CN110854246A - Light-emitting diode and light-emitting diode manufacturing method - Google Patents
Light-emitting diode and light-emitting diode manufacturing method Download PDFInfo
- Publication number
- CN110854246A CN110854246A CN201911119307.2A CN201911119307A CN110854246A CN 110854246 A CN110854246 A CN 110854246A CN 201911119307 A CN201911119307 A CN 201911119307A CN 110854246 A CN110854246 A CN 110854246A
- Authority
- CN
- China
- Prior art keywords
- layer
- quantum well
- quantum
- potential
- type semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000004888 barrier function Effects 0.000 claims abstract description 82
- 239000004065 semiconductor Substances 0.000 claims description 65
- 229910002601 GaN Inorganic materials 0.000 claims description 44
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 30
- 238000005036 potential barrier Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 293
- 230000010287 polarization Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本申请涉及半导体技术领域,特别是涉及一种发光二极管和发光二极管制备方法。The present application relates to the technical field of semiconductors, and in particular, to a light-emitting diode and a method for manufacturing the light-emitting diode.
背景技术Background technique
发光二极管(Light-Emitting Diode,LED)是一种能把电能转化成光能的半导体电子元件。因具有体积小、能耗低、寿命长、驱动电压低等优点而倍受欢迎,目前广泛用于交通信号灯、汽车内外灯、城市景观照明、手机背光源等领域。外延片是制备发光二极管的基础结构。传统的发光二极管外延片的结构包括衬底以及依次生长在衬底上的低温缓冲层、未掺杂的GaN层、N型GaN层、多量子阱层、和P型GaN层。其中,多量子阱层包括交替生长的InGaN阱层和GaN垒层,在电流的作用下,N型GaN层中的电子与P型GaN层中的空穴均会迁移至多量子阱层中并进行复合发光。Light-Emitting Diode (LED) is a semiconductor electronic component that can convert electrical energy into light energy. It is very popular due to its advantages of small size, low energy consumption, long life, and low driving voltage. Epitaxial wafers are the basic structures for preparing light-emitting diodes. The structure of a conventional light emitting diode epitaxial wafer includes a substrate and a low temperature buffer layer, an undoped GaN layer, an N-type GaN layer, a multiple quantum well layer, and a P-type GaN layer sequentially grown on the substrate. The multi-quantum well layer includes alternately grown InGaN well layers and GaN barrier layers. Under the action of current, electrons in the N-type GaN layer and holes in the P-type GaN layer will migrate to the multi-quantum well layer and conduct Compound luminescence.
然而,由于电子具有较小的有效质量和较高的迁移率,电子可以轻易的越过GaN势垒,到达P型层与空穴发生非辐射复合,空穴的浓度和注入效率降低,使得发光二极管的发光效率降低。However, due to the small effective mass and high mobility of electrons, electrons can easily cross the GaN barrier and reach the P-type layer for non-radiative recombination with holes. The concentration and injection efficiency of holes are reduced, making the light-emitting diodes luminous efficiency decreased.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对传统的发光二极管外延片中空穴的浓度和注入效率降低导致的发光效率降低的问题,提供一种发光二极管和发光二极管制备方法。Based on this, it is necessary to provide a light-emitting diode and a method for fabricating a light-emitting diode in order to solve the problem of reducing the luminous efficiency caused by the reduction of hole concentration and injection efficiency in the conventional light-emitting diode epitaxial wafer.
本申请提供一种发光二极管包括衬底、缓冲层、氮化镓层、N型半导体层、多量子阱层以及P型半导体层。所述缓冲层、所述氮化镓层、所述N型半导体层以及所述P型半导体层在所述衬底表面依次层叠设置。所述多量子阱层层叠设置于所述N型半导体层与所述P型半导体层之间。所述多量子阱层包括至少一个子层结构。所述子层结构设置于所述N型半导体层远离所述氮化镓层的表面。每个所述子层结构包括第一量子阱结构以及多个第二量子阱结构,所述第一量子阱结构设置于所述N型半导体层远离所述氮化镓层的表面,所述多个第二量子阱结构依次设置于所述第一量子阱结构远离所述N型半导体层的表面,且每个所述第二量子阱结构的厚度小于所述第一量子阱结构的厚度。The application provides a light-emitting diode including a substrate, a buffer layer, a gallium nitride layer, an N-type semiconductor layer, a multiple quantum well layer, and a P-type semiconductor layer. The buffer layer, the gallium nitride layer, the N-type semiconductor layer and the P-type semiconductor layer are sequentially stacked on the surface of the substrate. The multiple quantum well layer is stacked between the N-type semiconductor layer and the P-type semiconductor layer. The multiple quantum well layer includes at least one sublayer structure. The sub-layer structure is disposed on the surface of the N-type semiconductor layer away from the gallium nitride layer. Each of the sub-layer structures includes a first quantum well structure and a plurality of second quantum well structures, the first quantum well structures are disposed on the surface of the N-type semiconductor layer away from the gallium nitride layer, the plurality of A plurality of second quantum well structures are sequentially disposed on the surface of the first quantum well structure away from the N-type semiconductor layer, and the thickness of each of the second quantum well structures is smaller than that of the first quantum well structure.
