detection
US20100014745A1 (en) Inspecting method and inspecting equipment
JP4538205B2 (en) Inspection data analysis program, inspection data analyzer
CN114494118A (en) Method for detecting width of target object and method for detecting length of target object
CN114281582B (en) Electrical failure analysis method and related device
JPH07159289A (en) How to diagnose the cause of abnormal phenomenon
TWI738066B (en) Device and method for processing data based on neural network and storage medium