[go: up one dir, main page]

TW202225276A - Polyimide film, metal-clad laminate, method for producing same and circuit substrate - Google Patents

Polyimide film, metal-clad laminate, method for producing same and circuit substrate Download PDF

Info

Publication number
TW202225276A
TW202225276A TW110148305A TW110148305A TW202225276A TW 202225276 A TW202225276 A TW 202225276A TW 110148305 A TW110148305 A TW 110148305A TW 110148305 A TW110148305 A TW 110148305A TW 202225276 A TW202225276 A TW 202225276A
Authority
TW
Taiwan
Prior art keywords
polyimide
layer
metal
mol
diamine
Prior art date
Application number
TW110148305A
Other languages
Chinese (zh)
Inventor
安達康弘
安藤智典
Original Assignee
日商日鐵化學材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日鐵化學材料股份有限公司 filed Critical 日商日鐵化學材料股份有限公司
Publication of TW202225276A publication Critical patent/TW202225276A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

This invention provides a polyimide film, a metal-clad laminate, a metal-clad laminate manufacturing method, and a circuit substrate. It is able to provide a configuration capable of realizing good adhesion at an interface between a polyimide film or a polyimide insulation layer and a bonding sheet in a polyimide film or a metal-clad laminate without deteriorating the dielectric properties. According to a polyimide film or a polyimide insulation layer as a whole, it satisfies: (i) an oxygen permeation coefficient of 2.0 * 10<SP>-18</SP> mol.m/m2.s.Pa or less; (ii) a thermal expansion coefficient in the range of 10 to 30 ppm/K; (iii) a dielectric loss tangent (Tan[delta]) at 10 GHz of 0.004 or less; and (iv) a layer thickness in the range of 10 [mu]m to 100 [mu]m. In addition, the polyimide (p) constituting the polyimide layer (P) contains an acid anhydride residue derived from tetracarboxylic acid dianhydride and a diamine residue derived from a diamine component, wherein the diamine residue at least 30 mol% of diamine residue derived from 1,3-bis(aminophenoxy)benzene with respect to the total diamine residue.

Description

聚醯亞胺膜、覆金屬層疊板、覆金屬層疊板的製造方法及電路基板Polyimide film, metal-clad laminate, method for producing metal-clad laminate, and circuit board

本發明關於一種用於形成電子材料、例如電路基板等的聚醯亞胺膜、覆金屬層疊板及對其進行加工而成的電路基板。The present invention relates to a polyimide film for forming an electronic material such as a circuit board, a metal-clad laminate, and a circuit board formed by processing the same.

在柔性電路基板(柔性印刷電路板(Flexible Printed Circuit Board,FPC))等電路基板的製造中,廣泛使用在聚醯亞胺絕緣層的單面或兩面層疊有銅箔等金屬層的覆金屬層疊板。對於此種聚醯亞胺絕緣層,通常出於改善電路的高頻傳輸特性的目的,要求顯示出較低的相對介電常數及介電損耗角正切。In the manufacture of circuit boards such as flexible circuit boards (Flexible Printed Circuit Boards (FPC)), metal-clad laminates in which metal layers such as copper foil are laminated on one or both sides of a polyimide insulating layer are widely used plate. Such polyimide insulating layers are generally required to exhibit relatively low relative permittivity and dielectric loss tangent for the purpose of improving high-frequency transmission characteristics of circuits.

然而,覆金屬層疊板的聚醯亞胺絕緣層的形成是藉由在金屬層上塗布聚醯胺酸溶液並進行乾燥後,實施醯亞胺化熱處理的“澆鑄法”而進行,但在進行醯亞胺化熱處理時,在金屬層與聚醯亞胺絕緣層的層間,由於殘存溶媒或生成的醯亞胺化水的體積膨脹,有時會產生所謂的“膨脹”或“剝離”的現象(以下,有時稱為發泡現象)。However, the formation of the polyimide insulating layer of the metal-clad laminate is carried out by a "casting method" in which a polyimide solution is applied on the metal layer, dried, and then subjected to an imidization heat treatment. During the imidization heat treatment, between the metal layer and the polyimide insulating layer, a phenomenon called "swelling" or "peeling" may occur due to the volume expansion of the residual solvent or the generated imidization water. (Hereinafter, it may be referred to as a foaming phenomenon).

因此,作為不使介電特性劣化地抑制了發泡現象的覆金屬層疊板,提出了如下覆金屬層疊板:相對於構成聚醯亞胺絕緣層的酸酐殘基的合計100摩爾份,含有40摩爾份以上的在分子內具有作為較高極性基團的酮基的四羧酸二酐殘基,以使與金屬層相接觸的聚醯亞胺絕緣層的儲存彈性模量為規定數值以上(專利文獻1)。Therefore, as a metal-clad laminate in which the foaming phenomenon is suppressed without deteriorating the dielectric properties, a metal-clad laminate containing 40 parts by mole of acid anhydride residues constituting the polyimide insulating layer in total of 100 parts by mole has been proposed. Molar part or more of the tetracarboxylic dianhydride residue having a ketone group as a higher polar group in the molecule, so that the storage elastic modulus of the polyimide insulating layer in contact with the metal layer is a predetermined value or more ( Patent Document 1).

然而,如上所述,作為覆金屬層疊板,也廣泛使用在聚醯亞胺絕緣層的兩面設置有金屬層的兩面覆金屬層疊板,但兩面覆金屬層疊板通常是使兩張單面覆金屬層疊板的聚醯亞胺絕緣層相互相向,在其之間利用將聚醯亞胺系黏接劑成形為片狀的兩面黏接片(以下,接合片(bonding sheet,BS))將聚醯亞胺絕緣層彼此貼合來進行製造。在將專利文獻1的覆金屬層疊板製成兩面覆金屬層疊板的情況下也利用同樣的方法製成。 [現有技術文獻] [專利文獻] However, as described above, metal-clad laminates are also widely used, in which metal layers are provided on both sides of the polyimide insulating layer. However, metal-clad laminates are usually made of two metal-clad laminates on one side. The polyimide insulating layers of the laminate face each other, and the polyimide insulating layers are bonded to each other by a double-sided adhesive sheet (hereinafter, bonding sheet (BS)) in which a polyimide-based adhesive is formed into a sheet. The imine insulating layers are bonded to each other and produced. In the case where the metal-clad laminate of Patent Document 1 is used as a double-sided metal-clad laminate, it is produced by the same method. [Prior Art Literature] [Patent Literature]

日本專利特開2020-104340號公報Japanese Patent Laid-Open No. 2020-104340

[發明所欲解決之課題][The problem to be solved by the invention]

但是,在專利文獻1的覆金屬層疊板的情況下,著眼於確保金屬層和與其鄰接的聚醯亞胺絕緣層的介面的密合性,對於與金屬層為相反側的聚醯亞胺絕緣層的極平坦的表面和接合片之間的介面的密合性並未進行充分的研究。另外,由於構成聚醯亞胺的酸酐殘基含有40摩爾份以上的在分子內具有作為較高極性基團的酮基的四羧酸二酐殘基,因此存在不僅相對介電常數而且介電損耗角正切也容易上升的問題。因此,根據專利文獻1,對於覆金屬層疊板的聚醯亞胺絕緣層,無法發現不僅可不使其介電特性劣化地抑制發泡現象,而且也可在與接合片的介面實現良好的密合性的具體結構。However, in the case of the metal-clad laminate of Patent Document 1, attention is paid to ensuring the adhesiveness of the interface between the metal layer and the adjacent polyimide insulating layer, and the polyimide insulating layer on the opposite side of the metal layer is made of the polyimide insulating layer. Adhesion of the interface between the extremely flat surface of the layer and the bonding sheet has not been sufficiently studied. In addition, since the acid anhydride residue constituting the polyimide contains 40 mole parts or more of a tetracarboxylic dianhydride residue having a ketone group as a relatively polar group in the molecule, there is not only a relative permittivity but also a dielectric Loss tangent is also prone to rising problems. Therefore, according to Patent Document 1, it has not been found that the polyimide insulating layer of the metal-clad laminate can not only suppress the foaming phenomenon without deteriorating its dielectric properties, but also achieve good adhesion at the interface with the bonding sheet. The specific structure of sex.

本發明的目的在於提供一種在聚醯亞胺膜或覆金屬層疊板中,也可在不使介電特性劣化的情況下,實現聚醯亞胺膜或聚醯亞胺絕緣層與接合片的介面的良好的密合性的具體結構。 [解決課題之手段] An object of the present invention is to provide a polyimide film or a metal-clad laminate that can realize the bonding between the polyimide film or the polyimide insulating layer and the bonding sheet without deteriorating the dielectric properties. The specific structure of the good adhesion of the interface. [Means of Solving Problems]

本發明者等人對聚醯亞胺膜或覆金屬層疊板的聚醯亞胺絕緣層研究了龐大數量的特定要素,發現藉由控制極其有限的以下的(a)~(c)所示的特定要素,可實現本發明的目的,從而完成了本發明。 (a)將聚醯亞胺膜或聚醯亞胺絕緣層作為多個聚醯亞胺層,在露出面側配置特定的聚醯亞胺層; (b)將聚醯亞胺膜或聚醯亞胺絕緣層整體的“氧透過係數”、“熱膨脹係數”、“介電損耗角正切”、及“層厚”分別設定在規定範圍內;以及 (c)構成聚醯亞胺膜或聚醯亞胺絕緣層中的露出面側的聚醯亞胺層的聚醯亞胺以規定以上的含量使用由1,3-雙(氨基苯氧基)苯衍生的二胺殘基作為二胺殘基。 The inventors of the present invention have studied a huge number of specific elements in the polyimide film or the polyimide insulating layer of the metal-clad laminate, and found that by controlling the extremely limited ones shown in the following (a) to (c) The specific elements can achieve the object of the present invention, thereby completing the present invention. (a) using a polyimide film or a polyimide insulating layer as a plurality of polyimide layers, and disposing a specific polyimide layer on the exposed surface side; (b) setting the "oxygen transmission coefficient", "thermal expansion coefficient", "dielectric loss tangent", and "layer thickness" of the polyimide film or the entire polyimide insulating layer within the specified ranges, respectively; and (c) The polyimide constituting the polyimide layer on the exposed surface side of the polyimide film or the polyimide insulating layer is made of 1,3-bis(aminophenoxy) in a predetermined content or more. A benzene-derived diamine residue is used as the diamine residue.

即,本發明的第一方面提供一種聚醯亞胺膜,具有多個聚醯亞胺層,所述聚醯亞胺膜的特徵在於,滿足下述的條件(i)~條件(iv): [i]氧透過係數為2.0×10-18 mol·m/m2·s·Pa以下; [ii]熱膨脹係數為10 ppm/K~30 ppm/K的範圍內; [iii]10 GHz下的介電損耗角正切(Tanδ)為0.004以下;以及 [iv]厚度為10 μm~100 μm的範圍內; 所述聚醯亞胺膜在至少一個露出面側具有聚醯亞胺層(P), 構成所述聚醯亞胺層(P)的聚醯亞胺(p)含有由四羧酸二酐成分衍生的酸酐殘基、及由二胺成分衍生的二胺殘基,所述二胺殘基含有相對於全部二胺殘基為至少30摩爾%的由下述通式(1)所表示的二胺化合物衍生的二胺殘基。 That is, the first aspect of the present invention provides a polyimide film having a plurality of polyimide layers, and the polyimide film is characterized by satisfying the following conditions (i) to (iv): [i] The oxygen permeability coefficient is below 2.0×10-18 mol·m/m2·s·Pa; [ii] The thermal expansion coefficient is in the range of 10 ppm/K to 30 ppm/K; [iii] a dielectric loss tangent (Tanδ) of 0.004 or less at 10 GHz; and [iv] The thickness is in the range of 10 μm to 100 μm; The polyimide film has a polyimide layer (P) on at least one exposed side, The polyimide (p) constituting the polyimide layer (P) contains an acid anhydride residue derived from a tetracarboxylic dianhydride component and a diamine residue derived from a diamine component. The group contains at least 30 mol % of diamine residues derived from a diamine compound represented by the following general formula (1) with respect to all the diamine residues.

[化1]

Figure 02_image001
[hua 1]
Figure 02_image001

另外,本發明的第二方面提供一種覆金屬層疊板,包括金屬層、及具有多個聚醯亞胺層的聚醯亞胺絕緣層,所述覆金屬層疊板的特徵在於: (a)所述聚醯亞胺絕緣層在與所述金屬層為相反側的露出面側具有聚醯亞胺層(P), (b)作為聚醯亞胺絕緣層整體,滿足下述的條件(i)~條件(iv): (i)氧透過係數為2.0×10 -18mol·m/m 2·s·Pa以下; (ii)熱膨脹係數為10 ppm/K~30 ppm/K的範圍內; (iii)10 GHz下的介電損耗角正切(Tanδ)為0.004以下;以及 (iv)層厚為10 μm~100 μm的範圍內; (c)構成所述聚醯亞胺層(P)的聚醯亞胺(p)含有由四羧酸二酐成分衍生的酸酐殘基、及由二胺成分衍生的二胺殘基,所述二胺殘基含有相對於全部二胺殘基為至少30摩爾%的由下述通式(1)所表示的二胺化合物衍生的二胺殘基。 In addition, a second aspect of the present invention provides a metal-clad laminate, comprising a metal layer and a polyimide insulating layer having a plurality of polyimide layers, wherein the metal-clad laminate is characterized in that: (a) the The polyimide insulating layer has a polyimide layer (P) on the exposed surface side opposite to the metal layer, and (b) the polyimide insulating layer as a whole satisfies the following condition (i) ~Condition (iv): (i) The oxygen permeability coefficient is 2.0×10 -18 mol·m/m 2 ·s·Pa or less; (ii) The thermal expansion coefficient is within the range of 10 ppm/K to 30 ppm/K; ( iii) the dielectric loss tangent (Tanδ) at 10 GHz is 0.004 or less; and (iv) the layer thickness is in the range of 10 μm to 100 μm; (c) the polyimide layer (P) constituting the polyimide layer The imide (p) contains an acid anhydride residue derived from a tetracarboxylic dianhydride component, and a diamine residue derived from a diamine component, and the diamine residue contains at least 30 moles relative to all the diamine residues % of a diamine residue derived from a diamine compound represented by the following general formula (1).

[化2]

Figure 02_image003
[hua 2]
Figure 02_image003

另外,本發明的第三方面提供一種製造方法,製造所述的覆金屬層疊板,所述覆金屬層疊板的製造方法包括: 在金屬層上塗布聚醯胺酸的溶液,並進行乾燥而形成單層或多層的第一聚醯胺酸層的步驟; 在所述第一聚醯胺酸層上塗布作為所述聚醯亞胺(p)的前體的聚醯胺酸的溶液,並進行乾燥而形成第二聚醯胺酸層的步驟;以及 藉由將所述第一聚醯胺酸層中所含的聚醯胺酸及所述第二聚醯胺酸層中所含的聚醯胺酸醯亞胺化,形成所述聚醯亞胺絕緣層的步驟。 In addition, a third aspect of the present invention provides a manufacturing method for manufacturing the metal-clad laminate, wherein the manufacturing method of the metal-clad laminate comprises: The step of coating the polyamide acid solution on the metal layer, and drying to form a single-layer or multi-layer first polyamide layer; A step of coating a solution of a polyamic acid that is a precursor of the polyimide (p) on the first polyamic acid layer, and drying to form a second polyamic acid layer; and The polyimide is formed by imidizing the polyamic acid contained in the first polyamic acid layer and the polyamic acid contained in the second polyamic acid layer step of insulating layer.

進而,本發明的第四方面提供一種將所述的覆金屬層疊板的金屬層加工成配線的電路基板。 [發明的效果] Further, a fourth aspect of the present invention provides a circuit board in which the metal layer of the metal-clad laminate is processed into wiring. [Effect of invention]

關於本發明的聚醯亞胺膜及覆金屬層疊板,由多個聚醯亞胺層構成聚醯亞胺膜或聚醯亞胺絕緣層,聚醯亞胺膜整體或聚醯亞胺絕緣層整體的“氧透過係數”、“熱膨脹係數”、“介電損耗角正切”、及“層厚”分別設定在規定範圍內,因此尺寸穩定性優異,並且可減少傳輸損失。另外,在本發明的聚醯亞胺膜及覆金屬層疊板中,藉由在露出面側配置特定的聚醯亞胺層,在不會使聚醯亞胺膜或聚醯亞胺絕緣層整體的介電特性降低的情況下,例如也可在與接合片等樹脂材料的介面實現良好的密合性。因此,本發明的覆金屬層疊板可在不損及單面覆金屬層疊板的良好的特性的情況下加工成兩面覆金屬層疊板。另外,由本發明的覆金屬層疊板形成的電路基板的尺寸穩定性及耐熱性優異,而且可獲得良好的高頻傳輸特性。Regarding the polyimide film and the metal-clad laminate of the present invention, the polyimide film or the polyimide insulating layer is constituted by a plurality of polyimide layers, and the entire polyimide film or the polyimide insulating layer is constituted The overall "oxygen transmission coefficient", "thermal expansion coefficient", "dielectric loss tangent", and "layer thickness" are respectively set within predetermined ranges, so that the dimensional stability is excellent and the transmission loss can be reduced. In addition, in the polyimide film and the metal-clad laminate of the present invention, by arranging the specific polyimide layer on the exposed surface side, the polyimide film or the polyimide insulating layer as a whole can be avoided. In the case where the dielectric properties of , for example, are lowered, good adhesion can be achieved at the interface with resin materials such as bonding sheets, for example. Therefore, the metal-clad laminate of the present invention can be processed into a double-sided metal-clad laminate without impairing the good properties of the single-sided metal-clad laminate. In addition, the circuit board formed of the metal-clad laminate of the present invention is excellent in dimensional stability and heat resistance, and can obtain good high-frequency transmission characteristics.

以下,參照附圖對本發明的聚醯亞胺膜及覆金屬層疊板進行說明。Hereinafter, the polyimide film and the metal-clad laminate of the present invention will be described with reference to the accompanying drawings.

[本發明的聚醯亞胺膜及本發明的覆金屬層疊板] 本發明的聚醯亞胺膜具有多個聚醯亞胺層。另外,本發明的覆金屬層疊板包括金屬層及具有多個聚醯亞胺層的聚醯亞胺絕緣層。此處,本發明的聚醯亞胺膜在並非必須包含金屬層的方面與本發明的覆金屬層疊板不同。即,本發明的聚醯亞胺膜是與本發明的覆金屬層疊板中的“聚醯亞胺絕緣層”實質上相同的結構。 以下,為了避免重複的說明,在對本發明的覆金屬層疊板進行詳細說明的過程中,也明確本發明的聚醯亞胺膜的結構。在以下的說明中,除了特別注明的情況以外,可以將覆金屬層疊板中的“聚醯亞胺絕緣層”替換為“聚醯亞胺膜”。 [The polyimide film of the present invention and the metal-clad laminate of the present invention] The polyimide film of the present invention has a plurality of polyimide layers. In addition, the metal-clad laminate of the present invention includes a metal layer and a polyimide insulating layer having a plurality of polyimide layers. Here, the polyimide film of the present invention is different from the metal-clad laminate of the present invention in that it does not necessarily contain a metal layer. That is, the polyimide film of the present invention has substantially the same structure as the "polyimide insulating layer" in the metal-clad laminate of the present invention. Hereinafter, in order to avoid redundant description, the structure of the polyimide film of the present invention is also clarified in the process of describing the metal-clad laminate of the present invention in detail. In the following description, the "polyimide insulating layer" in the metal-clad laminate may be replaced by the "polyimide film" unless otherwise noted.

圖1是表示本發明的覆金屬層疊板30的一形態的基本結構的示意性剖面圖。該覆金屬層疊板30具有在金屬層10的單面設置有聚醯亞胺絕緣層20的結構,具有結構(a)、結構(b)(i)~(vi)、結構(c)。以下,對每個結構進行詳細敘述。 此外,如上所述,本發明的聚醯亞胺膜具有與覆金屬層疊板30的聚醯亞胺絕緣層20相同的結構。 FIG. 1 is a schematic cross-sectional view showing the basic structure of one embodiment of the metal-clad laminate 30 of the present invention. The metal-clad laminate 30 has a structure in which a polyimide insulating layer 20 is provided on one side of the metal layer 10 , and has structures (a), structures (b) (i) to (vi), and structures (c). Hereinafter, each structure will be described in detail. Further, as described above, the polyimide film of the present invention has the same structure as that of the polyimide insulating layer 20 of the metal-clad laminate 30 .

<結構(a)> (聚醯亞胺絕緣層20) 在本發明中,聚醯亞胺絕緣層20具有包括單層或多層聚醯亞胺層的聚醯亞胺層21、及含有後述的特定的聚醯亞胺(p)的聚醯亞胺層(P)23,聚醯亞胺層(P)23作為其一部分設置在與金屬層10為相反側的聚醯亞胺絕緣層20的表面側。圖1中,聚醯亞胺層(P)23露出。 此外,在本發明的聚醯亞胺膜的情況下,只要在至少一個露出面側設置有聚醯亞胺層(P)即可。 <Structure (a)> (Polyimide insulating layer 20) In the present invention, the polyimide insulating layer 20 includes a polyimide layer 21 including a single or multiple polyimide layers, and a polyimide layer containing a specific polyimide (p) described later. (P) 23, the polyimide layer (P) 23 is provided as a part thereof on the surface side of the polyimide insulating layer 20 on the opposite side to the metal layer 10 . In FIG. 1, the polyimide layer (P) 23 is exposed. Moreover, in the case of the polyimide film of this invention, what is necessary is just to provide a polyimide layer (P) on at least one exposed surface side.

聚醯亞胺層21包括單層或多層聚醯亞胺層,為了擔保高耐熱性及高尺寸穩定性,其主要的聚醯亞胺層優選為包含非熱塑性聚醯亞胺的非熱塑性聚醯亞胺層,但在不損及發明的效果的範圍內,也可含有包含熱塑性聚醯亞胺的熱塑性聚醯亞胺層。此處,相對於聚醯亞胺層21的厚度,主要的聚醯亞胺層的合計厚度優選為設為50%以上。另外,為了提高聚醯亞胺絕緣層20的聚醯亞胺表面的黏接性,在聚醯亞胺層21的露出面側層疊聚醯亞胺層(P)23。構成聚醯亞胺層(P)23的聚醯亞胺不限定於熱塑性聚醯亞胺或非熱塑性聚醯亞胺,為可提高與其他材料的黏接性的聚醯亞胺。The polyimide layer 21 includes a single or multiple polyimide layers. In order to ensure high heat resistance and high dimensional stability, the main polyimide layer is preferably a non-thermoplastic polyimide containing a non-thermoplastic polyimide. The imine layer may contain a thermoplastic polyimide layer containing thermoplastic polyimide within a range that does not impair the effects of the invention. Here, the total thickness of the main polyimide layers is preferably 50% or more relative to the thickness of the polyimide layer 21 . Moreover, in order to improve the adhesiveness of the polyimide surface of the polyimide insulating layer 20, the polyimide layer (P) 23 is laminated|stacked on the exposed surface side of the polyimide layer 21. The polyimide constituting the polyimide layer (P) 23 is not limited to thermoplastic polyimide or non-thermoplastic polyimide, and is a polyimide that can improve adhesion to other materials.

非熱塑性聚醯亞胺及熱塑性聚醯亞胺均為使四羧酸二酐成分與二胺成分進行醯亞胺化反應而得者,作為單體殘基,包含由四羧酸二酐成分衍生的四價的酸酐殘基、及由二胺成分衍生的二價的二胺殘基。對於這些四羧酸二酐成分及二胺成分,與熱塑性聚醯亞胺及非熱塑性聚醯亞胺相關聯地進行後述。Both non-thermoplastic polyimide and thermoplastic polyimide are obtained by subjecting a tetracarboxylic dianhydride component and a diamine component to an imidization reaction, and the monomer residues include those derived from the tetracarboxylic dianhydride component. The tetravalent acid anhydride residue of , and the divalent diamine residue derived from the diamine component. These tetracarboxylic dianhydride components and diamine components will be described later in relation to thermoplastic polyimide and non-thermoplastic polyimide.

在本發明中,“非熱塑性聚醯亞胺”的“非熱塑性”是指使用動態黏彈性測定裝置(動力學分析(dynamic mechanical analysis,DMA))測定的30℃下的儲存彈性模量為1.0×10 9Pa以上,且玻璃化轉變溫度+30℃以內的溫度區域下的儲存彈性模量為1.0×10 8Pa以上。另外,“熱塑性聚醯亞胺”的“熱塑性”是指使用動態黏彈性測定裝置(DMA)測定的30℃下的儲存彈性模量為1.0×10 9Pa以上,且玻璃化轉變溫度+30℃以內的溫度區域下的儲存彈性模量顯示出未滿1.0×10 8Pa。 In the present invention, "non-thermoplastic" of "non-thermoplastic polyimide" means that the storage elastic modulus at 30°C measured using a dynamic viscoelasticity measuring device (dynamic mechanical analysis (DMA)) is 1.0 ×10 9 Pa or more, and the storage elastic modulus in the temperature range within the glass transition temperature+30°C is 1.0 × 10 8 Pa or more. In addition, the "thermoplastic" of "thermoplastic polyimide" means that the storage elastic modulus at 30°C measured by a dynamic viscoelasticity measuring device (DMA) is 1.0×10 9 Pa or more, and the glass transition temperature is +30°C The storage elastic modulus in the temperature range within the range was less than 1.0×10 8 Pa.

另外,非熱塑性聚醯亞胺層構成低熱膨脹性的聚醯亞胺層,熱塑性聚醯亞胺層構成高熱膨脹性的聚醯亞胺層。此處,低熱膨脹性的聚醯亞胺層的“低熱膨脹性”是指熱膨脹係數(coefficient of thermal expansion,CTE)優選為1 ppm/K以上且25 ppm/K以下,更優選為3 ppm/K以上且25 ppm/K以下的範圍內,另一方面,高熱膨脹性的聚醯亞胺層的“高熱膨脹性”是指CTE優選為35 ppm/K以上且80 ppm/K以下,更優選為35 ppm/K以上且70 ppm/K以下的範圍內。聚醯亞胺層的熱膨脹性的調整可藉由適宜變更聚醯亞胺的單體組成、聚醯亞胺絕緣層厚、聚醯亞胺層的形成條件(塗布、乾燥、硬化)等來進行。In addition, the non-thermoplastic polyimide layer constitutes a low thermal expansion polyimide layer, and the thermoplastic polyimide layer constitutes a high thermal expansion polyimide layer. Here, the "low thermal expansion" of the low thermal expansion polyimide layer means that the coefficient of thermal expansion (CTE) is preferably 1 ppm/K or more and 25 ppm/K or less, and more preferably 3 ppm/K. In the range of K or more and 25 ppm/K or less, on the other hand, the "high thermal expansion" of the high thermal expansion polyimide layer means that the CTE is preferably 35 ppm/K or more and 80 ppm/K or less, more preferably It is in the range of 35 ppm/K or more and 70 ppm/K or less. The thermal expansion of the polyimide layer can be adjusted by appropriately changing the monomer composition of the polyimide, the thickness of the polyimide insulating layer, and the conditions for forming the polyimide layer (coating, drying, curing), etc. .

<結構(b)> 本實施方式的覆金屬層疊板30中,聚醯亞胺絕緣層20作為整體滿足下述的條件(i)~條件(iv)。 <Structure (b)> In the metal-clad laminate 30 of the present embodiment, the polyimide insulating layer 20 as a whole satisfies the following conditions (i) to (iv).

(i)氧透過係數為2.0×10 -18mol·m/m 2·s·Pa以下。 在本發明中,將聚醯亞胺絕緣層20的氧透過係數調整為2.0×10 -18mol·m/m 2·s·Pa以下。氧透過係數的測定可依據日本工業標準(Japanese Industrial Standards,JIS)K-7126-1的差壓法進行。藉由將氧透過係數調整為2.0×10 -18mol·m/m 2·s·Pa以下,可藉由抑制構成聚醯亞胺絕緣層20的聚醯亞胺的分子的運動來降低介電損耗角正切。另外,在對覆金屬層疊板30的金屬層10進行電路加工,而將聚醯亞胺絕緣層20應用作電路基板的絕緣樹脂層的情況下,即使在反復暴露於高溫的環境下,也可長期維持與配線層的黏接性,可獲得優異的長期耐熱黏接性。在聚醯亞胺絕緣層20的氧透過係數超過2.0×10 -18mol·m/m 2·s·Pa的情況下,由於透過聚醯亞胺絕緣層20的氧,促進配線層的氧化,從而有可能配線層與聚醯亞胺絕緣層20的黏接性降低。此外,對於聚醯亞胺絕緣層20的氧透過係數,除了主要藉由聚醯亞胺層21的厚度或厚度比率來調節以外,還可藉由構成聚醯亞胺層21的聚醯亞胺中優選為非熱塑性聚醯亞胺中的含有聯苯骨架的殘基的比率、脂肪族骨架殘基的有無、二胺殘基及酸酐殘基的取代基的種類來調節。 (i) The oxygen permeability coefficient is 2.0×10 −18 mol·m/m 2 ·s·Pa or less. In the present invention, the oxygen permeability coefficient of the polyimide insulating layer 20 is adjusted to be 2.0×10 −18 mol·m/m 2 ·s·Pa or less. The measurement of the oxygen transmission coefficient can be performed according to the differential pressure method of Japanese Industrial Standards (JIS) K-7126-1. By adjusting the oxygen permeability coefficient to be 2.0×10 −18 mol·m/m 2 ·s·Pa or less, it is possible to reduce the dielectric by suppressing the movement of the molecules of the polyimide constituting the polyimide insulating layer 20 . loss tangent. In addition, when circuit processing is performed on the metal layer 10 of the metal-clad laminate 30 and the polyimide insulating layer 20 is used as the insulating resin layer of the circuit board, even in the environment of repeated exposure to high temperature, it is possible to It maintains the adhesion with the wiring layer for a long time, and can obtain excellent long-term heat-resistant adhesion. When the oxygen permeability coefficient of the polyimide insulating layer 20 exceeds 2.0×10 −18 mol·m/m 2 ·s·Pa, the oxygen permeating the polyimide insulating layer 20 promotes oxidation of the wiring layer, thereby promoting oxidation of the wiring layer. As a result, the adhesion between the wiring layer and the polyimide insulating layer 20 may decrease. In addition, the oxygen permeability coefficient of the polyimide insulating layer 20 can be adjusted not only by the thickness or the thickness ratio of the polyimide layer 21 , but also by the polyimide constituting the polyimide layer 21 . Among them, it is preferable to adjust the ratio of residues containing a biphenyl skeleton in the non-thermoplastic polyimide, the presence or absence of aliphatic skeleton residues, and the types of substituents of diamine residues and acid anhydride residues.

(ii)熱膨脹係數(CTE)為10 ppm/K~30 ppm/K的範圍內。 在本發明中,將聚醯亞胺絕緣層20整體的熱膨脹係數(CTE)調整為10 ppm/K以上且30 ppm/K以下,優選為調整為10 ppm/K以上且25 ppm/K以下,更優選為調整為15 ppm/K以上且25 ppm/K以下。由此,在覆金屬層疊板30中,可防止翹曲的發生或尺寸穩定性的降低。若聚醯亞胺絕緣層20整體的CTE超出10 ppm/K~30 ppm/K的範圍,則有可能發生翹曲或尺寸穩定性降低。此外,對於聚醯亞胺絕緣層20的熱膨脹係數(CTE),將主要的聚醯亞胺層設為非熱塑性聚醯亞胺層,除了主要藉由聚醯亞胺層21中所含的非熱塑性聚醯亞胺層的厚度比率來調節以外,還可藉由構成非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺中的含有苯基骨架的殘基或含有萘骨架的殘基、含有聯苯骨架的殘基等剛直單體殘基的比率、醯亞胺化步驟中的熱處理條件等來調節。 (ii) The coefficient of thermal expansion (CTE) is in the range of 10 ppm/K to 30 ppm/K. In the present invention, the coefficient of thermal expansion (CTE) of the entire polyimide insulating layer 20 is adjusted to 10 ppm/K or more and 30 ppm/K or less, preferably 10 ppm/K or more and 25 ppm/K or less, More preferably, it is adjusted to 15 ppm/K or more and 25 ppm/K or less. Thereby, in the metal-clad laminate 30 , the occurrence of warpage and the reduction of dimensional stability can be prevented. When the CTE of the entire polyimide insulating layer 20 exceeds the range of 10 ppm/K to 30 ppm/K, warpage or dimensional stability may be reduced. In addition, regarding the coefficient of thermal expansion (CTE) of the polyimide insulating layer 20 , the main polyimide layer is set as a non-thermoplastic polyimide layer, except that the In addition to adjusting the thickness ratio of the thermoplastic polyimide layer, the non-thermoplastic polyimide layer can also be adjusted by a residue containing a phenyl skeleton or a residue containing a naphthalene skeleton in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer. The ratio of rigid monomer residues such as residues of the biphenyl skeleton, heat treatment conditions in the imidization step, and the like can be adjusted.

(iii)10 GHz下的介電損耗角正切(Tanδ)為0.004以下。 在本發明中,將聚醯亞胺絕緣層20整體的10 GHz下的介電損耗角正切(Tanδ)調整為0.004以下。由此,在將覆金屬層疊板30的聚醯亞胺絕緣層20例如應用作電路基板的絕緣樹脂層的情況下,可減少傳輸高頻信號時的介電損失。此處,介電損耗角正切可藉由分離柱電介質諧振器(split post dielectric resonator,SPDR)進行測定。因此,在將聚醯亞胺絕緣層20例如應用作高頻電路基板的絕緣樹脂層的情況下,可效率良好地減少傳輸損失。此外,若10 GHz下的介電損耗角正切超過0.004,則在將聚醯亞胺絕緣層20應用作電路基板的絕緣樹脂層時,有可能會產生在高頻信號的傳輸路徑上電信號的損耗變大等不良情況。關於10 GHz下的介電損耗角正切的下限值,並無特別限制,可根據將聚醯亞胺絕緣層20應用作電路基板的絕緣樹脂層時的要求特性來決定。此外,對於聚醯亞胺絕緣層20的介電損耗角正切(Tanδ),除了主要藉由聚醯亞胺層21的厚度比率來調節以外,還可藉由構成聚醯亞胺層21的聚醯亞胺中的含有聯苯骨架的殘基的比率或醯亞胺基比例來調節。 (iii) The dielectric loss tangent (Tanδ) at 10 GHz is 0.004 or less. In the present invention, the dielectric loss tangent (Tanδ) at 10 GHz of the entire polyimide insulating layer 20 is adjusted to be 0.004 or less. Accordingly, when the polyimide insulating layer 20 of the metal-clad laminate 30 is used, for example, as an insulating resin layer of a circuit board, the dielectric loss at the time of transmitting a high-frequency signal can be reduced. Here, the dielectric loss tangent can be measured by a split post dielectric resonator (SPDR). Therefore, when the polyimide insulating layer 20 is used, for example, as an insulating resin layer of a high-frequency circuit board, transmission loss can be efficiently reduced. In addition, if the dielectric loss tangent at 10 GHz exceeds 0.004, when the polyimide insulating layer 20 is used as an insulating resin layer of a circuit board, there is a possibility that electrical signals may be generated on the transmission path of high-frequency signals. Defects such as increased loss. The lower limit value of the dielectric loss tangent at 10 GHz is not particularly limited, and can be determined according to required characteristics when the polyimide insulating layer 20 is used as an insulating resin layer of a circuit board. In addition, the dielectric loss tangent (Tanδ) of the polyimide insulating layer 20 can be adjusted not only by the thickness ratio of the polyimide layer 21 , but also by the thickness of the polyimide layer 21 . The ratio of the residues containing a biphenyl skeleton in the imide or the proportion of the imide group is adjusted.

另一方面,聚醯亞胺絕緣層20例如在應用作電路基板的絕緣樹脂層的情況下,為了確保阻抗匹配性,作為聚醯亞胺絕緣層20整體,利用分離柱電介質諧振器(SPDR)測定的10 GHz下的相對介電常數優選為4.0以下。其原因在於,若10 GHz下的相對介電常數超過4.0,則在將聚醯亞胺絕緣層20應用作電路基板的絕緣樹脂層時,有可能會導致介電損失增大,容易產生在高頻信號的傳輸路徑上電信號的損耗變大等不良情況。另外,其原因在於,在使聚醯亞胺絕緣層20的層厚固定的情況下,相對介電常數越高,阻抗匹配時的電路配線寬度越窄,因此也很可能成為導體損失增加的原因。On the other hand, when the polyimide insulating layer 20 is used as an insulating resin layer of a circuit board, for example, in order to ensure impedance matching, a split-column dielectric resonator (SPDR) is used as the entire polyimide insulating layer 20 . The relative permittivity measured at 10 GHz is preferably 4.0 or less. The reason for this is that if the relative dielectric constant at 10 GHz exceeds 4.0, when the polyimide insulating layer 20 is used as the insulating resin layer of the circuit board, the dielectric loss may increase, and it is easy to cause high dielectric loss. The loss of the power-on signal increases in the transmission path of the frequency signal, etc. In addition, the reason is that when the layer thickness of the polyimide insulating layer 20 is fixed, the higher the relative permittivity, the narrower the circuit wiring width at the time of impedance matching. Therefore, it is also likely to cause an increase in conductor loss. .

<(iv)層厚為10 μm~100 μm的範圍內。> 在本發明中,將聚醯亞胺絕緣層20整體的層厚設為10 μm~100 μm的範圍內。其原因在於,若其層厚過薄,則聚醯亞胺絕緣層20容易產生破裂,另一方面,若其層厚過厚,則在將覆金屬層疊板30彎曲時,有可能在金屬層10上產生裂紋。此外,在所述10 μm~100 μm的範圍內,可根據覆金屬層疊板30的使用目的將聚醯亞胺絕緣層20整體的層厚設定為適當的層厚。例如,在將覆金屬層疊板30應用于電路基板的情況下,可設定為優選為30 μm~60 μm、更優選為35 μm~50 μm的範圍內。 <(iv) The layer thickness is in the range of 10 μm to 100 μm. > In the present invention, the thickness of the entire polyimide insulating layer 20 is set within a range of 10 μm to 100 μm. The reason for this is that when the thickness is too thin, the polyimide insulating layer 20 is likely to be cracked. On the other hand, when the layer thickness is too thick, when the metal-clad laminate 30 is bent, the metal layer may be cracked. 10 has cracks. In addition, within the range of 10 μm to 100 μm, the layer thickness of the entire polyimide insulating layer 20 can be set to an appropriate layer thickness according to the purpose of use of the metal-clad laminate 30 . For example, when the metal-clad laminate 30 is applied to a circuit board, it can be preferably set within a range of 30 μm to 60 μm, more preferably 35 μm to 50 μm.

<結構(c)> (聚醯亞胺層(P)23) 在本發明中,聚醯亞胺層(P)23在覆金屬層疊板30的表面露出,例如形成直接貼合接合片的露出面。構成聚醯亞胺層(P)23的聚醯亞胺(p)含有由四羧酸二酐成分衍生的酸酐殘基、及由二胺成分衍生的二胺殘基,所述二胺殘基含有相對於全部二胺殘基為至少30摩爾%、優選為至少50摩爾%的由下述通式(1)所表示的二胺化合物(1,3-雙(氨基苯氧基)苯)衍生的二胺殘基。 <Structure (c)> (Polyimide layer (P) 23) In the present invention, the polyimide layer (P) 23 is exposed on the surface of the metal-clad laminate 30 , for example, to form an exposed surface to which the bonding sheet is directly bonded. The polyimide (p) constituting the polyimide layer (P) 23 contains an acid anhydride residue derived from a tetracarboxylic dianhydride component and a diamine residue derived from a diamine component. Contains at least 30 mol %, preferably at least 50 mol % of all diamine residues, derived from a diamine compound (1,3-bis(aminophenoxy)benzene) represented by the following general formula (1) the diamine residue.

[化3]

Figure 02_image005
[hua 3]
Figure 02_image005

通式(1)所表示的二胺化合物在中央的苯環的間位具有兩個氨基苯氧基。因此,由間位鍵結引起的旋轉運動被抑制,而且較二(氨基苯基)醚等通常的二胺化合物而言分子量較大,因此可抑制醯亞胺基濃度的上升,從而可在聚醯亞胺絕緣層20實現低介電常數化以及低介電損耗角正切化。而且,即使與容易使介電特性劣化的高極性的四羧酸二酐反應,也可不使介電特性劣化地確保與接合片的密合性。The diamine compound represented by the general formula (1) has two aminophenoxy groups at the meta-position of the central benzene ring. Therefore, the rotational motion caused by the meta-bonding is suppressed, and the molecular weight is larger than that of a general diamine compound such as bis(aminophenyl) ether, so that the increase in the concentration of the imide group can be suppressed, and the polymer The imide insulating layer 20 achieves low dielectric constant and low dielectric loss tangent. Moreover, even if it reacts with the highly polar tetracarboxylic dianhydride which is easy to degrade a dielectric characteristic, it can ensure the adhesiveness with a bonding sheet without deteriorating a dielectric characteristic.

作為通式(1)所表示的二胺化合物,可列舉1,3-雙(3-氨基苯氧基)苯(1,3-bis(3-aminophenoxy)benzene,APB)、1,3-雙(4-氨基苯氧基)苯(1,3-bis(4-aminophenoxy)benzene,TPE-R)等。特別是就可預期由間位鍵結帶來的良好的旋轉運動抑制效果的方面而言,優選為1,3-雙(4-氨基苯氧基)苯(TPE-R)。As the diamine compound represented by the general formula (1), 1,3-bis(3-aminophenoxy)benzene (1,3-bis(3-aminophenoxy)benzene, APB), 1,3-bis (4-aminophenoxy)benzene (1,3-bis(4-aminophenoxy)benzene, TPE-R) and the like. In particular, 1,3-bis(4-aminophenoxy)benzene (TPE-R) is preferable in that a favorable rotational motion inhibitory effect by meta-bonding can be expected.

聚醯亞胺(p)的二胺殘基含有相對於全部二胺殘基為至少30摩爾%、優選為至少50摩爾%、更優選為至少70摩爾%的由通式(1)所表示的二胺化合物衍生的二胺殘基。其原因在於,若由通式(1)所表示的二胺化合物衍生的二胺殘基的含量過小,則有可能無法在聚醯亞胺絕緣層20實現低介電常數化以及低介電損耗角正切化。The diamine residue of the polyimide (p) contains at least 30 mol %, preferably at least 50 mol %, and more preferably at least 70 mol % of the compound represented by the general formula (1) with respect to all the diamine residues. A diamine residue derived from a diamine compound. The reason for this is that if the content of the diamine residue derived from the diamine compound represented by the general formula (1) is too small, there is a possibility that the lowering of the dielectric constant and the lowering of the dielectric loss may not be achieved in the polyimide insulating layer 20 . Tangent.

此外,在不損及本發明的效果的範圍內,構成聚醯亞胺層(P)23的聚醯亞胺(p)的二胺殘基可含有由公知的二胺化合物衍生的二胺殘基。作為此種公知的二胺化合物,例如可列舉:1,4-二氨基苯(p-PDA(para-phenylenediamine);對苯二胺)、4-氨基苯基-4'-氨基苯甲酸酯(4-amino phenyl-4'-amino benzoate,APAB)、3,3'-二氨基二苯基甲烷、3,3'-二氨基二苯基丙烷、3,3'-二氨基二苯基硫醚、3,3'-二氨基二苯基碸、3,3'-二氨基二苯基醚、3,4'-二氨基二苯基醚、3,4'-二氨基二苯基甲烷、3,4'-二氨基二苯基丙烷、3,4'-二氨基二苯基硫醚、3,3'-二氨基二苯甲酮、(3,3'-雙氨基)二苯基胺、1,4-雙(3-氨基苯氧基)苯、3-[4-(4-氨基苯氧基)苯氧基]苯胺、3-[3-(4-氨基苯氧基)苯氧基]苯胺、4,4'-[2-甲基-(1,3-亞苯基)雙氧基]雙苯胺、4,4'-[4-甲基-(1,3-亞苯基)雙氧基]雙苯胺、4,4'-[5-甲基-(1,3-亞苯基)雙氧基]雙苯胺、雙[4,4'-(3-氨基苯氧基)]苯醯替苯胺、4-[3-[4-(4-氨基苯氧基)苯氧基]苯氧基]苯胺、4,4'-[氧基雙(3,1-亞苯基氧基)]雙苯胺、雙[4-(4-氨基苯氧基)苯基]醚(bis[4-(4-aminophenoxy)phenyl]ether,BAPE)、雙[4-(4-氨基苯氧基)苯基]碸(bis[4-(4-aminophenoxy)phenyl]sulfone,BAPS)、雙[4-(4-氨基苯氧基)苯基]酮(bis[4-(4-aminophenoxy)phenyl]ketone,BAPK)、2,2-雙-[4-(3-氨基苯氧基)苯基]丙烷、2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(2,2-bis[4-(4-aminophenoxy)phenyl]propane,BAPP)、雙[4-(3-氨基苯氧基)苯基]碸、雙[4-(3-氨基苯氧基)苯基]甲烷、雙[4-(3-氨基苯氧基)苯基]醚、雙[4-(3-氨基苯氧基)]二苯甲酮、9,9-雙[4-(3-氨基苯氧基)苯基]芴、2,2-雙-[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-雙-[4-(3-氨基苯氧基)苯基]六氟丙烷、3,3'-二甲基-4,4'-二氨基聯苯、4,4'-亞甲基二-鄰甲苯胺、4,4'-亞甲基二-2,6-二甲苯胺、4,4'-亞甲基-2,6-二乙基苯胺、3,3'-二氨基二苯基乙烷、3,3'-二氨基聯苯、3,3'-二甲氧基聯苯胺、3,3''-二氨基-對三聯苯、4,4'-[1,4-亞苯基雙(1-甲基亞乙基)]雙苯胺、4,4'-[1,3-亞苯基雙(1-甲基亞乙基)]雙苯胺、雙(對氨基環己基)甲烷、雙(對-β-氨基-叔丁基苯基)醚、雙(對-β-甲基-δ-氨基戊基)苯、對-雙(2-甲基-4-氨基戊基)苯、對-雙(1,1-二甲基-5-氨基戊基)苯、1,5-二氨基萘、2,6-二氨基萘、2,4-雙(β-氨基-叔丁基)甲苯、2,4-二氨基甲苯、間二甲苯-2,5-二胺、對二甲苯-2,5-二胺、間亞二甲苯基二胺、對亞二甲苯基二胺、2,6-二氨基吡啶、2,5-二氨基吡啶、2,5-二氨基-1,3,4-噁二唑、呱嗪、2'-甲氧基-4,4'-二氨基苯醯替苯胺、4,4'-二氨基苯醯替苯胺、1,3-雙[2-(4-氨基苯基)-2-丙基]苯、1,4-雙[2-(4-氨基苯基)-2-丙基]苯、1,4-雙(4-氨基苯氧基)-2,5-二-叔丁基苯、6-氨基-2-(4-氨基苯氧基)苯並噁唑、2,6-二氨基-3,5-二乙基甲苯、2,4-二氨基-3,5-二乙基甲苯、2,4-二氨基-3,3'-二乙基-5,5'-二甲基二苯基甲烷、雙(4-氨基-3-乙基-5-甲基苯基)甲烷等芳香族二胺化合物、二聚酸的兩個末端羧酸基被取代為一級氨基甲基或氨基而成的二聚酸型二胺等脂肪族二胺化合物等。In addition, the diamine residue of the polyimide (p) constituting the polyimide layer (P) 23 may contain a diamine residue derived from a known diamine compound within a range that does not impair the effects of the present invention base. Examples of such known diamine compounds include 1,4-diaminobenzene (p-PDA (para-phenylenediamine); p-phenylenediamine), 4-aminophenyl-4'-aminobenzoate (4-amino phenyl-4'-amino benzoate, APAB), 3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenylsulfide Ether, 3,3'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, (3,3'-bisamino)diphenylamine , 1,4-bis(3-aminophenoxy)benzene, 3-[4-(4-aminophenoxy)phenoxy]aniline, 3-[3-(4-aminophenoxy)phenoxy yl]aniline, 4,4'-[2-methyl-(1,3-phenylene)dioxy]dianiline, 4,4'-[4-methyl-(1,3-phenylene) ) bisoxy] bisaniline, 4,4'-[5-methyl-(1,3-phenylene) bisoxy] bisaniline, bis[4,4'-(3-aminophenoxy) ] Benzoaniline, 4-[3-[4-(4-aminophenoxy)phenoxy]phenoxy]aniline, 4,4'-[oxybis(3,1-phenyleneoxy) base)] bisaniline, bis[4-(4-aminophenoxy)phenyl]ether (bis[4-(4-aminophenoxy)phenyl]ether, BAPE), bis[4-(4-aminophenoxy) ) phenyl] sulfone (bis[4-(4-aminophenoxy)phenyl]sulfone, BAPS), bis[4-(4-aminophenoxy)phenyl]ketone (bis[4-(4-aminophenoxy)phenyl] ketone, BAPK), 2,2-bis-[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane (2, 2-bis[4-(4-aminophenoxy)phenyl]propane, BAPP), bis[4-(3-aminophenoxy)phenyl]propane, bis[4-(3-aminophenoxy)phenyl] Methane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)]benzophenone, 9,9-bis[4-(3-aminobenzene] oxy)phenyl]fluorene, 2,2-bis-[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis-[4-(3-aminophenoxy)benzene base] hexafluoropropane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-methylenebis-o-toluidine, 4,4'-methylenebis-2 ,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 3,3'-diaminodiphenylethane, 3,3 '-Diaminobiphenyl, 3,3'-dimethoxybenzidine, 3,3''-diamino-p-terphenyl, 4,4'-[1,4-phenylene bis(1-methyl) ethylene)] bisaniline, 4,4'-[1,3-phenylene bis(1-methylethylene)] bisaniline, bis(p-aminocyclohexyl)methane, bis(p-beta) -Amino-tert-butylphenyl) ether, bis(p-β-methyl-δ-aminopentyl)benzene, p-bis(2-methyl-4-aminopentyl)benzene, p-bis(1 ,1-dimethyl-5-aminopentyl)benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis(β-amino-tert-butyl)toluene, 2,4 -Diaminotoluene, m-xylylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylene diamine, p-xylylene diamine, 2,6-diaminopyridine , 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, oxazine, 2'-methoxy-4,4'-diaminobenzidine, 4, 4'-Diaminobenzidine, 1,3-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis[2-(4-aminophenyl)-2 -propyl]benzene, 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, 6-amino-2-(4-aminophenoxy)benzoxazole, 2,6-Diamino-3,5-diethyltoluene, 2,4-diamino-3,5-diethyltoluene, 2,4-diamino-3,3'-diethyl-5, Aromatic diamine compounds such as 5'-dimethyldiphenylmethane, bis(4-amino-3-ethyl-5-methylphenyl)methane, and two terminal carboxylic acid groups of dimer acids are substituted with Aliphatic diamine compounds such as dimer acid-type diamines formed from primary aminomethyl groups or amino groups, etc.

此外,作為由聚醯亞胺(p)的四羧酸二酐成分衍生的酸酐殘基,可採用能夠以良好的平衡實現聚醯亞胺絕緣層20的低介電特性與對接合片的高密合性的各種酸酐殘基。其中,酸酐殘基合計含有相對於全部酸酐殘基優選為至少60摩爾%、更優選為至少90摩爾%的如下酸酐殘基:由具有高極性的羰基的3,3',4,4'-二苯甲酮四羧酸二酐(3,3',4,4'-benzophenone tetracarboxylic dianhydride,BTDA)衍生的酸酐殘基及由分子量較低,因此醯亞胺基濃度相對高的均苯四甲酸二酐(pyromellitic dianhydride,PMDA)衍生的酸酐殘基。可僅含有BTDA,也可僅含有PMDA,但在含有這兩者的情況下,優選的範圍是相對於全部酸酐殘基,BTDA為50摩爾%~80摩爾%,PMDA為20摩爾%~50摩爾%。In addition, as the acid anhydride residue derived from the tetracarboxylic dianhydride component of the polyimide (p), it is possible to adopt a good balance between the low dielectric properties of the polyimide insulating layer 20 and the high density of the bonding sheet. A variety of acid anhydride residues. Among them, the acid anhydride residues in total contain preferably at least 60 mol %, more preferably at least 90 mol % with respect to all acid anhydride residues as follows: 3,3',4,4'- Anhydride residues derived from benzophenone tetracarboxylic dianhydride (3,3',4,4'-benzophenone tetracarboxylic dianhydride, BTDA) and pyromellitic acid with a relatively low molecular weight and therefore a relatively high concentration of imino groups Anhydride residues derived from pyromellitic dianhydride (PMDA). It may contain only BTDA or only PMDA, but in the case of containing both, the preferable range is 50 mol% to 80 mol% of BTDA and 20 mol% to 50 mol% of PMDA with respect to all acid anhydride residues. %.

此外,在不損及本發明的效果的範圍內,聚醯亞胺(p)的酸酐殘基可含有由公知的四羧酸二酐衍生的酸酐殘基。作為此種公知的酸二酐,可列舉:1,4-亞苯基雙(偏苯三甲酸單酯)二酐(1,4-phenylene bis(trimellitic acid monoester)dianhydride,TAHQ)、2,3,6,7-萘四羧酸二酐(2,3,6,7-naphthalene tetracarboxylic dianhydride,NTCDA)、3,3',4,4'-二苯基碸四羧酸二酐、4,4'-氧基二鄰苯二甲酸酐、2,2',3,3'-二苯甲酮四羧酸二酐或2,3,3',4'-二苯甲酮四羧酸二酐、2,3',3,4'-二苯基醚四羧酸二酐、雙(2,3-二羧基苯基)醚二酐、3,3'',4,4''-對三聯苯四羧酸二酐、2,3,3'',4''-對三聯苯四羧酸二酐或2,2'',3,3''-對三聯苯四羧酸二酐、2,2-雙(2,3-二羧基苯基)-丙烷二酐或2,2-雙(3,4-二羧基苯基)-丙烷二酐、雙(2,3-二羧基苯基)甲烷二酐或雙(3,4-二羧基苯基)甲烷二酐、雙(2,3-二羧基苯基)碸二酐或雙(3,4-二羧基苯基)碸二酐、1,1-雙(2,3-二羧基苯基)乙烷二酐或1,1-雙(3,4-二羧基苯基)乙烷二酐、1,2,7,8-菲-四羧酸二酐、1,2,6,7-菲-四羧酸二酐或1,2,9,10-菲-四羧酸二酐、2,3,6,7-蒽四羧酸二酐、2,2-雙(3,4-二羧基苯基)四氟丙烷二酐、2,3,5,6-環己烷二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫萘-1,2,5,6-四羧酸二酐、2,6-二氯萘-1,4,5,8-四羧酸二酐或2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-(或1,4,5,8-)四氯萘-1,4,5,8-(或2,3,6,7-)四羧酸二酐、2,3,8,9-苝-四羧酸二酐、3,4,9,10-苝-四羧酸二酐、4,5,10,11-苝-四羧酸二酐或5,6,11,12-苝-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、吡咯烷-2,3,4,5-四羧酸二酐、噻吩-2,3,4,5-四羧酸二酐、4,4'-雙(2,3-二羧基苯氧基)二苯基甲烷二酐、乙二醇雙偏苯三酸酐等芳香族四羧酸二酐等。Further, the acid anhydride residue of the polyimide (p) may contain an acid anhydride residue derived from a known tetracarboxylic dianhydride within a range not impairing the effects of the present invention. As such a known acid dianhydride, 1,4-phenylene bis(trimellitic acid monoester) dianhydride (1,4-phenylene bis(trimellitic acid monoester) dianhydride, TAHQ), 2,3 ,6,7-naphthalene tetracarboxylic dianhydride (2,3,6,7-naphthalene tetracarboxylic dianhydride, NTCDA), 3,3',4,4'-diphenyltetracarboxylic dianhydride, 4,4 '-Oxydiphthalic anhydride, 2,2',3,3'-benzophenone tetracarboxylic dianhydride or 2,3,3',4'-benzophenone tetracarboxylic dianhydride , 2,3',3,4'-diphenyl ether tetracarboxylic dianhydride, bis(2,3-dicarboxyphenyl) ether dianhydride, 3,3'',4,4''-p-triple Benzenetetracarboxylic dianhydride, 2,3,3'',4''-p-terphenyltetracarboxylic dianhydride or 2,2'',3,3''-p-terphenyltetracarboxylic dianhydride, 2 ,2-bis(2,3-dicarboxyphenyl)-propane dianhydride or 2,2-bis(3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3-dicarboxyphenyl) Methane dianhydride or bis(3,4-dicarboxyphenyl) methane dianhydride, bis(2,3-dicarboxyphenyl) bis(2,3-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) bis(3,4-dicarboxyphenyl) ,1-bis(2,3-dicarboxyphenyl)ethanedianhydride or 1,1-bis(3,4-dicarboxyphenyl)ethanedianhydride, 1,2,7,8-phenanthrene-tetra Carboxylic dianhydride, 1,2,6,7-phenanthrene-tetracarboxylic dianhydride or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride Anhydride, 2,2-bis(3,4-dicarboxyphenyl)tetrafluoropropane dianhydride, 2,3,5,6-cyclohexanedianhydride, 1,2,5,6-naphthalenetetracarboxylic acid Anhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6-tetra Carboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2 ,3,6,7-(or 1,4,5,8-)tetrachloronaphthalene-1,4,5,8-(or 2,3,6,7-)tetracarboxylic dianhydride, 2,3 ,8,9-perylene-tetracarboxylic dianhydride, 3,4,9,10-perylene-tetracarboxylic dianhydride, 4,5,10,11-perylene-tetracarboxylic dianhydride or 5,6,11 ,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2 ,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-bis(2,3-dicarboxyphenoxy)diphenylmethane Aromatic tetracarboxylic dianhydrides such as dianhydrides, ethylene glycol bis-trimellitic anhydrides, and the like.

在聚醯亞胺(p)中,藉由選定所述酸酐殘基及二胺殘基的種類、或者應用兩種以上的酸酐殘基或二胺殘基時的各自的摩爾比,可控制熱膨脹係數、拉伸彈性模量、玻璃化轉變溫度等。另外,在聚醯亞胺(p)中,具有多個聚醯亞胺的結構單元的情況下,可以嵌段的形式存在,也可隨機存在,但優選為隨機存在。此外,聚醯亞胺(p)優選為包含由芳香族四羧酸二酐衍生的芳香族四羧酸酐殘基及由芳香族二胺衍生的芳香族二胺殘基。藉由將聚醯亞胺(p)中所含的酸酐殘基及二胺殘基均設為芳香族基,可抑制聚醯亞胺絕緣層20在高溫環境下的聚醯亞胺的劣化。In the polyimide (p), thermal expansion can be controlled by selecting the types of the acid anhydride residues and diamine residues, or the respective molar ratios when two or more acid anhydride residues or diamine residues are used. coefficient, tensile modulus of elasticity, glass transition temperature, etc. In addition, when polyimide (p) has a plurality of structural units of polyimide, it may exist in the form of a block or may exist randomly, but it is preferable to exist randomly. Further, the polyimide (p) preferably contains an aromatic tetracarboxylic anhydride residue derived from an aromatic tetracarboxylic dianhydride and an aromatic diamine residue derived from an aromatic diamine. By making both the acid anhydride residue and the diamine residue contained in the polyimide (p) aromatic groups, the deterioration of the polyimide in the polyimide insulating layer 20 under a high temperature environment can be suppressed.

聚醯亞胺(p)的醯亞胺基濃度優選為30重量%以下。此處,“醯亞胺基濃度”是指聚醯亞胺中的醯亞胺基部(-(CO) 2-N-)的分子量除以聚醯亞胺的結構整體的分子量而得的值。若醯亞胺基濃度超過30重量%,則玻璃化轉變溫度以上的溫度下的彈性模量不易降低,且因極性基的增加而低吸濕性也惡化。 The imide group concentration of the polyimide (p) is preferably 30% by weight or less. Here, the "imide group concentration" refers to a value obtained by dividing the molecular weight of the imide group (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire structure of the polyimide. When the imide group concentration exceeds 30% by weight, the elastic modulus at a temperature equal to or higher than the glass transition temperature is unlikely to decrease, and the low hygroscopicity also deteriorates due to an increase in polar groups.

聚醯亞胺(p)的重量平均分子量例如優選為10,000~400,000的範圍內,更優選為50,000~350,000的範圍內。若重量平均分子量未滿10,000,則出現膜的強度降低而容易脆化的傾向。另一方面,若重量平均分子量超過400,000,則有黏度過度增加而在塗敷作業時容易產生膜厚度不均、條紋等不良情況的傾向。The weight average molecular weight of the polyimide (p) is, for example, preferably in the range of 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. When the weight-average molecular weight is less than 10,000, the strength of the film decreases and tends to become brittle. On the other hand, when the weight-average molecular weight exceeds 400,000, the viscosity tends to increase excessively, and problems such as uneven film thickness and streaks tend to occur during the coating operation.

此外,在本發明的聚醯亞胺絕緣層20中,藉由在聚醯亞胺層(P)23上進一步層疊金屬層(未圖示),可使聚醯亞胺層(P)23作為黏接層發揮功能。In addition, in the polyimide insulating layer 20 of the present invention, by further stacking a metal layer (not shown) on the polyimide layer (P) 23, the polyimide layer (P) 23 can be used as a The adhesive layer functions.

(聚醯亞胺層21) 在本發明中,優選為構成覆金屬層疊板30的聚醯亞胺絕緣層20的聚醯亞胺層21包括單層或多層聚醯亞胺層,其主要的聚醯亞胺層含有非熱塑性聚醯亞胺層,該非熱塑性聚醯亞胺層滿足下述的條件(1)~條件(3)。以下對每個條件進行說明。 (Polyimide layer 21) In the present invention, it is preferable that the polyimide layer 21 constituting the polyimide insulating layer 20 of the metal-clad laminate 30 includes a single or multiple polyimide layers, and the main polyimide layer contains a non-thermoplastic layer. A polyimide layer, the non-thermoplastic polyimide layer satisfies the following conditions (1) to (3). Each condition is explained below.

(1)構成非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺在由全部單體成分衍生的全部單體殘基中含有50摩爾%以上的具有聯苯骨架的單體殘基; (2)厚度為7 μm~70 μm的範圍內;以及 (3)非熱塑性聚醯亞胺層的厚度相對於聚醯亞胺絕緣層20整體的層厚的比率為70%以上。 (1) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains 50 mol% or more of monomer residues having a biphenyl skeleton in all monomer residues derived from all monomer components; (2) The thickness is in the range of 7 μm to 70 μm; and (3) The ratio of the thickness of the non-thermoplastic polyimide layer to the layer thickness of the entire polyimide insulating layer 20 is 70% or more.

(條件(1)) 在聚醯亞胺絕緣層20中,含有非熱塑性聚醯亞胺層作為聚醯亞胺層21的主要的層。原因在於容易控制聚醯亞胺絕緣層20的氧透過係數、CTE及介電特性。此處,“主要的層”是指占超過聚醯亞胺層21整體厚度的50%、優選為60%~100%的厚度的層。另外,構成非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺在由構成非熱塑性聚醯亞胺的全部單體成分衍生的全部單體殘基中含有優選為50摩爾%以上、更優選為70摩爾%以上的具有聯苯骨架的單體殘基(以下,有時記為“含有聯苯骨架的殘基”)。由此,可提高構成聚醯亞胺絕緣層20的聚醯亞胺整體中的含有聯苯骨架的殘基的含有比率,減低氧透過係數,並謀求低介電損耗角正切化。另一方面,為了維持用作電路基板材料的覆金屬層疊板30的聚醯亞胺絕緣層20所需的物性,相對於全部單體殘基,含有聯苯骨架的殘基的比例優選為設為80摩爾%以下。此處,聯苯骨架為兩個苯基進行單鍵結而成的骨架。因此,含有聯苯骨架的殘基例如可列舉聯苯二基殘基、聯苯四基殘基等。這些殘基中所含的芳香環可具有任意的取代基。作為聯苯二基的代表例,可列舉聯苯-3,3'-二基殘基、聯苯-4,4'-二基殘基。作為聯苯四基殘基的代表例,可列舉聯苯-3,4,3',4'-四基殘基。 (Condition (1)) The polyimide insulating layer 20 contains a non-thermoplastic polyimide layer as the main layer of the polyimide layer 21 . The reason is that it is easy to control the oxygen transmission coefficient, CTE and dielectric properties of the polyimide insulating layer 20 . Here, the "main layer" refers to a layer that occupies more than 50% of the entire thickness of the polyimide layer 21, preferably 60% to 100% of the thickness. In addition, the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer preferably contains 50 mol % or more, more preferably 50 mol % or more of all monomer residues derived from all monomer components constituting the non-thermoplastic polyimide. 70 mol% or more of monomer residues having a biphenyl skeleton (hereinafter, sometimes referred to as "residues containing a biphenyl skeleton"). Thereby, the content ratio of the residue containing a biphenyl skeleton in the whole polyimide constituting the polyimide insulating layer 20 can be increased, the oxygen transmission coefficient can be reduced, and the dielectric loss tangent can be reduced. On the other hand, in order to maintain the required physical properties of the polyimide insulating layer 20 of the metal-clad laminate 30 used as a circuit board material, the ratio of residues containing a biphenyl skeleton relative to all monomer residues is preferably set to 80 mol% or less. Here, the biphenyl skeleton is a skeleton in which two phenyl groups are single-bonded. Therefore, the biphenyl skeleton-containing residue includes, for example, a biphenyl diyl residue, a biphenyl tetrayl residue, and the like. The aromatic ring contained in these residues may have arbitrary substituents. Typical examples of biphenyldiyl include biphenyl-3,3'-diyl residue and biphenyl-4,4'-diyl residue. As a representative example of a biphenyl tetrayl residue, a biphenyl-3,4,3',4'-tetrayl residue is mentioned.

另外,非熱塑性聚醯亞胺層中,相對於全部二胺殘基及全部酸酐殘基各自,含有聯苯骨架的殘基所占的比例優選為20摩爾%以上,更優選為30摩爾%以上,進一步優選為40摩爾%以上。藉由相對於全部二胺殘基及全部酸酐殘基各自而包含20摩爾%以上的含有聯苯骨架的殘基,與含有聯苯骨架的殘基偏向存在於二胺殘基或酸酐殘基的任意一方的情況相比,進一步促進聚合物整體的有序結構的形成,使氧透過係數及介電損耗角正切下降低的效果增大。In addition, in the non-thermoplastic polyimide layer, the ratio of residues containing a biphenyl skeleton relative to each of all diamine residues and all acid anhydride residues is preferably 20 mol % or more, and more preferably 30 mol % or more. , more preferably 40 mol% or more. By including 20 mol% or more of biphenyl skeleton-containing residues with respect to all diamine residues and all acid anhydride residues, the residues containing biphenyl skeletons tend to be present in diamine residues or acid anhydride residues. Compared with either case, the formation of the ordered structure of the entire polymer is further promoted, and the effect of reducing the oxygen transmission coefficient and the dielectric loss tangent is increased.

此外,含有聯苯骨架的殘基是源自原料單體的結構,可由四羧酸二酐衍生,也可由二胺化合物衍生。In addition, the residue containing a biphenyl skeleton is a structure derived from a raw material monomer, and may be derived from a tetracarboxylic dianhydride or a diamine compound.

作為具有聯苯骨架的酸酐殘基的代表例,可列舉由3,3',4,4'-聯苯四羧酸二酐(3,3',4,4'-biphenyl tetracarboxylic dianhydride,BPDA)、2,3',3,4'-聯苯四羧酸二酐、4,4'-雙酚-雙(偏苯三酸酐)等酸二酐衍生的殘基。這些中,特別是由BPDA衍生的酸酐殘基(以下,也稱為“BPDA殘基”)容易形成聚合物的有序結構,可藉由抑制分子的運動而使介電損耗角正切或吸濕性降低,因此優選。另外,BPDA殘基可賦予作為聚醯亞胺前體的聚醯胺酸的凝膠膜的自支撐性。Representative examples of acid anhydride residues having a biphenyl skeleton include 3,3',4,4'-biphenyl tetracarboxylic dianhydride (3,3',4,4'-biphenyl tetracarboxylic dianhydride, BPDA). , 2,3',3,4'-biphenyltetracarboxylic dianhydride, 4,4'-bisphenol-bis(trimellitic anhydride) and other acid dianhydride-derived residues. Among these, acid anhydride residues (hereinafter, also referred to as "BPDA residues") derived from BPDA are easily formed into an ordered structure of polymers, and can cause dielectric loss tangent or hygroscopicity by inhibiting the movement of molecules The performance is reduced, so it is preferable. In addition, BPDA residues can impart self-supporting properties to the gel film of polyimide, which is a precursor of polyimide.

此外,在不損及本發明的效果的範圍內,構成非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺的酸酐殘基除含有具有聯苯骨架的酸酐殘基以外,還可含有由公知的四羧酸二酐衍生的酸酐殘基。作為此種公知的酸二酐,例如可列舉:均苯四甲酸二酐(PMDA)、1,4-亞苯基雙(偏苯三甲酸單酯)二酐(TAHQ)、2,3,6,7-萘四羧酸二酐(NTCDA)、3,3',4,4'-二苯基碸四羧酸二酐、4,4'-氧基二鄰苯二甲酸酐、2,2',3,3'-二苯甲酮四羧酸二酐、2,3,3',4'-二苯甲酮四羧酸二酐或3,3',4,4'-二苯甲酮四羧酸二酐、2,3',3,4'-二苯基醚四羧酸二酐、雙(2,3-二羧基苯基)醚二酐、3,3'',4,4''-對三聯苯四羧酸二酐、2,3,3'',4''-對三聯苯四羧酸二酐或2,2'',3,3''-對三聯苯四羧酸二酐、2,2-雙(2,3-二羧基苯基)-丙烷二酐或2,2-雙(3,4-二羧基苯基)-丙烷二酐、雙(2,3-二羧基苯基)甲烷二酐或雙(3,4-二羧基苯基)甲烷二酐、雙(2,3-二羧基苯基)碸二酐或雙(3,4-二羧基苯基)碸二酐、1,1-雙(2,3-二羧基苯基)乙烷二酐或1,1-雙(3,4-二羧基苯基)乙烷二酐、1,2,7,8-菲-四羧酸二酐、1,2,6,7-菲-四羧酸二酐或1,2,9,10-菲-四羧酸二酐、2,3,6,7-蒽四羧酸二酐、2,2-雙(3,4-二羧基苯基)四氟丙烷二酐、2,3,5,6-環己烷二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫萘-1,2,5,6-四羧酸二酐、2,6-二氯萘-1,4,5,8-四羧酸二酐或2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-(或1,4,5,8-)四氯萘-1,4,5,8-(或2,3,6,7-)四羧酸二酐、2,3,8,9-苝-四羧酸二酐、3,4,9,10-苝-四羧酸二酐、4,5,10,11-苝-四羧酸二酐或5,6,11,12-苝-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、吡咯烷-2,3,4,5-四羧酸二酐、噻吩-2,3,4,5-四羧酸二酐、4,4'-雙(2,3-二羧基苯氧基)二苯基甲烷二酐、乙二醇雙偏苯三酸酐等芳香族四羧酸二酐等。Further, the acid anhydride residue of the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer may contain, in addition to the acid anhydride residue having a biphenyl skeleton, known Anhydride residues derived from tetracarboxylic dianhydride. As such a known acid dianhydride, for example, pyromellitic dianhydride (PMDA), 1,4-phenylene bis(trimellitic acid monoester) dianhydride (TAHQ), 2,3,6 ,7-Naphthalenetetracarboxylic dianhydride (NTCDA), 3,3',4,4'-diphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 2,2 ',3,3'-benzophenone tetracarboxylic dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride or 3,3',4,4'-diphenylmethane Ketone tetracarboxylic dianhydride, 2,3',3,4'-diphenyl ether tetracarboxylic dianhydride, bis(2,3-dicarboxyphenyl) ether dianhydride, 3,3'',4, 4''-p-terphenyltetracarboxylic dianhydride, 2,3,3'',4''-p-terphenyltetracarboxylic dianhydride or 2,2'',3,3''-p-terphenyltetra Carboxylic dianhydride, 2,2-bis(2,3-dicarboxyphenyl)-propane dianhydride or 2,2-bis(3,4-dicarboxyphenyl)-propane dianhydride, bis(2,3 -Dicarboxyphenyl)methane dianhydride or bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)stilbene dianhydride or bis(3,4-dicarboxyphenyl) ) bis(2,3-dicarboxyphenyl) ethane dianhydride or 1,1-bis(3,4-dicarboxyphenyl) ethane dianhydride, 1,2,7 ,8-phenanthrene-tetracarboxylic dianhydride, 1,2,6,7-phenanthrene-tetracarboxylic dianhydride or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7 -Anthracene tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 1,2,5,6 - Naphthalene tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2 ,5,6-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride or 2,7-dichloronaphthalene-1,4,5,8-tetra Carboxylic dianhydride, 2,3,6,7-(or 1,4,5,8-)tetrachloronaphthalene-1,4,5,8-(or 2,3,6,7-)tetracarboxylic acid dianhydride, 2,3,8,9-perylene-tetracarboxylic dianhydride, 3,4,9,10-perylene-tetracarboxylic dianhydride, 4,5,10,11-perylene-tetracarboxylic dianhydride Or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride Anhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'-bis(2,3-dicarboxyphenoxy Aromatic tetracarboxylic dianhydrides such as diphenylmethane dianhydride, ethylene glycol bis-trimellitic anhydride, and the like.

另一方面,作為具有聯苯骨架的二胺化合物的代表例,可列舉僅具有兩個芳香環的二胺化合物,可列舉:2,2'-二甲基-4,4'-二氨基聯苯(2,2'-dimethyl-4,4'-diamino biphenyl,m-TB)、2,2'-二乙基-4,4'-二氨基聯苯(2,2'-diethyl-4,4'-diamino biphenyl,m-EB)、2,2'-二乙氧基-4,4'-二氨基聯苯(2,2'-diethoxy-4,4'-diamino biphenyl,m-EOB)、2,2'-二丙氧基-4,4'-二氨基聯苯(2,2'-dipropoxy-4,4'-diamino biphenyl,m-POB)、2,2'-二正丙基-4,4'-二氨基聯苯(2,2'-di-n-propyl-4,4'-diamino biphenyl,m-NPB)、2,2'-二乙烯基-4,4'-二氨基聯苯(2,2'-divinyl-4,4'-diamino biphenyl,VAB)、4,4'-二氨基聯苯、4,4'-二氨基-2,2'-雙(三氟甲基)聯苯(4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl,TFMB)等。由這些二胺化合物衍生的殘基由於具有剛直結構,因此具有對聚合物整體賦予有序結構的作用。藉由含有由這些二胺化合物衍生的殘基,可獲得氧透過係數低、低吸濕性的聚醯亞胺,可減少分子鏈內部的水分,因此可使介電損耗角正切降低。其中,優選為m-TB。On the other hand, as a representative example of the diamine compound which has a biphenyl skeleton, the diamine compound which has only two aromatic rings can be mentioned, and 2,2'-dimethyl-4,4'-diaminodiamino Benzene (2,2'-dimethyl-4,4'-diamino biphenyl, m-TB), 2,2'-diethyl-4,4'-diaminobiphenyl (2,2'-diethyl-4, 4'-diamino biphenyl, m-EB), 2,2'-diethoxy-4,4'-diamino biphenyl (2,2'-diethoxy-4,4'-diamino biphenyl, m-EOB) , 2,2'-dipropoxy-4,4'-diaminobiphenyl (2,2'-dipropoxy-4,4'-diamino biphenyl, m-POB), 2,2'-di-n-propyl -4,4'-Diaminobiphenyl (2,2'-di-n-propyl-4,4'-diamino biphenyl, m-NPB), 2,2'-divinyl-4,4'-diphenyl Aminobiphenyl (2,2'-divinyl-4,4'-diamino biphenyl, VAB), 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl) base) biphenyl (4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, TFMB), etc. Since the residues derived from these diamine compounds have a rigid structure, they have a function of imparting an ordered structure to the entire polymer. By including residues derived from these diamine compounds, a polyimide with a low oxygen permeability coefficient and low hygroscopicity can be obtained, the moisture in the molecular chain can be reduced, and thus the dielectric loss tangent can be reduced. Among them, m-TB is preferable.

