TWI737959B - 探索裝置、探索方法及電漿處理裝置 - Google Patents
探索裝置、探索方法及電漿處理裝置 Download PDFInfo
- Publication number
- TWI737959B TWI737959B TW108103034A TW108103034A TWI737959B TW I737959 B TWI737959 B TW I737959B TW 108103034 A TW108103034 A TW 108103034A TW 108103034 A TW108103034 A TW 108103034A TW I737959 B TWI737959 B TW I737959B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- data
- aforementioned
- processing
- search
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32926—Software, data control or modelling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4155—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45031—Manufacturing semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24571—Measurements of non-electric or non-magnetic variables
- H01J2237/24578—Spatial variables, e.g. position, distance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
- H01J37/3211—Antennas, e.g. particular shapes of coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
- H01J37/32963—End-point detection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Software Systems (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Computational Linguistics (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Drying Of Semiconductors (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
[課題]
謀求半導體處理裝置方面的運用的效率化。
[解決手段]
為了探索為了加工為目標加工形狀而對半導體處理裝置設定的輸入參數值,基於輸入參數值與輸出參數值,生成顯示輸入參數值與輸出參數值的關係的預測模型,該輸出參數值係對半導體處理裝置設定輸入參數值而加工後的加工結果的實測值;此時,在半導體處理裝置進行加工後的加工結果的實測值為缺損資料的情況下,基於產生前述缺損資料的輸入參數值與缺損代替資料,生成預測模型,該缺損代替資料係置換屬缺損資料的實測值者。
Description
本發明涉及探索解的探索裝置、探索方法及電漿處理裝置。
為了半導體裝置的性能提升,構成半導體裝置的新材料被導入,同時半導體裝置的構造複雜化。此外,在半導體裝置的加工,要求奈米等級的精度。此外,為了半導體裝置的生產性提升,要求盡可能持續在維持該精度的狀態下的量產處理。要符合此等要求,半導體裝置需要可極高精度地加工多種的材料及構造。因此,處理半導體裝置的半導體處理裝置的控制範圍擴大,追加多數個控制參數。使用半導體處理裝置,從而一面維持高生產性,一面生產高性能的半導體裝置。
另一方面,要充分提取半導體處理裝置的性能,需要按半導體處理裝置決定數種至於數十種的輸入參數。再者,在一個程序內包含多數個步驟,需要按該步驟變更輸入參數。因此,極難以找到獲得目標的加工結果的輸入參數之組合。為此,由於加工條件開發的延長化,使得開發成本增大。再者,高難度的程序數增加,可應付其之具有高度的知識與技術的高級工程師不足。
為了生產性的維持及提升,需要取得將半導體裝置進行量產中的半導體處理裝置的狀態及加工結果的資料。以此等資料取得為目的之複數個感測器及監視器被搭載於半導體處理裝置。要實施為了就將半導體裝置進行量產中的半導體處理裝置的狀態及加工結果的資料變動進行校正用的控制,需要解析感測器資料及監視資料與加工結果的關係,找出控制用參數。由於進行奈米等級的加工控制,搭載於半導體處理裝置的感測器及製造狀況的監視器的數量增加,資料取得的頻率亦增加。據此,取得的資料量增大。因此,需要的高精度的半導體處理裝置的控制方法的開發需要龐大的資料的解析及控制性能的檢證,極困難。
半導體裝置如此之先進裝置的製造係為了確保生產性,要求開發半導體處理裝置的老化方法。半導體處理裝置的老化方法指為了半導體處理裝置間的性能差的抑制、量產中的加工特性的歷時變化的校正、及將在半導體處理裝置的保養不可能校正的半導體處理裝置間的性能差縮小用的方法。半導體處理裝置的老化方法的開發係透過具有高度的知識與技術的高級工程師而實施。然而,半導體裝置的製造中的晶圓處理個數及高難度的程序數持續增加,高級工程師的人數不足嚴重化。為此,僅取得資料而無法顧及解析的程序增加。
根據以上,半導體處理裝置自行自動提取半導體處理裝置的性能的功能、及對提取半導體處理裝置的性能的工程師進行支援的功能為半導體處理裝置所要求。
專利文獻1揭露一種技術,利用基於生物學下的自主學習系統,就在增量或隨機地變更製造工具的配方之際的資料進行學習,生成利用其結果進行調節後的配方。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特表2013-518449號公報
[發明所欲解決之問題]
例如,半導體處理裝置的輸入參數係決定半導體處理裝置的動作的參數,包括氣體種類、氣體流量、壓力、接通電力、電壓、電流、處理時間、加熱溫度、冷卻溫度、用量、光量如此的輸入參數。半導體處理裝置的輸出參數係就在半導體處理裝置的處理中或處理後的處理標的物(處理結果)進行監視或計測從而獲得的參數,包括CD (Critical Dimension)、堆積膜厚、ER(Etch Rate)、加工形狀、遮罩選擇比,更包括顯示其等之晶圓面內分布及均勻性如此的加工結果的輸出參數。另外,與此等加工結果具有關聯的某感測器資料及監視資料方面包括光反射光譜、電漿光譜、晶圓入射電流、晶圓電壓、晶圓溫度、裝置構件溫度,更亦包括顯示其等之空間分布及均勻性的資料。感測器資料及監視資料亦為輸出參數。
要解析半導體處理裝置的輸出入關係,需要可就一輸入一輸出至多輸入多輸出的輸出入資料進行解析。然後,要獲得符合目的之輸出結果的輸入參數之組合,需要探索由輸入參數及輸出參數所成的廣大的裝置參數空間。
例如,思考在探索的輸入參數方面選擇兩種使用氣體的各流量、氣體壓力、放電電力、晶圓施加偏壓電力如此的基本的5種類的輸入參數的情況。各輸入參數的控制範圍如下。兩氣體流量的控制範圍係100~200 [sccm]、氣體壓力的控制範圍係1~10[Pa]、放電電力的控制範圍係500~1500[W]、偏壓電力的控制範圍係0~100 [W]如此的典型的範圍。另外,變更各參數之際的最小幅的典型的值如下。兩氣體流量的該值係1[sccm],氣體壓力的該值係0.1[Pa],放電電力的該值係1[W],偏壓電力的該值係1[W]。
此情況下,概算裝置參數的空間整體方面的輸入參數的控制範圍的全組合,亦即概算探索條件數時,為100×100×100×1000×100=1011
。探索1次耗費的時間為1分鐘程度的情況下,全探索條件數的探索耗費10萬年以上,不可能執行。
另外,探索一組份中使每個輸入參數的值的設定數為10個時,探索方面的輸入參數之組合為105
。探索1次的時間為1分鐘程度的情況下,一組份的探索需要2個月以上的時間。要反復探索及探索結果的解析而到達目標的解,探索一組耗費的時間長的情況下,需要作成數日以下、理想上1小時以下。因此,要到達目標的解,探索方面的輸入參數的設定,亦即探索區域的決定極重要。
使探索一組方面的探索條件數為100條件、並使探索時間為1小時,反復此探索而在1日探索2000條件的情況下,裝置參數空間的條件數1011
之中,1日探索0.000002%的區域。持續此1個月的情況下,亦即已執行探索6萬組的情況下成為裝置參數空間之中探索0.00006%的區域。因此,探索一組方面的探索區域窄的情況下,隨機變更探索區域時,可到達最佳的解的可能性極低。另外,存在重複的探索區域的情況下,到達最佳的解所需的時間變更長。
再者,半導體處理裝置的輸出入關係大半的情況下為非線形,於裝置參數空間存在多數個局部解。為此,透過1次的資料解析及推定,從而找到符合輸出參數的值之輸入參數的值之情況極稀少。思考有關裝置參數空間之中1%的探索區域存在1個左右的局部解的情況時,使探索區域為窄區域,隨機選擇探索區域時,即使可到達探索區域內或其附近的最佳的解,仍變成99%的機率到達局部解。因此,需要以效率佳地避開局部解或到達局部解後可到達解的可能性變高的方式決定探索區域。
然而,上述的專利文獻1的技術僅在資料學習時增量或隨機地變更配方,故存在可到達屬成為解的輸入參數之最佳解的可能性極低的如此的問題。換言之,存在比起最佳解恐到達成為不佳的結果的局部解之可能性極高如此的問題。
另外,如前述,被要求對於半導體裝置的新材料導入、裝置構造複雜化、及奈米等級的精度下的加工,於微細圖案加工程序開發,存在頻繁發生圖案的一部分或整體的變形、倒塌、消失如此的問題。再者,存在如下課題:於此等之發生時,無法取得加工結果的測定值,無法進行利用加工結果下的解析。
本發明係目的在於謀求半導體處理裝置方面的運用的效率化。
[解決問題之技術手段]
作為本案中揭露的發明的一方案的探索裝置係一種探索裝置,其係對將加工對象加工為既定的加工形狀的半導體處理裝置,探索為了將加工為目標加工形狀而對半導體處理裝置設定的輸入參數值者,具有處理器、記憶裝置、和儲存於記憶裝置且由處理器執行從而探索為了將加工對象加工為目標加工形狀用的輸入參數值的程式,程式具有生成部,生成部基於輸入參數值與輸出參數值,生成顯示輸入參數值與輸出參數值的關係的預測模型,該輸出參數值係對半導體處理裝置設定輸入參數值而加工後的加工結果的實測值,且生成部在半導體處理裝置進行加工後的加工結果的實測值為缺損資料的情況下,基於產生前述缺損資料的輸入參數值與缺損代替資料,生成預測模型,該缺損代替資料係置換屬缺損資料的實測值者。
[對照先前技術之功效]
依本發明的具代表性的實施方式時,可謀求半導體處理裝置方面的運用的效率化及處理的最佳化。前述的以外的課題、構成及功效係將由以下的實施例的說明而明朗化。
以下,基於圖式說明本發明的實施方式。
[實施例1]
<輸入參數的探索例>
圖1係示出輸入參數的探索例的說明圖。圖1係示出在半導體處理裝置中就可獲得符合目標的輸出資料(上述的輸出參數的值)的輸入資料(上述的輸入參數的值)進行探索之際的相對於半導體處理裝置的輸出入資料(輸入資料與輸出資料之組合)之例。
於此,半導體處理裝置係處理半導體或包含半導體的半導體裝置的裝置。半導體處理裝置具體而言例如包括:光刻裝置、成膜裝置、圖案加工裝置、離子植入裝置、加熱裝置、洗淨裝置。光刻裝置包括:曝光裝置、電子束描繪裝置、X射線描繪裝置。成膜裝置例如包括:CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)、蒸鍍裝置、濺鍍裝置、熱氧化裝置。圖案加工裝置例如包括:濕式蝕刻裝置、乾式蝕刻裝置、電子束加工裝置、雷射加工裝置。離子植入裝置包括電漿摻雜裝置、離子束摻雜裝置。加熱裝置例如包括:電阻加熱裝置、燈加熱裝置、雷射加熱裝置。洗淨裝置包括液體洗淨裝置、超音波洗淨裝置。
圖1示出以X1軸及X2軸的2軸具有2維的座標平面的圖形100。使與該座標平面正交的軸為Y軸。X1軸係成為往半導體處理裝置的輸入的輸入參數X1的座標軸,X2軸係成為往半導體處理裝置的輸入的輸入參數X2的座標軸。於X1軸繪示作為輸入參數X1的值之輸入資料x1n(n=1、2、3、…),於X2軸繪示作為輸入參數X2的值之輸入資料x2n。圖形100係以等高線表現以輸入資料x1n及x2n決定的各區域中的Y軸的輸出資料。作為一例,使包含輸出資料y1的區域為最大值(亦即,最佳解),使y13的區域為最小值。此外,圖形100中,X1軸被3分割,當作區域x1a、x1b、x1c。同樣,圖形100中,X2軸被3分割,當作區域x2a、x2b、x2c。
例如,作為目標,就獲得輸出資料最高的區域,亦即就獲得輸出資料y1的輸入資料x1n及x2n之組合進行探索的情況下,解析方法方面,取得裝置參數空間的輸出資料yn的斜率,往輸出資料yn變更大的方向進行探索即可。
然而,該情況下的輸出資料不含以x1a且x2b決定的區域的輸出資料的情況下,探索朝往成為局部解的頂點的輸出資料y4’。此外依此結果決定應探索的輸入參數時,變成集中取得y4’附近的輸出資料,找出獲得y4’本身或非常接近其之輸出資料的輸入參數。亦即,即使反復利用以此探索而取得的輸入參數的值下的解析與透過進一步的探索而得之輸出參數的值的取得,仍無法找出與輸出資料y1對應的最佳解的輸入資料。
另外,在輸出資料y1的周邊、其他區域存在多數個局部解的情況下,相對於裝置參數空間的寬度,取得的輸入參數的值少時,探索恐陷於局部解,無法找出輸出資料y1的可能性變高。另外,假設在推定的存在解之區域方面,推定x13且x23的區域。之後亦如專利文獻1般將探索區域限定於如x13且x23的一部分的微小的區域時,由於輸出資料yn的斜率非常小,故到達輸出資料y1為止的探索次數變龐大,有可能探索失敗。另外,有可能輸出資料yn的斜率被含於輸出資料yn中的雜訊埋沒,使得探索失敗。作為解析對象之輸出資料yn的質不良時,必然成為解的推定亦不良的結果,故要使探索成功,需要指定為了取得可接近解的質優良的資料用的探索空間。
在圖1,使用x1n、x2n及yn如此的3個參數。實際的半導體處理裝置具有多數個輸出入參數,故探索將圖1的各軸的指標多維向量化下的廣大的裝置參數空間。因此,要從如此的廣大的裝置參數空間取得可效率佳地接近解的質優良的資料,需要指定裝置參數空間。另外,半導體處理裝置的輸出入關係大半的情況下為非線形,於裝置參數空間存在多數個局部解。
在本實施例,自動決定為了在考量半導體處理裝置的輸出入資料的解析結果下探索裝置參數空間用的實驗條件,自動進行實驗結果(加工結果)的檢證,反復此等自動動作。據此,探索裝置參數空間而有效地取得最佳解。亦即,有效地找出獲得顯示作為目標的半導體處理裝置的狀態及加工結果的輸出參數的值之輸入參數的值。
<系統構成例>
圖2係示出半導體製造系統的系統構成例的說明圖。半導體製造系統200具有:半導體處理裝置201、裝置控制系統202、監視器系統203、感測器系統204、資料庫205、自動控制系統(探索裝置)206。
半導體處理裝置201如上所述為處理晶圓等的基板、半導體裝置的裝置。半導體處理裝置201連接於裝置控制系統202、監視器系統203及感測器系統204。
裝置控制系統202係在半導體處理裝置201的作動及處理之際就半導體處理裝置201進行控制的系統。裝置控制系統202具有GUI等的輸入介面,以經由輸入介面而輸入的輸入參數的值就半導體處理裝置201的執行進行控制。此外,裝置控制系統202具有網路介面,經由網路介面從外部的電腦及資料庫205取得輸入參數的值。
裝置控制系統202具有:配方設定控制器221、裝置基本設定控制器222、設定錯誤檢測系統223。配方設定控制器221對半導體處理裝置201設定就半導體處理裝置201的處理中的動作進行決定的輸入參數及其值。裝置基本設定控制器222對半導體處理裝置201設定半導體處理裝置201作動用的輸入參數及其值。
設定錯誤檢測系統223在以裝置基本設定控制器222設定輸入參數之際,判定實際上是否可對半導體處理裝置201設定輸入參數。具體而言,例如設定錯誤檢測系統223判定輸入的輸入參數是否在可輸入之範圍內,此外判定是否為半導體處理裝置201的動作成為可能的輸入參數的值之組合。檢測出設定不可能的輸入參數的值或其組合的情況下,設定錯誤檢測系統223係作為設定錯誤,向工程師或半導體處理裝置201連接的上位的系統報告。在發生設定錯誤之際,將輸入的輸入參數的變更中止或中止利用輸入的輸入參數的值下的處理的情形作為日誌資料而記錄。
監視器系統203係就在半導體處理裝置201的處理中或處理的處理標的物(加工結果)進行監視或計測而取得監視資料的系統。監視器系統203包括:光學式監視器、利用電子顯微鏡下的加工尺寸計測裝置、利用紅外光下的溫度計測裝置、利用開爾文探針力顯微鏡下的缺陷檢測裝置、評價處理標的物的電氣特性的探測器裝置。監視器系統203例如就在往處理標的物,使光、雷射光及X射線入射之際的反射、透射、吸收及偏光譜進行計測,從而取得處理標的物的加工形狀、處理對象膜的厚度及加工缺陷作為監視資料。監視器系統203無須直接連接於半導體處理裝置201,可將處理對象往監視器系統203搬運從而取得計測結果,將該結果保存於資料庫205。再者,可將處理對象的一部分作為分段而取出,將該分段往監視器系統搬運從而取得計測結果,將該結果保存於資料庫205。
監視器系統203監視於處理時往處理標的物作用的電漿、氣體、液體等的處理中使用的媒體及因處理而產生的生成物。此等媒體及生成物係與處理標的物直接作用或該作用的結果產生之物。監視器系統203包括:利用光譜計測下的電漿發光監視器、利用紅外光譜計測下的處理室內的堆積物監視器、利用質量分析器下的從處理對象放出的原子及分子監視器、利用探針下的處理室內的電氣特性監視器。此等監視器所為的監視可就可間接評價處理結果的監視資料在實時且處理中當下進行計測。
感測器系統204係取得感測器資料的系統,該感測器資料顯示半導體處理裝置201的裝置狀態。感測器系統204係感測器的集合體。感測器資料包括:電壓、電流、功率等的電源輸出值、整合器內的電容器、線圈等的可變電氣元件的值、各種使用氣體的流量、裝置軀體、裝置構成構件的溫度、處理室內的壓力、壓力控制閥的開度、閥開閉狀態、氣體排氣速度、處理及裝置的動作時點及動作時刻。
資料庫205保存:透過裝置控制系統202設定的各種輸入參數的值、作為來自半導體處理裝置201的處理結果的輸出參數的值、監視器系統203及感測器系統204取得的監視資料及感測器資料。另外,資料庫205保存學習資料。學習資料係過去對半導體處理裝置201提供的輸入參數的值(輸入資料)與從半導體處理裝置201輸出的輸出參數的值(輸出資料)的成組的輸出入資料。資料庫205可為將保存的各種資料以不同的記憶裝置302保存的分散型資料庫205。亦可建構將在各系統處置的資訊保存於個別的系統內的形式的分散型的資料庫。
自動控制系統206利用保存於資料庫205的資料,探索符合目標的解。符合目標的解係使用於半導體處理裝置201的作動之輸入參數的值、及使用於處理中的半導體處理裝置201的動作之輸入參數的值之中至少其中一個參數的值。自動控制系統206具有:目標設定控制器261、自主探索系統262、不穩定動作檢測系統263。
目標設定控制器261係作為探索開始前的初始值,受理:作為目標的輸入參數的值、輸出參數的值、探索結果與目標的差或背離的容許值的輸入。另外,目標設定控制器261受理:於探索執行1個條件的時間之上限、探索次數、探索一組的合計時間之上限、探索整體的合計時間之上限、探索結果的解析時間之上限、可解析資料數之上限的輸入。另外,目標設定控制器261可設定:對於各輸入參數的探索可否的設定、探索的輸入參數的控制範圍之上限值及下限值、供於限定探索的輸入參數的控制範圍用的值。再者,目標設定控制器261可受理以下的輸入:包含過去的結果的探索開始前的最佳的解、為了獲得該解而使用的解析對象資料、說明透過該解析而獲得的目標與輸入參數的關係的模型函數。再此外,目標設定控制器261可受理在透過監視器系統就處理對象進行計測之際使用的計測位置的決定或為了將計測位置往期望的計測位置誘導用的位置資訊資料及影像資訊資料的輸入。
自主探索系統262取得往目標設定控制器261輸入的內容,對一個以上的參數,設定將可探索的輸入參數的控制範圍分為兩個以上的區域的分割區域。如前述,要反復探索及探索結果的解析而到達目標的解,探索一組耗費的時間長的情況下,需要作成數日以下、理想上1小時以下。亦即,使探索一組的探索條件數為Ns、探索一組的探索時間為Ts[min]、使檢索1條件所需的時間為t1[min]時,探索次數為式(1.1)。
Ts=t1・Ns…(1.1)
將探索條件數Ns決定為如下即可:使探索一組為1日以內的情況下,Ts≦1440,1小時以內的情況下,Ts≦60。
要增加探索條件數Ns,將評價探索結果的感測器及監視器的計測時間縮短為有效。尤其,使用在探索實驗中能以實時進行計測的感測器及監視器為有效。
另外,如前述,就成為可間接評價處理結果的資料之對於處理標的物發生作用的媒體及因處理而產生的生成物的特性,透過感測器及監視器進行計測,使得可實時且處理中進行在當場的計測。
隨著於探索中變更的輸入參數的種類增加,探索時間Ts急劇增大。例如,使輸入參數的種類的數量Da為Da=10、使各參數的區域分割數A為A=3的情況下,探索全部的參數之組合的情況下的探索條件數Ns成為式(1.2)。
Ns=ADa
…(1.2)
探索條件數Ns增加至59049。如此之情況下,優選上,就預測存在解的各輸入參數的值進行預測,以該預測值為中心條件,限制在探索時同時可變更的輸入參數的數量。據此,探索條件數Ns及探索時間Ts成為可執行的值。在預測中心條件之際,可利用過去的探索結果或工程師的知識。或者,亦可在探索的初始值方面,給予適當的中心條件,開始探索。
再此外,亦可作成使含於已取得之學習資料內的資料之中與目標的差異最小(最接近目標)的條件為中心條件。顯示學習資料與目標的差異之值方面,可使用各參數的誤差的總和。誤差可利用各參數的差分、絕對值或平方誤差等而計算。
例如,輸入參數的10種之中,就5種類,指定被推定為存在解的分割區域的情況下,變更其他5種類,使得次回的探索條件數Ns可減少至Ns=35
=243。另外,10種的輸入參數之中,使一次可變更的輸入參數的種類的數量為Dc。探索條件數Ns係利用組合學的記號C透過式(1.3)求出。
限定一次可變更的輸入參數,使得可縮小探索條件數Ns。例如使可變更的輸入參數的種類的數Dc為Dc=1時,探索條件數Ns係Ns=21,同樣使Dc為Dc=2時,Ns可縮小至Ns=201。再者,亦可組合:輸入參數的種類之中於幾個輸入參數指定推定為存在解的分割區域的方法、和指定一次可變更的參數的種類的方法。
不穩定動作檢測系統263檢測在探索執行時半導體處理裝置201雖可繼續處理動作惟處理變不穩定的情況。在執行輸入參數的輸入的前階段,設定錯誤檢測系統223確認是否可輸入輸入參數。然而,半導體處理裝置201內的機器成為控制對象的媒體及構件具有非線形性,進而將其等組合而執行處理。因此,設定錯誤檢測系統223有可能在無法檢測出設定錯誤(輸入參數的輸入不可)之下在實際執行處理之際始找出成為動作不穩定的輸入參數。
另外,輸入參數越多,裝置參數空間越擴大,故於裝置參數空間存在局部的不穩定動作區域的情況下,無法事前檢測出的可能性變高。
因此,不穩定動作檢測系統263在半導體處理裝置201的處理中檢測出半導體處理裝置201的不穩定動作的情況下,半導體處理裝置201保存在成為不穩定動作之際的輸入參數及其值,進而向工程師或半導體處理裝置201連接的上位的系統報告。據此,可判斷或預測半導體處理裝置201的不穩定動作所致的處理及探索方面的動作不良。
檢測出不穩定動作的情況下,在處理完畢後實施為了將半導體處理裝置201往固定動作狀態恢復用的序列、或直接停止處理並實施為了將半導體處理裝置201往固定動作狀態恢復用的序列,從而繼續探索。
如此的不穩定動作方面包括:處理中的局部的異常放電、放電強度的振動、急遽的成膜速度變動、膜質變動、氣體壓力的振動、接通電力的瞬間的增減、振動等。前述的發光光譜監視器、堆積物監視器、質量分析監視器、電氣特性監視器、壓力監視器等的實時且處理中可進行當場的計測的監視器就不穩定動作進行檢測。
<探索裝置的硬體構成例>
圖3係示出探索裝置300的硬體構成例的方塊圖。探索裝置300係從探索區域探索成為解的輸入參數的值。自動控制系統206係探索裝置300的一例。探索裝置300具有:處理器301、記憶裝置302、輸入裝置303、輸出裝置304、和通訊介面(通訊IF305)。處理器301、記憶裝置302、輸入裝置303、輸出裝置304、及通訊IF305經由匯流排連接。處理器301控制探索裝置300。記憶裝置302成為處理器301的作業區。另外,記憶裝置302係記憶各種程式、資料的非暫時的或暫時的記錄媒體。記憶裝置302方面例如包括:唯讀記憶體ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、快閃記憶體。輸入裝置303輸入資料。輸入裝置303方面例如包括:鍵盤、滑鼠、觸控面板、數字鍵、掃描機。輸出裝置304輸出資料。輸出裝置304方面例如包括顯示器、印表機。通訊IF305係與網路連接,收發資料。
<探索裝置300的機構性構成例>
圖4係示出探索裝置300的功能性構成例的方塊圖。探索裝置300具有:輸入部401、生成部402、特定部403、判斷部404、設定部405、輸出部406、決定部407、分割部408、和檢測部409。各構成401~409具體而言例如為使處理器301執行記憶在示於圖3的記憶裝置302的程式從而實現的功能。
輸入部401透過使用者操作或從資料庫205的讀取,從而受理各種資料的輸入。具體而言,例如,輸入部401受理對處理半導體裝置的半導體處理裝置201設定的條件值的輸入。對半導體處理裝置201設定的條件係上述的輸入參數。輸入參數具體而言例如包括:氣體種類、氣體流量、壓力、接通電力、電壓、電流、處理時間、加熱溫度、冷卻溫度、用量、光量。
另外,輸入部401受理目標值的輸入,該目標值顯示由半導體處理裝置201處理半導體後的加工結果。由半導體處理裝置201處理半導體後的加工結果係上述的輸出參數。輸出參數具體而言例如包括:半導體處理裝置201所為的半導體的處理結果(加工結果)、和與半導體處理裝置201的裝置狀態相關的資料。半導體處理裝置201所為的半導體的處理結果具體而言例如包括CD (Critical Dimension)、堆積膜厚、ER(Etch Rate)、加工形狀、遮罩選擇比,更包括其等之晶圓面內分布及均勻性。與半導體處理裝置201的處理結果及半導體處理裝置201的裝置狀態相關的資料具體而言,例如包括光反射光譜、電漿光譜、晶圓入射電流、晶圓電壓、晶圓溫度、裝置構件溫度,更包括顯示此等空間分布及均勻性的資料(感測器資料及監視資料)。顯示由半導體處理裝置201處理半導體後的加工結果的目標值係使用者要求的半導體處理裝置201的輸出參數的值。
另外,輸入部401受理透過條件(輸入參數)與加工結果(輸出參數)的範圍從而界定的探索區域內的條件的基準值的輸入。探索區域係透過輸入參數的控制範圍與半導體處理裝置201的輸出參數的控制範圍而界定,為探索輸入參數的值之區域。具體而言,例如為示於圖1的探索區域A。條件的基準值係輸入參數的基準值。具體而言,例如為過去獲得的輸入參數的值。
另外,輸入部401受理探索區域內的作為加工結果的基準值的輸入。作為加工結果的基準值係輸入參數的基準值被給予半導體處理裝置201的情況下的半導體處理裝置201的輸出參數的值。
生成部402基於探索區域內的條件的設定值、和將該設定值給予半導體處理裝置201的情況下的加工結果的實測值,生成顯示條件與加工結果的關係的預測模型。條件的設定值係例如作為學習資料而準備的輸入參數的值。加工結果的實測值係作為學習資料而準備的輸入參數的值(條件的設定值)被給予半導體處理裝置201的情況下的半導體處理裝置201的輸出參數的值。預測模型係顯示輸入參數與輸出參數的關係的函數。生成部402透過可應付神經網路、支援向量機等的多輸入多輸出的回歸分析、相關分析、主成分分析、多元回歸分析等的統計分析,生成顯示探索區域內的條件的設定值與輸出的實測值的關係的預測模型。
特定部403對由生成部402生成的預測模型給予透過輸入部401輸入的目標值,從而從預測模型取得與目標值對應之預測值,從探索區域特定出預測值的存在區域。另外,未取得預測值的存在區域的輸出參數的情況下,生成部402按分割區域取得將分割區域內的條件的設定值給予半導體處理裝置201的情況下的輸出的實測值。
目標值為半導體處理裝置201的輸出參數的值的情況下,特定部403對預測模型給予該輸出參數的值,從而從預測模型取得輸入參數的值,作為與目標值對應的預測值。然後,特定部403從探索區域特定出作為預測值的輸入參數的值的存在區域。具體而言,例如,於圖1中,目標值為輸出參數的值y12之情況下,與該目標值y12對應的預測值係透過圖1的目標值y12的等高線而特定出的輸入參數X1、X2的值。因此,特定部403特定出從探索區域A透過目標值y12的等高線而特定出的輸入參數X1、X2的值的存在區域A1、A2、A3、A8、A9。
判斷部404判斷與預測值對應的目標值是否比透過輸入部401而輸入的作為加工結果的基準值接近目標值。具體而言,例如判斷部404於探索區域A求出與預測值對應的目標值及目標值之間的距離(第1距離)、和作為加工結果的基準值及目標值之間的距離(第2距離)。距離係例如歐氏距離。判斷部404在第1距離比第2距離短的情況下,判斷為與預測值對應的目標值比作為加工結果的基準值接近目標值。判斷部404在第1距離未比第2距離短的情況下,判斷為與預測值對應的目標值不比作為加工結果的基準值接近目標值。
設定部405在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值接近目標值的情況下,將預測值及與預測值對應的目標值設定為條件的基準值及作為加工結果的基準值,將透過特定部403而特定出的預測值的存在區域設定為探索區域。藉此,基準值接近目標值,探索區域亦縮小至預測值的存在區域。
輸出部406在預測值符合目標值的達成條件的情況下輸出具備達成條件下的預測值。達成條件係例如目標值的容許範圍。輸出部406可將具備達成條件下的預測值顯示於作為輸出裝置304的一例的顯示器,亦可經由通訊IF305發送至外部裝置,亦可保存於記憶裝置302、資料庫205。
決定部407在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近目標值的情況下,將預測值及與預測值對應的目標值決定為除外資料(在圖6的步驟S601後述)。除外資料係不可向預測模型給予的輸入參數的值。
此外此情況下,設定部405將透過決定部407決定的除外資料以外的資料設定為學習資料。藉此,生成部402可使用不存在除外資料的學習資料。因此,可謀求作為解的輸入參數的值的探索速度的提升。
另外,決定部407亦可在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近目標值的情況下,將預測值的存在區域決定為除外區域(在圖6的步驟S602後述)。除外區域係預測模型不可輸出的輸入參數的值的區域。
此外此情況下,設定部405將從探索區域除去透過決定部407決定的除外區域後的殘存區域設定為探索區域。藉此,可將只能獲得不接近目標值的加工結果的預測值的範圍除外而縮小探索區域。因此,可謀求作為解的輸入參數的值的探索速度的提升。
分割部408將探索區域分割為複數個區域。具體而言,例如,分割部408如示於圖1,將探索區域A分割為9個區域(分割區域)A1~A9。此情況下,生成部402按分割區域取得將分割區域內的條件的設定值給予半導體處理裝置201的情況下的輸出的實測值。然後,生成部402基於在各分割區域的條件的設定值與輸出的實測值,生成預測模型。透過使用複數個半導體處理裝置201,使得可按分割區域並列地取得實測值,可謀求預測模型的生成速度的提升。
另外,設定部405在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近目標值的情況下,將預測值及與預測值對應的目標值,設定為條件的基準值及作為加工結果的基準值,將預測值的存在區域設定為探索區域(在圖6的步驟S604~S606後述)。藉此,將探索區域更加細分化,使得可執行更詳細的解的探索,確認無解的看漏。
另外,決定部407係如上所述,亦可在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近前述目標值的情況下,將預測值及與預測值對應的目標值決定為除外資料。此情況下,生成部402亦可基於從實測值除去除外資料後的剩餘的實測值、和從設定值除去與剩餘的實測值對應的設定值後的剩餘的設定值,生成預測模型(在圖7後述)。藉此,可謀求作為解的輸入參數的值的探索速度的提升。
另外,決定部407係如上所述,可在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近目標值的情況下,將預測值的存在區域決定為除外區域。此情況下,生成部402亦可基於將從探索區域除去除外區域後的剩餘的探索區域內的條件的設定值、和將該設定值給予半導體處理裝置201的情況下的輸出的實測值,生成預測模型(在圖8後述)。藉此,可謀求作為解的輸入參數的值的探索速度的提升。
檢測部409基於半導體處理裝置201的輸出、和既定的輸出閾值,檢測半導體處理裝置201的不穩定動作。檢測部409相當於不穩定動作檢測系統263。此情況下,輸出部406輸出透過檢測部409而得的檢測結果。
<半導體處理裝置201的控制處理順序例>
圖5係示出半導體處理裝置201的控制處理順序例的流程圖1。探索裝置300受理作為目標的來自半導體處理裝置201的輸出值(輸出參數的目標值)、及探索設定的輸入(步驟S501)。探索設定係例如探索結果與目標值的差或背離的容許值、於探索執行1個條件的時間之上限、探索次數、探索一組的合計時間之上限、探索整體的合計時間之上限、探索結果的解析時間之上限、解析資料數之上限、來自半導體處理裝置201的輸出資料的取得頻率的閾值、來自半導體處理裝置201的輸出資料(輸出參數的值)的取得時間之上限、來自半導體處理裝置201的輸出資料數的下限。
接著,探索裝置300受理成為基底的解的輸入及與該解相關的資訊的輸入(步驟S502)。具體而言,例如探索裝置300受理:過去實用的輸入參數及使用該輸入參數之際的輸出參數、探索開始前的最佳的解(輸入參數的值)及使用最佳的解之際的輸出參數、探索開始前的輸出參數的目標值、說明輸入參數與輸出參數的關係的模型函數的輸入。
接著,探索裝置300將在步驟S502輸入的最佳的解保存為最佳解OS1(步驟S503)。無解的情況下,設定表示離解最遠的情況的記號或值。
接著,探索裝置300將基本探索區域設定為探索區域(步驟S504)。具體而言,例如探索裝置300設定對於各輸入參數的探索可否的設定、探索的輸入參數的控制範圍之上限值及下限值、為了限定探索的輸入參數的控制範圍用的值(例如,上限值、下限值)。另外,探索裝置300參照透過設定錯誤檢測系統223判斷為設定錯誤的輸入參數的控制範圍,決定探索區域。再者,探索裝置300參照透過不穩定動作檢測系統263而檢測出的參數,決定探索區域。另外,不穩定動作檢測系統263保存半導體處理裝置201的動作過去成為不能或不穩定的輸入參數之組合或各輸入參數範圍的值,探索裝置300可利用此決定探索區域。
例如,於圖1中,選擇X1、X2的2個輸入參數作為輸入參數的種類的情況下,使輸入參數X1的控制範圍為[x11、x1n]、使輸入參數X2的控制範圍為[x21、x2n]時,示於圖1的全範圍的區域A成為探索區域。
步驟S501~S504的目標設定控制器261的輸入及設定內容係交往自主探索系統262,透過接下來說明的步驟S505~S510的順序而執行自動探索。
探索裝置300分割探索區域(步驟S505)。具體而言,例如探索裝置300對1個以上的輸入參數,將可探索的輸入參數的控制範圍分割為兩個以上的區域。將分割的區域稱為分割區域。探索條件數變多,預測到在期望時間內無法完成探索的情況下,透過使用就推定為在輸入參數的種類之中於幾個輸入參數存在解的分割區域進行指定的方法、及就可一次變更的輸入參數的種類進行指定的方法,使得可限定探索區域,或減少探索條件數。此外組合此等2個方法,使得可限定探索區域,或減少探索條件數。
例如,於圖1中,選擇X1、X2的2個輸入參數作為輸入參數的種類的情況下,輸入參數X1的控制範圍[x11、x1n]分割為x1a、x1b、x1c,輸入參數X2的控制範圍[x21、x2n]分割為x2a、x2b、x2c時,獲得示於圖1的9個分割區域A1~A9。
探索裝置300按分割區域執行自主探索(步驟S506)。具體而言,例如探索裝置300透過利用分割區域及探索條件下的自主探索,取得各探索條件中的半導體處理裝置201的輸出入資料作為探索結果。輸出入資料係給予半導體處理裝置201的輸入參數的值(輸入資料)與從半導體處理裝置201獲得的輸出參數的值(輸出資料)之組。
具體而言,例如,探索裝置300按分割區域,選擇符合探索條件的輸入參數的值,將選擇的輸入參數的值給予半導體處理裝置201。然後,探索裝置300取得來自半導體處理裝置201的輸出資料(輸出參數的值)。此輸入參數的值及與該值對應的輸出參數的值之組合為探索結果。
此外此情況下,不穩定動作檢測系統263檢測:於自主探索執行時,半導體處理裝置201雖可繼續處理動作惟半導體處理裝置201的處理變不穩定的情況。檢測出不穩定動作的情況下,在處理完畢後實施為了將半導體處理裝置201往固定動作狀態恢復用的序列、或直接停止處理而執行為了將半導體處理裝置201往固定動作狀態恢復用的序列,從而繼續利用目標設定控制器261所為的自主探索。
探索裝置300將每個分割區域的探索結果保存於資料庫205(步驟S507)。具體而言,例如,探索裝置300按分割區域,將作為在自主探索(步驟S506)使用的輸入參數的值、和利用該輸入參數的值而取得的半導體處理裝置201的輸出參數的值之組的輸出入資料,作為每個分割區域的探索結果保存於資料庫205。
探索裝置300生成為了預測符合目標(目標輸出)的解(輸入參數)用的預測模型(步驟S508)。具體而言,例如,探索裝置300利用在步驟S507保存於資料庫205的學習資料,生成表示半導體處理裝置201的輸出入資料的關係的函數作為預測模型。解析輸出入資料的關係的方法方面,可使用神經網路、支援向量回歸、利用核方法下的回歸等的可應付多輸入多輸出的回歸分析。另外,可使用相關分析、主成分分析、多元回歸分析等的統計解析。
於預測模型的生成,輸出資料方面,例如使用取得半導體處理裝置201的處理結果方面的間接的計測值的感測器資料及監視資料。存在輸出資料的取得頻率比在探索設定界定的頻率低、或比在探索設定界定的取得時間長、可透過探索而取得的輸出資料數比在探索設定界定的輸出資料數少的情況。此情況下,取得可取得比輸出資料的取得數多的資料數的感測器資料及監視資料即可。藉此,可解析相對於輸出資料之感測器資料及監視資料的關係、相對於感測器資料及監視資料之輸入資料的關係。另外,使用此等雙方的解析結果,使得可求出相對於輸出資料之輸入資料的關係。
探索裝置300推定存在解的分割區域(步驟S509)。已取得推定為存在解的區域內的輸出資料的情況(步驟S5090A:Yes)下,探索裝置300從推定的分割區域中特定出最佳解OS2,將特定出的最佳解OS2保存於資料庫205(步驟S510)。另外,未取得推定為存在解的區域內的輸出資料的情況(步驟S5090A:No)下,探索裝置300執行推定的區域內的自主探索(步驟S5060A),取得推定為存在解的區域內的輸出資料,亦即取得探索結果,保存於資料庫205(步驟S5070A)。此等自主探索及結果的保存係如同步驟S506及步驟S507的處理。步驟S509的處理包括兩種方法。一種係對預測模型給予在步驟S501給予的輸出參數的目標值的方法(第1推定方法)。
在第1推定方法,具體而言,例如探索裝置300對在步驟S508獲得的預測模型,代入在步驟S501給予的輸出參數的目標值,從而推定成為符合輸出參數的目標值的解之輸入資料(輸入參數的值)。然後,探索裝置300特定出成為解的輸入資料存在的分割區域。例如,預測模型為顯示圖1的輸出入關係的函數之情況下,作為輸出參數的目標值給予y6時,分割區域A1~A9之中,存在解的分割區域方面,推定A1、A4、A7的3個分割區域。A1、A4、A7的各分割區域中未取得輸出資料的情況下,如前述般執行步驟S5060A及步驟S5070A。
於步驟S510,探索裝置300從已取得的輸出資料特定出,存在與目標值y6等的輸出資料的分割區域、存在輸出資料與目標值的差或背離比容許值(在S501給予的容許值)小的輸出資料的分割區域、或最接近目標值y6的輸出資料存在的分割區域,將此分割區域決定為最佳解OS2存在的區域(以下,特定的分割區域)。特定出複數個可成為特定的分割區域的分割區域的情況下,探索裝置300將其等全部決定為最佳解OS2存在的分割區域。或者,探索裝置300將該等複數個分割區域之中可取得輸出資料與目標值的差或背離比容許值(在S501給予的容許值)小的輸出資料的數量最多的分割區域,決定為存在最佳解OS2的分割區域。上述之例的情況下,取得的輸出資料與預測模型所示的圖1同樣的情況下,獲得與y6相等或與y6相近的值之分割區域A1、A4、A7全部或分割區域A4被決定為特定的分割區域。探索裝置300將特定的分割區域中與輸出參數的目標值相等、輸出資料與目標值的差或背離比容許值(在S501給予的容許值)小、或獲得最接近目標值的輸出資料之際的輸入參數的值決定為最佳解OS2。
另一個的步驟S509的處理係在將在步驟S501給予的輸出參數的目標值代入預測模型無法直接求出成為符合輸出參數的目標值的解的輸入參數的情況下可適用的方法(第2推定方法)。第2推定方法係如下方法:使對預測模型一次給予的輸入參數為一組,對預測模型給予多數個輸入參數之組,計算推定輸出參數,取得獲得最接近目標輸出的加工結果的輸入參數之組。例如,探索裝置300將含於各分割區域的輸入參數之組,按分割區域作成一個以上,將此給予預測模型,可計算該情況下的輸出參數。獲得每個分割區域的具代表性的推定輸出之方法方面,作為含於分割區域的輸入參數之組,可使用成為分割區域內之中心座標的值。
將多極數個輸入參數之組給予預測模型而計算推定輸出的情況下,計算時間變龐大時,如利用上述式(1.1)~式(1.3)而敘述,探索裝置300決定給予預測模型的輸入參數之中心條件,從該中心條件限制可變更的輸入參數的種類,從而可抑制計算時間。另外,從中心條件限次可一次變更的參數的數量,使得可抑制計算時間。據此,探索裝置300可一面削減給予預測模型的輸入參數之組的數量,一面獲得取得較接近目標輸出的結果的輸入參數。在設定中心條件之際,可利用過去的探索結果或工程師的知識。或者,可使全探索區域之中心座標為中心條件。