在一个实施例中,所述第一量子阱结构包括量子垒层。所述量子垒层设置于所述N型半导体层远离所述氮化镓层的表面。所述第一势阱层设置于所述量子垒层远离所述N型半导体层的表面。In one embodiment, the first quantum well structure includes a quantum barrier layer. The quantum barrier layer is disposed on the surface of the N-type semiconductor layer away from the gallium nitride layer. The first potential well layer is disposed on the surface of the quantum barrier layer away from the N-type semiconductor layer.
在一个实施例中,所述量子垒层为AlmInnGa1-m-nN,其中0<m<0.6,0<n<0.2。所述第一势阱层为InxGa1-xN,其中0.2<x<0.22。In one embodiment, the quantum barrier layer is Al m In n Ga 1-mn N, wherein 0<m<0.6 and 0<n<0.2. The first potential well layer is In x Ga 1-x N, where 0.2<x<0.22.
在一个实施例中,所述量子垒层的厚度为100nm~140nm。所述第一势阱层的厚度为2nm~6nm。In one embodiment, the quantum barrier layer has a thickness of 100 nm to 140 nm. The thickness of the first potential well layer is 2 nm˜6 nm.
在一个实施例中,每个所述第二量子阱结构包括第一势垒层以及第二势阱层。所述第一势垒层设置于所述第一势阱层远离所述量子垒层的表面。所述第二势阱层设置于所述第一势垒层远离所述第一势阱层的表面。In one embodiment, each of the second quantum well structures includes a first potential barrier layer and a second potential well layer. The first potential barrier layer is disposed on the surface of the first potential well layer away from the quantum barrier layer. The second potential well layer is disposed on a surface of the first potential barrier layer away from the first potential well layer.
在一个实施例中,所述第一势垒层为InyGa1-yN,其中0<y<0.1。所述第二势阱层为InxGa1-xN,其中0.2<x<0.22。In one embodiment, the first barrier layer is In y Ga 1-y N, where 0<y<0.1. The second potential well layer is In x Ga 1-x N, where 0.2<x<0.22.
在一个实施例中,所述第一势垒层的厚度为4nm~8nm。所述第二势阱层的厚度为2nm~6nm。In one embodiment, the thickness of the first barrier layer is 4 nm˜8 nm. The thickness of the second potential well layer is 2 nm˜6 nm.
在一个实施例中,一种发光二极管制备方法包括:In one embodiment, a method for fabricating a light-emitting diode includes:
S10,提供衬底,在所述衬底表面依次制备缓冲层、氮化镓层以及N型半导体层;S10, providing a substrate, and sequentially preparing a buffer layer, a gallium nitride layer and an N-type semiconductor layer on the surface of the substrate;
S20,设置生长温度为850℃~950℃,在所述N型半导体层远离所述氮化镓层的表面制备量子垒层;S20, setting the growth temperature to be 850°C to 950°C, and preparing a quantum barrier layer on the surface of the N-type semiconductor layer away from the gallium nitride layer;
S30,设置生长温度为700℃~800℃,在所述量子垒层远离所述N型半导体层的表面制备第一势阱层;S30 , setting the growth temperature to be 700° C.˜800° C., and preparing a first potential well layer on the surface of the quantum barrier layer away from the N-type semiconductor layer;
S40,设置生长温度为750℃~850℃,在所述第一势阱层远离所述量子垒层的表面制备第一势垒层,且在所述第一势垒层远离所述第一势阱层的表面制备第二势阱层;以及S40 , setting the growth temperature to be 750° C.˜850° C., preparing a first potential barrier layer on the surface of the first potential well layer away from the quantum barrier layer, and on the surface of the first potential well layer away from the first potential barrier layer preparing a second potential well layer on the surface of the well layer; and
S50,根据所述步骤S40,在所述第二势阱层远离所述第一势垒层的表面依次循环3~6次制备所述第二量子阱结构。S50 , according to the step S40 , on the surface of the second potential well layer far from the first potential barrier layer, the second quantum well structure is prepared by cycling 3 to 6 times in sequence.
在一个实施例中,所述量子垒层与所述第一势阱层形成第一量子阱结构,所述第一势垒层与所述第二势阱层形成第二量子阱结构,所述第一量子阱结构与多个所述第二量子阱结构形成子层结构。所述发光二极管制备方法还包括:In one embodiment, the quantum barrier layer and the first potential well layer form a first quantum well structure, the first potential barrier layer and the second potential well layer form a second quantum well structure, and the The first quantum well structure and the plurality of second quantum well structures form a sublayer structure. The light-emitting diode manufacturing method further includes:
S60,根据所述步骤S20~S50,在所述N型半导体层远离所述氮化镓层的表面制备8~15层所述子层结构;S60, according to the steps S20-S50, prepare 8-15 layers of the sub-layer structure on the surface of the N-type semiconductor layer away from the gallium nitride layer;
其中,多个所述子层结构形成多量子阱层。Wherein, a plurality of the sub-layer structures form a multiple quantum well layer.
在一个实施例中,所述发光二极管制备方法还包括:In one embodiment, the light-emitting diode manufacturing method further includes:
S70,设置生长温度为900℃~1000℃,在所述多量子阱层远离所述N型半导体层的表面制备掺镁的高温P型半导体层。S70 , setting the growth temperature to be 900° C.˜1000° C., and preparing a magnesium-doped high-temperature P-type semiconductor layer on the surface of the multiple quantum well layer away from the N-type semiconductor layer.
本申请提供一种上述发光二极管。所述多量子阱层设置于所述N型半导体层远离所述氮化镓层的表面。所述多量子阱层包括一个或多个所述子层结构,可以在所述N型半导体层表面形成更深层次的所述多量子阱层。同时,每个所述子层结构包括第一量子阱结构以及多个第二量子阱结构。所述第一量子阱结构替换传统的量子垒层结构。所述多个第二量子阱结构设置于所述第一量子阱结构,形成更深层次的量子阱结构。并且,每个所述第二量子阱结构的厚度小于所述第一量子阱结构的厚度,使得所述第二量子阱结构相比于所述第一量子阱结构形成窄的量子阱结构。The present application provides the above-mentioned light emitting diode. The multiple quantum well layer is disposed on the surface of the N-type semiconductor layer away from the gallium nitride layer. The multiple quantum well layer includes one or more of the sub-layer structures, and the multiple quantum well layer can be formed at a deeper level on the surface of the N-type semiconductor layer. Meanwhile, each of the sub-layer structures includes a first quantum well structure and a plurality of second quantum well structures. The first quantum well structure replaces the traditional quantum barrier layer structure. The plurality of second quantum well structures are disposed on the first quantum well structures to form deeper quantum well structures. Also, the thickness of each of the second quantum well structures is smaller than the thickness of the first quantum well structures, so that the second quantum well structures form a narrow quantum well structure compared to the first quantum well structures.
此时,将传统结构中的量子垒替换为所述第一量子阱结构。同时,通过所述多个第二量子阱结构使得所述多量子阱层中形成多个子层深窄多量子阱结构。从而,所述多量子阱层中包括多个深窄多量子阱结构。进而,通过多个深窄多量子阱结构相比于传统的量子阱变得更深,使得量子阱对电子和空穴的限制能力更好,减小发光波长的半宽,产生波色更纯的、发光强度更强的指定波段。At this time, the quantum barrier in the conventional structure is replaced with the first quantum well structure. At the same time, a plurality of sub-layer deep and narrow multiple quantum well structures are formed in the multiple quantum well layer through the multiple second quantum well structures. Therefore, the multiple quantum well layer includes a plurality of deep and narrow multiple quantum well structures. Furthermore, compared with the traditional quantum well, the multiple deep and narrow multiple quantum well structure becomes deeper, so that the quantum well can better confine electrons and holes, reduce the half-width of the emission wavelength, and generate purer wavelengths. , the specified band with stronger luminous intensity.
附图说明Description of drawings
图1为本申请提供的发光二极管的结构示意图;1 is a schematic structural diagram of a light-emitting diode provided by the application;
图2为本申请提供的子层结构的结构示意图;2 is a schematic structural diagram of a sublayer structure provided by the present application;
图3为本申请提供的多量子阱层的结构示意图;3 is a schematic structural diagram of a multiple quantum well layer provided by the present application;
图4为本申请提供的多量子阱层的交替叠加的示意图;4 is a schematic diagram of the alternate stacking of multiple quantum well layers provided by the present application;
图5为本申请提供的发光二极管制备方法的流程示意图。FIG. 5 is a schematic flowchart of a method for manufacturing a light emitting diode provided by the present application.
附图标记说明Description of reference numerals
发光二极管100、衬底10、缓冲层20、氮化镓层30、N型半导体层40、多量子阱层50、子层结构501、第一量子阱结构510、第二量子阱结构520、量子垒层511、第一势阱层512、第一势垒层521、第二势阱层522、P型半导体层60。
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。In order to make the objectives, technical solutions and advantages of the present application more clearly understood, the present application will be further described in detail below through embodiments and in conjunction with the accompanying drawings. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。The serial numbers themselves, such as "first", "second", etc., for the components herein are only used to distinguish the described objects, and do not have any order or technical meaning. The "connection" and "connection" mentioned in this application, unless otherwise specified, include both direct and indirect connections (connections). In the description of this application, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", The orientation or positional relationship indicated by "bottom", "inner", "outer", "clockwise", "counterclockwise", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present application and simplifying the description , rather than indicating or implying that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation on the present application.
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In this application, unless otherwise expressly stated and defined, a first feature "on" or "under" a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch. Also, the first feature being "above", "over" and "above" the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature. The first feature being "below", "below" and "below" the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
请参见图1-4,本申请提供一种发光二极管100包括衬底10、缓冲层20、氮化镓层30、N型半导体层40、多量子阱层50以及P型半导体层60。所述缓冲层20、氮化镓层30、N型半导体层40以及P型半导体层60在所述衬底10表面依次层叠设置。所述多量子阱层50层叠设置于所述N型半导体层40与所述P型半导体层60之间。所述多量子阱层50包括至少一个子层结构501。所述子层结构501设置于所述N型半导体层40远离所述氮化镓层30的表面。每个所述子层结构501包括第一量子阱结构510以及多个第二量子阱结构520。所述第一量子阱结构510设置于所述N型半导体层40远离所述氮化镓层30的表面。所述多个第二量子阱结构520依次设置于所述第一量子阱结构510远离所述N型半导体层40的表面。且每个所述第二量子阱结构520的厚度小于所述第一量子阱结构510的厚度。Referring to FIGS. 1-4 , the present application provides a
所述多量子阱层50设置于所述N型半导体层40远离所述氮化镓层30的表面。所述多量子阱层50包括一个或多个所述子层结构501,可以在所述N型半导体层40表面形成更深层次的所述多量子阱层50。同时,每个所述子层结构501包括第一量子阱结构510以及多个第二量子阱结构520。所述第一量子阱结构510替换传统的量子垒层结构。所述多个第二量子阱结构520设置于所述第一量子阱结构510,形成更深层次的量子阱结构。并且,每个所述第二量子阱结构520的厚度小于所述第一量子阱结构510的厚度,使得所述第二量子阱结构520相比于所述第一量子阱结构510形成窄的量子阱结构。The multiple
此时,将传统结构中的量子垒替换为所述第一量子阱结构510。同时,通过所述多个第二量子阱结构520使得所述多量子阱层50中形成多个子层深窄多量子阱结构。从而,所述多量子阱层50中包括多个深窄多量子阱结构。进而,通过多个深窄多量子阱结构相比于传统的量子阱变得更深,使得量子阱对电子和空穴的限制能力更好,减小发光波长的半宽,产生波色更纯的、发光强度更强的指定波段。At this time, the quantum barrier in the conventional structure is replaced with the first
请参见图2,在一个实施例中,所述第一量子阱结构510包括量子垒层511以及第一势阱层512。所述量子垒层511设置于所述N型半导体层40远离所述氮化镓层30的表面。所述第一势阱层512设置于所述量子垒层511远离所述N型半导体层40的表面。Referring to FIG. 2 , in one embodiment, the first
所述量子垒层511设置于所述N型半导体层40远离所述氮化镓层30的表面,将传统结构中的量子垒进行了替换。同时将所述第一势阱层512设置于所述量子垒层511。进而将所述多个第二量子阱结构520设置于所述第一势阱层512。通过所述量子垒层511、所述第一势阱层512以及所述多个第二量子阱结构520可以形成多个深窄多量子阱的结构,比传统的量子阱结构更深,使得量子阱对电子和空穴的限制能力更好,减小发光波长的半宽,产生波色更纯的、发光强度更强的指定波段。The
在一个实施例中,所述量子垒层511为AlmInnGa1-m-nN,其中0<m<0.6,0<n<0.2。所述第一势阱层512为InxGa1-xN,其中0.2<x<0.22。In one embodiment, the
通过AlmInnGa1-m-nN的量子垒层511替换了传统的量子垒结构,InxGa1-xN的第一势阱层512设置于所述量子垒层511,形成所述第一量子阱结构510。其中,高温下制备的AlmInnGa1-m-nN结构提供了一个高能阶,为高晶格匹配、高晶格质量的量子垒。The traditional quantum barrier structure is replaced by the
由于电子具有较小的有效质量和较高的迁移率,所以在传统发光二极管结构中电子可以轻易的越过GaN势垒,到达P型层与空穴发生非辐射复合,使得空穴的浓度和注入效率降低。通过本实施例中AlmInnGa1-m-nN组成的高能阶量子垒层511可以有效减缓电子的移动。同时,在所述AlmInnGa1-m-nN的量子垒层511表面设置多个第二量子阱结构520,可以形成深窄多量子阱结构,进而可以提高量子阱对电子和空穴的限制能力,提高发光效率。Due to the small effective mass and high mobility of electrons, in the traditional light-emitting diode structure, electrons can easily cross the GaN barrier and reach the P-type layer for non-radiative recombination with holes, which makes the concentration of holes and the injection of holes occur. Efficiency is reduced. The movement of electrons can be effectively slowed down by the high-energy
请参见图2,在一个实施例中,每个所述第二量子阱结构520包括第一势垒层521以及第二势阱层522。所述第一势垒层521设置于所述第一势阱层512远离所述量子垒层511的表面。所述第二势阱层522设置于所述第一势垒层521远离所述第一势阱层512的表面。Referring to FIG. 2 , in one embodiment, each of the second quantum well
通过所述第一势垒层521和所述第二势阱层522形成一个所述第二量子阱结构520。其中,每个所述第二量子阱结构520的厚度小于所述第一量子阱结构510的厚度。由于厚度对极化的影响很大,此时通过将所述第一势垒层521和所述第二势阱层522的厚度减小,可以减小极化的影响。因此,通过减小单层的阱垒厚度来减小极化。并且,所述第一势垒层521和所述第二势阱层522均为InGaN组成,相同的材料间的晶格匹配更好,进而可以提高所述发光二极管100的发光效率。The second
传统发光二极管中多量子阱层的GaN垒层和InGaN阱层之间由于晶格失配,产生的极化效应较大导致波函数重叠减小,辐射复合几率显著降低,使得发光效率降低。通过本实施例中的多个第一势垒层521和多个第二势阱层522依次交替叠加形成的子层量子阱结构使得子层量子阱和子层量子垒之间晶格匹配更好,减小极化效应,提高发光效率。Due to the lattice mismatch between the GaN barrier layer and the InGaN well layer of the multi-quantum well layer in traditional light-emitting diodes, the polarization effect is large, which reduces the overlap of wave functions and the probability of radiative recombination, which reduces the luminous efficiency. The sub-layer quantum well structure formed by alternately stacking multiple first potential barrier layers 521 and multiple second potential well layers 522 in this embodiment makes the lattice matching between the sub-layer quantum well and the sub-layer quantum barrier better, Reduce polarization effect and improve luminous efficiency.
同时,所述第一势垒层521设置于所述第一势阱层512表面,所述第一势阱层512也为InGaN组成,使得所述第一势阱层512与所述第一势垒层521间的晶格匹配更好。此时,通过AlmInnGa1-m-nN的量子垒层511、InxGa1-xN的第一势阱层512、InyGa1-yN的第一势垒层521以及InxGa1-xN的第二势阱层522形成所述多量子阱层50。所述多量子阱层50具有晶格匹配好和极化影响小的优点,提高了所述发光二极管100的发光效率。At the same time, the first
并且,通过所述子层结构501包括多个所述第二量子阱结构520,可以形成深窄多量子阱的结构。所述多量子阱层50包括多个所述子层结构501,即包括多次循环设置的AlmInnGa1-m-nN的量子垒层511、InxGa1-xN的第一势阱层512、InyGa1-yN的第一势垒层521以及InxGa1-xN的第二势阱层522,使得量子阱对电子和空穴的限制能力更好,减小发光波长的半宽,产生波色更纯的、发光强度更强的指定波段。In addition, by including a plurality of the second quantum well
在一个实施例中,所述第一势垒层521为InyGa1-yN,其中0<y<0.1。所述第二势阱层522为InxGa1-xN,其中0.2<x<0.22。In one embodiment, the
所述第一势垒层521和所述第二势阱层522均为InGaN组成,相同的材料间的晶格匹配更好,进而可以提高所述发光二极管100的发光效率。所述第一势阱层512也为InGaN组成,使得所述第一势阱层512与所述第一势垒层521间的晶格匹配更好。The first
在一个实施例中,所述量子垒层511的厚度为100nm~140nm。所述第一势阱层512的厚度为2nm~6nm。所述第一势垒层521的厚度为4nm~8nm。所述第二势阱层522的厚度为2nm~6nm。In one embodiment, the thickness of the
所述第一势阱层512、所述第一势垒层521以及所述第二势阱层522的厚度小于所述量子垒层511,且相比于传统的结构厚度也减小了。此时通过将所述第一势阱层512、所述第一势垒层521以及所述第二势阱层522的厚度,可以减小极化的影响,可以提高所述发光二极管100的发光效率。The thickness of the first
请参见图5,在一个实施例中,一种发光二极管制备方法包括:Referring to FIG. 5, in one embodiment, a method for fabricating a light emitting diode includes:
S10,提供衬底10,在所述衬底10表面依次制备缓冲层20、氮化镓层30以及N型半导体层40;S10, a
S20,设置生长温度为850℃~950℃,在所述N型半导体层40远离所述氮化镓层30的表面制备量子垒层511;S20 , setting the growth temperature to be 850° C.˜950° C., and preparing a
S30,设置生长温度为700℃~800℃,在所述量子垒层511远离所述N型半导体层40的表面制备第一势阱层512,所述量子垒层511与所述第一势阱层512形成第一量子阱结构510;S30, set the growth temperature to 700°C to 800°C, and prepare a first
S40,设置生长温度为750℃~850℃,在所述第一势阱层512远离所述量子垒层511的表面制备第一势垒层521,且在所述第一势垒层521远离所述第一势阱层512的表面制备第二势阱层522,所述第一势垒层521与所述第二势阱层522形成第二量子阱结构520;S40, set the growth temperature to be 750°C to 850°C, prepare a
S50,根据所述步骤S40,在所述第二势阱层522远离所述第一势垒层521的表面依次循环3~6次制备所述第二量子阱结构520;S50 , according to the step S40 , on the surface of the second
其中,所述第一量子阱结构510与多个所述第二量子阱结构520形成子层结构501。The first
在所述步骤S10中,所述衬底10为蓝宝石衬底,也可以为Si衬底或者SiC衬底。在生长温度为550℃左右的环境下,在所述衬底10表面生长一层厚度为25nm~35nm的GaN缓冲层20。控制生长温度500℃升至1100℃,在所述缓冲层20表面生长一层不掺Si的GaN层,厚度约0.5um~1um左右,形成U-GaN氮化镓层30(无掺杂的氮化镓)。在生长温度为1070℃~1110℃下生长高温N-GaN(N型半导体层40)。其中,Si掺杂浓度在1.00E19-4.00E19,厚度为0.5μm-1.0μm。In the step S10, the
在所述步骤S20中,在生长温度为850℃~950℃环境下,在所述N型半导体层40远离所述氮化镓层30的表面制备AlmInnGa1-m-nN的量子垒层511。其中,AlmInnGa1-m-nN的量子垒层511厚度为100nm~140nm,0<m<0.6,0<n<0.2。In the step S20 , a quantum barrier of Al m In n Ga 1-mn N is prepared on the surface of the N-
在所述步骤S30中,在生长温度为700℃~800℃环境下,在所述量子垒层511远离所述N型半导体层40的表面制备InxGa1-xN的第一势阱层512。其中,所述第一势阱层512的厚度为2nm~6nm,0.2<x0.22。In the step S30, a first potential well layer of In x Ga 1-x N is prepared on the surface of the
在所述步骤S40中,在生长温度为750℃~850℃环境下,在所述第一势阱层512远离所述量子垒层511的表面制备InyGa1-yN的第一势垒层521。其中,所述第一势垒层521的厚度为4nm~8nm,0<y<0.1、In the step S40, a first potential barrier of In y Ga 1-y N is prepared on the surface of the first
在所述步骤S50中,InxGa1-xN作为所述多量子阱层50中子层量子阱的阱,InyGa1-yN作为所述多量子阱层50中子层量子阱的垒,循环数3~6次交替生长形成子层量子阱(多个第二量子阱结构520)。In the step S50 , In x Ga 1-x N is used as the well of the sub-layer quantum well in the multiple
通过步骤S20~S50,所述多量子阱层50包括多个深窄多量子阱。所述深窄多量子阱由InxGa1-xN/InyGa1-yN循环多次形成,即形成多个所述第二量子阱结构520。通过所述发光二极管制备方法制备获得的发光二极管,通过深窄多量子阱对电子和空穴的限制能力更好,减小发光波长的半宽,产生波色更纯的、发光强度更强的指定波段。并且,通过InxGa1- xN/InyGa1-yN的结构(第二量子阱结构)使得子层量子阱和子层量子垒之间晶格匹配更好,减小极化效应,提高发光效率。同时,高温下制备的AlmInnGa1-m-nN的量子垒层511提供了一个高能阶,高晶格匹配、高晶格质量的量子垒。Through steps S20 to S50, the multiple
在一个实施例中,所述发光二极管制备方法还包括:In one embodiment, the light-emitting diode manufacturing method further includes:
S60,根据所述步骤S20~S50,在所述N型半导体层40远离所述氮化镓层30的表面依次循环8~15次制备所述子层结构501。也就是说在所述N型半导体层40远离所述氮化镓层30的表面制备8~15层所述子层结构501。S60 , according to the steps S20 to S50 , the
其中,多个所述子层结构501形成多量子阱层50。Wherein, a plurality of the
通过所述步骤S60中循环8~15次制备多个所述子层结构501,形成所述多量子阱层50。每个所述子层结构501包括InxGa1-xN、InyGa1-yN以及AlmInnGa1-m-nN。其中,AlmInnGa1-m- nN层可以掺Si。通过多个所述子层结构501形成深窄多量子阱。The multiple
此时,通过所述步骤S10~S60制备获得的所述多量子阱层50。通过深窄多量子阱对电子和空穴的限制能力更好,减小发光波长的半宽,产生波色更纯的、发光强度更强的指定波段。At this time, the multiple
在一个实施例中,所述发光二极管制备方法还包括:In one embodiment, the light-emitting diode manufacturing method further includes:
S70,在生长温度为900℃~1000℃环境下,在所述多量子阱层50远离所述N型半导体层40的表面制备掺镁的高温P型半导体层60。S70 , in an environment where the growth temperature is 900° C.˜1000° C., a magnesium-doped high temperature P-
在所述步骤S70中,在生长温度为900℃~1000℃环境下生长制备所述P型半导体层60。所述P型半导体层60为掺Mg的高温P型GaN层。所述P型半导体层60的厚度为100nm~120nm。In the step S70, the P-
通过所述发光二极管制备方法获得的所述发光二极管100,可以发出波色更纯的、发光强度更强的指定波段,且发光效率高。The
在一个实施例中,所述发光二极管制备方法可以采用所述金属有机化合物化学气相沉淀方法(Metal-organic Chemical Vapor Deposition,MOCVD)或MOVPE(Metal-organic Vapor-Phase Epitaxy)等。In one embodiment, the method for preparing the light emitting diode may use the metal-organic chemical vapor deposition method (Metal-organic Chemical Vapor Deposition, MOCVD) or MOVPE (Metal-organic Vapor-Phase Epitaxy) or the like.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are relatively specific and detailed, but should not be construed as a limitation on the scope of the patent of the present application. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119307.2A CN110854246B (en) | 2019-11-15 | 2019-11-15 | Light-emitting diode and light-emitting diode manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119307.2A CN110854246B (en) | 2019-11-15 | 2019-11-15 | Light-emitting diode and light-emitting diode manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110854246A true CN110854246A (en) | 2020-02-28 |
CN110854246B CN110854246B (en) | 2021-07-30 |
Family
ID=69600361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911119307.2A Active CN110854246B (en) | 2019-11-15 | 2019-11-15 | Light-emitting diode and light-emitting diode manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110854246B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111916541A (en) * | 2020-07-29 | 2020-11-10 | 华灿光电(浙江)有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101587930A (en) * | 2009-06-22 | 2009-11-25 | 武汉华灿光电有限公司 | A kind of quantum well structure of gallium nitride based LED and growing method |
JP2010087038A (en) * | 2008-09-29 | 2010-04-15 | Kyocera Corp | Light emitting element and lighting system |
CN101980383A (en) * | 2010-09-27 | 2011-02-23 | 湘能华磊光电股份有限公司 | Gallium nitride based Group III-V compound semiconductor LED epitaxial slice and method for growing same |
CN102903807A (en) * | 2012-10-10 | 2013-01-30 | 华灿光电股份有限公司 | Epitaxial wafer of light emitting diode and light emitting diode |
CN103337573A (en) * | 2013-07-05 | 2013-10-02 | 华灿光电股份有限公司 | Epitaxial wafer of semiconductor light emitting diode and manufacturing method of epitaxial wafer |
CN103390705A (en) * | 2013-07-24 | 2013-11-13 | 广州金鉴检测科技有限公司 | Method of controlling epitaxial growth of thickness of membrane of quantum well |
CN103681985A (en) * | 2013-11-21 | 2014-03-26 | 华灿光电(苏州)有限公司 | Light-emitting diode epitaxial wafer and manufacture method thereof |
WO2014048792A1 (en) * | 2012-09-27 | 2014-04-03 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for operating an optoelectronic component |
CN105405939A (en) * | 2015-12-02 | 2016-03-16 | 华灿光电(苏州)有限公司 | Light-emitting diode and manufacturing method thereof |
US20170033260A1 (en) * | 2015-07-28 | 2017-02-02 | Genesis Photonics Inc. | Multiple quantum well structure and method for manufacturing the same |
CN106571416A (en) * | 2016-11-04 | 2017-04-19 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and manufacturing method thereof |
WO2017125505A1 (en) * | 2016-01-21 | 2017-07-27 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip |
US20170263814A1 (en) * | 2016-03-08 | 2017-09-14 | Genesis Photonics Inc. | Semiconductor structure |
US9985168B1 (en) * | 2014-11-18 | 2018-05-29 | Cree, Inc. | Group III nitride based LED structures including multiple quantum wells with barrier-well unit interface layers |
CN108336199A (en) * | 2018-03-09 | 2018-07-27 | 南昌大学 | A kind of nitride light-emitting diode structure |
-
2019
- 2019-11-15 CN CN201911119307.2A patent/CN110854246B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010087038A (en) * | 2008-09-29 | 2010-04-15 | Kyocera Corp | Light emitting element and lighting system |
CN101587930A (en) * | 2009-06-22 | 2009-11-25 | 武汉华灿光电有限公司 | A kind of quantum well structure of gallium nitride based LED and growing method |
CN101980383A (en) * | 2010-09-27 | 2011-02-23 | 湘能华磊光电股份有限公司 | Gallium nitride based Group III-V compound semiconductor LED epitaxial slice and method for growing same |
WO2014048792A1 (en) * | 2012-09-27 | 2014-04-03 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for operating an optoelectronic component |
CN102903807A (en) * | 2012-10-10 | 2013-01-30 | 华灿光电股份有限公司 | Epitaxial wafer of light emitting diode and light emitting diode |
CN103337573A (en) * | 2013-07-05 | 2013-10-02 | 华灿光电股份有限公司 | Epitaxial wafer of semiconductor light emitting diode and manufacturing method of epitaxial wafer |
CN103390705A (en) * | 2013-07-24 | 2013-11-13 | 广州金鉴检测科技有限公司 | Method of controlling epitaxial growth of thickness of membrane of quantum well |
CN103681985A (en) * | 2013-11-21 | 2014-03-26 | 华灿光电(苏州)有限公司 | Light-emitting diode epitaxial wafer and manufacture method thereof |
US9985168B1 (en) * | 2014-11-18 | 2018-05-29 | Cree, Inc. | Group III nitride based LED structures including multiple quantum wells with barrier-well unit interface layers |
US20170033260A1 (en) * | 2015-07-28 | 2017-02-02 | Genesis Photonics Inc. | Multiple quantum well structure and method for manufacturing the same |
CN105405939A (en) * | 2015-12-02 | 2016-03-16 | 华灿光电(苏州)有限公司 | Light-emitting diode and manufacturing method thereof |
WO2017125505A1 (en) * | 2016-01-21 | 2017-07-27 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip |
US20170263814A1 (en) * | 2016-03-08 | 2017-09-14 | Genesis Photonics Inc. | Semiconductor structure |
CN106571416A (en) * | 2016-11-04 | 2017-04-19 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and manufacturing method thereof |
CN108336199A (en) * | 2018-03-09 | 2018-07-27 | 南昌大学 | A kind of nitride light-emitting diode structure |
Non-Patent Citations (1)
Title |
---|
龙浩,张志超,顾锦华,等: ""组分渐变过渡层对氮化镓基发光二极管性能的影响"", 《中南民族大学学报(自然科学版)》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111916541A (en) * | 2020-07-29 | 2020-11-10 | 华灿光电(浙江)有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110854246B (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI451591B (en) | Nitride-based illuminating device | |
TWI436495B (en) | Nitride-based illuminating device | |
CN104425665B (en) | Light emitting semiconductor device including hole injection layer | |
US7547910B2 (en) | Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device | |
KR100784065B1 (en) | Nitride semiconductor light emitting device and manufacturing method | |
KR101174908B1 (en) | Light-emitting device and manufacturing method thereof | |
CN108550675B (en) | A light-emitting diode epitaxial wafer and its preparation method | |
JP7447151B2 (en) | Light emitting diode precursor including passivation layer | |
CN105514232B (en) | A kind of production method of LED epitaxial slice, light emitting diode and epitaxial wafer | |
CN103441196B (en) | Light emitting element and manufacturing method thereof | |
CN104810442A (en) | Light emitting diode epitaxial wafer and growth method thereof | |
CN109256445B (en) | A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof | |
CN106057990B (en) | A kind of manufacturing method of epitaxial wafer of GaN-based light-emitting diode | |
CN108305922B (en) | Nitride semiconductor structure and semiconductor light emitting element | |
WO2024002094A1 (en) | Light-emitting diode and epitaxial structure thereof | |
CN109103312B (en) | Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof | |
Tadatomo et al. | High output power near-ultraviolet and violet light-emitting diodes fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy | |
CN103311389B (en) | Light-emitting diode epitaxial wafer and manufacturing method thereof | |
CN110854246A (en) | Light-emitting diode and light-emitting diode manufacturing method | |
CN107331742A (en) | A kind of light emitting diode epitaxial structure and preparation method thereof, light emitting diode | |
CN114613891B (en) | Light-emitting diode with composite electron blocking layer and preparation method thereof | |
KR101248383B1 (en) | Semiconductor light emitting device | |
CN111326623A (en) | Semiconductor light emitting device | |
CN111326625A (en) | Light-emitting diode with multilayer buffer layer | |
TWI610460B (en) | Nitride semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |