TWI859673B - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- TWI859673B TWI859673B TW111149520A TW111149520A TWI859673B TW I859673 B TWI859673 B TW I859673B TW 111149520 A TW111149520 A TW 111149520A TW 111149520 A TW111149520 A TW 111149520A TW I859673 B TWI859673 B TW I859673B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- stress buffer
- buffer structure
- indium content
- sub
- Prior art date
Links
Landscapes
- Led Devices (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
本發明係關於一半導體元件,特別是關於具有中間層之半導體元件。 The present invention relates to a semiconductor device, and in particular to a semiconductor device having an intermediate layer.
III-V族化合物半導體已被廣泛開發應用於各式的電子元件,例如高電子遷移率電晶體(high electron-mobility transistor;HEMT)、高效率光伏元件(photovoltaic device)、以及發光二極體(light-emitting diode;LED)。 III-V compound semiconductors have been widely developed and applied in various electronic devices, such as high electron-mobility transistors (HEMT), high-efficiency photovoltaic devices, and light-emitting diodes (LED).
以發光二極體為例,發光二極體已被視為取代傳統光源的最佳解決方案之一,為能更進一步地達成節能省碳之功效,亮度提昇一直是本領域人員長期的研究課題。發光二極體的亮度提昇主要分為兩部份,一為內部量子效率(Internal Quantum Efficiency;IQE)之提昇,主要透過磊晶薄膜結構的改善以增進電子電洞的結合效率;另一方面為光摘出效率(Light Extraction Efficiency;LEE)之提昇,主要著重在使主動層發出之光線能有效穿透至元件外部,降低光線被發光二極體內部結構所吸收。 Take LEDs as an example. LEDs have been considered as one of the best solutions to replace traditional light sources. In order to further achieve the effect of energy saving and carbon saving, brightness improvement has been a long-term research topic for researchers in this field. The brightness improvement of LEDs is mainly divided into two parts. One is the improvement of internal quantum efficiency (IQE), which is mainly achieved by improving the structure of epitaxial thin films to enhance the electron-hole combination efficiency. The other is the improvement of light extraction efficiency (LEE), which mainly focuses on enabling the light emitted by the active layer to effectively penetrate the outside of the device and reduce the light absorption by the internal structure of the LED.
本發明即在改善III-V族化合物半導體元件之磊晶薄膜結構的品質,進而提高半導體元件的效能,例如提高發光二極體之內部量子效率。 The present invention aims to improve the quality of the epitaxial thin film structure of III-V compound semiconductor devices, thereby improving the performance of semiconductor devices, such as improving the internal quantum efficiency of light-emitting diodes.
本發明提出一種半導體元件,其包含一主動層、一第一半導體層、一第一應力緩衝結構,位於該主動層及該第一半導體層之間、一中間層位於該第一應力緩衝結構及該主動層之間,其中,該第一應力緩衝結構包含複數個第一子層以及複數個第二子層彼此交疊,該第二子層之能隙小於該第一子層之能隙,該中間層包含一第一部分鄰接該第一應力緩衝結構以及一第二部分鄰接該主動層,該第二部分與該第二子層各包含一銦含量且該第二部分之銦含量小於該第二子層之銦含量。於本發明之另一實施例,所述之半導體元件更包含一第二應力緩衝結構位於該第二部分以及該主動層之間,其中,該第二應力緩衝結構包含複數個第三子層以及複數個第四子層彼此交疊,該第四子層之能隙小於該第三子層之能隙。 The present invention provides a semiconductor element, which includes an active layer, a first semiconductor layer, a first stress buffer structure located between the active layer and the first semiconductor layer, and an intermediate layer located between the first stress buffer structure and the active layer, wherein the first stress buffer structure includes a plurality of first sublayers and a plurality of second sublayers overlapping each other, the energy gap of the second sublayer is smaller than the energy gap of the first sublayer, the intermediate layer includes a first portion adjacent to the first stress buffer structure and a second portion adjacent to the active layer, the second portion and the second sublayer each include an indium content, and the indium content of the second portion is smaller than the indium content of the second sublayer. In another embodiment of the present invention, the semiconductor device further comprises a second stress buffer structure located between the second portion and the active layer, wherein the second stress buffer structure comprises a plurality of third sub-layers and a plurality of fourth sub-layers overlapping each other, and the energy gap of the fourth sub-layer is smaller than the energy gap of the third sub-layer.
