TWI856927B - Method for producing polyimide film, method for producing metal-clad laminate, and method for producing circuit substrate - Google Patents
Method for producing polyimide film, method for producing metal-clad laminate, and method for producing circuit substrate Download PDFInfo
- Publication number
- TWI856927B TWI856927B TW113107336A TW113107336A TWI856927B TW I856927 B TWI856927 B TW I856927B TW 113107336 A TW113107336 A TW 113107336A TW 113107336 A TW113107336 A TW 113107336A TW I856927 B TWI856927 B TW I856927B
- Authority
- TW
- Taiwan
- Prior art keywords
- polyimide
- layer
- polyimide layer
- metal
- polyamide
- Prior art date
Links
- 229920001721 polyimide Polymers 0.000 title claims abstract description 790
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 59
- 239000000758 substrate Substances 0.000 title claims description 19
- 239000004642 Polyimide Substances 0.000 claims abstract description 705
- 229920002647 polyamide Polymers 0.000 claims abstract description 438
- 239000004952 Polyamide Substances 0.000 claims abstract description 435
- 239000011347 resin Substances 0.000 claims abstract description 146
- 229920005989 resin Polymers 0.000 claims abstract description 146
- 229910052751 metal Inorganic materials 0.000 claims abstract description 95
- 239000002184 metal Substances 0.000 claims abstract description 95
- 229920006122 polyamide resin Polymers 0.000 claims abstract description 57
- 239000010410 layer Substances 0.000 claims description 872
- 238000000034 method Methods 0.000 claims description 118
- 229920000768 polyamine Polymers 0.000 claims description 90
- 125000000468 ketone group Chemical group 0.000 claims description 55
- 150000000000 tetracarboxylic acids Chemical group 0.000 claims description 18
- 125000004427 diamine group Chemical group 0.000 claims description 17
- 125000000524 functional group Chemical group 0.000 claims description 15
- 238000010030 laminating Methods 0.000 claims description 13
- 239000002344 surface layer Substances 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims 4
- 239000011888 foil Substances 0.000 abstract description 27
- 239000002253 acid Substances 0.000 abstract description 20
- 238000004381 surface treatment Methods 0.000 abstract description 19
- 150000004985 diamines Chemical class 0.000 description 97
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 80
- 238000012360 testing method Methods 0.000 description 77
- 229920006259 thermoplastic polyimide Polymers 0.000 description 61
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 52
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 51
- 230000015572 biosynthetic process Effects 0.000 description 51
- 238000003786 synthesis reaction Methods 0.000 description 51
- 239000011889 copper foil Substances 0.000 description 47
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 42
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 42
- 239000002904 solvent Substances 0.000 description 41
- 238000005530 etching Methods 0.000 description 40
- 229910052757 nitrogen Inorganic materials 0.000 description 40
- 238000010438 heat treatment Methods 0.000 description 37
- 239000011229 interlayer Substances 0.000 description 37
- 238000004090 dissolution Methods 0.000 description 36
- 230000008859 change Effects 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 33
- 238000005187 foaming Methods 0.000 description 33
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 30
- 239000011248 coating agent Substances 0.000 description 30
- 238000000576 coating method Methods 0.000 description 30
- 238000005266 casting Methods 0.000 description 27
- -1 diamine compound Chemical class 0.000 description 27
- 125000003277 amino group Chemical group 0.000 description 25
- 239000002243 precursor Substances 0.000 description 23
- 230000005587 bubbling Effects 0.000 description 22
- 238000001035 drying Methods 0.000 description 22
- 150000008065 acid anhydrides Chemical class 0.000 description 20
- 239000002994 raw material Substances 0.000 description 20
- 238000003851 corona treatment Methods 0.000 description 17
- 125000005647 linker group Chemical group 0.000 description 17
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 17
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 238000011282 treatment Methods 0.000 description 15
- 239000002356 single layer Substances 0.000 description 14
- 229920001169 thermoplastic Polymers 0.000 description 14
- 239000004416 thermosoftening plastic Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 230000035699 permeability Effects 0.000 description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 13
- 230000006872 improvement Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 10
- 230000009477 glass transition Effects 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- JVERADGGGBYHNP-UHFFFAOYSA-N 5-phenylbenzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O JVERADGGGBYHNP-UHFFFAOYSA-N 0.000 description 9
- 150000004984 aromatic diamines Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical group FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 150000008064 anhydrides Chemical class 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 125000005462 imide group Chemical group 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 239000009719 polyimide resin Substances 0.000 description 7
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- QYIMZXITLDTULQ-UHFFFAOYSA-N 4-(4-amino-2-methylphenyl)-3-methylaniline Chemical group CC1=CC(N)=CC=C1C1=CC=C(N)C=C1C QYIMZXITLDTULQ-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 5
- 108010025899 gelatin film Proteins 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- 239000013585 weight reducing agent Substances 0.000 description 5
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 3
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 3
- KMKWGXGSGPYISJ-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=CC(N)=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=C(N)C=C1 KMKWGXGSGPYISJ-UHFFFAOYSA-N 0.000 description 3
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 3
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- 102100031503 Barrier-to-autointegration factor-like protein Human genes 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 101000729827 Homo sapiens Barrier-to-autointegration factor-like protein Proteins 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 238000005102 attenuated total reflection Methods 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- TYZFTGHDCPRRBH-UHFFFAOYSA-N curium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Cm+3].[Cm+3] TYZFTGHDCPRRBH-UHFFFAOYSA-N 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- DOBFTMLCEYUAQC-UHFFFAOYSA-N naphthalene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 DOBFTMLCEYUAQC-UHFFFAOYSA-N 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical group C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 2
- DKKYOQYISDAQER-UHFFFAOYSA-N 3-[3-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=C(OC=3C=C(N)C=CC=3)C=CC=2)=C1 DKKYOQYISDAQER-UHFFFAOYSA-N 0.000 description 2
- LDFYRFKAYFZVNH-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenoxy]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 LDFYRFKAYFZVNH-UHFFFAOYSA-N 0.000 description 2
- UTDAGHZGKXPRQI-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(S(=O)(=O)C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 UTDAGHZGKXPRQI-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- TUQQUUXMCKXGDI-UHFFFAOYSA-N bis(3-aminophenyl)methanone Chemical compound NC1=CC=CC(C(=O)C=2C=C(N)C=CC=2)=C1 TUQQUUXMCKXGDI-UHFFFAOYSA-N 0.000 description 2
- LSDYQEILXDCDTR-UHFFFAOYSA-N bis[4-(4-aminophenoxy)phenyl]methanone Chemical compound C1=CC(N)=CC=C1OC1=CC=C(C(=O)C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 LSDYQEILXDCDTR-UHFFFAOYSA-N 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- UBGIFSWRDUBQIC-UHFFFAOYSA-N perylene-2,3,8,9-tetracarboxylic acid Chemical compound C1=CC2=C(C(O)=O)C(C(=O)O)=CC(C=3C4=C5C=C(C(C(O)=O)=C4C=CC=3)C(O)=O)=C2C5=C1 UBGIFSWRDUBQIC-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- YKNMIGJJXKBHJE-UHFFFAOYSA-N (3-aminophenyl)-(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=CC(N)=C1 YKNMIGJJXKBHJE-UHFFFAOYSA-N 0.000 description 1
- SDWGBHZZXPDKDZ-UHFFFAOYSA-N 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid Chemical compound C1=C(Cl)C(C(O)=O)=C2C(C(=O)O)=CC(Cl)=C(C(O)=O)C2=C1C(O)=O SDWGBHZZXPDKDZ-UHFFFAOYSA-N 0.000 description 1
- JZWGLBCZWLGCDT-UHFFFAOYSA-N 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid Chemical compound ClC1=CC(C(O)=O)=C2C(C(=O)O)=CC(Cl)=C(C(O)=O)C2=C1C(O)=O JZWGLBCZWLGCDT-UHFFFAOYSA-N 0.000 description 1
- SMDGQEQWSSYZKX-UHFFFAOYSA-N 3-(2,3-dicarboxyphenoxy)phthalic acid Chemical compound OC(=O)C1=CC=CC(OC=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O SMDGQEQWSSYZKX-UHFFFAOYSA-N 0.000 description 1
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 1
- NBAUUNCGSMAPFM-UHFFFAOYSA-N 3-(3,4-dicarboxyphenyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C1=CC=CC(C(O)=O)=C1C(O)=O NBAUUNCGSMAPFM-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 1
- TYKLCAKICHXQNE-UHFFFAOYSA-N 3-[(2,3-dicarboxyphenyl)methyl]phthalic acid Chemical compound OC(=O)C1=CC=CC(CC=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O TYKLCAKICHXQNE-UHFFFAOYSA-N 0.000 description 1
- CKOFBUUFHALZGK-UHFFFAOYSA-N 3-[(3-aminophenyl)methyl]aniline Chemical compound NC1=CC=CC(CC=2C=C(N)C=CC=2)=C1 CKOFBUUFHALZGK-UHFFFAOYSA-N 0.000 description 1
- FGWQCROGAHMWSU-UHFFFAOYSA-N 3-[(4-aminophenyl)methyl]aniline Chemical compound C1=CC(N)=CC=C1CC1=CC=CC(N)=C1 FGWQCROGAHMWSU-UHFFFAOYSA-N 0.000 description 1
- UCFMKTNJZCYBBJ-UHFFFAOYSA-N 3-[1-(2,3-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=CC(C(O)=O)=C(C(O)=O)C=1C(C)C1=CC=CC(C(O)=O)=C1C(O)=O UCFMKTNJZCYBBJ-UHFFFAOYSA-N 0.000 description 1
- PAHZZOIHRHCHTH-UHFFFAOYSA-N 3-[2-(2,3-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical compound C=1C=CC(C(O)=O)=C(C(O)=O)C=1C(C)(C)C1=CC=CC(C(O)=O)=C1C(O)=O PAHZZOIHRHCHTH-UHFFFAOYSA-N 0.000 description 1
- INQGLILZDPLSJY-UHFFFAOYSA-N 3-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=C(N)C=CC=2)=C1 INQGLILZDPLSJY-UHFFFAOYSA-N 0.000 description 1
- LBPVOEHZEWAJKQ-UHFFFAOYSA-N 3-[4-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 LBPVOEHZEWAJKQ-UHFFFAOYSA-N 0.000 description 1
- JUEHTVCFYYHXRP-UHFFFAOYSA-N 3-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=CC(N)=C1 JUEHTVCFYYHXRP-UHFFFAOYSA-N 0.000 description 1
- NYRFBMFAUFUULG-UHFFFAOYSA-N 3-[4-[2-[4-(3-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=C(N)C=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=CC(N)=C1 NYRFBMFAUFUULG-UHFFFAOYSA-N 0.000 description 1
- NQZOFDAHZVLQJO-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenoxy]phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(OC=3C=CC(OC=4C=C(N)C=CC=4)=CC=3)=CC=2)=C1 NQZOFDAHZVLQJO-UHFFFAOYSA-N 0.000 description 1
- WCXGOVYROJJXHA-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)S(=O)(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 WCXGOVYROJJXHA-UHFFFAOYSA-N 0.000 description 1
- YSMXOEWEUZTWAK-UHFFFAOYSA-N 3-[4-[[4-(3-aminophenoxy)phenyl]methyl]phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(CC=3C=CC(OC=4C=C(N)C=CC=4)=CC=3)=CC=2)=C1 YSMXOEWEUZTWAK-UHFFFAOYSA-N 0.000 description 1
- XFDUHJPVQKIXHO-UHFFFAOYSA-N 3-aminobenzoic acid Chemical compound NC1=CC=CC(C(O)=O)=C1 XFDUHJPVQKIXHO-UHFFFAOYSA-N 0.000 description 1
- QGRZMPCVIHBQOE-UHFFFAOYSA-N 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic acid Chemical compound OC(=O)C1C(C(O)=O)CC(C)=C2C(C(O)=O)C(C(O)=O)CC(C)=C21 QGRZMPCVIHBQOE-UHFFFAOYSA-N 0.000 description 1
- IWXCYYWDGDDPAC-UHFFFAOYSA-N 4-[(3,4-dicarboxyphenyl)methyl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1CC1=CC=C(C(O)=O)C(C(O)=O)=C1 IWXCYYWDGDDPAC-UHFFFAOYSA-N 0.000 description 1
- IJJNNSUCZDJDLP-UHFFFAOYSA-N 4-[1-(3,4-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 IJJNNSUCZDJDLP-UHFFFAOYSA-N 0.000 description 1
- TZARWMRCCSKGFP-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)-1,1,1,3-tetrafluoropropan-2-yl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(CF)(C(F)(F)F)C1=CC=C(C(O)=O)C(C(O)=O)=C1 TZARWMRCCSKGFP-UHFFFAOYSA-N 0.000 description 1
- GEYAGBVEAJGCFB-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 GEYAGBVEAJGCFB-UHFFFAOYSA-N 0.000 description 1
- QHKWVJOAALGQNQ-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)-2-methylphenoxy]aniline Chemical compound C1=CC=C(OC=2C=CC(N)=CC=2)C(C)=C1OC1=CC=C(N)C=C1 QHKWVJOAALGQNQ-UHFFFAOYSA-N 0.000 description 1
- VONOYUXLGVIRKP-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)-4-methylphenoxy]aniline Chemical compound CC1=C(C=C(C=C1)OC1=CC=C(N)C=C1)OC1=CC=C(N)C=C1 VONOYUXLGVIRKP-UHFFFAOYSA-N 0.000 description 1
- BJMGHHZMPZSAKW-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)-5-methylphenoxy]aniline Chemical compound C=1C(OC=2C=CC(N)=CC=2)=CC(C)=CC=1OC1=CC=C(N)C=C1 BJMGHHZMPZSAKW-UHFFFAOYSA-N 0.000 description 1
- HCJSCAOEKCHDQO-UHFFFAOYSA-N 4-[3-[3-(4-aminophenoxy)phenoxy]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=C(OC=3C=CC(N)=CC=3)C=CC=2)=C1 HCJSCAOEKCHDQO-UHFFFAOYSA-N 0.000 description 1
- JCRRFJIVUPSNTA-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 JCRRFJIVUPSNTA-UHFFFAOYSA-N 0.000 description 1
- PQUIATXMORJWHF-UHFFFAOYSA-N 4-[4-[3-(4-aminophenoxy)phenoxy]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 PQUIATXMORJWHF-UHFFFAOYSA-N 0.000 description 1
- KIFDSGGWDIVQGN-UHFFFAOYSA-N 4-[9-(4-aminophenyl)fluoren-9-yl]aniline Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 KIFDSGGWDIVQGN-UHFFFAOYSA-N 0.000 description 1
- ICIBAWVEVXJTCZ-UHFFFAOYSA-N 4-[[3-[(4-aminophenyl)methyl]phenyl]methyl]aniline Chemical compound C1=CC(N)=CC=C1CC1=CC=CC(CC=2C=CC(N)=CC=2)=C1 ICIBAWVEVXJTCZ-UHFFFAOYSA-N 0.000 description 1
- PBPYNPXJEIOCEL-UHFFFAOYSA-N 4-[[4-[(4-aminophenyl)methyl]phenyl]methyl]aniline Chemical compound C1=CC(N)=CC=C1CC(C=C1)=CC=C1CC1=CC=C(N)C=C1 PBPYNPXJEIOCEL-UHFFFAOYSA-N 0.000 description 1
- ZNVDOKOOMPHOSP-UHFFFAOYSA-N 4-amino-n-(4-amino-2-methoxyphenyl)benzamide Chemical compound COC1=CC(N)=CC=C1NC(=O)C1=CC=C(N)C=C1 ZNVDOKOOMPHOSP-UHFFFAOYSA-N 0.000 description 1
- XPAQFJJCWGSXGJ-UHFFFAOYSA-N 4-amino-n-(4-aminophenyl)benzamide Chemical compound C1=CC(N)=CC=C1NC(=O)C1=CC=C(N)C=C1 XPAQFJJCWGSXGJ-UHFFFAOYSA-N 0.000 description 1
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 1
- MQAHXEQUBNDFGI-UHFFFAOYSA-N 5-[4-[2-[4-[(1,3-dioxo-2-benzofuran-5-yl)oxy]phenyl]propan-2-yl]phenoxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC2=CC=C(C=C2)C(C)(C=2C=CC(OC=3C=C4C(=O)OC(=O)C4=CC=3)=CC=2)C)=C1 MQAHXEQUBNDFGI-UHFFFAOYSA-N 0.000 description 1
- 102100024089 Aldo-keto reductase family 1 member C2 Human genes 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101000690303 Homo sapiens Aldo-keto reductase family 1 member C2 Proteins 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 241000989747 Maba Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- WYYLAHMAYZBJOI-UHFFFAOYSA-N [3-[4-(3-aminophenoxy)benzoyl]phenyl]-[4-(3-aminophenoxy)phenyl]methanone Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)C(=O)C=2C=C(C=CC=2)C(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 WYYLAHMAYZBJOI-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- MRSWDOKCESOYBI-UHFFFAOYSA-N anthracene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C=C(C(C(=O)O)=C3)C(O)=O)C3=CC2=C1 MRSWDOKCESOYBI-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- ZVSKZLHKADLHSD-UHFFFAOYSA-N benzanilide Chemical compound C=1C=CC=CC=1C(=O)NC1=CC=CC=C1 ZVSKZLHKADLHSD-UHFFFAOYSA-N 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- BBRLKRNNIMVXOD-UHFFFAOYSA-N bis[4-(3-aminophenoxy)phenyl]methanone Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)C(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 BBRLKRNNIMVXOD-UHFFFAOYSA-N 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- WOSVXXBNNCUXMT-UHFFFAOYSA-N cyclopentane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)C1C(O)=O WOSVXXBNNCUXMT-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- OBKARQMATMRWQZ-UHFFFAOYSA-N naphthalene-1,2,5,6-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 OBKARQMATMRWQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- AVRVTTKGSFYCDX-UHFFFAOYSA-N perylene-1,2,7,8-tetracarboxylic acid Chemical compound C1=CC(C2=C(C(C(=O)O)=CC=3C2=C2C=CC=3)C(O)=O)=C3C2=C(C(O)=O)C(C(O)=O)=CC3=C1 AVRVTTKGSFYCDX-UHFFFAOYSA-N 0.000 description 1
- CYPCCLLEICQOCV-UHFFFAOYSA-N phenanthrene-1,2,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C3=CC=C(C(=O)O)C(C(O)=O)=C3C=CC2=C1 CYPCCLLEICQOCV-UHFFFAOYSA-N 0.000 description 1
- UMSVUULWTOXCQY-UHFFFAOYSA-N phenanthrene-1,2,7,8-tetracarboxylic acid Chemical compound OC(=O)C1=CC=C2C3=CC=C(C(=O)O)C(C(O)=O)=C3C=CC2=C1C(O)=O UMSVUULWTOXCQY-UHFFFAOYSA-N 0.000 description 1
- RVRYJZTZEUPARA-UHFFFAOYSA-N phenanthrene-1,2,9,10-tetracarboxylic acid Chemical compound C1=CC=C2C(C(O)=O)=C(C(O)=O)C3=C(C(O)=O)C(C(=O)O)=CC=C3C2=C1 RVRYJZTZEUPARA-UHFFFAOYSA-N 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- RTHVZRHBNXZKKB-UHFFFAOYSA-N pyrazine-2,3,5,6-tetracarboxylic acid Chemical compound OC(=O)C1=NC(C(O)=O)=C(C(O)=O)N=C1C(O)=O RTHVZRHBNXZKKB-UHFFFAOYSA-N 0.000 description 1
- YKWDNEXDHDSTCU-UHFFFAOYSA-N pyrrolidine-2,3,4,5-tetracarboxylic acid Chemical compound OC(=O)C1NC(C(O)=O)C(C(O)=O)C1C(O)=O YKWDNEXDHDSTCU-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- LUEGQDUCMILDOJ-UHFFFAOYSA-N thiophene-2,3,4,5-tetracarboxylic acid Chemical compound OC(=O)C=1SC(C(O)=O)=C(C(O)=O)C=1C(O)=O LUEGQDUCMILDOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
- B05D1/265—Extrusion coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/70—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/15—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
覆金屬積層板100的製造方法包括:於金屬箔10A上形成第一聚醯胺樹脂層20A的步驟;使第一聚醯胺樹脂層20A中的聚醯胺酸醯亞胺化而形成第一聚醯亞胺層20的步驟;對第一聚醯亞胺層20進行表面處理的步驟;於第一聚醯亞胺層20上形成第二聚醯胺樹脂層30A的步驟;以及使第二聚醯胺樹脂層30A中的聚醯胺酸醯亞胺化而形成第二聚醯亞胺層30並形成絕緣樹脂層40的步驟。第一聚醯亞胺層20的厚度(L1)為0.5 μm以上且100 μm以下的範圍內,絕緣樹脂層40整體的厚度(L)為5 μm以上且小於200 μm的範圍內,比(L/L1)為超過1且小於400的範圍內。The manufacturing method of the metal-clad laminate 100 includes: forming a first polyamide resin layer 20A on a metal foil 10A; imidizing the polyamide acid in the first polyamide resin layer 20A to form a first polyimide layer 20; performing surface treatment on the first polyimide layer 20; forming a second polyamide resin layer 30A on the first polyimide layer 20; and imidizing the polyamide acid in the second polyamide resin layer 30A to form a second polyimide layer 30 and forming an insulating resin layer 40. The thickness (L1) of the first polyimide layer 20 is within the range of 0.5 μm to 100 μm, the thickness (L) of the entire insulating resin layer 40 is within the range of 5 μm to less than 200 μm, and the ratio (L/L1) is within the range of more than 1 to less than 400.
Description
本發明是有關於一種可作為電路基板等的材料而利用的覆金屬積層板的製造方法及電路基板的製造方法。The present invention relates to a method for manufacturing a metal-clad laminate that can be used as a material for a circuit board and the like, and a method for manufacturing the circuit board.
近年來,伴隨電子機器的小型化、輕量化、省空間化的進展,對於薄且輕量、具有可撓性並且即便反覆彎曲亦具有優異的耐久性的柔性電路基板(柔性印刷電路(Flexible Printed Circuits,FPC))的需要增大。關於FPC,即便於有限的空間亦可實現立體性且高密度的安裝,因此其用途於例如硬磁碟驅動機(Hard Disk Drive,HDD)、數位影音光碟(Digital Video Disk,DVD)、行動電話、智慧型手機等電子機器的配線、或電纜、連接器等零件中逐漸擴大。作為FPC中使用的絕緣樹脂,耐熱性或接著性優異的聚醯亞胺受到矚目。In recent years, with the progress of miniaturization, lightness and space saving of electronic equipment, the demand for flexible circuit substrates (Flexible Printed Circuits (FPC)) that are thin, lightweight, flexible and have excellent durability even when bent repeatedly has increased. FPC can achieve three-dimensional and high-density installation even in limited space, so its use is gradually expanding in wiring, cables, connectors and other parts of electronic equipment such as hard disk drives (HDD), digital video disks (DVD), mobile phones, and smartphones. As an insulating resin used in FPC, polyimide with excellent heat resistance and adhesion has attracted attention.
關於作為FPC材料的覆金屬積層板的製造方法,已知有:藉由在金屬箔上塗佈聚醯胺酸的樹脂液而形成聚醯亞胺前驅物層,之後,進行醯亞胺化而形成聚醯亞胺層的流延(cast)法。於利用流延法製造具有多個聚醯亞胺層作為絕緣樹脂層的覆金屬積層板的情況下,通常進行如下操作:於銅箔等基材上依次形成多層聚醯亞胺前驅物層,之後,使該些一併醯亞胺化。然而,若使多個聚醯亞胺前驅物層一併醯亞胺化,則聚醯亞胺前驅物層中的溶劑或醯亞胺化水無法完全脫出,因殘留溶劑或醯亞胺化水而產生聚醯亞胺層間的發泡或剝離,從而存在導致良率降低的問題。Regarding the manufacturing method of metal-clad laminates as FPC materials, there is a known method of forming a polyimide precursor layer by coating a resin liquid of polyamide on a metal foil, and then imidizing the polyimide layer. When a metal-clad laminate having multiple polyimide layers as insulating resin layers is manufactured by the casting method, the following operation is usually performed: multiple layers of polyimide precursor layers are sequentially formed on a substrate such as a copper foil, and then these layers are imidized together. However, if a plurality of polyimide precursor layers are imidized at the same time, the solvent or imidization water in the polyimide precursor layer cannot be completely removed, and the residual solvent or imidization water causes foaming or peeling between the polyimide layers, thereby causing a problem of reduced yield.
所述發泡或剝離的問題可藉由反覆進行如下操作而解決:使聚醯亞胺前驅物層逐層醯亞胺化,並於其上塗佈聚醯胺酸的樹脂液。然而,倘若於經醯亞胺化的聚醯亞胺層上進一步塗佈聚醯胺酸的樹脂液並使其醯亞胺化,則難以充分獲得層間的密接性。現有技術中,提出有:於塗佈聚醯胺酸的樹脂液之前,對基底的聚醯亞胺膜或聚醯亞胺層的表面實施電暈處理、電漿處理等表面處理,藉此改善層間的密接性(例如,專利文獻1、專利文獻2)。
[現有技術文獻]
[專利文獻]
The foaming or peeling problem can be solved by repeatedly performing the following operations: imidizing the polyimide precursor layer by layer and coating the polyamide resin liquid thereon. However, if the polyamide resin liquid is further coated on the imidized polyimide layer and imidized, it is difficult to obtain sufficient interlayer adhesion. In the prior art, it is proposed that before coating the polyamide resin liquid, the surface of the polyimide film or polyimide layer of the base is subjected to surface treatment such as corona treatment and plasma treatment to improve interlayer adhesion (for example,
[專利文獻1]日本專利第5615253號公報 [專利文獻2]日本專利第5480490號公報 [Patent document 1] Japanese Patent No. 5615253 [Patent document 2] Japanese Patent No. 5480490
[發明所欲解決之課題] 本發明的目的為:於利用流延法製造具有多個聚醯亞胺層作為絕緣樹脂層的覆金屬積層板的情況下,一邊抑制發泡一邊改善聚醯亞胺層間的密接性。 [解決課題之手段] [Problem to be solved by the invention] The purpose of the present invention is to improve the adhesion between polyimide layers while suppressing foaming when manufacturing a metal-clad laminate having a plurality of polyimide layers as insulating resin layers by a casting method. [Means for solving the problem]
本發明者等人發現,藉由控制利用流延法形成的多個聚醯亞胺層的厚度,可一邊抑制發泡一邊改善聚醯亞胺層間的密接性,從而完成了本發明。The inventors of the present invention have found that by controlling the thickness of a plurality of polyimide layers formed by a casting method, it is possible to improve the adhesion between the polyimide layers while suppressing foaming, thereby completing the present invention.
即,本發明的覆金屬積層板的製造方法為製造如下覆金屬積層板的方法,所述覆金屬積層板包括:包含多個聚醯亞胺層的絕緣樹脂層、以及積層於所述絕緣樹脂層的至少單側的面的金屬層。
本發明的覆金屬積層板的製造方法包括以下的步驟1~步驟5:
步驟1)藉由在所述金屬層上塗佈聚醯胺酸的溶液,而積層形成單層或多層的第一聚醯胺樹脂層的步驟;
步驟2)使所述第一聚醯胺樹脂層中的聚醯胺酸醯亞胺化而形成包含單層或多層的第一聚醯亞胺層的步驟;
步驟3)對所述第一聚醯亞胺層的表面進行表面處理的步驟;
步驟4)藉由在所述第一聚醯亞胺層上進一步塗佈聚醯胺酸的溶液,而積層形成單層或多層的第二聚醯胺樹脂層的步驟;以及
步驟5)使所述第二聚醯胺樹脂層中的聚醯胺酸醯亞胺化而形成包含單層或多層的第二聚醯亞胺層,並且形成將所述第一聚醯亞胺層與所述第二聚醯亞胺層積層而成的所述絕緣樹脂層的步驟。
而且,本發明的覆金屬積層板的製造方法中,所述第一聚醯亞胺層的厚度(L1)為0.5 μm以上且100 μm以下的範圍內,且所述絕緣樹脂層整體的厚度(L)為5 μm以上且小於200 μm的範圍內,所述L與所述L1的比(L/L1)為超過1且小於400的範圍內。
That is, the method for manufacturing a metal-clad laminate of the present invention is a method for manufacturing the following metal-clad laminate, wherein the metal-clad laminate includes: an insulating resin layer including a plurality of polyimide layers, and a metal layer laminated on at least one side of the insulating resin layer.
The manufacturing method of the metal-clad laminate of the present invention comprises the
本發明的覆金屬積層板的製造方法中,構成所述第一聚醯亞胺層中的與所述金屬層相接的層的聚醯亞胺可為熱塑性聚醯亞胺。In the method for manufacturing a metal-clad laminate of the present invention, the polyimide constituting the layer in contact with the metal layer in the first polyimide layer may be a thermoplastic polyimide.
本發明的覆金屬積層板的製造方法中,所述金屬層的透濕度於厚度25 μm、25℃時可為100 g/m 2/24 hr以下。 In the method for manufacturing the metal-clad laminate of the present invention, the moisture permeability of the metal layer can be 100 g/m 2 /24 hr or less at a thickness of 25 μm and a temperature of 25°C.
本發明的電路基板的製造方法包括:對利用所述方法製造的所述覆金屬積層板的所述金屬層進行配線電路加工的步驟。 [發明的效果] The manufacturing method of the circuit substrate of the present invention includes: a step of performing wiring circuit processing on the metal layer of the metal-clad laminate manufactured by the method. [Effect of the invention]
根據本發明的方法,可利用流延法製造具有絕緣樹脂層的覆金屬積層板,所述絕緣樹脂層抑制了發泡且聚醯亞胺層間的密接性優異。According to the method of the present invention, a metal-clad laminate having an insulating resin layer in which foaming is suppressed and excellent adhesion between polyimide layers can be manufactured by a casting method.
以下,一邊適宜參照圖式一邊對本發明的實施形態進行說明。Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate.
[第1實施形態] 本發明的第1實施形態的覆金屬積層板的製造方法為製造如下覆金屬積層板的方法,所述覆金屬積層板包括:包含多個聚醯亞胺層的絕緣樹脂層、以及積層於該絕緣樹脂層的至少單側的面的金屬層。 [First embodiment] The method for manufacturing a metal-clad laminate of the first embodiment of the present invention is a method for manufacturing a metal-clad laminate comprising: an insulating resin layer including a plurality of polyimide layers, and a metal layer laminated on at least one side of the insulating resin layer.
圖1中的(1)至(5)是表示第1實施形態的覆金屬積層板的製造方法的主要順序的步驟圖。本實施形態的方法包括以下的步驟1~步驟5。再者,於圖1中的(1)至(5)中,箭頭旁邊的數字是指步驟1~步驟5。(1) to (5) in FIG1 are step diagrams showing the main sequence of the method for manufacturing a metal-clad laminate according to the first embodiment. The method of this embodiment includes the
步驟1)
於步驟1中,藉由在成為金屬層10的金屬箔10A上塗佈聚醯胺酸的溶液,而積層形成單層或多層的第一聚醯胺樹脂層20A。利用流延法於金屬箔10A上塗佈聚醯胺酸的樹脂溶液的方法並無特別限制,例如可利用缺角輪(comma)、模(die)、刮刀(knife)、模唇(lip)等塗佈機進行塗佈。
再者,於將第一聚醯胺樹脂層20A設為多層的情況下,例如可採用如下方法等:反覆進行多次對金屬箔10A塗佈聚醯胺酸的溶液並加以乾燥的操作的方法;或藉由多層擠出而於金屬箔10A上以積層為多層的狀態同時塗佈聚醯胺酸並加以乾燥的方法。
Step 1)
In
於步驟1中,較佳為如後述般以步驟2中硬化後的第一聚醯亞胺層20的厚度(L1)為0.5 μm以上且100 μm以下的範圍內的方式形成第一聚醯胺樹脂層20A。於流延法中,聚醯胺酸的樹脂層於固定於金屬箔10A的狀態下經醯亞胺化,因此,可抑制醯亞胺化過程中的聚醯亞胺層的伸縮變化,維持厚度或尺寸精度。In
金屬箔10A的材質並無特別限制,例如可列舉:銅、不鏽鋼、鐵、鎳、鈹、鋁、鋅、銦、銀、金、錫、鋯、鉭、鈦、鉛、鎂、錳及該些的合金等。其中,特佳為銅或銅合金。作為銅箔,可為壓延銅箔亦可為電解銅箔,可較佳地使用市售的銅箔。The material of the
於本實施形態中,例如,在FPC的製造中使用時的金屬層10的較佳的厚度為3 μm~80 μm的範圍內,更佳為5 μm~30 μm的範圍內。In the present embodiment, for example, when used in the manufacture of an FPC, the thickness of the
作為金屬層10而使用的金屬箔10A亦可對表面實施例如防鏽處理、修整(siding)、鋁醇化物、鋁螯合物、矽烷偶合劑等表面處理。另外,金屬箔10A可設為切片狀、卷狀、或者環形帶狀等形狀,為了獲得生產性,有效率的是設為卷狀或環形帶狀的形態且設為可進行連續生產的形式。進而,就更大幅地顯現出電路基板中的配線圖案精度的改善效果的觀點而言,金屬箔10A較佳為以長條的方式形成的卷狀。The
另外,金屬層10的透濕度例如較佳為於厚度25 μm、25℃下為100 g/m
2/24 hr以下。於金屬層10的透濕度低而溶劑或醯亞胺化水難以自金屬層10側脫出的情況下,可大幅發揮本實施形態的方法的效果。
The moisture permeability of the
步驟2)
於步驟2中,使步驟1中形成的第一聚醯胺樹脂層20A中的聚醯胺酸醯亞胺化而形成包含單層或多層的第一聚醯亞胺層20。藉由使第一聚醯胺樹脂層20A中所含的聚醯胺酸醯亞胺化,而可去除第一聚醯胺樹脂層20A中所含的溶劑或醯亞胺化水的大部分。
Step 2)
In
用於使聚醯胺酸醯亞胺化的方法並無特別限制,例如較佳為於80℃~400℃的範圍內的溫度條件下以1分鐘~60分鐘的範圍內的時間進行加熱的熱處理。為了抑制金屬層10的氧化,熱處理較佳為於低氧環境下進行,具體而言,較佳為於氮氣或稀有氣體等惰性氣體環境下、氫氣等還原氣體環境下、或者真空中進行。The method for imidizing the polyamine is not particularly limited, and for example, heat treatment is preferably performed at a temperature in the range of 80° C. to 400° C. for a time in the range of 1 minute to 60 minutes. In order to suppress oxidation of the
步驟3)
於步驟3中,對第一聚醯亞胺層20的表面進行表面處理。
作為表面處理,只要為可提高第一聚醯亞胺層20與第二聚醯亞胺層30的層間密接性的處理,則並無特別限制,例如,可列舉:電漿處理、電暈處理、火焰處理、紫外線處理、臭氧處理、電子束處理、放射線處理、噴砂加工、細線(hairline)加工、壓花加工、化學藥品處理、蒸氣處理、表面接枝化處理、電氣化學處理、底塗處理等。特別是,於第一聚醯亞胺層20為熱塑性聚醯亞胺層的情況下,較佳為電漿處理、電暈處理、紫外線處理等表面處理,作為其條件,例如較佳為設為300 W/min/m
2以下。
Step 3) In
步驟4)
於步驟4中,藉由在步驟3中進行了表面處理的第一聚醯亞胺層20上進一步塗佈聚醯胺酸的溶液,而積層形成單層或多層的第二聚醯胺樹脂層30A。利用流延法於第一聚醯亞胺層20上塗佈聚醯胺酸的樹脂溶液的方法並無特別限制,例如可利用缺角輪、模、刮刀、模唇等塗佈機進行塗佈。
再者,於將第二聚醯胺樹脂層30A設為多層的情況下,例如可採用如下方法等:反覆進行多次於第一聚醯亞胺層20上塗佈聚醯胺酸的溶液並加以乾燥的操作的方法;或藉由多層擠出而於第1聚醯亞胺層20上以積層為多層的狀態同時塗佈聚醯胺酸並加以乾燥的方法。
Step 4)
In
於步驟4中,較佳為如後述般以在下一步驟5之後絕緣樹脂層40整體的厚度(L)為5 μm以上且小於200 μm的範圍內的方式形成第二聚醯胺樹脂層30A。In
步驟5)
於步驟5中,使第二聚醯胺樹脂層30A中所含的聚醯胺酸醯亞胺化,而變化為第二聚醯亞胺層30,並形成包含第一聚醯亞胺層20與第二聚醯亞胺層30的絕緣樹脂層40。
於步驟5中,使第二聚醯胺樹脂層30A中所含的聚醯胺酸醯亞胺化,而合成聚醯亞胺。醯亞胺化的方法並無特別限制,可以與步驟2相同的條件實施。
Step 5)
In
<任意步驟> 本實施形態的方法可包括所述以外的任意步驟。 <Optional Step> The method of this embodiment may include any steps other than those described above.
藉由以上的步驟1~步驟5,可製造具有第一聚醯亞胺層20與第二聚醯亞胺層30的密接性優異的絕緣樹脂層40的覆金屬積層板100。於本實施形態的方法中,即便利用流延法於金屬層10上形成第一聚醯亞胺層20,藉由在形成第二聚醯亞胺層30之前進行醯亞胺化,亦可去除溶劑或醯亞胺化水,從而不會產生發泡或層間剝離等問題。另外,藉由在形成第二聚醯胺樹脂層30A之前對第一聚醯亞胺層20進行表面處理,可確保第一聚醯亞胺層20與第二聚醯亞胺層30之間的密接性。Through the
於利用本實施形態的方法製造的覆金屬積層板100的絕緣樹脂層40中,第一聚醯亞胺層的厚度(L1)為0.5 μm以上且100 μm以下的範圍內。
此處,於第一聚醯亞胺層20為單層的情況下,其厚度(L1)較佳為0.5 μm以上且5 μm以下的範圍內,更佳為1 μm以上且3 μm以下的範圍內。該情況下,於步驟2中,藉由在醯亞胺化後的厚度(L1)為5 μm以下的薄的狀態下進行硬化,可大體去除溶劑或醯亞胺化水。另外,於第一聚醯亞胺層20為單層的情況下,藉由將其厚度(L1)控制為5 μm以下,而作為與金屬層10的剝離(peel)強度降低的原因之一的、與金屬層10的界面中的聚醯胺酸的殘存消失,可進行完全醯亞胺化,因此可提高剝離強度。若厚度(L1)小於0.5 μm,則與金屬層10的接著性降低,絕緣樹脂層40容易剝離。
另一方面,於第一聚醯亞胺層20包含多層的情況下,其厚度(L1)較佳為5 μm以上且100 μm以下的範圍內,更佳為25 μm以上且100 μm以下的範圍內。於第一聚醯亞胺層20包含多層的情況下,若其厚度(L1)超過100 μm,則容易產生發泡。
In the
另外,絕緣樹脂層40整體的厚度(L)為5 μm以上且小於200 μm的範圍內。
此處,於第一聚醯亞胺層20為單層的情況下,絕緣樹脂層40整體的厚度(L)較佳為5 μm以上且小於30 μm的範圍內,更佳為10 μm以上且25 μm以下的範圍內。於第一聚醯亞胺層20為單層的情況下,若絕緣樹脂層40整體的厚度(L)小於5 μm,則難以顯現出作為發明的效果的發泡抑制效果,另外,亦難以獲得尺寸穩定性的提高效果。
另一方面,於第一聚醯亞胺層20包含多層的情況下,絕緣樹脂層40整體的厚度(L)較佳為10 μm以上且小於200 μm的範圍內,更佳為50 μm以上且小於200 μm的範圍內。於第一聚醯亞胺層20包含多層的情況下,若絕緣樹脂層40整體的厚度(L)為200 μm以上,則容易產生發泡。
In addition, the thickness (L) of the insulating
如上所述,第一聚醯亞胺層20的厚度(L1)與絕緣樹脂層40整體的厚度(L)對發泡抑制或尺寸穩定性的改善、與金屬層10的接著性造成影響,因此,厚度(L)與厚度(L1)的比(L/L1)是設為超過1且小於400的範圍內。
比(L/L1)較佳為可為超過1且小於60的範圍內,更佳為4以上且45以下,最佳為5以上且30以下。
As described above, the thickness (L1) of the
再者,絕緣樹脂層40亦可包含第一聚醯亞胺層20及第二聚醯亞胺層30以外的聚醯亞胺層。另外,構成絕緣樹脂層40的聚醯亞胺層視需要亦可含有無機填料。具體而言,例如可列舉:二氧化矽、氧化鋁、氧化鎂、氧化鈹、氮化硼、氮化鋁、氮化矽、氟化鋁、氟化鈣等。該些可使用一種或者將兩種以上混合使用。Furthermore, the insulating
<聚醯亞胺>
其次,對用於形成第一聚醯亞胺層20及第二聚醯亞胺層30的較佳的聚醯亞胺進行說明。於第一聚醯亞胺層20及第二聚醯亞胺層30的形成時,可並無特別限制地使用通常作為聚醯亞胺的合成原料而使用的酸酐成分及二胺成分。
<Polyimide>
Next, a preferred polyimide for forming the
於覆金屬積層板100中,構成第一聚醯亞胺層20的聚醯亞胺可為熱塑性聚醯亞胺、非熱塑性聚醯亞胺的任一者,就容易確保與成為基底的金屬層10的接著性的理由而言,較佳為熱塑性聚醯亞胺。In the metal-clad
另外,構成第二聚醯亞胺層30的聚醯亞胺可為熱塑性聚醯亞胺、非熱塑性聚醯亞胺的任一者,於設為非熱塑性聚醯亞胺的情況下,可顯著地發揮發明的效果。
即,即便於完成醯亞胺化的聚醯亞胺層上,利用流延法等方法積層作為非熱塑性聚醯亞胺的前驅物的聚醯胺酸的樹脂層並進行醯亞胺化,通常亦幾乎無法獲得聚醯亞胺層間的密接性。然而,於本實施形態中,如上所述,對第一聚醯亞胺層20於進行表面處理後積層第二聚醯胺樹脂層30A,藉此,無論構成第二聚醯亞胺層30的聚醯亞胺是熱塑性還是非熱塑性,均可於與第一聚醯亞胺層20的層間獲得優異的密接性。另外,藉由將第二聚醯亞胺層30設為非熱塑性聚醯亞胺,可作為擔保覆金屬積層板100中的聚醯亞胺層的機械強度的主要層(基礎層)發揮功能。
In addition, the polyimide constituting the
根據以上,於覆金屬積層板100中,最佳的態樣為:形成積層有熱塑性聚醯亞胺層作為第一聚醯亞胺層20、積層有非熱塑性聚醯亞胺層作為第二聚醯亞胺層30的結構。Based on the above, in the metal clad
另外,聚醯亞胺中有低熱膨脹性聚醯亞胺、與高熱膨脹性聚醯亞胺,通常,熱塑性聚醯亞胺為高熱膨脹性,非熱塑性聚醯亞胺為低熱膨脹性。例如,於將第一聚醯亞胺層20設為熱塑性聚醯亞胺層的情況下,熱膨脹係數較佳為可設為超過30×10
-6/K且80×10
-6/K以下的範圍內。藉由將熱塑性聚醯亞胺層的熱膨脹係數設為所述範圍內,可確保第一聚醯亞胺層20與金屬層10的接著性。另外,藉由將第二聚醯亞胺層30設為低熱膨脹性的聚醯亞胺層,可作為擔保覆金屬積層板100中的聚醯亞胺層的尺寸穩定性的主要層(基礎層)發揮功能。具體而言,低熱膨脹性的聚醯亞胺層的熱膨脹係數可為1×10
-6(1/K)~30×10
-6(1/K)的範圍內,較佳為1×10
-6(1/K)~25×10
-6(1/K)的範圍內,更佳為10×10
-6(1/K)~25×10
-6(1/K)的範圍內。另外,因非熱塑性聚醯亞胺為低熱膨脹性,因此藉由增大非熱塑性聚醯亞胺層的厚度比例,可將熱膨脹係數抑制得低。再者,第一聚醯亞胺層20及第二聚醯亞胺層30可藉由適宜變更使用的原料的組合、厚度、乾燥/硬化條件而設為具有所期望的熱膨脹係數的聚醯亞胺層。
In addition, polyimide includes low thermal expansion polyimide and high thermal expansion polyimide. Generally, thermoplastic polyimide has high thermal expansion, and non-thermoplastic polyimide has low thermal expansion. For example, when the
再者,「熱塑性聚醯亞胺」通常是指可明確地確認到玻璃轉移溫度(Tg)的聚醯亞胺,但於本發明中,是指使用動態黏彈性測定裝置(動態機械分析儀(Dynamic Mechanical Analyzer,DMA))測定的、30℃下的儲存彈性係數為1.0×10 9Pa以上、且350℃下的儲存彈性係數小於1.0×10 8Pa的聚醯亞胺。另外,「非熱塑性聚醯亞胺」通常是指即便加熱亦不顯示出軟化、接著性的聚醯亞胺,但於本發明中,是指使用動態黏彈性測定裝置(DMA)測定的、30℃下的儲存彈性係數為1.0×10 9Pa以上、且350℃下的儲存彈性係數為1.0×10 8Pa以上的聚醯亞胺。 In addition, "thermoplastic polyimide" generally refers to a polyimide whose glass transition temperature (Tg) can be clearly confirmed, but in the present invention, it refers to a polyimide whose storage elastic modulus at 30°C is 1.0×10 9 Pa or more and whose storage elastic modulus at 350°C is less than 1.0×10 8 Pa as measured using a dynamic viscoelasticity measuring device (dynamic mechanical analyzer (DMA)). In addition, "non-thermoplastic polyimide" generally refers to a polyimide that does not show softening and adhesiveness even when heated, but in the present invention, it refers to a polyimide having a storage elastic modulus of 1.0×10 9 Pa or more at 30°C and a storage elastic modulus of 1.0×10 8 Pa or more at 350°C as measured using a dynamic viscoelasticity measuring apparatus (DMA).
作為成為聚醯亞胺的原料的二胺化合物,可使用芳香族二胺化合物、脂肪族二胺化合物等,例如較佳為NH 2-Ar1-NH 2所表示的芳香族二胺化合物。此處,Ar1可例示選自下述式所表示的基中者。Ar1亦可具有取代基,但較佳為不具有,或者於具有的情況下,所述取代基可為碳數1~6的低級烷基或低級烷氧基。該些芳香族二胺化合物可僅使用一種,另外,亦可併用兩種以上。 As the diamine compound used as the raw material of the polyimide, an aromatic diamine compound, an aliphatic diamine compound, etc. can be used, for example, an aromatic diamine compound represented by NH2 -Ar1- NH2 is preferred. Here, Ar1 can be selected from the groups represented by the following formulas. Ar1 may have a substituent, but preferably has no substituent, or when having a substituent, the substituent may be a lower alkyl group or a lower alkoxy group having 1 to 6 carbon atoms. These aromatic diamine compounds may be used alone or in combination of two or more.
[化1] [Chemistry 1]
作為與二胺化合物進行反應的酸酐,就聚醯胺酸的合成容易性的方面而言,較佳為芳香族四羧酸酐。芳香族四羧酸酐並無特別限定,例如較佳為O(CO) 2Ar2(CO) 2O所表示的化合物。此處,Ar2可例示下述式所表示的四價芳香族基。酸酐基[(CO) 2O]的取代位置為任意的位置,較佳為對稱的位置。Ar2亦可具有取代基,較佳為不具有,或者於具有的情況下,所述取代基可為碳數1~6的低級烷基。 As the acid anhydride reacting with the diamine compound, an aromatic tetracarboxylic anhydride is preferred in terms of ease of synthesis of the polyamide. The aromatic tetracarboxylic anhydride is not particularly limited, and for example, a compound represented by O(CO) 2 Ar2(CO) 2 O is preferred. Here, Ar2 can be exemplified by a tetravalent aromatic group represented by the following formula. The substitution position of the acid anhydride group [(CO) 2 O] is an arbitrary position, preferably a symmetrical position. Ar2 may also have a substituent, but preferably has no substituent, or if it has a substituent, the substituent may be a lower alkyl group having 1 to 6 carbon atoms.
[化2] [Chemistry 2]
(聚醯亞胺的合成) 構成聚醯亞胺層的聚醯亞胺可藉由如下方式製造:使酸酐及二胺於溶媒中反應,且於生成前驅物樹脂後進行加熱閉環。例如,使酸酐成分與二胺成分以大致等莫耳溶解於有機溶媒中,於0℃~100℃的範圍內的溫度下攪拌30分鐘~24小時而進行聚合反應,藉此獲得作為聚醯亞胺的前驅物的聚醯胺酸。於反應時,以生成的前驅物於有機溶媒中為5重量%~30重量%的範圍內、較佳為10重量%~20重量%的範圍內的方式溶解反應成分。作為聚合反應中使用的有機溶媒,例如可列舉:N,N-二甲基甲醯胺、N,N-二甲基乙醯胺(N,N-dimethyl acetamide,DMAc)、N-甲基-2-吡咯啶酮、2-丁酮、二甲基亞碸、硫酸二甲酯、環己酮、二噁烷、四氫呋喃、二甘醇二甲醚(diglyme)、三甘醇二甲醚等。亦可將該些溶媒併用兩種以上而使用,進而亦可併用二甲苯、甲苯之類的芳香族烴。另外,此種有機溶劑的使用量並無特別限制,較佳為調整為藉由聚合反應而獲得的聚醯胺酸溶液(聚醯亞胺前驅物溶液)的濃度為5重量%~30重量%左右的之類的使用量來使用。所合成的前驅物通常有利的是作為反應溶媒溶液而使用,視需要可進行濃縮、稀釋或置換為其他有機溶媒。另外,前驅物通常因溶媒可溶性優異而有利地使用。 (Synthesis of polyimide) The polyimide constituting the polyimide layer can be produced by reacting anhydride and diamine in a solvent, and heating and ring-closing after generating a precursor resin. For example, the anhydride component and the diamine component are dissolved in an organic solvent in approximately equimolar amounts, and the polymerization reaction is carried out by stirring at a temperature in the range of 0°C to 100°C for 30 minutes to 24 hours, thereby obtaining a polyamide acid as a precursor of the polyimide. During the reaction, the reaction components are dissolved in a manner such that the generated precursor is in the range of 5% by weight to 30% by weight, preferably in the range of 10% by weight to 20% by weight in the organic solvent. Examples of organic solvents used in the polymerization reaction include N,N-dimethylformamide, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, etc. Two or more of these solvents may be used in combination, and aromatic hydrocarbons such as xylene and toluene may also be used in combination. In addition, the amount of such organic solvent used is not particularly limited, and it is preferably used in an amount adjusted to a concentration of about 5% to 30% by weight of the polyamide solution (polyimide precursor solution) obtained by the polymerization reaction. The synthesized precursor is usually advantageously used as a reaction solvent solution, and can be concentrated, diluted or replaced with other organic solvents as needed. In addition, the precursor is usually advantageously used due to its excellent solvent solubility.
於聚醯亞胺的合成中,所述酸酐及二胺可分別僅使用其中的一種,亦可將兩種以上併用而使用。藉由選定酸酐及二胺的種類、或使用兩種以上的酸酐或二胺時的各自的莫耳比,可控制熱膨脹性、接著性、儲存彈性係數、玻璃轉移溫度等。再者,於所述聚醯亞胺中,在具有多個聚醯亞胺的結構單元的情況下,可以嵌段的形式存在,亦可無規地存在,較佳為無規地存在。In the synthesis of polyimide, the acid anhydride and diamine may be used alone or in combination of two or more. By selecting the types of acid anhydride and diamine, or the molar ratio of two or more acid anhydrides or diamines, thermal expansion, adhesion, storage elastic coefficient, glass transition temperature, etc. can be controlled. Furthermore, in the case of having a plurality of structural units of polyimide in the polyimide, they may exist in the form of blocks or randomly, preferably randomly.
以上,本實施形態中所獲得的覆金屬積層板藉由第一聚醯亞胺層20與第二聚醯亞胺層30的密接性優異、且作為FPC所代表的電路基板材料而使用,而可提高電子機器的可靠性。As described above, the metal-clad laminate obtained in this embodiment has excellent adhesion between the
於所述第1實施形態中,為了獲得層間的密接性而對經醯亞胺化的聚醯亞胺進行表面處理。進行表面處理時,存在需要用於表面處理的設備、並且步驟數量增加的情況。因此,於以下記載的本發明的第2實施形態中,在利用流延法形成的聚醯亞胺前驅物層為半硬化的狀態下積層下一聚醯亞胺前驅物層,藉此可抑制發泡,並且即便不需要表面處理等特別的步驟,亦可改善聚醯亞胺層間的密接性。In the first embodiment, the imidized polyimide is surface treated to obtain interlayer adhesion. When surface treatment is performed, equipment for surface treatment may be required and the number of steps may increase. Therefore, in the second embodiment of the present invention described below, a polyimide precursor layer is deposited while the polyimide precursor layer formed by the casting method is in a semi-hardened state, thereby suppressing foaming and improving interlayer adhesion without requiring a special step such as surface treatment.
[第2實施形態] 本發明的第2實施形態的覆金屬積層板的製造方法是製造如下覆金屬積層板的方法,所述覆金屬積層板包括:包含多個聚醯亞胺層的絕緣樹脂層、以及積層於所述絕緣樹脂層的至少單側的面的金屬層。 [Second embodiment] The method for manufacturing a metal-clad laminate of the second embodiment of the present invention is a method for manufacturing a metal-clad laminate comprising: an insulating resin layer including a plurality of polyimide layers, and a metal layer laminated on at least one side of the insulating resin layer.
圖2中的(a)至(d)是表示第2實施形態的覆金屬積層板的製造方法的主要順序的步驟圖。本實施形態的方法包括以下的步驟(a)~步驟(d)。於圖2中的(a)至(d)中,箭頭旁邊的英文字母是指步驟(a)~步驟(d)。 再者,於本實施形態中,關於與第1實施形態相同的構成,有時藉由參照第1實施形態而省略說明。 (a) to (d) in FIG. 2 are step diagrams showing the main sequence of the method for manufacturing a metal-clad laminate of the second embodiment. The method of this embodiment includes the following steps (a) to (d). In (a) to (d) in FIG. 2, the English letters next to the arrows refer to steps (a) to (d). In addition, in this embodiment, the same structure as the first embodiment is sometimes omitted by referring to the first embodiment.
步驟(a)
於步驟(a)中,藉由在成為金屬層10的金屬箔10A上塗佈聚醯胺酸的溶液而積層形成單層或多層的第一聚醯胺樹脂層20A。利用流延法於金屬箔10A上塗佈聚醯胺酸的樹脂溶液的方法並無特別限制,例如可利用缺角輪、模、刮刀、模唇等塗佈機進行塗佈。
再者,於將第一聚醯胺樹脂層20A設為多層的情況下,例如可採用如下方法等:反覆進行多次對金屬箔10A塗佈聚醯胺酸的溶液並加以乾燥的操作的方法;或藉由多層擠出而於金屬箔10A上以積層為多層的狀態同時塗佈聚醯胺酸並加以乾燥的方法。
Step (a)
In step (a), a single or multiple first
於步驟(a)中,較佳為如後述般以步驟(d)中硬化後的第一聚醯亞胺層20的厚度(L1)為0.5 μm以上且10 μm以下的範圍內的方式形成第一聚醯胺樹脂層20A。於流延法中,聚醯胺酸的樹脂層於固定於金屬箔10A的狀態下經醯亞胺化,因此,可抑制醯亞胺化過程中的聚醯亞胺層的伸縮變化,維持厚度或尺寸精度。In step (a), it is preferred that the first
關於金屬箔10A的材質、厚度、表面處理、形狀/形態、透濕度,與第1實施形態相同。The material, thickness, surface treatment, shape/form, and moisture permeability of the
步驟(b)
以利用熱重示差熱分析裝置(熱重示差熱分析儀(Thermogravimetry-Differential Thermal Analyzer,TG-DTA))測定的自100℃至360℃為止的溫度範圍內的重量減少率為0.1%~20%的範圍內的方式,使第一聚醯胺樹脂層20A中所含的聚醯胺酸部分醯亞胺化,形成單層或多層的半硬化樹脂層20B。
於步驟(b)中,藉由使第一聚醯胺樹脂層20A中所含的聚醯胺酸半硬化,而可去除第一聚醯胺樹脂層20A中所含的溶劑或醯亞胺化水的大部分。另外,若為半硬化狀態,則與完成醯亞胺化的硬化狀態不同,於與藉由以後的步驟(c)、步驟(d)而形成的上層的第二聚醯亞胺層30之間,可獲得充分的層間密接性。
Step (b)
The polyamide acid contained in the first
此處,經部分醯亞胺化的半硬化狀態與單純的乾燥狀態或完成醯亞胺化的硬化狀態不同,為於聚醯胺酸中產生醯亞胺化反應但並未完成的狀態。醯亞胺化的程度例如可藉由利用熱重示差熱分析裝置(TG-DTA)測定的自100℃至360℃為止的溫度範圍內的重量減少率來評價。若該溫度區域的重量減少率為0.1%~20%的範圍內,則可認為是經部分醯亞胺化的半硬化的狀態。若重量減少率小於0.1%,則存在醯亞胺化過度進行的可能性,無法獲得充分的層間密接性。另一方面,於重量減少率超過20%的情況下,幾乎並未進行醯亞胺化反應而無法與單純的乾燥區別,因此第一聚醯胺樹脂層20A中所含的溶劑殘存的可能性高,另外,於醯亞胺化完成之前生成的醯亞胺化水的量亦多,因此存在成為發泡的原因的擔憂。於步驟(b)中,較佳為以所述重量減少率為1%~15%的範圍內的方式調節醯亞胺化的程度。Here, the semi-cured state after partial imidization is different from the simple dry state or the cured state after complete imidization, and is a state in which the imidization reaction occurs in the polyamide but is not completed. The degree of imidization can be evaluated, for example, by the weight loss rate in the temperature range from 100°C to 360°C measured by a thermogravimetric differential thermal analyzer (TG-DTA). If the weight loss rate in the temperature range is within the range of 0.1% to 20%, it can be considered to be a semi-cured state after partial imidization. If the weight loss rate is less than 0.1%, there is a possibility that imidization is excessively advanced, and sufficient interlayer adhesion cannot be obtained. On the other hand, when the weight reduction rate exceeds 20%, the imidization reaction hardly proceeds and cannot be distinguished from simple drying, so there is a high possibility that the solvent contained in the first
另外,醯亞胺化的程度亦可藉由醯亞胺化率來評價。於步驟(b)中,較佳為以半硬化樹脂層20B的醯亞胺化率為20%~95%的範圍內的方式進行調節,更佳為以成為22%~90%的範圍內的方式進行調節。若醯亞胺化率小於20%,則幾乎並未進行醯亞胺化反應而無法與單純的乾燥區別,因此第一聚醯胺樹脂層20A中所含的溶劑殘存的可能性高,另外,於醯亞胺化完成之前生成的醯亞胺化水的量亦多,因此存在成為發泡的原因的擔憂。另一方面,若醯亞胺化率超過95%,則存在醯亞胺化過度進行的可能性,無法獲得充分的層間密接性。
再者,醯亞胺化率可以如下方式算出:使用傅立葉轉換紅外分光光度計並利用一次反射ATR(衰減全反射,attenuated total reflectance)法測定樹脂層的紅外線吸收光譜,藉此以1009 cm
-1的苯環烴鍵為基準,並根據1778 cm
-1的源自醯亞胺基的吸光度而算出。此處,對第一聚醯胺樹脂層20A進行自120℃起至360℃為止的階段性熱處理,並將360℃熱處理後的醯亞胺化率設為100%。
In addition, the degree of imidization can also be evaluated by the imidization rate. In step (b), it is preferably adjusted so that the imidization rate of the
步驟(b)中用於使聚醯胺酸半硬化的方法並無特別限制,例如較佳為:於120℃~300℃的範圍內、較佳為140℃~280℃的範圍內的溫度條件下,以成為所述重量減少率或醯亞胺化率的方式對時間進行調節而進行加熱的熱處理。再者,為了抑制金屬層10的氧化,熱處理較佳為於低氧環境下進行,具體而言,較佳為於氮氣或稀有氣體等惰性氣體環境下、氫氣等還原氣體環境下、或者真空中進行。The method for semi-curing the polyamide in step (b) is not particularly limited, and for example, preferably, heat treatment is performed by adjusting the time to achieve the weight reduction rate or imidization rate at a temperature in the range of 120°C to 300°C, preferably in the range of 140°C to 280°C. Furthermore, in order to suppress oxidation of the
步驟(c)
於步驟(c)中,藉由在步驟(b)中形成的半硬化樹脂層20B上進一步塗佈聚醯胺酸的溶液,而積層形成單層或多層的第二聚醯胺樹脂層30A。利用流延法於半硬化樹脂層20B上塗佈聚醯胺酸的樹脂溶液的方法並無特別限制,例如可利用缺角輪、模、刮刀、模唇等塗佈機進行塗佈。
再者,於將第二聚醯胺樹脂層30A設為多層的情況下,例如可採用如下方法等:反覆進行多次於半硬化樹脂層20B上塗佈聚醯胺酸的溶液並加以乾燥的操作的方法;或藉由多層擠出而於半硬化樹脂層20B上以積層為多層的狀態同時塗佈聚醯胺酸並加以乾燥的方法。
Step (c)
In step (c), a single-layer or multi-layer second
於步驟(c)中,較佳為如後述般以在步驟(d)之後絕緣樹脂層40整體的厚度(L)為10 μm以上且200 μm以下的範圍內的方式形成第二聚醯胺樹脂層30A。In step (c), the second
步驟(d)
於步驟(d)中,使半硬化樹脂層20B中所含的聚醯胺酸及第二聚醯胺樹脂層30A中所含的聚醯胺酸醯亞胺化,而變化為第一聚醯亞胺層20及第二聚醯亞胺層30,從而形成絕緣樹脂層40。
於步驟(d)中,使半硬化樹脂層20B與第二聚醯胺樹脂層30A中所含的聚醯胺酸一併醯亞胺化,而合成聚醯亞胺。醯亞胺化的方法並無特別限制,例如可適宜採用於80℃~400℃的範圍內的溫度條件下以1分鐘~60分鐘的範圍內的時間進行加熱等熱處理。為了抑制金屬層10的氧化,熱處理較佳為於低氧環境下進行,具體而言,較佳為於氮氣或稀有氣體等惰性氣體環境下、氫氣等還原氣體環境下、或者真空中進行。再者,關於步驟(d)中的醯亞胺化的終點,例如可將如下情況設為指標:利用熱重示差熱分析裝置(TG-DTA)測定的自100℃至360℃為止的溫度範圍內的重量減少率小於0.1%、或醯亞胺化率超過95%。
Step (d)
In step (d), the polyamide contained in the
<任意步驟>
本實施形態的方法可包括所述以外的任意步驟。例如,可於無損發明的效果的範圍內,在步驟(b)之後且步驟(c)之前,進而包括對半硬化樹脂層20B的表面進行表面處理的步驟。作為表面處理,只要為可提高第一聚醯亞胺層20與第二聚醯亞胺層30的層間密接性的處理,則並無特別限制,可列舉與第1實施形態相同的處理。
<Optional Step>
The method of this embodiment may include any steps other than those described above. For example, it may further include a step of surface treating the surface of the
藉由以上的步驟(a)~步驟(d),可不會產生步驟數量的增加所致的產量(through put)降低地、製造具有第一聚醯亞胺層20與第二聚醯亞胺層30的密接性優異的絕緣樹脂層40的覆金屬積層板100。於本實施形態的方法中,即便利用流延法於金屬層10上形成第一聚醯亞胺層20,藉由在形成第二聚醯亞胺層30之前進行半硬化,亦可去除溶劑或醯亞胺化水,從而不會產生發泡或層間剝離等問題。Through the above steps (a) to (d), the metal-clad
於利用本實施形態的方法製造的覆金屬積層板100的絕緣樹脂層40中,第一聚醯亞胺層20的厚度(L1)較佳為0.5 μm以上且10 μm以下的範圍內,更佳為1 μm以上且7 μm以下的範圍內。於步驟(b)中,藉由在醯亞胺化後的厚度(L1)為10 μm以下的薄的狀態下進行半硬化,可去除溶劑或醯亞胺化水的大部分。若醯亞胺化後的厚度(L1)超過10 μm,則難以去除溶劑或醯亞胺化水,尺寸穩定性亦變差。另外,若第一聚醯亞胺層20的厚度(L1)小於0.5 μm,則與金屬層10的接著性降低,絕緣樹脂層40容易剝離。In the insulating
另外,絕緣樹脂層40整體的厚度(L)較佳為10 μm以上且200 μm以下的範圍內,更佳為12 μm以上且150 μm以下的範圍內。若厚度(L)小於10 μm,則難以顯現出發泡抑制效果,另外,亦難以獲得尺寸穩定性的提高效果。另一方面,若厚度(L)超過200 μm,則容易產生發泡。In addition, the thickness (L) of the insulating
如上所述,第一聚醯亞胺層20的厚度(L1)與絕緣樹脂層40整體的厚度(L)對發泡抑制或尺寸穩定性的改善造成影響,因此厚度(L)與厚度(L1)的比(L/L1)較佳為超過1且小於400的範圍內,更佳為4以上且200以下,進而佳為5以上且100以下。As described above, the thickness (L1) of the
再者,絕緣樹脂層40亦可包含第一聚醯亞胺層20及第二聚醯亞胺層30以外的聚醯亞胺層。另外,構成絕緣樹脂層40的聚醯亞胺層視需要亦可含有無機填料。具體而言,例如可列舉:二氧化矽、氧化鋁、氧化鎂、氧化鈹、氮化硼、氮化鋁、氮化矽、氟化鋁、氟化鈣等。該些可使用一種或者將兩種以上混合使用。Furthermore, the insulating
<聚醯亞胺>
對第2實施形態中用於形成第一聚醯亞胺層20及第二聚醯亞胺層30的較佳的聚醯亞胺進行說明。於第一聚醯亞胺層20及第二聚醯亞胺層30的形成時,可並無特別限制地使用通常作為聚醯亞胺的合成原料而使用的酸酐成分及二胺成分。
<Polyimide>
Preferable polyimide for forming the
於覆金屬積層板100中,構成第一聚醯亞胺層20的聚醯亞胺可為熱塑性聚醯亞胺、非熱塑性聚醯亞胺的任一者,就容易確保與成為基底的金屬層10的接著性的理由而言,較佳為熱塑性聚醯亞胺。In the metal-clad
另外,構成第二聚醯亞胺層30的聚醯亞胺可為熱塑性聚醯亞胺、非熱塑性聚醯亞胺的任一者,於設為非熱塑性聚醯亞胺的情況下,可顯著地發揮發明的效果。
即,即便於完成醯亞胺化的聚醯亞胺層上,利用流延法等方法積層作為非熱塑性聚醯亞胺的前驅物的聚醯胺酸的樹脂層並進行醯亞胺化,通常亦幾乎無法獲得聚醯亞胺層間的密接性。然而,於本實施形態中,如上所述,於使第一聚醯胺樹脂層20A半硬化的狀態下積層第二聚醯胺樹脂層30A,藉此,無論構成第二聚醯亞胺層30的聚醯亞胺是熱塑性還是非熱塑性,均可於與第一聚醯亞胺層20的層間獲得優異的密接性。另外,藉由將第二聚醯亞胺層30設為非熱塑性聚醯亞胺,可作為擔保覆金屬積層板100中的聚醯亞胺層的機械強度的主要層(基礎層)發揮功能。
In addition, the polyimide constituting the
根據以上,於覆金屬積層板100中,最佳的態樣為:形成積層有熱塑性聚醯亞胺層作為第一聚醯亞胺層20、積層有非熱塑性聚醯亞胺層作為第二聚醯亞胺層30的結構。Based on the above, in the metal clad
於第2實施形態中,關於成為聚醯亞胺的原料的二胺化合物及酸酐、聚醯亞胺的合成等的內容,與第1實施形態相同。In the second embodiment, the contents of the diamine compound and acid anhydride used as raw materials of polyimide, the synthesis of polyimide, etc. are the same as those of the first embodiment.
如上所述,本發明的第2實施形態的覆金屬積層板的製造方法包括以下的步驟(a)~步驟(d): 步驟(a)藉由在所述金屬層上塗佈聚醯胺酸的溶液,而積層形成單層或多層的第一聚醯胺樹脂層的步驟; 步驟(b)以利用熱重示差熱分析裝置(TG-DTA)測定的自100℃至360℃為止的溫度範圍內的重量減少率為0.1%~20%的範圍內的方式,使所述第一聚醯胺樹脂層中所含的聚醯胺酸部分醯亞胺化而形成單層或多層的半硬化樹脂層的步驟; 步驟(c)藉由在所述半硬化樹脂層上進一步塗佈聚醯胺酸的溶液,而積層形成單層或多層的第二聚醯胺樹脂層的步驟;以及 步驟(d)使所述半硬化樹脂層中所含的聚醯胺酸及所述第二聚醯胺樹脂層中所含的聚醯胺酸醯亞胺化,而形成所述絕緣樹脂層的步驟。 As described above, the manufacturing method of the metal-clad laminate of the second embodiment of the present invention includes the following steps (a) to (d): Step (a) is a step of laminating a first polyamide resin layer of a single layer or multiple layers by coating a polyamide solution on the metal layer; Step (b) is a step of partially imidizing the polyamide contained in the first polyamide resin layer to form a single layer or multiple layers of semi-hardened resin layer in such a manner that the weight reduction rate in the temperature range from 100°C to 360°C measured by a thermogravimetric differential thermal analyzer (TG-DTA) is within the range of 0.1% to 20%; Step (c) is a step of further coating a polyamide solution on the semi-hardened resin layer to form a single or multiple second polyamide resin layers; and Step (d) is a step of imidizing the polyamide contained in the semi-hardened resin layer and the polyamide contained in the second polyamide resin layer to form the insulating resin layer.
本發明的第2實施形態的覆金屬積層板的製造方法中,所述步驟(b)中的醯亞胺化率可為20%~95%的範圍內。In the method for producing a metal-clad laminate according to the second embodiment of the present invention, the imidization rate in the step (b) may be in the range of 20% to 95%.
本發明的第2實施形態的覆金屬積層板的製造方法中,由所述第一聚醯胺樹脂層形成的樹脂層的厚度(L1)可為0.5 μm以上且10 μm以下的範圍內,且所述絕緣樹脂層整體的厚度(L)可為10 μm以上且200 μm以下的範圍內,所述L與所述L1的比(L/L1)可為超過1且小於400的範圍內。In the method for manufacturing a metal-clad laminate of the second embodiment of the present invention, the thickness (L1) of the resin layer formed by the first polyamide resin layer can be in the range of 0.5 μm to 10 μm, and the thickness (L) of the entire insulating resin layer can be in the range of 10 μm to 200 μm, and the ratio (L/L1) of L to L1 can be in the range of more than 1 and less than 400.
本發明的第2實施形態的覆金屬積層板的製造方法中,構成由所述第一聚醯胺樹脂層形成的樹脂層中、與所述金屬層相接的層的聚醯亞胺可為熱塑性聚醯亞胺。In the method for manufacturing a metal-clad laminate according to the second embodiment of the present invention, the polyimide constituting the layer in contact with the metal layer in the resin layer formed of the first polyamide resin layer may be a thermoplastic polyimide.
本發明的第2實施形態的覆金屬積層板的製造方法中,所述金屬層的透濕度於厚度25 μm、25℃時可為100 g/m 2/24 hr以下。 In the method for producing a metal-clad laminate according to the second embodiment of the present invention, the moisture permeability of the metal layer can be 100 g/m 2 /24 hr or less at a thickness of 25 μm and a temperature of 25° C.
本發明的第2實施形態的覆金屬積層板的製造方法亦可於所述步驟(b)之後且所述步驟(c)之前進而包括對所述半硬化樹脂層的表面進行表面處理的步驟。The method for manufacturing a metal-clad laminate according to the second embodiment of the present invention may further include a step of surface treating the surface of the semi-hardened resin layer after the step (b) and before the step (c).
本發明的第2實施形態的電路基板的製造方法包括:對利用所述任一方法製造的所述覆金屬積層板的所述金屬層進行配線電路加工的步驟。The manufacturing method of the circuit board according to the second embodiment of the present invention includes the step of performing wiring circuit processing on the metal layer of the metal-clad laminate manufactured by any of the above methods.
以上,本實施形態中所獲得的覆金屬積層板藉由第一聚醯亞胺層20與第二聚醯亞胺層30的密接性優異、且作為FPC所代表的電路基板材料而使用,而可提高電子機器的可靠性。As described above, the metal-clad laminate obtained in this embodiment has excellent adhesion between the
於所述第1實施形態中,為了獲得層間的密接性而對經醯亞胺化的聚醯亞胺進行表面處理,但進行表面處理時,存在需要用於表面處理的設備、並且步驟數量增加的情況。因此,於以下記載的本發明的第3實施形態及第4實施形態中,藉由利用由流延法形成的聚醯亞胺前驅物層的樹脂成分、與成為其基底的聚醯亞胺層的樹脂成分的相互作用,即便不需要表面處理等特別的步驟,亦可改善聚醯亞胺層間的密接性。In the first embodiment, the imidized polyimide is surface treated to obtain interlayer adhesion, but when surface treatment is performed, equipment for surface treatment is required and the number of steps increases. Therefore, in the third and fourth embodiments of the present invention described below, the interaction between the resin component of the polyimide precursor layer formed by the casting method and the resin component of the polyimide layer serving as the base is utilized, so that the adhesion between the polyimide layers can be improved without requiring a special step such as surface treatment.
[第3實施形態:聚醯亞胺膜的製造方法] 第3實施形態的聚醯亞胺膜的製造方法為製造如下聚醯亞胺膜的方法,所述聚醯亞胺膜包括:第一聚醯亞胺層(A)、以及積層於第一聚醯亞胺層(A)的至少單側的面的第二聚醯亞胺層(B)。藉由本實施形態而獲得的聚醯亞胺膜亦可具有第一聚醯亞胺層(A)及第二聚醯亞胺層(B)以外的聚醯亞胺層,另外,亦可積層於任意的基材。 [Third embodiment: Method for producing a polyimide film] The method for producing a polyimide film of the third embodiment is a method for producing a polyimide film comprising: a first polyimide layer (A), and a second polyimide layer (B) laminated on at least one side of the first polyimide layer (A). The polyimide film obtained by this embodiment may also have a polyimide layer other than the first polyimide layer (A) and the second polyimide layer (B), and may also be laminated on any substrate.
本實施形態的聚醯亞胺膜的製造方法包括下述的步驟I~步驟III。The method for producing the polyimide film of this embodiment includes the following steps I to III.
(步驟I): 於步驟I中,準備包含具有酮基的聚醯亞胺的第一聚醯亞胺層(A)。具有酮基的聚醯亞胺於其分子內具有酮基(-CO-)。酮基是源自作為聚醯亞胺的原料的酸二酐及/或二胺化合物。即,構成第一聚醯亞胺層(A)的聚醯亞胺包含四羧酸殘基(1a)及二胺殘基(2a),且於四羧酸殘基(1a)或二胺殘基(2a)的任一者或兩者中包含具有酮基的殘基。 再者,於本發明中,「四羧酸殘基」是表示由四羧酸二酐衍生的四價基,「二胺殘基」是表示由二胺化合物衍生的二價基。另外,「二胺化合物」中,末端的兩個胺基中的氫原子可經取代。 (Step I): In step I, a first polyimide layer (A) containing a polyimide having a ketone group is prepared. The polyimide having a ketone group has a ketone group (-CO-) in its molecule. The ketone group is derived from an acid dianhydride and/or a diamine compound as a raw material of the polyimide. That is, the polyimide constituting the first polyimide layer (A) contains a tetracarboxylic acid residue (1a) and a diamine residue (2a), and a residue having a ketone group is contained in either or both of the tetracarboxylic acid residue (1a) or the diamine residue (2a). In addition, in the present invention, "tetracarboxylic acid residue" means a tetravalent group derived from tetracarboxylic dianhydride, and "diamine residue" means a divalent group derived from a diamine compound. In addition, in "diamine compounds", the hydrogen atoms in the two terminal amino groups can be substituted.
作為四羧酸殘基(1a)中所含的具有酮基的殘基,例如可列舉:由3,3',4,4'-二苯甲酮四羧酸二酐、2,3',3,4'-二苯甲酮四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐、4,4'-(對伸苯基二羰基)二鄰苯二甲酸酐、4,4'-(間伸苯基二羰基)二鄰苯二甲酸酐等「於分子內具有酮基的四羧酸二酐」衍生的殘基。Examples of the residue having a keto group contained in the tetracarboxylic acid residue (1a) include residues derived from "tetracarboxylic acid dianhydrides having a keto group in the molecule" such as 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,3',3,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 4,4'-(p-phenylenedicarbonyl)phthalic anhydride, and 4,4'-(m-phenylenedicarbonyl)phthalic anhydride.
於四羧酸殘基(1a)中,作為具有酮基的殘基以外的殘基,例如除了後述實施例中所示的殘基以外,亦可列舉由通常於聚醯亞胺的合成中使用的四羧酸二酐衍生的殘基。In the tetracarboxylic acid residue (1a), as the residue other than the residue having a keto group, for example, in addition to the residues shown in the Examples described below, there can be mentioned residues derived from tetracarboxylic dianhydride generally used in the synthesis of polyimide.
作為二胺殘基(2a)中所含的具有酮基的殘基,例如可列舉:由3,3'-二胺基二苯甲酮、3,4'-二胺基二苯甲酮、4,4'-二胺基二苯甲酮、4,4'-雙[4-(4-胺基-α,α-二甲基苄基)苯氧基]二苯甲酮、4,4'-雙(4-胺基苯氧基)二苯甲酮、4,4'-雙(3-胺基苯氧基)二苯甲酮(4,4'-bis(3-aminophenoxy)benzophenone,BABP)、1,3-雙[4-(3-胺基苯氧基)苯甲醯基]苯(1,3-bis[4-(3-aminophenoxy)benzoyl]benzene,BABB)、1,4-雙(4-胺基苯甲醯基)苯、1,3-雙(4-胺基苯甲醯基)苯等「於分子內具有酮基的二胺化合物」衍生的殘基。Examples of the ketone group-containing residue contained in the diamine residue (2a) include 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzophenone, 4,4'-bis(4-aminophenoxy)benzophenone, 4,4'-bis(3-aminophenoxy)benzophenone (4,4'-bis(3-aminophenoxy)benzophenone), Residues derived from "diamine compounds having a keto group in the molecule" such as 1,3-bis[4-(3-aminophenoxy)benzophenone (BABP), 1,3-bis[4-(3-aminophenoxy)benzoyl]benzene (BABB), 1,4-bis(4-aminobenzyl)benzene, and 1,3-bis(4-aminobenzyl)benzene.
於二胺殘基(2a)中,作為具有酮基的殘基以外的殘基,例如除了後述實施例中所示的殘基以外,亦可列舉由通常於聚醯亞胺的合成中使用的二胺化合物衍生的殘基。In the diamine residue (2a), as the residue other than the residue having a keto group, for example, in addition to the residues shown in the Examples described below, there can be exemplified residues derived from diamine compounds generally used in the synthesis of polyimide.
第一聚醯亞胺層(A)亦可包含具有酮基的聚醯亞胺以外的其他聚醯亞胺。其中,為了確保與第二聚醯亞胺層(B)的充分的密接性,相對於構成第一聚醯亞胺層(A)的聚醯亞胺的總量,較佳為10莫耳%以上為具有酮基的聚醯亞胺,更佳為30莫耳%以上的聚醯亞胺為具有酮基的聚醯亞胺。 另外,相對於四羧酸殘基(1a)及二胺殘基(2a)的合計100莫耳份,構成第一聚醯亞胺層(A)的聚醯亞胺中存在的酮基的量(以-CO-計)較佳為5莫耳份~200莫耳份的範圍內,更佳為15莫耳份~100莫耳份的範圍內。若構成第一聚醯亞胺層(A)的聚醯亞胺中存在的酮基小於5莫耳份,則與步驟II中所積層的包含聚醯胺酸(b)的樹脂層中存在的官能基(例如,末端胺基)產生相互作用的概率變低,有時無法充分獲得層間的密接性。 The first polyimide layer (A) may also contain other polyimides other than polyimide having a ketone group. In order to ensure sufficient adhesion with the second polyimide layer (B), it is preferred that 10 mol% or more of the total amount of polyimide constituting the first polyimide layer (A) is polyimide having a ketone group, and it is more preferred that 30 mol% or more of the polyimide is polyimide having a ketone group. In addition, the amount of ketone groups (in terms of -CO-) present in the polyimide constituting the first polyimide layer (A) is preferably in the range of 5 mol to 200 mol, and more preferably in the range of 15 mol to 100 mol, relative to 100 mol of the total of tetracarboxylic acid residues (1a) and diamine residues (2a). If the ketone groups present in the polyimide constituting the first polyimide layer (A) are less than 5 mol, the probability of interaction with the functional groups (e.g., terminal amine groups) present in the resin layer containing polyamide (b) deposited in step II becomes low, and sometimes sufficient interlayer adhesion cannot be obtained.
作為形成第一聚醯亞胺層(A)的方法,可利用如下方法等形成:於任意基材上塗佈包含具有酮基的聚醯胺酸(a)的樹脂溶液的方法(流延法);於任意基材上積層包含具有酮基的聚醯胺酸(a)的凝膠膜的方法。The first polyimide layer (A) can be formed by a method such as coating a resin solution containing polyamide (a) having a keto group on an arbitrary substrate (casting method); or laminating a gel film containing polyamide (a) having a keto group on an arbitrary substrate.
於流延法中,塗佈包含聚醯胺酸(a)的樹脂溶液的方法並無特別限制,例如可利用缺角輪、模、刮刀、模唇等塗佈機進行塗佈。In the casting method, the method of applying the resin solution containing polyamide (a) is not particularly limited, and for example, the coating can be performed using a coating machine such as a notch wheel, a die, a doctor blade, or a die lip.
再者,第一聚醯亞胺層(A)可為與其他樹脂層積層的狀態,亦可為積層於任意基材的狀態。Furthermore, the first polyimide layer (A) may be in a state of being laminated with other resin layers, or may be in a state of being laminated on any substrate.
另外,第一聚醯亞胺層(A)較佳為將包含具有酮基的聚醯胺酸(a)的樹脂層積層於基材上、並連同基材一起使聚醯胺酸(a)醯亞胺化而形成者。如此,即便於利用流延法在基材上形成第一聚醯亞胺層(A)的情況下,因在形成第二聚醯亞胺層(B)之前完成醯亞胺化,因此亦可去除溶劑或醯亞胺化水,從而不會產生發泡或層間剝離等問題。In addition, the first polyimide layer (A) is preferably formed by laminating a resin layer containing polyimide (a) having a keto group on a substrate and imidizing the polyimide (a) together with the substrate. In this way, even when the first polyimide layer (A) is formed on the substrate by a casting method, imidization is completed before the second polyimide layer (B) is formed, so that the solvent or imidization water can be removed, thereby preventing problems such as foaming and interlayer peeling.
另外,第一聚醯亞胺層(A)可設為切片狀、卷狀、或者環形帶狀等形狀,為了獲得生產性,有效率的是設為卷狀或環形帶狀的形態且設為可進行連續生產的形式。進而,就更大幅地顯現出電路基板中的配線圖案精度的改善效果的觀點而言,第一聚醯亞胺層(A)較佳為以長條的方式形成的卷狀。The first polyimide layer (A) may be in the form of a slice, a roll, or an endless belt. In order to improve productivity, it is more efficient to use a roll or an endless belt so that continuous production can be performed. Furthermore, from the viewpoint of achieving a greater improvement in the accuracy of the wiring pattern in the circuit board, the first polyimide layer (A) is preferably in the form of a roll formed in a long strip.
(步驟II) 於步驟II中,在步驟I中獲得的第一聚醯亞胺層(A)上積層包含聚醯胺酸(b)的樹脂層,所述聚醯胺酸(b)包含具有與所述酮基產生相互作用的性質的官能基。 於步驟II中,作為「具有與酮基產生相互作用的性質的官能基」,只要為可於與酮基之間產生例如基於分子間力的物理相互作用、或基於共價鍵的化學相互作用等的官能基,則並無特別限制,作為其代表例,可列舉胺基(-NH 2)。 於所述官能基為胺基的情況下,作為聚醯胺酸(b),可使用於末端具有胺基的聚醯胺酸,較佳為可使用末端的大部分為胺基的聚醯胺酸,進而佳為可使用末端全部為胺基的聚醯胺酸。如此,富含胺基末端的聚醯胺酸(b)可藉由如下方式形成:以相對於原料中的四羧酸二酐而使二胺化合物過剩的方式調節兩成分的莫耳比。例如,相對於二胺化合物1莫耳,以四羧酸二酐小於1莫耳的方式調節原料的投入比率,藉此可概率性地將所合成的聚醯胺酸的大部分設為具有胺基末端(-NH 2)的聚醯胺酸(b)。若相對於二胺化合物1莫耳而四羧酸二酐的投入比率超過1莫耳,則胺基末端(-NH 2)幾乎未殘留,因此欠佳。另一方面,若四羧酸二酐相對於二胺化合物的投入比率過小,則聚醯胺酸的高分子量化並未充分進行。因此,四羧酸二酐相對於二胺化合物1莫耳的投入比率例如較佳為設為0.970莫耳~0.998莫耳的範圍內,更佳為0.980莫耳~0.995莫耳的範圍內。 (Step II) In step II, a resin layer containing polyamide (b) containing a functional group capable of interacting with the keto group is formed on the first polyimide layer (A) obtained in step I. In step II, the "functional group capable of interacting with the keto group" is not particularly limited as long as it is a functional group capable of interacting with the keto group, for example, by physical interaction based on intermolecular force or chemical interaction based on covalent bond, and an amino group (-NH 2 ) can be cited as a representative example. When the functional group is an amino group, as the polyamine (b), a polyamine having an amino group at the terminal can be used, preferably a polyamine having most of the terminals as amino groups, and more preferably a polyamine having all of the terminals as amino groups. Thus, the polyamine (b) rich in amino group terminals can be formed by adjusting the molar ratio of the two components so that the diamine compound is excessive relative to the tetracarboxylic dianhydride in the raw material. For example, by adjusting the input ratio of the raw material so that the tetracarboxylic dianhydride is less than 1 mol relative to 1 mol of the diamine compound, most of the synthesized polyamine can be probabilistically set to polyamine (b) having an amino group terminal (-NH 2 ). If the ratio of tetracarboxylic dianhydride to be added exceeds 1 mol per 1 mol of the diamine compound, the amino terminal (-NH 2 ) is hardly left, which is not preferable. On the other hand, if the ratio of tetracarboxylic dianhydride to be added is too small, the molecular weight of the polyamide is not sufficiently increased. Therefore, the ratio of tetracarboxylic dianhydride to be added per 1 mol of the diamine compound is preferably set to, for example, 0.970 mol to 0.998 mol, more preferably 0.980 mol to 0.995 mol.
聚醯胺酸(b)可將通常於聚醯亞胺的合成中使用的四羧酸二酐及二胺化合物作為原料而合成。再者,亦可將於分子內具有酮基的四羧酸二酐、或者於分子內具有酮基的二胺化合物作為原料。The polyamide (b) can be synthesized using tetracarboxylic dianhydride and diamine compounds generally used in the synthesis of polyimide as raw materials. Alternatively, tetracarboxylic dianhydride having a keto group in the molecule or a diamine compound having a keto group in the molecule may be used as a raw material.
另外,藉由代替原料的二胺化合物的一部分或全部而使用於分子內富含胺基的化合物(例如,三胺化合物等),亦可合成富含胺基末端的聚醯胺酸(b)。 進而,藉由將原料中的四羧酸二酐與二胺化合物的投入比率設為等莫耳,並少量添加包含胺基的化合物(例如,三胺化合物等),亦可形成包含富含胺基末端的聚醯胺酸(b)的樹脂層。 In addition, by replacing part or all of the diamine compound of the raw material with a compound rich in amine groups in the molecule (for example, a triamine compound, etc.), a polyamine (b) rich in amine group terminals can also be synthesized. Furthermore, by setting the input ratio of tetracarboxylic dianhydride and diamine compound in the raw material to equimolar and adding a small amount of a compound containing an amine group (for example, a triamine compound, etc.), a resin layer containing a polyamine (b) rich in amine group terminals can also be formed.
於包含聚醯胺酸(b)的樹脂層的形成時,可將聚醯胺酸(b)以外的其他聚醯胺酸與聚醯胺酸(b)一起混合使用。作為所述其他聚醯胺酸,可使用將通常於聚醯亞胺的合成中使用的四羧酸二酐及二胺化合物作為原料、並以該些的莫耳比為等莫耳的方式合成的聚醯胺酸。其中,就確保與第一聚醯亞胺層(A)的充分的密接性的觀點而言,包含聚醯胺酸(b)的樹脂層相對於進行構成的聚醯胺酸的總量而較佳為10莫耳%以上為聚醯胺酸(b),更佳為30莫耳%以上的聚醯胺酸為聚醯胺酸(b)。When forming the resin layer containing polyamide (b), other polyamides other than polyamide (b) can be mixed with polyamide (b) for use. As the other polyamide, a polyamide synthesized in an equimolar ratio using tetracarboxylic dianhydride and diamine compounds generally used in the synthesis of polyimide as raw materials can be used. Among them, from the viewpoint of ensuring sufficient adhesion with the first polyimide layer (A), the resin layer containing polyamide (b) preferably contains polyamide (b) in an amount of 10 mol% or more, and more preferably 30 mol% or more, of the total amount of polyamide to be formed.
包含聚醯胺酸(b)的樹脂層可藉由如下方法等形成:於第一聚醯亞胺層(A)上塗佈包含聚醯胺酸(b)的樹脂溶液的方法(流延法);於第一聚醯亞胺層(A)上積層包含聚醯胺酸(b)的凝膠膜的方法,為了提高第一聚醯亞胺層(A)與第二聚醯亞胺層(B)的密接性而較佳為利用流延法。另外,於形成包含聚醯胺酸(b)的樹脂層時,無需事先對第一聚醯亞胺層(A)的表面進行電漿處理、電暈處理等表面處理,但亦可進行該些表面處理。The resin layer containing polyamide (b) can be formed by the following methods: a method of coating a resin solution containing polyamide (b) on the first polyimide layer (A) (casting method); a method of laminating a gel film containing polyamide (b) on the first polyimide layer (A). In order to improve the adhesion between the first polyimide layer (A) and the second polyimide layer (B), the casting method is preferably used. In addition, when forming the resin layer containing polyamide (b), it is not necessary to perform surface treatment such as plasma treatment and corona treatment on the surface of the first polyimide layer (A) in advance, but these surface treatments may be performed.
於流延法中,塗佈包含聚醯胺酸(b)的樹脂溶液的方法並無特別限制,例如可利用缺角輪、膜、刮刀、模唇等塗佈機進行塗佈。In the casting method, the method of applying the resin solution containing polyamide (b) is not particularly limited, and for example, the coating can be performed using a coating machine such as a notch wheel, a film, a doctor blade, or a die lip.
如此獲得的包含聚醯胺酸(b)的樹脂層為如下樹脂層:包含四羧酸殘基(1b)及二胺殘基(2b),且相對於二胺殘基(2b)1莫耳而在小於1莫耳、較佳為0.970莫耳~0.998莫耳的範圍內、更佳為0.980莫耳~0.995莫耳的範圍內含有四羧酸殘基(1b),並富含胺基末端(-NH 2)。 The resin layer containing polyamine (b) thus obtained is a resin layer comprising tetracarboxylic acid residues (1b) and diamine residues (2b), wherein the tetracarboxylic acid residues (1b) are contained in an amount of less than 1 mol, preferably in a range of 0.970 mol to 0.998 mol, more preferably in a range of 0.980 mol to 0.995 mol, based on 1 mol of diamine residues (2b), and are rich in terminal amino groups ( -NH2 ).
(步驟III) 於步驟III中,連同第一聚醯亞胺層(A)一起對包含聚醯胺酸(b)的樹脂層進行熱處理,而使聚醯胺酸(b)醯亞胺化來形成第二聚醯亞胺層(B)。 醯亞胺化的方法並無特別限制,例如可適宜採用於80℃~400℃的範圍內的溫度條件下以1分鐘~60分鐘的範圍內的時間進行加熱等熱處理。於包含金屬層的情況下,為了抑制氧化,較佳為低氧環境下的熱處理,具體而言,較佳為於氮氣或稀有氣體等惰性氣體環境下、氫氣等還原氣體環境下、或者真空中進行。 (Step III) In step III, the resin layer containing polyamide (b) is heat-treated together with the first polyimide layer (A) to imidize the polyamide (b) to form a second polyimide layer (B). The imidization method is not particularly limited, and for example, heat treatment such as heating at a temperature in the range of 80°C to 400°C for a time in the range of 1 minute to 60 minutes can be appropriately adopted. In the case of a metal layer, in order to suppress oxidation, heat treatment in a low oxygen environment is preferred, and specifically, it is preferably performed in an inert gas environment such as nitrogen or a rare gas, a reducing gas environment such as hydrogen, or in a vacuum.
另外,認為,與醯亞胺化並行,而於第一聚醯亞胺層(A)的聚醯亞胺鏈中存在的酮基、與包含聚醯胺酸(b)的樹脂層中存在的所述官能基(例如,豐富的末端胺基)之間產生相互作用,第一聚醯亞胺層(A)與第二聚醯亞胺層(B)的密接性超出構成兩層的聚醯亞胺的特性(例如,熱塑性、或非熱塑性等)而大幅提高。關於所述相互作用,無法闡明其所有的機制,推測為:於所述官能基為胺基的情況下,作為一種可能性,藉由使聚醯胺酸(b)醯亞胺化時的熱處理,而於所述酮基與末端的胺基之間產生亞胺鍵。即,推斷為:於第一聚醯亞胺層(A)的聚醯亞胺鏈中的酮基、與聚醯胺酸(b)的末端的胺基之間,藉由加熱而產生脫水縮合反應並形成亞胺鍵,並且第一聚醯亞胺層(A)中的聚醯亞胺鏈、與醯亞胺化後的第二聚醯亞胺層(B)化學接著,藉此增強第一聚醯亞胺層(A)與第二聚醯亞胺層(B)的接著力。In addition, it is believed that, in parallel with the imidization, an interaction occurs between the keto group present in the polyimide chain of the first polyimide layer (A) and the functional group (e.g., abundant terminal amine group) present in the resin layer containing the polyamide (b), and the adhesion between the first polyimide layer (A) and the second polyimide layer (B) is greatly improved beyond the properties of the polyimides constituting the two layers (e.g., thermoplasticity or non-thermoplasticity, etc.). It is not possible to clarify all the mechanisms of the interaction, but it is speculated that, in the case where the functional group is an amine group, as one possibility, an imide bond is generated between the keto group and the terminal amine group by heat treatment during imidization of the polyamide (b). That is, it is inferred that a dehydration condensation reaction occurs between the ketone group in the polyimide chain of the first polyimide layer (A) and the amino group at the end of the polyamine (b) by heating to form an imide bond, and the polyimide chain in the first polyimide layer (A) and the imidized second polyimide layer (B) are chemically bonded, thereby enhancing the bonding strength between the first polyimide layer (A) and the second polyimide layer (B).
再者,於第一聚醯亞胺層(A)與第二聚醯亞胺層(B)為與所述相反的關係的情況下,無法獲得層間的密接性的提高效果。即,於如下情況下,即,首先,使包含聚醯胺酸(b)的樹脂層醯亞胺化而形成第1層的聚醯亞胺層,並於其上形成包含具有酮基的聚醯胺酸(a)的樹脂層,之後藉由熱處理而進行醯亞胺化,從而形成第2層的聚醯亞胺層的情況下,第1層與第2層的密接性並未超出構成兩層的聚醯亞胺的特性(例如,熱塑性、或非熱塑性等)而改善,所述聚醯胺酸(b)包含具有與酮基產生相互作用的性質的官能基。認為其理由為:於經硬化的聚醯亞胺中,作為所述官能基的末端的胺基的移動受到限制而反應性降低,因此難以產生所述相互作用。Furthermore, when the first polyimide layer (A) and the second polyimide layer (B) have a relationship opposite to that described above, the effect of improving the inter-layer adhesion cannot be obtained. That is, in the case where, first, a resin layer containing polyamide (b) is imidized to form a first polyimide layer, and a resin layer containing polyamide (a) having a keto group is formed thereon, and then imidized by heat treatment to form a second polyimide layer, the adhesion between the first layer and the second layer is not improved beyond the properties (for example, thermoplasticity or non-thermoplasticity, etc.) of the polyimide constituting the two layers. The reason for this is considered to be that in the cured polyimide, the movement of the amine group, which is the terminal of the functional group, is restricted and the reactivity is reduced, so that the interaction is difficult to occur.
第一聚醯亞胺層(A)及第二聚醯亞胺層(B)視需要亦可含有無機填料。具體而言,例如可列舉:二氧化矽、氧化鋁、氧化鎂、氧化鈹、氮化硼、氮化鋁、氮化矽、氟化鋁、氟化鈣等。該些可使用一種或者將兩種以上混合使用。The first polyimide layer (A) and the second polyimide layer (B) may contain an inorganic filler as needed. Specifically, for example, there can be mentioned: silicon dioxide, aluminum oxide, magnesium oxide, curium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, etc. These can be used alone or in combination of two or more.
藉由以上的步驟I~步驟III,可不會產生步驟數量的增加所致的產量降低地、製造第一聚醯亞胺層(A)與第二聚醯亞胺層(B)的密接性優異的聚醯亞胺膜。Through the above steps I to III, a polyimide film having excellent adhesion between the first polyimide layer (A) and the second polyimide layer (B) can be manufactured without causing a decrease in yield due to an increase in the number of steps.
[第4實施形態:覆金屬積層板的製造方法] 本發明的第4實施形態為如下覆金屬積層板的製造方法,且包括下述步驟i~步驟iv,所述覆金屬積層板包括:金屬層、第一聚醯亞胺層(A)、以及積層於所述第一聚醯亞胺層(A)的單側的面的第二聚醯亞胺層(B)。 [Fourth embodiment: Method for manufacturing a metal-clad laminate] The fourth embodiment of the present invention is a method for manufacturing a metal-clad laminate, and includes the following steps i to iv, wherein the metal-clad laminate includes: a metal layer, a first polyimide layer (A), and a second polyimide layer (B) laminated on one side of the first polyimide layer (A).
(步驟i) 於步驟i中,在金屬層上形成至少一層以上的聚醯胺酸的樹脂層,所述聚醯胺酸的樹脂層在表層部包含具有酮基的聚醯胺酸(a)的樹脂層。 (Step i) In step i, at least one layer of a polyamine resin layer is formed on the metal layer, wherein the polyamine resin layer includes a polyamine (a) resin layer having a keto group in the surface layer.
作為金屬層,可較佳地使用金屬箔。金屬箔的材質並無特別限制,例如可列舉:銅、不鏽鋼、鐵、鎳、鈹、鋁、鋅、銦、銀、金、錫、鋯、鉭、鈦、鉛、鎂、錳及該些的合金等。其中,特佳為銅或銅合金。作為銅箔,可為壓延銅箔亦可為電解銅箔,可較佳地使用市售的銅箔。As the metal layer, a metal foil can be preferably used. The material of the metal foil is not particularly limited, and examples thereof include: copper, stainless steel, iron, nickel, cobalt, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and alloys thereof. Among them, copper or a copper alloy is particularly preferred. As the copper foil, it can be a rolled copper foil or an electrolytic copper foil, and commercially available copper foil can be preferably used.
於本實施形態中,例如,在FPC的製造中使用時的金屬層的較佳的厚度為3 μm~50 μm的範圍內,更佳為5 μm~30 μm的範圍內。In the present embodiment, for example, when used in the manufacture of an FPC, the thickness of the metal layer is preferably in the range of 3 μm to 50 μm, more preferably in the range of 5 μm to 30 μm.
作為金屬層而使用的金屬箔亦可對表面實施例如防鏽處理、修整、鋁醇化物、鋁螯合物、矽烷偶合劑等表面處理。另外,金屬箔可設為切片狀、卷狀、或者環形帶狀等形狀,為了獲得生產性,有效率的是設為卷狀或環形帶狀的形態且設為可進行連續生產的形式。進而,就更大幅地顯現出電路基板中的配線圖案精度的改善效果的觀點而言,金屬箔較佳為以長條的方式形成的卷狀。The metal foil used as the metal layer may be subjected to surface treatment such as rust prevention, trimming, aluminum alcoholate, aluminum chelate, silane coupling agent, etc. The metal foil may be in the form of a slice, a roll, or an endless belt. In order to achieve productivity, it is efficient to use a roll or an endless belt in a form that allows continuous production. Furthermore, from the perspective of more significantly showing the effect of improving the accuracy of the wiring pattern in the circuit board, the metal foil is preferably in the form of a roll formed in a long strip.
於形成第一聚醯亞胺層(A)時,以包含具有酮基的聚醯胺酸(a)的樹脂層成為表層部的方式,在金屬層上形成至少一層以上的聚醯胺酸的樹脂層。該情況下,可藉由如下方法等形成:於金屬層上塗佈聚醯胺酸的樹脂溶液的方法(流延法);於金屬層上積層包含聚醯胺酸(a)的凝膠膜的方法。 再者,於金屬層、與包含具有酮基的聚醯胺酸(a)的樹脂層之間,亦可具有任意的樹脂層(包含其他聚醯胺酸的樹脂層),該情況下,可利用所述方法於該任意的樹脂層上形成包含具有酮基的聚醯胺酸(a)的樹脂層。另外,於在金屬層上直接形成具有酮基的聚醯胺酸(a)的樹脂層的情況下,為了提高金屬層與第一聚醯亞胺層(A)的接著性,較佳為利用流延法。 When forming the first polyimide layer (A), at least one layer of a resin layer of polyamide (a) having a keto group is formed on the metal layer in such a way that the resin layer includes the polyamide (a) having a keto group as the surface layer. In this case, the resin layer can be formed by the following methods: a method of coating a resin solution of polyamide on the metal layer (casting method); a method of laminating a gel film containing polyamide (a) on the metal layer. Furthermore, there may be an arbitrary resin layer (a resin layer containing other polyamides) between the metal layer and the resin layer containing polyamide (a) having a keto group. In this case, the resin layer containing polyamide (a) having a keto group may be formed on the arbitrary resin layer using the above method. In addition, when the resin layer containing polyamide (a) having a keto group is directly formed on the metal layer, it is preferred to use a casting method in order to improve the adhesion between the metal layer and the first polyimide layer (A).
於流延法中,塗佈包含聚醯胺酸(a)的樹脂溶液的方法並無特別限制,例如可利用缺角輪、模、刮刀、模唇等塗佈機進行塗佈。In the casting method, the method of applying the resin solution containing polyamide (a) is not particularly limited, and for example, the coating can be performed using a coating machine such as a notch wheel, a die, a doctor blade, or a die lip.
(步驟ii) 於步驟ii中,連同所述金屬層一起對聚醯胺酸的樹脂層進行熱處理,而使所述聚醯胺酸醯亞胺化,所述聚醯胺酸的樹脂層在表層部包括包含具有酮基的聚醯胺酸(a)的樹脂層。藉此,於金屬層上形成積層有聚醯亞胺層的中間體,所述聚醯亞胺層包括包含具有酮基的聚醯亞胺的第一聚醯亞胺層(A)作為表層部。 (Step ii) In step ii, the resin layer of polyamide acid is heat-treated together with the metal layer to imidize the polyamide acid, wherein the resin layer of polyamide acid includes a resin layer containing polyamide acid (a) having a ketone group in the surface layer. Thus, an intermediate having a polyimide layer laminated thereon is formed, wherein the polyimide layer includes a first polyimide layer (A) containing polyimide having a ketone group as the surface layer.
關於聚醯胺酸的醯亞胺化,可利用所述第3實施形態的步驟(III)中記載的方法進行。於本實施形態中,即便於利用流延法在金屬箔上形成聚醯胺酸的樹脂層的情況下,因在形成第二聚醯亞胺層(B)之前完成醯亞胺化,因此溶劑或醯亞胺化被去除,從而不會產生發泡或層間剝離等問題,所述聚醯胺酸的樹脂層在表層部包括包含具有酮基的聚醯胺酸(a)的樹脂層。The imidization of polyamide can be carried out by the method described in step (III) of the third embodiment. In this embodiment, even when a polyamide resin layer is formed on a metal foil by a casting method, imidization is completed before forming the second polyamide layer (B), so the solvent or imidization is removed, thereby preventing problems such as foaming and interlayer peeling. The polyamide resin layer includes a resin layer containing polyamide (a) having a keto group in the surface layer.
(步驟iii) 於步驟iii中,在所述第一聚醯亞胺層(A)上積層包含聚醯胺酸(b)的樹脂層,所述聚醯胺酸(b)包含具有與所述酮基產生相互作用的性質的官能基。 本步驟iii可與所述第3實施形態的步驟II同樣地實施。 (Step iii) In step iii, a resin layer containing polyamine (b) is layered on the first polyimide layer (A), wherein the polyamine (b) contains a functional group having a property of interacting with the ketone group. This step iii can be implemented in the same manner as step II of the third embodiment.
(步驟iv) 連同中間體一起對步驟iii中積層於中間體上的包含聚醯胺酸(b)的樹脂層進行熱處理,而使聚醯胺酸(b)醯亞胺化來形成第二聚醯亞胺層(B)。 本步驟iv可與所述第3實施形態的步驟III同樣地實施。 (Step iv) The resin layer containing polyamide (b) laminated on the intermediate in step iii is heat-treated together with the intermediate to imidize the polyamide (b) to form a second polyimide layer (B). This step iv can be implemented in the same manner as step III of the third embodiment.
藉由以上的步驟i~步驟iv,可不會產生步驟數量的增加所致的產量降低地、製造第一聚醯亞胺層(A)與第二聚醯亞胺層(B)的密接性優異的覆金屬積層板。Through the above steps i to iv, a metal-clad laminate having excellent adhesion between the first polyimide layer (A) and the second polyimide layer (B) can be manufactured without causing a decrease in yield due to an increase in the number of steps.
本實施形態的其它構成及效果與第3實施形態相同。The other structures and effects of this embodiment are the same as those of the third embodiment.
<聚醯亞胺> 其次,對用於形成第一聚醯亞胺層(A)及第二聚醯亞胺層(B)的較佳的聚醯亞胺進行說明。於第一聚醯亞胺層(A)的形成時,較佳為將所述「於分子內具有酮基的四羧酸二酐」及/或「於分子內具有酮基的二胺化合物」、與通常作為聚醯亞胺的合成原料而使用的酸酐成分及二胺成分組合使用。於第二聚醯亞胺層(B)的形成時,可並無特別限制地使用通常作為聚醯亞胺的合成原料而使用的酸酐成分及二胺成分。 <Polyimide> Next, preferred polyimide for forming the first polyimide layer (A) and the second polyimide layer (B) will be described. When forming the first polyimide layer (A), it is preferred to use the "tetracarboxylic dianhydride having a ketone group in the molecule" and/or "diamine compound having a ketone group in the molecule" in combination with an acid anhydride component and a diamine component generally used as a synthetic raw material for polyimide. When forming the second polyimide layer (B), an acid anhydride component and a diamine component generally used as a synthetic raw material for polyimide can be used without particular limitation.
於聚醯亞胺膜或覆金屬積層板中,構成第一聚醯亞胺層(A)的聚醯亞胺可為熱塑性聚醯亞胺、非熱塑性聚醯亞胺的任一者,就容易確保與成為基底的基材或金屬箔、樹脂層的接著性的理由而言,較佳為熱塑性聚醯亞胺。In the polyimide film or the metal-clad laminate, the polyimide constituting the first polyimide layer (A) may be either thermoplastic polyimide or non-thermoplastic polyimide, but thermoplastic polyimide is preferred because it is easy to ensure adhesion with a base material, metal foil, or resin layer serving as a base.
另外,構成第二聚醯亞胺層(B)的聚醯亞胺可為熱塑性聚醯亞胺、非熱塑性聚醯亞胺的任一者,於設為非熱塑性聚醯亞胺的情況下,可顯著地發揮發明的效果。 即,即便於完成醯亞胺化的第一聚醯亞胺層(A)上,利用流延法等方法積層作為非熱塑性聚醯亞胺的前驅物的聚醯胺酸的樹脂層並進行醯亞胺化,通常亦幾乎無法獲得聚醯亞胺層間的密接性。然而,於本實施形態中,藉由所述酮基與所述官能基(例如,末端胺基)的相互作用,而無論構成第二聚醯亞胺層(B)的聚醯亞胺是熱塑性還是非熱塑性,均可於與第一聚醯亞胺層(A)的層間獲得優異的密接性。另外,藉由將第二聚醯亞胺層(B)設為非熱塑性聚醯亞胺,可作為擔保聚醯亞胺膜或覆金屬積層板中的聚醯亞胺層的機械強度的主要層(基礎層)發揮功能。 In addition, the polyimide constituting the second polyimide layer (B) may be either a thermoplastic polyimide or a non-thermoplastic polyimide, and the effect of the invention can be significantly exerted when it is a non-thermoplastic polyimide. That is, even if a resin layer of polyamide acid, which is a precursor of a non-thermoplastic polyimide, is laminated on the imidized first polyimide layer (A) by a method such as a casting method and imidization is performed, it is usually almost impossible to obtain close contact between the polyimide layers. However, in this embodiment, due to the interaction between the ketone group and the functional group (e.g., terminal amine group), excellent adhesion between the first polyimide layer (A) and the second polyimide layer (B) can be obtained regardless of whether the polyimide constituting the second polyimide layer (B) is thermoplastic or non-thermoplastic. In addition, by making the second polyimide layer (B) a non-thermoplastic polyimide, it can function as a main layer (base layer) that guarantees the mechanical strength of the polyimide layer in the polyimide film or metal-clad laminate.
根據以上,於聚醯亞胺膜或覆金屬積層板中,最佳的態樣為:形成積層有熱塑性聚醯亞胺層作為第一聚醯亞胺層(A)、積層有非熱塑性聚醯亞胺層作為第二聚醯亞胺層(B)的結構。Based on the above, in the polyimide film or metal-clad laminate, the best aspect is to form a structure in which a thermoplastic polyimide layer is laminated as the first polyimide layer (A) and a non-thermoplastic polyimide layer is laminated as the second polyimide layer (B).
(熱塑性聚醯亞胺) 熱塑性聚醯亞胺可使酸酐成分與二胺成分反應而獲得。作為成為熱塑性聚醯亞胺的原料的酸酐成分,可並無特別限制地利用聚醯亞胺的合成中所使用的通常的酸酐,就特別兼顧與金屬層的接著性和低介電特性的觀點而言,較佳為將聯苯基四羧酸二酐與均苯四甲酸二酐(pyromellitic dianhydride,PMDA)組合使用。聯苯基四羧酸二酐具有使玻璃轉移溫度降低到不會對聚醯亞胺的焊料耐熱性降低造成影響的程度的效果,可確保與金屬層等的充分的接著力。另外,聯苯基四羧酸二酐降低聚醯亞胺的醯亞胺基濃度,並且容易形成聚合物的有序結構,且藉由抑制分子的運動而改善介電特性。進而,聯苯基四羧酸二酐有助於聚醯亞胺的極性基的減少,因此改善吸濕特性。根據此種情況,聯苯基四羧酸二酐可降低FPC的傳輸損耗。再者,「醯亞胺基濃度」是指用聚醯亞胺中的醯亞胺基部(-(CO) 2-N-)的分子量除以聚醯亞胺的結構整體的分子量而獲得的值。 (Thermoplastic polyimide) Thermoplastic polyimide can be obtained by reacting an acid anhydride component with a diamine component. As the acid anhydride component that is the raw material of the thermoplastic polyimide, any acid anhydride commonly used in the synthesis of polyimide can be used without particular limitation. From the viewpoint of particularly taking both adhesion to metal layers and low dielectric properties into consideration, it is preferred to use biphenyltetracarboxylic dianhydride and pyromellitic dianhydride (PMDA) in combination. Biphenyltetracarboxylic dianhydride has the effect of lowering the glass transition temperature to a level that does not affect the reduction of the solder heat resistance of the polyimide, and can ensure sufficient adhesion to metal layers and the like. In addition, biphenyltetracarboxylic dianhydride reduces the imide group concentration of polyimide, and easily forms an ordered structure of the polymer, and improves the dielectric properties by inhibiting the movement of molecules. Furthermore, biphenyltetracarboxylic dianhydride contributes to the reduction of polar groups in polyimide, thereby improving the moisture absorption properties. In this way, biphenyltetracarboxylic dianhydride can reduce the transmission loss of FPC. In addition, "imide group concentration" refers to the value obtained by dividing the molecular weight of the imide group (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire structure of the polyimide.
作為聯苯基四羧酸二酐,例如可列舉:3,3',4,4'-聯苯基四羧酸二酐(3,3',4,4'-biphenyl tetracarboxylic dianhydride,BPDA)、2,3',3,4'-聯苯基四羧酸二酐、2,2',3,3'-聯苯基四羧酸二酐等。藉由在所述範圍內使用聯苯基四羧酸二酐,而形成基於剛直結構的有序結構,因此可實現低介電損耗正切化,並且可獲得為熱塑性、且氣體透過性低、長期耐熱接著性優異的熱塑性聚醯亞胺。均苯四甲酸二酐為擔負控制玻璃轉移溫度的職責的單體,有助於提高聚醯亞胺的焊料耐熱性。Examples of biphenyl tetracarboxylic dianhydride include 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA), 2,3',3,4'-biphenyl tetracarboxylic dianhydride, and 2,2',3,3'-biphenyl tetracarboxylic dianhydride. By using biphenyl tetracarboxylic dianhydride within the above range, an ordered structure based on a rigid structure is formed, thereby achieving a low dielectric loss tangent, and obtaining a thermoplastic polyimide that is thermoplastic, has low gas permeability, and has excellent long-term heat-resistant adhesion. Pyromellitic dianhydride is a monomer that is responsible for controlling the glass transition temperature, and contributes to improving the solder heat resistance of the polyimide.
再者,熱塑性聚醯亞胺可使用所述以外的酸酐作為酸酐成分。作為此種酸酐,例如可列舉:3,3',4,4'-二苯基碸四羧酸二酐、4,4'-氧基二鄰苯二甲酸酐、2,2',3,3'-二苯甲酮四羧酸二酐、2,3,3',4'-二苯甲酮四羧酸二酐或3,3',4,4'-二苯甲酮四羧酸二酐、2,3',3,4'-二苯基醚四羧酸二酐、雙(2,3-二羧基苯基)醚二酐、3,3'',4,4''-對聯三苯基四羧酸二酐、2,3,3'',4''-對聯三苯基四羧酸二酐或2,2'',3,3''-對聯三苯基四羧酸二酐、2,2-雙(2,3-二羧基苯基)-丙烷二酐或2,2-雙(3,4-二羧基苯基)-丙烷二酐、雙(2,3-二羧基苯基)甲烷二酐或雙(3,4-二羧基苯基)甲烷二酐、雙(2,3-二羧基苯基)碸二酐或雙(3,4-二羧基苯基)碸二酐、1,1-雙(2,3-二羧基苯基)乙烷二酐或1,1-雙(3,4-二羧基苯基)乙烷二酐、1,2,7,8-菲-四羧酸二酐、1,2,6,7-菲-四羧酸二酐或1,2,9,10-菲-四羧酸二酐、2,3,6,7-蒽四羧酸二酐、2,2-雙(3,4-二羧基苯基)四氟丙烷二酐、2,3,5,6-環己烷二酐、2,3,6,7-萘四羧酸二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫萘-1,2,5,6-四羧酸二酐、2,6-二氯萘-1,4,5,8-四羧酸二酐或2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-(或1,4,5,8-)四氯萘-1,4,5,8-(或2,3,6,7-)四羧酸二酐、2,3,8,9-苝-四羧酸二酐、3,4,9,10-苝-四羧酸二酐、4,5,10,11-苝-四羧酸二酐或5,6,11,12-苝-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、吡咯啶-2,3,4,5-四羧酸二酐、噻吩-2,3,4,5-四羧酸二酐、4,4'-雙(2,3-二羧基苯氧基)二苯基甲烷二酐、2,2-雙[4-(3,4-二羧基苯氧基)苯基]丙烷二酐等。Furthermore, the thermoplastic polyimide may use an acid anhydride other than the above as the acid anhydride component. Examples of such anhydrides include 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 2,2',3,3'-benzophenone tetracarboxylic dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride or 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 2,3',3,4'-diphenyl ether tetracarboxylic dianhydride, bis(2,3-dicarboxyphenyl)ether dianhydride, 3,3'',4,4''-p-triphenyl tetracarboxylic dianhydride, 2,3,3'',4''-p-triphenyl tetracarboxylic dianhydride or 2,2'',3,3''-p-triphenyl tetracarboxylic dianhydride. Carboxylic acid dianhydrides, 2,2-bis(2,3-dicarboxyphenyl)-propane dianhydride or 2,2-bis(3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride or bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)sulfonate dianhydride or bis(3,4-dicarboxyphenyl)sulfonate dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride or 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,2,7,8-phenanthrene-tetracarboxylic dianhydride, 1,2,6,7-phenanthrene-tetracarboxylic dianhydride or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3 ,6,7-anthracenetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-(or 1,4,5,8-)tetrachloronaphthalene-1,4,5,8-(or 2,3,6,7-)tetracarboxylic dianhydride, 2,3,8,9-perylene-tetracarboxylic dianhydride, 3,4,9,10-perylene-tetracarboxylic dianhydride, 4,5,10,11-perylene-tetracarboxylic dianhydride or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-bis(2,3-dicarboxyphenoxy)diphenylmethane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, and the like.
作為成為熱塑性聚醯亞胺的原料的二胺成分,可並無特別限制地利用聚醯亞胺的合成中所使用的通常的二胺,較佳為含有選自下述通式(1)~通式(8)所表示的二胺化合物中的至少一種。As the diamine component serving as the raw material of the thermoplastic polyimide, any diamine commonly used in the synthesis of polyimide can be used without particular limitation, but it is preferably a diamine compound containing at least one selected from the diamine compounds represented by the following general formulae (1) to (8).
[化3] [Chemistry 3]
所述式(1)~式(7)中,R 1獨立地表示碳數1~6的一價烴基或烷氧基,連結基A獨立地表示選自-O-、-S-、-CO-、-SO-、-SO 2-、-COO-、-CH 2-、-C(CH 3) 2-、-NH-或-CONH-中的二價基,n 1獨立地表示0~4的整數。其中,自式(3)中去除與式(2)重覆的部分,且自式(5)中去除與式(4)重覆的部分。此處,「獨立地」是指於所述式(1)~式(7)中的一個、或兩個以上中,多個連結基A、多個R 1或多個n 1可相同亦可不同。 In the above formulae (1) to (7), R1 independently represents a monovalent alkyl group or alkoxy group having 1 to 6 carbon atoms, the linking group A independently represents a divalent group selected from -O-, -S-, -CO-, -SO-, -SO 2 -, -COO-, -CH 2 -, -C(CH 3 ) 2 -, -NH- or -CONH-, and n1 independently represents an integer from 0 to 4. In the above formulae (3), the part repeated with formula (2) is removed, and the part repeated with formula (4) is removed from formula (5). Here, "independently" means that in one or more of the above formulae (1) to (7), multiple linking groups A, multiple R1 or multiple n1 may be the same or different.
[化4] [Chemistry 4]
所述式(8)中,連結基X表示單鍵或-CONH-,Y獨立地表示可經鹵素原子取代的碳數1~3的一價烴基或烷氧基,n表示0~2的整數,p及q獨立地表示0~4的整數。In the formula (8), the linking group X represents a single bond or -CONH-, Y independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 3 carbon atoms which may be substituted with a halogen atom, n represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4.
再者,於所述式(1)~式(8)中,末端的兩個胺基中的氫原子可經取代,例如可為-NR 2R 3(此處,R 2、R 3獨立地表示烷基等任意的取代基)。 Furthermore, in the above formulae (1) to (8), the hydrogen atoms in the two terminal amino groups may be substituted, for example, -NR 2 R 3 (wherein R 2 and R 3 independently represent any substituent such as an alkyl group).
式(1)所表示的二胺(以下,有時記述為「二胺(1)」)為具有兩個苯環的芳香族二胺。認為該二胺(1)藉由直接鍵結於至少一個苯環上的胺基與二價連結基A位於間位,而聚醯亞胺分子鏈所具有的自由度增加並具有高的彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,藉由使用二胺(1),聚醯亞胺的熱塑性提高。此處,作為連結基A,較佳為:-O-、-CH 2-、-C(CH 3) 2-、-CO-、-SO 2-、-S-。 The diamine represented by formula (1) (hereinafter, sometimes described as "diamine (1)") is an aromatic diamine having two benzene rings. The diamine (1) is believed to increase the degree of freedom of the polyimide molecular chain and have high flexibility due to the amino group directly bonded to at least one benzene ring and the divalent linking group A being located at the meta position, thereby contributing to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (1), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-, -CH2- , -C( CH3 ) 2- , -CO-, -SO2- , or -S-.
作為二胺(1),例如可列舉:3,3'-二胺基二苯基甲烷、3,3'-二胺基二苯基丙烷、3,3'-二胺基二苯基硫醚、3,3'-二胺基二苯基碸、3,3-二胺基二苯基醚、3,4'-二胺基二苯基醚、3,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基丙烷、3,4'-二胺基二苯基硫醚、3,3'-二胺基二苯甲酮、(3,3'-雙胺基)二苯基胺等。Examples of the diamine (1) include 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, and (3,3'-diamino)diphenylamine.
式(2)所表示的二胺(以下,有時記述為「二胺(2)」)為具有三個苯環的芳香族二胺。認為該二胺(2)藉由直接鍵結於至少一個苯環上的胺基與二價連結基A位於間位,而聚醯亞胺分子鏈所具有的自由度增加並具有高的彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,藉由使用二胺(2),聚醯亞胺的熱塑性提高。此處,作為連結基A,較佳為-O-。The diamine represented by formula (2) (hereinafter, sometimes described as "diamine (2)") is an aromatic diamine having three benzene rings. The diamine (2) is believed to increase the degree of freedom of the polyimide molecular chain and have high flexibility due to the amino group directly bonded to at least one benzene ring and the divalent linking group A being located at the meta position, thereby contributing to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (2), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-.
作為二胺(2),例如可列舉:1,4-雙(3-胺基苯氧基)苯、3-[4-(4-胺基苯氧基)苯氧基]苯胺、3-[3-(4-胺基苯氧基)苯氧基]苯胺等。Examples of the diamine (2) include 1,4-bis(3-aminophenoxy)benzene, 3-[4-(4-aminophenoxy)phenoxy]aniline, and 3-[3-(4-aminophenoxy)phenoxy]aniline.
式(3)所表示的二胺(以下,有時記述為「二胺(3)」)為具有三個苯環的芳香族二胺。認為該二胺(3)藉由直接鍵結於一個苯環上的兩個二價連結基A彼此位於間位,而聚醯亞胺分子鏈所具有的自由度增加並具有高的彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,藉由使用二胺(3),聚醯亞胺的熱塑性提高。此處,作為連結基A,較佳為-O-。The diamine represented by formula (3) (hereinafter, sometimes described as "diamine (3)") is an aromatic diamine having three benzene rings. The diamine (3) is believed to increase the degree of freedom of the polyimide molecular chain and have high flexibility due to the two divalent linking groups A directly bonded to one benzene ring being located at the meta position, thereby contributing to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (3), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-.
作為二胺(3),例如可列舉:1,3-雙(4-胺基苯氧基)苯(1,3-Bis(4-aminophenoxy)benzene,TPE-R)、1,3-雙(3-胺基苯氧基)苯(1,3-Bis(3-aminophenoxy)benzene,APB)、4,4'-[2-甲基-(1,3-伸苯基)雙氧基]雙苯胺、4,4'-[4-甲基-(1,3-伸苯基)雙氧基]雙苯胺、4,4'-[5-甲基-(1,3-伸苯基)雙氧基]雙苯胺等。該些中,作為有助於熱塑性聚醯亞胺的高CTE(熱膨脹係數,Coefficient of Thermal Expansion)化、並且減少醯亞胺基濃度、改善介電特性的單體,特佳為1,3-雙(4-胺基苯氧基)苯(TPE-R)。Examples of the diamine (3) include 1,3-bis(4-aminophenoxy)benzene (TPE-R), 1,3-bis(3-aminophenoxy)benzene (APB), 4,4'-[2-methyl-(1,3-phenylene)bisoxy]bisaniline, 4,4'-[4-methyl-(1,3-phenylene)bisoxy]bisaniline, and 4,4'-[5-methyl-(1,3-phenylene)bisoxy]bisaniline. Among these, 1,3-bis(4-aminophenoxy)benzene (TPE-R) is particularly preferred as a monomer that contributes to increasing the CTE (Coefficient of Thermal Expansion) of thermoplastic polyimide, reducing the imide group concentration, and improving the dielectric properties.
式(4)所表示的二胺(以下,有時記述為「二胺(4)」)為具有四個苯環的芳香族二胺。認為該二胺(4)藉由直接鍵結於至少一個苯環上的胺基與二價連結基A位於間位,而具有高的彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,藉由使用二胺(4),聚醯亞胺的熱塑性提高。此處,作為連結基A,較佳為-O-、-CH 2-、-C(CH 3) 2-、-SO 2-、-CO-、-CONH-。 The diamine represented by formula (4) (hereinafter, sometimes described as "diamine (4)") is an aromatic diamine having four benzene rings. The diamine (4) is considered to have high flexibility due to the amino group directly bonded to at least one benzene ring and the divalent linking group A being located at the meta position, and thus contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (4), the thermoplasticity of the polyimide is improved. Here, as the linking group A, -O-, -CH2- , -C( CH3 ) 2- , -SO2- , -CO-, and -CONH- are preferred.
作為二胺(4),可列舉:雙[4-(3-胺基苯氧基)苯基]甲烷、雙[4-(3-胺基苯氧基)苯基]丙烷、雙[4-(3-胺基苯氧基)苯基]醚、雙[4-(3-胺基苯氧基)苯基]碸、雙[4-(3-胺基苯氧基)]二苯甲酮、雙[4,4'-(3-胺基苯氧基)]苯甲醯苯胺等。Examples of the diamine (4) include bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)]benzophenone, and bis[4,4'-(3-aminophenoxy)]benzanilide.
式(5)所表示的二胺(以下,有時記述為「二胺(5)」)為具有四個苯環的芳香族二胺。認為該二胺(5)藉由直接鍵結於至少一個苯環上的兩個二價連結基A彼此位於間位,而聚醯亞胺分子鏈所具有的自由度增加並具有高的彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,藉由使用二胺(5),聚醯亞胺的熱塑性提高。此處,作為連結基A,較佳為-O-。The diamine represented by formula (5) (hereinafter, sometimes described as "diamine (5)") is an aromatic diamine having four benzene rings. The two divalent linking groups A directly bonded to at least one benzene ring of the diamine (5) are located at the meta position to each other, and the degree of freedom of the polyimide molecular chain is increased and the flexibility is high, which contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, by using diamine (5), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-.
作為二胺(5),可列舉4-[3-[4-(4-胺基苯氧基)苯氧基]苯氧基]苯胺、4,4'-[氧基雙(3,1-伸苯基氧基)]雙苯胺等。Examples of the diamine (5) include 4-[3-[4-(4-aminophenoxy)phenoxy]phenoxy]aniline and 4,4'-[oxybis(3,1-phenyleneoxy)]bisaniline.
式(6)所表示的二胺(以下,有時記述為「二胺(6)」)為具有四個苯環的芳香族二胺。認為該二胺(6)藉由具有至少兩個醚鍵而具有高的彎曲性,有助於聚醯亞胺分子鏈的柔軟性的提高。因此,藉由使用二胺(6),聚醯亞胺的熱塑性提高。此處,作為連結基A,較佳為-C(CH 3) 2-、-O-、-SO 2-、-CO-。 The diamine represented by formula (6) (hereinafter, sometimes described as "diamine (6)") is an aromatic diamine having four benzene rings. It is believed that the diamine (6) has high flexibility due to having at least two ether bonds, and contributes to improving the flexibility of the polyimide molecular chain. Therefore, by using diamine (6), the thermoplasticity of the polyimide is improved. Here, as the linking group A, -C( CH3 ) 2- , -O-, -SO2- , and -CO- are preferred.
作為二胺(6),例如可列舉:2,2-雙[4-(4-胺基苯氧基)苯基]丙烷(2,2-Bis[4-(4-aminophenoxy)phenyl]propane,BAPP)、雙[4-(4-胺基苯氧基)苯基]醚(Bis[4-(4-aminophenoxy)phenyl]ether,BAPE)、雙[4-(4-胺基苯氧基)苯基]碸(Bis[4-(4-aminophenoxy)phenyl]sulfone,BAPS)、雙[4-(4-胺基苯氧基)苯基]酮(Bis[4-(4-aminophenoxy)phenyl]ketone,BAPK)等。該些中,作為大幅有助於提高與金屬層的接著性的單體,特佳為2,2-雙[4-(4-胺基苯氧基)苯基]丙烷(BAPP)。Examples of the diamine (6) include 2,2-Bis[4-(4-aminophenoxy)phenyl]propane (BAPP), bis[4-(4-aminophenoxy)phenyl]ether (BAPE), bis[4-(4-aminophenoxy)phenyl]sulfone (BAPS), and bis[4-(4-aminophenoxy)phenyl]ketone (BAPK). Among these, 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) is particularly preferred as it is a monomer that greatly contributes to improving the adhesion to the metal layer.
式(7)所表示的二胺(以下,有時記述為「二胺(7)」)為具有四個苯環的芳香族二胺。認為該二胺(7)因在二苯基骨架的兩側分別具有彎曲性高的二價連結基A,因此有助於聚醯亞胺分子鏈的柔軟性的提高。因此,藉由使用二胺(7),聚醯亞胺的熱塑性提高。此處,作為連結基A,較佳為-O-。The diamine represented by formula (7) (hereinafter, sometimes described as "diamine (7)") is an aromatic diamine having four benzene rings. Since the diamine (7) has a highly flexible divalent linking group A on both sides of the diphenyl skeleton, it is considered that it contributes to improving the flexibility of the polyimide molecular chain. Therefore, by using diamine (7), the thermoplasticity of the polyimide is improved. Here, the linking group A is preferably -O-.
作為二胺(7),例如可列舉雙[4-(3-胺基苯氧基)]聯苯、雙[4-(4-胺基苯氧基)]聯苯等。Examples of the diamine (7) include bis[4-(3-aminophenoxy)]biphenyl and bis[4-(4-aminophenoxy)]biphenyl.
通式(8)所表示的二胺(以下,有時記述為「二胺(8)」)為具有一個至三個苯環的芳香族二胺。二胺(8)因具有剛直結構,因此具有對聚合物整體賦予有序結構的作用。因此,藉由以規定的比率將二胺(1)~二胺(7)的一種以上、與二胺(8)的一種以上組合使用,可實現低介電損耗正切化,並且可獲得為熱塑性、且氣體透過性低、長期耐熱接著性優異的聚醯亞胺。此處,作為連結基X,較佳為單鍵、-CONH-。The diamine represented by the general formula (8) (hereinafter, sometimes described as "diamine (8)") is an aromatic diamine having one to three benzene rings. Since diamine (8) has a rigid structure, it has the function of imparting an ordered structure to the polymer as a whole. Therefore, by using one or more of diamines (1) to diamines (7) and one or more of diamines (8) in combination at a predetermined ratio, a low dielectric loss tangent can be achieved, and a thermoplastic polyimide with low gas permeability and excellent long-term heat-resistant adhesion can be obtained. Here, the linking group X is preferably a single bond, -CONH-.
作為二胺(8),例如可列舉:對苯二胺(paraphenylenediamine,PDA)、4,4'-二胺基-2,2'-二甲基聯苯(4,4'-diamino-2,2'-dimethyl biphenyl,m-TB)、4,4'-二胺基-3,3'-二甲基聯苯、4,4'-二胺基-2,2'-正丙基聯苯(4,4'-diamino-2,2'-n-propyl biphenyl,m-NPB)、2'-甲氧基-4,4'-二胺基苯甲醯苯胺(2'-methoxy-4,4'-diamino benzanilide,MABA)、4,4'-二胺基苯甲醯苯胺(4,4'-diamino benzanilide,DABA)、2,2'-雙(三氟甲基)-4,4'-二胺基聯苯等。該些中,作為大幅有助於熱塑性聚醯亞胺的介電特性的改善、進而低吸濕化或高耐熱化的單體,特佳為4,4'-二胺基-2,2'-二甲基聯苯(m-TB)。Examples of the diamine (8) include paraphenylenediamine (PDA), 4,4'-diamino-2,2'-dimethyl biphenyl (m-TB), 4,4'-diamino-3,3'-dimethyl biphenyl, 4,4'-diamino-2,2'-n-propyl biphenyl (m-NPB), 2'-methoxy-4,4'-diamino benzanilide (MABA), 4,4'-diamino benzanilide (DABA), and 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl. Among these, 4,4'-diamino-2,2'-dimethylbiphenyl (m-TB) is particularly preferred as a monomer that greatly contributes to the improvement of the dielectric properties of thermoplastic polyimide and further to the reduction of moisture absorption or the improvement of heat resistance.
藉由使用二胺(1)~二胺(7),可提高聚醯亞胺分子鏈的柔軟性,賦予熱塑性。By using diamine (1) to diamine (7), the flexibility of the polyimide molecular chain can be improved and thermoplasticity can be imparted.
另外,藉由使用二胺(8),利用源自單體的剛直結構,而於聚合物整體形成有序結構,因此可實現低介電損耗正切化,並且可獲得為熱塑性、且氣體透過性低、長期耐熱接著性優異的聚醯亞胺。In addition, by using diamine (8), the rigid structure derived from the monomer is utilized to form an ordered structure in the entire polymer, thereby achieving a low dielectric loss tangent, and obtaining a thermoplastic polyimide with low gas permeability and excellent long-term heat-resistant adhesion.
再者,熱塑性聚醯亞胺可使用所述以外的二胺作為二胺成分。In addition, the thermoplastic polyimide may use diamines other than those mentioned above as the diamine component.
(非熱塑性聚醯亞胺) 非熱塑性聚醯亞胺可使酸酐成分與二胺成分反應而獲得。作為成為非熱塑性聚醯亞胺的原料的酸酐成分,可並無特別限制地利用聚醯亞胺的合成中所使用的通常的酸酐,為了賦予低介電特性,作為原料的酸酐成分,較佳為至少使用選自均苯四甲酸二酐(PMDA)、聯苯基四羧酸二酐、萘四羧酸二酐中的一種以上。此處,作為聯苯基四羧酸二酐,特佳為3,3',4,4'-聯苯基四羧酸二酐(BPDA),作為萘四羧酸二酐,特佳為2,3,6,7-萘四羧酸二酐(2,3,6,7-naphthalene tetracarboxylic dianhydride,NTCDA)。 (Non-thermoplastic polyimide) Non-thermoplastic polyimide can be obtained by reacting an anhydride component with a diamine component. As the anhydride component that becomes the raw material of the non-thermoplastic polyimide, the common anhydride used in the synthesis of polyimide can be used without particular limitation. In order to impart low dielectric properties, it is preferred to use at least one selected from pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride, and naphthalenetetracarboxylic dianhydride as the raw material acid anhydride component. Here, as the biphenyltetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) is particularly preferred, and as the naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride (2,3,6,7-naphthalenetetracarboxylic dianhydride, NTCDA) is particularly preferred.
PMDA可降低聚醯亞胺的熱膨脹係數(CTE)。BPDA具有使玻璃轉移溫度降低到不會對聚醯亞胺的焊料耐熱性降低造成影響的程度的效果。另外,BPDA降低聚醯亞胺的醯亞胺基濃度,並且容易形成聚合物的有序結構,且藉由抑制分子的運動而改善介電特性。進而,BPDA有助於聚醯亞胺的極性基的減少,因此改善吸濕特性。因此,藉由使用BPDA,可降低FPC的傳輸損耗。PMDA can reduce the coefficient of thermal expansion (CTE) of polyimide. BPDA has the effect of reducing the glass transition temperature to a level that does not affect the reduction of the solder heat resistance of polyimide. In addition, BPDA reduces the imide group concentration of polyimide, and easily forms an ordered structure of the polymer, and improves the dielectric properties by inhibiting the movement of molecules. Furthermore, BPDA helps reduce the polar groups of polyimide, thereby improving the moisture absorption characteristics. Therefore, by using BPDA, the transmission loss of FPC can be reduced.
再者,非熱塑性聚醯亞胺可使用所述以外的酸酐作為酸酐成分。In addition, the non-thermoplastic polyimide may use an acid anhydride other than the above-mentioned ones as the acid anhydride component.
作為成為非熱塑性聚醯亞胺的原料的二胺成分,可並無特別限制地利用聚醯亞胺的合成中所使用的通常的二胺,較佳為選自熱塑性聚醯亞胺的說明中所例示的所述二胺(1)~二胺(8)中的二胺,更佳為二胺(8)。As the diamine component serving as the raw material of the non-thermoplastic polyimide, any diamine commonly used in the synthesis of polyimide can be used without particular limitation. Preferably, it is a diamine selected from the diamines (1) to (8) exemplified in the description of the thermoplastic polyimide, and more preferably, diamine (8).
二胺(8)為芳香族二胺,有助於低CTE化或介電特性的改善,進而有助於低吸濕化或高耐熱化。二胺(8)中,於所述通式(8)中,較佳為Y為碳數1~3的烷基者,更佳為4,4'-二胺基-2,2'-二甲基聯苯(m-TB)、4,4'-二胺基-3,3'-二甲基聯苯。該些中,最佳為4,4'-二胺基-2,2'-二甲基聯苯(m-TB)。Diamine (8) is an aromatic diamine, which contributes to lower CTE or improvement of dielectric properties, and further contributes to lower moisture absorption or higher heat resistance. Among diamine (8), in the general formula (8), Y is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably 4,4'-diamino-2,2'-dimethylbiphenyl (m-TB) and 4,4'-diamino-3,3'-dimethylbiphenyl. Among these, 4,4'-diamino-2,2'-dimethylbiphenyl (m-TB) is the most preferred.
再者,非熱塑性聚醯亞胺可於不妨礙發明的效果的範圍內使用所述以外的二胺作為二胺成分。Furthermore, the non-thermoplastic polyimide may use diamines other than those described above as the diamine component within a range not hindering the effects of the present invention.
(聚醯亞胺的合成) 構成聚醯亞胺層的聚醯亞胺可藉由如下方式製造:使酸酐及二胺於溶媒中反應,且於生成前驅物樹脂後進行加熱閉環。例如,使酸酐成分與二胺成分以大致等莫耳[其中,於形成第二聚醯亞胺層(B)的情況下,使二胺成分的比率增多]溶解於有機溶媒中,於0℃~100℃的範圍內的溫度下攪拌30分鐘~24小時而進行聚合反應,藉此獲得作為聚醯亞胺的前驅物的聚醯胺酸。於反應時,以生成的前驅物於有機溶媒中為5重量%~30重量%的範圍內、較佳為10重量%~20重量%的範圍內的方式溶解反應成分。作為聚合反應中使用的有機溶媒,例如可列舉:N,N-二甲基甲醯胺、N,N-二甲基乙醯胺(DMAc)、N-甲基-2-吡咯啶酮、2-丁酮、二甲基亞碸、硫酸二甲酯、環己酮、二噁烷、四氫呋喃、二甘醇二甲醚、三甘醇二甲醚等。亦可將該些溶媒併用兩種以上而使用,進而亦可併用二甲苯、甲苯之類的芳香族烴。另外,此種有機溶劑的使用量並無特別限制,較佳為調整為藉由聚合反應而獲得的聚醯胺酸溶液(聚醯亞胺前驅物溶液)的濃度為5重量%~30重量%左右的之類的使用量來使用。 (Synthesis of polyimide) The polyimide constituting the polyimide layer can be produced by reacting an acid anhydride and a diamine in a solvent, and heating and ring-closing the reaction mixture after the precursor resin is generated. For example, the acid anhydride component and the diamine component are dissolved in an organic solvent in approximately equal molar amounts [wherein the ratio of the diamine component is increased when forming the second polyimide layer (B)], and the polymerization reaction is carried out by stirring at a temperature in the range of 0°C to 100°C for 30 minutes to 24 hours, thereby obtaining a polyamide acid as a precursor of the polyimide. During the reaction, the reaction components are dissolved in an organic solvent in a range of 5 wt% to 30 wt%, preferably 10 wt% to 20 wt%. Examples of organic solvents used in the polymerization reaction include N,N-dimethylformamide, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, etc. Two or more of these solvents may be used in combination, and aromatic hydrocarbons such as xylene and toluene may also be used in combination. In addition, the amount of such organic solvent used is not particularly limited, and it is preferably used in an amount adjusted to a concentration of about 5 wt% to 30 wt% of the polyamide solution (polyimide precursor solution) obtained by the polymerization reaction.
於聚醯亞胺的合成中,所述酸酐及二胺可分別僅使用其中的一種,亦可將兩種以上併用而使用。藉由選定酸酐及二胺的種類、或使用兩種以上的酸酐或二胺時的各自的莫耳比,可控制熱膨脹性、接著性、玻璃轉移溫度等。In the synthesis of polyimide, the acid anhydride and diamine may be used alone or in combination. By selecting the types of the acid anhydride and diamine, or the molar ratio of the two or more acid anhydrides or diamines, thermal expansion, adhesion, glass transition temperature, etc. can be controlled.
所合成的前驅物通常有利的是作為反應溶媒溶液而使用,視需要可進行濃縮、稀釋或置換為其他有機溶媒。另外,前驅物通常因溶媒可溶性優異而有利地使用。使前驅物醯亞胺化的方法並無特別限制,例如可適宜採用於所述溶媒中在80℃~400℃的範圍內的溫度條件下歷時1小時~24小時進行加熱等熱處理。The synthesized precursor is usually advantageously used as a reaction solvent solution, and can be concentrated, diluted or replaced with other organic solvents as needed. In addition, the precursor is usually advantageously used due to its excellent solvent solubility. The method for imidizing the precursor is not particularly limited, for example, a heat treatment such as heating in the solvent at a temperature condition in the range of 80°C to 400°C for 1 hour to 24 hours can be appropriately adopted.
如上所述,本發明的第3實施形態的聚醯亞胺膜的製造方法為如下聚醯亞胺膜的製造方法,所述聚醯亞胺膜包括:第一聚醯亞胺層(A)、以及積層於所述第一聚醯亞胺層(A)的至少單側的面的第二聚醯亞胺層(B)。 本發明的第3實施形態的聚醯亞胺膜的製造方法包括下述步驟I~步驟III: I)準備包含具有酮基的聚醯亞胺的第一聚醯亞胺層(A)的步驟; II)於所述第一聚醯亞胺層(A)上積層包含聚醯胺酸(b)的樹脂層的步驟,所述聚醯胺酸(b)包含具有與所述酮基產生相互作用的性質的官能基;以及 III)連同所述第一聚醯亞胺層(A)一起對所述包含聚醯胺酸(b)的樹脂層進行熱處理,而使所述聚醯胺酸(b)醯亞胺化並形成第二聚醯亞胺層(B)的步驟。 As described above, the method for manufacturing a polyimide film of the third embodiment of the present invention is a method for manufacturing a polyimide film, wherein the polyimide film comprises: a first polyimide layer (A), and a second polyimide layer (B) laminated on at least one side of the first polyimide layer (A). The method for producing a polyimide film of the third embodiment of the present invention comprises the following steps I to III: I) a step of preparing a first polyimide layer (A) comprising a polyimide having a ketone group; II) a step of laminating a resin layer comprising polyamide (b) on the first polyimide layer (A), wherein the polyamide (b) comprises a functional group having a property of interacting with the ketone group; and III) a step of heat-treating the resin layer comprising polyamide (b) together with the first polyimide layer (A) to imidize the polyamide (b) and form a second polyimide layer (B).
本發明的第3實施形態的聚醯亞胺膜的製造方法中,構成所述第一聚醯亞胺層(A)的聚醯亞胺包含四羧酸殘基(1a)及二胺殘基(2a),且相對於所述四羧酸殘基(1a)及所述二胺殘基(2a)的合計100莫耳份,所述酮基可為5莫耳份以上。In the method for producing a polyimide film of the third embodiment of the present invention, the polyimide constituting the first polyimide layer (A) comprises tetracarboxylic acid residues (1a) and diamine residues (2a), and the ketone group may be 5 mol parts or more relative to 100 mol parts in total of the tetracarboxylic acid residues (1a) and the diamine residues (2a).
本發明的第3實施形態的聚醯亞胺膜的製造方法中,所述包含聚醯胺酸(b)的樹脂層包含四羧酸殘基(1b)及二胺殘基(2b),且相對於所述二胺殘基(2b)1莫耳,所述四羧酸殘基(1b)可小於1莫耳。In the method for producing a polyimide film of the third embodiment of the present invention, the resin layer containing polyamide (b) contains tetracarboxylic acid residues (1b) and diamine residues (2b), and the tetracarboxylic acid residues (1b) may be less than 1 mol relative to 1 mol of the diamine residues (2b).
本發明的第3實施形態的聚醯亞胺膜的製造方法中,所述第一聚醯亞胺層(A)可為將包含具有酮基的聚醯胺酸(a)的樹脂層積層於基材上、並連同所述基材一起使所述聚醯胺酸(a)醯亞胺化而形成者。In the method for producing a polyimide film according to the third embodiment of the present invention, the first polyimide layer (A) may be formed by laminating a resin layer containing polyamide (a) having a keto group on a substrate and imidizing the polyamide (a) together with the substrate.
另外,本發明的第4實施形態的覆金屬積層板的製造方法為如下覆金屬積層板的製造方法,所述覆金屬積層板包括:金屬層、第一聚醯亞胺層(A)、以及積層於所述第一聚醯亞胺層(A)的單側的面的第二聚醯亞胺層(B)。 本發明的第4實施形態的覆金屬積層板的製造方法包括下述步驟i~步驟iv: i)於金屬層上形成至少一層以上的聚醯胺酸的樹脂層的步驟,所述聚醯胺酸的樹脂層在表層部包括包含具有酮基的聚醯胺酸(a)的樹脂層; ii)連同所述金屬層一起對所述聚醯胺酸的樹脂層進行熱處理,使所述聚醯胺酸醯亞胺化,藉此於所述金屬層上形成積層有聚醯亞胺層的中間體的步驟,所述聚醯亞胺層包括包含具有酮基的聚醯亞胺的第一聚醯亞胺層(A)作為表層部; iii)於所述第一聚醯亞胺層(A)上積層包含聚醯胺酸(b)的樹脂層的步驟,所述聚醯胺酸(b)包含具有與所述酮基產生相互作用的性質的官能基;以及 iv)連同所述中間體一起對所述聚醯胺酸(b)的樹脂層進行熱處理,而使所述聚醯胺酸(b)醯亞胺化來形成第二聚醯亞胺層(B)的步驟。 In addition, the manufacturing method of the metal-clad laminate of the fourth embodiment of the present invention is the following manufacturing method of the metal-clad laminate, wherein the metal-clad laminate includes: a metal layer, a first polyimide layer (A), and a second polyimide layer (B) laminated on one side of the first polyimide layer (A). The manufacturing method of the metal-clad laminate of the fourth embodiment of the present invention includes the following steps i to iv: i) forming at least one layer of a polyamide resin layer on the metal layer, wherein the polyamide resin layer includes a resin layer containing a polyamide (a) having a keto group in the surface layer; ii) heat-treating the resin layer of the polyamine together with the metal layer to imidize the polyamine, thereby forming an intermediate having a polyimide layer laminated on the metal layer, wherein the polyimide layer includes a first polyimide layer (A) containing a polyimide having a ketone group as a surface layer; iii) laminating a resin layer containing polyamine (b) on the first polyimide layer (A), wherein the polyamine (b) contains a functional group having a property of interacting with the ketone group; and iv) heat-treating the resin layer of the polyamide (b) together with the intermediate to imidize the polyamide (b) to form a second polyimide layer (B).
本發明的一實施形態的電路基板的製造方法包括:對利用所述第4實施形態的方法製造的所述覆金屬積層板的所述金屬層進行配線電路加工的步驟。A method for manufacturing a circuit board according to an embodiment of the present invention includes the step of performing wiring circuit processing on the metal layer of the metal-clad laminate manufactured by the method of the fourth embodiment.
以上,本發明的第3實施形態中獲得的聚醯亞胺膜、及第4實施形態中獲得的覆金屬積層板藉由第一聚醯亞胺層(A)與第二聚醯亞胺層(B)的密接性優異、且作為FPC所代表的電路基板材料而使用,而可提高電子機器的可靠性。As described above, the polyimide film obtained in the third embodiment of the present invention and the metal-clad laminate obtained in the fourth embodiment have excellent adhesion between the first polyimide layer (A) and the second polyimide layer (B) and are used as circuit board materials represented by FPC, thereby improving the reliability of electronic equipment.
<電路基板> 本發明的一實施形態的電路基板包括:包含多個聚醯亞胺層的絕緣樹脂層、以及積層於該絕緣樹脂層的至少單側的面的配線層。該電路基板可藉由如下方式製造:利用常規方法將利用所述第1實施形態、第2實施形態或第4實施形態的方法而獲得的覆金屬積層板的金屬層加工為圖案狀而形成配線層。金屬層的圖案化可藉由利用例如光微影技術與蝕刻等的任意的方法來進行。 <Circuit board> A circuit board of one embodiment of the present invention includes: an insulating resin layer including a plurality of polyimide layers, and a wiring layer laminated on at least one side of the insulating resin layer. The circuit board can be manufactured by processing the metal layer of the metal-clad laminate obtained by the method of the first embodiment, the second embodiment or the fourth embodiment into a pattern to form the wiring layer by a conventional method. The patterning of the metal layer can be performed by any method such as photolithography and etching.
再者,於製造電路基板時,作為通常進行的步驟,例如前步驟中的通孔加工、或後步驟的端子鍍敷、外形加工等步驟可依照常規方法進行。 [實施例] Furthermore, when manufacturing a circuit substrate, the steps that are usually performed, such as the through-hole processing in the previous step, or the terminal plating and shape processing in the subsequent step, can be performed according to conventional methods. [Implementation Example]
以下示出實施例,並對本發明的特徵進行更具體的說明。其中,本發明的範圍並不限定於實施例。再者,以下的實施例、比較例及參考例中,只要無特別說明,則各種測定、評價是基於下述內容。The following examples are shown to more specifically describe the features of the present invention. However, the scope of the present invention is not limited to the examples. Furthermore, in the following examples, comparative examples and reference examples, unless otherwise specified, various measurements and evaluations are based on the following contents.
[黏度測定] 樹脂的黏度是使用E型黏度計(博勒飛(Brookfield)公司製造,商品名:DV-II+Pro)測定25℃下的黏度。以扭矩為10%~90%的方式設定轉數,於開始測定後經過2分鐘後,讀取黏度穩定時的值。 [Viscosity measurement] The viscosity of the resin was measured at 25°C using an E-type viscometer (Brookfield, trade name: DV-II+Pro). The speed was set so that the torque was 10% to 90%, and the value when the viscosity stabilized was read 2 minutes after the start of the measurement.
[發泡的評價] 將於第一聚醯亞胺層及第二聚醯亞胺層的層間確認到剝離、或者聚醯亞胺層中產生龜裂的情況設為「有發泡」,將並無剝離或龜裂的情況設為「無發泡」。 [Evaluation of Foaming] If peeling was observed between the first polyimide layer and the second polyimide layer, or cracking occurred in the polyimide layer, it was determined as "foaming was present", and if there was no peeling or cracking, it was determined as "no foaming".
[蝕刻後尺寸變化率的測定] 準備80 mm×80 mm的大小的覆金屬積層板。於所述積層板的金屬層上設置乾膜抗蝕劑(dry film resist)後,進行曝光、顯影,如圖3所示般,以整體呈正四邊形的方式形成16個直徑1 mm的抗蝕劑圖案,製備縱向(machine direction,MD)及橫向(transverse direction,TD)上分別為50 mm間隔且可對5處進行測定的位置測定用目標。 [Measurement of dimensional change rate after etching] Prepare a metal-clad laminate of 80 mm × 80 mm size. After applying a dry film resist on the metal layer of the laminate, perform exposure and development, and form 16 resist patterns with a diameter of 1 mm in a regular quadrilateral as a whole, as shown in Figure 3, and prepare a position measurement target that can measure 5 locations at intervals of 50 mm in the longitudinal direction (machine direction, MD) and the transverse direction (transverse direction, TD).
關於所製備的樣品,於溫度:23±2℃、相對濕度:50±5%的環境中,測定位置測定用目標中的抗蝕劑圖案的縱向(MD)及橫向(TD)上的目標間的距離,之後,藉由蝕刻(蝕刻液的溫度:40℃以下,蝕刻時間:10分鐘以內)去除抗蝕劑圖案開孔部的金屬層的露出部分,如圖4所示般,製備具有16個金屬層殘存點的評價樣品。將該評價樣品於溫度:23±2℃、相對濕度:50±5%環境中靜置24±4小時後,測定縱向(MD)及橫向(TD)上的金屬層殘存點間的距離。算出縱向及橫向上的各5處的相對於常態的尺寸變化率,以各自的平均值作為蝕刻後尺寸變化率。 各尺寸變化率是藉由下述數式而得出。 蝕刻後尺寸變化率(%)=(B-A)/A×100 A:抗蝕劑顯影後的目標間的距離 B:金屬層蝕刻後的金屬層殘存點間的距離 將蝕刻後尺寸變化率的絕對值為0.2%以下的情況設為「良」,將超過0.2%且為0.4%以下的情況設為「可」,將超過0.4%的情況設為「否」。 For the prepared sample, the distance between the targets in the longitudinal direction (MD) and the transverse direction (TD) of the resist pattern in the position measurement target was measured in an environment of temperature: 23±2°C and relative humidity: 50±5%. After that, the exposed portion of the metal layer in the opening of the resist pattern was removed by etching (etching liquid temperature: below 40°C, etching time: within 10 minutes). As shown in Figure 4, an evaluation sample with 16 metal layer residual points was prepared. After the evaluation sample is placed in an environment with a temperature of 23±2℃ and a relative humidity of 50±5% for 24±4 hours, the distance between the metal layer residual points in the longitudinal direction (MD) and the transverse direction (TD) is measured. The dimensional change rate relative to the normal state at 5 points in the longitudinal direction and the transverse direction is calculated, and the average value of each is taken as the dimensional change rate after etching. Each dimensional change rate is obtained by the following formula. Dimensional change rate after etching (%) = (B-A)/A×100 A: The distance between targets after resist development B: The distance between metal layer residual points after metal layer etching The absolute value of the dimensional change rate after etching is set to "good" if it is less than 0.2%, "acceptable" if it exceeds 0.2% and is less than 0.4%, and "no" if it exceeds 0.4%.
[捲曲(curl)的評價] 膜捲曲是對覆金屬積層板的銅箔進行整面蝕刻,並測定將去除銅箔後的100 mm×100 mm的尺寸的聚醯亞胺膜的第一聚醯亞胺層設為下並放置時的4角的浮起高度。將4角的浮起高度的平均值超過10 mm的情況評價為「有捲曲」。 [Evaluation of curl] Film curl is measured by etching the entire copper foil of the metal-clad laminate and measuring the floating height of the four corners of the polyimide film with a size of 100 mm × 100 mm after removing the copper foil, with the first polyimide layer placed at the bottom. If the average value of the floating height of the four corners exceeds 10 mm, it is evaluated as "curling".
[透濕度的評價] 依據日本工業標準(Japanese Industrial Standards,JIS)Z0208,於透濕杯中封入吸濕劑/氯化鈣(無水),並將24小時後的杯的質量增加評價為水蒸氣的透過量。 [Evaluation of moisture permeability] According to Japanese Industrial Standards (JIS) Z0208, a moisture absorbent/calcium chloride (anhydrous) is sealed in a moisture permeability cup, and the increase in the cup mass after 24 hours is evaluated as the amount of water vapor permeability.
[吸濕率的測定]
準備2片聚醯亞胺膜的試驗片(寬度4 cm×長度25 cm),並於80℃下乾燥1小時。乾燥後,立即放入23℃/50%RH的恆溫恆濕室內,靜置24小時以上,根據其前後的重量變化並利用下式進行求出。
吸濕率(重量%)=[(吸濕後重量-乾燥後重量)/乾燥後重量]×100
[Determination of moisture absorption rate]
Prepare 2 test pieces of polyimide film (
[玻璃轉移溫度(Tg)的測定] 利用動態熱機械分析裝置(DMA:日本TA儀器(TA Instruments Japan)公司製造,商品名:RSA-G2)測定使聚醯亞胺膜(10 mm×40 mm)以5℃/分鐘自20℃起升溫至500℃為止時的動態黏彈性,求出玻璃轉移溫度(Tanδ極大值:℃)。 [Measurement of glass transition temperature (Tg)] The dynamic viscoelasticity of a polyimide film (10 mm × 40 mm) was measured by heating it from 20°C to 500°C at 5°C/min using a dynamic thermomechanical analyzer (DMA: manufactured by TA Instruments Japan, trade name: RSA-G2), and the glass transition temperature (Tanδ maximum value: °C) was determined.
[儲存彈性係數的測定] 儲存彈性係數是使用動態黏彈性測定裝置(DMA)來測定。將30℃下的儲存彈性係數為1.0×10 9Pa以上、且350℃下的儲存彈性係數為1.0×10 8Pa以上的聚醯亞胺設為「非熱塑性聚醯亞胺」,將30℃下的儲存彈性係數為1.0×10 9Pa以上、且350℃下的儲存彈性係數小於1.0×10 8Pa的聚醯亞胺設為「熱塑性聚醯亞胺」。 [Measurement of storage elastic coefficient] The storage elastic coefficient was measured using a dynamic viscoelasticity measuring apparatus (DMA). Polyimide having a storage elastic coefficient of 1.0×10 9 Pa or more at 30°C and a storage elastic coefficient of 1.0×10 8 Pa or more at 350°C was defined as "non-thermoplastic polyimide", and polyimide having a storage elastic coefficient of 1.0×10 9 Pa or more at 30°C and a storage elastic coefficient of less than 1.0×10 8 Pa at 350°C was defined as "thermoplastic polyimide".
[熱膨脹係數(CTE)的測定] 對於厚度25 μm、3 mm×20 mm的大小的聚醯亞胺膜,使用熱機械分析儀(布魯克(Bruker)公司製造,商品名:4000SA),一邊施加5.0 g的負荷,一邊以一定的升溫速度自30℃升溫至300℃,進而,於該溫度下保持10分鐘後,以5℃/分鐘的速度冷卻,求出250℃至100℃為止的平均熱膨脹係數(熱膨脹係數)。 [Measurement of thermal expansion coefficient (CTE)] For a polyimide film with a thickness of 25 μm and a size of 3 mm × 20 mm, a thermomechanical analyzer (manufactured by Bruker, trade name: 4000SA) was used to increase the temperature from 30°C to 300°C at a constant rate while applying a load of 5.0 g. After maintaining the temperature for 10 minutes, the film was cooled at a rate of 5°C/min to obtain the average thermal expansion coefficient (thermal expansion coefficient) from 250°C to 100°C.
[揮發成分率的測定] 關於各例中的揮發成分率,以30℃~500℃的範圍、10℃/分鐘的升溫速度進行半硬化後的第一聚醯胺樹脂層膜的熱重示差熱分析(Thermogravimetry-Differential Thermal Analysis,TG-DTA),並將100℃的膜重量設為100%,相對於此,將100℃~360℃為止的重量減少率設為揮發成分率。 [Determination of volatile content] For the volatile content in each example, the thermogravimetry-differential thermal analysis (TG-DTA) of the semi-cured first polyamide resin layer film was performed at a temperature increase rate of 10°C/min in the range of 30°C to 500°C, and the weight of the film at 100°C was set as 100%. The weight reduction rate from 100°C to 360°C was set as the volatile content.
[醯亞胺化率的評價] 聚醯亞胺層的醯亞胺化率可以如下方式算出:使用傅立葉轉換紅外分光光度計(日本分光公司製造,商品名FT/IR)並利用一次反射ATR法測定聚醯亞胺膜的狀態下的紅外線吸收光譜,藉此以1009 cm -1的苯環烴鍵為基準,並根據1778 cm -1的源自醯亞胺基的吸光度而算出。再者,對第一聚醯胺樹脂層進行自120℃起至360℃為止的階段性熱處理,並將360℃熱處理後的聚醯亞胺膜的醯亞胺化率設為100%。 [Evaluation of Imidization Ratio] The imidization ratio of the polyimide layer can be calculated as follows: The infrared absorption spectrum of the polyimide film is measured by the single reflection ATR method using a Fourier transform infrared spectrophotometer (manufactured by JASCO Corporation, trade name FT/IR), and the absorbance derived from the imide group at 1778 cm -1 is calculated based on the benzene ring hydrocarbon bond at 1009 cm -1 . Furthermore, the first polyimide resin layer is subjected to stepwise heat treatment from 120°C to 360°C, and the imidization ratio of the polyimide film after the heat treatment at 360°C is set to 100%.
[剝離強度的測定] 關於剝離強度,使用滕喜龍測試儀(Tensilon Tester)(東洋精機製作所製造,商品名:斯特羅格拉夫(Strograph)VE-1D),利用雙面膠帶將寬度10 mm的樣品的第二聚醯亞胺層側固定於鋁板上,沿180°方向以50 mm/分鐘的速度拉伸第一聚醯亞胺層側的覆金屬積層板,求出於第一聚醯亞胺層與第二聚醯亞胺層的層間產生剝離時的力。 [Peel strength measurement] For the peel strength, a Tensilon Tester (manufactured by Toyo Seiki Seisaku-sho, trade name: Strograph VE-1D) was used to fix the second polyimide layer side of a 10 mm wide sample to an aluminum plate using double-sided tape, and the metal-clad laminate on the first polyimide layer side was stretched in a 180° direction at a speed of 50 mm/min to determine the force generated between the first polyimide layer and the second polyimide layer when peeling.
合成例中使用的簡稱表示以下的化合物。
m-TB:2,2'-二甲基-4,4'-二胺基聯苯
TPE-R:1,3-雙(4-胺基苯氧基)苯
BAPP:2,2-雙[4-(4-胺基苯氧基)苯基]丙烷
TFMB:2,2'-雙(三氟甲基)-4,4'-二胺基聯苯
BAFL:9,9-雙(4-胺基苯基)芴
APB:1,3-雙(3-胺基苯氧基)苯
TPE-Q:1,4-雙(4-胺基苯氧基)苯
4,4'-DAPE:4,4'-二胺基二苯基醚
3,4'-DAPE:3,4'-二胺基二苯基醚
PDA:對苯二胺
PMDA:均苯四甲酸二酐
BPDA:3,3',4,4'-聯苯基四羧酸二酐
BTDA:3,3',4,4'-二苯甲酮四羧酸二酐
ODPA:4,4'-氧基二鄰苯二甲酸二酐
DMAc:N,N-二甲基乙醯胺
The abbreviations used in the synthesis examples represent the following compounds.
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl
TPE-R: 1,3-bis(4-aminophenoxy)benzene
BAPP: 2,2-bis[4-(4-aminophenoxy)phenyl]propane
TFMB: 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl
BAFL: 9,9-bis(4-aminophenyl)fluorene
APB: 1,3-bis(3-aminophenoxy)benzene
TPE-Q: 1,4-bis(4-aminophenoxy)
(合成例A1) 於1000 ml的可分離式燒瓶中投入75.149 g的m-TB(353.42 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加74.851 g的PMDA(342.82 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液A-A。所獲得的聚醯胺酸溶液A-A的黏度為22,700 cP。所獲得的聚醯胺酸的醯亞胺化後的聚醯亞胺為非熱塑性。另外,所獲得的聚醯亞胺膜(厚度:25 μm)的CTE為6.4 ppm/K。 (Synthesis Example A1) 75.149 g of m-TB (353.42 mmol) and 850 g of DMAc were placed in a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 74.851 g of PMDA (342.82 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamide solution A-A. The viscosity of the obtained polyamide solution A-A was 22,700 cP. The polyimide obtained after imidization of the obtained polyamide was non-thermoplastic. In addition, the CTE of the obtained polyimide film (thickness: 25 μm) was 6.4 ppm/K.
(合成例A2) 於1000 ml的可分離式燒瓶中投入65.054 g的m-TB(310.65 mmol)、10.090 g的TPE-R(34.52 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加73.856 g的PMDA(338.26 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液A-B。所獲得的聚醯胺酸溶液A-B的黏度為26,500 cP。所獲得的聚醯胺酸的醯亞胺化後的聚醯亞胺為非熱塑性,玻璃轉移溫度(Tg)為303℃。另外,所獲得的聚醯亞胺膜(厚度:25 μm)的CTE為16.2 ppm/K,吸濕率為0.61重量%,透濕度為64 g/m 2/24 hr。 (Synthesis Example A2) 65.054 g of m-TB (310.65 mmol), 10.090 g of TPE-R (34.52 mmol), and 850 g of DMAc were placed in a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 73.856 g of PMDA (338.26 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamide solution AB. The viscosity of the obtained polyamide solution AB was 26,500 cP. The polyimide obtained after imidization of the obtained polyamide was non-thermoplastic and had a glass transition temperature (Tg) of 303°C. The obtained polyimide film (thickness: 25 μm) had a CTE of 16.2 ppm/K, a moisture absorption rate of 0.61% by weight, and a moisture permeability of 64 g/m 2 /24 hr.
(合成例A3) 於1000 ml的可分離式燒瓶中投入89.621 g的TFMB(279.33 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加60.379 g的PMDA(276.54 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液A-C。所獲得的聚醯胺酸溶液A-C的黏度為21,200 cP。所獲得的聚醯胺酸的醯亞胺化後的聚醯亞胺為非熱塑性。另外,所獲得的聚醯亞胺膜(厚度:25 μm)的CTE為0.5 ppm/K。 (Synthesis Example A3) 89.621 g of TFMB (279.33 mmol) and 850 g of DMAc were placed in a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 60.379 g of PMDA (276.54 mmol) was added and stirred at room temperature for 4 hours to obtain polyamide solution A-C. The viscosity of the obtained polyamide solution A-C was 21,200 cP. The polyimide obtained after imidization of the obtained polyamide was non-thermoplastic. In addition, the CTE of the obtained polyimide film (thickness: 25 μm) was 0.5 ppm/K.
(合成例A4) 於1000 ml的可分離式燒瓶中投入49.928 g的TFMB(155.70 mmol)、33.102 g的m-TB(155.70 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加66.970 g的PMDA(307.03 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液A-D。所獲得的聚醯胺酸溶液A-D的黏度為21,500 cP。所獲得的聚醯胺酸的醯亞胺化後的聚醯亞胺為非熱塑性。另外,所獲得的聚醯亞胺膜(厚度:25 μm)的CTE為6.0 ppm/K。 (Synthesis Example A4) 49.928 g of TFMB (155.70 mmol), 33.102 g of m-TB (155.70 mmol), and 850 g of DMAc were placed in a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 66.970 g of PMDA (307.03 mmol) was added and stirred at room temperature for 4 hours to obtain polyamide solution A-D. The viscosity of the obtained polyamide solution A-D was 21,500 cP. The obtained polyimide after imidization of the polyamide was non-thermoplastic. In addition, the CTE of the obtained polyimide film (thickness: 25 μm) is 6.0 ppm/K.
(合成例A5) 於300 ml的可分離式燒瓶中投入29.492 g的BAPP(71.81 mmol)、255 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加15.508 g的PMDA(71.10 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液A-E。所獲得的聚醯胺酸溶液A-E的黏度為10,700 cP。所獲得的聚醯胺酸的醯亞胺化後的聚醯亞胺為熱塑性,玻璃轉移溫度(Tg)為312℃。另外,所獲得的聚醯亞胺膜(厚度:25 μm)的CTE為63.1 ppm/K,吸濕率為0.54重量%,透濕度為64 g/m 2/24 hr。 (Synthesis Example A5) 29.492 g of BAPP (71.81 mmol) and 255 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 15.508 g of PMDA (71.10 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamide solution AE. The viscosity of the obtained polyamide solution AE was 10,700 cP. The polyimide obtained after imidization of the obtained polyamide was thermoplastic and had a glass transition temperature (Tg) of 312°C. The obtained polyimide film (thickness: 25 μm) had a CTE of 63.1 ppm/K, a moisture absorption rate of 0.54% by weight, and a moisture permeability of 64 g/m 2 /24 hr.
(合成例A6) 於300 ml的可分離式燒瓶中投入25.889 g的TPE-R(88.50 mmol)、255 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加19.111 g的PMDA(87.62 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液A-F。所獲得的聚醯胺酸溶液A-F的黏度為13,200 cP。所獲得的聚醯胺酸的醯亞胺化後的聚醯亞胺為非熱塑性。另外,所獲得的聚醯亞胺膜(厚度:25 μm)的CTE為57.7 ppm/K。 (Synthesis Example A6) 25.889 g of TPE-R (88.50 mmol) and 255 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 19.111 g of PMDA (87.62 mmol) was added and stirred at room temperature for 4 hours to obtain polyamide solutions A-F. The viscosity of the obtained polyamide solutions A-F was 13,200 cP. The polyimide obtained after imidization of the obtained polyamide was non-thermoplastic. In addition, the CTE of the obtained polyimide film (thickness: 25 μm) was 57.7 ppm/K.
(合成例A7) 於300 ml的可分離式燒瓶中投入27.782 g的BAFL(79.73 mmol)、255 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加17.218 g的PMDA(78.94 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液A-G。所獲得的聚醯胺酸溶液A-G的黏度為10,400 cP。所獲得的聚醯胺酸的醯亞胺化後的聚醯亞胺為非熱塑性。另外,所獲得的聚醯亞胺膜(厚度:25 μm)的CTE為52.0 ppm/K。 (Synthesis Example A7) 27.782 g of BAFL (79.73 mmol) and 255 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 17.218 g of PMDA (78.94 mmol) was added and stirred at room temperature for 4 hours to obtain polyamide solution A-G. The viscosity of the obtained polyamide solution A-G was 10,400 cP. The polyimide obtained after imidization of the obtained polyamide was non-thermoplastic. In addition, the CTE of the obtained polyimide film (thickness: 25 μm) was 52.0 ppm/K.
[實施例A1] 於厚度12 μm的電解銅箔上,以硬化後的厚度為2 μm的方式均勻地塗佈成為第一聚醯亞胺層的聚醯胺酸溶液A-E,之後,自120℃起階段性地升溫至360℃,進行溶媒的去除及醯亞胺化。對所獲得的第一聚醯亞胺層以120 W·min/m 2進行電暈處理。其次,於其上,以硬化後的厚度為25 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液A-A,之後,於120℃下加熱乾燥3分鐘而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備覆金屬積層板A1。第一聚醯亞胺層的厚度(L1)為2 μm,絕緣樹脂層整體的厚度(L)為27 μm,比(L/L1)為13.5。於所製備的覆金屬積層板A1的樹脂面黏貼黏著膠帶,利用垂直方向上的瞬間撕下進行剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A1] On an electrolytic copper foil having a thickness of 12 μm, a polyamide solution AE is uniformly applied to form a first polyimide layer in a manner that the thickness after curing is 2 μm, and then the temperature is gradually raised from 120°C to 360°C to remove the solvent and perform imidization. The obtained first polyimide layer is subjected to a corona treatment at 120 W·min/ m2 . Next, a polyamide solution AA is uniformly applied thereon in a manner that the thickness after curing is 25 μm to form a second polyimide layer, and then the solvent is removed by heating and drying at 120°C for 3 minutes. Thereafter, the temperature was gradually raised from 130°C to 360°C for imidization to prepare a metal-clad laminate A1. The thickness (L1) of the first polyimide layer was 2 μm, the thickness (L) of the entire insulating resin layer was 27 μm, and the ratio (L/L1) was 13.5. An adhesive tape was attached to the resin surface of the prepared metal-clad laminate A1, and a peeling test was performed by instantaneous tearing in the vertical direction, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A2] 代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-F,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A2。與實施例A1同樣地,進行所製備的覆金屬積層板A2的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A2] Metal-clad laminate A2 was prepared in the same manner as in Example A1 except that polyamide solution A-F was used instead of polyamide solution A-E. The prepared metal-clad laminate A2 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A3] 代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-G,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A3。與實施例A1同樣地,進行所製備的覆金屬積層板A3的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A3] Metal-clad laminate A3 was prepared in the same manner as in Example A1 except that polyamide solution A-G was used instead of polyamide solution A-E. The prepared metal-clad laminate A3 was subjected to a peeling test in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A4] 代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-C,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A4。與實施例A1同樣地,進行所製備的覆金屬積層板A4的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A4] Metal-clad laminate A4 was prepared in the same manner as in Example A1 except that polyamide solution A-C was used instead of polyamide solution A-E. The prepared metal-clad laminate A4 was subjected to a peeling test in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A5] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-B,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A5。與實施例A1同樣地,進行所製備的覆金屬積層板A5的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A5] Metal-clad laminate A5 was prepared in the same manner as in Example A1 except that polyamide solution A-B was used instead of polyamide solution A-A. The prepared metal-clad laminate A5 was subjected to a peeling test in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A6] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-B,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-F,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A6。與實施例A1同樣地,進行所製備的覆金屬積層板A6的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A6] Metal-clad laminate A6 was prepared in the same manner as in Example A1 except that polyamide solution A-B was used instead of polyamide solution A-A, and polyamide solution A-F was used instead of polyamide solution A-E. The prepared metal-clad laminate A6 was subjected to a peeling test in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A7] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-B,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-G,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A7。與實施例A1同樣地,進行所製備的覆金屬積層板A7的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A7] Metal-clad laminate A7 was prepared in the same manner as in Example A1 except that polyamide solution A-B was used instead of polyamide solution A-A, and polyamide solution A-G was used instead of polyamide solution A-E. The prepared metal-clad laminate A7 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A8] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-B,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-A,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A8。與實施例A1同樣地,進行所製備的覆金屬積層板A8的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A8] Metal-clad laminate A8 was prepared in the same manner as in Example A1 except that polyamide solution A-B was used instead of polyamide solution A-A, and polyamide solution A-A was used instead of polyamide solution A-E. The prepared metal-clad laminate A8 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A9] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-B,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-C,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A9。與實施例A1同樣地,進行所製備的覆金屬積層板A9的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A9] Metal-clad laminate A9 was prepared in the same manner as in Example A1 except that polyamide solution A-B was used instead of polyamide solution A-A, and polyamide solution A-C was used instead of polyamide solution A-E. The prepared metal-clad laminate A9 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A10] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-C,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A10。與實施例A1同樣地,進行所製備的覆金屬積層板A10的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A10] Metal-clad laminate A10 was prepared in the same manner as in Example A1 except that polyamide solution A-C was used instead of polyamide solution A-A. The prepared metal-clad laminate A10 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A11] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-C,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-F,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A11。與實施例A1同樣地,進行所製備的覆金屬積層板A11的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A11] A metal-clad laminate A11 was prepared in the same manner as in Example A1 except that polyamide solution A-C was used instead of polyamide solution A-A, and polyamide solution A-F was used instead of polyamide solution A-E. The prepared metal-clad laminate A11 was subjected to a peeling test in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A12] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-C,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-G,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A12。與實施例A1同樣地,進行所製備的覆金屬積層板A12的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A12] Metal-clad laminate A12 was prepared in the same manner as Example A1 except that polyamide solution A-C was used instead of polyamide solution A-A, and polyamide solution A-G was used instead of polyamide solution A-E. The prepared metal-clad laminate A12 was subjected to a peeling test in the same manner as Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A13] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-C,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-A,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A13。與實施例A1同樣地,進行所製備的覆金屬積層板A13的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A13] Metal-clad laminate A13 was prepared in the same manner as in Example A1 except that polyamide solution A-C was used instead of polyamide solution A-A, and polyamide solution A-A was used instead of polyamide solution A-E. The prepared metal-clad laminate A13 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A14] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-D,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A14。與實施例A1同樣地,進行所製備的覆金屬積層板A14的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A14] Metal-clad laminate A14 was prepared in the same manner as Example A1 except that polyamide solution A-D was used instead of polyamide solution A-A. The prepared metal-clad laminate A14 was subjected to a peeling test in the same manner as Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A15] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-D,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-F,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A15。與實施例A1同樣地,進行所製備的覆金屬積層板A15的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A15] Metal-clad laminate A15 was prepared in the same manner as in Example A1 except that polyamide solution A-D was used instead of polyamide solution A-A, and polyamide solution A-F was used instead of polyamide solution A-E. The prepared metal-clad laminate A15 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A16] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-D,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-G,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A16。與實施例A1同樣地,進行所製備的覆金屬積層板A16的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A16] Metal-clad laminate A16 was prepared in the same manner as in Example A1 except that polyamide solution A-D was used instead of polyamide solution A-A, and polyamide solution A-G was used instead of polyamide solution A-E. The prepared metal-clad laminate A16 was subjected to a peeling test in the same manner as in Example A1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例A17] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-D,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-A,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A17。與實施例A1同樣地,進行所製備的覆金屬積層板A17的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A17] Metal-clad laminate A17 was prepared in the same manner as in Example A1 except that polyamide solution A-D was used instead of polyamide solution A-A, and polyamide solution A-A was used instead of polyamide solution A-E. The prepared metal-clad laminate A17 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例A18] 代替聚醯胺酸溶液A-A而使用聚醯胺酸溶液A-D,且代替聚醯胺酸溶液A-E而使用聚醯胺酸溶液A-C,除此以外,與實施例A1同樣地進行而製備覆金屬積層板A18。與實施例A1同樣地,進行所製備的覆金屬積層板A18的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example A18] Metal-clad laminate A18 was prepared in the same manner as in Example A1 except that polyamide solution A-D was used instead of polyamide solution A-A, and polyamide solution A-C was used instead of polyamide solution A-E. The prepared metal-clad laminate A18 was subjected to a peeling test in the same manner as in Example A1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
比較例A1 除了並不進行電暈處理以外,與實施例A1同樣地進行而製備覆金屬積層板A19。與實施例A1同樣地,進行所製備的覆金屬積層板A19的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example A1 Except that the corona treatment is not performed, the metal-clad laminate A19 is prepared in the same manner as in Example A1. The prepared metal-clad laminate A19 is subjected to a peeling test in the same manner as in Example A1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurs.
比較例A2 除了並不進行電暈處理以外,與實施例A2同樣地進行而製備覆金屬積層板A20。與實施例A1同樣地,進行所製備的覆金屬積層板A20的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example A2 Except that the corona treatment is not performed, the metal-clad laminate A20 is prepared in the same manner as in Example A2. The prepared metal-clad laminate A20 is subjected to a peeling test in the same manner as in Example A1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurs.
比較例A3 除了並不進行電暈處理以外,與實施例A14同樣地進行而製備覆金屬積層板A21。與實施例A1同樣地,進行所製備的覆金屬積層板A21的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example A3 Except that the corona treatment is not performed, the metal-clad laminate A21 is prepared in the same manner as in Example A14. The prepared metal-clad laminate A21 is subjected to a peeling test in the same manner as in Example A1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurs.
比較例A4 除了並不進行電暈處理以外,與實施例A15同樣地進行而製備覆金屬積層板A22。與實施例A1同樣地,進行所製備的覆金屬積層板A22的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example A4 Except that the corona treatment is not performed, the metal-clad laminate A22 is prepared in the same manner as in Example A15. The prepared metal-clad laminate A22 is subjected to a peeling test in the same manner as in Example A1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurs.
[實施例A19] 於厚度12 μm的電解銅箔上,以硬化後的厚度為2.5 μm的方式均勻地塗佈成為第一聚醯亞胺層的聚醯胺酸溶液A-E,之後,自120℃起階段性地升溫至360℃,進行溶媒的去除及醯亞胺化。對所獲得的第一聚醯亞胺層以120 W·min/m 2進行電暈處理。其次,於其上,以硬化後的厚度為20 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液A-A,之後,於其上,以硬化後的厚度為2.5 μm的方式均勻地塗佈成為第三聚醯亞胺層的聚醯胺酸溶液A-E,於120℃下加熱乾燥3分鐘而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備覆金屬積層板A23。第一聚醯亞胺層的厚度(L1)為2.5 μm,絕緣樹脂層整體的厚度(L)為25 μm,比(L/L1)為10.0。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A19] On an electrolytic copper foil having a thickness of 12 μm, a polyamide solution AE was uniformly coated to form a first polyimide layer with a thickness of 2.5 μm after curing, and then the temperature was gradually raised from 120°C to 360°C to remove the solvent and perform imidization. The obtained first polyimide layer was subjected to a corona treatment at 120 W·min/ m2 . Next, polyamide solution AA was uniformly applied thereon to a thickness of 20 μm after curing to form a second polyimide layer, and then polyamide solution AE was uniformly applied thereon to a thickness of 2.5 μm after curing to form a third polyimide layer, and the solvent was removed by heating and drying at 120°C for 3 minutes. Thereafter, the temperature was gradually raised from 130°C to 360°C to perform imidization, and a metal-clad laminate A23 was prepared. The thickness (L1) of the first polyimide layer was 2.5 μm, the thickness (L) of the entire insulating resin layer was 25 μm, and the ratio (L/L1) was 10.0. No bubbling was observed, and no curling of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was "good".
[實施例A20] 代替成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-E而將聚醯胺酸溶液A-F以硬化後的厚度分別為2.7 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液A-A以硬化後的厚度為19.6 μm的方式均勻地塗佈,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A24。第一聚醯亞胺層的厚度(L1)為2.7 μm,絕緣樹脂層整體的厚度(L)為25 μm,比(L/L1)為9.3。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A20] Instead of polyamide solutions A-E to form the first polyimide layer and the third polyimide layer, polyamide solutions A-F were uniformly applied in a manner to have a thickness of 2.7 μm after curing, and polyamide solution A-A to form the second polyimide layer was uniformly applied in a manner to have a thickness of 19.6 μm after curing. A metal-clad laminate A24 was prepared in the same manner as in Example A19. The thickness (L1) of the first polyimide layer was 2.7 μm, the thickness (L) of the entire insulating resin layer was 25 μm, and the ratio (L/L1) was 9.3. No bubbling was observed, and no curling of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was "good".
[實施例A21] 代替成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-E而將聚醯胺酸溶液A-G以硬化後的厚度分別為3.2 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液A-A以硬化後的厚度為18.6 μm的方式均勻地塗佈,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A25。第一聚醯亞胺層的厚度(L1)為3.2 μm,絕緣樹脂層整體的厚度(L)為25 μm,比(L/L1)為7.8。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「可」。 [Example A21] Instead of the polyamide solutions A-E that form the first and third polyamide layers, polyamide solutions A-G are uniformly applied in a manner that the thickness after curing is 3.2 μm, and the polyamide solution A-A that forms the second polyamide layer is uniformly applied in a manner that the thickness after curing is 18.6 μm. The same method as in Example A19 is used to prepare a metal-clad laminate A25. The thickness (L1) of the first polyimide layer is 3.2 μm, the thickness (L) of the entire insulating resin layer is 25 μm, and the ratio (L/L1) is 7.8. No bubbling was observed, and no curling of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was "acceptable".
[實施例A22] 將成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-E以硬化後的厚度分別為1.7 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液A-A以硬化後的厚度為22 μm的方式均勻地塗佈,以及將塗佈聚醯胺酸溶液A-A及成為第三聚醯亞胺層的聚醯胺酸溶液A-E後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A26。第一聚醯亞胺層的厚度(L1)為1.7 μm,絕緣樹脂層整體的厚度(L)為25.4 μm,比(L/L1)為14.9。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A22] Metal-clad laminate A26 was prepared in the same manner as Example A19 except that polyamide solution A-E to be the first polyimide layer and the third polyimide layer were uniformly applied in a manner that the thickness after curing was 1.7 μm, polyamide solution A-A to be the second polyimide layer was uniformly applied in a manner that the thickness after curing was 22 μm, and the heating time from 130°C to 360°C after applying polyamide solution A-A and polyamide solution A-E to be the third polyimide layer was shortened to 1/3. The thickness of the first polyimide layer (L1) was 1.7 μm, the thickness of the entire insulating resin layer (L) was 25.4 μm, and the ratio (L/L1) was 14.9. No bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good".
[實施例A23] 將成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-E以硬化後的厚度分別為1.8 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液A-A以硬化後的厚度為22 μm的方式均勻地塗佈,以及將塗佈聚醯胺酸溶液A-A及成為第三聚醯亞胺層的聚醯胺酸溶液A-E後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A27。第一聚醯亞胺層的厚度(L1)為1.8 μm,絕緣樹脂層整體的厚度(L)為25.6 μm,比(L/L1)為14.2。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A23] Metal-clad laminate A27 was prepared in the same manner as Example A19 except that polyamide solution A-E to be the first polyimide layer and the third polyimide layer were uniformly applied in a manner that the thickness after curing was 1.8 μm, polyamide solution A-A to be the second polyimide layer was uniformly applied in a manner that the thickness after curing was 22 μm, and the heating time from 130°C to 360°C after applying polyamide solution A-A and polyamide solution A-E to be the third polyimide layer was shortened to 1/3. The thickness of the first polyimide layer (L1) was 1.8 μm, the thickness of the entire insulating resin layer (L) was 25.6 μm, and the ratio (L/L1) was 14.2. No bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good".
[實施例A24] 將成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-E以硬化後的厚度分別為2.2 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液A-A以硬化後的厚度為20 μm的方式均勻地塗佈,以及將塗佈聚醯胺酸溶液A-A及成為第三聚醯亞胺層的聚醯胺酸溶液A-E後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A28。第一聚醯亞胺層的厚度(L1)為2.2 μm,絕緣樹脂層整體的厚度(L)為24.4 μm,比(L/L1)為11.1。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A24] Metal-clad laminate A28 was prepared in the same manner as Example A19 except that polyamide solution A-E to be the first polyimide layer and the third polyimide layer were uniformly applied in a manner that the thickness after curing was 2.2 μm, polyamide solution A-A to be the second polyimide layer was uniformly applied in a manner that the thickness after curing was 20 μm, and the heating time from 130°C to 360°C after applying polyamide solution A-A and polyamide solution A-E to be the third polyimide layer was shortened to 1/3. The thickness of the first polyimide layer (L1) was 2.2 μm, the thickness of the entire insulating resin layer (L) was 24.4 μm, and the ratio (L/L1) was 11.1. No bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good".
[實施例A25] 將成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-E以硬化後的厚度分別為2.4 μm的方式均勻地塗佈,以及將成為第二聚醯亞胺層的聚醯胺酸溶液A-D以硬化後的厚度為20.2 μm的方式均勻地塗佈,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A29。第一聚醯亞胺層的厚度(L1)為2.4 μm,絕緣樹脂層整體的厚度(L)為25 μm,比(L/L1)為10.4。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A25] Metal-clad laminate A29 was prepared in the same manner as in Example A19, except that polyamide solutions A-E, which became the first polyimide layer and the third polyimide layer, were uniformly applied in a manner that the thickness after curing was 2.4 μm, respectively, and polyamide solution A-D, which became the second polyimide layer, was uniformly applied in a manner that the thickness after curing was 20.2 μm. The thickness (L1) of the first polyimide layer was 2.4 μm, the thickness (L) of the entire insulating resin layer was 25 μm, and the ratio (L/L1) was 10.4. No bubbling was observed, and no curling of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was "good".
[實施例A26] 將成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-F以硬化後的厚度分別為2.7 μm的方式均勻地塗佈,以及將成為第二聚醯亞胺層的聚醯胺酸溶液A-D以硬化後的厚度為20 μm的方式均勻地塗佈,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A30。第一聚醯亞胺層的厚度(L1)為2.7 μm,絕緣樹脂層整體的厚度(L)為25.4 μm,比(L/L1)為9.4。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A26] A metal-clad laminate A30 was prepared in the same manner as in Example A19, except that the polyamide solutions A-F to be the first polyimide layer and the third polyimide layer were uniformly applied in a manner to have a thickness of 2.7 μm after curing, and the polyamide solution A-D to be the second polyimide layer was uniformly applied in a manner to have a thickness of 20 μm after curing. The thickness (L1) of the first polyimide layer was 2.7 μm, the thickness (L) of the entire insulating resin layer was 25.4 μm, and the ratio (L/L1) was 9.4. No bubbling was observed, and no curling of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was "good".
[實施例A27] 將成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液A-G以硬化後的厚度分別為3.2 μm的方式均勻地塗佈,以及將成為第二聚醯亞胺層的聚醯胺酸溶液A-D以硬化後的厚度為19 μm的方式均勻地塗佈,除此以外,與實施例A19同樣地進行而製備覆金屬積層板A31。第一聚醯亞胺層的厚度(L1)為3.2 μm,絕緣樹脂層整體的厚度(L)為25.4 μm,比(L/L1)為7.9。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「可」。 [Example A27] A metal-clad laminate A31 was prepared in the same manner as in Example A19, except that the polyamide solutions A-G, which would become the first polyimide layer and the third polyimide layer, were uniformly applied in a manner to have a thickness of 3.2 μm after curing, and the polyamide solution A-D, which would become the second polyimide layer, was uniformly applied in a manner to have a thickness of 19 μm after curing. The thickness (L1) of the first polyimide layer was 3.2 μm, the thickness (L) of the entire insulating resin layer was 25.4 μm, and the ratio (L/L1) was 7.9. No bubbling was observed, and no curling of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was "acceptable".
[實施例A28] 於厚度12 μm的電解銅箔上,以硬化後的厚度為2.0 μm的方式均勻地塗佈聚醯胺酸溶液A-E,之後,於120℃下進行溶媒的去除。於其上,以硬化後的厚度為50 μm的方式均勻地塗佈聚醯胺酸溶液A-A,之後,以120℃、3分鐘進行溶媒的去除。進而,於其上,以硬化後的厚度為2.0 μm的方式均勻地塗佈聚醯胺酸溶液A-E,之後,於120℃下進行溶媒的去除,並自120℃起階段性地升溫至360℃而進行溶媒的去除及醯亞胺化,獲得形成有第一聚醯亞胺層的單面覆金屬積層板A28B。對所獲得的單面覆金屬積層板A28B的聚醯亞胺層以120 W·min/m 2進行電暈處理。其次,於其上,以硬化後的厚度為50 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液A-A,去除溶媒後,於其上,以硬化後的厚度為2.0 μm的方式均勻地塗佈成為第三聚醯亞胺層的聚醯胺酸溶液A-E,於120℃下加熱乾燥3分鐘而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備單面覆金屬積層板A28。第一聚醯亞胺層的厚度(L1)為54 μm,絕緣樹脂層整體的厚度(L)為106 μm,比(L/L1)為1.96。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A28] On a 12 μm thick electrolytic copper foil, polyamide solution AE was uniformly coated to a thickness of 2.0 μm after curing, and then the solvent was removed at 120°C. On the foil, polyamide solution AA was uniformly coated to a thickness of 50 μm after curing, and then the solvent was removed at 120°C for 3 minutes. Furthermore, a polyamide solution AE was uniformly coated thereon in a manner to have a thickness of 2.0 μm after curing, and then the solvent was removed at 120°C, and the temperature was gradually raised from 120°C to 360°C to remove the solvent and perform imidization, thereby obtaining a single-sided metal-clad laminate A28B having a first polyimide layer formed thereon. The polyimide layer of the obtained single-sided metal-clad laminate A28B was subjected to a corona treatment at 120 W·min/ m2 . Next, polyamide solution AA was uniformly applied thereon to a thickness of 50 μm after curing to form a second polyimide layer. After removing the solvent, polyamide solution AE was uniformly applied thereon to a thickness of 2.0 μm after curing to form a third polyimide layer. The solvent was removed by heating and drying at 120°C for 3 minutes. Thereafter, the temperature was gradually raised from 130°C to 360°C for imidization to prepare a single-sided metal-clad laminate A28. The thickness (L1) of the first polyimide layer was 54 μm, the thickness (L) of the entire insulating resin layer was 106 μm, and the ratio (L/L1) was 1.96. No bubbling was observed, and no curling of the polyimide film was observed after etching of the copper foil. In addition, the dimensional change rate was "good".
[實施例A29] 將用於構成第一聚醯亞胺層中的兩層的聚醯胺酸溶液A-E及成為第三聚醯亞胺層的聚醯胺酸溶液A-E分別以硬化後的厚度為10 μm的方式均勻地塗佈,除此以外,與實施例A28同樣地進行而製備單面覆金屬積層板A29。第一聚醯亞胺層的厚度(L1)為70 μm,絕緣樹脂層整體的厚度(L)為130 μm,比(L/L1)為1.86。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A29] A single-sided metal-clad laminate A29 was prepared in the same manner as Example A28 except that the polyamide solution A-E used to constitute the two layers of the first polyimide layer and the polyamide solution A-E to become the third polyimide layer were uniformly applied in a manner to have a thickness of 10 μm after curing. The thickness (L1) of the first polyimide layer was 70 μm, the thickness (L) of the entire insulating resin layer was 130 μm, and the ratio (L/L1) was 1.86. No bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good".
[實施例A30] 將用於構成第一聚醯亞胺層中的兩層的聚醯胺酸溶液A-E及成為第三聚醯亞胺層的聚醯胺酸溶液A-E分別設為聚醯胺酸溶液A-F、且以硬化後的厚度為2.0 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液A-B以硬化後的厚度為50 μm的方式均勻地塗佈,除此以外,與實施例A28同樣地進行而製備單面覆金屬積層板A30。第一聚醯亞胺層的厚度(L1)為54 μm,絕緣樹脂層整體的厚度(L)為106 μm,比(L/L1)為1.96。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A30] The single-sided metal-clad laminate A30 was prepared in the same manner as in Example A28 except that the polyamide solution A-E used to form the two layers of the first polyimide layer and the polyamide solution A-E used to form the third polyimide layer were respectively set as polyamide solution A-F and were uniformly applied in a manner to have a thickness of 2.0 μm after curing, and the polyamide solution A-B used to form the second polyimide layer was uniformly applied in a manner to have a thickness of 50 μm after curing. The thickness of the first polyimide layer (L1) was 54 μm, the thickness of the entire insulating resin layer (L) was 106 μm, and the ratio (L/L1) was 1.96. No bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good".
[實施例A31] 將用於構成第一聚醯亞胺層中的兩層的聚醯胺酸溶液A-F及成為第三聚醯亞胺層的聚醯胺酸溶液A-F分別以硬化後的厚度為10 μm的方式均勻地塗佈,除此以外,與實施例A30同樣地進行而製備單面覆金屬積層板A31。第一聚醯亞胺層的厚度(L1)為70 μm,絕緣樹脂層整體的厚度(L)為130 μm,比(L/L1)為1.86。並未確認到發泡,且於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example A31] A single-sided metal-clad laminate A31 was prepared in the same manner as Example A30 except that the polyamide solution A-F used to constitute the two layers of the first polyimide layer and the polyamide solution A-F used to constitute the third polyimide layer were uniformly applied in a manner to have a thickness of 10 μm after curing. The thickness (L1) of the first polyimide layer was 70 μm, the thickness (L) of the entire insulating resin layer was 130 μm, and the ratio (L/L1) was 1.86. No bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good".
比較例A5 除了並不進行電暈處理以外,與實施例A19同樣地進行而製備覆金屬積層板A32,結果,於銅箔蝕刻後確認到聚醯亞胺膜的捲曲。 Comparative Example A5 Except that the corona treatment was not performed, the metal-clad laminate A32 was prepared in the same manner as in Example A19. As a result, curling of the polyimide film was confirmed after etching of the copper foil.
比較例A6 除了並不進行電暈處理以外,與實施例A20同樣地進行而製備覆金屬積層板A33,結果,於銅箔蝕刻後確認到聚醯亞胺膜的捲曲。 Comparative Example A6 Except that the corona treatment was not performed, the metal-clad laminate A33 was prepared in the same manner as in Example A20. As a result, curling of the polyimide film was confirmed after etching of the copper foil.
比較例A7 除了並不進行電暈處理以外,與實施例A21同樣地進行而製備覆金屬積層板A34,結果,於銅箔蝕刻後確認到聚醯亞胺膜的捲曲。 Comparative Example A7 Except that the corona treatment was not performed, the metal-clad laminate A34 was prepared in the same manner as in Example A21. As a result, curling of the polyimide film was confirmed after etching of the copper foil.
比較例A8 除了並不進行電暈處理以外,與實施例A22同樣地進行而製備覆金屬積層板A35,結果確認到發泡。 Comparative Example A8 Metal-clad laminate A35 was prepared in the same manner as Example A22 except that the corona treatment was not performed. As a result, foaming was confirmed.
比較例A9 除了並不進行電暈處理以外,與實施例A23同樣地進行而製備覆金屬積層板A36,結果確認到發泡。 Comparative Example A9 Metal-clad laminate A36 was prepared in the same manner as Example A23 except that the corona treatment was not performed. As a result, foaming was confirmed.
比較例A10 除了並不進行電暈處理以外,與實施例A24同樣地進行而製備覆金屬積層板A37,結果確認到發泡。 Comparative Example A10 Metal-clad laminate A37 was prepared in the same manner as Example A24 except that the corona treatment was not performed. As a result, foaming was confirmed.
(合成例B1) 於1000 ml的可分離式燒瓶中投入75.149 g的m-TB(353.42 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加74.851 g的PMDA(342.82 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液B-A。所獲得的聚醯胺酸溶液B-A的黏度為22,700 cP。 (Synthesis Example B1) 75.149 g of m-TB (353.42 mmol) and 850 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 74.851 g of PMDA (342.82 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution B-A. The viscosity of the obtained polyamine solution B-A was 22,700 cP.
(合成例B2) 於1000 ml的可分離式燒瓶中投入65.054 g的m-TB(310.65 mmol)、10.090 g的TPE-R(34.52 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加73.856 g的PMDA(338.26 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液B-B。所獲得的聚醯胺酸溶液B-B的黏度為26,500 cP。 (Synthesis Example B2) In a 1000 ml separable flask, 65.054 g of m-TB (310.65 mmol), 10.090 g of TPE-R (34.52 mmol), and 850 g of DMAc were added and stirred at room temperature under a nitrogen flow. After complete dissolution, 73.856 g of PMDA (338.26 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution B-B. The viscosity of the obtained polyamine solution B-B was 26,500 cP.
(合成例B3) 於1000 ml的可分離式燒瓶中投入89.621 g的TFMB(279.33 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加60.379 g的PMDA(276.54 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液B-C。所獲得的聚醯胺酸溶液B-C的黏度為21,200 cP。 (Synthesis Example B3) 89.621 g of TFMB (279.33 mmol) and 850 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 60.379 g of PMDA (276.54 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution B-C. The viscosity of the obtained polyamine solution B-C was 21,200 cP.
(合成例B4) 於1000 ml的可分離式燒瓶中投入49.928 g的TFMB(155.70 mmol)、33.102 g的m-TB(155.70 mmol)、850 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加66.970 g的PMDA(307.03 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液B-D。所獲得的聚醯胺酸溶液B-D的黏度為21,500 cP。 (Synthesis Example B4) 49.928 g of TFMB (155.70 mmol), 33.102 g of m-TB (155.70 mmol), and 850 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 66.970 g of PMDA (307.03 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution B-D. The viscosity of the obtained polyamine solution B-D was 21,500 cP.
(合成例B5) 於300 ml的可分離式燒瓶中投入29.492 g的BAPP(71.81 mmol)、255 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加15.508 g的PMDA(71.10 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液B-E。所獲得的聚醯胺酸溶液B-E的黏度為10,700 cP。 (Synthesis Example B5) 29.492 g of BAPP (71.81 mmol) and 255 g of DMAc were added to a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 15.508 g of PMDA (71.10 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution B-E. The viscosity of the obtained polyamine solution B-E was 10,700 cP.
(合成例B6) 於300 ml的可分離式燒瓶中投入25.889 g的TPE-R(88.50 mmol)、255 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加19.111 g的PMDA(87.62 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液B-F。所獲得的聚醯胺酸溶液B-F的黏度為13,200 cP。 (Synthesis Example B6) 25.889 g of TPE-R (88.50 mmol) and 255 g of DMAc were added to a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 19.111 g of PMDA (87.62 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution B-F. The viscosity of the obtained polyamine solution B-F was 13,200 cP.
(合成例B7) 於300 ml的可分離式燒瓶中投入27.782 g的BAFL(79.73 mmol)、255 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加17.218 g的PMDA(78.94 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液B-G。所獲得的聚醯胺酸溶液B-G的黏度為10,400 cP。 (Synthesis Example B7) 27.782 g of BAFL (79.73 mmol) and 255 g of DMAc were added to a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 17.218 g of PMDA (78.94 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution B-G. The viscosity of the obtained polyamine solution B-G was 10,400 cP.
[實施例B1] 於厚度12 μm的電解銅箔上,以硬化後的厚度為2 μm的方式均勻地塗佈成為第一聚醯亞胺層的聚醯胺酸溶液B-E,之後,自120℃起階段性地升溫至240℃,進行適當的溶媒的去除及醯亞胺化。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為3.0%、80%。其次,於其上,以硬化後的厚度為25 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液B-A,之後,於120℃下加熱乾燥3分鐘而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,形成第一聚醯亞胺層與第二聚醯亞胺層,藉此,製備覆金屬積層板B1。於所製備的覆金屬積層板B1的樹脂面黏貼黏著膠帶,利用垂直方向上的瞬間撕下進行剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B1] On an electrolytic copper foil with a thickness of 12 μm, a polyamide solution B-E is uniformly applied to form a first polyimide layer in a manner that the thickness after curing is 2 μm, and then the temperature is gradually raised from 120°C to 240°C to perform appropriate solvent removal and imidization. At this time, the volatile component rate and imidization rate of the semi-cured first polyimide layer are 3.0% and 80%. Next, a polyamide solution B-A is uniformly applied thereon in a manner that the thickness after curing is 25 μm, and then the solvent is removed by heating and drying at 120°C for 3 minutes. Afterwards, the temperature was gradually raised from 130°C to 360°C for imidization to form the first polyimide layer and the second polyimide layer, thereby preparing the metal-clad laminate B1. An adhesive tape was pasted on the resin surface of the prepared metal-clad laminate B1, and a peeling test was performed by instantaneous tearing in the vertical direction, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B2] 代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-F,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B2。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為5.6%、55%。與實施例B1同樣地,進行所製備的覆金屬積層板B2的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B2] Metal-clad laminate B2 was prepared in the same manner as Example B1 except that polyamide solution B-F was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 5.6% and 55% respectively. The prepared metal-clad laminate B2 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B3] 代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-G,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B3。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為6.7%、28%。與實施例B1同樣地,進行所製備的覆金屬積層板B3的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B3] Metal-clad laminate B3 was prepared in the same manner as Example B1 except that polyamide solution B-G was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 6.7% and 28% respectively. The prepared metal-clad laminate B3 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B4] 代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-C,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B4。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為2.6%、73%。與實施例B1同樣地,進行所製備的覆金屬積層板B4的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B4] Metal-clad laminate B4 was prepared in the same manner as Example B1 except that polyamide solution B-C was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 2.6% and 73% respectively. The prepared metal-clad laminate B4 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B5] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-B,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B5。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為3.2%、70%。與實施例B1同樣地,進行所製備的覆金屬積層板B5的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B5] Metal-clad laminate B5 was prepared in the same manner as Example B1 except that polyamide solution B-B was used instead of polyamide solution B-A. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 3.2% and 70% respectively. The prepared metal-clad laminate B5 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B6] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-B,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-F,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B6。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為4.0%、65%。與實施例B1同樣地,進行所製備的覆金屬積層板B6的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B6] Metal-clad laminate B6 was prepared in the same manner as Example B1 except that polyamide solution B-B was used instead of polyamide solution B-A, and polyamide solution B-F was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 4.0% and 65% respectively. The prepared metal-clad laminate B6 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B7] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-B,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-G,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B7。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為5.5%、53%。與實施例B1同樣地,進行所製備的覆金屬積層板B7的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B7] Metal-clad laminate B7 was prepared in the same manner as Example B1 except that polyamide solution B-B was used instead of polyamide solution B-A, and polyamide solution B-G was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 5.5% and 53% respectively. The prepared metal-clad laminate B7 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B8] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-B,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-A,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B8。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為4.0%、66%。與實施例B1同樣地,進行所製備的覆金屬積層板B8的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B8] Metal-clad laminate B8 was prepared in the same manner as Example B1 except that polyamide solution B-B was used instead of polyamide solution B-A, and polyamide solution B-A was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 4.0% and 66% respectively. The prepared metal-clad laminate B8 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B9] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-B,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-C,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B9。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為1.2%、80%。與實施例B1同樣地,進行所製備的覆金屬積層板B9的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B9] Metal-clad laminate B9 was prepared in the same manner as Example B1 except that polyamide solution B-B was used instead of polyamide solution B-A, and polyamide solution B-C was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 1.2% and 80% respectively. The prepared metal-clad laminate B9 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B10] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-C,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B10。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為2.6%、83%。與實施例B1同樣地,進行所製備的覆金屬積層板B10的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B10] Metal-clad laminate B10 was prepared in the same manner as Example B1 except that polyamide solution B-C was used instead of polyamide solution B-A. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 2.6% and 83% respectively. The prepared metal-clad laminate B10 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B11] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-C,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-F,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B11。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為4.4%、59%。與實施例B1同樣地,進行所製備的覆金屬積層板B11的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B11] Metal-clad laminate B11 was prepared in the same manner as Example B1 except that polyamide solution B-C was used instead of polyamide solution B-A, and polyamide solution B-F was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 4.4% and 59% respectively. The prepared metal-clad laminate B11 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B12] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-C,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-G,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B12。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為10.1%、23%。與實施例B1同樣地,進行所製備的覆金屬積層板B12的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B12] Metal-clad laminate B12 was prepared in the same manner as Example B1 except that polyamide solution B-C was used instead of polyamide solution B-A, and polyamide solution B-G was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 10.1% and 23% respectively. The prepared metal-clad laminate B12 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B13] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-C,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-A,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B13。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為10.0%、22%。與實施例B1同樣地,進行所製備的覆金屬積層板B13的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B13] Metal-clad laminate B13 was prepared in the same manner as Example B1 except that polyamide solution B-C was used instead of polyamide solution B-A, and polyamide solution B-A was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 10.0% and 22% respectively. The prepared metal-clad laminate B13 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B14] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-D,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B14。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為15.1%、20%。與實施例B1同樣地,進行所製備的覆金屬積層板B14的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B14] Metal-clad laminate B14 was prepared in the same manner as Example B1 except that polyamide solution B-D was used instead of polyamide solution B-A. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 15.1% and 20% respectively. The prepared metal-clad laminate B14 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B15] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-D,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-F,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B15。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為8.3%、31%。與實施例B1同樣地,進行所製備的覆金屬積層板B15的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B15] Metal-clad laminate B15 was prepared in the same manner as Example B1 except that polyamide solution B-D was used instead of polyamide solution B-A, and polyamide solution B-F was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 8.3% and 31% respectively. The prepared metal-clad laminate B15 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B16] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-D,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-G,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B16。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為12.0%、22%。與實施例B1同樣地,進行所製備的覆金屬積層板B16的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B16] Metal-clad laminate B16 was prepared in the same manner as Example B1 except that polyamide solution B-D was used instead of polyamide solution B-A, and polyamide solution B-G was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 12.0% and 22% respectively. The prepared metal-clad laminate B16 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B17] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-D,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-A,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B17。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為7.0%、25%。與實施例B1同樣地,進行所製備的覆金屬積層板B17的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B17] Metal-clad laminate B17 was prepared in the same manner as Example B1 except that polyamide solution B-D was used instead of polyamide solution B-A, and polyamide solution B-A was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 7.0% and 25% respectively. The prepared metal-clad laminate B17 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例B18] 代替聚醯胺酸溶液B-A而使用聚醯胺酸溶液B-D,且代替聚醯胺酸溶液B-E而使用聚醯胺酸溶液B-C,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B18。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為8.2%、21%。與實施例B1同樣地,進行所製備的覆金屬積層板B18的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example B18] Metal-clad laminate B18 was prepared in the same manner as Example B1 except that polyamide solution B-D was used instead of polyamide solution B-A, and polyamide solution B-C was used instead of polyamide solution B-E. The volatile component rate and imidization rate of the semi-cured first polyimide layer were 8.2% and 21% respectively. The prepared metal-clad laminate B18 was subjected to a peeling test in the same manner as Example B1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
比較例B1 使成為第一聚醯亞胺層的聚醯胺酸溶液自120℃起階段性地升溫至360℃,除此以外,與實施例B1同樣地進行而製備覆金屬積層板B19。此時的第一聚醯亞胺層的揮發成分率與醯亞胺化率為0.0%、100%。與實施例B1同樣地,進行所製備的覆金屬積層板B19的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example B1 Metal-clad laminate B19 was prepared in the same manner as Example B1 except that the temperature of the polyamide solution to be the first polyimide layer was gradually raised from 120°C to 360°C. The volatile component rate and the imidization rate of the first polyimide layer were 0.0% and 100% at this time. The prepared metal-clad laminate B19 was subjected to a peeling test in the same manner as Example B1, and as a result, interlayer peeling occurred between the first polyimide layer and the second polyimide layer.
比較例B2 使成為第一聚醯亞胺層的聚醯胺酸溶液自120℃起階段性地升溫至360℃,除此以外,與實施例B2同樣地進行而製備覆金屬積層板B20。此時的第一聚醯亞胺層的揮發成分率與醯亞胺化率為0.0%、100%。與實施例B1同樣地,進行所製備的覆金屬積層板B20的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example B2 Except that the polyamide solution to be the first polyimide layer was gradually heated from 120°C to 360°C, the metal-clad laminate B20 was prepared in the same manner as in Example B2. The volatile component rate and the imidization rate of the first polyimide layer were 0.0% and 100% respectively. The prepared metal-clad laminate B20 was subjected to a peeling test in the same manner as in Example B1, and as a result, interlayer peeling occurred between the first polyimide layer and the second polyimide layer.
比較例B3 使成為第一聚醯亞胺層的聚醯胺酸溶液自120℃起階段性地升溫至360℃,除此以外,與實施例B14同樣地進行而製備覆金屬積層板B21。此時的第一聚醯亞胺層的揮發成分率與醯亞胺化率為0.0%、100%。與實施例B1同樣地,進行所製備的覆金屬積層板B21的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example B3 Metal-clad laminate B21 was prepared in the same manner as Example B14 except that the polyamide solution to be the first polyimide layer was gradually heated from 120°C to 360°C. The volatile component rate and imidization rate of the first polyimide layer were 0.0% and 100% at this time. The prepared metal-clad laminate B21 was subjected to a peeling test in the same manner as Example B1, and as a result, interlayer peeling occurred between the first polyimide layer and the second polyimide layer.
比較例B4 使成為第一聚醯亞胺層的聚醯胺酸溶液自120℃起階段性地升溫至360℃,除此以外,與實施例B15同樣地進行而製備覆金屬積層板B22。此時的第一聚醯亞胺層的揮發成分率與醯亞胺化率為0.0%、100%。與實施例B1同樣地,進行所製備的覆金屬積層板B22的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example B4 Metal-clad laminate B22 was prepared in the same manner as Example B15 except that the polyamide solution to be the first polyimide layer was gradually heated from 120°C to 360°C. The volatile component rate and imidization rate of the first polyimide layer were 0.0% and 100% at this time. The prepared metal-clad laminate B22 was subjected to a peeling test in the same manner as Example B1, and as a result, interlayer peeling occurred between the first polyimide layer and the second polyimide layer.
[實施例B19] 於厚度12 μm的電解銅箔上,以硬化後的厚度為2.5 μm的方式均勻地塗佈成為第一聚醯亞胺層的聚醯胺酸溶液B-E,之後,自120℃起階段性地升溫至240℃,進行適當的溶媒的去除及醯亞胺化。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為5.5%、53%。其次,於其上,以硬化後的厚度為20 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液B-A,之後,於其上,以硬化後的厚度為2.5 μm的方式均勻地塗佈成為第三聚醯亞胺層的聚醯胺酸溶液B-E,於120℃下加熱乾燥3分鐘而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備覆金屬積層板B23,但並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。 [Example B19] On an electrolytic copper foil with a thickness of 12 μm, a polyamide solution B-E is uniformly applied to form a first polyimide layer in a manner such that the thickness after curing is 2.5 μm. Thereafter, the temperature is gradually raised from 120°C to 240°C to perform appropriate solvent removal and imidization. At this time, the volatile component rate and imidization rate of the semi-cured first polyimide layer are 5.5% and 53% respectively. Next, polyamide solution B-A was uniformly coated thereon to a thickness of 20 μm after curing to form a second polyimide layer, and then polyamide solution B-E was uniformly coated thereon to a thickness of 2.5 μm after curing to form a third polyimide layer, and the solvent was removed by heating and drying at 120°C for 3 minutes. Afterwards, the temperature was gradually raised from 130°C to 360°C for imidization to prepare a metal-clad laminate B23, but no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good".
[實施例B20] 代替成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液B-E而將聚醯胺酸溶液B-F以硬化後的厚度分別為2.7 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液B-A以硬化後的厚度為19.6 μm的方式均勻地塗佈,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B24,但並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為2.6%、83%。 [Example B20] Instead of the polyamide solution B-E that becomes the first polyimide layer and the third polyimide layer, the polyamide solution B-F is uniformly applied in a manner that the thickness after curing is 2.7 μm, and the polyamide solution B-A that becomes the second polyimide layer is uniformly applied in a manner that the thickness after curing is 19.6 μm. Metal-clad laminate B24 was prepared in the same manner as Example B19, but no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good". At this time, the volatile component rate and imidization rate of the semi-cured first polyimide layer are 2.6% and 83% respectively.
[實施例B21] 代替成為第一聚醯亞胺層及第三聚醯亞胺層的聚醯胺酸溶液B-E而將聚醯胺酸溶液B-G以硬化後的厚度分別為3.2 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液B-A以硬化後的厚度為18.6 μm的方式均勻地塗佈,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B25,但並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「可」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為3.2%、70%。 [Example B21] Instead of the polyamide solution B-E that becomes the first polyimide layer and the third polyimide layer, the polyamide solution B-G is uniformly applied in a manner that the thickness after curing is 3.2 μm, and the polyamide solution B-A that becomes the second polyimide layer is uniformly applied in a manner that the thickness after curing is 18.6 μm. In addition, the same method as Example B19 was used to prepare a metal-clad laminate B25, but no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "acceptable". At this time, the volatile component rate and imidization rate of the semi-cured first polyimide layer are 3.2% and 70% respectively.
[實施例B22] 將成為第一聚醯亞胺層與第三聚醯亞胺層的聚醯胺酸溶液B-E以硬化後的厚度為1.7 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液B-A以硬化後的厚度為22 μm的方式均勻地塗佈,以及將塗佈聚醯胺酸溶液B-A及成為第三聚醯亞胺層的聚醯胺酸溶液B-E後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B26,結果,並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為10.1%、23%。 [Example B22] The polyamide solution B-E to be the first polyimide layer and the third polyimide layer is uniformly applied in a manner such that the thickness after curing is 1.7 μm, and the polyamide solution B-A to be the second polyimide layer is uniformly applied in a manner such that the thickness after curing is 22 μm. μm, and the heating time from 130°C to 360°C after applying the polyamide solution B-A and the polyamide solution B-E that becomes the third polyimide layer was shortened to 1/3. In addition, the metal-clad laminate B26 was prepared in the same manner as in Example B19. As a result, no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good". The volatile component rate and imidization rate of the semi-cured first polyimide layer at this time were 10.1% and 23%.
[實施例B23] 將成為第一聚醯亞胺層與第三聚醯亞胺層的聚醯胺酸溶液B-E以硬化後的厚度為1.8 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液B-A以硬化後的厚度為22 μm的方式均勻地塗佈,以及將塗佈聚醯胺酸溶液B-A及成為第三聚醯亞胺層的聚醯胺酸溶液B-E後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B27,結果,並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為6.7%、28%。 [Example B23] The polyamide solution B-E to be the first polyimide layer and the third polyimide layer is uniformly applied in a manner such that the thickness after curing is 1.8 μm, and the polyamide solution B-A to be the second polyimide layer is uniformly applied in a manner such that the thickness after curing is 22 μm. μm, and the heating time from 130°C to 360°C after applying the polyamide solution B-A and the polyamide solution B-E that becomes the third polyimide layer was shortened to 1/3. In addition, the metal-clad laminate B27 was prepared in the same manner as in Example B19. As a result, no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good". The volatile component rate and imidization rate of the semi-cured first polyimide layer at this time were 6.7% and 28%.
[實施例B24] 將成為第一聚醯亞胺層與第三聚醯亞胺層的聚醯胺酸溶液B-E以硬化後的厚度為2.2 μm的方式均勻地塗佈,將成為第二聚醯亞胺層的聚醯胺酸溶液B-A以硬化後的厚度為20 μm的方式均勻地塗佈,以及將塗佈聚醯胺酸溶液B-A及成為第三聚醯亞胺層的聚醯胺酸溶液B-E後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B28,結果,並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為15.1%、20%。 [Example B24] The polyamide solution B-E to be the first polyimide layer and the third polyimide layer is uniformly applied in a manner such that the thickness after curing is 2.2 μm, and the polyamide solution B-A to be the second polyimide layer is uniformly applied in a manner such that the thickness after curing is 20 μm. μm, and the heating time from 130°C to 360°C after applying the polyamide solution B-A and the polyamide solution B-E to become the third polyimide layer was shortened to 1/3. In addition, the metal-clad laminate B28 was prepared in the same manner as Example B19. As a result, no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good". The volatile component rate and imidization rate of the semi-cured first polyimide layer at this time were 15.1% and 20%.
[實施例B25] 將成為第一聚醯亞胺層與第三聚醯亞胺層的聚醯胺酸溶液B-E以硬化後的厚度為2.4 μm的方式均勻地塗佈,以及將成為第二聚醯亞胺層的聚醯胺酸溶液B-D以硬化後的厚度為20 μm的方式均勻地塗佈,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B29,結果,並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為15.1%、20%。 [Example B25] The same method as Example B19 was used to prepare a metal-clad laminate B29 except that the polyamide solution B-E, which became the first polyimide layer and the third polyimide layer, was uniformly applied in a manner to a thickness of 2.4 μm after curing, and the polyamide solution B-D, which became the second polyimide layer, was uniformly applied in a manner to a thickness of 20 μm after curing. As a result, no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good". The volatile component rate and imidization rate of the semi-cured first polyimide layer at this time were 15.1% and 20%.
[實施例B26] 將成為第一聚醯亞胺層與第三聚醯亞胺層的聚醯胺酸溶液B-F以硬化後的厚度為2.7 μm的方式均勻地塗佈,以及將成為第二聚醯亞胺層的聚醯胺酸溶液B-D以硬化後的厚度為20 μm的方式均勻地塗佈,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B30,結果,並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「良」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為8.3%、31%。 [Example B26] The same method as Example B19 was used to prepare a metal-clad laminate B30 except that the polyamide solution B-F, which became the first polyimide layer and the third polyimide layer, was uniformly applied in a manner to a thickness of 2.7 μm after curing, and the polyamide solution B-D, which became the second polyimide layer, was uniformly applied in a manner to a thickness of 20 μm after curing. As a result, no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "good". The volatile component rate and imidization rate of the semi-cured first polyimide layer at this time were 8.3% and 31%.
[實施例B27] 將成為第一聚醯亞胺層與第三聚醯亞胺層的聚醯胺酸溶液B-G以硬化後的厚度為3.2 μm的方式均勻地塗佈,以及將成為第二聚醯亞胺層的聚醯胺酸溶液B-D以硬化後的厚度為19 μm的方式均勻地塗佈,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B31,結果,並未確認到發泡,於銅箔蝕刻後亦未確認到聚醯亞胺膜的捲曲。另外,尺寸變化率為「可」。此時的半硬化狀態的第一聚醯亞胺層的揮發成分率與醯亞胺化率為12.0%、22%。 [Example B27] The same method as Example B19 was used to prepare a metal-clad laminate B31 except that the polyamide solution B-G, which became the first polyimide layer and the third polyimide layer, was uniformly applied in a manner to a thickness of 3.2 μm after curing, and the polyamide solution B-D, which became the second polyimide layer, was uniformly applied in a manner to a thickness of 19 μm after curing. As a result, no bubbling was confirmed, and no curling of the polyimide film was confirmed after etching the copper foil. In addition, the dimensional change rate was "acceptable". The volatile component rate and imidization rate of the semi-cured first polyimide layer at this time were 12.0% and 22%.
比較例B5 將成為第一聚醯亞胺層的聚醯胺酸溶液於120℃下加熱乾燥3分鐘,除此以外,與實施例B19同樣地進行而製備覆金屬積層板B32,結果,於銅箔蝕刻後確認到聚醯亞胺膜的捲曲。此時,對成為第一聚醯亞胺層的層進行了加熱乾燥的狀態下的揮發成分率與醯亞胺化率為35.0%、0%。 Comparative Example B5 Except that the polyamide solution to become the first polyimide layer was heat-dried at 120°C for 3 minutes, the metal-clad laminate B32 was prepared in the same manner as in Example B19. As a result, curling of the polyimide film was confirmed after etching the copper foil. At this time, the volatile component rate and imidization rate of the layer to become the first polyimide layer in the state of heat drying were 35.0% and 0%.
比較例B6 將成為第一聚醯亞胺層的聚醯胺酸溶液於120℃下加熱乾燥3分鐘,除此以外,與實施例B20同樣地進行而製備覆金屬積層板B33,結果,於銅箔蝕刻後確認到聚醯亞胺膜的捲曲。此時,對成為第一聚醯亞胺層的層進行了加熱乾燥的狀態下的揮發成分率與醯亞胺化率為32.0%、0%。 Comparative Example B6 Except that the polyamide solution to become the first polyimide layer was heat-dried at 120°C for 3 minutes, the metal-clad laminate B33 was prepared in the same manner as in Example B20. As a result, curling of the polyimide film was confirmed after etching the copper foil. At this time, the volatile component rate and imidization rate of the layer to become the first polyimide layer in the state of heat drying were 32.0% and 0%.
比較例B7 將成為第一聚醯亞胺層的聚醯胺酸溶液於120℃下加熱乾燥3分鐘,除此以外,與實施例B21同樣地進行而製備覆金屬積層板B34,結果,於銅箔蝕刻後確認到聚醯亞胺膜的捲曲。此時,對成為第一聚醯亞胺層的層進行了加熱乾燥的狀態下的揮發成分率與醯亞胺化率為30.0%、0%。 Comparative Example B7 Metal-clad laminate B34 was prepared in the same manner as Example B21 except that the polyamide solution to become the first polyimide layer was heat-dried at 120°C for 3 minutes. As a result, curling of the polyimide film was confirmed after etching the copper foil. At this time, the volatile component rate and imidization rate of the layer to become the first polyimide layer in the state of heat drying were 30.0% and 0%.
比較例B8 將成為第一聚醯亞胺層的聚醯胺酸溶液於120℃下加熱乾燥3分鐘,除此以外,與實施例B22同樣地進行而製備覆金屬積層板B35,結果,確認到發泡。此時,對成為第一聚醯亞胺層的層進行了加熱乾燥的狀態下的揮發成分率與醯亞胺化率為34.0%、0%。 Comparative Example B8 Metal-clad laminate B35 was prepared in the same manner as Example B22 except that the polyamide solution to be the first polyimide layer was heat-dried at 120°C for 3 minutes. As a result, foaming was confirmed. At this time, the volatile component rate and imidization rate of the layer to be the first polyimide layer in the state of being heat-dried were 34.0% and 0%.
比較例B9 將成為第一聚醯亞胺層的聚醯胺酸溶液於120℃下加熱乾燥3分鐘,除此以外,與實施例B23同樣地進行而製備覆金屬積層板B36,結果,確認到發泡。此時,對成為第一聚醯亞胺層的層進行了加熱乾燥的狀態下的揮發成分率與醯亞胺化率為30.0%、0%。 Comparative Example B9 Metal-clad laminate B36 was prepared in the same manner as Example B23 except that the polyamide solution to be the first polyimide layer was heat-dried at 120°C for 3 minutes. As a result, foaming was confirmed. At this time, the volatile component rate and imidization rate of the layer to be the first polyimide layer in the state of being heat-dried were 30.0% and 0%.
比較例B10 將成為第一聚醯亞胺層的聚醯胺酸溶液於120℃下加熱乾燥3分鐘,除此以外,與實施例B24同樣地進行而製備覆金屬積層板B37,結果,確認到發泡。此時,對成為第一聚醯亞胺層的層進行了加熱乾燥的狀態下的揮發成分率與醯亞胺化率為31.0%、0%。 Comparative Example B10 Metal-clad laminate B37 was prepared in the same manner as Example B24 except that the polyamide solution to be the first polyimide layer was heat-dried at 120°C for 3 minutes. As a result, foaming was confirmed. At this time, the volatile component rate and imidization rate of the layer to be the first polyimide layer in the state of being heat-dried were 31.0% and 0%.
(合成例C1) 於1000 ml的可分離式燒瓶中投入45.989 g的m-TB(216.63 mmol)、15.832 g的TPE-R(54.16 mmol)、680 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加58.179 g的PMDA(266.73 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-A。所獲得的聚醯胺酸溶液C-A的黏度為22,000 cP。 (Synthesis Example C1) 45.989 g of m-TB (216.63 mmol), 15.832 g of TPE-R (54.16 mmol), and 680 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 58.179 g of PMDA (266.73 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-A. The viscosity of the obtained polyamine solution C-A was 22,000 cP.
(合成例C2) 於300 ml的可分離式燒瓶中投入9.244 g的4,4'-DAPE(46.16 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加14.756 g的BTDA(45.79 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-B。所獲得的聚醯胺酸溶液C-B的黏度為1,200 cP。 (Synthesis Example C2) 9.244 g of 4,4'-DAPE (46.16 mmol) and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 14.756 g of BTDA (45.79 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-B. The viscosity of the obtained polyamine solution C-B was 1,200 cP.
(合成例C3) 於300 ml的可分離式燒瓶中投入11.464 g的TPE-Q(39.22 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加12.536 g的BTDA(38.90 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-C。所獲得的聚醯胺酸溶液C-C的黏度為2,200 cP。 (Synthesis Example C3) 11.464 g of TPE-Q (39.22 mmol) and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 12.536 g of BTDA (38.90 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-C. The viscosity of the obtained polyamine solution C-C was 2,200 cP.
(合成例C4) 於300 ml的可分離式燒瓶中投入11.464 g的TPE-R(39.22 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加12.536 g的BTDA(38.90 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-D。所獲得的聚醯胺酸溶液C-D的黏度為1,100 cP。 (Synthesis Example C4) 11.464 g of TPE-R (39.22 mmol) and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 12.536 g of BTDA (38.90 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-D. The viscosity of the obtained polyamine solution C-D was 1,100 cP.
(合成例C5) 於300 ml的可分離式燒瓶中投入11.386 g的APB(38.95 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加12.614 g的BTDA(39.14 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-E。所獲得的聚醯胺酸溶液C-E的黏度為200 cP。 (Synthesis Example C5) 11.386 g of APB (38.95 mmol) and 176 g of DMAc were added to a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 12.614 g of BTDA (39.14 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution C-E. The viscosity of the obtained polyamine solution C-E was 200 cP.
(合成例C6) 於300 ml的可分離式燒瓶中投入13.493 g的BAPP(32.87 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加10.507 g的BTDA(32.61 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-F。所獲得的聚醯胺酸溶液C-F的黏度為1,400 cP。 (Synthesis Example C6) 13.493 g of BAPP (32.87 mmol) and 176 g of DMAc were added to a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 10.507 g of BTDA (32.61 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-F. The viscosity of the obtained polyamine solution C-F was 1,400 cP.
(合成例C7) 於300 ml的可分離式燒瓶中投入9.227 g的3,4'-DAPE(46.08 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加14.773 g的BTDA(45.85 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-G。所獲得的聚醯胺酸溶液C-G的黏度為500 cP。 (Synthesis Example C7) 9.227 g of 3,4'-DAPE (46.08 mmol) and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 14.773 g of BTDA (45.85 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-G. The viscosity of the obtained polyamine solution C-G was 500 cP.
(合成例C8) 於300 ml的可分離式燒瓶中投入4.660 g的PDA(43.09 mmol)、2.157 g的4,4'-DAPE(10.77 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加17.183 g的BTDA(53.33 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-H。所獲得的聚醯胺酸溶液C-H的黏度為1,500 cP。 (Synthesis Example C8) 4.660 g of PDA (43.09 mmol), 2.157 g of 4,4'-DAPE (10.77 mmol), and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 17.183 g of BTDA (53.33 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-H. The viscosity of the obtained polyamine solution C-H was 1,500 cP.
(合成例C9) 於300 ml的可分離式燒瓶中投入12.053 g的TFMB(37.64 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加11.947 g的BTDA(37.07 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-I。所獲得的聚醯胺酸溶液C-I的黏度為1,200 cP。 (Synthesis Example C9) 12.053 g of TFMB (37.64 mmol) and 176 g of DMAc were added to a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 11.947 g of BTDA (37.07 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution C-I. The viscosity of the obtained polyamine solution C-I was 1,200 cP.
(合成例C10) 於300 ml的可分離式燒瓶中投入9.498 g的4,4'-DAPE(47.43 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加7.581 g的BTDA(23.53 mmol)及6.922 g的BPDA(23.53 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-J。所獲得的聚醯胺酸溶液C-J的黏度為2,500 cP。 (Synthesis Example C10) 9.498 g of 4,4'-DAPE (47.43 mmol) and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 7.581 g of BTDA (23.53 mmol) and 6.922 g of BPDA (23.53 mmol) were added and stirred at room temperature for 4 hours to obtain polyamine solution C-J. The viscosity of the obtained polyamine solution C-J was 2,500 cP.
(合成例C11) 於300 ml的可分離式燒瓶中投入9.727 g的4,4'-DAPE(48.58 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加11.646 g的BTDA(36.14 mmol)及2.628 g的PMDA(12.05 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-K。所獲得的聚醯胺酸溶液C-K的黏度為1,100 cP。 (Synthesis Example C11) 9.727 g of 4,4'-DAPE (48.58 mmol) and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 11.646 g of BTDA (36.14 mmol) and 2.628 g of PMDA (12.05 mmol) were added and stirred at room temperature for 4 hours to obtain polyamine solution C-K. The viscosity of the obtained polyamine solution C-K was 1,100 cP.
(合成例C12) 於300 ml的可分離式燒瓶中投入4.575 g的4,4'-DAPE(22.85 mmol)、4.850 g的m-TB(22.85 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加14.576 g的BTDA(45.23 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-L。所獲得的聚醯胺酸溶液C-L的黏度為1,100 cP。 (Synthesis Example C12) 4.575 g of 4,4'-DAPE (22.85 mmol), 4.850 g of m-TB (22.85 mmol), and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 14.576 g of BTDA (45.23 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-L. The viscosity of the obtained polyamine solution C-L was 1,100 cP.
(合成例C13) 於300 ml的可分離式燒瓶中投入9.807 g的4,4'-DAPE(48.97 mmol)、176 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加14.193 g的BPDA(48.24 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-M。所獲得的聚醯胺酸溶液C-M的黏度為1,000 cP。 (Synthesis Example C13) 9.807 g of 4,4'-DAPE (48.97 mmol) and 176 g of DMAc were placed in a 300 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 14.193 g of BPDA (48.24 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-M. The viscosity of the obtained polyamine solution C-M was 1,000 cP.
(合成例C14) 於1000 ml的可分離式燒瓶中投入62.734 g的BAPP(152.82 mmol)、704 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加33.266 g的PMDA(152.51 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-N。所獲得的聚醯胺酸溶液C-N的黏度為4,800 cP。 (Synthesis Example C14) 62.734 g of BAPP (152.82 mmol) and 704 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 33.266 g of PMDA (152.51 mmol) was added and stirred at room temperature for 4 hours to obtain polyamine solution C-N. The viscosity of the obtained polyamine solution C-N was 4,800 cP.
(合成例C15) 於1000 ml的可分離式燒瓶中投入38.27 g的m-TB(180.27 mmol)、704 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加57.102 g的BTDA(177.21 mmol)及0.629 g的PMDA(2.88 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-O。所獲得的聚醯胺酸溶液C-O的黏度為43,000 cP。 (Synthesis Example C15) 38.27 g of m-TB (180.27 mmol) and 704 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 57.102 g of BTDA (177.21 mmol) and 0.629 g of PMDA (2.88 mmol) were added and stirred at room temperature for 4 hours to obtain polyamine solution C-O. The viscosity of the obtained polyamine solution C-O was 43,000 cP.
(合成例C16) 於1000 ml的可分離式燒瓶中投入19.536 g的PDA(180.66 mmol)、13.087 g的BAPP(31.88 mmol)、704 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加56.73 g的BPDA(192.82 mmol)及6.646 g的ODPA(21.42 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-P。所獲得的聚醯胺酸溶液C-P的黏度為51,000 cP。 (Synthesis Example C16) 19.536 g of PDA (180.66 mmol), 13.087 g of BAPP (31.88 mmol), and 704 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 56.73 g of BPDA (192.82 mmol) and 6.646 g of ODPA (21.42 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamine solution C-P. The viscosity of the obtained polyamine solution C-P was 51,000 cP.
(合成例C17) 於1000 ml的可分離式燒瓶中投入76.91 g的BAPP(187.35 mmol)、680 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加34.805 g的PMDA(159.57 mmol)及8.285 g的BPDA(28.16 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-Q。所獲得的聚醯胺酸溶液C-Q的黏度為9,500 cP。 (Synthesis Example C17) 76.91 g of BAPP (187.35 mmol) and 680 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 34.805 g of PMDA (159.57 mmol) and 8.285 g of BPDA (28.16 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamine solution C-Q. The viscosity of the obtained polyamine solution C-Q was 9,500 cP.
(合成例C18) 於1000 ml的可分離式燒瓶中投入77.298 g的BAPP(188.30 mmol)、680 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加34.492 g的PMDA(158.13 mmol)及8.210 g的BPDA(27.91 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-R。所獲得的聚醯胺酸溶液C-R的黏度為2,200 cP。 (Synthesis Example C18) 77.298 g of BAPP (188.30 mmol) and 680 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 34.492 g of PMDA (158.13 mmol) and 8.210 g of BPDA (27.91 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamine solution C-R. The viscosity of the obtained polyamine solution C-R was 2,200 cP.
(合成例C19) 於1000 ml的可分離式燒瓶中投入50.803 g的m-TB(239.31 mmol)、7.773 g的TPE-R(26.59 mmol)、680 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加45.934 g的PMDA(210.59 mmol)及15.490 g的BPDA(52.65 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-S。所獲得的聚醯胺酸溶液C-S的黏度為23,000 cP。 (Synthesis Example C19) 50.803 g of m-TB (239.31 mmol), 7.773 g of TPE-R (26.59 mmol), and 680 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 45.934 g of PMDA (210.59 mmol) and 15.490 g of BPDA (52.65 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamide solution C-S. The viscosity of the obtained polyamide solution C-S was 23,000 cP.
(合成例C20) 於1000 ml的可分離式燒瓶中投入44.203 g的m-TB(208.22 mmol)、6.763 g的TPE-R(23.14 mmol)、680 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加59.043 g的BTDA(183.23 mmol)及9.992 g的PMDA(45.81 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-T。所獲得的聚醯胺酸溶液C-T的黏度為12,000 cP。 (Synthesis Example C20) 44.203 g of m-TB (208.22 mmol), 6.763 g of TPE-R (23.14 mmol), and 680 g of DMAc were placed in a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 59.043 g of BTDA (183.23 mmol) and 9.992 g of PMDA (45.81 mmol) were added and stirred at room temperature for 4 hours to obtain a polyamine solution C-T. The viscosity of the obtained polyamine solution C-T was 12,000 cP.
(合成例C21) 於1000 ml的可分離式燒瓶中投入33.475 g的TPE-R(114.51 mmol)、14.346 g的TPE-Q(49.08 mmol)、704 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加48.179 g的BPDA(163.75 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-U。所獲得的聚醯胺酸溶液C-U的黏度為15,000 cP。 (Synthesis Example C21) 33.475 g of TPE-R (114.51 mmol), 14.346 g of TPE-Q (49.08 mmol), and 704 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 48.179 g of BPDA (163.75 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-U. The viscosity of the obtained polyamine solution C-U was 15,000 cP.
(合成例C22) 於1000 ml的可分離式燒瓶中投入33.542 g的TPE-R(114.74 mmol)、14.375 g的TPE-Q(49.17 mmol)、704 g的DMAc,並於室溫下、氮氣流下進行攪拌。完全溶解後,添加48.083 g的BPDA(163.42 mmol),於室溫下攪拌4小時,獲得聚醯胺酸溶液C-V。所獲得的聚醯胺酸溶液C-V的黏度為10,000 cP。 (Synthesis Example C22) 33.542 g of TPE-R (114.74 mmol), 14.375 g of TPE-Q (49.17 mmol), and 704 g of DMAc were added to a 1000 ml separable flask and stirred at room temperature under a nitrogen flow. After complete dissolution, 48.083 g of BPDA (163.42 mmol) was added and stirred at room temperature for 4 hours to obtain a polyamine solution C-V. The viscosity of the obtained polyamine solution C-V was 10,000 cP.
[實施例C1] 於厚度12 μm的電解銅箔上,以硬化後的厚度為2 μm的方式均勻地塗佈成為第一聚醯亞胺層的聚醯胺酸溶液C-B,之後,自120℃起階段性地升溫至360℃,進行溶媒的去除及醯亞胺化。其次,於其上,以硬化後的厚度為25 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液C-A,之後,於120℃下加熱乾燥3分鐘而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備覆金屬積層板C1。於所製備的覆金屬積層板C1的樹脂面黏貼黏著膠帶,利用垂直方向上的瞬間撕下進行剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C1] On an electrolytic copper foil having a thickness of 12 μm, a polyamide solution C-B is uniformly applied to form a first polyimide layer in a manner to a thickness of 2 μm after curing, and then the temperature is gradually raised from 120°C to 360°C to remove the solvent and perform imidization. Next, a polyamide solution C-A is uniformly applied thereon in a manner to a thickness of 25 μm after curing, and then the solvent is removed by heat drying at 120°C for 3 minutes. Thereafter, the temperature is gradually raised from 130°C to 360°C to perform imidization, thereby preparing a metal-clad laminate C1. An adhesive tape was pasted on the resin surface of the prepared metal-clad laminate C1, and a peeling test was performed by tearing it off instantly in the vertical direction, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C2] 代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C2。與實施例C1同樣地,進行所製備的覆金屬積層板C2的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C2] Metal-clad laminate C2 was prepared in the same manner as Example C1 except that polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C2 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C3] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-C,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C3。與實施例C1同樣地,進行所製備的覆金屬積層板C3的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C3] Metal-clad laminate C3 was prepared in the same manner as Example C1 except that polyamide solution C-C was used instead of polyamide solution C-B. The prepared metal-clad laminate C3 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C4] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-C,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C4。與實施例C1同樣地,進行所製備的覆金屬積層板C4的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C4] Metal-clad laminate C4 was prepared in the same manner as Example C1 except that polyamide solution C-C was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C4 was subjected to a peeling test in the same manner as Example C1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例C5] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-D,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C5。與實施例C1同樣地,進行所製備的覆金屬積層板C5的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C5] Metal-clad laminate C5 was prepared in the same manner as Example C1 except that polyamide solution C-D was used instead of polyamide solution C-B. The prepared metal-clad laminate C5 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C6] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-D,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C6。與實施例C1同樣地,進行所製備的覆金屬積層板C6的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C6] Metal-clad laminate C6 was prepared in the same manner as Example C1 except that polyamide solution C-D was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C6 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C7] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-E,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C7。與實施例C1同樣地,進行所製備的覆金屬積層板C7的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C7] Metal-clad laminate C7 was prepared in the same manner as Example C1 except that polyamide solution C-E was used instead of polyamide solution C-B. The prepared metal-clad laminate C7 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C8] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-E,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C8。與實施例C1同樣地,進行所製備的覆金屬積層板C8的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C8] Metal-clad laminate C8 was prepared in the same manner as Example C1 except that polyamide solution C-E was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C8 was subjected to a peeling test in the same manner as Example C1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例C9] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-F,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C9。與實施例C1同樣地,進行所製備的覆金屬積層板C9的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C9] Metal-clad laminate C9 was prepared in the same manner as Example C1 except that polyamide solution C-F was used instead of polyamide solution C-B. The prepared metal-clad laminate C9 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C10] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-F,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C10。與實施例C1同樣地,進行所製備的覆金屬積層板C10的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C10] A metal-clad laminate C10 was prepared in the same manner as Example C1 except that polyamide solution C-F was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C10 was subjected to a peeling test in the same manner as Example C1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例C11] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-G,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C11。與實施例C1同樣地,進行所製備的覆金屬積層板C11的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C11] A metal-clad laminate C11 was prepared in the same manner as Example C1 except that the polyamide solution C-G was used instead of the polyamide solution C-B. The prepared metal-clad laminate C11 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C12] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-G,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C12。與實施例C1同樣地,進行所製備的覆金屬積層板C12的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C12] Metal-clad laminate C12 was prepared in the same manner as Example C1 except that polyamide solution C-G was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C12 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C13] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-H,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C13。與實施例C1同樣地,進行所製備的覆金屬積層板C13的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C13] Metal-clad laminate C13 was prepared in the same manner as Example C1 except that polyamide solution C-H was used instead of polyamide solution C-B. The prepared metal-clad laminate C13 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C14] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-H,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C14。與實施例C1同樣地,進行所製備的覆金屬積層板C14的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C14] Metal-clad laminate C14 was prepared in the same manner as Example C1 except that polyamide solution C-H was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C14 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C15] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-I,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C15。與實施例C1同樣地,進行所製備的覆金屬積層板C15的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C15] Metal-clad laminate C15 was prepared in the same manner as Example C1 except that polyamide solution C-I was used instead of polyamide solution C-B. The prepared metal-clad laminate C15 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C16] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-I,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C16。與實施例C1同樣地,進行所製備的覆金屬積層板C16的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C16] Metal-clad laminate C16 was prepared in the same manner as Example C1 except that polyamide solution C-I was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C16 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C17] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-J,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C17。與實施例C1同樣地,進行所製備的覆金屬積層板C17的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C17] Metal-clad laminate C17 was prepared in the same manner as Example C1 except that polyamide solution C-J was used instead of polyamide solution C-B. The prepared metal-clad laminate C17 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C18] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-J,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C18。與實施例C1同樣地,進行所製備的覆金屬積層板C18的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C18] Metal-clad laminate C18 was prepared in the same manner as Example C1 except that polyamide solution C-J was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C18 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C19] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-K,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C19。與實施例C1同樣地,進行所製備的覆金屬積層板C19的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C19] Metal-clad laminate C19 was prepared in the same manner as Example C1 except that polyamide solution C-K was used instead of polyamide solution C-B. The prepared metal-clad laminate C19 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C20] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-K,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C20。與實施例C1同樣地,進行所製備的覆金屬積層板C20的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C20] Metal-clad laminate C20 was prepared in the same manner as Example C1 except that polyamide solution C-K was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C20 was subjected to a peeling test in the same manner as Example C1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例C21] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-L,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C21。與實施例C1同樣地,進行所製備的覆金屬積層板C21的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C21] Metal-clad laminate C21 was prepared in the same manner as Example C1 except that polyamide solution C-L was used instead of polyamide solution C-B. The prepared metal-clad laminate C21 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C22] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-L,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C22。與實施例C1同樣地,進行所製備的覆金屬積層板C22的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C22] Metal-clad laminate C22 was prepared in the same manner as Example C1 except that polyamide solution C-L was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C22 was subjected to a peeling test in the same manner as Example C1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例C23] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-O,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C23。與實施例C1同樣地,進行所製備的覆金屬積層板C23的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C23] Metal-clad laminate C23 was prepared in the same manner as Example C1 except that polyamide solution C-O was used instead of polyamide solution C-B. The prepared metal-clad laminate C23 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C24] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-O,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C24。與實施例C1同樣地,進行所製備的覆金屬積層板C24的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C24] Metal-clad laminate C24 was prepared in the same manner as Example C1 except that polyamide solution C-O was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C24 was subjected to a peeling test in the same manner as Example C1, but peeling between the first polyimide layer and the second polyimide layer was not observed.
[實施例C25] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-T,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C25。與實施例C1同樣地,進行所製備的覆金屬積層板C25的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C25] Metal-clad laminate C25 was prepared in the same manner as Example C1 except that polyamide solution C-T was used instead of polyamide solution C-B. The prepared metal-clad laminate C25 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
[實施例C26] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-T,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C26。與實施例C1同樣地,進行所製備的覆金屬積層板C26的剝離試驗,但並未看到第一聚醯亞胺層及第二聚醯亞胺層的層間的剝離。 [Example C26] Metal-clad laminate C26 was prepared in the same manner as Example C1 except that polyamide solution C-T was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. The prepared metal-clad laminate C26 was subjected to a peeling test in the same manner as Example C1, but no peeling between the first polyimide layer and the second polyimide layer was observed.
比較例C1 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-M,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C27。與實施例C1同樣地,進行所製備的覆金屬積層板C27的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example C1 A metal-clad laminate C27 was prepared in the same manner as Example C1 except that the polyamide solution C-M was used instead of the polyamide solution C-B. A peeling test of the prepared metal-clad laminate C27 was conducted in the same manner as Example C1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurred.
比較例C2 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-M,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C28。與實施例C1同樣地,進行所製備的覆金屬積層板C28的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example C2 A metal-clad laminate C28 was prepared in the same manner as Example C1 except that polyamide solution C-M was used instead of polyamide solution C-B, and polyamide solution C-N was used instead of polyamide solution C-A. A peeling test of the prepared metal-clad laminate C28 was conducted in the same manner as Example C1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurred.
比較例C3 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-N,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C29。與實施例C1同樣地,進行所製備的覆金屬積層板C29的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example C3 A metal-clad laminate C29 was prepared in the same manner as Example C1 except that the polyamide solution C-N was used instead of the polyamide solution C-B. A peeling test of the prepared metal-clad laminate C29 was conducted in the same manner as Example C1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurred.
比較例C4 代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-P,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C30。與實施例C1同樣地,進行所製備的覆金屬積層板C30的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example C4 A metal-clad laminate C30 was prepared in the same manner as Example C1 except that the polyamide solution C-P was used instead of the polyamide solution C-A. A peeling test of the prepared metal-clad laminate C30 was conducted in the same manner as Example C1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurred.
比較例C5 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-A,且代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-B,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C31。與實施例C1同樣地,進行所製備的覆金屬積層板C31的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 Comparative Example C5 A metal-clad laminate C31 was prepared in the same manner as Example C1 except that polyamide solution C-A was used instead of polyamide solution C-B, and polyamide solution C-B was used instead of polyamide solution C-A. A peeling test of the prepared metal-clad laminate C31 was conducted in the same manner as Example C1, and as a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurred.
[實施例C27] 將聚醯胺酸溶液C-A的塗佈後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C32,但並未確認到發泡。 [Example C27] Metal-clad laminate C32 was prepared in the same manner as Example C1 except that the heating time from 130°C to 360°C after application of polyamide solution C-A was shortened to 1/3, but no foaming was observed.
[實施例C28] 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-A,且將聚醯胺酸溶液C-A的塗佈後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C33,但並未確認到發泡。 [Example C28] Metal-clad laminate C33 was prepared in the same manner as Example C1 except that polyamine solution C-A was used instead of polyamine solution C-B and the heating time from 130°C to 360°C after application of polyamine solution C-A was shortened to 1/3, but no foaming was observed.
比較例C6 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-M,且將聚醯胺酸溶液C-A的塗佈後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C34,結果,產生發泡。 Comparative Example C6 Instead of polyamine solution C-B, polyamine solution C-M was used, and the heating time from 130°C to 360°C after the application of polyamine solution C-A was shortened to 1/3. Metal-clad laminate C34 was prepared in the same manner as Example C1. As a result, foaming occurred.
比較例C7 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-N,且將聚醯胺酸溶液C-A的塗佈後的130℃至360℃為止的升溫時間縮短為1/3,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C35,結果,產生發泡。 Comparative Example C7 Instead of polyamine solution C-B, polyamine solution C-N was used, and the heating time from 130°C to 360°C after the application of polyamine solution C-A was shortened to 1/3. Metal-clad laminate C35 was prepared in the same manner as Example C1. As a result, foaming occurred.
[實施例C29] 於不鏽鋼基材上塗佈成為第一聚醯亞胺層的聚醯胺酸溶液C-O,之後,於120℃下進行乾燥,製備聚醯胺酸的凝膠膜。將所製備的凝膠膜自不鏽鋼基材剝離後,固定於拉幅機夾具(tenter clip)上,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備厚度12.5 μm的聚醯亞胺膜C36。於所製備的聚醯亞胺膜C36上,以硬化後的厚度為3 μm的方式塗佈成為第二聚醯亞胺層的聚醯胺酸溶液C-R,並於120℃下進行乾燥。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備積層聚醯亞胺膜C36。利用切割刀(cutter)將所製備的積層聚醯亞胺膜C36裁斷,且利用掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀察並未確認到第一聚醯亞胺層及第二聚醯亞胺層間的層間剝離。 [Example C29] A polyamide solution C-O is applied to a stainless steel substrate to form a first polyimide layer, and then dried at 120°C to prepare a polyamide gel film. The prepared gel film is peeled off from the stainless steel substrate, fixed on a tenter clip, and the temperature is gradually raised from 130°C to 360°C to perform imidization, thereby preparing a polyimide film C36 with a thickness of 12.5 μm. On the prepared polyimide film C36, a polyamide solution C-R is applied to form a second polyimide layer in a manner of 3 μm in thickness after curing, and then dried at 120°C. Afterwards, the temperature was gradually raised from 130°C to 360°C for imidization to prepare a laminated polyimide film C36. The prepared laminated polyimide film C36 was cut with a cutter, and no interlayer peeling between the first polyimide layer and the second polyimide layer was observed using a scanning electron microscope (SEM).
[實施例C30] 代替聚醯胺酸溶液C-O而使用聚醯胺酸溶液C-T,除此以外,與實施例C29同樣地進行而製備積層聚醯亞胺膜C37。利用SEM觀察並未確認到所製備的積層聚醯亞胺膜C37的層間剝離。 [Example C30] A laminated polyimide film C37 was prepared in the same manner as Example C29 except that the polyimide solution C-T was used instead of the polyimide solution C-O. No interlayer delamination was observed in the prepared laminated polyimide film C37 by SEM observation.
[實施例C31] 將第一聚醯亞胺層的厚度設為17 μm、以及代替聚醯胺酸溶液C-R而使用聚醯胺酸溶液C-V並將硬化後的厚度設為4 μm,除此以外,與實施例C29同樣地進行而製備積層聚醯亞胺膜C38。利用SEM觀察並未確認到所製備的積層聚醯亞胺膜C38的層間剝離。 [Example C31] A laminated polyimide film C38 was prepared in the same manner as Example C29 except that the thickness of the first polyimide layer was set to 17 μm and the thickness after curing was set to 4 μm by using polyimide solution C-V instead of polyimide solution C-R. Interlayer delamination of the prepared laminated polyimide film C38 was not confirmed by SEM observation.
[實施例C32] 代替聚醯胺酸溶液C-O而使用聚醯胺酸溶液C-T並將第一聚醯亞胺層的厚度設為17 μm、以及代替聚醯胺酸溶液C-R而使用聚醯胺酸溶液C-V並將硬化後的厚度設為4 μm,除此以外,與實施例C29同樣地進行而製備積層聚醯亞胺膜C39。利用SEM觀察並未確認到所製備的積層聚醯亞胺膜C39的層間剝離。 [Example C32] A laminated polyimide film C39 was prepared in the same manner as Example C29, except that the polyimide solution C-T was used instead of the polyimide solution C-O and the thickness of the first polyimide layer was set to 17 μm, and the polyimide solution C-V was used instead of the polyimide solution C-R and the thickness after curing was set to 4 μm. Interlayer delamination of the prepared laminated polyimide film C39 was not confirmed by SEM observation.
比較例C8 代替聚醯胺酸溶液C-R而使用聚醯胺酸溶液C-Q,除此以外,與實施例C29同樣地進行而製備積層聚醯亞胺膜C40。藉由所製備的積層聚醯亞胺膜C40的SEM觀察,確認到層間剝離。 Comparative Example C8 A laminated polyimide film C40 was prepared in the same manner as Example C29 except that the polyimide solution C-Q was used instead of the polyimide solution C-R. Interlayer peeling was confirmed by SEM observation of the prepared laminated polyimide film C40.
比較例C9 代替聚醯胺酸溶液C-O而使用聚醯胺酸溶液C-P,除此以外,與實施例C29同樣地進行而製備積層聚醯亞胺膜C41。藉由所製備的積層聚醯亞胺膜C41的SEM觀察,確認到層間剝離。 Comparative Example C9 A laminated polyimide film C41 was prepared in the same manner as Example C29 except that the polyimide solution C-P was used instead of the polyimide solution C-O. Interlayer peeling was confirmed by SEM observation of the prepared laminated polyimide film C41.
比較例C10 將第一聚醯亞胺層的厚度設為17 μm、以及代替聚醯胺酸溶液C-R而使用聚醯胺酸溶液C-U並將硬化後的厚度設為4 μm,除此以外,與實施例C29同樣地進行而製備積層聚醯亞胺膜C42。藉由所製備的積層聚醯亞胺膜C42的SEM觀察,確認到層間剝離。 Comparative Example C10 A laminated polyimide film C42 was prepared in the same manner as Example C29 except that the thickness of the first polyimide layer was set to 17 μm and the thickness after curing was set to 4 μm by using polyimide solution C-U instead of polyimide solution C-R. Interlayer peeling was confirmed by SEM observation of the prepared laminated polyimide film C42.
[實施例C33] 於厚度12 μm的電解銅箔上,以硬化後的厚度為25 μm的方式均勻地塗佈成為第一聚醯亞胺層的聚醯胺酸溶液C-T,之後,自120℃起階段性地升溫至360℃,進行溶媒的去除及醯亞胺化。其次,於其上,以硬化後的厚度為25 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液C-S,之後,於120℃下進行加熱乾燥而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備覆金屬積層板C43。所製備的覆金屬積層板C43中的第一聚醯亞胺層與第二聚醯亞胺層的剝離強度為1.5 kN/m以上。 [Example C33] On an electrolytic copper foil having a thickness of 12 μm, a polyamide solution C-T is uniformly applied to form a first polyimide layer in a manner that the thickness after curing is 25 μm, and then the temperature is gradually raised from 120°C to 360°C to remove the solvent and perform imidization. Next, a polyamide solution C-S is uniformly applied thereon in a manner that the thickness after curing is 25 μm, and then heat-dried at 120°C to remove the solvent. Thereafter, the temperature is gradually raised from 130°C to 360°C to perform imidization, and a metal-clad laminate C43 is prepared. The peeling strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C43 is above 1.5 kN/m.
[實施例C34] 於厚度12 μm的電解銅箔上,以硬化後的厚度為23 μm的方式均勻地塗佈聚醯胺酸溶液C-S,並於120℃下進行加熱乾燥而去除溶媒。於其上,以硬化後的厚度為2 μm的方式均勻地塗佈聚醯胺酸溶液C-B,並於120℃下進行加熱乾燥而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,形成第一聚醯亞胺層。其次,於其上,以硬化後的厚度為25 μm的方式均勻地塗佈成為第二聚醯亞胺層的聚醯胺酸溶液C-S,之後,於120℃下進行加熱乾燥而去除溶媒。其後,自130℃起階段性地升溫至360℃而進行醯亞胺化,製備覆金屬積層板C44。所製備的覆金屬積層板C44中的第一聚醯亞胺層與第二聚醯亞胺層的剝離強度為1.5 kN/m以上。 [Example C34] On an electrolytic copper foil having a thickness of 12 μm, polyamide solution C-S is uniformly applied to a thickness of 23 μm after curing, and heat-dried at 120°C to remove the solvent. On top of it, polyamide solution C-B is uniformly applied to a thickness of 2 μm after curing, and heat-dried at 120°C to remove the solvent. Thereafter, the temperature is gradually raised from 130°C to 360°C to perform imidization, thereby forming a first polyimide layer. Next, a polyamide solution C-S is uniformly applied thereon to a thickness of 25 μm after curing to form a second polyimide layer, and then the solvent is removed by heat drying at 120°C. Thereafter, the temperature is gradually raised from 130°C to 360°C to perform imidization to prepare a metal-clad laminate C44. The peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C44 is 1.5 kN/m or more.
比較例C11 代替聚醯胺酸溶液C-T而使用聚醯胺酸溶液C-S,除此以外,與實施例C33同樣地進行而製備覆金屬積層板C45。所製備的覆金屬積層板C45中的第一聚醯亞胺層與第二聚醯亞胺層的剝離強度為0.1 kN/m以下。 Comparative Example C11 A metal-clad laminate C45 was prepared in the same manner as Example C33 except that the polyamide solution C-S was used instead of the polyamide solution C-T. The peeling strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C45 was 0.1 kN/m or less.
比較例C12 代替聚醯胺酸溶液C-B而使用聚醯胺酸溶液C-M,除此以外,與實施例C34同樣地進行而製備覆金屬積層板C46。所製備的覆金屬積層板C46中的第一聚醯亞胺層與第二聚醯亞胺層的剝離強度為0.1 kN/m以下。 Comparative Example C12 A metal-clad laminate C46 was prepared in the same manner as Example C34 except that the polyamide solution C-M was used instead of the polyamide solution C-B. The peel strength of the first polyimide layer and the second polyimide layer in the prepared metal-clad laminate C46 was 0.1 kN/m or less.
參考例C 對100 g的聚醯胺酸溶液C-A添加0.45 g的鄰苯二甲酸酐(3.02 mmol)並進行4小時攪拌,製備聚醯胺酸溶液C-A2。代替聚醯胺酸溶液C-A而使用聚醯胺酸溶液C-A2,除此以外,與實施例C1同樣地進行而製備覆金屬積層板C47,結果,產生發泡。另外,與實施例C1同樣地,進行所製備的覆金屬積層板C47的剝離試驗,結果,產生第一聚醯亞胺層及第二聚醯亞胺層的層間剝離。 認為其原因在於:第二聚醯亞胺層的胺基與鄰苯二甲酸酐進行反應,藉此可與第一聚醯亞胺層反應的官能基消失,不會產生樹脂層間的化學接著。 Reference Example C 0.45 g of phthalic anhydride (3.02 mmol) was added to 100 g of polyamide solution C-A and stirred for 4 hours to prepare polyamide solution C-A2. Metal-clad laminate C47 was prepared in the same manner as in Example C1 except that polyamide solution C-A2 was used instead of polyamide solution C-A. As a result, foaming occurred. In addition, a peeling test of the prepared metal-clad laminate C47 was conducted in the same manner as in Example C1. As a result, interlayer peeling of the first polyimide layer and the second polyimide layer occurred. The reason is believed to be that the amino groups of the second polyimide layer react with phthalic anhydride, thereby eliminating the functional groups that can react with the first polyimide layer, and chemical bonding between the resin layers will not occur.
以上,以例示的目的對本發明的實施形態進行了詳細說明,但本發明不受所述實施形態的制約。Although the embodiments of the present invention have been described in detail for the purpose of illustration, the present invention is not limited to the embodiments described above.
本國際申請主張基於日本專利申請2018-185874號(申請日:2018年9月28日)、日本專利申請2018-185875號(申請日:2018年9月28日)及日本專利申請2018-185876號(申請日:2018年9月28日)的優先權,並將該申請的所有內容引用於此。This international application claims priority based on Japanese Patent Application No. 2018-185874 (filing date: September 28, 2018), Japanese Patent Application No. 2018-185875 (filing date: September 28, 2018), and Japanese Patent Application No. 2018-185876 (filing date: September 28, 2018), and all the contents of those applications are incorporated herein by reference.
10:金屬層
10A:金屬箔
20:第一聚醯亞胺層
20A:第一聚醯胺樹脂層
20B:半硬化樹脂層
30:第二聚醯亞胺層
30A:第二聚醯胺樹脂層
40:絕緣樹脂層
100:覆金屬積層板
L:絕緣樹脂層整體的厚度
L1:第一聚醯亞胺層的厚度
10:
圖1中的(1)至(5)是表示本發明的第1實施形態的覆金屬積層板的製造方法的順序的步驟圖。 圖2中的(a)至(d)是表示本發明的第2實施形態的覆金屬積層板的製造方法的順序的步驟圖。 圖3是蝕刻後尺寸變化率的測定中所使用的位置測定用目標(target)的說明圖。 圖4是蝕刻後尺寸變化率的測定中所使用的評價樣品的說明圖。 (1) to (5) in FIG. 1 are step diagrams showing the sequence of the method for manufacturing a metal-clad laminated board according to the first embodiment of the present invention. (a) to (d) in FIG. 2 are step diagrams showing the sequence of the method for manufacturing a metal-clad laminated board according to the second embodiment of the present invention. FIG. 3 is an explanatory diagram of a position measurement target used in the measurement of the dimensional change rate after etching. FIG. 4 is an explanatory diagram of an evaluation sample used in the measurement of the dimensional change rate after etching.
10:金屬層 10: Metal layer
10A:金屬箔 10A: Metal foil
20:第一聚醯亞胺層 20: First polyimide layer
20A:第一聚醯胺樹脂層 20A: First polyamide resin layer
30:第二聚醯亞胺層 30: Second polyimide layer
30A:第二聚醯胺樹脂層 30A: Second polyamide resin layer
40:絕緣樹脂層 40: Insulating resin layer
100:覆金屬積層板 100: Metal-clad laminate
L:絕緣樹脂層整體的厚度 L: The overall thickness of the insulating resin layer
L1:第一聚醯亞胺層的厚度 L1: Thickness of the first polyimide layer
Claims (5)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-185875 | 2018-09-28 | ||
JP2018-185876 | 2018-09-28 | ||
JP2018-185874 | 2018-09-28 | ||
JP2018185875 | 2018-09-28 | ||
JP2018185876A JP2020055148A (en) | 2018-09-28 | 2018-09-28 | Method of manufacturing metal-clad laminate and method of manufacturing circuit board |
JP2018185874A JP7120870B2 (en) | 2018-09-28 | 2018-09-28 | Method for producing polyimide film and method for producing metal-clad laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202423703A TW202423703A (en) | 2024-06-16 |
TWI856927B true TWI856927B (en) | 2024-09-21 |
Family
ID=69952109
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113107336A TWI856927B (en) | 2018-09-28 | 2019-09-26 | Method for producing polyimide film, method for producing metal-clad laminate, and method for producing circuit substrate |
TW108134772A TWI837183B (en) | 2018-09-28 | 2019-09-26 | Method for manufacturing metal-clad laminate and method for manufacturing circuit substrate |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108134772A TWI837183B (en) | 2018-09-28 | 2019-09-26 | Method for manufacturing metal-clad laminate and method for manufacturing circuit substrate |
Country Status (4)
Country | Link |
---|---|
KR (2) | KR20210068022A (en) |
CN (2) | CN115971017B (en) |
TW (2) | TWI856927B (en) |
WO (1) | WO2020066595A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI807216B (en) * | 2020-09-01 | 2023-07-01 | 佳勝科技股份有限公司 | Composite substrate and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200815499A (en) * | 2006-07-06 | 2008-04-01 | Toray Industries | Thermoplastic polyimide, Laminate polyimide film using it and metal foil laminated polyimide film |
JP2008188954A (en) * | 2007-02-07 | 2008-08-21 | Kaneka Corp | Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet |
CN105339416A (en) * | 2013-06-28 | 2016-02-17 | 新日铁住金化学株式会社 | Polyimide, resin film, and metal-clad laminate |
TW201707976A (en) * | 2015-07-10 | 2017-03-01 | Toyo Boseki | Layered body and method for manufacturing same |
TW201825295A (en) * | 2016-09-29 | 2018-07-16 | 日商新日鐵住金化學股份有限公司 | Polyimide film, copper-clad laminate, and circuit substrate |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534670A (en) | 1976-06-30 | 1978-01-17 | Hoshizaki Electric Co Ltd | Automatic control device of coffee liquid extracting machine |
JPS5480490U (en) | 1977-11-15 | 1979-06-07 | ||
JPS5615253U (en) | 1979-07-13 | 1981-02-09 | ||
EP0518543B1 (en) * | 1991-06-10 | 1997-03-12 | MITSUI TOATSU CHEMICALS, Inc. | Polyimide and process for the preparation thereof |
CN1106788C (en) * | 1996-02-13 | 2003-04-23 | 日东电工株式会社 | Cirucit substrate, circuit-formed suspension substrate, and prodn. method thereof |
JP4508441B2 (en) * | 2001-02-16 | 2010-07-21 | 新日鐵化学株式会社 | Laminated body and method for producing the same |
JP4765284B2 (en) * | 2004-09-01 | 2011-09-07 | 東レ株式会社 | Multilayer polyimide film and laminated film with metal layer using the same |
JP5069847B2 (en) * | 2005-04-27 | 2012-11-07 | 株式会社カネカ | Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate |
JP5069846B2 (en) * | 2005-04-27 | 2012-11-07 | 株式会社カネカ | Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate |
CN101189287B (en) * | 2005-06-03 | 2011-04-20 | 三井化学株式会社 | Polyimide film, polyimide metal laminate, and method for producing the same |
KR101451264B1 (en) * | 2006-07-04 | 2014-10-15 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | Method for modifying the surface of a polyimide resin layer and method for producing a metal laminate |
CN101193495A (en) * | 2006-11-30 | 2008-06-04 | 长春人造树脂厂股份有限公司 | Polyimide compound soft board and its making method |
JP2008279698A (en) * | 2007-05-11 | 2008-11-20 | Asahi Kasei Corp | Laminate and its manufacturing method |
EP2319960A4 (en) * | 2008-07-22 | 2013-01-02 | Furukawa Electric Co Ltd | LAMINATED COPPER LAMINATE LAMINATE |
KR20100048474A (en) * | 2008-10-31 | 2010-05-11 | 에스케이에너지 주식회사 | Flexible metal-clad laminate and a method of manufacturing the same |
JP5480490B2 (en) | 2008-11-11 | 2014-04-23 | 株式会社カネカ | Adhesive film and flexible metal-clad laminate |
JP5180814B2 (en) * | 2008-12-26 | 2013-04-10 | 新日鉄住金化学株式会社 | Laminated body for flexible wiring board |
JP5100894B2 (en) * | 2009-12-22 | 2012-12-19 | 新日鉄住金化学株式会社 | Polyimide resin, production method thereof, adhesive resin composition, coverlay film, and circuit board |
US20120295085A1 (en) * | 2010-01-25 | 2012-11-22 | Mitsui Chemicals, Inc. | Polymide resin composition, adhesive agent and laminate each comprising same, and device |
JP5615253B2 (en) * | 2010-12-20 | 2014-10-29 | エスケー イノベーション シーオー., エルティーディー. | Method for producing thick film polyimide flexible metal laminate |
JPWO2013042751A1 (en) * | 2011-09-22 | 2015-03-26 | 日立化成株式会社 | LAMINATE, LAMINATE, MULTILAYER LAMINATE, PRINTED WIRING BOARD AND METHOD FOR PRODUCING LAMINATE |
JP5886027B2 (en) * | 2011-12-21 | 2016-03-16 | 新日鉄住金化学株式会社 | Double-sided metal-clad laminate and method for producing the same |
US9232660B2 (en) * | 2011-12-28 | 2016-01-05 | Sk Innovation Co., Ltd. | Flexible metal clad laminate and manufacturing method thereof |
JP2014070085A (en) * | 2012-09-27 | 2014-04-21 | Nippon Steel & Sumikin Chemical Co Ltd | Thermoplastic polyimide, meatal-clad laminate, circuit board, method of using the same, meatal-clad laminate manufacturing method and circuit board manufacturing method |
JP2014138020A (en) * | 2013-01-15 | 2014-07-28 | Nippon Kayaku Co Ltd | Printed wiring substrate for high-frequency circuit |
TWI466924B (en) * | 2013-01-23 | 2015-01-01 | Mortech Corp | Polyimide film and polyimide laminate thereof |
JP6031396B2 (en) * | 2013-03-29 | 2016-11-24 | 新日鉄住金化学株式会社 | Manufacturing method of double-sided flexible metal-clad laminate |
WO2014192560A1 (en) * | 2013-05-28 | 2014-12-04 | 旭硝子株式会社 | Resin-layer-equipped support substrate and method for producing same, glass laminate and method for producing same, and method for producing electronic device |
JP6743697B2 (en) * | 2014-07-24 | 2020-08-19 | 宇部興産株式会社 | Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate using the same, and copolymerized polyimide used therein |
JP6808401B2 (en) * | 2015-08-31 | 2021-01-06 | 日鉄ケミカル&マテリアル株式会社 | Manufacturing method of polyimide substrate film with functional layer |
KR101865723B1 (en) * | 2016-02-24 | 2018-06-08 | 현대자동차 주식회사 | Flexible copper clad laminate, flexible printed circuit board comprisisng the same and manufacturing method of the same |
US10844175B2 (en) * | 2016-03-17 | 2020-11-24 | Nippon Steel Chemical & Material Co., Ltd. | Polyamide acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board |
CN107556501A (en) * | 2017-08-23 | 2018-01-09 | 中国科学院理化技术研究所 | Polyimide film and preparation method and application thereof |
-
2019
- 2019-09-10 KR KR1020217008713A patent/KR20210068022A/en not_active Ceased
- 2019-09-10 KR KR1020257001919A patent/KR20250013312A/en active Pending
- 2019-09-10 WO PCT/JP2019/035510 patent/WO2020066595A1/en active Application Filing
- 2019-09-10 CN CN202211730860.1A patent/CN115971017B/en active Active
- 2019-09-10 CN CN201980055481.7A patent/CN112601656A/en active Pending
- 2019-09-26 TW TW113107336A patent/TWI856927B/en active
- 2019-09-26 TW TW108134772A patent/TWI837183B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200815499A (en) * | 2006-07-06 | 2008-04-01 | Toray Industries | Thermoplastic polyimide, Laminate polyimide film using it and metal foil laminated polyimide film |
JP2008188954A (en) * | 2007-02-07 | 2008-08-21 | Kaneka Corp | Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet |
CN105339416A (en) * | 2013-06-28 | 2016-02-17 | 新日铁住金化学株式会社 | Polyimide, resin film, and metal-clad laminate |
TW201707976A (en) * | 2015-07-10 | 2017-03-01 | Toyo Boseki | Layered body and method for manufacturing same |
TW201825295A (en) * | 2016-09-29 | 2018-07-16 | 日商新日鐵住金化學股份有限公司 | Polyimide film, copper-clad laminate, and circuit substrate |
Also Published As
Publication number | Publication date |
---|---|
CN115971017A (en) | 2023-04-18 |
TW202423703A (en) | 2024-06-16 |
TWI837183B (en) | 2024-04-01 |
CN115971017B (en) | 2024-01-16 |
WO2020066595A1 (en) | 2020-04-02 |
KR20210068022A (en) | 2021-06-08 |
KR20250013312A (en) | 2025-01-31 |
TW202026151A (en) | 2020-07-16 |
CN112601656A (en) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6908590B2 (en) | Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board | |
JP7446741B2 (en) | Metal-clad laminates and circuit boards | |
TW201825295A (en) | Polyimide film, copper-clad laminate, and circuit substrate | |
TWI864246B (en) | Resin film, metal-clad laminate and circuit substrate | |
JP7428646B2 (en) | Metal-clad laminates and circuit boards | |
TW202319444A (en) | Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit | |
TWI865703B (en) | Metal-clad laminates and circuit boards | |
TWI856927B (en) | Method for producing polyimide film, method for producing metal-clad laminate, and method for producing circuit substrate | |
JP7120870B2 (en) | Method for producing polyimide film and method for producing metal-clad laminate | |
JP7465058B2 (en) | Metal-clad laminates and circuit boards | |
KR101077405B1 (en) | Laminate for wiring board | |
TW202237705A (en) | Polyimide, metal-clad laminate plate and circuit board | |
TW202225276A (en) | Polyimide film, metal-clad laminate, method for producing same and circuit substrate | |
TW202112912A (en) | Polyimide film, metal-clad laminate and circuit board featuring low dielectric loss tangent and excellent long-term heat-resistant adhesiveness | |
TWI877057B (en) | Metal-clad laminates and circuit boards | |
JP2020158743A (en) | Method for producing polyimide film and method for producing metal-clad laminate | |
JP7598756B2 (en) | Resin films, metal-clad laminates and circuit boards | |
JP7465060B2 (en) | Metal-clad laminates and circuit boards | |
TW202413090A (en) | Metal-clad laminate, circuit board, electronic device and electronic apparatus | |
CN116178953A (en) | Polyimide film | |
CN118255987A (en) | Polyamic acid, polyimide, resin film, metal-clad laminate and circuit substrate | |
TW202405055A (en) | Polyamic acid, polyimide, metal-clad laminate and circuit board | |
CN118265745A (en) | Polyimide film, high-frequency circuit substrate, flexible electronic device substrate | |
CN116178712A (en) | Polyimide resin precursor | |
JP2021053567A (en) | Method for producing polyimide film and production method for metal-clad laminate |