[go: up one dir, main page]

CN105702595A - Wafer yield judging method and wafer qualification test multivariable detection method - Google Patents

Wafer yield judging method and wafer qualification test multivariable detection method Download PDF

Info

Publication number
CN105702595A
CN105702595A CN201410704340.2A CN201410704340A CN105702595A CN 105702595 A CN105702595 A CN 105702595A CN 201410704340 A CN201410704340 A CN 201410704340A CN 105702595 A CN105702595 A CN 105702595A
Authority
CN
China
Prior art keywords
characteristic parameters
wafer
characteristic
parameters
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410704340.2A
Other languages
Chinese (zh)
Other versions
CN105702595B (en
Inventor
邱智扬
詹凯茹
王宪盟
郭年益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winbond Electronics Corp
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to CN201410704340.2A priority Critical patent/CN105702595B/en
Publication of CN105702595A publication Critical patent/CN105702595A/en
Application granted granted Critical
Publication of CN105702595B publication Critical patent/CN105702595B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The invention provides a wafer yield judging method and a wafer qualification test multivariable detection method. The yield rate judging method comprises the following steps: carrying out wafer qualification test on the wafer to be tested to generate a plurality of characteristic parameters; grouping the characteristic parameters according to the correlation list to form a plurality of groups of characteristic parameter groups; calculating an analysis value corresponding to one or a combination of the characteristic parameters in each group of characteristic parameter groups by multivariate analysis, and judging whether the analysis value is larger than preset specification information corresponding to one or a combination of the characteristic parameters, so as to take one or a combination of the characteristic parameters corresponding to the analysis value larger than the preset specification information as at least one out-of-specification characteristic parameter; and judging the yield of the wafer to be tested according to the out-of-specification characteristic parameters.

Description

晶圆的良率判断方法以及晶圆合格测试的多变量检测方法Wafer Yield Judgment Method and Wafer Qualification Test Multivariate Detection Method

技术领域technical field

本发明是有关于一种晶圆的检验技术,且特别是有关于一种利用晶圆合格测试(Waferacceptancetest,简称WAT)来进行晶圆的良率判断方法以及晶圆合格测试的多变量(Multiplevariable)检测方法。The present invention relates to a wafer inspection technique, and in particular relates to a wafer yield judgment method and a multiple variable (Multiple variable) wafer acceptance test (WAT) for wafer acceptance test. )Detection method.

背景技术Background technique

在半导体制作过程中,通常会使用晶圆合格测试(WAT)来对晶圆进行电性检测。WAT会产生许多的电性参数及数值,使用者可通过这些电性参数及数值来评估受测晶圆的良率好坏,以及发现在半导体制作过程中可能发生的问题。若能即早发现异常的WAT参数,可对于晶圆制造的决策拟定、评估晶圆是否需要报废、是否出货给客户等方面皆有决定性的影响。During semiconductor fabrication, wafer qualification testing (WAT) is commonly used to perform electrical testing on wafers. WAT will generate many electrical parameters and values. Users can use these electrical parameters and values to evaluate the yield of the wafer under test and discover possible problems in the semiconductor manufacturing process. If the abnormal WAT parameters can be found early, it can have a decisive impact on the decision-making of wafer manufacturing, the evaluation of whether the wafer needs to be scrapped, and whether it will be shipped to the customer.

以目前技术而言,通过WAT所产生的电性参数及数值是通过晶圆的研究人员以人工方式来进行检验,以从这些电性参数中发掘出问题。例如,晶圆合格测试系统可以自动产生WAT参数列表,研究人员逐一检测这些WAT参数是否超出预设范围(Outofspecification,简称OOS)。若WAT参数已超出预设范围时,研究人员则会检测这些超出预设范围的WAT参数是否影响到晶圆的良率,再依照WAT参数对于晶圆良率的影响严重程度来评估此晶圆是否需要报废。As far as the current technology is concerned, the electrical parameters and values generated by WAT are checked manually by wafer researchers to find out problems from these electrical parameters. For example, the wafer qualification testing system can automatically generate a list of WAT parameters, and researchers check whether these WAT parameters exceed the preset range (Outofspecification, OOS for short). If the WAT parameters have exceeded the preset range, the researchers will check whether these WAT parameters beyond the preset range affect the yield of the wafer, and then evaluate the wafer according to the severity of the impact of the WAT parameters on the wafer yield Whether it needs to be scrapped.

然而,WAT参数的种类十分繁杂,可能达到三百多种,若以人工方式在WAT参数中找出问题实为不易。另一方面,不同的WAT参数之间可能互有相关;当某一参数超出预设范围时,其他与此参数相关的其他参数也可能会超出预设范围,但这种相关性难以轻易地通过人力确认。因此,若以人工方式对WAT参数进行检测,则会花费相当多人力以及宝贵的时间。因此,需要寻求如何迅速检测WAT参数且能大幅节省人力成本的晶圆良率检测及测试技术。However, the types of WAT parameters are very complicated and may reach more than 300. It is not easy to find problems in WAT parameters manually. On the other hand, different WAT parameters may be correlated with each other; when a certain parameter exceeds the preset range, other parameters related to this parameter may also exceed the preset range, but this correlation is difficult to pass easily. Human confirmation. Therefore, if the WAT parameters are detected manually, a lot of manpower and precious time will be spent. Therefore, it is necessary to find a wafer yield detection and testing technology that can quickly detect WAT parameters and can greatly save labor costs.

发明内容Contents of the invention

本发明提供一种晶圆的良率判断方法以及晶圆合格测试的多变量检测方法。此良率判断方法利用多变量制作过程控制(Multivariatestatisticalprocesscontrol,简称MSPC)以及硬件设备的辅助以列出超出预设范围的WAT特性参数,来减少研发人员对于WAT特性参数的检测时间,并可节省在判断待测晶圆的良率的测试成本。The invention provides a method for judging the yield rate of wafers and a multivariate detection method for qualified testing of wafers. This yield rate judgment method uses multivariate statistical process control (MSPC for short) and the assistance of hardware equipment to list WAT characteristic parameters beyond the preset range, so as to reduce the detection time of R&D personnel for WAT characteristic parameters, and save time. The test cost for judging the yield of the wafer under test.

本发明提出一种晶圆的良率判断方法,其包括下列步骤。对待测晶圆进行晶圆合格测试,以产生多个特性参数。依据一相关性列表对该些特性参数进行分群,以形成多组特性参数群组。以多变量分析来计算每组特性参数群组中这些特性参数的其中之一或其组合所对应的分析数值,判断此分析数值是否大于这些特性参数的其中之一或其组合所对应的预设规格信息,以将大于所述预设规格信息的分析数值所对应的这些特性参数的其中之一或其组合作为至少一个超出规格特性参数。以及,依据此至少一超出规格特性参数来判断此待测晶圆的良率。The invention proposes a wafer yield judgment method, which includes the following steps. Wafer qualification testing is performed on the wafer under test to generate a number of characterization parameters. The characteristic parameters are grouped according to a correlation list to form a plurality of characteristic parameter groups. Use multivariate analysis to calculate the analysis value corresponding to one of these characteristic parameters or a combination of these characteristic parameters in each group of characteristic parameters, and determine whether the analysis value is greater than the preset value corresponding to one of these characteristic parameters or a combination thereof Specification information, using one or a combination of these characteristic parameters corresponding to an analysis value greater than the preset specification information as at least one out-of-specification characteristic parameter. And, judge the yield rate of the wafer to be tested according to the at least one out-of-spec characteristic parameter.

在本发明的一实施例中,上述的良率判断方法还包括下列步骤。统计多个不同晶圆在进行所述晶圆合格测试后所产生的特性参数,以分析这些特性参数是否具有相关性。以及,依据具有相关性的多个相关特性参数来产生此相关性列表。In an embodiment of the present invention, the above yield judgment method further includes the following steps. The characteristic parameters produced by a plurality of different wafers after performing the wafer qualification test are counted to analyze whether these characteristic parameters are correlated. And, the correlation list is generated according to a plurality of correlation characteristic parameters with correlation.

在本发明的一实施例中,上述的良率判断方法还包括下列步骤。记录这些特性参数中具有相关性的多个相关特性参数,以形成此相关性列表。In an embodiment of the present invention, the above yield judgment method further includes the following steps. A plurality of related property parameters having dependencies among these property parameters are recorded to form this dependency list.

在本发明的一实施例中,上述的多变量分析以霍德林T平方统计(Hotelling'sT-squaredstatistic)来依序计算每组特性参数群组中这些特性参数的其中之一或其组合。In an embodiment of the present invention, the above-mentioned multivariate analysis uses Hotelling's T-squared statistic (Hotelling's T-squared statistic) to sequentially calculate one or a combination of these characteristic parameters in each group of characteristic parameters.

在本发明的一实施例中,计算每组特性参数群组中这些特性参数的其中之一或其组合所对应的分析数值包括下列步骤:依序设定每组特性参数群组中这些特性参数中的N个做为变量,以计算每组特性参数群组中的各个N维T平方统计数值是否大于对应的预设规格信息,其中N为正整数。In one embodiment of the present invention, calculating the analysis value corresponding to one or a combination of these characteristic parameters in each characteristic parameter group includes the following steps: sequentially setting these characteristic parameters in each characteristic parameter group N of them are used as variables to calculate whether each N-dimensional T-square statistical value in each characteristic parameter group is greater than the corresponding preset specification information, wherein N is a positive integer.

在本发明的一实施例中,依据所述至少一超出规格特性参数来判断待测晶圆的良率包括下列步骤:将所述至少一超出规格特性参数条列为一超出规则参数列表,以供使用者判断此待测晶圆是否异常。In one embodiment of the present invention, judging the yield rate of the wafer to be tested according to the at least one out-of-spec characteristic parameter includes the following steps: listing the at least one out-of-spec characteristic parameter as an out-of-spec parameter list, to It is for the user to judge whether the wafer to be tested is abnormal.

从另一角度来看,本发明提出一种晶圆合格测试的多变量检测方法,适用于晶圆合格测试系统中,此多变量判断方法包括下列步骤:获得待测晶圆在进行晶圆合格测试后所产生的多个特性参数。依据相关性列表对这些特性参数进行分群,以形成多组特性参数群组;以多变量分析来计算每组特性参数群组中这些特性参数的其中之一或其组合所对应的分析数值是否大于这些特性参数的其中之一或其组合所对应的预设规格信息,以将大于所述预设规格信息的分析数值所对应的这些特性参数的其中之一或其组合作为至少一超出规格特性参数;以及,依据所述至少一超出规格特性参数来检测此待测晶圆是否合格。From another point of view, the present invention proposes a multivariate detection method for wafer qualification testing, which is applicable to a wafer qualification testing system. This multivariate judgment method includes the following steps: Multiple characteristic parameters generated after testing. Group these characteristic parameters according to the correlation list to form multiple groups of characteristic parameters; use multivariate analysis to calculate whether the analysis value corresponding to one of these characteristic parameters or their combination in each group of characteristic parameters is greater than The preset specification information corresponding to one or a combination of these characteristic parameters, so that one or a combination of these characteristic parameters corresponding to an analysis value greater than the preset specification information is regarded as at least one out-of-specification characteristic parameter and, checking whether the wafer to be tested is qualified according to the at least one out-of-spec characteristic parameter.

基于上述,本发明实施例的晶圆的良率判断方法以及晶圆合格测试的多变量检测方法将具有相关性的多个WAT特性参数进行分群,并利用多变量统计演算法(例如,霍德林T平方统计)来对每群特性参数进行检验,从而筛选出超出预设范围的多个WAT特性参数。如此一来,本发明实施例可通过多变量制作过程控制技术以及硬件设备的辅助来尽早发现异常的WAT特性参数,减少研发人员对于WAT特性参数的检测时间,并可节省判断待测晶圆的良率的测试成本。Based on the above, the wafer yield judgment method and the multivariate detection method of the wafer qualification test in the embodiment of the present invention group a plurality of WAT characteristic parameters with correlation, and use a multivariate statistical algorithm (for example, Hodlin T square statistics) to test each group of characteristic parameters, thereby screening out multiple WAT characteristic parameters beyond the preset range. In this way, the embodiment of the present invention can detect abnormal WAT characteristic parameters as early as possible through the multivariable manufacturing process control technology and the assistance of hardware equipment, reduce the detection time of R&D personnel for WAT characteristic parameters, and save the time spent on judging the wafer to be tested. Yield test cost.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.

附图说明Description of drawings

图1示出本发明一实施例的一种晶圆的良率判断方法的流程图;FIG. 1 shows a flow chart of a method for judging the yield of a wafer according to an embodiment of the present invention;

图2示出本发明一实施例的产生相关性列表的详细流程图;Fig. 2 shows a detailed flowchart of generating a correlation list according to an embodiment of the present invention;

图3为两个特性参数在多变量分析下的二维样本示意图;Fig. 3 is a two-dimensional sample schematic diagram of two characteristic parameters under multivariate analysis;

图4至图6示出本发明一实施例通过采用此晶圆的良率判断方法的实验结果分析图;Fig. 4 to Fig. 6 show an embodiment of the present invention by adopting the experimental result analysis chart of the method for judging the yield of this wafer;

图7示出本发明一实施例的一种晶圆合格测试的多变量检测方法的流程图。FIG. 7 shows a flow chart of a multivariate detection method for wafer qualification testing according to an embodiment of the present invention.

附图标记说明:Explanation of reference signs:

S110~S140、S210~S240、S710~S740:步骤;S110~S140, S210~S240, S710~S740: steps;

310、320、330、410、510、610:区域;310, 320, 330, 410, 510, 610: area;

340:预设范围;340: preset range;

Y1~Y5、Y1_310、Y2_320:特性参数;Y1~Y5, Y1_310, Y2_320: characteristic parameters;

360:特性参数Y1_310及Y2_320在区域330中呈现的点。360 : the point where the characteristic parameters Y1_310 and Y2_320 appear in the area 330 .

具体实施方式detailed description

图1示出本发明一实施例的一种晶圆的良率判断方法的流程图。请参考图1,所谓晶圆是半导体制作过程中用以制作半导体集成电路时所用的载体及材料。晶圆上各个晶方则是半导体制作过程中的产品。为了能够节省人力成本,本发明实施例所述的晶圆的良率判断方法以及晶圆合格测试的多变量检测方法可以通过软件(例如,应用程序)的方式来呈现,并且由具备较佳硬件规格的电子设备来执行此软件,从而实现本发明实施例。此软件也可烧录于非易失性可读取媒体上,例如是光盘、可移动硬盘等设备。应用本实施例者也可以将本发明实施例所述的晶圆的良率判断方法以及晶圆合格测试的多变量检测方法通过固件或硬件的方式来实现,并不仅受限于本揭示内容。FIG. 1 shows a flowchart of a wafer yield judgment method according to an embodiment of the present invention. Please refer to FIG. 1 , the so-called wafer is the carrier and material used to manufacture semiconductor integrated circuits in the semiconductor manufacturing process. Each wafer on the wafer is a product of the semiconductor manufacturing process. In order to save labor costs, the method for judging the yield rate of wafers and the multivariate detection method for wafer qualification testing described in the embodiments of the present invention can be presented in the form of software (for example, application programs), and equipped with better hardware The electronic equipment of the standard can execute this software, thereby realizing the embodiment of the present invention. This software can also be recorded on non-volatile readable media, such as optical discs, removable hard disks and other devices. Those who apply this embodiment can also implement the wafer yield judgment method and the multivariate detection method of wafer qualification test described in the embodiment of the present invention by means of firmware or hardware, and are not limited to the content of this disclosure.

在此利用图1的步骤流程来说明晶圆的良率判断方法。在步骤S110中,对待测晶圆进行晶圆合格测试(WAT),以产生多个特性参数。晶圆合格测试可以通过一种或多种程序来获得各种电性以及物理特性的相关参数以作为特性参数。这些程序例如是晶圆排序(Wafersort)、晶圆最终测试(Waferfinaltest)、电子电路芯片排序(Electronicdiesort)以及电路探针(CircuitProbe)等。本实施例主要是以晶圆探针来对待测晶圆进行晶圆合格测试。应用本实施例者也可采用其他类型的程序来进行晶圆合格测试。Here, the method for judging the yield of a wafer is described using the step flow in FIG. 1 . In step S110, a wafer qualification test (WAT) is performed on the wafer to be tested to generate a plurality of characteristic parameters. Wafer qualification testing can use one or more procedures to obtain relevant parameters of various electrical and physical properties as characteristic parameters. These programs are, for example, wafer sort (Wafersort), wafer final test (Wafer final test), electronic circuit chip sort (Electronic diesort), and circuit probe (Circuit Probe). In this embodiment, the wafer probe is mainly used to perform the wafer qualification test on the wafer to be tested. Those who apply this embodiment can also use other types of procedures to perform wafer qualification testing.

在获得所述特性参数之后,由于许多的WAT特性参数之间具有相关性,因此若是将这些具有相关性的WAT特性参数分为相同群组,并且在这些群组内部以多变量制作过程控制(MSPC)来进行WAT特性参数的统整与晶圆的良率判断的话,则较有效率。此处所指的“WAT特性参数之间的相关性”可以是这些WAT特性参数互为正相关联性、负相关联性或是统计上所述的任何相关联性。因此,在步骤S120中,本发明实施例依据一相关性列表以对这些特性参数进行分群,从而形成多组特性参数群组。相关性列表可以预先通过使用者的经验来设定产生,也可以由WAT特性参数的大量数据来以统计获得。After obtaining the characteristic parameters, because many WAT characteristic parameters are correlated, if these correlated WAT characteristic parameters are divided into the same group, and within these groups, the multivariate production process control ( It is more efficient to use MSPC) to integrate WAT characteristic parameters and determine wafer yield. The "correlation between WAT characteristic parameters" referred to here may mean that these WAT characteristic parameters are positively correlated, negatively correlated or any correlation described in statistics. Therefore, in step S120 , the embodiment of the present invention groups these characteristic parameters according to a correlation list, so as to form a plurality of characteristic parameter groups. The correlation list can be pre-set and generated through user experience, and can also be statistically obtained from a large amount of data of WAT characteristic parameters.

图2示出本发明一实施例的产生相关性列表的详细流程图。请参照图2,在步骤S210中,使用者可依据其经验以将具有相关性的特性参数进行记录。然后,在步骤S240中,将这些已记录的具有相关性的特性参数整合成相关性列表。另一方面,在步骤S220中,也可以统计大量晶圆在进行上述晶圆合格测试后所产生的特性参数,以分析这些特性参数是否具有相关性。当通过统计方式来获得疑似具有相关性的多个相关特性参数时,便进入步骤S230,可将疑似具有相关性的这些相关特性参数形成列表并提供给使用者观看,让使用者判断这些疑似具有相关性的这些相关特性参数是否确实相关。当使用者依据其经验而判断这些相关特性参数的确具有相关性,则从步骤S230进入步骤S240,以整合这些具有相关性的这些特性参数而形成相关性列表。Fig. 2 shows a detailed flow chart of generating a correlation list according to an embodiment of the present invention. Referring to FIG. 2 , in step S210 , the user can record the relevant characteristic parameters according to his experience. Then, in step S240, these recorded characteristic parameters with correlations are integrated into a correlation list. On the other hand, in step S220, the characteristic parameters generated by a large number of wafers after the above-mentioned wafer qualification test can also be counted, so as to analyze whether these characteristic parameters are correlated. When a plurality of relevant characteristic parameters that are suspected to be relevant are obtained through statistical methods, it will enter step S230, and these relevant characteristic parameters that are suspected to be relevant can be formed into a list and provided to the user for viewing, so that the user can judge whether these relevant characteristic parameters are suspected to be relevant. Whether these correlation characteristic parameters of correlation are really correlated. When the user judges that the relevant characteristic parameters are indeed relevant according to his experience, the user proceeds from step S230 to step S240 to integrate the relevant characteristic parameters to form a correlation list.

请继续参考图1,将这些特性参数依据相关性列表而分为多组特性参数群组后,在步骤S130中,便以多变量分析来计算每组特性参数群组中这些特性参数的其中之一或其组合所对应的分析数值,然后比较上述分析数值与预设的规格信息,藉以判断每组特性参数群组中这些特性参数的其中之一或其组合是否超出预设规格。Please continue to refer to FIG. 1. After these characteristic parameters are divided into multiple groups of characteristic parameters according to the correlation list, in step S130, multivariate analysis is used to calculate one of the characteristic parameters in each group of characteristic parameters. One or the analysis value corresponding to the combination thereof, and then compare the analysis value with the preset specification information, so as to determine whether one or the combination of these characteristic parameters in each characteristic parameter group exceeds the preset specification.

在此以图3来说明为何需要以多变量分析来对每组特性参数群组中的这些特性参数进行晶圆的良率判断。图3为两个特性参数在多变量分析下的二维样本示意图。为简化说明,图3仅具备多个晶圆样本的两个特性参数Y1及Y2。特性参数Y1呈现于区域310中,而特性参数Y2呈现于区域320中。区域310及区域320分别有标明特性参数Y1及特性参数Y2在预设范围中的最大值、最小值与中间值。藉此,若单变量分析的方式来分析特性参数Y1及特性参数Y2,则这些晶圆样本应皆符合。但是,若将特性参数Y1及特性参数Y2以负相关联性的表示方式呈现于区域330时,则会发现某一晶圆样本的特性参数Y1_310及Y2_320在区域330中呈现的点360没有位于特性参数Y1及特性参数Y2作为二维变量的预设范围340中,藉此可知此晶圆样本可能有问题而需要报废。因此,多变量分析可以提升对于晶片良率的判断精准度,并在可通过符合本发明实施例的良率判断方法来轻易地获得有问题的待测晶圆。Here, FIG. 3 is used to illustrate why it is necessary to use multivariate analysis to perform wafer yield judgment on these characteristic parameters in each characteristic parameter group. Fig. 3 is a schematic diagram of a two-dimensional sample of two characteristic parameters under multivariate analysis. To simplify the description, FIG. 3 only has two characteristic parameters Y1 and Y2 of a plurality of wafer samples. The characteristic parameter Y1 is presented in area 310 and the characteristic parameter Y2 is presented in area 320 . The area 310 and the area 320 respectively indicate the maximum value, the minimum value and the middle value of the characteristic parameter Y1 and the characteristic parameter Y2 within the preset range. Therefore, if the characteristic parameter Y1 and the characteristic parameter Y2 are analyzed by means of univariate analysis, then these wafer samples should all be consistent. However, if the characteristic parameter Y1 and the characteristic parameter Y2 are presented in the area 330 in the form of negative correlation, it will be found that the point 360 where the characteristic parameters Y1_310 and Y2_320 of a certain wafer sample appear in the area 330 is not located in the characteristic The parameter Y1 and the characteristic parameter Y2 are within the preset range 340 as two-dimensional variables, so it can be known that the wafer sample may have a problem and needs to be scrapped. Therefore, the multivariate analysis can improve the judgment accuracy of the yield rate of the wafer, and the wafer to be tested with problems can be easily obtained through the yield judgment method according to the embodiment of the present invention.

回到图1,在本实施例中,本发明实施例所指的“多变量分析”可以是以统计演算法中的霍德林T平方统计(Hotelling'sT-squaredstatistic)来实现。然而,多变量分析可以通过多种实现方式以及统计学上的演算法来实现,本发明实施例并不受限于霍德林T平方统计。本实施例的步骤S130可以细分为多个细节步骤S132~S138,并且在此将每组特性参数群组中每个特性参数视为不同的变量。霍德林T平方统计也可以称为是MYT演算法,其利用被选定变量在给定条件的情况下来分别对其他变量进行T平方(T2)值的计算。然后,将此T2值与在给定相同条件下的预设规格数值(标示为Tspec)进行比较,藉以判断这些被选定变量是否超出预设范围(OOS)。若这些被选定变量所对应的T2值皆未超出预设范围,则以递回分析的方法来依序地选择其他的被选定变量,并重复上述流程直到被选定变量对应的T2值超出预设范围为止。藉此,便可通过超出预设范围的T2值所对应的特性参数中其的其中之一或其组合来判断晶圆的良率。Returning to FIG. 1 , in this embodiment, the "multivariate analysis" referred to in the embodiment of the present invention can be realized by Hotelling's T-squared statistic in statistical algorithms. However, the multivariate analysis can be realized through various implementation methods and statistical algorithms, and the embodiments of the present invention are not limited to Hodlin's T-square statistics. Step S130 of this embodiment can be subdivided into a plurality of detailed steps S132-S138, and here each characteristic parameter in each characteristic parameter group is regarded as a different variable. Hodlin's T square statistics can also be called MYT algorithm, which uses selected variables to calculate T square (T 2 ) values for other variables under given conditions. Then, the T 2 value is compared with the preset specification value (marked as T spec ) under the same given conditions, so as to judge whether the selected variables are out of preset range (OOS). If the T2 values corresponding to these selected variables do not exceed the preset range, then use the recursive analysis method to sequentially select other selected variables, and repeat the above process until the T value corresponding to the selected variable 2 until the value exceeds the preset range. Thereby, the yield rate of the wafer can be judged by one or a combination of the characteristic parameters corresponding to the T 2 value exceeding the preset range.

在此详细说明步骤S132~S138的各个细节流程。在步骤S132中,依序设定每组特性参数群组中这些特性参数中的其中N个做为被选定变量。N为正整数,N可从1开始计数,且N的最大值为该组特性参数群组中多个特性参数的数量。在本实施例中,每个特性参数被称为不同的维度,且当其中一个特性参数被给定条件时,此时计算得出的T2值称为1维T2统计数值;当其中两个特性参数被给定条件时,此时计算得出的T2值称为2维T2统计数值,并依此类推。在步骤S133中,利用被选定变量在给定条件的情况下来计算每组特性参数群组中的各个N维T2统计数值。应用本实施例者可通过霍德林T平方统计演算法或符合本发明实施例的其他统计学演算法来得知T2统计数值的计算方式。在步骤S134中,判断各个N维T2统计数值是否大于对应的预设规则信息(Tspec)。若是此时的N维T2统计数值皆没有大于对应的预设规则信息,则从步骤S134进入步骤S135,判断N是否等于N的最大值(N的最大值也就是该组特性参数群组中多个特性参数的数量)。若N并不等于其最大值时,则从步骤S136中以将N值加一,并重复进行步骤S132~S136的相应流程。相对地,若N等于其最大值时,则表示在该组特性参数群组中多个特性参数的其中之一或其组合所对应的T2值皆没有OOS,因而从步骤S135进入步骤S137,以判断此待测晶圆的良率为良好。Each detailed flow of steps S132 to S138 will be described in detail here. In step S132, N of these characteristic parameters in each characteristic parameter group are sequentially set as selected variables. N is a positive integer, and N can start counting from 1, and the maximum value of N is the number of multiple characteristic parameters in the set of characteristic parameter groups. In this embodiment, each characteristic parameter is called a different dimension, and when one of the characteristic parameters is given a condition, the T2 value calculated at this time is called a 1 -dimensional T2 statistical value; when two of them When a characteristic parameter is given a condition, the T2 value calculated at this time is called a 2 - dimensional T2 statistical value, and so on. In step S133, each N-dimensional T 2 statistical value in each characteristic parameter group is calculated by using the selected variables under given conditions. Those who apply this embodiment can know the calculation method of the T 2 statistical value through the Hodlin's T-square statistical algorithm or other statistical algorithms in accordance with the embodiments of the present invention. In step S134, it is determined whether each N-dimensional T 2 statistical value is greater than the corresponding preset rule information (T spec ). If the N-dimension T 2 statistical values at this time are not greater than the corresponding preset rule information, then enter step S135 from step S134 to judge whether N is equal to the maximum value of N (the maximum value of N is also the characteristic parameter group of this group) number of multiple feature parameters). If N is not equal to the maximum value, the value of N is increased by one from step S136, and the corresponding processes of steps S132-S136 are repeated. Relatively, if N is equal to its maximum value, it means that the T2 values corresponding to one of the characteristic parameters or their combinations in the set of characteristic parameter groups do not have OOS, and thus enter step S137 from step S135, It is judged that the yield of the wafer to be tested is good.

若其中一个N维T2统计数值大于对应的预设规则信息(Tspec)时,则从步骤S134进入步骤S138,将大于上述预设规格信息(Tspec)的分析数值(T2统计数值)所对应的所述特性参数的其中之一或其组合视作为是至少一个超出规格特性参数。换句话说,由于这些特性参数的其中之一或其组合所对应的分析数值已经大于预设规则信息(Tspec),表示这些特性参数的其中之一或其组合已经超出预设规则(OOS)。藉此,本发明实施例便将超出预设规则(OOS)的这些这些特性参数的其中之一或其组合设置成为超出规格特性参数。在部分实施例中,霍德林T平方统计演算法还可以将被选定变量下的所有分析数值(T2统计数值)进行加总,并将此加总值与预设信息进行比对,藉以判断此被选定变量下的分析数值是否仍有其他分析数值过于显著而可能有问题。若被选定变量下的分析数值的加总值被认为仍有问题(或称为此加总值是否显著),则本发明实施例可以继续执行步骤S132~S138,藉以获得更多的超出规格特性参数。本发明实施例系以上述步骤S132~S138来简略描述本发明的精神,应用本实施例者可以依其需求而任意调整步骤S132~S138中的步骤进行先后次序,而不仅受限于上述揭示。If one of the N-dimensional T 2 statistical values is greater than the corresponding preset rule information (T spec ), then proceed from step S134 to step S138, and will be greater than the analysis value (T 2 statistical value) of the preset specification information (T spec ) One or a combination of the corresponding characteristic parameters is regarded as at least one out-of-spec characteristic parameter. In other words, since the analysis value corresponding to one of these characteristic parameters or a combination thereof is greater than the preset rule information (T spec ), it means that one of these characteristic parameters or a combination thereof has exceeded the preset rule (OOS) . Thereby, in the embodiment of the present invention, one or a combination of these characteristic parameters exceeding the predetermined rule (OOS) is set as the out-of-spec characteristic parameter. In some embodiments, Hodlin's T - square statistical algorithm can also sum up all the analysis values (T2 statistical values) under the selected variables, and compare the total value with the preset information, so as to judge Whether the analysis value under this selected variable still has other analysis values that are too significant and may be problematic. If the total value of the analysis values under the selected variables is considered to be still problematic (or whether the total value is significant), the embodiment of the present invention can continue to execute steps S132-S138, so as to obtain more out-of-spec Feature parameters. The embodiment of the present invention uses the steps S132-S138 to briefly describe the spirit of the present invention. Those who apply this embodiment can adjust the sequence of steps S132-S138 according to their needs, and are not limited to the above disclosure.

在步骤S140中,便依据上述找出的这些超出规格特性参数来判断此待测晶圆的良率。在本实施例中,步骤S140可以通过多种作法以依据这些超出规格特性来判断此待测晶圆的良率。其中一种作法可以是,将这些超出规格特性参数通过晶圆合格测试判断系统来进行演算,并通过晶圆合格测试判断系统的演算判断结果来判断此待测晶圆是否异常。另一种作法则是将这些规格特性参数条列为一个列表(例如,超出规则参数列表),让使用者依据其经验而判断这些WAT特性参数是否异常,藉以判断此待测晶圆的良率。In step S140, the yield rate of the wafer to be tested is judged according to the out-of-spec characteristic parameters found above. In this embodiment, step S140 can use various methods to determine the yield of the wafer to be tested according to these out-of-spec characteristics. One method may be to calculate these out-of-specification characteristic parameters through the wafer qualification test and judgment system, and judge whether the wafer to be tested is abnormal according to the calculation and judgment results of the wafer qualification test and judgment system. Another approach is to list these specifications and characteristic parameters as a list (for example, beyond the rule parameter list), so that users can judge whether these WAT characteristic parameters are abnormal based on their experience, so as to judge the yield of the wafer to be tested .

图4至图6示出本发明一实施例通过采用此晶圆的良率判断方法的实验结果分析图。图4至图6分别呈现晶圆的特性参数Y3、Y4及Y5。标记SpecH以及SpecL分别是此特定参数在特性参数Y3、Y4及Y5分别对应的预设范围中的最大值(例如是4.1、-10以及1)以及最小值(例如是2.3、-40以及0.9)。藉此,从区域410、510、610中可知,若通过以往单变量分析来判断晶圆的良率时,由于区域410、510、610中的特性参数Y3、Y4及Y5皆位于预设范围中而会认为些晶圆的良率为佳。然而,若以多量变分析来判断判断晶圆的良率时,区域410、510、610中的这些数值实际上会因为其他变量而超出预设范围。FIG. 4 to FIG. 6 show analysis diagrams of experimental results using the wafer yield judgment method according to an embodiment of the present invention. 4 to 6 respectively present the characteristic parameters Y3, Y4 and Y5 of the wafer. Marks SpecH and SpecL are respectively the maximum value (such as 4.1, -10 and 1) and minimum value (such as 2.3, -40 and 0.9) of this specific parameter in the preset range corresponding to the characteristic parameters Y3, Y4 and Y5 respectively . Thus, it can be seen from the areas 410, 510, and 610 that if the yield rate of the wafer is judged by the conventional univariate analysis, since the characteristic parameters Y3, Y4, and Y5 in the areas 410, 510, and 610 are all within the preset range Instead, some wafers are considered to have good yields. However, if the yield rate of the wafer is judged by multivariate analysis, these values in the regions 410 , 510 , and 610 will actually exceed the preset range due to other variables.

从另一角度来说,本发明实施例提出一种晶圆合格测试的多变量检测方法,适用于晶圆合格测试系统中。此晶圆合格测试系统可以包括用以量测晶圆各个WAT电性参数的测试平台以及用以执行此多变量检测方法的运算模块。此运算模组可通过图7的步骤流程来实现本发明实施例。图7示出本发明一实施例的一种晶圆合格测试的多变量检测方法的流程图。在步骤S710中,运算模组获得待测晶圆在通过上述测试平台以进行此晶圆合格测试后所产生的多个特性参数。在步骤S720中,运算模组依据相关性列表对这些特性参数进行分群,以形成多组特性参数群组。在步骤S730中,运算模组以多变量分析来计算每组特性参数群组中这些特性参数的其中之一或其组合所对应的分析数值,判断此分析数值是否大于这些特性参数的其中之一或其组合所对应的预设规格信息,以将大于此预设规格信息的此分析数值所对应的此些特性参数的其中之一或其组合作为至少一个超出规格特性参数。在步骤S740中,运算模组依据此至少一个超出规格特性参数来检测此待测晶圆是否合格。步骤S710~S740的细节流程请参照上述实施例。From another perspective, the embodiment of the present invention proposes a multivariate detection method for wafer qualification testing, which is applicable to a wafer qualification testing system. The wafer qualification testing system may include a testing platform for measuring various WAT electrical parameters of the wafer and an operation module for implementing the multivariate testing method. The computing module can realize the embodiment of the present invention through the step flow in FIG. 7 . FIG. 7 shows a flow chart of a multivariate detection method for wafer qualification testing according to an embodiment of the present invention. In step S710, the computing module obtains a plurality of characteristic parameters generated after the wafer to be tested passes the test platform to perform the wafer qualification test. In step S720, the operation module groups these characteristic parameters according to the correlation list to form a plurality of characteristic parameter groups. In step S730, the operation module uses multivariate analysis to calculate the analysis value corresponding to one or a combination of these characteristic parameters in each group of characteristic parameters, and determines whether the analysis value is greater than one of these characteristic parameters or the preset specification information corresponding to the preset specification information, so that one or a combination of the characteristic parameters corresponding to the analysis value greater than the preset specification information is regarded as at least one out-of-specification characteristic parameter. In step S740, the calculation module detects whether the wafer to be tested is qualified according to the at least one out-of-spec characteristic parameter. For the detailed flow of steps S710-S740, please refer to the above-mentioned embodiments.

综上所述,本发明实施例的晶圆的良率判断方法以及晶圆合格测试的多变量检测方法将具有相关性的多个WAT特性参数进行分群,并利用多变量统计演算法(例如,霍德林T平方统计)来对每群特性参数进行检验,从而筛选出超出预设范围的多个WAT特性参数。如此一来,本发明实施例可通过多变量制作过程控制技术以及硬件设备的辅助来尽早发现异常的WAT特性参数,减少研发人员对于WAT特性参数的检测时间,并可节省判断待测晶圆的良率的测试成本。In summary, the method for judging the yield rate of wafers and the multivariate detection method for wafer qualification testing in the embodiments of the present invention group multiple WAT characteristic parameters with correlation, and use multivariate statistical algorithms (for example, Hodlin's T square statistics) to test the characteristic parameters of each group, so as to screen out multiple WAT characteristic parameters beyond the preset range. In this way, the embodiment of the present invention can detect abnormal WAT characteristic parameters as early as possible through the multivariable manufacturing process control technology and the assistance of hardware equipment, reduce the detection time of R&D personnel for WAT characteristic parameters, and save the time spent on judging the wafer to be tested. Yield test cost.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (12)

1.一种晶圆的良率判断方法,其特征在于,包括:1. A method for judging the yield rate of a wafer, characterized in that, comprising: 对待测晶圆进行晶圆合格测试,以产生多个特性参数;Perform wafer qualification testing on the wafer to be tested to generate multiple characteristic parameters; 依据相关性列表对该些特性参数进行分群,以形成多组特性参数群组;Grouping these characteristic parameters according to the correlation list to form multiple sets of characteristic parameter groups; 以多变量分析来计算每组特性参数群组中该些特性参数的其中之一或其组合所对应的分析数值,判断该分析数值是否大于该些特性参数的其中之一或其组合所对应的预设规格信息,以将大于该预设规格信息的该分析数值所对应的该些特性参数的其中之一或其组合作为至少一超出规格特性参数;以及Multivariate analysis is used to calculate the analysis value corresponding to one of the characteristic parameters or a combination of these characteristic parameters in each group of characteristic parameters, and to determine whether the analysis value is greater than the corresponding one of the characteristic parameters or a combination thereof Preset specification information, so that one or a combination of the characteristic parameters corresponding to the analysis value greater than the preset specification information is used as at least one out-of-specification characteristic parameter; and 依据该至少一超出规格特性参数来判断该待测晶圆的良率。The yield rate of the wafer to be tested is judged according to the at least one out-of-spec characteristic parameter. 2.根据权利要求1所述的晶圆的良率判断方法,其特征在于,还包括:2. the yield judgment method of wafer according to claim 1, is characterized in that, also comprises: 统计多个不同晶圆在进行该晶圆合格测试后所产生的该些特性参数,以分析该些特性参数是否具有相关性;以及making statistics on the characteristic parameters produced by a plurality of different wafers after the wafer qualification test, to analyze whether the characteristic parameters are relevant; and 依据具有该相关性的多个相关特性参数来产生该相关性列表。The correlation list is generated according to a plurality of correlation characteristic parameters having the correlation. 3.根据权利要求1所述的晶圆的良率判断方法,其特征在于,还包括:3. the yield judgment method of wafer according to claim 1, is characterized in that, also comprises: 记录该些特性参数中具有相关性的多个相关特性参数,以形成该相关性列表。A plurality of correlated characteristic parameters among the characteristic parameters are recorded to form the correlation list. 4.根据权利要求1所述的晶圆的良率判断方法,其特征在于,该多变量分析以霍德林T平方统计来依序计算每组特性参数群组中该些特性参数的其中之一或其组合。4. The method for judging the yield of a wafer according to claim 1, wherein the multivariate analysis uses Holderlin's T square statistics to sequentially calculate one of the characteristic parameters in each group of characteristic parameters or its combination. 5.根据权利要求4所述的晶圆的良率判断方法,其特征在于,计算每组特性参数群组中该些特性参数的其中之一或其组合所对应的该分析数值包括下列步骤:5. The method for judging the yield of a wafer according to claim 4, wherein calculating the analysis value corresponding to one of the characteristic parameters in each group of characteristic parameters or a combination thereof comprises the following steps: 依序设定每组特性参数群组中该些特性参数中的N个做为被选定变量,以计算每组特性参数群组中的各个N维T平方统计数值;Sequentially setting N of these characteristic parameters in each characteristic parameter group as selected variables, to calculate each N-dimensional T-square statistical value in each characteristic parameter group; 判断各个N维T平方统计数值是否大于对应的该预设规格信息,其中N为正整数。It is judged whether each N-dimensional T-square statistical value is greater than the corresponding preset specification information, wherein N is a positive integer. 6.根据权利要求1所述的晶圆的良率判断方法,其特征在于,依据该至少一超出规格特性参数来判断该待测晶圆的良率包括下列步骤:6. The method for judging the yield of the wafer according to claim 1, wherein judging the yield of the wafer to be tested according to the at least one out-of-spec characteristic parameter comprises the following steps: 将该至少一超出规格特性参数条列为超出规则参数列表,以供使用者判断该待测晶圆是否异常。The at least one out-of-standard characteristic parameter bar is listed as an out-of-rule parameter list for users to judge whether the wafer to be tested is abnormal. 7.一种晶圆合格测试的多变量检测方法,适用于晶圆合格测试系统中,其特征在于,该多变量判断方法包括:7. A multivariate detection method for wafer qualification testing, suitable for wafer qualification testing systems, characterized in that the multivariate judgment method comprises: 获得待测晶圆在进行晶圆合格测试后所产生的多个特性参数;Obtain multiple characteristic parameters of the wafer to be tested after the wafer qualification test; 依据相关性列表对该些特性参数进行分群,以形成多组特性参数群组;Grouping these characteristic parameters according to the correlation list to form multiple sets of characteristic parameter groups; 以多变量分析来计算每组特性参数群组中该些特性参数的其中之一或其组合所对应的分析数值,判断该分析数值是否大于该些特性参数的其中之一或其组合所对应的预设规格信息,以将大于该预设规格信息的该分析数值所对应的该些特性参数的其中之一或其组合作为至少一超出规格特性参数;以及Multivariate analysis is used to calculate the analysis value corresponding to one of the characteristic parameters or a combination of these characteristic parameters in each group of characteristic parameters, and to determine whether the analysis value is greater than the corresponding one of the characteristic parameters or a combination thereof Preset specification information, so that one or a combination of the characteristic parameters corresponding to the analysis value greater than the preset specification information is used as at least one out-of-specification characteristic parameter; and 依据该至少一超出规格特性参数来检测该待测晶圆是否合格。Whether the wafer to be tested is qualified or not is detected according to the at least one out-of-spec characteristic parameter. 8.根据权利要求7所述的多变量检测方法,其特征在于,还包括:8. multivariate detection method according to claim 7, is characterized in that, also comprises: 统计多个不同晶圆在进行该晶圆合格测试后所产生的该些特性参数,以分析该些特性参数是否具有相关性;以及making statistics on the characteristic parameters produced by a plurality of different wafers after the wafer qualification test, to analyze whether the characteristic parameters are relevant; and 依据具有该相关性的多个相关特性参数来产生该相关性列表。The correlation list is generated according to a plurality of correlation characteristic parameters having the correlation. 9.根据权利要求7所述的多变量检测方法,其特征在于,还包括:9. multivariate detection method according to claim 7, is characterized in that, also comprises: 记录该些特性参数中具有相关性的多个相关特性参数,以形成该相关性列表。A plurality of correlated characteristic parameters among the characteristic parameters are recorded to form the correlation list. 10.根据权利要求7所述的多变量检测方法,其特征在于,该多变量分析以一霍德林T平方统计来依序计算每组特性参数群组中该些特性参数的其中之一或其组合。10. The multivariate detection method according to claim 7, wherein the multivariate analysis uses a Hodlin's T square statistic to sequentially calculate one of the characteristic parameters in each group of characteristic parameter groups or a combination thereof . 11.根据权利要求10所述的多变量检测方法,其特征在于,计算每组特性参数群组中该些特性参数的其中之一或其组合所对应的该分析数值包括下列步骤:11. The multivariate detection method according to claim 10, wherein calculating the analysis value corresponding to one or a combination of the characteristic parameters in each group of characteristic parameters comprises the following steps: 依序设定每组特性参数群组中该些特性参数中的N个做为变量,以计算每组特性参数群组中的各个N维T平方统计数值是否大于对应的该预设规格信息,其中N为正整数。Sequentially setting N of these characteristic parameters in each characteristic parameter group as variables to calculate whether each N-dimensional T-square statistical value in each characteristic parameter group is greater than the corresponding preset specification information, Where N is a positive integer. 12.根据权利要求7所述的多变量检测方法,其特征在于,依据该至少一超出规格特性参数来判断该待测晶圆的良率包括下列步骤:12. The multivariate detection method according to claim 7, wherein judging the yield rate of the wafer to be tested according to the at least one out-of-spec characteristic parameter comprises the following steps: 将该至少一超出规格特性参数条列为超出规则参数列表,以供使用者依据其使用者经验来判断该待测晶圆是否合格。The at least one out-of-standard characteristic parameter bar is listed as an out-of-rule parameter list for users to judge whether the wafer to be tested is qualified or not based on their user experience.
CN201410704340.2A 2014-11-27 2014-11-27 Wafer yield judgment method and multivariate inspection method for wafer qualification test Active CN105702595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410704340.2A CN105702595B (en) 2014-11-27 2014-11-27 Wafer yield judgment method and multivariate inspection method for wafer qualification test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410704340.2A CN105702595B (en) 2014-11-27 2014-11-27 Wafer yield judgment method and multivariate inspection method for wafer qualification test

Publications (2)

Publication Number Publication Date
CN105702595A true CN105702595A (en) 2016-06-22
CN105702595B CN105702595B (en) 2019-05-07

Family

ID=56295816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410704340.2A Active CN105702595B (en) 2014-11-27 2014-11-27 Wafer yield judgment method and multivariate inspection method for wafer qualification test

Country Status (1)

Country Link
CN (1) CN105702595B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968057A (en) * 2017-11-22 2018-04-27 上海华力微电子有限公司 A kind of wafer resurveys method
CN109426655A (en) * 2017-08-22 2019-03-05 合肥捷达微电子有限公司 Data analysing method, device, electronic equipment and computer readable storage medium
CN109741779A (en) * 2018-12-29 2019-05-10 西安紫光国芯半导体有限公司 A kind of On-Wafer Measurement method that dynamic adjusts test condition in the process
CN110146798A (en) * 2019-03-29 2019-08-20 福建省福联集成电路有限公司 The automatic analysis method and system of a kind of pair of failure core particles
CN110968984A (en) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 Integrated circuit process analysis system and method
CN114247661A (en) * 2020-09-24 2022-03-29 长鑫存储技术有限公司 Semiconductor product grading method and grading system
CN114464547A (en) * 2021-12-29 2022-05-10 上海赛美特软件科技有限公司 Wafer inspection method, device, equipment and storage medium
CN115032493A (en) * 2022-07-15 2022-09-09 扬州晶新微电子有限公司 Wafer testing method and system based on tube core parameter display
CN116646281A (en) * 2023-06-05 2023-08-25 海光集成电路设计(北京)有限公司 Abnormal test structure acquisition method, verification method and related device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448956A (en) * 2002-03-28 2003-10-15 华邦电子股份有限公司 Method for testing non-volatile memory
TW200632719A (en) * 2004-09-17 2006-09-16 Mks Instr Inc Multivariate control of semiconductor processes
TW200818249A (en) * 2006-06-12 2008-04-16 Mks Instr Inc Classifying faults associated with a manufacturing process
CN101592703A (en) * 2008-05-27 2009-12-02 华邦电子股份有限公司 Circuit group and test method and test machine thereof
TW201432479A (en) * 2013-02-07 2014-08-16 Foresight Technology Company Ltd Method for searching and analyzing process parameters and computer program product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448956A (en) * 2002-03-28 2003-10-15 华邦电子股份有限公司 Method for testing non-volatile memory
TW200632719A (en) * 2004-09-17 2006-09-16 Mks Instr Inc Multivariate control of semiconductor processes
TW200818249A (en) * 2006-06-12 2008-04-16 Mks Instr Inc Classifying faults associated with a manufacturing process
CN101592703A (en) * 2008-05-27 2009-12-02 华邦电子股份有限公司 Circuit group and test method and test machine thereof
TW201432479A (en) * 2013-02-07 2014-08-16 Foresight Technology Company Ltd Method for searching and analyzing process parameters and computer program product thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109426655A (en) * 2017-08-22 2019-03-05 合肥捷达微电子有限公司 Data analysing method, device, electronic equipment and computer readable storage medium
CN109426655B (en) * 2017-08-22 2021-10-15 合肥捷达微电子有限公司 Data analysis method and device, electronic equipment and computer readable storage medium
CN107968057A (en) * 2017-11-22 2018-04-27 上海华力微电子有限公司 A kind of wafer resurveys method
CN107968057B (en) * 2017-11-22 2020-04-24 上海华力微电子有限公司 Wafer retesting method
CN110968984A (en) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 Integrated circuit process analysis system and method
CN109741779A (en) * 2018-12-29 2019-05-10 西安紫光国芯半导体有限公司 A kind of On-Wafer Measurement method that dynamic adjusts test condition in the process
CN110146798B (en) * 2019-03-29 2021-04-09 福建省福联集成电路有限公司 Automatic analysis method and system for failure core particles
CN110146798A (en) * 2019-03-29 2019-08-20 福建省福联集成电路有限公司 The automatic analysis method and system of a kind of pair of failure core particles
CN114247661A (en) * 2020-09-24 2022-03-29 长鑫存储技术有限公司 Semiconductor product grading method and grading system
CN114464547A (en) * 2021-12-29 2022-05-10 上海赛美特软件科技有限公司 Wafer inspection method, device, equipment and storage medium
CN115032493A (en) * 2022-07-15 2022-09-09 扬州晶新微电子有限公司 Wafer testing method and system based on tube core parameter display
CN115032493B (en) * 2022-07-15 2023-10-13 扬州晶新微电子有限公司 Wafer testing method and system based on tube core parameter display
CN116646281A (en) * 2023-06-05 2023-08-25 海光集成电路设计(北京)有限公司 Abnormal test structure acquisition method, verification method and related device

Also Published As

Publication number Publication date
CN105702595B (en) 2019-05-07

Similar Documents

Publication Publication Date Title
CN105702595A (en) Wafer yield judging method and wafer qualification test multivariable detection method
US7421358B2 (en) Method and system for measurement data evaluation in semiconductor processing by correlation-based data filtering
KR20150140358A (en) System and method for the automatic determination of critical parametric electrical test parameters for inline yield monitoring
US10719655B2 (en) Method and system for quickly diagnosing, classifying, and sampling in-line defects based on CAA pre-diagnosis database
WO2010110365A1 (en) Factor analysis apparatus and factor analysis method
TW201533456A (en) Wafer test data analysis method
TWI858200B (en) Method, system, and non-transitory computer readable storage medium of examining specimens
KR101998972B1 (en) Method of analyzing and visualizing the cause of process failure by deriving the defect occurrence index by variable sections
US20100004775A1 (en) Method and system for defect detection in manufacturing integrated circuits
TWI647770B (en) Yield rate determination method for wafer and method for multiple variable detection of wafer acceptance test
TWI574136B (en) Method of design-based defect classification and system thereof
JP2011187836A (en) Control method of semiconductor manufacturing apparatus and control system
KR20220038180A (en) Computer assisted weak pattern detection and quantification system
JP2011054804A (en) Method and system for management of semiconductor manufacturing device
CN115362457B (en) Predicting Dies Susceptible to Premature Lifetime Failure
Tikkanen et al. Multivariate outlier modeling for capturing customer returns—How simple it can be
CN117272122B (en) Wafer anomaly commonality analysis method and device, readable storage medium and terminal
US9437506B2 (en) Semiconductor defect characterization
CN117881973A (en) System and method for multidimensional dynamic part average testing
CN116646281A (en) Abnormal test structure acquisition method, verification method and related device
JP6166120B2 (en) Data processing apparatus, measuring apparatus, sorting apparatus, data processing method and program
CN116819280A (en) Chip abnormality identification method and device based on ZPAT algorithm
JP4538205B2 (en) Inspection data analysis program, inspection data analyzer
Ooi et al. Identifying systematic failures on semiconductor wafers using ADCAS
CN118043951A (en) System for automatically diagnosing and monitoring semiconductor defect die screening performance via correlation of defect and electrical test data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant