[go: up one dir, main page]

TWI859673B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI859673B
TWI859673B TW111149520A TW111149520A TWI859673B TW I859673 B TWI859673 B TW I859673B TW 111149520 A TW111149520 A TW 111149520A TW 111149520 A TW111149520 A TW 111149520A TW I859673 B TWI859673 B TW I859673B
Authority
TW
Taiwan
Prior art keywords
layer
stress buffer
buffer structure
indium content
sub
Prior art date
Application number
TW111149520A
Other languages
Chinese (zh)
Other versions
TW202316683A (en
Inventor
劉家銘
謝昌樺
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW111149520A priority Critical patent/TWI859673B/en
Publication of TW202316683A publication Critical patent/TW202316683A/en
Application granted granted Critical
Publication of TWI859673B publication Critical patent/TWI859673B/en

Links

Landscapes

  • Led Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

This invention provides a semiconductor device which comprises an active layer, a first semiconductor layer, a first strain-release structure positioned between the active layer and the first semiconductor layer, and an intermediate layer positioned between the first strain-release structure and the active layer. The strain-release structure comprises plural first sub-layers and plural second sub-layers alternately stacked. The band gap of the second sub-layer is smaller than the band gap of the first sub-layer. The intermediate layer comprises a first portion connected to the first strain-release layer and a second portion connected to the active layer, wherein the second portion and the second sub-layer each comprises an indium composition and the indium composition of the second portion is smaller than that of the second sub-layer.

Description

半導體元件Semiconductor components

本發明係關於一半導體元件,特別是關於具有中間層之半導體元件。 The present invention relates to a semiconductor device, and in particular to a semiconductor device having an intermediate layer.

III-V族化合物半導體已被廣泛開發應用於各式的電子元件,例如高電子遷移率電晶體(high electron-mobility transistor;HEMT)、高效率光伏元件(photovoltaic device)、以及發光二極體(light-emitting diode;LED)。 III-V compound semiconductors have been widely developed and applied in various electronic devices, such as high electron-mobility transistors (HEMT), high-efficiency photovoltaic devices, and light-emitting diodes (LED).

以發光二極體為例,發光二極體已被視為取代傳統光源的最佳解決方案之一,為能更進一步地達成節能省碳之功效,亮度提昇一直是本領域人員長期的研究課題。發光二極體的亮度提昇主要分為兩部份,一為內部量子效率(Internal Quantum Efficiency;IQE)之提昇,主要透過磊晶薄膜結構的改善以增進電子電洞的結合效率;另一方面為光摘出效率(Light Extraction Efficiency;LEE)之提昇,主要著重在使主動層發出之光線能有效穿透至元件外部,降低光線被發光二極體內部結構所吸收。 Take LEDs as an example. LEDs have been considered as one of the best solutions to replace traditional light sources. In order to further achieve the effect of energy saving and carbon saving, brightness improvement has been a long-term research topic for researchers in this field. The brightness improvement of LEDs is mainly divided into two parts. One is the improvement of internal quantum efficiency (IQE), which is mainly achieved by improving the structure of epitaxial thin films to enhance the electron-hole combination efficiency. The other is the improvement of light extraction efficiency (LEE), which mainly focuses on enabling the light emitted by the active layer to effectively penetrate the outside of the device and reduce the light absorption by the internal structure of the LED.

本發明即在改善III-V族化合物半導體元件之磊晶薄膜結構的品質,進而提高半導體元件的效能,例如提高發光二極體之內部量子效率。 The present invention aims to improve the quality of the epitaxial thin film structure of III-V compound semiconductor devices, thereby improving the performance of semiconductor devices, such as improving the internal quantum efficiency of light-emitting diodes.

本發明提出一種半導體元件,其包含一主動層、一第一半導體層、一第一應力緩衝結構,位於該主動層及該第一半導體層之間、一中間層位於該第一應力緩衝結構及該主動層之間,其中,該第一應力緩衝結構包含複數個第一子層以及複數個第二子層彼此交疊,該第二子層之能隙小於該第一子層之能隙,該中間層包含一第一部分鄰接該第一應力緩衝結構以及一第二部分鄰接該主動層,該第二部分與該第二子層各包含一銦含量且該第二部分之銦含量小於該第二子層之銦含量。於本發明之另一實施例,所述之半導體元件更包含一第二應力緩衝結構位於該第二部分以及該主動層之間,其中,該第二應力緩衝結構包含複數個第三子層以及複數個第四子層彼此交疊,該第四子層之能隙小於該第三子層之能隙。 The present invention provides a semiconductor element, which includes an active layer, a first semiconductor layer, a first stress buffer structure located between the active layer and the first semiconductor layer, and an intermediate layer located between the first stress buffer structure and the active layer, wherein the first stress buffer structure includes a plurality of first sublayers and a plurality of second sublayers overlapping each other, the energy gap of the second sublayer is smaller than the energy gap of the first sublayer, the intermediate layer includes a first portion adjacent to the first stress buffer structure and a second portion adjacent to the active layer, the second portion and the second sublayer each include an indium content, and the indium content of the second portion is smaller than the indium content of the second sublayer. In another embodiment of the present invention, the semiconductor device further comprises a second stress buffer structure located between the second portion and the active layer, wherein the second stress buffer structure comprises a plurality of third sub-layers and a plurality of fourth sub-layers overlapping each other, and the energy gap of the fourth sub-layer is smaller than the energy gap of the third sub-layer.

1、2:半導體元件 1, 2: Semiconductor components

10:基板 10: Substrate

20:第一半導體層 20: First semiconductor layer

31:第一應力緩衝結構 31: First stress buffer structure

311:第一子層 311: First sublayer

312:第二子層 312: Second sublayer

32:第二應力緩衝結構 32: Second stress buffer structure

321:第三子層 321: The third sublayer

322:第四子層 322: The fourth sublayer

40:中間層 40: Middle layer

401:第一部分 401: Part 1

402:第二部分 402: Part 2

50:主動層 50: Active layer

501:阻障層 501: Barrier layer

502:井層 502: Well layer

60:第二半導體層 60: Second semiconductor layer

71:第一電極 71: First electrode

72:第二電極 72: Second electrode

第1圖為一示意圖,揭示符合本發明半導體元件之第一實施例。 Figure 1 is a schematic diagram showing the first embodiment of the semiconductor device according to the present invention.

第2圖為一示意圖,揭示符合本發明半導體元件之第二實施例。 Figure 2 is a schematic diagram showing a second embodiment of the semiconductor device according to the present invention.

第1圖揭示符合本發明半導體元件之第一實施例,半導體元件1包括一基板10、一第一半導體層20形成於基板10上、一第一應力緩衝結構31形成於第一半導體層20上、一中間層40形成於第一應力緩衝結構20上、一主動層(active layer)50形成於中間層40上、一第二半導體層60形成於主動層50上、一第一電極71電性連接至第一半導體層20、以及一第二電極72電性連接至第二半導體層60。 於本發明之一實施例,第一半導體層20包含一第一區域及一第二區域,第一應力緩衝層31係形成於所述之第一區域上,第一電極71係形成於所述之第二區域上,從而與第一半導體層20電性連接;其中,所述之第二區域與第一電極71之間不具有第一應力緩衝結構31、中間層40、主動層50、以及第二半導體層60。 FIG. 1 discloses a first embodiment of a semiconductor device according to the present invention. The semiconductor device 1 includes a substrate 10, a first semiconductor layer 20 formed on the substrate 10, a first stress buffer structure 31 formed on the first semiconductor layer 20, an intermediate layer 40 formed on the first stress buffer structure 20, an active layer 50 formed on the intermediate layer 40, a second semiconductor layer 60 formed on the active layer 50, a first electrode 71 electrically connected to the first semiconductor layer 20, and a second electrode 72 electrically connected to the second semiconductor layer 60. In one embodiment of the present invention, the first semiconductor layer 20 includes a first region and a second region, the first stress buffer layer 31 is formed on the first region, and the first electrode 71 is formed on the second region, thereby being electrically connected to the first semiconductor layer 20; wherein, there is no first stress buffer structure 31, intermediate layer 40, active layer 50, and second semiconductor layer 60 between the second region and the first electrode 71.

於本發明之一實施例,基板10、第一半導體層20、第一應力緩衝結構31、中間層40、主動層50與第二半導體層60均包含單晶磊晶結構。各磊晶結構,較佳地,係以有機金屬氣相沉積法(MOCVD)形成,並且各磊晶結構之材料組成可藉由改變形成該磊晶結構時所通入反應器中的各反應物的流量及/或反應器的溫度來調整。基板10之晶格常數與第一半導體層20之晶格常數之差異不小於基板10之晶格常數之1%,其中,基板10之材料例如包含藍寶石。第一半導體層20包含具有第一導電型的III-V族化合物,例如包含n型氮化鎵(GaN)且具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1*1018~5*1018cm-3之間。第二半導體層60包含具有第二導電型的III-V族化合物,例如包含p型GaN且具有一p型摻雜質(例如為鎂)以及一p型摻雜質濃度介於1*1019~5*1020cm-3之間,其中,第二導電型相反於第一導電型。半導體元件1為一發光二極體(LED)時,主動層50例如包含III-V族化合物以及多重量子井(Multiple Quantum Wells;MQW)結構,其中多重量子井結構係包含複數個阻障層(barrier layer)501及複數個井層(well layer)502交互堆疊,並於驅動時發出可見光或不可見光,其中,交疊之對數介於3~15對(pairs)。井層502之材料具有一能隙(energy band gap)對應發出光之波長並且小於阻障層501之能隙,井層502例如包含非故意摻雜(unintentionally doped)之InxGa1-xN(0.05

Figure 111149520-A0305-02-0005-1
x
Figure 111149520-A0305-02-0005-2
0.25)並具有一厚度介於1~5nm之間,阻障層501例如包含摻 雜或非故意摻雜之GaN及/或AlxGa1-xN(0.01
Figure 111149520-A0305-02-0006-3
x
Figure 111149520-A0305-02-0006-4
0.1)並且具有一厚度介於5~15nm之間。 In one embodiment of the present invention, the substrate 10, the first semiconductor layer 20, the first stress buffer structure 31, the intermediate layer 40, the active layer 50 and the second semiconductor layer 60 all include single crystal epitaxial structures. Each epitaxial structure is preferably formed by metal organic vapor deposition (MOCVD), and the material composition of each epitaxial structure can be adjusted by changing the flow rate of each reactant introduced into the reactor when forming the epitaxial structure and/or the temperature of the reactor. The difference between the lattice constant of the substrate 10 and the lattice constant of the first semiconductor layer 20 is not less than 1% of the lattice constant of the substrate 10, wherein the material of the substrate 10 includes sapphire, for example. The first semiconductor layer 20 includes a III-V compound with a first conductivity type, such as n-type gallium nitride (GaN) and an n-type dopant (such as silicon) and an n-type dopant concentration between 1*10 18 and 5*10 18 cm -3 . The second semiconductor layer 60 includes a III-V compound with a second conductivity type, such as p-type GaN and a p-type dopant (such as magnesium) and a p-type dopant concentration between 1*10 19 and 5*10 20 cm -3 , wherein the second conductivity type is opposite to the first conductivity type. When the semiconductor device 1 is a light emitting diode (LED), the active layer 50 includes, for example, a III-V compound and a multiple quantum well (MQW) structure, wherein the multiple quantum well structure includes a plurality of barrier layers 501 and a plurality of well layers 502 stacked alternately, and emits visible light or invisible light when driven, wherein the number of overlapping pairs is between 3 and 15 pairs. The material of the well layer 502 has an energy band gap corresponding to the wavelength of the emitted light and smaller than the energy band gap of the barrier layer 501, and the well layer 502 includes, for example, unintentionally doped In x Ga 1-x N (0.05
Figure 111149520-A0305-02-0005-1
x
Figure 111149520-A0305-02-0005-2
0.25) and has a thickness between 1 and 5 nm. The barrier layer 501 may include, for example, doped or unintentionally doped GaN and/or Al x Ga 1-x N (0.01
Figure 111149520-A0305-02-0006-3
x
Figure 111149520-A0305-02-0006-4
0.1) and has a thickness between 5 and 15 nm.

於本發明之一實施例,第一應力緩衝結構31例如包含複數個第一子層311以及複數個第二子層312交互堆疊以形成一超晶格(superlattice)結構,其中,交疊之對數介於3~10對(pairs);其中,最接近中間層40的第二子層312直接與中間層40連接;其中,第二子層312之材料包含非故意摻雜的III-V族化合物,例如包含InxGa1-xN(0.01

Figure 111149520-A0305-02-0006-5
x
Figure 111149520-A0305-02-0006-6
0.03);第一子層311之材料包含第一導電型的III-V族化合物,例如包含n型GaN或n型InxGa1-xN(0.001
Figure 111149520-A0305-02-0006-7
x
Figure 111149520-A0305-02-0006-8
0.01)且具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1017cm-3~1018cm-3之間,其中,第一子層311不包含銦或包含一銦含量小於第二子層312之銦含量。第一子層311具有一厚度介於10~50nm之間;第二子層312具有一厚度介於0.5~3nm之間;第一應力緩衝結構31具有一厚度介於50~500nm之間。 In one embodiment of the present invention, the first stress buffer structure 31 includes, for example, a plurality of first sub-layers 311 and a plurality of second sub-layers 312 alternately stacked to form a superlattice structure, wherein the number of overlapping pairs is between 3 and 10 pairs; wherein the second sub-layer 312 closest to the middle layer 40 is directly connected to the middle layer 40; wherein the material of the second sub-layer 312 includes an unintentionally doped III-V compound, such as In x Ga 1-x N (0.01
Figure 111149520-A0305-02-0006-5
x
Figure 111149520-A0305-02-0006-6
0.03); the material of the first sublayer 311 includes a III-V compound of the first conductivity type, such as n-type GaN or n-type In x Ga 1-x N (0.001
Figure 111149520-A0305-02-0006-7
x
Figure 111149520-A0305-02-0006-8
0.01) and having an n-type dopant (e.g., silicon) and an n-type dopant concentration between 10 17 cm -3 and 10 18 cm -3 , wherein the first sublayer 311 does not contain indium or contains an indium content less than that of the second sublayer 312. The first sublayer 311 has a thickness between 10 and 50 nm; the second sublayer 312 has a thickness between 0.5 and 3 nm; and the first stress buffer structure 31 has a thickness between 50 and 500 nm.

於本發明之一實施例,中間層40包含一第一部分401鄰接第一應力緩衝結構31以及一第二部分402鄰接主動層50;第一部分401不包含銦或包含一銦含量小於第二部分402之銦含量,例如包含GaN或InxGa1-xN(0<x

Figure 111149520-A0305-02-0006-9
0.01);第二部分402直接與第一部分401相接,其材料例如包含InxGa1-xN(0.001
Figure 111149520-A0305-02-0006-10
x
Figure 111149520-A0305-02-0006-11
0.02)且具有一銦含量大於第一部分401之銦含量。於本發明之一實施例,第二部分402之銦含量小於第二子層312之銦含量以降低第一應力緩衝結構31與主動層50之間所產生的壓應力(piezoelectric strain)。中間層40具有一厚度小於100nm;較佳地介於30nm至90nm之間;其中,第一部分401具有一厚度介於10nm至50nm之間,第二部分402具有一厚度介於0.5nm至15nm之間;其中,第二部分402之厚度與中間層40厚度之比值介於0.1至0.5之間。於本發明之一實施例,第二部分402之銦含 量小於第二子層312之銦含量,且第二部分402之厚度大於或等於第二子層312之厚度以進一步降低第一應力緩衝結構31與主動層50之間所產生的壓應力。第一部分401及第二部分402各具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1018cm-3及1019cm-3之間。較佳地,第二部分402之n型摻雜濃度大於第一部分401之n型摻雜濃度。於本發明之一實施例,中間層40之厚度小於第一應力緩衝結構31之厚度。 In one embodiment of the present invention, the intermediate layer 40 includes a first portion 401 adjacent to the first stress buffer structure 31 and a second portion 402 adjacent to the active layer 50; the first portion 401 does not contain indium or contains an indium content less than that of the second portion 402, for example, GaN or In x Ga 1-x N (0<x
Figure 111149520-A0305-02-0006-9
0.01); the second portion 402 is directly connected to the first portion 401, and its material includes, for example, InxGa1 -xN (0.001
Figure 111149520-A0305-02-0006-10
x
Figure 111149520-A0305-02-0006-11
0.02) and has an indium content greater than that of the first portion 401. In one embodiment of the present invention, the indium content of the second portion 402 is less than that of the second sublayer 312 to reduce the piezoelectric strain generated between the first stress buffer structure 31 and the active layer 50. The intermediate layer 40 has a thickness less than 100 nm; preferably between 30 nm and 90 nm; wherein the first portion 401 has a thickness between 10 nm and 50 nm, and the second portion 402 has a thickness between 0.5 nm and 15 nm; wherein the ratio of the thickness of the second portion 402 to the thickness of the intermediate layer 40 is between 0.1 and 0.5. In one embodiment of the present invention, the indium content of the second portion 402 is less than the indium content of the second sub-layer 312, and the thickness of the second portion 402 is greater than or equal to the thickness of the second sub-layer 312 to further reduce the compressive stress generated between the first stress buffer structure 31 and the active layer 50. The first portion 401 and the second portion 402 each have an n-type dopant (e.g., silicon) and an n-type dopant concentration between 10 18 cm -3 and 10 19 cm -3 . Preferably, the n-type dopant concentration of the second portion 402 is greater than the n-type dopant concentration of the first portion 401. In one embodiment of the present invention, the thickness of the intermediate layer 40 is less than the thickness of the first stress buffer structure 31.

第2圖揭示符合本發明半導體元件之第二實施例,半導體元件2包括一基板10、一第一半導體層20形成於基板10上、一第一應力緩衝結構31形成於第一半導體層20上、一中間層40形成於第一應力緩衝結構20上、一第二應力緩衝結構32形成於中間層40上、一主動層(active layer)50形成於第二應力緩衝結構32上、一第二半導體層60形成於主動層50上、一第一電極71電性連接至第一半導體層20、以及一第二電極72電性連接至第二半導體層60。於本發明之一實施例,第一半導體層20包含一第一區域及一第二區域,第一應力緩衝層31係形成於所述之第一區域上;第一電極71係形成於所述之第二區域上,從而與第一半導體層20電性連接;其中,所述之第二區域與第一電極71之間不具有第一應力緩衝結構31、中間層40、第二應力緩衝結構32、主動層50、以及第二半導體層60。第二實施例與第一實施例之差異在於,半導體元件2除包含半導體元件1之全部結構外,更包含第二應力緩衝結構32形成於中間層40以及主動層50之間,其中,第二應力緩衝結構32包含單晶磊晶結構,第二應力緩衝結構32例如包含複數個第三子層321以及複數個第四子層322交互堆疊以形成一超晶格結構,其中,交疊之對數介於3~10對(pairs)。於本發明之一實施例,最靠近主動層50之第四子層321與主動層50之一阻障層501直接連接;最靠近中間層40之第三子層321與中間層40之第 二部分402直接連接。第二應力緩衝結構32之第四子層322之銦含量大於第一應力緩衝結構31之第二子層322之銦含量,其中,第三子層321不包含銦或包含一銦含量小於第四子層322之銦含量;第三子層321之材料例如包含GaN或InxGa1-xN(0<x