1、2:半導體元件 1, 2: Semiconductor components
10:基板 10: Substrate
20:第一半導體層 20: First semiconductor layer
31:第一應力緩衝結構 31: First stress buffer structure
311:第一子層 311: First sublayer
312:第二子層 312: Second sublayer
32:第二應力緩衝結構 32: Second stress buffer structure
321:第三子層 321: The third sublayer
322:第四子層 322: The fourth sublayer
40:中間層 40: Middle layer
401:第一部分 401: Part 1
402:第二部分 402: Part 2
50:主動層 50: Active layer
501:阻障層 501: Barrier layer
502:井層 502: Well layer
60:第二半導體層 60: Second semiconductor layer
71:第一電極 71: First electrode
72:第二電極 72: Second electrode
第1圖為一示意圖,揭示符合本發明半導體元件之第一實施例。 Figure 1 is a schematic diagram showing the first embodiment of the semiconductor device according to the present invention.
第2圖為一示意圖,揭示符合本發明半導體元件之第二實施例。 Figure 2 is a schematic diagram showing a second embodiment of the semiconductor device according to the present invention.
第1圖揭示符合本發明半導體元件之第一實施例,半導體元件1包括一基板10、一第一半導體層20形成於基板10上、一第一應力緩衝結構31形成於第一半導體層20上、一中間層40形成於第一應力緩衝結構20上、一主動層(active layer)50形成於中間層40上、一第二半導體層60形成於主動層50上、一第一電極71電性連接至第一半導體層20、以及一第二電極72電性連接至第二半導體層60。 於本發明之一實施例,第一半導體層20包含一第一區域及一第二區域,第一應力緩衝層31係形成於所述之第一區域上,第一電極71係形成於所述之第二區域上,從而與第一半導體層20電性連接;其中,所述之第二區域與第一電極71之間不具有第一應力緩衝結構31、中間層40、主動層50、以及第二半導體層60。 FIG. 1 discloses a first embodiment of a semiconductor device according to the present invention. The semiconductor device 1 includes a substrate 10, a first semiconductor layer 20 formed on the substrate 10, a first stress buffer structure 31 formed on the first semiconductor layer 20, an intermediate layer 40 formed on the first stress buffer structure 20, an active layer 50 formed on the intermediate layer 40, a second semiconductor layer 60 formed on the active layer 50, a first electrode 71 electrically connected to the first semiconductor layer 20, and a second electrode 72 electrically connected to the second semiconductor layer 60. In one embodiment of the present invention, the first semiconductor layer 20 includes a first region and a second region, the first stress buffer layer 31 is formed on the first region, and the first electrode 71 is formed on the second region, thereby being electrically connected to the first semiconductor layer 20; wherein, there is no first stress buffer structure 31, intermediate layer 40, active layer 50, and second semiconductor layer 60 between the second region and the first electrode 71.
於本發明之一實施例,基板10、第一半導體層20、第一應力緩衝結構31、中間層40、主動層50與第二半導體層60均包含單晶磊晶結構。各磊晶結構,較佳地,係以有機金屬氣相沉積法(MOCVD)形成,並且各磊晶結構之材料組成可藉由改變形成該磊晶結構時所通入反應器中的各反應物的流量及/或反應器的溫度來調整。基板10之晶格常數與第一半導體層20之晶格常數之差異不小於基板10之晶格常數之1%,其中,基板10之材料例如包含藍寶石。第一半導體層20包含具有第一導電型的III-V族化合物,例如包含n型氮化鎵(GaN)且具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1*1018~5*1018cm-3之間。第二半導體層60包含具有第二導電型的III-V族化合物,例如包含p型GaN且具有一p型摻雜質(例如為鎂)以及一p型摻雜質濃度介於1*1019~5*1020cm-3之間,其中,第二導電型相反於第一導電型。半導體元件1為一發光二極體(LED)時,主動層50例如包含III-V族化合物以及多重量子井(Multiple Quantum Wells;MQW)結構,其中多重量子井結構係包含複數個阻障層(barrier layer)501及複數個井層(well layer)502交互堆疊,並於驅動時發出可見光或不可見光,其中,交疊之對數介於3~15對(pairs)。井層502之材料具有一能隙(energy band gap)對應發出光之波長並且小於阻障層501之能隙,井層502例如包含非故意摻雜(unintentionally doped)之InxGa1-xN(0.05x0.25)並具有一厚度介於1~5nm之間,阻障層501例如包含摻 雜或非故意摻雜之GaN及/或AlxGa1-xN(0.01x0.1)並且具有一厚度介於5~15nm之間。 In one embodiment of the present invention, the substrate 10, the first semiconductor layer 20, the first stress buffer structure 31, the intermediate layer 40, the active layer 50 and the second semiconductor layer 60 all include single crystal epitaxial structures. Each epitaxial structure is preferably formed by metal organic vapor deposition (MOCVD), and the material composition of each epitaxial structure can be adjusted by changing the flow rate of each reactant introduced into the reactor when forming the epitaxial structure and/or the temperature of the reactor. The difference between the lattice constant of the substrate 10 and the lattice constant of the first semiconductor layer 20 is not less than 1% of the lattice constant of the substrate 10, wherein the material of the substrate 10 includes sapphire, for example. The first semiconductor layer 20 includes a III-V compound with a first conductivity type, such as n-type gallium nitride (GaN) and an n-type dopant (such as silicon) and an n-type dopant concentration between 1*10 18 and 5*10 18 cm -3 . The second semiconductor layer 60 includes a III-V compound with a second conductivity type, such as p-type GaN and a p-type dopant (such as magnesium) and a p-type dopant concentration between 1*10 19 and 5*10 20 cm -3 , wherein the second conductivity type is opposite to the first conductivity type. When the semiconductor device 1 is a light emitting diode (LED), the active layer 50 includes, for example, a III-V compound and a multiple quantum well (MQW) structure, wherein the multiple quantum well structure includes a plurality of barrier layers 501 and a plurality of well layers 502 stacked alternately, and emits visible light or invisible light when driven, wherein the number of overlapping pairs is between 3 and 15 pairs. The material of the well layer 502 has an energy band gap corresponding to the wavelength of the emitted light and smaller than the energy band gap of the barrier layer 501, and the well layer 502 includes, for example, unintentionally doped In x Ga 1-x N (0.05 x 0.25) and has a thickness between 1 and 5 nm. The barrier layer 501 may include, for example, doped or unintentionally doped GaN and/or Al x Ga 1-x N (0.01 x 0.1) and has a thickness between 5 and 15 nm.
於本發明之一實施例,第一應力緩衝結構31例如包含複數個第一子層311以及複數個第二子層312交互堆疊以形成一超晶格(superlattice)結構,其中,交疊之對數介於3~10對(pairs);其中,最接近中間層40的第二子層312直接與中間層40連接;其中,第二子層312之材料包含非故意摻雜的III-V族化合物,例如包含InxGa1-xN(0.01x0.03);第一子層311之材料包含第一導電型的III-V族化合物,例如包含n型GaN或n型InxGa1-xN(0.001x0.01)且具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1017cm-3~1018cm-3之間,其中,第一子層311不包含銦或包含一銦含量小於第二子層312之銦含量。第一子層311具有一厚度介於10~50nm之間;第二子層312具有一厚度介於0.5~3nm之間;第一應力緩衝結構31具有一厚度介於50~500nm之間。 In one embodiment of the present invention, the first stress buffer structure 31 includes, for example, a plurality of first sub-layers 311 and a plurality of second sub-layers 312 alternately stacked to form a superlattice structure, wherein the number of overlapping pairs is between 3 and 10 pairs; wherein the second sub-layer 312 closest to the middle layer 40 is directly connected to the middle layer 40; wherein the material of the second sub-layer 312 includes an unintentionally doped III-V compound, such as In x Ga 1-x N (0.01 x 0.03); the material of the first sublayer 311 includes a III-V compound of the first conductivity type, such as n-type GaN or n-type In x Ga 1-x N (0.001 x 0.01) and having an n-type dopant (e.g., silicon) and an n-type dopant concentration between 10 17 cm -3 and 10 18 cm -3 , wherein the first sublayer 311 does not contain indium or contains an indium content less than that of the second sublayer 312. The first sublayer 311 has a thickness between 10 and 50 nm; the second sublayer 312 has a thickness between 0.5 and 3 nm; and the first stress buffer structure 31 has a thickness between 50 and 500 nm.
於本發明之一實施例,中間層40包含一第一部分401鄰接第一應力緩衝結構31以及一第二部分402鄰接主動層50;第一部分401不包含銦或包含一銦含量小於第二部分402之銦含量,例如包含GaN或InxGa1-xN(0<x0.01);第二部分402直接與第一部分401相接,其材料例如包含InxGa1-xN(0.001x0.02)且具有一銦含量大於第一部分401之銦含量。於本發明之一實施例,第二部分402之銦含量小於第二子層312之銦含量以降低第一應力緩衝結構31與主動層50之間所產生的壓應力(piezoelectric strain)。中間層40具有一厚度小於100nm;較佳地介於30nm至90nm之間;其中,第一部分401具有一厚度介於10nm至50nm之間,第二部分402具有一厚度介於0.5nm至15nm之間;其中,第二部分402之厚度與中間層40厚度之比值介於0.1至0.5之間。於本發明之一實施例,第二部分402之銦含 量小於第二子層312之銦含量,且第二部分402之厚度大於或等於第二子層312之厚度以進一步降低第一應力緩衝結構31與主動層50之間所產生的壓應力。第一部分401及第二部分402各具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1018cm-3及1019cm-3之間。較佳地,第二部分402之n型摻雜濃度大於第一部分401之n型摻雜濃度。於本發明之一實施例,中間層40之厚度小於第一應力緩衝結構31之厚度。 In one embodiment of the present invention, the intermediate layer 40 includes a first portion 401 adjacent to the first stress buffer structure 31 and a second portion 402 adjacent to the active layer 50; the first portion 401 does not contain indium or contains an indium content less than that of the second portion 402, for example, GaN or In x Ga 1-x N (0<x 0.01); the second portion 402 is directly connected to the first portion 401, and its material includes, for example, InxGa1 -xN (0.001 x 0.02) and has an indium content greater than that of the first portion 401. In one embodiment of the present invention, the indium content of the second portion 402 is less than that of the second sublayer 312 to reduce the piezoelectric strain generated between the first stress buffer structure 31 and the active layer 50. The intermediate layer 40 has a thickness less than 100 nm; preferably between 30 nm and 90 nm; wherein the first portion 401 has a thickness between 10 nm and 50 nm, and the second portion 402 has a thickness between 0.5 nm and 15 nm; wherein the ratio of the thickness of the second portion 402 to the thickness of the intermediate layer 40 is between 0.1 and 0.5. In one embodiment of the present invention, the indium content of the second portion 402 is less than the indium content of the second sub-layer 312, and the thickness of the second portion 402 is greater than or equal to the thickness of the second sub-layer 312 to further reduce the compressive stress generated between the first stress buffer structure 31 and the active layer 50. The first portion 401 and the second portion 402 each have an n-type dopant (e.g., silicon) and an n-type dopant concentration between 10 18 cm -3 and 10 19 cm -3 . Preferably, the n-type dopant concentration of the second portion 402 is greater than the n-type dopant concentration of the first portion 401. In one embodiment of the present invention, the thickness of the intermediate layer 40 is less than the thickness of the first stress buffer structure 31.
第2圖揭示符合本發明半導體元件之第二實施例,半導體元件2包括一基板10、一第一半導體層20形成於基板10上、一第一應力緩衝結構31形成於第一半導體層20上、一中間層40形成於第一應力緩衝結構20上、一第二應力緩衝結構32形成於中間層40上、一主動層(active layer)50形成於第二應力緩衝結構32上、一第二半導體層60形成於主動層50上、一第一電極71電性連接至第一半導體層20、以及一第二電極72電性連接至第二半導體層60。於本發明之一實施例,第一半導體層20包含一第一區域及一第二區域,第一應力緩衝層31係形成於所述之第一區域上;第一電極71係形成於所述之第二區域上,從而與第一半導體層20電性連接;其中,所述之第二區域與第一電極71之間不具有第一應力緩衝結構31、中間層40、第二應力緩衝結構32、主動層50、以及第二半導體層60。第二實施例與第一實施例之差異在於,半導體元件2除包含半導體元件1之全部結構外,更包含第二應力緩衝結構32形成於中間層40以及主動層50之間,其中,第二應力緩衝結構32包含單晶磊晶結構,第二應力緩衝結構32例如包含複數個第三子層321以及複數個第四子層322交互堆疊以形成一超晶格結構,其中,交疊之對數介於3~10對(pairs)。於本發明之一實施例,最靠近主動層50之第四子層321與主動層50之一阻障層501直接連接;最靠近中間層40之第三子層321與中間層40之第 二部分402直接連接。第二應力緩衝結構32之第四子層322之銦含量大於第一應力緩衝結構31之第二子層322之銦含量,其中,第三子層321不包含銦或包含一銦含量小於第四子層322之銦含量;第三子層321之材料例如包含GaN或InxGa1-xN(0<x0.02),第四子層322之材料例如包含InxGa1-xN(0.03x0.1),其中,第四子層322之銦含量大於第二子層312之銦含量。其中,第三子層321具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1017cm-3~1018cm-3之間。中間層之第二部分402之n型摻雜濃度大於第三子層321之n型摻雜濃度以降低第一應力緩衝結構31與主動層50之間所產生的壓應力。較佳地,第二部分402之n型摻雜濃度大於第一部分401之n型摻雜濃度以及第二部402之n型摻雜濃度大於第三子層321之n型摻雜濃度以進一步降低第一應力緩衝結構31與主動層50之間所產生的壓應力。第三子層321具有一厚度介於5~10nm之間;第四子層322具有一厚度介於0.5~3nm之間;第二應力緩衝結構32具有一厚度介於30~80nm之間。於本發明之一實施例,中間層40之厚度相當於或大於第二應力緩衝結構32之厚度,並且中間層40之厚度小於第一應力緩衝結構31之厚度。本實施例其餘結構之描述相同於實施例一,即第2圖與第1圖具有相同標號之結構代表彼此為相同之結構,並已詳細描述於實施例一,不在此贅述。 FIG. 2 discloses a second embodiment of the semiconductor device according to the present invention. The semiconductor device 2 includes a substrate 10, a first semiconductor layer 20 formed on the substrate 10, a first stress buffer structure 31 formed on the first semiconductor layer 20, an intermediate layer 40 formed on the first stress buffer structure 20, a second stress buffer structure 32 formed on the intermediate layer 40, an active layer 50 formed on the second stress buffer structure 32, a second semiconductor layer 60 formed on the active layer 50, a first electrode 71 electrically connected to the first semiconductor layer 20, and a second electrode 72 electrically connected to the second semiconductor layer 60. In one embodiment of the present invention, the first semiconductor layer 20 includes a first region and a second region, the first stress buffer layer 31 is formed on the first region; the first electrode 71 is formed on the second region, thereby being electrically connected to the first semiconductor layer 20; wherein, the first stress buffer structure 31, the intermediate layer 40, the second stress buffer structure 32, the active layer 50, and the second semiconductor layer 60 are not provided between the second region and the first electrode 71. The difference between the second embodiment and the first embodiment is that the semiconductor device 2 includes not only all the structures of the semiconductor device 1, but also a second stress buffer structure 32 formed between the intermediate layer 40 and the active layer 50, wherein the second stress buffer structure 32 includes a single crystal epitaxial structure, and the second stress buffer structure 32 includes, for example, a plurality of third sub-layers 321 and a plurality of fourth sub-layers 322 alternately stacked to form a super lattice structure, wherein the number of overlapping pairs is between 3 and 10 pairs. In one embodiment of the present invention, the fourth sublayer 321 closest to the active layer 50 is directly connected to a barrier layer 501 of the active layer 50; the third sublayer 321 closest to the intermediate layer 40 is directly connected to the second portion 402 of the intermediate layer 40. The indium content of the fourth sublayer 322 of the second stress buffer structure 32 is greater than the indium content of the second sublayer 322 of the first stress buffer structure 31, wherein the third sublayer 321 does not contain indium or contains an indium content less than the indium content of the fourth sublayer 322; the material of the third sublayer 321, for example, includes GaN or In x Ga 1-x N (0<x 0.02), the material of the fourth sub-layer 322 includes, for example, InxGa1 -xN (0.03 x 0.1), wherein the indium content of the fourth sublayer 322 is greater than the indium content of the second sublayer 312. wherein the third sublayer 321 has an n-type dopant (e.g., silicon) and an n-type dopant concentration between 10 17 cm -3 and 10 18 cm -3 . the n-type dopant concentration of the second portion 402 of the intermediate layer is greater than the n-type dopant concentration of the third sublayer 321 to reduce the compressive stress generated between the first stress buffer structure 31 and the active layer 50. Preferably, the n-type doping concentration of the second portion 402 is greater than the n-type doping concentration of the first portion 401 and the n-type doping concentration of the second portion 402 is greater than the n-type doping concentration of the third sublayer 321 to further reduce the compressive stress generated between the first stress buffer structure 31 and the active layer 50. The third sublayer 321 has a thickness between 5 and 10 nm; the fourth sublayer 322 has a thickness between 0.5 and 3 nm; and the second stress buffer structure 32 has a thickness between 30 and 80 nm. In one embodiment of the present invention, the thickness of the intermediate layer 40 is equal to or greater than the thickness of the second stress buffer structure 32, and the thickness of the intermediate layer 40 is less than the thickness of the first stress buffer structure 31. The description of the remaining structures of this embodiment is the same as that of the first embodiment, that is, the structures with the same reference numerals in FIG. 2 and FIG. 1 represent the same structures and have been described in detail in the first embodiment, which will not be repeated here.
本發明可有效降低半導體元件的壓應力,降低正向電壓(forward voltage)以及提高發光效率。本發明所列舉之各實施例僅用以說明本發明,並非用以限制本發明之範圍。任何人對本發明所作之任何顯而易知之修飾或變更皆不脫離本發明之精神與範圍。 The present invention can effectively reduce the compressive stress of semiconductor components, reduce the forward voltage and improve the luminous efficiency. The various embodiments listed in the present invention are only used to illustrate the present invention and are not used to limit the scope of the present invention. Any obvious modifications or changes made by anyone to the present invention do not deviate from the spirit and scope of the present invention.
1:半導體元件 1:Semiconductor components
10:基板 10: Substrate
20:第一半導體層 20: First semiconductor layer
31:第一應力緩衝結構 31: First stress buffer structure
311:第一子層 311: First sublayer
312:第二子層 312: Second sublayer
40:中間層 40: Middle layer
401:第一部分 401: Part 1
402:第二部分 402: Part 2
50:主動層 50: Active layer
501:阻障層 501: Barrier layer
502:井層 502: Well layer
60:第二半導體層 60: Second semiconductor layer
71:第一電極 71: First electrode
72:第二電極 72: Second electrode
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111149520A TWI859673B (en) | 2019-05-24 | 2019-05-24 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111149520A TWI859673B (en) | 2019-05-24 | 2019-05-24 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202316683A TW202316683A (en) | 2023-04-16 |
TWI859673B true TWI859673B (en) | 2024-10-21 |
Family
ID=86943237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111149520A TWI859673B (en) | 2019-05-24 | 2019-05-24 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI859673B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201310698A (en) * | 2011-07-08 | 2013-03-01 | Bridgelux Inc | Lateral contact blue light emitting diode with superlattice current diffusion layer |
TW201314946A (en) * | 2011-08-02 | 2013-04-01 | Bridgelux Inc | N-type gallium nitride layer with multiple layers of conductive intervening layers |
TW201340371A (en) * | 2012-03-30 | 2013-10-01 | Phostek Inc | Light-emitting diode device |
-
2019
- 2019-05-24 TW TW111149520A patent/TWI859673B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201310698A (en) * | 2011-07-08 | 2013-03-01 | Bridgelux Inc | Lateral contact blue light emitting diode with superlattice current diffusion layer |
TW201314946A (en) * | 2011-08-02 | 2013-04-01 | Bridgelux Inc | N-type gallium nitride layer with multiple layers of conductive intervening layers |
TW201340371A (en) * | 2012-03-30 | 2013-10-01 | Phostek Inc | Light-emitting diode device |
Also Published As
Publication number | Publication date |
---|---|
TW202316683A (en) | 2023-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI451591B (en) | Nitride-based illuminating device | |
US7429756B2 (en) | Nitride semiconductor light emitting device | |
TWI425662B (en) | Semiconductor light emitting device | |
CN103441196A (en) | Light emitting element and manufacturing method thereof | |
CN108198920A (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
WO2015176532A1 (en) | Preparation method for nitride light-emitting diode assembly | |
CN104377283B (en) | A kind of LED epitaxial slice structure | |
CN108305922A (en) | Nitride semiconductor structure and semiconductor light emitting element | |
CN109671817B (en) | A kind of light-emitting diode epitaxial wafer and preparation method thereof | |
TWI759602B (en) | Semiconductor device | |
CN108574027B (en) | Gallium nitride-based LED chip and manufacturing method thereof | |
TWI859673B (en) | Semiconductor device | |
EP2009707B1 (en) | Light emitting diode and method for manufacturing the same | |
CN113838954B (en) | LED (light-emitting diode) epitaxy and manufacturing method thereof | |
CN107808912B (en) | A kind of nitride light-emitting diode and preparation method thereof | |
TWI790928B (en) | Semiconductor device | |
CN104465930A (en) | Nitride light emitting diode | |
KR101198759B1 (en) | Nitride light emitting device | |
CN108598235B (en) | GaN-based LED structure and preparation method thereof | |
CN110600595A (en) | Aluminum gallium nitrogen-based ultraviolet LED epitaxial structure and ultraviolet LED lamp | |
TWI642203B (en) | Light-emitting element | |
CN110854246A (en) | Light-emitting diode and light-emitting diode manufacturing method | |
US8653499B2 (en) | Light-emitting diode with strain-relaxed layer for reducing strain in active layer | |
CN109638118B (en) | Method for improving P-type doping efficiency of nitride material and nitride film | |
CN116960242A (en) | A kind of light-emitting diode and its manufacturing method |