TWI859978B - Conductive particle, test connector, and method of manufacturing conductive particle - Google Patents
Conductive particle, test connector, and method of manufacturing conductive particle Download PDFInfo
- Publication number
- TWI859978B TWI859978B TW112126413A TW112126413A TWI859978B TW I859978 B TWI859978 B TW I859978B TW 112126413 A TW112126413 A TW 112126413A TW 112126413 A TW112126413 A TW 112126413A TW I859978 B TWI859978 B TW I859978B
- Authority
- TW
- Taiwan
- Prior art keywords
- conductive
- shape
- body portion
- conductive particles
- tested
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 198
- 238000012360 testing method Methods 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000004020 conductor Substances 0.000 claims abstract description 20
- 239000011810 insulating material Substances 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 68
- 239000011247 coating layer Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 31
- 238000000576 coating method Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 24
- 239000007769 metal material Substances 0.000 claims description 24
- 238000000465 moulding Methods 0.000 claims description 20
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000005294 ferromagnetic effect Effects 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000008054 signal transmission Effects 0.000 abstract 1
- 229920001971 elastomer Polymers 0.000 description 32
- 239000005060 rubber Substances 0.000 description 32
- 229920002379 silicone rubber Polymers 0.000 description 30
- 239000004945 silicone rubber Substances 0.000 description 20
- 229920002120 photoresistant polymer Polymers 0.000 description 14
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 10
- 238000007747 plating Methods 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229920003244 diene elastomer Polymers 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- HIHIPCDUFKZOSL-UHFFFAOYSA-N ethenyl(methyl)silicon Chemical compound C[Si]C=C HIHIPCDUFKZOSL-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- -1 methylphenylvinyl Chemical group 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/04—Housings; Supporting members; Arrangements of terminals
- G01R1/0408—Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
- G01R1/0416—Connectors, terminals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/04—Housings; Supporting members; Arrangements of terminals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/04—Housings; Supporting members; Arrangements of terminals
- G01R1/0408—Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
- G01R1/0433—Sockets for IC's or transistors
- G01R1/0441—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R3/00—Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2855—Environmental, reliability or burn-in testing
- G01R31/286—External aspects, e.g. related to chambers, contacting devices or handlers
- G01R31/2863—Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2896—Testing of IC packages; Test features related to IC packages
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
Description
本揭露是有關於一種用於藉由將待測試裝置電性連接至測試設備來執行電性測試的導電顆粒、電性測試連接器(即,測試連接器)以及製造導電顆粒的方法。 The present disclosure relates to a conductive particle for performing an electrical test by electrically connecting a device to be tested to a test device, an electrical test connector (i.e., a test connector), and a method for manufacturing the conductive particle.
對於待測試裝置(device to be tested)(即,被測試裝置(device under test))的電性測試而言,將被測試裝置電性連接至測試設備的連接器在相關領域中被廣泛使用。連接器將電性訊號自測試設備傳輸至被測試裝置並將電性訊號自被測試裝置傳輸至測試設備。作為此種連接器,導電橡膠片材(conductive rubber sheet)在此項技術中是已知的。 For electrical testing of a device to be tested (i.e., a device under test), a connector that electrically connects the device under test to a test device is widely used in the relevant field. The connector transmits electrical signals from the test device to the device under test and transmits electrical signals from the device under test to the test device. As such a connector, a conductive rubber sheet is known in the art.
可藉由施加至被測試裝置的外力(external force)而使導電橡膠片材以彈性方式變形。導電橡膠片材具有將被測試裝置電性連接至測試設備並傳送電性訊號的多個導電部分以及使所述多個導電部分分離且絕緣的絕緣部分。絕緣部分可由硬化矽酮橡膠(hardened silicone rubber)製成。絕緣部分可包含硬化矽酮橡膠。 The conductive rubber sheet can be deformed in an elastic manner by applying an external force to the device under test. The conductive rubber sheet has a plurality of conductive parts that electrically connect the device under test to the test equipment and transmit electrical signals, and an insulating part that separates and insulates the plurality of conductive parts. The insulating part can be made of hardened silicone rubber. The insulating part can include hardened silicone rubber.
圖1示出用於常規導電橡膠片材的技術。導電橡膠片材 10由導電部分11與絕緣部分12構成,且導電部分11被配置成使得多個球狀導電顆粒11a在厚度方向上設置於矽酮橡膠內。 FIG1 shows a technique for a conventional conductive rubber sheet. The conductive rubber sheet 10 is composed of a conductive portion 11 and an insulating portion 12, and the conductive portion 11 is configured so that a plurality of spherical conductive particles 11a are disposed in the silicone rubber in the thickness direction.
由於該些球狀導電顆粒11a與其他導電顆粒或被測試裝置的端子進行接觸時幾乎是點接觸,因此接觸面積為小的,且因此會降低電性連接能力。另外,由於與橡膠的結合強度亦為低的,因此存在在進行重複測試期間導電顆粒11a會輕易地自導電部分11分離的問題。 Since the spherical conductive particles 11a are in almost point contact with other conductive particles or the terminals of the device under test, the contact area is small, and thus the electrical connection capability is reduced. In addition, since the bonding strength with the rubber is also low, there is a problem that the conductive particles 11a can easily separate from the conductive part 11 during repeated testing.
圖2示出用於另一常規導電橡膠片材20的技術,在所述常規導電橡膠片材20中,導電部分21被配置成使得多個柱狀導電顆粒21a(其包含直徑D和長度L)在厚度方向上設置於矽酮橡膠內。 FIG. 2 shows a technique for another conventional conductive rubber sheet 20 in which a conductive portion 21 is configured such that a plurality of columnar conductive particles 21a (which include a diameter D and a length L) are disposed in the silicone rubber in the thickness direction.
柱狀導電顆粒21a的問題在於,相較於由球狀顆粒製成的片材,橡膠片材在被製造為連接器時的彈性一般會降低。亦即,由於導電顆粒被形成為柱狀形狀,因此可與其他相鄰的柱狀顆粒或被測試裝置的端子進行表面接觸,且因此接觸面積增大且電性連接能力優於球狀導電顆粒的電性連接能力。然而,由於柱狀顆粒在一個方向上伸長的性質,橡膠片材的總體彈性會降低。因此,在施加外力時,導電橡膠片材的彈性變形變得有些困難,且外力(例如,自被測試裝置施加的按壓力(pressing force))可能不會被充分吸收。 The problem with columnar conductive particles 21a is that the elasticity of rubber sheets when made into connectors is generally reduced compared to sheets made of spherical particles. That is, since the conductive particles are formed into a columnar shape, they can make surface contact with other adjacent columnar particles or terminals of the device under test, and thus the contact area is increased and the electrical connection capability is better than that of spherical conductive particles. However, due to the property of columnar particles to stretch in one direction, the overall elasticity of the rubber sheet is reduced. Therefore, when an external force is applied, the elastic deformation of the conductive rubber sheet becomes somewhat difficult, and the external force (for example, the pressing force applied from the device under test) may not be fully absorbed.
圖3示出在其他常規導電橡膠片材中使用的導電顆粒,且圖4(a)至圖4(d)示出製造圖3所示導電顆粒的方法。 FIG. 3 shows conductive particles used in other conventional conductive rubber sheets, and FIG. 4(a) to FIG. 4(d) show a method for manufacturing the conductive particles shown in FIG. 3.
圖3中所示的導電顆粒31a被形成為具有中心孔洞的環形狀,且由於中心孔洞填充有矽酮橡膠,因此導電顆粒31a與矽酮橡膠具有優異的結合強度。另外,由於導電顆粒31a的環形狀特性,除了與另一相鄰的導電顆粒或待測試裝置的端子進行的點接觸之外,亦可進行線接觸及表面接觸二者,且因此接觸面積增大,且因此電性連接能力及耐久性是優異的。 The conductive particle 31a shown in FIG3 is formed into a ring shape with a central hole, and since the central hole is filled with silicone rubber, the conductive particle 31a has excellent bonding strength with the silicone rubber. In addition, due to the ring-shaped characteristics of the conductive particle 31a, in addition to point contact with another adjacent conductive particle or the terminal of the device to be tested, both line contact and surface contact can be performed, and thus the contact area is increased, and thus the electrical connection capability and durability are excellent.
使用微機電系統(Micro Electro Mechanical System,MEMS)製造技術來將圖3中所示的導電顆粒31a製造成設計者所期望的形狀。如圖4中所示,為了製造導電顆粒,MEMS製造技術包括:製備矽晶圓基板40(參見圖4(a));在基板40上施加光阻層41(圖4(b));藉由對光阻層41進行圖案化來形成預定的凹槽42(圖4(c));以及在凹槽42中形成鍍覆層31a'且然後對鍍覆層31a'的上表面進行平坦化(圖4(d))。此後,當自光阻層41移除並分離導電顆粒時,獲得預定的導電顆粒。 The conductive particles 31a shown in FIG. 3 are manufactured into the shape desired by the designer using the microelectromechanical system (MEMS) manufacturing technology. As shown in FIG. 4 , in order to manufacture the conductive particles, the MEMS manufacturing technology includes: preparing a silicon wafer substrate 40 (see FIG. 4 (a)); applying a photoresist layer 41 on the substrate 40 (FIG. 4 (b)); forming a predetermined groove 42 by patterning the photoresist layer 41 (FIG. 4 (c)); and forming a coating layer 31a' in the groove 42 and then flattening the upper surface of the coating layer 31a' (FIG. 4 (d)). Thereafter, when the conductive particles are removed and separated from the photoresist layer 41, the predetermined conductive particles are obtained.