Figure 111149520-A0305-02-0008-12
0.02),第四子層322之材料例如包含InxGa1-xN(0.03
Figure 111149520-A0305-02-0008-13
x
Figure 111149520-A0305-02-0008-14
0.1),其中,第四子層322之銦含量大於第二子層312之銦含量。其中,第三子層321具有一n型摻雜質(例如為矽)以及一n型摻雜濃度介於1017cm-3~1018cm-3之間。中間層之第二部分402之n型摻雜濃度大於第三子層321之n型摻雜濃度以降低第一應力緩衝結構31與主動層50之間所產生的壓應力。較佳地,第二部分402之n型摻雜濃度大於第一部分401之n型摻雜濃度以及第二部402之n型摻雜濃度大於第三子層321之n型摻雜濃度以進一步降低第一應力緩衝結構31與主動層50之間所產生的壓應力。第三子層321具有一厚度介於5~10nm之間;第四子層322具有一厚度介於0.5~3nm之間;第二應力緩衝結構32具有一厚度介於30~80nm之間。於本發明之一實施例,中間層40之厚度相當於或大於第二應力緩衝結構32之厚度,並且中間層40之厚度小於第一應力緩衝結構31之厚度。本實施例其餘結構之描述相同於實施例一,即第2圖與第1圖具有相同標號之結構代表彼此為相同之結構,並已詳細描述於實施例一,不在此贅述。 FIG. 2 discloses a second embodiment of the semiconductor device according to the present invention. The semiconductor device 2 includes a substrate 10, a first semiconductor layer 20 formed on the substrate 10, a first stress buffer structure 31 formed on the first semiconductor layer 20, an intermediate layer 40 formed on the first stress buffer structure 20, a second stress buffer structure 32 formed on the intermediate layer 40, an active layer 50 formed on the second stress buffer structure 32, a second semiconductor layer 60 formed on the active layer 50, a first electrode 71 electrically connected to the first semiconductor layer 20, and a second electrode 72 electrically connected to the second semiconductor layer 60. In one embodiment of the present invention, the first semiconductor layer 20 includes a first region and a second region, the first stress buffer layer 31 is formed on the first region; the first electrode 71 is formed on the second region, thereby being electrically connected to the first semiconductor layer 20; wherein, the first stress buffer structure 31, the intermediate layer 40, the second stress buffer structure 32, the active layer 50, and the second semiconductor layer 60 are not provided between the second region and the first electrode 71. The difference between the second embodiment and the first embodiment is that the semiconductor device 2 includes not only all the structures of the semiconductor device 1, but also a second stress buffer structure 32 formed between the intermediate layer 40 and the active layer 50, wherein the second stress buffer structure 32 includes a single crystal epitaxial structure, and the second stress buffer structure 32 includes, for example, a plurality of third sub-layers 321 and a plurality of fourth sub-layers 322 alternately stacked to form a super lattice structure, wherein the number of overlapping pairs is between 3 and 10 pairs. In one embodiment of the present invention, the fourth sublayer 321 closest to the active layer 50 is directly connected to a barrier layer 501 of the active layer 50; the third sublayer 321 closest to the intermediate layer 40 is directly connected to the second portion 402 of the intermediate layer 40. The indium content of the fourth sublayer 322 of the second stress buffer structure 32 is greater than the indium content of the second sublayer 322 of the first stress buffer structure 31, wherein the third sublayer 321 does not contain indium or contains an indium content less than the indium content of the fourth sublayer 322; the material of the third sublayer 321, for example, includes GaN or In x Ga 1-x N (0<x
Figure 111149520-A0305-02-0008-12
0.02), the material of the fourth sub-layer 322 includes, for example, InxGa1 -xN (0.03
Figure 111149520-A0305-02-0008-13
x
Figure 111149520-A0305-02-0008-14
0.1), wherein the indium content of the fourth sublayer 322 is greater than the indium content of the second sublayer 312. wherein the third sublayer 321 has an n-type dopant (e.g., silicon) and an n-type dopant concentration between 10 17 cm -3 and 10 18 cm -3 . the n-type dopant concentration of the second portion 402 of the intermediate layer is greater than the n-type dopant concentration of the third sublayer 321 to reduce the compressive stress generated between the first stress buffer structure 31 and the active layer 50. Preferably, the n-type doping concentration of the second portion 402 is greater than the n-type doping concentration of the first portion 401 and the n-type doping concentration of the second portion 402 is greater than the n-type doping concentration of the third sublayer 321 to further reduce the compressive stress generated between the first stress buffer structure 31 and the active layer 50. The third sublayer 321 has a thickness between 5 and 10 nm; the fourth sublayer 322 has a thickness between 0.5 and 3 nm; and the second stress buffer structure 32 has a thickness between 30 and 80 nm. In one embodiment of the present invention, the thickness of the intermediate layer 40 is equal to or greater than the thickness of the second stress buffer structure 32, and the thickness of the intermediate layer 40 is less than the thickness of the first stress buffer structure 31. The description of the remaining structures of this embodiment is the same as that of the first embodiment, that is, the structures with the same reference numerals in FIG. 2 and FIG. 1 represent the same structures and have been described in detail in the first embodiment, which will not be repeated here.

本發明可有效降低半導體元件的壓應力,降低正向電壓(forward voltage)以及提高發光效率。本發明所列舉之各實施例僅用以說明本發明,並非用以限制本發明之範圍。任何人對本發明所作之任何顯而易知之修飾或變更皆不脫離本發明之精神與範圍。 The present invention can effectively reduce the compressive stress of semiconductor components, reduce the forward voltage and improve the luminous efficiency. The various embodiments listed in the present invention are only used to illustrate the present invention and are not used to limit the scope of the present invention. Any obvious modifications or changes made by anyone to the present invention do not deviate from the spirit and scope of the present invention.

1:半導體元件 1:Semiconductor components

10:基板 10: Substrate

20:第一半導體層 20: First semiconductor layer

31:第一應力緩衝結構 31: First stress buffer structure

311:第一子層 311: First sublayer

312:第二子層 312: Second sublayer

40:中間層 40: Middle layer

401:第一部分 401: Part 1

402:第二部分 402: Part 2

50:主動層 50: Active layer

501:阻障層 501: Barrier layer

502:井層 502: Well layer

60:第二半導體層 60: Second semiconductor layer

71:第一電極 71: First electrode

72:第二電極 72: Second electrode

Claims (10)

一種半導體元件,其包含: 一主動層; 一第一半導體層; 一第一應力緩衝結構,位於該主動層及該第一半導體層之間,該第一應力緩衝結構包含一或複數個第一子層以及一或複數個第二子層,且該一或複數個第一子層包含一銦含量小於該一或複數個第二子層之一銦含量; 一中間層,位於該第一應力緩衝結構及該主動層之間,包含一銦含量小於該一或複數個第二子層之該銦含量;以及 一第二應力緩衝結構,位於該中間層及該主動層之間,其中,該第二應力緩衝結構包含複數個第三子層以及複數個第四子層彼此交疊,該複數個第三子層包含一銦含量小於該複數個第四子層所包含之一銦含量,且該複數個第四子層所包含之該銦含量大於該一或複數個第二子層之該銦含量。 A semiconductor element, comprising: an active layer; a first semiconductor layer; a first stress buffer structure, located between the active layer and the first semiconductor layer, the first stress buffer structure comprising one or more first sublayers and one or more second sublayers, and the one or more first sublayers comprising an indium content less than an indium content of the one or more second sublayers; an intermediate layer, located between the first stress buffer structure and the active layer, comprising an indium content less than the indium content of the one or more second sublayers; and A second stress buffer structure is located between the intermediate layer and the active layer, wherein the second stress buffer structure includes a plurality of third sublayers and a plurality of fourth sublayers overlapping each other, the plurality of third sublayers contain an indium content less than an indium content contained in the plurality of fourth sublayers, and the indium content contained in the plurality of fourth sublayers is greater than the indium content of the one or more second sublayers. 如申請專利範圍第1項所述的半導體元件,其中,該中間層包含一第一部分鄰接該第一應力緩衝結構以及一第二部分鄰接該第二應力緩衝結構,且該第二部分包含之該銦含量大於該第一部分包含之一銦含量。The semiconductor device as described in claim 1, wherein the intermediate layer includes a first portion adjacent to the first stress buffer structure and a second portion adjacent to the second stress buffer structure, and the indium content included in the second portion is greater than the indium content included in the first portion. 如申請專利範圍第2項所述的半導體元件,其中,該第二部分包含一銦含量小於該一或複數個第二子層之該銦含量。A semiconductor device as described in claim 2, wherein the second portion comprises an indium content that is less than the indium content of the one or more second sub-layers. 如申請專利範圍第1項所述的半導體元件,其中,該中間層包含一n型摻雜濃度介於10 1 8cm -3及10 19cm -3之間。 The semiconductor device as claimed in claim 1, wherein the intermediate layer comprises an n-type doping concentration between 10 18 cm -3 and 10 19 cm -3 . 如申請專利範圍第1項所述的半導體元件,其中,該中間層包含一厚度小於該第一應力緩衝結構包含之一厚度。A semiconductor device as described in claim 1, wherein the intermediate layer comprises a thickness less than a thickness of the first stress buffer structure. 如申請專利範圍第1項所述的半導體元件,其中該第一應力緩衝結構之該複數個第一子層以及該複數個第二子層彼此交疊,且交疊之對數介於3~10對。As described in claim 1, the plurality of first sub-layers and the plurality of second sub-layers of the first stress buffer structure overlap each other, and the number of overlapping pairs is between 3 and 10 pairs. 如申請專利範圍第6項所述的半導體元件,其中,該複數個第一子層各具有一厚度介於10~50nm之間,且該複數個第二子層各具有一厚度介於0.5~3nm之間。As described in claim 6, the plurality of first sub-layers each have a thickness between 10 and 50 nm, and the plurality of second sub-layers each have a thickness between 0.5 and 3 nm. 如申請專利範圍第1項所述的半導體元件,該中間層包含一厚度小於100nm。In the semiconductor device as described in claim 1, the intermediate layer comprises a thickness less than 100 nm. 如申請專利範圍第1項所述的半導體元件,其中,該第二應力緩衝結構包含一n型摻雜濃度介於10 1 7cm -3及10 18cm -3之間。 The semiconductor device as claimed in claim 1, wherein the second stress buffer structure comprises an n-type doping concentration between 10 17 cm -3 and 10 18 cm -3 . 如申請專利範圍第1項所述的半導體元件,包含一第二半導體層形成於該主動層上;一第一電極電性連接該第一半導體層;以及一第二電極電性連接該第二半導體層,其中,該第一半導體層包含一第一區域及一第二區域,該第一應力緩衝結構形成於該第一區域上,該第一電極係形成於該第二區域上,且該第二區域與該第一電極之間不具有該第一應力緩衝結構。The semiconductor element as described in item 1 of the patent application scope includes a second semiconductor layer formed on the active layer; a first electrode electrically connected to the first semiconductor layer; and a second electrode electrically connected to the second semiconductor layer, wherein the first semiconductor layer includes a first region and a second region, the first stress buffer structure is formed on the first region, the first electrode is formed on the second region, and the first stress buffer structure is not provided between the second region and the first electrode.
TW111149520A 2019-05-24 2019-05-24 Semiconductor device TWI859673B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111149520A TWI859673B (en) 2019-05-24 2019-05-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111149520A TWI859673B (en) 2019-05-24 2019-05-24 Semiconductor device

Publications (2)

Publication Number Publication Date
TW202316683A TW202316683A (en) 2023-04-16
TWI859673B true TWI859673B (en) 2024-10-21

Family

ID=86943237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149520A TWI859673B (en) 2019-05-24 2019-05-24 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI859673B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201310698A (en) * 2011-07-08 2013-03-01 Bridgelux Inc Lateral contact blue light emitting diode with superlattice current diffusion layer
TW201314946A (en) * 2011-08-02 2013-04-01 Bridgelux Inc N-type gallium nitride layer with multiple layers of conductive intervening layers
TW201340371A (en) * 2012-03-30 2013-10-01 Phostek Inc Light-emitting diode device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201310698A (en) * 2011-07-08 2013-03-01 Bridgelux Inc Lateral contact blue light emitting diode with superlattice current diffusion layer
TW201314946A (en) * 2011-08-02 2013-04-01 Bridgelux Inc N-type gallium nitride layer with multiple layers of conductive intervening layers
TW201340371A (en) * 2012-03-30 2013-10-01 Phostek Inc Light-emitting diode device

Also Published As

Publication number Publication date
TW202316683A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
TWI451591B (en) Nitride-based illuminating device
US7429756B2 (en) Nitride semiconductor light emitting device
TWI425662B (en) Semiconductor light emitting device
CN103441196A (en) Light emitting element and manufacturing method thereof
CN108198920A (en) Light emitting diode epitaxial wafer and preparation method thereof
WO2015176532A1 (en) Preparation method for nitride light-emitting diode assembly
CN104377283B (en) A kind of LED epitaxial slice structure
CN108305922A (en) Nitride semiconductor structure and semiconductor light emitting element
CN109671817B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
TWI759602B (en) Semiconductor device
CN108574027B (en) Gallium nitride-based LED chip and manufacturing method thereof
TWI859673B (en) Semiconductor device
EP2009707B1 (en) Light emitting diode and method for manufacturing the same
CN113838954B (en) LED (light-emitting diode) epitaxy and manufacturing method thereof
CN107808912B (en) A kind of nitride light-emitting diode and preparation method thereof
TWI790928B (en) Semiconductor device
CN104465930A (en) Nitride light emitting diode
KR101198759B1 (en) Nitride light emitting device
CN108598235B (en) GaN-based LED structure and preparation method thereof
CN110600595A (en) Aluminum gallium nitrogen-based ultraviolet LED epitaxial structure and ultraviolet LED lamp
TWI642203B (en) Light-emitting element
CN110854246A (en) Light-emitting diode and light-emitting diode manufacturing method
US8653499B2 (en) Light-emitting diode with strain-relaxed layer for reducing strain in active layer
CN109638118B (en) Method for improving P-type doping efficiency of nitride material and nitride film
CN116960242A (en) A kind of light-emitting diode and its manufacturing method