此外,在不損及本發明的效果的範圍內,構成非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺的二胺殘基除含有具有聯苯骨架的所述二胺化合物以外,還可含有由公知的二胺化合物衍生的二胺殘基。作為此種公知的二胺化合物,例如可列舉:1,4-二氨基苯(p-PDA;對苯二胺)、4-氨基苯基-4'-氨基苯甲酸酯(APAB)、3,3'-二氨基二苯基甲烷、3,3'-二氨基二苯基丙烷、3,3'-二氨基二苯基硫醚、3,3'-二氨基二苯基碸、3,3'-二氨基二苯基醚、3,4'-二氨基二苯基醚、3,4'-二氨基二苯基甲烷、3,4'-二氨基二苯基丙烷、3,4'-二氨基二苯基硫醚、3,3'-二氨基二苯甲酮、(3,3'-雙氨基)二苯基胺、1,4-雙(3-氨基苯氧基)苯、3-[4-(4-氨基苯氧基)苯氧基]苯胺、3-[3-(4-氨基苯氧基)苯氧基]苯胺、1,3-雙(4-氨基苯氧基)苯(TPE-R)、1,3-雙(3-氨基苯氧基)苯(APB)、4,4'-[2-甲基-(1,3-亞苯基)雙氧基]雙苯胺、4,4'-[4-甲基-(1,3-亞苯基)雙氧基]雙苯胺、4,4'-[5-甲基-(1,3-亞苯基)雙氧基]雙苯胺、雙[4,4'-(3-氨基苯氧基)]苯醯替苯胺、4-[3-[4-(4-氨基苯氧基)苯氧基]苯氧基]苯胺、4,4'-[氧基雙(3,1-亞苯基氧基)]雙苯胺、雙[4-(4-氨基苯氧基)苯基]醚(BAPE)、雙[4-(4-氨基苯氧基)苯基]碸(BAPS)、雙[4-(4-氨基苯氧基)苯基]酮(BAPK)、2,2-雙-[4-(3-氨基苯氧基)苯基]丙烷、2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、雙[4-(3-氨基苯氧基)苯基]碸、雙[4-(3-氨基苯氧基)苯基]甲烷、雙[4-(3-氨基苯氧基)苯基]醚、雙[4-(3-氨基苯氧基)]二苯甲酮、9,9-雙[4-(3-氨基苯氧基)苯基]芴、2,2-雙-[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-雙-[4-(3-氨基苯氧基)苯基]六氟丙烷、3,3'-二甲基-4,4'-二氨基聯苯、4,4'-亞甲基二-鄰甲苯胺、4,4'-亞甲基二-2,6-二甲苯胺、4,4'-亞甲基-2,6-二乙基苯胺、3,3'-二氨基二苯基乙烷、3,3'-二氨基聯苯、3,3'-二甲氧基聯苯胺、3,3''-二氨基-對三聯苯、4,4'-[1,4-亞苯基雙(1-甲基亞乙基)]雙苯胺、4,4'-[1,3-亞苯基雙(1-甲基亞乙基)]雙苯胺、雙(對氨基環己基)甲烷、雙(對-β-氨基-叔丁基苯基)醚、雙(對-β-甲基-δ-氨基戊基)苯、對-雙(2-甲基-4-氨基戊基)苯、對-雙(1,1-二甲基-5-氨基戊基)苯、1,5-二氨基萘、2,6-二氨基萘、2,4-雙(β-氨基-叔丁基)甲苯、2,4-二氨基甲苯、間二甲苯-2,5-二胺、對二甲苯-2,5-二胺、間亞二甲苯基二胺、對亞二甲苯基二胺、2,6-二氨基吡啶、2,5-二氨基吡啶、2,5-二氨基-1,3,4-噁二唑、呱嗪、2'-甲氧基-4,4'-二氨基苯醯替苯胺、4,4'-二氨基苯醯替苯胺、1,3-雙[2-(4-氨基苯基)-2-丙基]苯、1,4-雙[2-(4-氨基苯基)-2-丙基]苯、1,4-雙(4-氨基苯氧基)-2,5-二-叔丁基苯、6-氨基-2-(4-氨基苯氧基)苯並噁唑、2,6-二氨基-3,5-二乙基甲苯、2,4-二氨基-3,5-二乙基甲苯、2,4-二氨基-3,3'-二乙基-5,5'-二甲基二苯基甲烷、雙(4-氨基-3-乙基-5-甲基苯基)甲烷等芳香族二胺化合物、二聚酸的兩個末端羧酸基被取代為一級氨基甲基或氨基而成的二聚酸型二胺等脂肪族二胺化合物等。Further, the diamine residue of the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer may contain, in addition to the above-mentioned diamine compound having a biphenyl skeleton, within a range that does not impair the effects of the present invention. Contains a diamine residue derived from a known diamine compound. As such a known diamine compound, for example, 1,4-diaminobenzene (p-PDA; p-phenylenediamine), 4-aminophenyl-4'-aminobenzoate (APAB), 3 ,3'-diaminodiphenylmethane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 3, 3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4' -Diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, (3,3'-bisamino)diphenylamine, 1,4-bis(3-aminophenoxy)benzene, 3-[4-(4-Aminophenoxy)phenoxy]aniline, 3-[3-(4-aminophenoxy)phenoxy]aniline, 1,3-bis(4-aminophenoxy) ) benzene (TPE-R), 1,3-bis(3-aminophenoxy)benzene (APB), 4,4'-[2-methyl-(1,3-phenylene)dioxy] Dianiline, 4,4'-[4-methyl-(1,3-phenylene)dioxy]dianiline, 4,4'-[5-methyl-(1,3-phenylene) Dioxy] bisaniline, bis[4,4'-(3-aminophenoxy)]benzidine, 4-[3-[4-(4-aminophenoxy)phenoxy]phenoxy base]aniline, 4,4'-[oxybis(3,1-phenyleneoxy)]dianiline, bis[4-(4-aminophenoxy)phenyl]ether (BAPE), bis[ 4-(4-Aminophenoxy)phenyl] stilbene (BAPS), bis[4-(4-aminophenoxy)phenyl]ketone (BAPK), 2,2-bis-[4-(3- Aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), bis[4-(3-aminophenoxy)phenyl]thiane , bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)]diphenyl Methanone, 9,9-bis[4-(3-aminophenoxy)phenyl]fluorene, 2,2-bis-[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2, 2-bis-[4-(3-aminophenoxy)phenyl]hexafluoropropane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-methylenediphenyl -o-Toluidine, 4,4'-methylenebis-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 3,3'-diaminodiphenyl Ethane, 3,3'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 3,3''-diamino-p-terphenyl, 4,4'-[1,4-diphenylene Phenylbis(1-methylethylene)]bisaniline, 4,4'-[1,3-phenylenebis(1-methylethylene)]bisaniline, bis(p-aminocyclohexyl) Methane, bis(p-β-amino-tert-butylphenyl) ether, bis(p-β-methyl-δ-aminopentyl)benzene, p-bis(2-methyl-4-aminopentyl) Benzene, p-bis( 1,1-Dimethyl-5-aminopentyl)benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis(β-amino-tert-butyl)toluene, 2, 4-Diaminotoluene, m-xylylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylene diamine, p-xylylene diamine, 2,6-diamino Pyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, oxazine, 2'-methoxy-4,4'-diaminobenzidine, 4 ,4'-Diaminobenzidine, 1,3-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis[2-(4-aminophenyl)- 2-propyl]benzene, 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, 6-amino-2-(4-aminophenoxy)benzoxazole , 2,6-diamino-3,5-diethyltoluene, 2,4-diamino-3,5-diethyltoluene, 2,4-diamino-3,3'-diethyl-5 , 5'-dimethyldiphenylmethane, bis (4-amino-3-ethyl-5-methylphenyl) methane and other aromatic diamine compounds, dimer acid two terminal carboxylic acid groups are substituted Aliphatic diamine compounds such as dimer acid-type diamines, which are primary aminomethyl groups or amino groups, etc.

(條件(2)) 在本發明中,將非熱塑性聚醯亞胺層的厚度優選為設為7 μm~70 μm的範圍內。非熱塑性聚醯亞胺層的厚度可根據使用目的在7 μm~70 μm的範圍內適宜設定,但更優選為25 μm~49 μm,進一步優選為30 μm~49 μm的範圍。若非熱塑性聚醯亞胺層的厚度為所述範圍內,則可期待聚醯亞胺絕緣層20的介電特性的改善效果,而且可抑制氧透過係數增大,即使在反復暴露於高溫的情況下也可抑制配線層與絕緣樹脂層的黏接性的降低。 (Condition (2)) In the present invention, the thickness of the non-thermoplastic polyimide layer is preferably within a range of 7 μm to 70 μm. The thickness of the non-thermoplastic polyimide layer can be appropriately set in the range of 7 μm to 70 μm according to the purpose of use, but is more preferably in the range of 25 μm to 49 μm, and even more preferably in the range of 30 μm to 49 μm. If the thickness of the non-thermoplastic polyimide layer is within the range, the effect of improving the dielectric properties of the polyimide insulating layer 20 can be expected, and the increase in the oxygen permeability coefficient can be suppressed even under repeated exposure to high temperatures The lowering of the adhesiveness between the wiring layer and the insulating resin layer can also be suppressed.

(條件(3)) 在本發明中,將非熱塑性聚醯亞胺層厚度相對於聚醯亞胺絕緣層20整體的層厚的比率優選為設為70%以上。因此,可抑制聚醯亞胺絕緣層20的氧透過係數過度增大,CTE控制也變得容易,另外,考慮到介電損耗角正切的降低時可使用的聚醯亞胺層(P)23的選擇自由度增加,因此,例如用於電路基板時,變得容易控制尺寸變化率或適應高速傳輸。此外,有所述比率越大,越容易謀求氧透過係數及尺寸變化率控制、介電損耗角正切的減少的傾向。 (Condition (3)) In the present invention, the ratio of the thickness of the non-thermoplastic polyimide layer to the thickness of the entire polyimide insulating layer 20 is preferably 70% or more. Therefore, the excessive increase in the oxygen permeability coefficient of the polyimide insulating layer 20 can be suppressed, and the CTE control can also be facilitated. In addition, the polyimide layer (P) 23 that can be used in consideration of the reduction of the dielectric loss tangent The degree of freedom of choice increases, so it becomes easy to control the rate of dimensional change or adapt to high-speed transmission, for example when used for circuit boards. In addition, the larger the ratio, the easier it is to achieve the control of the oxygen permeability coefficient and the dimensional change rate, and the reduction of the dielectric loss tangent.

在非熱塑性聚醯亞胺中,藉由選定所述酸酐殘基及二胺殘基的種類、或者應用兩種以上的酸酐殘基或二胺殘基時的各自的摩爾比,可控制氧透過係數、介電特性、熱膨脹係數、儲存彈性模量、拉伸彈性模量等。另外,在非熱塑性聚醯亞胺中,具有多個聚醯亞胺的結構單元的情況下,可以嵌段的形式存在,也可隨機存在,但優選為隨機存在。此外,非熱塑性聚醯亞胺優選為包含由芳香族四羧酸二酐衍生的芳香族四羧酸酐殘基及由芳香族二胺衍生的芳香族二胺殘基。藉由將非熱塑性聚醯亞胺中所含的酸酐殘基及二胺殘基均設為芳香族基,可提高聚醯亞胺絕緣層20在高溫環境下的尺寸精度。In non-thermoplastic polyimide, oxygen permeation can be controlled by selecting the types of the acid anhydride residues and diamine residues, or the respective molar ratios when two or more acid anhydride residues or diamine residues are used. coefficient, dielectric properties, thermal expansion coefficient, storage elastic modulus, tensile elastic modulus, etc. In addition, in the case where the non-thermoplastic polyimide has a plurality of structural units of the polyimide, it may be present in the form of a block or may be present at random, but it is preferably present at random. Further, the non-thermoplastic polyimide preferably contains an aromatic tetracarboxylic anhydride residue derived from an aromatic tetracarboxylic dianhydride and an aromatic diamine residue derived from an aromatic diamine. By setting both the acid anhydride residue and the diamine residue contained in the non-thermoplastic polyimide as aromatic groups, the dimensional accuracy of the polyimide insulating layer 20 in a high temperature environment can be improved.

非熱塑性聚醯亞胺的醯亞胺基濃度優選為33重量%以下。此處,“醯亞胺基濃度”是指聚醯亞胺中的醯亞胺基部(-(CO) 2-N-)的分子量除以聚醯亞胺的結構整體的分子量而得的值。若醯亞胺基濃度超過33重量%,則因極性基的增加而吸濕性增加。此外,藉由選擇所述酸二酐與二胺化合物的組合,可控制非熱塑性聚醯亞胺中的分子的取向性,由此可抑制伴隨醯亞胺基濃度降低的CTE的增加,從而擔保低吸濕性。 The imide group concentration of the non-thermoplastic polyimide is preferably 33% by weight or less. Here, the "imide group concentration" refers to a value obtained by dividing the molecular weight of the imide group (-(CO) 2 -N-) in the polyimide by the molecular weight of the entire structure of the polyimide. When the imide group concentration exceeds 33% by weight, the hygroscopicity increases due to the increase in polar groups. In addition, by selecting the combination of the acid dianhydride and the diamine compound, the orientation of the molecules in the non-thermoplastic polyimide can be controlled, thereby suppressing the increase in CTE accompanying the decrease in the concentration of the imide group, thereby ensuring that the Low hygroscopicity.

非熱塑性聚醯亞胺的重量平均分子量例如優選為10,000~400,000的範圍內,更優選為50,000~350,000的範圍內。若重量平均分子量未滿10,000,則出現膜的強度降低而容易脆化的傾向。另一方面,若重量平均分子量超過400,000,則出現黏度過度增加而在塗敷作業時容易產生膜厚度不均、條紋等不良情況的傾向。The weight average molecular weight of the non-thermoplastic polyimide is, for example, preferably in the range of 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. When the weight-average molecular weight is less than 10,000, the strength of the film decreases and tends to become brittle. On the other hand, when the weight-average molecular weight exceeds 400,000, the viscosity tends to increase excessively, and problems such as uneven film thickness and streaks tend to occur during the coating operation.

本實施方式的聚醯亞胺絕緣層20也可視需要在聚醯亞胺層21或聚醯亞胺層(P)23中含有無機填料或有機填料。具體而言,例如可列舉:二氧化矽、氧化鋁、氧化鎂、氧化鈹、氮化硼、氮化鋁、氮化矽、氟化鋁、氟化鈣等無機填料或者氟系聚合物粒子或液晶聚合物粒子等有機填料。這些可使用一種或混合使用兩種以上。The polyimide insulating layer 20 of the present embodiment may contain an inorganic filler or an organic filler in the polyimide layer 21 or the polyimide layer (P) 23 as needed. Specifically, for example, inorganic fillers such as silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, and calcium fluoride, or fluorine-based polymer particles or Organic fillers such as liquid crystal polymer particles. These can be used alone or in combination of two or more.

此外,在本發明中,也可將聚醯亞胺絕緣層20的聚醯亞胺層21作為單層的非熱塑性聚醯亞胺層,直接層疊在金屬層10上。In addition, in the present invention, the polyimide layer 21 of the polyimide insulating layer 20 may be directly laminated on the metal layer 10 as a single-layer non-thermoplastic polyimide layer.

<金屬層> 作為金屬層10的材質,並無特別限制,例如可列舉:銅、不銹鋼、鐵、鎳、鈹、鋁、鋅、銦、銀、金、錫、鋯、鉭、鈦、鉛、鎂、錳及這些的合金等。其中,特別優選為銅或銅合金。此外,後述的電路基板中的配線層的材質也與金屬層10相同。 <Metal layer> The material of the metal layer 10 is not particularly limited, and examples thereof include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese and alloys of these, etc. Among them, copper or a copper alloy is particularly preferable. In addition, the material of the wiring layer in the circuit board described later is also the same as that of the metal layer 10 .

金屬層10的厚度並無特別限定,例如在使用以銅箔為代表的金屬箔的情況下,其厚度的上限優選為35 μm以下,更優選為以5 μm~25 μm的範圍內為宜,就生產穩定性及處理性的觀點而言,金屬箔的厚度的下限優選為設為5 μm。此外,作為用作金屬層10的銅箔,可為壓延銅箔,也可為電解銅箔。另外,作為銅箔,可使用市售的銅箔。The thickness of the metal layer 10 is not particularly limited. For example, when a metal foil represented by copper foil is used, the upper limit of the thickness is preferably 35 μm or less, and more preferably in the range of 5 μm to 25 μm. From the viewpoint of production stability and handleability, the lower limit of the thickness of the metal foil is preferably 5 μm. Moreover, as a copper foil used as the metal layer 10, a rolled copper foil may be sufficient, and an electrolytic copper foil may be sufficient as it. Moreover, as copper foil, a commercially available copper foil can be used.

另外,金屬層10中的與聚醯亞胺層21相接觸的面的十點平均粗糙度(Rzjis)優選為1.2 μm以下,更優選為1.0 μm以下。在金屬層10以金屬箔為原料的情況下,藉由使表面粗糙度Rzjis為1.2 μm以下,能夠進行與高密度安裝對應的微細配線加工,另外,可減少高頻信號傳輸時的導體損失,因此能夠應用於高頻信號傳輸用的電路基板。在表面粗糙度Rzjis超過1.2 μm的情況下,微細配線加工時的配線形狀惡化而加工變得困難,另外,導體損失增大而不適合高頻信號傳輸。In addition, the ten-point average roughness (Rzjis) of the surface of the metal layer 10 in contact with the polyimide layer 21 is preferably 1.2 μm or less, and more preferably 1.0 μm or less. When the metal layer 10 is made of metal foil, by setting the surface roughness Rzjis to 1.2 μm or less, fine wiring processing corresponding to high-density mounting can be performed, and conductor loss during high-frequency signal transmission can be reduced. Therefore, it can be applied to a circuit board for high-frequency signal transmission. When the surface roughness Rzjis exceeds 1.2 μm, the wiring shape at the time of fine wiring processing deteriorates and processing becomes difficult, and the conductor loss increases, which is not suitable for high-frequency signal transmission.

另外,關於金屬層10,例如也可預先實施防銹處理、或以提高黏接力為目的的利用例如壁板(siding)、烴氧基鋁、鋁螯合物、矽烷偶合劑等進行的表面處理。In addition, the metal layer 10 may be subjected to, for example, rust-preventive treatment in advance, or surface treatment with, for example, siding, aluminum alkoxide, aluminum chelate, silane coupling agent, etc. for the purpose of improving the adhesive force. .

[覆金屬層疊板的製造方法] 本發明的覆金屬層疊板30可藉由具有以下的步驟(A)、步驟(B)及步驟(C)的製造方法來製造。 [Manufacturing method of metal-clad laminate] The metal-clad laminate 30 of the present invention can be manufactured by a manufacturing method having the following steps (A), (B), and (C).

<步驟(A)> 在成為金屬層10的金屬箔上,塗布作為聚醯亞胺的前體的聚醯胺酸的溶液,並進行乾燥而形成單層或多層的第一聚醯胺酸層。作為將聚醯胺酸溶液塗布在金屬層10上的方法,並無特別限制,例如可利用缺角輪、模、刀、模唇等的塗布機進行塗布。此外,在將第一聚醯胺酸層設為多層的情況下,例如可採用:反復多次進行在金屬箔上塗布聚醯胺酸的溶液並乾燥的方法、或藉由多層擠出而在金屬箔上同時多層地層疊聚醯胺酸的狀態下進行塗布並乾燥的方法等。 <Step (A)> On the metal foil to be the metal layer 10 , a solution of polyamic acid, which is a precursor of polyimide, is applied and dried to form a single-layer or multi-layer first polyamic acid layer. There are no particular limitations on the method of applying the polyamide solution to the metal layer 10, and for example, it can be applied using a coater such as a cutout wheel, a die, a knife, or a die lip. Moreover, when the 1st polyamic acid layer is made into multiple layers, for example, the method of repeatedly applying a polyamic acid solution to the metal foil and drying it, or by extruding multiple layers can be used. A method of coating and drying the metal foil in a state where polyamic acid is laminated in multiple layers at the same time.

聚醯胺酸的溶液是藉由以下方式而獲得:將酸二酐成分及二胺成分以大致等摩爾溶解在N,N-二甲基甲醯胺(N,N-dimethylformamide,DMF)等有機溶媒中,在0℃~100℃的範圍內的溫度下攪拌30分鐘~24小時使其進行聚合反應。通常,優選為調整為聚醯胺酸溶液的聚醯胺酸濃度成為5重量%~30重量%左右的使用量,將黏度設為500 cps~100,000 cps。The solution of polyamic acid is obtained by dissolving the acid dianhydride component and the diamine component in approximately equimolar amounts in organic compounds such as N,N-dimethylformamide (N,N-dimethylformamide, DMF). In the solvent, the polymerization reaction is carried out by stirring at a temperature in the range of 0°C to 100°C for 30 minutes to 24 hours. Usually, it is preferable to adjust the polyamic acid concentration of the polyamic acid solution to a usage amount of about 5 to 30 wt %, and to set the viscosity to 500 cps to 100,000 cps.

<步驟(B)> 接下來,在第一聚醯胺酸層上,藉由與步驟(A)同樣的操作,塗布作為聚醯亞胺(p)的前體的聚醯胺酸的溶液,使其乾燥而形成第二聚醯胺酸層。此外,也可與所述同樣地藉由多層擠出同時形成第一聚醯胺酸層及第二聚醯胺酸層。 <Step (B)> Next, on the first polyamic acid layer, by the same operation as in step (A), a solution of polyamic acid, which is a precursor of polyimide (p), is applied and dried to form a second polyamic acid solution. Dimer layer. In addition, the first polyamic acid layer and the second polyamic acid layer may be simultaneously formed by multi-layer extrusion in the same manner as described above.

<步驟(C)> 接下來,藉由將第一聚醯胺酸層中所含的聚醯胺酸及第二聚醯胺酸層中所含的聚醯胺酸進行醯亞胺化,使其變化成聚醯亞胺層21及聚醯亞胺層(P)23,從而形成聚醯亞胺絕緣層20。使聚醯胺酸醯亞胺化的方法並無特別限制,例如,可優選地採用在80℃~400℃的範圍內的溫度條件下花費1小時~24小時進行加熱等的熱處理。由此,獲得圖1的覆金屬層疊板30。 <Step (C)> Next, the polyamic acid contained in the first polyamic acid layer and the polyamic acid contained in the second polyamic acid layer are imidized to change into polyamic acid The amine layer 21 and the polyimide layer (P) 23 form the polyimide insulating layer 20 . The method of imidizing the polyamide is not particularly limited, and for example, a heat treatment such as heating under temperature conditions in the range of 80° C. to 400° C. for 1 hour to 24 hours can be preferably employed. Thus, the metal-clad laminate 30 of FIG. 1 is obtained.

此外,關於本發明的聚醯亞胺膜,在所述覆金屬層疊板30的製造方法中,在製造覆金屬層疊板30後藉由蝕刻等方法除去金屬層10,或者使用能夠剝離的基材(包括能夠剝離的金屬箔)代替金屬箔,製造覆金屬層疊板30後將金屬層10與聚醯亞胺絕緣層20剝離,由此來進行製造。In addition, regarding the polyimide film of the present invention, in the method of manufacturing the metal-clad laminate 30, the metal layer 10 is removed by etching or the like after the metal-clad laminate 30 is manufactured, or a peelable substrate is used. (Including a peelable metal foil) In place of the metal foil, the metal-clad laminate 30 is manufactured and the metal layer 10 and the polyimide insulating layer 20 are peeled off to manufacture.

[電路基板] 本發明的覆金屬層疊板30有效用作FPC等電路基板材料,加工本發明的覆金屬層疊板30而製成的電路基板也是本發明的一形態。此電路基板是本發明的覆金屬層疊板30的金屬層10藉由常規方法加工成配線而成,其結構的特徵繼承了本發明的覆金屬層疊板30的結構的特徵。因此,此電路基板可獲得穩定且良好的高頻傳輸特性。 [實施例] [circuit board] The metal-clad laminate 30 of the present invention is effectively used as a circuit board material such as FPC, and a circuit board produced by processing the metal-clad laminate 30 of the present invention is also an aspect of the present invention. The circuit substrate is formed by processing the metal layer 10 of the metal clad laminate 30 of the present invention into wiring by conventional methods, and its structural features inherit the structural features of the metal clad laminate 30 of the present invention. Therefore, this circuit board can obtain stable and good high-frequency transmission characteristics. [Example]

以下示出實施例,更具體地說明本發明的特徵。其中,本發明不限定於以下的實施例。此外,在以下的實施例中,只要並無特別說明,則各種測定、評價均根據下述內容進行。An Example is shown below, and the characteristic of this invention is demonstrated more concretely. However, the present invention is not limited to the following examples. In addition, in the following examples, unless otherwise specified, various measurements and evaluations were performed according to the following contents.

[黏度的測定] 對於合成例1~合成例16及A~C的聚醯胺酸溶液,使用E型黏度計(博勒菲(Brookfield)公司製造,商品名:DV-II+Pro)對25℃下的黏度進行測定。以使扭矩(torque)成為10%~90%的方式設定轉速,開始測定起經過2分鐘後,讀取黏度穩定時的值。 [Measurement of viscosity] The viscosities at 25°C of the polyamide acid solutions of Synthesis Examples 1 to 16 and A to C were measured using an E-type viscometer (manufactured by Brookfield, trade name: DV-II+Pro). Determination. The rotational speed was set so that the torque was 10% to 90%, and the value when the viscosity was stable was read after 2 minutes had elapsed from the start of the measurement.

[玻璃化轉變溫度及儲存彈性模量的測定] 將聚醯亞胺膜切成5 mm×70 mm的尺寸,使用動態黏彈性測定裝置(DMA:TA儀器(TA Instruments)公司製造,商品名:RSA G2),自30℃至400℃為止以升溫速度4℃/分、頻率10 Hz測定玻璃化轉變溫度及儲存彈性模量。將彈性模量變化(tanδ)成為最大的溫度設為玻璃化轉變溫度。根據這些測定結果,判定聚醯亞胺膜的“非熱塑性”。將30℃下的儲存彈性模量為1.0×10 9Pa以上、且玻璃化轉變溫度+30℃以內的溫度區域下的儲存彈性模量為1.0×10 8Pa以上的情況設為“非熱塑性”。 [Measurement of Glass Transition Temperature and Storage Elastic Modulus] A polyimide film was cut into a size of 5 mm×70 mm, and a dynamic viscoelasticity measuring device (DMA: manufactured by TA Instruments, trade name: TA Instruments) was used. RSA G2), the glass transition temperature and the storage elastic modulus were measured from 30°C to 400°C at a heating rate of 4°C/min and a frequency of 10 Hz. The temperature at which the elastic modulus change (tan δ) becomes the maximum is defined as the glass transition temperature. From these measurement results, the "non-thermoplasticity" of the polyimide film was judged. The case where the storage elastic modulus at 30°C is 1.0×10 9 Pa or more, and the storage elastic modulus at the temperature range within the glass transition temperature+30°C is 1.0×10 8 Pa or more is defined as “non-thermoplastic” .

[熱膨脹係數(CTE)的測定] 將實施例1~實施例30及比較例1~比較例4的除去單面覆銅層疊板的銅箔而獲得的聚醯亞胺膜切成3 mm×20 mm的尺寸,使用熱機械分析儀(日立高科技科學(Hitachi High-Tech Science)公司(原精工儀器(Seiko Instruments)公司)製造,商品名:TMA/SS6100),一面施加5.0 g的負荷一面以固定的升溫速度自30℃升溫至260℃,進而在此溫度下保持10分鐘後,以5℃/分的速度進行冷卻,作為自250℃至100℃為止的平均熱膨脹係數(熱膨脹係數)求出。在實際應用中,期望熱膨脹係數為10 ppm/K~30 ppm/K的範圍內。 [Measurement of Coefficient of Thermal Expansion (CTE)] The polyimide films obtained by removing the copper foil of the single-sided copper-clad laminates of Examples 1 to 30 and Comparative Examples 1 to 4 were cut into a size of 3 mm×20 mm, and a thermomechanical analyzer was used. (manufactured by Hitachi High-Tech Science (formerly Seiko Instruments), trade name: TMA/SS6100), while applying a load of 5.0 g, the temperature was increased from 30°C to 260°C, and then kept at this temperature for 10 minutes, then cooled at a rate of 5°C/min, and obtained as an average thermal expansion coefficient (thermal expansion coefficient) from 250°C to 100°C. In practical applications, the thermal expansion coefficient is expected to be in the range of 10 ppm/K to 30 ppm/K.

[剝離強度的測定] 將實施例1~實施例30及比較例1~比較例4的除去單面覆銅層疊板的銅箔而獲得的聚醯亞胺膜2張與接合片(聚醯亞胺系,日鐵化學&材料(Nippon Steel Chemical & Material)公司製造,商品名:NB25A-M,厚度:25 μm)以聚醯亞胺膜的接觸銅箔的面的相反面與接合片相接觸的方式層疊,並使用真空壓力機在溫度160℃、表面壓力3.5 MPa下加熱壓接60分鐘。將獲得的層疊片切割成5 mm寬度,使用騰喜龍測試儀(Tensilon Tester)(商品名:斯特羅格拉夫(Strograph)VE-1D,東洋精機制作所公司製造)沿180°方向以50 mm/分的速度拉伸其中一張聚醯亞胺膜,由剝離20 mm時的中央值強度求出剝離強度。剝離強度在實際應用中期望為0.7 kN/m以上。 [Measurement of peel strength] Two polyimide films obtained by removing the copper foil of the single-sided copper-clad laminates of Examples 1 to 30 and Comparative Examples 1 to 4 and a bonding sheet (polyimide series, Nippon Steel Chemicals) & material (manufactured by Nippon Steel Chemical & Material, trade name: NB25A-M, thickness: 25 μm) so that the opposite surface of the polyimide film contacting the copper foil may be in contact with the bonding sheet, and used The vacuum press was heated and crimped for 60 minutes at a temperature of 160° C. and a surface pressure of 3.5 MPa. The obtained laminate was cut into a width of 5 mm, and the obtained laminate was cut into a width of 50 mm in the 180° direction using a Tensilon Tester (trade name: Strograph VE-1D, manufactured by Toyo Seiki Co., Ltd.). One of the polyimide films was stretched at a speed of /min, and the peel strength was obtained from the median strength when peeled at 20 mm. The peel strength is expected to be 0.7 kN/m or more in practical use.

[相對介電常數及介電損耗角正切的測定] 對於實施例1~實施例30及比較例1~比較例4的除去單面覆銅層疊板的銅箔而獲得的聚醯亞胺膜,使用向量網路分析儀(安捷倫(Agilent)公司製造,商品名:E8363C)及分離柱介電質諧振器(SPDR諧振器)來測定頻率10 GHz下的聚醯亞胺膜的相對介電常數及介電損耗角正切。此外,測定中所使用的材料是在溫度:24℃~26℃、濕度:45%~55%的條件下放置24小時的材料。在實際應用中,期望相對介電常數為3.5以下,介電損耗角正切為0.004以下。 [Determination of relative permittivity and dielectric loss tangent] For the polyimide films obtained by removing the copper foil of the single-sided copper-clad laminates of Examples 1 to 30 and Comparative Examples 1 to 4, a vector network analyzer (manufactured by Agilent) was used. Trade name: E8363C) and a split column dielectric resonator (SPDR resonator) to measure the relative permittivity and dielectric loss tangent of a polyimide film at a frequency of 10 GHz. In addition, the material used for the measurement was left to stand for 24 hours under the conditions of temperature: 24° C. to 26° C. and humidity: 45% to 55%. In practical applications, the relative permittivity is desirably 3.5 or less, and the dielectric loss tangent is 0.004 or less.

[氧透過係數的測定] 對於實施例1~實施例30及比較例1~比較例4的除去單面覆銅層疊板的銅箔而獲得的聚醯亞胺膜,在溫度23℃±2℃、濕度65%相對濕度(relative humidity,RH)±5%RH的條件下,依據JIS K7126-1的差壓法來測定其氧透過係數。此外,作為蒸氣透過率測定裝置,使用GTR技術(TEC)公司製造的GTR-30XAD2及雅那柯技術科學(Yanaco Technical Science)公司製造的G2700T·F。在實際應用中,期望氧透過係數為2.0×10 -18mol·m/m 2·s·Pa以下。 [Measurement of Oxygen Permeability Coefficient] For the polyimide films obtained by removing the copper foil of the single-sided copper-clad laminates of Examples 1 to 30 and Comparative Examples 1 to 4, the temperature was 23° C.±2° C. , Under the condition of 65% relative humidity (RH) ±5% RH, the oxygen transmission coefficient is measured according to the differential pressure method of JIS K7126-1. In addition, as a vapor transmission rate measuring apparatus, GTR-30XAD2 manufactured by GTR Technology (TEC) and G2700T·F manufactured by Yanaco Technical Science were used. In practical use, the oxygen permeability coefficient is desirably 2.0×10 −18 mol·m/m 2 ·s·Pa or less.

以下的合成例、實施例、比較例中所使用的縮略號表示以下的化合物。 PMDA:均苯四甲酸二酐 BTDA:3,3',4,4'-二苯甲酮四羧酸二酐 BPDA:3,3',4,4'-聯苯四羧酸二酐 m-TB:2,2'-二甲基-4,4'-二氨基聯苯 TPE-R:1,3-雙(4-氨基苯氧基)苯 TPE-Q:1,4-雙(4-氨基苯氧基)苯 APB:1,3-雙(3-氨基苯氧基)苯 BAPP:2,2-雙[4-(4-氨基苯氧基)苯基]丙烷 BAPB:4,4'-雙(4-氨基苯氧基)聯苯 4,4'-DAPE:4,4'-二氨基二苯基醚 雙苯胺-P:1,4-雙[2-(4-氨基苯基)-2-丙基]苯(三井精細化工公司製造,商品名:雙苯胺-P) DMAc:N,N-二甲基乙醯胺) The abbreviations used in the following synthesis examples, examples, and comparative examples represent the following compounds. PMDA: pyromellitic dianhydride BTDA: 3,3',4,4'-benzophenone tetracarboxylic dianhydride BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis(4-aminophenoxy)benzene TPE-Q: 1,4-bis(4-aminophenoxy)benzene APB: 1,3-bis(3-aminophenoxy)benzene BAPP: 2,2-bis[4-(4-aminophenoxy)phenyl]propane BAPB: 4,4'-bis(4-aminophenoxy)biphenyl 4,4'-DAPE: 4,4'-diaminodiphenyl ether Dianiline-P: 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene (manufactured by Mitsui Fine Chemicals Co., Ltd., trade name: Dianiline-P) DMAc: N,N-dimethylacetamide)

(合成例1) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入20.670 g的TPE-R(0.0707摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加15.330 g的PMDA(0.0703摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液1。聚醯胺酸溶液1的溶液黏度為4,600 cps。 (Synthesis Example 1) In a 500 ml separable flask, 20.670 g of TPE-R (0.0707 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were charged under nitrogen flow, and the mixture was stirred at room temperature to dissolve it. . Next, after adding 15.330 g of PMDA (0.0703 mol), stirring was continued at room temperature for 3 hours, and a polymerization reaction was performed to obtain a polyamic acid solution 1 of the composition of Table 1. The solution viscosity of Polyamide Solution 1 was 4,600 cps.

(合成例2) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入19.862 g的TPE-R(0.0680摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加11.785 g的PMDA(0.0540摩爾)及4.353 g的BTDA(0.0135摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得聚醯胺酸溶液2。表1的組成的聚醯胺酸溶液2的溶液黏度為4,300 cps。 (Synthesis example 2) In a 500 ml separable flask, 19.862 g of TPE-R (0.0680 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were put into a 500 ml separable flask under a nitrogen gas stream, and they were dissolved by stirring at room temperature. . Next, after adding 11.785 g of PMDA (0.0540 mol) and 4.353 g of BTDA (0.0135 mol), stirring was continued at room temperature for 3 hours to perform a polymerization reaction, thereby obtaining a polyamic acid solution 2. The solution viscosity of the polyamic acid solution 2 of the composition of Table 1 was 4,300 cps.

(合成例3) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入19.482 g的TPE-R(0.0666摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加10.114 g的PMDA(0.0464摩爾)及6.404 g的BTDA(0.0199摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得聚醯胺酸溶液3。表1的組成的聚醯胺酸溶液3的溶液黏度為4,000 cps。 (Synthesis Example 3) In a 500 ml separable flask, 19.482 g of TPE-R (0.0666 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were charged under nitrogen flow, and the mixture was stirred at room temperature to dissolve it. . Next, after adding 10.114 g of PMDA (0.0464 mol) and 6.404 g of BTDA (0.0199 mol), stirring was continued at room temperature for 3 hours, and a polymerization reaction was performed to obtain a polyamic acid solution 3. The solution viscosity of the polyamic acid solution 3 of the composition of Table 1 was 4,000 cps.

(合成例4) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入19.116 g的TPE-R(0.0654摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加8.506 g的PMDA(0.0390摩爾)及8.378 g的BTDA(0.0260摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得聚醯胺酸溶液4。表1的組成的聚醯胺酸溶液4的溶液黏度為4,300 cps。 (Synthesis Example 4) In a 500 ml separable flask, 19.116 g of TPE-R (0.0654 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were charged under nitrogen flow, and the mixture was stirred at room temperature to dissolve it. . Next, after adding 8.506 g of PMDA (0.0390 mol) and 8.378 g of BTDA (0.0260 mol), stirring was continued at room temperature for 3 hours, and a polymerization reaction was performed to obtain a polyamic acid solution 4. The solution viscosity of the polyamic acid solution 4 of the composition of Table 1 was 4,300 cps.

(合成例5) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入18.763 g的TPE-R(0.0642摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加6.958 g的PMDA(0.0319摩爾)及10.279 g的BTDA(0.0319摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得聚醯胺酸溶液5。表1的組成的聚醯胺酸溶液5的溶液黏度為4,400 cps。 (Synthesis Example 5) In a 500 ml separable flask, 18.763 g of TPE-R (0.0642 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were put in a nitrogen gas stream, and they were dissolved by stirring at room temperature. . Next, after adding 6.958 g of PMDA (0.0319 mol) and 10.279 g of BTDA (0.0319 mol), stirring was continued at room temperature for 3 hours to carry out the polymerization reaction, thereby obtaining a polyamic acid solution 5. The solution viscosity of the polyamic acid solution 5 of the composition of Table 1 was 4,400 cps.

(合成例6) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入18.095 g的TPE-R(0.0619摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加4.026 g的PMDA(0.0185摩爾)及13.879 g的BTDA(0.0431摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得聚醯胺酸溶液6。表1的組成的聚醯胺酸溶液6的溶液黏度為3,700 cps。 (Synthesis Example 6) In a 500 ml separable flask, 18.095 g of TPE-R (0.0619 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were charged under nitrogen flow, and the mixture was stirred at room temperature to dissolve it. . Next, after adding 4.026 g of PMDA (0.0185 mol) and 13.879 g of BTDA (0.0431 mol), stirring was continued at room temperature for 3 hours to perform a polymerization reaction, whereby a polyamic acid solution 6 was obtained. The solution viscosity of the polyamic acid solution 6 of the composition of Table 1 was 3,700 cps.

(合成例7) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入17.779 g的TPE-R(0.0608摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加2.637 g的PMDA(0.0121摩爾)及15.584 g的BTDA(0.0484摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得聚醯胺酸溶液7。表1的組成的聚醯胺酸溶液7的溶液黏度為3,400 cps。 (Synthesis Example 7) In a 500 ml separable flask, 17.779 g of TPE-R (0.0608 mol) and DMAc so that the solid content concentration after polymerization was 12 wt% were put into a 500 ml separable flask under nitrogen gas flow, and were dissolved by stirring at room temperature. . Next, after adding 2.637 g of PMDA (0.0121 mol) and 15.584 g of BTDA (0.0484 mol), stirring was continued at room temperature for 3 hours, and a polymerization reaction was performed to obtain a polyamic acid solution 7. The solution viscosity of the polyamic acid solution 7 of the composition of Table 1 was 3,400 cps.

(合成例8) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入17.178 g的TPE-R(0.0588摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加18.822 g的BTDA(0.0584摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液8。聚醯胺酸溶液8的溶液黏度為3,800 cps。 (Synthesis Example 8) In a 500 ml separable flask, 17.178 g of TPE-R (0.0588 mol) and DMAc so that the solid content concentration after polymerization was 12 wt % were put into a 500 ml separable flask under nitrogen flow, and the mixture was stirred and dissolved at room temperature. . Next, after adding 18.822 g of BTDA (0.0584 mol), stirring was continued at room temperature for 3 hours, and a polymerization reaction was performed to obtain a polyamic acid solution 8 of the composition of Table 1. The solution viscosity of Polyamide Solution 8 was 3,800 cps.

(合成例9) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入18.182 g的TPE-R(0.0622摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加4.046 g的PMDA(0.0185摩爾)、11.953 g的BTDA(0.0371摩爾)及1.819 g的BPDA(0.0062摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液9。聚醯胺酸溶液9的溶液黏度為4,100 cps。 (Synthesis Example 9) In a 500 ml separable flask, 18.182 g of TPE-R (0.0622 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were charged under nitrogen flow, and the mixture was stirred at room temperature to dissolve it. . Next, after adding 4.046 g of PMDA (0.0185 mol), 11.953 g of BTDA (0.0371 mol), and 1.819 g of BPDA (0.0062 mol), stirring was continued at room temperature for 3 hours and polymerization reaction was performed, thereby obtaining Table 1 The composition of the polyamide solution 9. The solution viscosity of Polyamide Solution 9 was 4,100 cps.

(合成例10) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入18.270 g的TPE-R(0.0625摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加4.065 g的PMDA(0.0186摩爾)、10.009 g的BTDA(0.0311摩爾)及3.656 g的BPDA(0.0124摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液10。聚醯胺酸溶液10的溶液黏度為3,800 cps。 (Synthesis Example 10) In a 500 ml separable flask, 18.270 g of TPE-R (0.0625 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were put in a nitrogen gas stream, and they were dissolved by stirring at room temperature. . Next, after adding 4.065 g of PMDA (0.0186 mol), 10.009 g of BTDA (0.0311 mol), and 3.656 g of BPDA (0.0124 mol), stirring was continued at room temperature for 3 hours and polymerization reaction was performed, thereby obtaining Table 1 The composition of the polyamide solution 10. The solution viscosity of Polyamide Solution 10 was 3,800 cps.

(合成例11) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入18.359 g的TPE-R(0.0628摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加4.085 g的PMDA(0.0187摩爾)、8.046 g的BTDA(0.0250摩爾)及5.510 g的BPDA(0.0187摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液11。聚醯胺酸溶液11的溶液黏度為4,300 cps。 (Synthesis Example 11) In a 500 ml separable flask, 18.359 g of TPE-R (0.0628 mol) and DMAc with a solid content concentration after polymerization of 12 wt % were charged under nitrogen flow, and the mixture was stirred at room temperature to dissolve it. . Next, after adding 4.085 g of PMDA (0.0187 mol), 8.046 g of BTDA (0.0250 mol), and 5.510 g of BPDA (0.0187 mol), stirring was continued at room temperature for 3 hours and polymerization reaction was performed, thereby obtaining Table 1 The composition of the polyamide solution 11. The solution viscosity of the polyamide solution 11 was 4,300 cps.

(合成例12) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入14.476 g的TPE-R(0.0495摩爾)、3.619 g的APB(0.0124摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加4.026 g的PMDA(0.0185摩爾)及13.879 g的BTDA(0.0431摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液12。聚醯胺酸溶液12的溶液黏度為3,100 cps。 (Synthesis Example 12) In a 500 ml separable flask, 14.476 g of TPE-R (0.0495 mol), 3.619 g of APB (0.0124 mol), and DMAc in such an amount that the solid content concentration after polymerization was 12 wt % were charged under nitrogen gas flow. It was dissolved by stirring at room temperature. Next, after adding 4.026 g of PMDA (0.0185 mol) and 13.879 g of BTDA (0.0431 mol), stirring was continued at room temperature for 3 hours, and the polymerization reaction was carried out to obtain a polyamic acid solution 12 having the composition of Table 1. . The solution viscosity of the polyamide solution 12 was 3,100 cps.

(合成例13) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入8.348 g的TPE-R(0.0286摩爾)、11.723 g的BAPP(0.0286摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加4.953 g的PMDA(0.0227摩爾)及10.976 g的BTDA(0.0341摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液13。聚醯胺酸溶液13的溶液黏度為4,200 cps。 (Synthesis Example 13) In a 500 ml separable flask, 8.348 g of TPE-R (0.0286 mol), 11.723 g of BAPP (0.0286 mol), and DMAc in such an amount that the solid content concentration after polymerization was 12 wt % were charged under nitrogen flow. It was dissolved by stirring at room temperature. Next, after adding 4.953 g of PMDA (0.0227 mol) and 10.976 g of BTDA (0.0341 mol), the polymerization reaction was continued at room temperature for 3 hours while stirring to obtain a polyamic acid solution 13 having the composition of Table 1. . The solution viscosity of the polyamide solution 13 was 4,200 cps.

(合成例14) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入6.940 g的TPE-R(0.0237摩爾)、13.120 g的BAPB(0.0356摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加6.434 g的PMDA(0.0295摩爾)及9.505 g的BTDA(0.0295摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液14。聚醯胺酸溶液14的溶液黏度為3,700 cps。 (Synthesis Example 14) In a 500 ml separable flask, 6.940 g of TPE-R (0.0237 mol), 13.120 g of BAPB (0.0356 mol), and DMAc in such an amount that the solid content concentration after polymerization was 12 wt % were charged under nitrogen flow. It was dissolved by stirring at room temperature. Next, after adding 6.434 g of PMDA (0.0295 mol) and 9.505 g of BTDA (0.0295 mol), stirring was continued at room temperature for 3 hours, and the polymerization reaction was performed to obtain a polyamic acid solution 14 having the composition of Table 1. . The solution viscosity of the polyamide solution 14 was 3,700 cps.

(合成例15) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入15.417 g的TPE-R(0.0527摩爾)、2.799 g的m-TB(0.0132摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加4.288 g的PMDA(0.0197摩爾)及13.496 g的BPDA(0.0459摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液15。聚醯胺酸溶液15的溶液黏度為3,500 cps。 (Synthesis Example 15) In a 500 ml separable flask, 15.417 g of TPE-R (0.0527 mol), 2.799 g of m-TB (0.0132 mol), and 12 wt% of solid content after polymerization were charged under nitrogen flow. DMAc was dissolved by stirring at room temperature. Next, after adding 4.288 g of PMDA (0.0197 mol) and 13.496 g of BPDA (0.0459 mol), stirring was continued at room temperature for 3 hours, and the polymerization reaction was performed to obtain a polyamic acid solution 15 having the composition of Table 1. . The solution viscosity of Polyamide Solution 15 was 3,500 cps.

(合成例16) 在氮氣氣流下,在500 ml的可分離式燒瓶中投入13.848 g的4,4'-DAPE(0.0692摩爾)及聚合後的固體成分濃度成為12 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加22.152 g的BTDA(0.0687摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液16。聚醯胺酸溶液16的溶液黏度為3,300 cps。 (Synthesis Example 16) In a 500 ml separable flask, 13.848 g of 4,4'-DAPE (0.0692 mol) and DMAc in such an amount that the solid content concentration after polymerization was 12 wt % were put into a 500 ml separable flask, and the mixture was stirred at room temperature. to dissolve. Next, after adding 22.152 g of BTDA (0.0687 mol), stirring was continued at room temperature for 3 hours to carry out a polymerization reaction, thereby obtaining a polyamic acid solution 16 of the composition of Table 1. The solution viscosity of Polyamide Solution 16 was 3,300 cps.

(合成例A) 在氮氣氣流下,在3000 ml的可分離式燒瓶中投入120.612 g的m-TB(0.5681摩爾)、9.227 g的TPE-Q(0.0316摩爾)、10.873 g的雙苯胺-P(0.0316摩爾)及聚合後的固體成分濃度成為15 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加67.814 g的PMDA(0.3109摩爾)及91.474 g的BPDA(0.3109摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液A。聚醯胺酸溶液A的溶液黏度為28,300 cps。 (Synthesis Example A) Under nitrogen flow, 120.612 g of m-TB (0.5681 mol), 9.227 g of TPE-Q (0.0316 mol), and 10.873 g of bisaniline-P (0.0316 mol) were put into a 3000 ml separable flask, and polymerized The resulting solid content concentration was DMAc in an amount of 15 wt %, which was dissolved by stirring at room temperature. Next, after adding 67.814 g of PMDA (0.3109 mol) and 91.474 g of BPDA (0.3109 mol), the polymerization reaction was continued at room temperature for 3 hours while stirring to obtain a polyamic acid solution A of the composition of Table 1. . The solution viscosity of Polyamide Solution A was 28,300 cps.

在基材上以硬化後的厚度成為約25 μm的方式均勻地塗布聚醯胺酸溶液A後,在120℃下進行加熱乾燥而除去溶媒。進而,在10分鐘以內自120℃至360℃為止進行階段性熱處理,完成醯亞胺化而獲得的聚醯亞胺膜為非熱塑性。The polyamic acid solution A was uniformly applied on the base material so that the thickness after curing was about 25 μm, and then the solvent was removed by heating and drying at 120°C. Furthermore, the polyimide film obtained by performing stepwise heat treatment from 120° C. to 360° C. within 10 minutes to complete the imidization is non-thermoplastic.

(合成例B) 在氮氣氣流下,在3000 ml的可分離式燒瓶中投入127.501 g的m-TB(0.6006摩爾)、12.976 g的BAPP(0.0316摩爾)及聚合後的固體成分濃度成為15 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加67.914 g的PMDA(0.3114摩爾)及91.609 g的BPDA(0.3114摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液B。聚醯胺酸溶液B的溶液黏度為25,600 cps。 (Synthesis Example B) In a 3000 ml separable flask, 127.501 g of m-TB (0.6006 mol), 12.976 g of BAPP (0.0316 mol), and DMAc in such an amount that the solid content concentration after polymerization was 15 wt% were charged under nitrogen gas flow. It was dissolved by stirring at room temperature. Next, after adding 67.914 g of PMDA (0.3114 mol) and 91.609 g of BPDA (0.3114 mol), stirring was continued at room temperature for 3 hours to carry out the polymerization reaction, thereby obtaining a polyamic acid solution B of the composition of Table 1. . The solution viscosity of Polyamide Solution B was 25,600 cps.

在基材上以硬化後的厚度成為約25 μm的方式均勻地塗布聚醯胺酸溶液B後,在120℃下進行加熱乾燥而除去溶媒。進而,在10分鐘以內自120℃至360℃為止進行階段性熱處理,完成醯亞胺化而獲得的聚醯亞胺膜為非熱塑性。After the polyamic acid solution B was uniformly applied on the base material so that the thickness after curing was about 25 μm, the solution was heated and dried at 120° C. to remove the solvent. Furthermore, the polyimide film obtained by performing stepwise heat treatment from 120° C. to 360° C. within 10 minutes to complete the imidization is non-thermoplastic.

(合成例C) 在氮氣氣流下,在3000 ml的可分離式燒瓶中投入114.972 g的m-TB(0.5416摩爾)、39.580 g的TPE-R(0.1354摩爾)及聚合後的固體成分濃度成為15 wt%的量的DMAc,在室溫下進行攪拌使其溶解。接下來,在添加145.447 g的PMDA(0.6668摩爾)後,在室溫下繼續攪拌3小時並進行聚合反應,從而獲得表1的組成的聚醯胺酸溶液C。聚醯胺酸溶液C的溶液黏度為27,200 cps。 (Synthesis example C) In a 3000 ml separable flask, 114.972 g of m-TB (0.5416 mol), 39.580 g of TPE-R (0.1354 mol), and an amount of 15 wt % of solid content after polymerization were charged under nitrogen flow. DMAc was dissolved by stirring at room temperature. Next, after adding 145.447 g of PMDA (0.6668 mol), stirring was continued at room temperature for 3 hours to carry out a polymerization reaction, whereby a polyamic acid solution C of the composition of Table 1 was obtained. The solution viscosity of Polyamide Solution C was 27,200 cps.

在基材上以硬化後的厚度成為約25 μm的方式均勻地塗布聚醯胺酸溶液C後,在120℃下進行加熱乾燥而除去溶媒。進而,在10分鐘以內自120℃至360℃為止進行階段性熱處理,完成醯亞胺化而獲得的聚醯亞胺膜為非熱塑性。The polyamic acid solution C was uniformly applied on the base material so that the thickness after curing was about 25 μm, and then the solvent was removed by heating and drying at 120°C. Furthermore, the polyimide film obtained by performing stepwise heat treatment from 120° C. to 360° C. within 10 minutes to complete the imidization is non-thermoplastic.

[表1] 聚醯胺酸溶液 酸二酐[摩爾%] 二胺[摩爾%] PMDA BTDA BPDA TPE-R APB BAPP BAPB m-TB 4,4'-DAPE TPE-Q 雙苯胺-P 1 100 0 0 100 0 0 0 0 0 0 0 2 80 20 0 100 0 0 0 0 0 0 0 3 70 30 0 100 0 0 0 0 0 0 0 4 60 40 0 100 0 0 0 0 0 0 0 5 50 50 0 100 0 0 0 0 0 0 0 6 30 70 0 100 0 0 0 0 0 0 0 7 20 80 0 100 0 0 0 0 0 0 0 8 0 100 0 100 0 0 0 0 0 0 0 9 30 60 10 100 0 0 0 0 0 0 0 10 30 50 20 100 0 0 0 0 0 0 0 11 30 40 30 100 0 0 0 0 0 0 0 12 30 70 0 80 20 0 0 0 0 0 0 13 40 60 0 50 0 50 0 0 0 0 0 14 50 50 0 40 0 0 60 0 0 0 0 15 30 0 70 80 0 0 0 20 0 0 0 16 0 100 0 0 0 0 0 0 100 0 0 A 50 0 50 0 0 0 0 90 0 5 5 B 50 0 50 0 0 5 0 95 0 0 0 C 100 0 0 20 0 0 0 80 0 0 0 [Table 1] Polyamide solution Acid dianhydride [mol%] Diamine [mol%] PMDA BTDA BPDA TPE-R APB BAPP BAPB m-TB 4,4'-DAPE TPE-Q Dianiline-P 1 100 0 0 100 0 0 0 0 0 0 0 2 80 20 0 100 0 0 0 0 0 0 0 3 70 30 0 100 0 0 0 0 0 0 0 4 60 40 0 100 0 0 0 0 0 0 0 5 50 50 0 100 0 0 0 0 0 0 0 6 30 70 0 100 0 0 0 0 0 0 0 7 20 80 0 100 0 0 0 0 0 0 0 8 0 100 0 100 0 0 0 0 0 0 0 9 30 60 10 100 0 0 0 0 0 0 0 10 30 50 20 100 0 0 0 0 0 0 0 11 30 40 30 100 0 0 0 0 0 0 0 12 30 70 0 80 20 0 0 0 0 0 0 13 40 60 0 50 0 50 0 0 0 0 0 14 50 50 0 40 0 0 60 0 0 0 0 15 30 0 70 80 0 0 0 20 0 0 0 16 0 100 0 0 0 0 0 0 100 0 0 A 50 0 50 0 0 0 0 90 0 5 5 B 50 0 50 0 0 5 0 95 0 0 0 C 100 0 0 20 0 0 0 80 0 0 0

[實施例1] 將作為與銅箔相接觸的第一層的聚醯胺酸溶液A以硬化後的厚度成為23 μm的方式均勻地塗布在銅箔上後,在120℃下加熱乾燥2分鐘而除去溶媒。將作為第二層的聚醯胺酸溶液1以硬化後的厚度成為2 μm的方式均勻地塗布在第一層上後,在130℃下加熱乾燥30秒鐘而除去溶媒。繼而,藉由140℃至360℃的階段性熱處理完成醯亞胺化,製作了覆銅層疊板。然後,使用氯化鐵水溶液蝕刻除去銅箔,獲得聚醯亞胺膜。所獲得的聚醯亞胺膜的物理性質如表2所示。 [Example 1] The polyamide solution A, which is the first layer in contact with the copper foil, was uniformly applied on the copper foil so that the thickness after curing was 23 μm, and then the solvent was removed by heating and drying at 120° C. for 2 minutes. The polyamic acid solution 1 as the second layer was uniformly coated on the first layer so that the thickness after curing was 2 μm, and then the solvent was removed by heating and drying at 130° C. for 30 seconds. Next, the imidization was completed by stepwise heat treatment at 140°C to 360°C, and a copper-clad laminate was produced. Then, the copper foil was removed by etching using an aqueous ferric chloride solution to obtain a polyimide film. The physical properties of the obtained polyimide film are shown in Table 2.

[實施例2]~[實施例15]及[比較例1]~[比較例2] 如表2所示,除了改變第一層及第二層的聚醯胺酸溶液以外,以與實施例1相同的方式獲得聚醯亞胺膜。 [Example 2] to [Example 15] and [Comparative Example 1] to [Comparative Example 2] As shown in Table 2, a polyimide film was obtained in the same manner as in Example 1, except that the polyimide solutions of the first layer and the second layer were changed.

[表2]   聚醯亞胺層結構 剝離強度 介電特性 氧透過係數 熱膨脹係數 第一層 第二層 [kN/m] 相對介電常數 介電損耗角正切 [mol·m/m 2·s·Pa] [ppm/K] 實施例1 A 1 0.86 3.39 0.0037 1.32E-18 23.0 實施例2 A 2 0.85 3.39 0.0039 1.57E-18 23.2 實施例3 A 3 0.76 3.38 0.0038 1.25E-18 23.4 實施例4 A 4 0.99 3.39 0.0037 1.28E-18 23.6 實施例5 A 5 0.87 3.38 0.0037 1.42E-18 23.5 實施例6 A 6 0.95 3.36 0.0037 1.42E-18 23.8 實施例7 A 7 1.34 3.37 0.0037 1.53E-18 23.6 實施例8 A 8 1.36 3.36 0.0036 1.48E-18 23.9 實施例9 A 9 1.01 3.37 0.0038 1.57E-18 24.0 實施例10 A 10 0.87 3.36 0.0038 1.52E-18 23.7 實施例11 A 11 0.85 3.36 0.0037 1.39E-18 23.9 實施例12 A 12 1.14 3.36 0.0038 1.27E-18 24.0 實施例13 A 13 0.98 3.38 0.0038 1.28E-18 23.8 實施例14 A 14 0.83 3.37 0.0039 1.33E-18 23.8 實施例15 B 6 1.04 3.37 0.0038 1.18E-18 22.1 比較例1 A 16 1.41 3.4 0.0044 1.60E-18 23.7 比較例2 C 6 1.06 3.51 0.0071 2.48E-18 23.9 [Table 2] Polyimide layer structure peel strength Dielectric properties oxygen transmission coefficient Thermal expansion coefficient level one Second floor [kN/m] Relative permittivity dielectric loss tangent [mol m/m 2 s Pa] [ppm/K] Example 1 A 1 0.86 3.39 0.0037 1.32E-18 23.0 Example 2 A 2 0.85 3.39 0.0039 1.57E-18 23.2 Example 3 A 3 0.76 3.38 0.0038 1.25E-18 23.4 Example 4 A 4 0.99 3.39 0.0037 1.28E-18 23.6 Example 5 A 5 0.87 3.38 0.0037 1.42E-18 23.5 Example 6 A 6 0.95 3.36 0.0037 1.42E-18 23.8 Example 7 A 7 1.34 3.37 0.0037 1.53E-18 23.6 Example 8 A 8 1.36 3.36 0.0036 1.48E-18 23.9 Example 9 A 9 1.01 3.37 0.0038 1.57E-18 24.0 Example 10 A 10 0.87 3.36 0.0038 1.52E-18 23.7 Example 11 A 11 0.85 3.36 0.0037 1.39E-18 23.9 Example 12 A 12 1.14 3.36 0.0038 1.27E-18 24.0 Example 13 A 13 0.98 3.38 0.0038 1.28E-18 23.8 Example 14 A 14 0.83 3.37 0.0039 1.33E-18 23.8 Example 15 B 6 1.04 3.37 0.0038 1.18E-18 22.1 Comparative Example 1 A 16 1.41 3.4 0.0044 1.60E-18 23.7 Comparative Example 2 C 6 1.06 3.51 0.0071 2.48E-18 23.9

[實施例16] 將作為與銅箔相接觸的第一層的聚醯胺酸溶液A以硬化後的厚度成為47 μm的方式均勻地塗布在銅箔上後,在120℃下加熱乾燥4分鐘而除去溶媒。將作為第二層的聚醯胺酸溶液1以硬化後的厚度成為3 μm的方式均勻地塗布在第一層上後,在130℃下加熱乾燥1分鐘而除去溶媒。繼而,藉由140℃至360℃的階段性熱處理完成醯亞胺化,製作了覆銅層疊板。然後,使用氯化鐵水溶液蝕刻除去銅箔,獲得聚醯亞胺膜。所獲得的聚醯亞胺膜的物理性質如表3所示。 [Example 16] The polyamide solution A, which is the first layer in contact with the copper foil, was uniformly coated on the copper foil so that the thickness after curing was 47 μm, and then the solvent was removed by heating and drying at 120° C. for 4 minutes. The polyamic acid solution 1 as the second layer was uniformly applied on the first layer so that the thickness after curing was 3 μm, and then the solvent was removed by heating and drying at 130° C. for 1 minute. Next, the imidization was completed by stepwise heat treatment at 140°C to 360°C, and a copper-clad laminate was produced. Then, the copper foil was removed by etching using an aqueous ferric chloride solution to obtain a polyimide film. The physical properties of the obtained polyimide film are shown in Table 3.

[實施例17]~[實施例30]及[比較例3]~[比較例4] 如表3所示,除了改變第一層及第二層的聚醯胺酸溶液以外,以與實施例16相同的方式獲得聚醯亞胺膜。 [Example 17] to [Example 30] and [Comparative Example 3] to [Comparative Example 4] As shown in Table 3, a polyimide film was obtained in the same manner as in Example 16 except that the polyimide solutions of the first layer and the second layer were changed.

[表3]   聚醯亞胺層結構 剝離強度 介電特性 氧透過係數 熱膨脹係數 第一層 第二層 [kN/m] 相對介電常數 介電損耗角正切 [mol·m/m 2·s·Pa] [ppm/K] 實施例16 A 1 1.06 3.39 0.0037 1.20E-18 24.6 實施例17 A 2 1.08 3.39 0.0036 1.19E-18 24.6 實施例18 A 3 1.32 3.38 0.0038 1.34E-18 25.0 實施例19 A 4 1.18 3.38 0.0037 1.31E-18 24.9 實施例20 A 5 1.5 3.4 0.0036 1.30E-18 25.1 實施例21 A 6 1.57 3.37 0.0038 1.46E-18 24.9 實施例22 A 7 1.77 3.38 0.0036 1.51E-18 25.1 實施例23 A 8 1.9 3.37 0.0038 1.35E-18 25.5 實施例24 A 9 1.38 3.38 0.0036 1.19E-18 25.2 實施例25 A 10 1.2 3.36 0.0038 1.30E-18 25.3 實施例26 A 11 1.15 3.37 0.0038 1.35E-18 25.4 實施例27 A 12 1.61 3.37 0.0036 1.52E-18 25.5 實施例28 A 13 1.42 3.37 0.0037 1.59E-18 25.0 實施例29 A 14 1.29 3.36 0.0038 1.47E-18 25.3 實施例30 B 6 1.52 3.38 0.0036 1.16E-18 22.8 比較例3 A 16 1.93 3.38 0.0042 1.32E-18 24.8 比較例4 C 6 1.55 3.51 0.007 2.44E-18 25.0 [table 3] Polyimide layer structure peel strength Dielectric properties oxygen transmission coefficient Thermal expansion coefficient level one Second floor [kN/m] Relative permittivity dielectric loss tangent [mol m/m 2 s Pa] [ppm/K] Example 16 A 1 1.06 3.39 0.0037 1.20E-18 24.6 Example 17 A 2 1.08 3.39 0.0036 1.19E-18 24.6 Example 18 A 3 1.32 3.38 0.0038 1.34E-18 25.0 Example 19 A 4 1.18 3.38 0.0037 1.31E-18 24.9 Example 20 A 5 1.5 3.4 0.0036 1.30E-18 25.1 Example 21 A 6 1.57 3.37 0.0038 1.46E-18 24.9 Example 22 A 7 1.77 3.38 0.0036 1.51E-18 25.1 Example 23 A 8 1.9 3.37 0.0038 1.35E-18 25.5 Example 24 A 9 1.38 3.38 0.0036 1.19E-18 25.2 Example 25 A 10 1.2 3.36 0.0038 1.30E-18 25.3 Example 26 A 11 1.15 3.37 0.0038 1.35E-18 25.4 Example 27 A 12 1.61 3.37 0.0036 1.52E-18 25.5 Example 28 A 13 1.42 3.37 0.0037 1.59E-18 25.0 Example 29 A 14 1.29 3.36 0.0038 1.47E-18 25.3 Example 30 B 6 1.52 3.38 0.0036 1.16E-18 22.8 Comparative Example 3 A 16 1.93 3.38 0.0042 1.32E-18 24.8 Comparative Example 4 C 6 1.55 3.51 0.007 2.44E-18 25.0

實施例1~實施例30的由覆銅層疊板製作的聚醯亞胺膜中,第二層的聚醯亞胺層的二胺殘基的30摩爾%以上是1,3-雙(氨基苯氧基)苯殘基,而且由第一層及第二層層疊而成的聚醯亞胺絕緣層的(i)氧透過係數為2.0×10 -18mol·m/m 2·s·Pa以下,(ii)熱膨脹係數為10 ppm/K~30 ppm/K的範圍內,(iii)10 GHz下的介電損耗角正切(Tanδ)為0.004以下,而且層厚為10 μm~100 μm的範圍內,因此剝離強度成為0.7 kN/m以上而不會使介電特性劣化。因此,可在不損及單面覆銅層疊板的良好的特性的情況下加工成兩面覆銅層疊板。另外,由本發明的覆銅層疊板形成的電路基板可獲得穩定且良好的高頻傳輸特性。 In the polyimide films produced from the copper-clad laminates of Examples 1 to 30, 30 mol % or more of the diamine residues in the polyimide layer of the second layer is 1,3-bis(aminobenzene) oxy) benzene residue, and the (i) oxygen permeability coefficient of the polyimide insulating layer formed by laminating the first layer and the second layer is 2.0×10 −18 mol·m/m 2 ·s·Pa or less , (ii) the thermal expansion coefficient is in the range of 10 ppm/K to 30 ppm/K, (iii) the dielectric loss tangent (Tanδ) at 10 GHz is below 0.004, and the layer thickness is in the range of 10 μm to 100 μm Therefore, the peel strength becomes 0.7 kN/m or more without deteriorating the dielectric properties. Therefore, it can be processed into a double-sided copper-clad laminate without impairing the good properties of the single-sided copper-clad laminate. In addition, the circuit board formed of the copper-clad laminate of the present invention can obtain stable and good high-frequency transmission characteristics.

另一方面,由比較例1、比較例3的結果可知,即使第一層為低介電性,若第二層不含有1,3-雙(氨基苯氧基)苯殘基,則也會損及原有的低介電性。On the other hand, from the results of Comparative Example 1 and Comparative Example 3, even if the first layer has low dielectric properties, if the second layer does not contain 1,3-bis(aminophenoxy)benzene residues, the damage the original low dielectric properties.

另外,比較例2、比較例4的由覆銅層疊板製作的聚醯亞胺膜中,第二層的聚醯亞胺層的二胺殘基僅包含1,3-雙(氨基苯氧基)苯殘基,因此剝離強度令人滿意,但由於第一層的影響,氧透過係數超過2.0×10 -18mol·m/m 2·s·Pa,介電損耗角正切超過0.004。此外,在比較例4的情況下,厚度是比較例2中聚醯亞胺膜的兩倍,但未觀察到介電損耗角正切的改善。 In addition, in the polyimide films made of the copper-clad laminates of Comparative Examples 2 and 4, the diamine residues of the second polyimide layer contained only 1,3-bis(aminophenoxy) ) benzene residues, so the peel strength is satisfactory, but due to the influence of the first layer, the oxygen permeability coefficient exceeds 2.0×10 −18 mol·m/m 2 ·s·Pa, and the dielectric loss tangent exceeds 0.004. Furthermore, in the case of Comparative Example 4, the thickness was twice that of the polyimide film in Comparative Example 2, but no improvement in dielectric loss tangent was observed.

由以上結果可知,藉由採用實施例的結構,可獲得在維持低介電性的狀態下與接合片的密合性優異的覆銅層疊板。From the above results, it was found that by adopting the structure of the example, a copper-clad laminate excellent in adhesion to the bonding sheet while maintaining low dielectric properties was obtained.

以上,以例示的目的對本發明的實施方式進行了詳細說明,但本發明當然並不受所述實施方式制約,能夠進行各種變形。As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, it cannot be overemphasized that this invention is not limited by the said embodiment, Various deformation|transformation is possible.

10:金屬層 20:聚醯亞胺絕緣層 21:聚醯亞胺層 23:聚醯亞胺層(P) 30:覆金屬層疊板 10: Metal layer 20: Polyimide insulating layer 21: Polyimide layer 23: Polyimide layer (P) 30: Metal clad laminate

圖1是表示本發明的實施方式的覆金屬層疊板的結構的示意性剖面圖。FIG. 1 is a schematic cross-sectional view showing the structure of a metal-clad laminate according to an embodiment of the present invention.

10:金屬層 10: Metal layer

20:聚醯亞胺絕緣層 20: Polyimide insulating layer

21:聚醯亞胺層 21: Polyimide layer

23:聚醯亞胺層(P) 23: Polyimide layer (P)

30:覆金屬層疊板 30: Metal clad laminate

Claims (9)

一種聚醯亞胺膜,具有多個聚醯亞胺層,所述聚醯亞胺膜的特徵在於,滿足下述的條件(i)~條件(iv): (i)氧透過係數為2.0×10 -18mol·m/m 2·s·Pa以下; (ii)熱膨脹係數為10 ppm/K~30 ppm/K的範圍內; (iii)10 GHz下的介電損耗角正切(Tanδ)為0.004以下;以及 (iv)厚度為10 μm~100 μm的範圍內; 所述聚醯亞胺膜在至少一個露出面側具有聚醯亞胺層(P), 構成所述聚醯亞胺層(P)的聚醯亞胺(p)含有由四羧酸二酐成分衍生的酸酐殘基、及由二胺成分衍生的二胺殘基,所述二胺殘基含有相對於全部二胺殘基為至少30摩爾%的由下述通式(1)所表示的二胺化合物衍生的二胺殘基,
Figure 03_image007
A polyimide film having a plurality of polyimide layers, wherein the polyimide film is characterized in that the following conditions (i) to (iv) are satisfied: (i) The oxygen permeability coefficient is 2.0× 10 -18 mol·m/m 2 ·s·Pa or less; (ii) the thermal expansion coefficient is in the range of 10 ppm/K to 30 ppm/K; (iii) the dielectric loss tangent (Tanδ) at 10 GHz is 0.004 or less; and (iv) a thickness in the range of 10 μm to 100 μm; the polyimide film has a polyimide layer (P) on at least one exposed surface side, constituting the polyimide layer ( The polyimide (p) of P) contains an acid anhydride residue derived from a tetracarboxylic dianhydride component and a diamine residue derived from a diamine component, and the diamine residue contains all the diamine residues is at least 30 mol% of a diamine residue derived from a diamine compound represented by the following general formula (1),
Figure 03_image007
.
如請求項1所述的聚醯亞胺膜,其中所述通式(1)所表示的二胺化合物為1,3-雙(4-氨基苯氧基)苯。The polyimide film according to claim 1, wherein the diamine compound represented by the general formula (1) is 1,3-bis(4-aminophenoxy)benzene. 如請求項2所述的聚醯亞胺膜,其中相對於所述聚醯亞胺(p)中的全部酸酐殘基,合計含有至少60摩爾%的由均苯四甲酸二酐衍生的酸酐殘基及由3,3',4,4'-二苯甲酮四羧酸二酐衍生的酸酐殘基。The polyimide film according to claim 2, which contains at least 60 mol % of acid anhydride residues derived from pyromellitic dianhydride in total relative to all acid anhydride residues in the polyimide (p) and acid anhydride residues derived from 3,3',4,4'-benzophenone tetracarboxylic dianhydride. 如請求項1所述的聚醯亞胺膜,其中所述多個聚醯亞胺層含有非熱塑性聚醯亞胺層,所述非熱塑性聚醯亞胺層滿足下述的條件(1)~條件(3): (1)構成所述非熱塑性聚醯亞胺層的非熱塑性聚醯亞胺在由全部單體成分衍生的全部單體殘基中含有50摩爾%以上的具有聯苯骨架的單體殘基; (2)厚度為7 μm~70 μm的範圍內;以及 (3)厚度相對於所述聚醯亞胺膜整體的厚度的比率為70%以上。 The polyimide film according to claim 1, wherein the plurality of polyimide layers comprise non-thermoplastic polyimide layers, and the non-thermoplastic polyimide layers satisfy the following conditions (1) to Condition (3): (1) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains 50 mol% or more of monomer residues having a biphenyl skeleton in all monomer residues derived from all monomer components; (2) The thickness is in the range of 7 μm to 70 μm; and (3) The ratio of the thickness to the thickness of the entire polyimide film is 70% or more. 如請求項4所述的聚醯亞胺膜,其中在所述非熱塑性聚醯亞胺層中,由構成所述非熱塑性聚醯亞胺的二胺成分衍生的二胺殘基含有相對於全部二胺殘基為20摩爾%以上的具有聯苯骨架的二胺殘基,由四羧酸二酐成分衍生的酸酐殘基含有相對於全部酸酐殘基為20摩爾%以上的具有聯苯骨架的酸酐殘基。The polyimide film according to claim 4, wherein in the non-thermoplastic polyimide layer, a diamine residue derived from a diamine component constituting the non-thermoplastic polyimide contains a content relative to all The diamine residues are 20 mol% or more of diamine residues having a biphenyl skeleton, and the acid anhydride residues derived from the tetracarboxylic dianhydride component contain 20 mol% or more of diamine residues having a biphenyl skeleton with respect to all acid anhydride residues. anhydride residues. 如請求項4或5所述的聚醯亞胺膜,其中具有聯苯骨架的單體殘基是由2,2'-二甲基-4,4'-二氨基聯苯衍生的二氨基殘基及由3,3',4,4'-聯苯四羧酸二酐衍生的酸酐殘基。The polyimide film according to claim 4 or 5, wherein the monomer residue having a biphenyl skeleton is a diamino residue derived from 2,2'-dimethyl-4,4'-diaminobiphenyl group and acid anhydride residue derived from 3,3',4,4'-biphenyltetracarboxylic dianhydride. 一種覆金屬層疊板,具有金屬層、及聚醯亞胺絕緣層,所述覆金屬層疊板中,所述聚醯亞胺絕緣層包含如請求項1所述的聚醯亞胺膜。A metal-clad laminate has a metal layer and a polyimide insulating layer. In the metal-clad laminate, the polyimide insulating layer includes the polyimide film according to claim 1. 一種覆金屬層疊板的製造方法,製造如請求項7所述的覆金屬層疊板,所述覆金屬層疊板的製造方法包括: 在金屬層上塗布聚醯胺酸的溶液,並進行乾燥而形成單層或多層的第一聚醯胺酸層的步驟; 在所述第一聚醯胺酸層上塗布作為所述聚醯亞胺(p)的前體的聚醯胺酸的溶液,並進行乾燥而形成第二聚醯胺酸層的步驟;以及 藉由將所述第一聚醯胺酸層中所含的聚醯胺酸及第二聚醯胺酸層中所含的聚醯胺酸醯亞胺化,形成所述聚醯亞胺絕緣層的步驟。 A method for manufacturing a metal-clad laminate, the metal-clad laminate as claimed in claim 7, the method for manufacturing the metal-clad laminate comprising: The step of coating the polyamide acid solution on the metal layer and drying to form a single-layer or multi-layer first polyamide layer; A step of coating a solution of a polyamic acid that is a precursor of the polyimide (p) on the first polyamic acid layer, and drying to form a second polyamic acid layer; and The polyimide insulating layer is formed by imidizing the polyamic acid contained in the first polyamic acid layer and the polyamic acid contained in the second polyamic acid layer A step of. 一種電路基板,是將如請求項7所述的覆金屬層疊板的金屬層加工成配線。A circuit board in which the metal layer of the metal-clad laminate according to claim 7 is processed into wiring.
TW110148305A 2020-12-24 2021-12-23 Polyimide film, metal-clad laminate, method for producing same and circuit substrate TW202225276A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215638 2020-12-24
JP2020215638 2020-12-24

Publications (1)

Publication Number Publication Date
TW202225276A true TW202225276A (en) 2022-07-01

Family

ID=82069712

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110148305A TW202225276A (en) 2020-12-24 2021-12-23 Polyimide film, metal-clad laminate, method for producing same and circuit substrate

Country Status (4)

Country Link
JP (1) JP2022101484A (en)
KR (1) KR20220092412A (en)
CN (1) CN114672048A (en)
TW (1) TW202225276A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085047A1 (en) * 2022-10-19 2024-04-25 株式会社カネカ Multilayer polyimide film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7212515B2 (en) 2018-12-26 2023-01-25 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards

Also Published As

Publication number Publication date
KR20220092412A (en) 2022-07-01
CN114672048A (en) 2022-06-28
JP2022101484A (en) 2022-07-06

Similar Documents

Publication Publication Date Title
TWI781901B (en) Polyimide film, copper laminate and circuit substrate
JP6908590B2 (en) Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
KR102694527B1 (en) Metal-clad laminate and circuit board
TW201700673A (en) Multilayer adhesive film and flexible metal-clad laminate
TWI804658B (en) Metal-clad laminates and circuit boards
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
JP2019065180A (en) Polyimide film, metal-clad laminate and circuit board
JPWO2020022129A5 (en)
JP2023052289A (en) Metal-clad laminate and circuit board
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
TWI865703B (en) Metal-clad laminates and circuit boards
TW202225276A (en) Polyimide film, metal-clad laminate, method for producing same and circuit substrate
KR20230117670A (en) Metal clad laminate and circuit board
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
TWI877057B (en) Metal-clad laminates and circuit boards
JP7598756B2 (en) Resin films, metal-clad laminates and circuit boards
TW202237765A (en) Circuit board
TW202413090A (en) Metal-clad laminate, circuit board, electronic device and electronic apparatus
TW202405055A (en) Polyamic acid, polyimide, metal-clad laminate and circuit board