根據製造環形狀導電顆粒的常規方法,由於光阻層的厚度必須大於所期望導電顆粒的厚度,因此所消耗的光阻的量增大。另外,導電顆粒的均勻形狀及表面處置需要平坦化製程(化學機械拋光(chemical mechanical polishing,CMP)),進而導致總成本增加及低的生產率。 According to the conventional method of manufacturing ring-shaped conductive particles, the thickness of the photoresist layer must be greater than the thickness of the desired conductive particles, so the amount of photoresist consumed increases. In addition, the uniform shape and surface treatment of the conductive particles require a flattening process (chemical mechanical polishing (CMP)), which leads to an increase in total cost and low productivity.
另外,由於顆粒的表面是平滑的且不具有不規則性,因此在與矽酮橡膠的黏合方面存在缺點。 In addition, since the surface of the particles is smooth and has no irregularities, there are disadvantages in terms of adhesion with silicone rubber.
另外,在藉由MEMS製造技術製造的導電顆粒的情形中, 可使用高導電材料(highly conductive material)在導電顆粒的上表面及下表面上附加地形成鍍覆層,但即使鍍覆層形成於上表面及下表面上,鍍覆層亦不會形成於側表面上。因此,具有低導電率的金屬材料如所述金屬材料在導電顆粒的側表面上一般被暴露出。因此,存在的問題在於,當導電顆粒的側表面與另一導電顆粒接觸時,導電橡膠片材的總體電性連接能力由於接觸電阻增大而降低。 In addition, in the case of conductive particles manufactured by MEMS manufacturing technology, a coating layer may be additionally formed on the upper and lower surfaces of the conductive particles using a highly conductive material, but even if the coating layer is formed on the upper and lower surfaces, the coating layer is not formed on the side surfaces. Therefore, metal materials with low conductivity such as the metal materials are generally exposed on the side surfaces of the conductive particles. Therefore, there is a problem in that when the side surface of the conductive particle contacts another conductive particle, the overall electrical connection capability of the conductive rubber sheet is reduced due to the increase in contact resistance.
另外,為了執行導電顆粒的側面鍍覆(side plating),在使被應用MEMS技術的導電顆粒分離之後,可單獨使用滾筒鍍覆方法(barrel plating method)。然而,隨著導電顆粒的大小變得更小,可能會出現導電顆粒在鍍覆製程期間聚結的現象,且因此製程難度可提高,且因此總成本可增加。 In addition, in order to perform side plating of conductive particles, after separating the conductive particles to which MEMS technology is applied, the barrel plating method alone may be used. However, as the size of the conductive particles becomes smaller, there may be a phenomenon that the conductive particles agglomerate during the plating process, and thus the process difficulty may increase, and thus the total cost may increase.
本揭露用於解決包括以上問題在內的各種問題,且本揭露的目的是提供一種易於製造、可以低成本製造且導電率效能得到改善的電性測試導電顆粒,且更提供一種電性測試連接器(即,測試連接器)以及製造導電顆粒的方法。 The present disclosure is used to solve various problems including the above problems, and the purpose of the present disclosure is to provide an electrical test conductive particle that is easy to manufacture, can be manufactured at low cost, and has improved conductivity performance, and further provide an electrical test connector (i.e., a test connector) and a method for manufacturing conductive particles.
本揭露提供一種導電顆粒,所述導電顆粒用於測試連接器,所述測試連接器設置於待測試裝置與測試設備之間以將所述待測試裝置的端子與所述測試設備的接墊電性連接至彼此,多個導電顆粒分佈於彈性絕緣材料中且在所述待測試裝置接觸時彼此 接觸,藉此形成用於電性訊號傳送的導電路徑,所述導電顆粒包括:本體部分,包含導電材料,所述本體部分具有設置於底部上的平整的下表面且具有自所述下表面朝向上部方向減小的寬度;以及突出部分,包含導電材料,所述突出部分自所述本體部分的所述下表面向下突出、成一體地連接至所述本體部分且具有較所述本體部分的所述下表面的寬度窄的寬度,其中所述本體部分具有自所述本體部分的所述底部至上端部變圓的彎曲部分。 The present disclosure provides a conductive particle, which is used for a test connector. The test connector is arranged between a device to be tested and a test equipment to electrically connect the terminal of the device to be tested and the pad of the test equipment to each other. A plurality of conductive particles are distributed in an elastic insulating material and contact each other when the device to be tested is in contact, thereby forming a conductive path for transmitting electrical signals. The conductive particle includes: a body portion, which includes a conductive material, The main body portion has a flat lower surface disposed on the bottom and has a width that decreases from the lower surface toward the upper part; and a protruding portion, comprising a conductive material, the protruding portion protrudes downward from the lower surface of the main body portion, is integrally connected to the main body portion, and has a width narrower than the width of the lower surface of the main body portion, wherein the main body portion has a curved portion that becomes rounded from the bottom to the upper end of the main body portion.
在所述導電顆粒中,所述本體部分的所述上端部可被設置有與所述本體部分的所述底部平行的平整表面。 In the conductive particles, the upper end of the body portion may be provided with a flat surface parallel to the bottom of the body portion.
在所述導電顆粒中,所述本體部分的所述上端部可具有凸形的彎曲形狀,且因此所述本體部分整體可具有半球狀形狀。 In the conductive particles, the upper end portion of the body portion may have a convex curved shape, and thus the body portion as a whole may have a hemispherical shape.
在所述導電顆粒中,所述本體部分可具有條形狀、格柵形狀、三角形形狀、星形形狀、S形狀及雙S形狀中的任一者。 In the conductive particles, the main body portion may have any one of a stripe shape, a grid shape, a triangle shape, a star shape, an S shape, and a double S shape.
在所述導電顆粒中,所述本體部分可具有H形狀、X形狀、O形狀、C形狀、S形狀、N形狀、V形狀、W形狀、Z形狀及+形狀中的任一者或者具有其中多個每種形狀連續地連接的形狀。 In the conductive particles, the body portion may have any one of an H shape, an X shape, an O shape, a C shape, an S shape, an N shape, a V shape, a W shape, a Z shape, and a + shape, or a shape in which a plurality of each shape are continuously connected.
在所述導電顆粒中,所述本體部分可藉由將不同的材料堆疊成多個層進行配置。 In the conductive particles, the body portion may be configured by stacking different materials into multiple layers.
在所述導電顆粒中,所述不同的材料可包括鐵磁性金屬材料、高彈性金屬材料及高導電金屬材料中的任一者。 In the conductive particles, the different materials may include any one of ferromagnetic metal materials, highly elastic metal materials and highly conductive metal materials.
在所述導電顆粒中,多個突出部分可彼此間隔開。 In the conductive particles, a plurality of protrusions may be spaced apart from each other.
在所述導電顆粒中,多個突出部分可相對於所述本體部分的所述底部的中心而以相等的間距間隔開。 In the conductive particles, a plurality of protrusions may be spaced at equal intervals relative to the center of the bottom of the body portion.
在所述導電顆粒中,所述本體部分的除所述底部之外的其餘外表面可塗佈有高導電率層。 In the conductive particles, the remaining outer surface of the body portion except the bottom may be coated with a high conductivity layer.
在所述導電顆粒中,所述突出部分的底部可塗佈有高導電率層。 In the conductive particles, the bottom of the protruding portion may be coated with a high conductivity layer.
在所述導電顆粒中,在所述本體部分與所述突出部分之間可向內形成有凹形部分。 In the conductive particles, a concave portion may be formed inwardly between the main body portion and the protruding portion.
本揭露亦提供一種測試連接器,所述測試連接器設置於待測試裝置的多個端子與測試設備的多個接墊之間以將所述多個端子電性連接至所述多個接墊,所述測試連接器包括:導電部分,在所述導電部分中,多個導電顆粒在彈性絕緣材料中在厚度方向上分佈於與所述待測試裝置的所述多個端子對應的多個位置處;以及絕緣部分,使所述導電部分絕緣且對所述導電部分進行支撐,其中所述多個導電顆粒中的每一者包括:本體部分,包含導電材料,所述本體部分具有設置於底部上的平整的下表面且具有自所述下表面朝向上部方向減小的寬度;以及 突出部分,包含導電材料,所述突出部分自所述本體部分的所述下表面向下突出、成一體地連接至所述本體部分且具有較所述本體部分的所述下表面的寬度窄的寬度,其中所述本體部分具有自所述本體部分的所述底部至上端部變圓的彎曲部分。 The present disclosure also provides a test connector, which is arranged between a plurality of terminals of a device to be tested and a plurality of pads of a test device to electrically connect the plurality of terminals to the plurality of pads, and the test connector comprises: a conductive portion, in which a plurality of conductive particles are distributed in a thickness direction in an elastic insulating material at a plurality of positions corresponding to the plurality of terminals of the device to be tested; and an insulating portion, which insulates and supports the conductive portion, wherein the plurality of conductive particles are electrically conductive to the conductive portion. Each of the particles includes: a body portion, comprising a conductive material, the body portion having a flat lower surface disposed on the bottom and having a width that decreases from the lower surface toward the upper portion; and a protruding portion, comprising a conductive material, the protruding portion protruding downward from the lower surface of the body portion, integrally connected to the body portion, and having a width narrower than the width of the lower surface of the body portion, wherein the body portion has a curved portion that becomes rounded from the bottom to the upper end of the body portion.
本揭露亦提供一種製造導電顆粒的方法,所述導電顆粒用於測試連接器,所述測試連接器設置於待測試裝置與測試設備之間以將所述待測試裝置的端子與所述測試設備的接墊電性連接至彼此,且多個導電顆粒分佈於彈性絕緣材料中且在所述待測試裝置接觸時彼此接觸,藉此形成用於電性訊號傳送的導電路徑,所述方法包括:(a)製備基板;(b)在所述基板上形成模製層;(c)藉由移除所述模製層的至少一部分來形成用於顆粒形成的凹槽;(d)在所述用於顆粒形成的凹槽內部形成第一鍍覆層;以及(e)以突出方式形成第二鍍覆層,所述第二鍍覆層在所述用於顆粒形成的凹槽周圍成一體地連接至所述第一鍍覆層且具有在向上方向上減小的寬度。 The present disclosure also provides a method for manufacturing conductive particles, wherein the conductive particles are used for a test connector, wherein the test connector is disposed between a device to be tested and a test equipment to electrically connect the terminal of the device to be tested and the pad of the test equipment to each other, and a plurality of conductive particles are distributed in an elastic insulating material and contact each other when the device to be tested contacts, thereby forming a conductive path for transmitting electrical signals, the method comprising: (a) ) preparing a substrate; (b) forming a molding layer on the substrate; (c) forming a groove for particle formation by removing at least a portion of the molding layer; (d) forming a first coating layer inside the groove for particle formation; and (e) forming a second coating layer in a protruding manner, the second coating layer being integrally connected to the first coating layer around the groove for particle formation and having a width that decreases in an upward direction.
所述方法可更在操作(e)之後包括(f)移除所述模製層。 The method may further include (f) removing the molding layer after operation (e).
在所述方法中,在操作(a)中,可在所述基板上形成導電塗層。 In the method, in operation (a), a conductive coating may be formed on the substrate.
所述方法可更在操作(f)之後包括(g)移除形成於所述基板上的所述導電塗層。 The method may further include (g) removing the conductive coating formed on the substrate after operation (f).
所述方法可更在操作(c)與操作(d)之間包括(c-1)藉由將高導電材料鍍覆至較所述模製層的厚度小的厚度來形成第三鍍覆層。 The method may further include (c-1) forming a third coating layer by coating a highly conductive material to a thickness smaller than the thickness of the molding layer between operations (c) and (d).
所述方法可更在操作(e)之後包括(e-1)在所述第二鍍覆層上鍍覆高導電金屬。 The method may further include (e-1) coating a highly conductive metal on the second coating layer after operation (e).
在所述方法中,在操作(d)中,可藉由使用不同的金屬材料進行鍍覆且將所述不同的金屬材料堆疊成多個層來形成所述第一鍍覆層。 In the method, in operation (d), the first coating layer may be formed by coating with different metal materials and stacking the different metal materials into a plurality of layers.
在所述方法中,在操作(e)中,可藉由使用不同的金屬材料進行鍍覆且將所述不同的金屬材料堆疊成多個層來形成所述第二鍍覆層。 In the method, in operation (e), the second coating layer may be formed by coating with different metal materials and stacking the different metal materials into a plurality of layers.
本揭露的導電顆粒被設置有具有平整底部的本體部分以及自本體部分的底部突出的突出部分,且因此在導電顆粒接觸另一導電顆粒時可進行表面接觸,藉此由於接觸面積增大而改善導電率。 The conductive particles disclosed herein are provided with a main body portion having a flat bottom and a protruding portion protruding from the bottom of the main body portion, and thus surface contact can be made when the conductive particles contact another conductive particle, thereby improving conductivity due to an increase in the contact area.
另外,由於本揭露的導電顆粒是藉由對較光阻高的本體部分進行鍍覆而形成,因此可使用於顆粒生成的光阻的厚度小於現有技術中的光阻的厚度,且因此可降低總體製造成本。 In addition, since the conductive particles disclosed in the present invention are formed by plating a body portion with a higher photoresistance, the thickness of the photoresist used for particle generation can be smaller than the thickness of the photoresist in the prior art, and thus the overall manufacturing cost can be reduced.
另外,由於本揭露的導電顆粒是藉由在鍍覆製程中堆疊 各種不同的材料而形成,因此可輕易地製造具有各種物理性質的導電顆粒。 In addition, since the conductive particles disclosed in the present invention are formed by stacking various materials in a plating process, conductive particles with various physical properties can be easily manufactured.
10:導電橡膠片材 10: Conductive rubber sheet
11、21、110、510:導電部分 11, 21, 110, 510: Conductive part
11a:球狀導電顆粒/導電顆粒 11a: Spherical conductive particles/conductive particles
12:絕緣部分 12: Insulation part
20:常規導電橡膠片材 20: Conventional conductive rubber sheet
21a:柱狀導電顆粒 21a: Columnar conductive particles
31a、111、211、311、411、511、611:導電顆粒 31a, 111, 211, 311, 411, 511, 611: Conductive particles
31a'、211':鍍覆層 31a', 211': coating
40:矽晶圓基板/基板 40: Silicon wafer substrate/substrate
41:光阻層 41: Photoresist layer
42、132:凹槽 42, 132: Groove
100:連接器 100: Connector
112、312、412、512:本體部分 112, 312, 412, 512: Main body
112a:平整表面 112a: Flat surface
112':第二鍍覆層 112': Second coating
113、313、413、513:突出部分 113, 313, 413, 513: protruding parts
113':第一鍍覆層 113': First coating
114:凹形部分 114: Concave part
115、515、516:高導電率層 115, 515, 516: High conductivity layer
115':高導電金屬 115': Highly conductive metal
116':第三鍍覆層 116': Third coating
120:絕緣部分/絕緣體 120: Insulation part/insulation body
130:基板 130: Substrate
130a:導電塗層 130a: Conductive coating
131:模製層 131: Molding layer
140:測試設備 140:Testing equipment
141:接墊 141:Pad
150:待測試裝置 150: Device to be tested
151:端子/半球狀端子/球型端子 151: Terminal/hemispherical terminal/ball terminal
1121:磁性層 1121: Magnetic layer
1122:高導電層 1122: Highly conductive layer
D:直徑 D: Diameter
L:長度 L: Length
圖1是示出用於測試的常規連接器的視圖。 FIG. 1 is a view showing a conventional connector used for testing.
圖2是示出用於測試的常規連接器的視圖。 FIG2 is a view showing a conventional connector used for testing.
圖3是示出常規導電顆粒的視圖。 FIG3 is a view showing conventional conductive particles.
圖4是示出製造圖3所示導電顆粒的方法的視圖。 FIG4 is a view showing a method of manufacturing the conductive particles shown in FIG3.
圖5是示出根據本揭露實施例的用於測試的連接器(即,測試連接器)的視圖。 FIG5 is a view showing a connector for testing (i.e., a test connector) according to an embodiment of the present disclosure.
圖6是圖5的操作視圖。 Figure 6 is an operation view of Figure 5.
圖7是示出根據本揭露實施例的測試連接器的另一佈置的視圖。 FIG. 7 is a view showing another arrangement of a test connector according to an embodiment of the present disclosure.
圖8是在圖5至圖7所示測試連接器中使用的導電顆粒的透視圖。 FIG. 8 is a perspective view of the conductive particles used in the test connector shown in FIGS. 5 to 7.
圖9分別是圖8所示導電顆粒的平面圖、側視圖及後視圖。 FIG9 is a plan view, a side view and a rear view of the conductive particles shown in FIG8 .
圖10是示出導電顆粒的各種橫截面的視圖。 FIG. 10 is a view showing various cross-sections of conductive particles.
圖11是示出製造圖8所示導電顆粒的方法的視圖。 FIG11 is a view showing a method of manufacturing the conductive particles shown in FIG8.
圖12至圖16是示出其中根據本揭露第一實施例的導電顆粒在測試連接器內彼此接觸的狀態的視圖。 Figures 12 to 16 are views showing a state in which conductive particles according to the first embodiment of the present disclosure are in contact with each other in a test connector.
圖17是根據本揭露第二實施例的導電顆粒的剖視圖。 FIG17 is a cross-sectional view of the conductive particles according to the second embodiment of the present disclosure.
圖18是示出製造圖17所示導電顆粒的方法的視圖。 FIG18 is a view showing a method of manufacturing the conductive particles shown in FIG17.
圖19分別是根據本揭露第三實施例的導電顆粒的平面圖、側視圖及後視圖。 FIG. 19 is a plan view, a side view, and a rear view of the conductive particles according to the third embodiment of the present disclosure.
圖20是示出根據本揭露第四實施例的導電顆粒的視圖。 FIG. 20 is a view showing conductive particles according to the fourth embodiment of the present disclosure.
圖21是示出根據本揭露第五實施例的導電顆粒的視圖。 FIG. 21 is a view showing conductive particles according to the fifth embodiment of the present disclosure.
圖22是示出設置有圖21所示導電顆粒的導電部分的視圖。 FIG. 22 is a view showing a conductive portion provided with the conductive particles shown in FIG. 21.
圖23是示出本揭露的導電顆粒的各種實施例的視圖。 FIG. 23 is a view showing various embodiments of the conductive particles disclosed herein.
提供本揭露的實施例作為闡述本揭露的技術思想的實例。本揭露的範圍並非僅限於以下闡述的實施例或對所述實施例的具體說明。 The embodiments of the present disclosure are provided as examples to illustrate the technical ideas of the present disclosure. The scope of the present disclosure is not limited to the embodiments described below or the specific description of the embodiments.
除非另外定義,否則本揭露中所使用的所有技術用語及科學用語的含義均與本揭露所屬技術中具有通常知識者所通常理解的含義相同。本揭露中所使用的所有用語均是為了更清楚地闡述本揭露而被選擇,且並不旨在限制本揭露的範圍。 Unless otherwise defined, the meanings of all technical and scientific terms used in this disclosure are the same as those commonly understood by those with ordinary knowledge in the art to which this disclosure belongs. All terms used in this disclosure are selected to more clearly explain this disclosure and are not intended to limit the scope of this disclosure.
本揭露中所使用的例如「包括(comprising)」、「包含(including)」及「具有(having)」等用語應被理解為暗示包括其他實施例的可能性的開放式用語,除非在包括所述用語的片語或語句中另外陳述。 Terms such as "comprising", "including", and "having" used in this disclosure should be understood as open-ended terms that imply the possibility of including other embodiments, unless otherwise stated in the phrase or sentence including the term.
除非具體提及,否則單數形式的用語可包括複數形式,且同樣對申請專利範圍中的單數形式的用語應用此種情況。 Unless otherwise specifically mentioned, words in the singular may include plural forms, and the same applies to words in the singular in the patent claims.
在本揭露中使用例如「第一(first)」及「第二(second)」等用語將多個組件彼此區分開,且所述用語並不限制組件的次序 或重要性。 Terms such as "first" and "second" are used in this disclosure to distinguish multiple components from each other, and the terms do not limit the order or importance of the components.
在本揭露中,應理解,當稱一元件「耦合」或「連接」至另一元件時,所述元件可直接耦合或直接連接至所述另一元件,或者在所述兩個元件之間可夾置有任何其他元件。 In the present disclosure, it should be understood that when an element is said to be "coupled" or "connected" to another element, the element may be directly coupled or directly connected to the other element, or any other element may be interposed between the two elements.
在本揭露中,方向指示用語「向上(upward)」是基於測試插座相對於測試板被定位的方向,且方向指示用語「向下(downward)」是指向上方向的相反方向。在本揭露中,應理解,方向指示用語「垂直(vertical)」包括向上方向及向下方向,且並不僅指向上方向及向下方向中的一者。 In the present disclosure, the directional term "upward" is based on the direction in which the test socket is positioned relative to the test board, and the directional term "downward" refers to the opposite direction of the upward direction. In the present disclosure, it should be understood that the directional term "vertical" includes the upward direction and the downward direction, and does not refer to only one of the upward direction and the downward direction.
將參照附圖中所示的實例來闡述實施例。在圖式中,相同的參考編號表示相同的元件。此外,在對實施例的以下說明中,可不再對相同元件或對應元件予以贅述。然而,即使在自對一些實施例的說明省略對一些元件的說明時,所述元件亦不旨在不包括於實施例中。 The embodiments will be described with reference to the examples shown in the accompanying drawings. In the drawings, the same reference numerals represent the same elements. In addition, in the following description of the embodiments, the same elements or corresponding elements may not be described in detail. However, even when the description of some elements is omitted from the description of some embodiments, the elements are not intended to be excluded from the embodiments.
以下闡述的實施例及附圖中所示的實例是有關於一種連接器,所述連接器定位於兩個電子裝置之間以對所述兩個電子裝置進行電性連接。在應用實施例的連接器時,所述兩個電子裝置中的一者可為測試設備,且所述兩個電子裝置中的另一者可為由測試設備進行測試的待測試裝置(即,被測試裝置),但連接器的應用實例並非僅限於此。實施例的連接器可用於藉由使需要電性連接的任何兩個電子裝置接觸來達成電性連接。當對測試設備及待測試裝置使用實施例的連接器時,可在對待測試裝置進行電性測 試期間使用實施例的連接器來進行測試設備與待測試裝置之間的電性連接。舉例而言,可在製造待測試裝置的製程期間使用實施例的連接器在後處理中對待測試裝置進行最終測試及及時測試。然而,被應用實施例的連接器的測試的實例並非僅限於上述測試。 The embodiments described below and the examples shown in the accompanying drawings are related to a connector that is positioned between two electronic devices to electrically connect the two electronic devices. When the connector of the embodiment is applied, one of the two electronic devices may be a test device, and the other of the two electronic devices may be a device to be tested (i.e., a device to be tested) to be tested by the test device, but the application examples of the connector are not limited thereto. The connector of the embodiment can be used to achieve electrical connection by contacting any two electronic devices that need to be electrically connected. When the connector of the embodiment is used for the test device and the device to be tested, the connector of the embodiment can be used to electrically connect the test device and the device to be tested during electrical testing of the device to be tested. For example, the connector of the embodiment can be used during the manufacturing process of the device to be tested to perform final testing and timely testing on the device to be tested in post-processing. However, examples of testing of the connector to which the embodiment is applied are not limited to the above-mentioned tests.
圖5示出被應用根據實施例的連接器100的實例。為便於對實施例的說明,圖5示出連接器100、上面放置有連接器100的電子裝置以及與連接器100接觸的電子裝置的示例性形狀。 FIG. 5 shows an example of a connector 100 applied according to an embodiment. To facilitate the description of the embodiment, FIG. 5 shows exemplary shapes of the connector 100, an electronic device on which the connector 100 is placed, and an electronic device in contact with the connector 100.
參照圖5,根據實施例的連接器100設置於兩個電子裝置之間且藉由進行接觸而對所述兩個電子裝置進行電性連接。在圖5中所示的實例中,所述兩個電子裝置中的一者可為測試設備140且另一者可為由測試設備140進行測試的待測試裝置150。在對待測試裝置150進行電性測試時,連接器100接觸測試設備140及待測試裝置150中的每一者,以將測試設備140與待測試裝置150電性連接至彼此。 Referring to FIG. 5 , the connector 100 according to the embodiment is disposed between two electronic devices and electrically connects the two electronic devices by making contact. In the example shown in FIG. 5 , one of the two electronic devices may be a test device 140 and the other may be a device to be tested 150 to be tested by the test device 140. When the device to be tested 150 is electrically tested, the connector 100 contacts each of the test device 140 and the device to be tested 150 to electrically connect the test device 140 and the device to be tested 150 to each other.
待測試裝置150可為半導體封裝,但並非僅限於此。半導體封裝是其中使用樹脂材料將半導體積體電路(integrated circuit,IC)晶片、多個引線框架(lead frame)以及多個端子151封裝成六面體形狀的半導體裝置。半導體IC晶片可為記憶體IC晶片或非記憶體IC晶片。可使用接腳、焊料球或類似端子作為端子151。圖5中所示的待測試裝置150在所述待測試裝置150的下側上具有多個半球狀端子151。 The device to be tested 150 may be a semiconductor package, but is not limited thereto. A semiconductor package is a semiconductor device in which a semiconductor integrated circuit (IC) chip, a plurality of lead frames, and a plurality of terminals 151 are packaged into a hexahedral shape using a resin material. The semiconductor IC chip may be a memory IC chip or a non-memory IC chip. Pins, solder balls, or similar terminals may be used as the terminals 151. The device to be tested 150 shown in FIG. 5 has a plurality of hemispherical terminals 151 on the lower side of the device to be tested 150.
測試設備140可對待測試裝置150的電性特性、功能特 性、操作速度或類似特性進行測試。測試設備140在執行測試的板中可具有能夠輸出電性測試訊號並接收響應訊號的多個接墊141。連接器100設置於測試設備140上方,且導電部分110可被設置成接觸測試設備140的接墊141。待測試裝置150的端子151經由連接器100電性連接至測試設備140的對應接墊141。連接器100在垂直方向上將待測試裝置150的端子151電性連接至測試設備140的對應接墊141,且因此可由測試設備140對待測試裝置150進行測試。 The test equipment 140 can test the electrical characteristics, functional characteristics, operating speed or similar characteristics of the device to be tested 150. The test equipment 140 can have a plurality of pads 141 capable of outputting electrical test signals and receiving response signals in the board to be tested. The connector 100 is disposed above the test equipment 140, and the conductive portion 110 can be disposed to contact the pads 141 of the test equipment 140. The terminals 151 of the device to be tested 150 are electrically connected to the corresponding pads 141 of the test equipment 140 via the connector 100. The connector 100 electrically connects the terminal 151 of the device under test 150 to the corresponding pad 141 of the test equipment 140 in the vertical direction, and thus the device under test 150 can be tested by the test equipment 140.
連接器100的大部分可由彈性絕緣材料製成,且連接器100可在垂直方向及水平方向上具有彈性。當在垂直方向上將外力向下施加至連接器100時,連接器100可在向下方向及水平方向上以彈性方式變形。可藉由使用推動器裝置(pusher device)(未示出)將待測試裝置150朝向測試設備140推動來產生外力。由於此種外力,待測試裝置150的端子151與連接器100可在垂直方向上彼此接觸,且連接器100與測試設備140的接墊141可在垂直方向上彼此接觸。當外力被移除時,連接器100可恢復至連接器100的原始形狀。 Most of the connector 100 may be made of an elastic insulating material, and the connector 100 may be elastic in the vertical direction and the horizontal direction. When an external force is applied downward to the connector 100 in the vertical direction, the connector 100 may be deformed in an elastic manner in the downward direction and the horizontal direction. The external force may be generated by pushing the device to be tested 150 toward the test equipment 140 using a pusher device (not shown). Due to this external force, the terminal 151 of the device to be tested 150 and the connector 100 may contact each other in the vertical direction, and the pad 141 of the connector 100 and the test equipment 140 may contact each other in the vertical direction. When the external force is removed, the connector 100 may return to the original shape of the connector 100.
用於測試的連接器100包括導電部分110及絕緣部分120。 The connector 100 for testing includes a conductive portion 110 and an insulating portion 120.
在導電部分110中,多個導電顆粒111在彈性絕緣材料中在厚度方向(垂直方向)上分佈於與待測試裝置150的端子151對應的位置處。導電部分110具有圓柱狀形狀,導電部分110的數目對應於待測試裝置150的端子151的數目,且多個導電部分
110在水平方向上彼此間隔開佈置。
In the conductive part 110, a plurality of
構成導電部分110的彈性絕緣材料優選地為具有交聯結構(cross-linked structure)的高分子材料。可使用各種材料作為可用於獲得此種彈性絕緣材料的可固化高分子物質形成材料,且所述各種材料的具體實例包括聚丁二烯橡膠(polybutadiene rubber)、天然橡膠、聚異戊二烯橡膠(polyisoprene rubber)、苯乙烯-丁二烯共聚體橡膠(styrene-butadiene copolymer rubber)、共軛二烯橡膠(conjugated diene rubber)(例如丙烯腈-丁二烯共聚體橡膠(acrylonitrile-butadiene copolymer rubber))及其氫化產物、嵌段共聚體橡膠(block copolymer rubber)(例如苯乙烯-丁二烯-二烯嵌段共聚體橡膠(styrene-butadiene-diene block copolymer rubber)及苯乙烯-異戊二烯嵌段共聚體(styrene-isoprene block copolymer))及其氫化產物、氯丁二烯橡膠(chloroprene rubber)、胺甲酸乙酯橡膠(urethane rubber)、聚酯型橡膠(polyester type rubber)、表氯醇橡膠(epichlorohydrin rubber)、矽酮橡膠、乙烯-丙烯共聚體橡膠(ethylene-propylene copolymer rubber)、乙烯-丙烯-二烯共聚體橡膠(ethylene-propylene-diene copolymer rubber)等。 The elastic insulating material constituting the conductive portion 110 is preferably a polymer material having a cross-linked structure. As the curable polymer forming material that can be used to obtain such a flexible insulating material, various materials can be used, and specific examples of the various materials include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, conjugated diene rubber (e.g., acrylonitrile-butadiene copolymer rubber) and hydrogenated products thereof, block copolymer rubber (e.g., styrene-butadiene-diene block copolymer rubber and styrene-isoprene block copolymer rubber), and styrene-butadiene copolymer rubber. copolymer) and its hydrogenation products, chloroprene rubber, urethane rubber, polyester type rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, etc.
在以上內容中,當所獲得的用於測試的連接器100需要耐候性(weather resistance)時,優選使用除共軛二烯系橡膠以外的材料,且具體而言,自成型性性質(moldability property)及電性性質的角度來看,優選使用矽酮橡膠。 In the above content, when the connector 100 obtained for testing requires weather resistance, it is preferred to use a material other than the covalent diene rubber, and specifically, from the perspective of moldability property and electrical property, it is preferred to use silicone rubber.
優選交聯的液體矽酮橡膠或縮合的液體矽酮橡膠作為矽 酮橡膠。液體矽酮橡膠可為縮合型、添加型或含有乙烯基或羥基的類型。具體而言,液體矽酮橡膠的實例包括二甲基矽酮生橡膠(dimethyl silicone crude rubber)、甲基乙烯基矽酮生橡膠(methylvinyl silicone crude rubber)、甲基苯基乙烯基矽酮生橡膠(methylphenylvinyl silicone crude rubber)等。 A cross-linked liquid silicone rubber or a condensed liquid silicone rubber is preferably used as the silicone rubber. The liquid silicone rubber may be a condensed type, an added type, or a type containing a vinyl group or a hydroxyl group. Specifically, examples of the liquid silicone rubber include dimethyl silicone crude rubber, methylvinyl silicone crude rubber, methylphenylvinyl silicone crude rubber, and the like.
導電顆粒111在彈性絕緣材料內結合至彼此。所述多個導電顆粒111在導電部分110內彼此接觸,以在垂直方向上形成導電路徑。如圖8至圖10中所示,導電顆粒111中的每一者整體具有蘑菇狀形狀(mushroom-like shape)且包括本體部分112及突出部分113。
The
本體部分112可被配置成具有其中在底部上設置有平整的下表面且寬度自下表面朝向上部方向減小的形狀,並且由導電材料製成。在上部中心處可設置有與底部平行的平整表面112a作為本體部分112的頂部。
The
本體部分112的側表面可具有其中下側的寬度相較於上側增大的彎曲形狀。因此,當導電顆粒111接觸相鄰的導電顆粒111時,導電部分110的彈性應變可藉由沿著表面輕易地滑動而增大。亦即,當由待測試裝置150施加外力時,導電部分110可輕易地以彈性方式變形,且因此按壓力可被充分吸收。
The side surface of the
然而,本體部分112的形狀並非僅限於此。舉例而言,本體部分112整體可具有半球狀形狀,而在上部中心處不具有平整表面112a。
However, the shape of the
本體部分112可由磁性金屬材料(例如鐵、鈷或鎳、其合金或含有該些金屬的材料)製成,但並非僅限於此,且可使用具有優異彈性的材料。可應用鎳-鈷合金材料作為具有優異彈性的材料,但本揭露並非僅限於此。
The
本體部分112可完全由一種金屬材料或一種合金材料製成或者可使用各種堆疊方法形成。舉例而言,可藉由使展現出磁性的鐵磁性金屬材料與具有優異導電率的高導電金屬材料或高彈性金屬材料交替地堆疊來形成本體部分112。可使用具有優異導電率的材料(例如金、銀、鈀、銠及銅)作為高導電材料。圖10(a)示出本體部分112由一種材料製成,且圖10(b)示出本體部分112具有其中磁性層1121與高導電層1122交替地堆疊的結構。
The
舉例而言,在圖10(b)中的本體部分112中,例如鎳等磁性層1121與例如銅等高導電層1122交替地堆疊。以此種方式,當堆疊並佈置不同的材料時,可僅使用一個本體部分112同時實施磁性本體的功能與高導電材料的功能,且因此存在可獲得各種電性特性的優點。在此種情形中,磁性層1121可藉由磁力(magnetic force)而便於導電顆粒111的組裝,且高導電層1122可在與其他導電顆粒111接觸時減小電阻。
For example, in the
在本體部分112的外表面上可塗佈有由具有優異導電率的材料(例如金、銀、鈀、銠或銅)製成的高導電率層115。高導電率層115覆蓋本體部分112的上表面及側表面且可不設置於本體部分112的下表面上。
A high conductivity layer 115 made of a material having excellent conductivity (such as gold, silver, palladium, rhodium or copper) may be coated on the outer surface of the
在高導電率層115塗佈於本體部分112的外表面上的情況下,當高導電率層115接觸相鄰的導電顆粒111時,接觸電阻可減小且導電率可得到改善。具體而言,由於高導電率層115電性連接至本體部分112內部的高導電層1122,因此可進一步改善導電效能。另外,可藉由在傳送高頻訊號時減少渦流(eddy current)而良好地傳送所述高頻訊號。
When the high-conductivity layer 115 is coated on the outer surface of the
突出部分113自本體部分112的下表面向下突出、成一體地連接至本體部分112且可具有較本體部分112的下表面窄的形狀。突出部分113由導電材料製成。突出部分113優選地由與本體部分112相同的材料製成,但並非僅限於此。舉例而言,突出部分113可由與本體部分112的材料不同的材料(例如,各種金屬材料(例如磁性材料、高導電材料及彈性材料))製成。
The
突出部分113可具有直徑較本體部分112的底部的外徑小的圓柱狀形狀,且在突出部分113與本體部分112之間可形成有向內凹陷的凹形部分114。由於凹形部分114被填充有構成導電部分110的矽酮橡膠,因此可進一步改善導電顆粒111與矽酮橡膠之間的結合力。因此,導電顆粒111不會輕易地自導電部分110分離。
The protruding
突出部分113可完全由一種金屬材料或一種合金材料製成或者可使用各種堆疊方法形成。舉例而言,可藉由使展現出磁性的金屬材料與具有優異導電率的高導電材料交替地堆疊來形成本體部分112。可使用具有優異導電率的材料(例如金、銀、鈀、銠
及銅)作為高導電材料。
The protruding
另外,本體部分112完全藉由鍍覆製造而成且被形成為半球狀形狀,因此不存在不規則性。然而,自本體部分112的底部突出的突出部分113執行不規則性的功能,且因此可進一步增大與矽酮橡膠的結合力。
In addition, the
突出部分113的長度不受限制,但可具有較本體部分112小的尺寸。然而,本揭露並非僅限於此,且突出部分113可在必要時具有尺寸長於本體部分112的細柱狀形狀。
The length of the protruding
由具有優異導電率的材料(例如金、銀、鈀、銠或銅)製成的高導電率層115可塗佈於突出部分113的下表面上。如此一來,形成於突出部分113的下表面上的高導電率層115在與其他相鄰的導電顆粒111接觸時會減小接觸電阻並改善導電率。
A high conductivity layer 115 made of a material having excellent conductivity (such as gold, silver, palladium, rhodium or copper) may be coated on the lower surface of the
圖10(c)示出其中高導電率層115形成於本體部分112的上表面、側表面及下表面上且完全覆蓋突出部分113的形式。以此種方式,當高導電率層115完全覆蓋本體部分112及突出部分113時,可進一步改善導電率。
FIG. 10( c ) shows a form in which the high conductivity layer 115 is formed on the upper surface, the side surface, and the lower surface of the
絕緣部分120可在連接器100中形成矩形彈性區。所述多個導電部分110藉由絕緣部分120而在水平方向上以相等的間距或不相等的間距彼此間隔開且彼此絕緣。絕緣部分120被形成為一個彈性本體(elastic body),且所述多個導電部分110在絕緣部分120的厚度方向(垂直方向)上嵌置於絕緣部分120中。絕緣部分120由彈性聚合物材料製成,且在垂直方向及水平方向上 具有彈性。絕緣部分120不僅會維持導電部分110的形狀,而且亦將導電部分110維持於垂直方向上。 The insulating portion 120 may form a rectangular elastic area in the connector 100. The plurality of conductive portions 110 are spaced apart from each other at equal or unequal intervals in the horizontal direction and insulated from each other by the insulating portion 120. The insulating portion 120 is formed as an elastic body, and the plurality of conductive portions 110 are embedded in the insulating portion 120 in the thickness direction (vertical direction) of the insulating portion 120. The insulating portion 120 is made of an elastic polymer material and is elastic in the vertical and horizontal directions. The insulating portion 120 not only maintains the shape of the conductive portion 110, but also maintains the conductive portion 110 in the vertical direction.
絕緣體120可由硬化矽酮橡膠材料製成。舉例而言,可藉由將液體矽酮橡膠注入至用於對連接器100進行模製的模製模具中並使矽酮橡膠硬化來形成絕緣部分120。可使用添加型液體矽酮橡膠、縮合型液體矽酮橡膠、含有乙烯基或羥基的液體矽酮橡膠及類似橡膠作為用於形成絕緣部分120的液體矽酮橡膠的材料。作為具體實例,液體矽酮橡膠的材料可包括二甲基矽酮生橡膠、甲基乙烯基矽酮生橡膠、甲基苯基乙烯基矽酮生橡膠或類似橡膠。 The insulator 120 may be made of a hardened silicone rubber material. For example, the insulating portion 120 may be formed by injecting liquid silicone rubber into a molding mold for molding the connector 100 and hardening the silicone rubber. Additive liquid silicone rubber, condensation liquid silicone rubber, liquid silicone rubber containing vinyl or hydroxyl groups, and similar rubbers may be used as the material of the liquid silicone rubber used to form the insulating portion 120. As a specific example, the material of the liquid silicone rubber may include dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, methyl phenyl vinyl silicone raw rubber, or similar rubbers.
以下將參照圖11闡述根據本揭露的製造用於測試的連接器100中的導電顆粒111的方法。
The following will describe the method of manufacturing the
首先,在製備由矽晶圓、矽或陶瓷製成的基板130之後,在基板130的表面上形成用於電鍍的薄的導電塗層130a(鈦、銅)(參見圖11(a))。 First, after preparing a substrate 130 made of a silicon wafer, silicon or ceramic, a thin conductive coating 130a (titanium, copper) for electroplating is formed on the surface of the substrate 130 (see FIG. 11(a)).
接下來,在基板130的一個表面上形成模製層131(參見圖11(b))。在此種情形中,模製層131是光阻層,且在基板130的一個側上形成厚度小於導電顆粒111的厚度的光阻層,且因此可減少光阻的消耗且可降低成本。
Next, a molding layer 131 is formed on one surface of the substrate 130 (see FIG. 11(b)). In this case, the molding layer 131 is a photoresist layer, and the photoresist layer having a thickness smaller than that of the
此後,移除模製層131的至少一部分以形成用於顆粒形成的凹槽132(參見圖11(c))。具體而言,使用曝光製程及顯影製程在模製層131中形成具有所期望形狀的凹槽132。 Thereafter, at least a portion of the molding layer 131 is removed to form a groove 132 for particle formation (see FIG. 11(c)). Specifically, the groove 132 having a desired shape is formed in the molding layer 131 using an exposure process and a development process.
此後,使用高導電材料在用於顆粒形成的凹槽132內部
形成第三鍍覆層116'(參見圖11(d))。第三鍍覆層116'是形成於突出部分113的下表面上的高導電率層115且具有較模製層131的厚度小的厚度。
Thereafter, a third coating layer 116' is formed inside the groove 132 for particle formation using a highly conductive material (see FIG. 11(d)). The third coating layer 116' is a high conductivity layer 115 formed on the lower surface of the protruding
此後,在藉由鍍覆形成第一鍍覆層113'(所述第一鍍覆層113'在製造用於顆粒形成的凹槽132內部之後變成突出部分113)之後,執行附加的鍍覆,藉此製造相較於模製層131而突出地更多的第二鍍覆層112',且因此突出部分113與本體部分112一同製造而成。在此種情形中,第二鍍覆層112'是變成本體部分112且設置於用於顆粒形成的凹槽132周圍並成一體地連接至第一鍍覆層113'的鍍覆層,且第二鍍覆層112'具有其中左右寬度在向上方向上減小的實質上半球狀形狀(圖11(e))。
Thereafter, after forming the first coating layer 113' by coating, which becomes the protruding
在此種情形中,第一鍍覆層113'與第二鍍覆層112'可使用一種材料製造而成,但可藉由依序地或交替地對磁性材料與高導電材料進行鍍覆來形成(即,藉由堆疊由不同材料製成的鍍覆層來形成)。 In this case, the first coating layer 113' and the second coating layer 112' may be made of one material, but may be formed by sequentially or alternately coating a magnetic material and a highly conductive material (i.e., by stacking coating layers made of different materials).
接下來,在第二鍍覆層112'上鍍覆高導電金屬115'(參見圖11(f))。在此種情形中,所鍍覆的高導電金屬115'變成覆蓋本體部分112的外表面的高導電率層115。
Next, a high-conductivity metal 115' is plated on the second coating layer 112' (see FIG. 11(f)). In this case, the plated high-conductivity metal 115' becomes a high-conductivity layer 115 covering the outer surface of the
接下來,在移除模製層131之後,移除形成於基板130的表面上的導電塗層130a。具體而言,藉由蝕刻來移除形成於基板130上的導電塗層130a,使得可將導電顆粒111分離。之後,將導電顆粒111自基板130分離(圖11(g))。
Next, after removing the mold layer 131, the conductive coating 130a formed on the surface of the substrate 130 is removed. Specifically, the conductive coating 130a formed on the substrate 130 is removed by etching so that the
藉由此種製造方法製造的導電顆粒111不需要如先前技術中一般使模製層131的厚度大於導電顆粒111的厚度,且因此模製層131(光阻片材層)的量總體上可減少且因此可降低製造成本。
The
另外,由於使用自模製層131突出的半球狀部分製造導電顆粒111而不移除半球狀部分,因此存在在鍍覆之後不需要平整化操作的優點。
In addition, since the
另外,根據本揭露,在自基板130突出的第二鍍覆層112'上鍍覆高導電金屬,且因此本體部分112的側表面及上表面可塗佈有高導電率層115。因此,與先前技術不同,由於可在不使用單獨的滾筒鍍覆方法的情況下在側表面上形成高導電金屬層,因此可大大降低製造成本。
In addition, according to the present disclosure, a highly conductive metal is plated on the second plating layer 112' protruding from the substrate 130, and thus the side surface and the upper surface of the
本揭露的導電顆粒111具有以下效果。
The
如圖5中所示,在其中用於測試的連接器100安裝於測試設備140上的狀態下,待測試裝置150藉由插入件(insert)或類似組件被運送且被放置於連接器100的上側上。 As shown in FIG. 5 , in a state where the connector 100 for testing is mounted on the testing equipment 140, the device to be tested 150 is transported by an insert or the like and is placed on the upper side of the connector 100.
之後,如圖6中所示,降低待測試裝置150以使得待測試裝置150的端子151與連接器100進行接觸。在此種情形中,當待測試裝置150被推動器(未示出)按壓時,導電部分110在水平方向上擴張,同時在向下方向上被壓縮。因此,導電部分110中的導電顆粒111彼此接觸以形成電傳導路徑(electrical conduction path)。此後,在自測試設備140施加電性訊號的同時
執行預定的電性測試。
Thereafter, as shown in FIG. 6 , the device to be tested 150 is lowered so that the terminal 151 of the device to be tested 150 is in contact with the connector 100. In this case, when the device to be tested 150 is pressed by a pusher (not shown), the conductive portion 110 expands in the horizontal direction while being compressed in the downward direction. Therefore, the
儘管圖5示出導電顆粒在垂直方向上被佈置成恆定的形狀,然而本揭露並非僅限於此。舉例而言,如圖7中所示,導電顆粒可被佈置成各種形狀。亦即,儘管圖5示出在垂直方向上佈置有本體部分(所述本體部分定位於上側上且突出部分位於下側上)的形式,然而本揭露並非僅限於此。舉例而言,可進行各種佈置,例如導電顆粒中的一些導電顆粒直立,且其他導電顆粒平臥或傾斜。 Although FIG. 5 shows that the conductive particles are arranged in a constant shape in the vertical direction, the present disclosure is not limited thereto. For example, as shown in FIG. 7 , the conductive particles can be arranged in various shapes. That is, although FIG. 5 shows a form in which the body portion (the body portion is positioned on the upper side and the protruding portion is positioned on the lower side) is arranged in the vertical direction, the present disclosure is not limited thereto. For example, various arrangements can be made, such as some of the conductive particles standing upright and other conductive particles lying flat or tilted.
圖12至圖16示出其中根據第一實施例的導電顆粒111在測試製程期間與其他導電顆粒111或待測試裝置150的球型端子151進行接觸的狀態的實例。
FIGS. 12 to 16 show examples of a state in which the
首先,如圖12中所示,當導電顆粒111接觸待測試裝置150的球型端子151時,本體部分112的外邊緣的尖銳部可接觸球型端子,且因此可輕易地經由隱埋於球型端子151中的氧化物膜而穿透至內部中,藉此有助於減小電阻。當尖銳部接觸球型端子151時,相較於球狀端子,接觸壓力大大增大。
First, as shown in FIG. 12 , when the
另外,如圖13中所示,當導電顆粒111接觸待測試裝置150的球型端子151時,本體部分112的外邊緣的尖銳部及突出部分113的尖銳部二者皆可接觸球型端子151,且因此可輕易地經由隱埋於球型端子151中的氧化物膜而穿透至內部中,藉此有助於減小電阻。因此,可增大接觸面積且可改善電性連接能力。具體而言,當設置於本體部分112的底部上的突出部分113接觸球型端
子151時,接觸面積擴大。
In addition, as shown in FIG. 13 , when the
如圖14中所示,當導電顆粒彼此接觸時(例如,當導電顆粒111的本體部分112的側表面(例如,上部彎曲表面部分)彼此接觸時),導電顆粒111易於在彼此上進行滑動。因此,可改善導電部分110的彈性,且因此可提高導電部分110的可壓縮性,且因此按壓力可被充分吸收。
As shown in FIG. 14 , when the conductive particles are in contact with each other (for example, when the side surfaces (for example, the upper curved surface portions) of the
另外,如圖15中所示,導電顆粒111的本體部分112的平整底表面可彼此接觸。在此種情形中,可進行表面接觸,且因此接觸面積可增大且接觸電阻可減小。因此,存在大大改善電性連接能力的效果。
In addition, as shown in FIG. 15 , the flat bottom surfaces of the
另外,如圖16中所示,高導電率層115可塗佈於突出部分113的表面上,且因此具有高接觸電阻的內部材料可暴露於外部,藉此防止與其他顆粒的彎曲表面接觸。亦即,由於導電顆粒的突出部分113直接接觸另一半球狀顆粒的本體部分112的上表面而不具有高導電層,因此可防止接觸電阻增大。
In addition, as shown in FIG. 16, a high conductivity layer 115 may be coated on the surface of the protruding
儘管已在上述實施例中闡述導電顆粒111的實例,然而導電顆粒111並非僅限於此且可如下般進行修改。
Although examples of the
圖17示出根據第二實施例的導電顆粒211,且圖18示出製造圖17所示導電顆粒211的方法。 FIG. 17 shows a conductive particle 211 according to the second embodiment, and FIG. 18 shows a method of manufacturing the conductive particle 211 shown in FIG. 17 .
在第一實施例中,示出導電顆粒111的表面塗佈有高導電率層115。然而,本揭露並非僅限於此,且亦可存在僅由本體部分及突出部分製成的導電顆粒211。
In the first embodiment, the surface of the
如圖18中所示,藉由依序執行以下步驟來獲得導電顆粒211:藉由在例如矽晶圓、矽或陶瓷等基板130上塗佈導電材料來形成導電塗層(未示出)(參見圖18(a));將厚度小於所期望導電顆粒211的厚度的模製層131(光阻層)施加至基板130(參見圖18(b));藉由對基板130執行曝光製程及顯影製程來形成用於顆粒形成的凹槽(參見圖18(c));藉由鍍覆製程形成鍍覆層211',以圍繞用於顆粒形成的凹槽132內部的凹槽向上突出(參見圖18(d));以及在藉由蝕刻移除模製層131及導電塗層之後將導電顆粒211自基板130分離(參見圖18(e))。 As shown in FIG. 18 , the conductive particles 211 are obtained by sequentially performing the following steps: forming a conductive coating layer (not shown) by coating a conductive material on a substrate 130 such as a silicon wafer, silicon or ceramic (see FIG. 18 (a)); applying a molding layer 131 (photoresist layer) having a thickness less than that of the desired conductive particles 211 to the substrate 130 (see FIG. 18 (b)); and applying a conductive coating layer 131 (photoresist layer) to the substrate 130. An exposure process and a development process are performed to form a groove for particle formation (see FIG. 18(c)); a coating layer 211' is formed by a coating process to protrude upward around the groove inside the groove 132 for particle formation (see FIG. 18(d)); and the conductive particles 211 are separated from the substrate 130 after the mold layer 131 and the conductive coating layer are removed by etching (see FIG. 18(e)).
根據第二實施例的導電顆粒211可作為簡單的製造製程而增大導電部分110的彈性模量、藉由表面接觸而增大接觸面積、增大球型端子151上的接觸壓力且藉由突出部分提高與矽酮橡膠的結合強度。 The conductive particles 211 according to the second embodiment can increase the elastic modulus of the conductive portion 110, increase the contact area by surface contact, increase the contact pressure on the ball terminal 151, and improve the bonding strength with the silicone rubber by the protruding portion as a simple manufacturing process.
圖19示出根據第三實施例的導電顆粒311,且根據第三實施例的導電顆粒311示出在本體部分312的底部上形成有多個突出部分313。圖19示出所述多個突出部分313以相等的間距間隔開。然而,本揭露未必僅限於此。以此種方式,當所述多個突出部分313形成於本體部分312的底部上時,矽酮橡膠可滲透至突出部分313之間的空間中,以進一步提高與矽酮橡膠的結合強度。另外,可防止與另一導電顆粒311接觸時接觸電阻的增大。 FIG. 19 shows a conductive particle 311 according to the third embodiment, and the conductive particle 311 according to the third embodiment shows that a plurality of protrusions 313 are formed on the bottom of the body portion 312. FIG. 19 shows that the plurality of protrusions 313 are spaced at equal intervals. However, the present disclosure is not necessarily limited to this. In this way, when the plurality of protrusions 313 are formed on the bottom of the body portion 312, the silicone rubber can penetrate into the space between the protrusions 313 to further improve the bonding strength with the silicone rubber. In addition, the increase in contact resistance when contacting another conductive particle 311 can be prevented.
圖20示出根據第四實施例的導電顆粒411。根據第四實施例的導電顆粒411示出在本體部分412的底部上形成有在一個 方向上伸長的突出部分413,所述本體部分412具有半圓形橫截面的條形狀且在一個方向上伸長。 FIG. 20 shows a conductive particle 411 according to a fourth embodiment. The conductive particle 411 according to the fourth embodiment shows that a protruding portion 413 extending in one direction is formed on the bottom of a body portion 412, and the body portion 412 has a strip shape with a semicircular cross section and extends in one direction.
根據第四實施例的導電顆粒411不僅可大大地增大與另一導電顆粒411的接觸面積,而且亦可增大與球型端子接觸時的接觸壓力。另外,當導電顆粒411與另一導電顆粒411進行接觸時,導電顆粒411在所述另一導電顆粒411的側表面的彎曲部分上滑動,藉此增大導電部分的彈性模量並提高與矽酮橡膠的結合強度。 The conductive particles 411 according to the fourth embodiment can not only greatly increase the contact area with another conductive particle 411, but also increase the contact pressure when contacting the ball terminal. In addition, when the conductive particle 411 contacts another conductive particle 411, the conductive particle 411 slides on the curved portion of the side surface of the other conductive particle 411, thereby increasing the elastic modulus of the conductive portion and improving the bonding strength with the silicone rubber.
圖21是根據第五實施例的導電顆粒511。在圖21所示導電顆粒511中,在本體部分512的上表面及側表面上設置有高導電率層515,且在突出部分513的底部上設置有高導電率層516。即使在本體部分512及突出部分513由低導電率材料製成時,構成外層的高導電率層515及516仍與其他導電顆粒511進行接觸,且因此可防止接觸電阻大大增大。 FIG. 21 is a conductive particle 511 according to the fifth embodiment. In the conductive particle 511 shown in FIG. 21 , a high conductivity layer 515 is provided on the upper surface and the side surface of the body portion 512, and a high conductivity layer 516 is provided on the bottom of the protruding portion 513. Even when the body portion 512 and the protruding portion 513 are made of a low conductivity material, the high conductivity layers 515 and 516 constituting the outer layer are in contact with other conductive particles 511, and thus the contact resistance can be prevented from being greatly increased.
圖22示出其中圖21所示導電顆粒511設置於導電部分510內部的實例。以此種方式,當導電顆粒511具有在一個方向上延伸的線性形狀時,導電顆粒511可以不規則方式混合於導電部分510中。 FIG. 22 shows an example in which the conductive particles 511 shown in FIG. 21 are disposed inside the conductive portion 510. In this way, when the conductive particles 511 have a linear shape extending in one direction, the conductive particles 511 can be mixed in the conductive portion 510 in an irregular manner.
圖23示出導電顆粒611的各種實施例。導電顆粒611可具有各種形狀,例如格柵形狀(參見圖23(a))、三角形形狀(參見圖23(b))、星形形狀(參見圖23(c))、三腳架形狀(參見圖23(d))、S形狀(參見圖23(e))及雙S形狀(參見圖23(f))。 FIG. 23 shows various embodiments of the conductive particles 611. The conductive particles 611 may have various shapes, such as a grid shape (see FIG. 23 (a)), a triangle shape (see FIG. 23 (b)), a star shape (see FIG. 23 (c)), a tripod shape (see FIG. 23 (d)), an S shape (see FIG. 23 (e)), and a double S shape (see FIG. 23 (f)).
在具有此種形狀的情形中,當導電顆粒611與另一導電顆粒611進行組合時,由於導電顆粒611與所述另一導電顆粒611糾纏於一起,因此不僅接觸面積為寬的,而且亦可防止導電顆粒611自導電部分分離。另外,由於內部空間,導電顆粒611本身可以彈性方式變形或者可提高與矽酮橡膠的結合強度,且因此導電部分可輕易地整體變形、電性連接能力可提高且可防止導電顆粒611自導電部分分離。 In the case of such a shape, when the conductive particle 611 is combined with another conductive particle 611, since the conductive particle 611 is entangled with the other conductive particle 611, not only the contact area is wide, but also the conductive particle 611 can be prevented from separating from the conductive part. In addition, due to the internal space, the conductive particle 611 itself can be deformed in an elastic manner or the bonding strength with the silicone rubber can be improved, and thus the conductive part can be easily deformed as a whole, the electrical connection ability can be improved, and the conductive particle 611 can be prevented from separating from the conductive part.
另外,具有S形狀的導電顆粒(參見圖23(e))及具有雙S形狀的導電顆粒(圖23(f))由於導電顆粒本身的形狀而具有增大的彈性且在導電顆粒之間具有優異的結合強度,且因此導電部分可輕易地整體變形、電性連接能力可提高且可防止導電顆粒自導電部分分離。 In addition, the conductive particles with an S shape (see FIG. 23(e)) and the conductive particles with a double S shape (FIG. 23(f)) have increased elasticity due to the shape of the conductive particles themselves and have excellent bonding strength between the conductive particles, and thus the conductive part can be easily deformed as a whole, the electrical connection ability can be improved, and the conductive particles can be prevented from separating from the conductive part.
在上述實施例中,導電顆粒的本體部分具有條形狀、格柵形狀、三角形形狀或星形形狀,但並非僅限於此。舉例而言,本體部分可具有H形狀、X形狀、O形狀、C形狀、S形狀、N形狀、V形狀、W形狀、Z形狀及+形狀中的任一者或者具有其中多個每種形狀連續地連接的形狀。在此種情形中,突出部分亦可在寬度窄於本體部分的同時具有對應的形狀。 In the above embodiments, the main body of the conductive particles has a stripe shape, a grid shape, a triangle shape or a star shape, but is not limited thereto. For example, the main body may have any one of an H shape, an X shape, an O shape, a C shape, an S shape, an N shape, a V shape, a W shape, a Z shape and a + shape, or a shape in which a plurality of each shape is continuously connected. In this case, the protruding portion may also have a corresponding shape while being narrower in width than the main body portion.
儘管已參照各圖闡述了一或多個實施例,然而此項技術中具有通常知識者將理解,可在不背離由以下申請專利範圍界定的本揭露的精神及範圍的條件下對其進行形式及細節上的各種改變。 Although one or more embodiments have been described with reference to the drawings, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims.
100:連接器 100: Connector
110:導電部分 110: Conductive part
111:導電顆粒 111: Conductive particles
120:絕緣部分/絕緣體 120: Insulation part/insulation body
140:測試設備 140:Testing equipment
141:接墊 141:Pad
150:待測試裝置 150: Device to be tested
151:端子/半球狀端子/球型端子 151: Terminal/hemispherical terminal/ball terminal
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0087735 | 2022-07-15 | ||
KR1020220087735A KR102734676B1 (en) | 2022-07-15 | 2022-07-15 | Conductive particles for electrical test, connector for electrical test and fabrication method of conductive particles |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202405829A TW202405829A (en) | 2024-02-01 |
TWI859978B true TWI859978B (en) | 2024-10-21 |
Family
ID=89536810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112126413A TWI859978B (en) | 2022-07-15 | 2023-07-14 | Conductive particle, test connector, and method of manufacturing conductive particle |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102734676B1 (en) |
TW (1) | TWI859978B (en) |
WO (1) | WO2024014667A1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100310824B1 (en) * | 1999-01-29 | 2001-10-17 | 김영환 | A capacitor and a fabricating method thereof in semiconductor device |
KR101339166B1 (en) * | 2012-06-18 | 2013-12-09 | 주식회사 아이에스시 | Test socket with conductive powder having through-hole and fabrication method thereof |
KR101465085B1 (en) * | 2013-01-21 | 2014-11-27 | 포항공과대학교 산학협력단 | Flexible conductive metal structure and manufacturing method thereof |
KR101525520B1 (en) | 2015-02-03 | 2015-06-03 | (주)티에스이 | Testing socket including conductive particles having combinable shape |
KR101739536B1 (en) * | 2016-05-11 | 2017-05-24 | 주식회사 아이에스시 | Test socket and conductive particle |
KR101936782B1 (en) | 2017-11-20 | 2019-01-09 | (주)티에스이 | Pitchless rubber socket for test and manufacturing method thereof |
KR102124997B1 (en) * | 2018-10-05 | 2020-06-22 | 주식회사 아이에스시 | Manufacturing method of conductive particle and conductive particle manufactured by the method |
JP7614843B2 (en) * | 2019-06-13 | 2025-01-16 | 積水化学工業株式会社 | Conductive particles, conductive materials and connection structures |
KR102204910B1 (en) * | 2019-11-26 | 2021-01-19 | 김규선 | Test socket |
KR102393083B1 (en) * | 2020-08-21 | 2022-05-03 | 주식회사 스노우 | Conductive particle and testing socket comprsing the same |
-
2022
- 2022-07-15 KR KR1020220087735A patent/KR102734676B1/en active Active
-
2023
- 2023-04-20 WO PCT/KR2023/005369 patent/WO2024014667A1/en unknown
- 2023-07-14 TW TW112126413A patent/TWI859978B/en active
Also Published As
Publication number | Publication date |
---|---|
KR102734676B1 (en) | 2024-11-27 |
KR20240010319A (en) | 2024-01-23 |
TW202405829A (en) | 2024-02-01 |
WO2024014667A1 (en) | 2024-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9488675B2 (en) | Test socket having high-density conductive unit, and method for manufacturing same | |
JP3543765B2 (en) | Probe device for wafer inspection | |
TWI596346B (en) | Probe device of vertical probe card | |
TWI692642B (en) | Conductive contact and anisotropic conductive sheet with the same | |
JP4323055B2 (en) | Semiconductor device testing contactor and method of manufacturing the same | |
CN110546517B (en) | Inspection jig for electrical characteristics | |
KR101683017B1 (en) | Test socket and method for manufacturing thereof and die thereof | |
JP2000322938A (en) | Anisotropic conductive sheet, its manufacture, and electrical test device and electrical test method for circuit device | |
TW202403316A (en) | The electro-conductive contact pin and test device having the same | |
TWI859978B (en) | Conductive particle, test connector, and method of manufacturing conductive particle | |
KR101726399B1 (en) | Test socket having bottom metal plate bump and method for manufacturing thereof | |
TW202208864A (en) | Conductive particle and testing socket comprising the same | |
KR200444773Y1 (en) | Silicone contactor | |
US7474113B2 (en) | Flexible head probe for sort interface units | |
KR101735521B1 (en) | Test socket having stud bump and method for manufacturing thereof | |
KR101160846B1 (en) | Spring Probe Pin Made of Conductive Rubber and Manufacturing Method Thereof | |
TWI867437B (en) | Test socket and apparatus for testing a semiconductor package | |
KR101532390B1 (en) | Electrical insulating sheet, fabrication method thereof and electrical test apparatus | |
KR20170108655A (en) | Test socket and fabrication method thereof | |
JP3879464B2 (en) | Anisotropic conductive sheet for circuit device inspection, manufacturing method thereof, and applied product thereof | |
KR200368243Y1 (en) | Integrated silicone contactor with conduction reinforcing layer | |
JP2000292484A (en) | Semiconductor element-connecting apparatus, semiconductor element-inspecting apparatus and inspection method | |
KR20220127584A (en) | Contactor array and manufacturing method thereof | |
KR101735520B1 (en) | Test socket having top metal plate bump and method for manufacturing thereof | |
KR20190050688A (en) | Anisotropic conductive sheet |