在第2推定方法,具體而言,探索裝置300對在步驟S508獲得的預測模型,代入輸入參數之組的值,從而取得成為預測值之輸出參數的值。例如,預測模型為顯示圖1的輸出入關係的函數之情況下,對於預測模型,作為輸入參數的值,給予(x11、x21)、(x11、x22)、(x11、x23)、(x12、x21)、(x12、x22)、(x12、x23)、(x13、x21)、(x13、x22)、(x13、x23)、(x1n、x21)、(x1n、x22)、(x1n、x23)時,可獲得與各輸入參數對應的推定輸出參數。
未取得與此等各輸入參數對應的輸出參數的情況(步驟S5090A:Yes)下,探索裝置300利用各輸入參數執行自主探索(步驟S5060A),取得推定為存在解的區域內的輸出資料,亦即取得探索結果,保存於資料庫205(步驟S5070A)。此等自主探索及結果的保存係如同步驟S506及步驟S507的處理。另外,已取得與各輸入參數對應的輸出參數情況(步驟S5090A:No)下,轉移至步驟S510。
然後,於步驟S510,探索裝置300例如於分割區域,將獲得成為最接近輸出參數的目標值之預測值的輸出參數的值之輸入參數的值決定為最佳解OS2。例如,取得的輸出資料與預測模型所示的圖1同樣的情況下,輸出參數的目標值為y10時,與輸入參數的值(x13、x23)對應的輸出參數的值y10成為最接近的值。因此,最佳解OS2成為(x13、x23)。另外,第1推定方法及第2推定方法之中,適用何者係被預先設定。
探索裝置300判斷最佳解OS2的值是否為獲得比最佳解OS1的值接近目標的輸出參數之解(步驟S511)。然後,最佳解OS2的值係獲得比最佳解OS1的值接近目標的輸出參數之解的情況(步驟S511:Yes)下,轉移至步驟S512,不是的情況(步驟S511:No)下,轉移至步驟S601(圖6)。
步驟S511:Yes的情況下,探索裝置300將最佳解OS2設定於最佳解OS1,從而更新最佳解OS1(步驟S512)。另外,探索裝置300將更新後的最佳解OS1的分割區域設定為探索區域,從而更新探索區域(步驟S514)。
之後,探索裝置300判斷是否達成目標(步驟S514)。達成目標的情況(步驟S514:Yes)下,探索裝置300結束控制處理。另一方面,未達成目標的情況(步驟S514:No)下,轉移至步驟S505或步驟S601(圖6)。轉移至步驟S505或步驟S601(圖6)中的任一者可被預先設定,亦可每次令使用者選擇。另外,目標未達成(步驟S514:No)且轉移至步驟S505的情況下,探索裝置300分割步驟S513的更新後的探索區域(步驟S505)。
在步驟S514,具體而言,例如與更新後的最佳解OS1對應的輸出參數和目標值相等或與目標值的差在容許範圍內的情況下,探索裝置300判斷為目標達成(步驟S514:Yes)。另外,非與更新後的最佳解OS1對應的輸出參數和目標值相等或與目標值的差在容許範圍內惟經過在步驟S501設定的探索時間的情況下,判斷為達成目標(步驟S514:Yes)。另一方面,非與更新後的最佳解OS1對應的輸出參數和目標值相等或與目標值的差在容許範圍內、且,未經過在步驟S501設定的探索時間的情況下,判斷為目標未達成(步驟S514:No)。
圖6係示出半導體處理裝置201的控制處理順序例的流程圖2。探索裝置300將在步驟S509獲得的分割區域內的探索資料決定為除外資料(步驟S601)。具體而言,例如,探索裝置300將推定區域內的輸入資料(輸入參數的值)及輸出資料(輸出參數)決定為除外資料。除外資料係在今後的處理有可能被除外的資料(從作為實際的解析對象的資料的除外係在圖7的S703或圖6~圖8的S608實施)。同樣,探索裝置300將在步驟S510獲得的分割區域決定為除外區域(步驟S602)。除外區域係在今後的處理有可能被除外的區域(從作為實際的解析對象的資料的除外係在圖8的S803或圖6~圖8的S608實施)。
之後,探索裝置300判斷是否分割在步驟S509獲得的分割區域(步驟S603)。進行分割的情況(步驟S603:Yes)下,轉移至步驟S604,不分割的情況(步驟S603:No)下,轉移至步驟S608。
在步驟S603,具體而言,例如探索裝置300依來自使用者的分割指示輸入的有無,判斷是否將分割區域分割。另外,亦可探索裝置300強制將分割區域分割(步驟S603:Yes)。
之後,探索裝置300如同步驟S508,生成預測模型(步驟S604)。接著,探索裝置300如同步驟S509,在步驟S603分割的分割區域群之中,推定存在解的分割區域(步驟S605)。將推定的分割區域,稱為推定分割區域。然後,探索裝置300於步驟S6090A、S6060A、S6070A,執行與步驟S5090A、S5060A、S5070A同樣的處理。具體而言,例如,已取得推定為存在解的區域內的輸出資料的情況(步驟S6090:Yes)下,探索裝置300從推定的分割區域中特定出最佳解OS3,將特定出的最佳解OS3保存於資料庫205(步驟S606)。此外同樣地,未取得推定為存在解的區域內的輸出資料的情況(步驟S6090:No)下,探索裝置300執行推定的區域內的自主探索(步驟S6060A),取得推定為存在解的區域內的輸出資料,亦即取得探索結果,保存於資料庫205(步驟S6070A)。
之後,如同步驟S511,探索裝置300判斷與最佳解OS3對應的輸出參數的值是否為比與最佳解OS1對應的輸出參數的值接近目標的解(步驟S607)。然後,與最佳解OS3對應的輸出參數的值係比與最佳解OS1對應的輸出參數的值接近目標的解的情況(步驟S607:Yes)下,轉移至步驟S512,不是的情況(步驟S607:No)下,轉移至步驟S608。於步驟S608,探索裝置300從探索區域將除外區域除外、或除外區域的除外及將除外資料除外,從而更新探索區域(步驟S608),轉移至步驟S508。
圖7係示出半導體處理裝置201的控制處理順序例的流程圖3。流程圖3係示於圖6的流程圖2的其他處理例。另外,與圖6相同處理方面,標注相同步驟編號,省略說明。探索裝置300在步驟S601之後,探索裝置300判斷是否將在步驟S601決定的除外資料除外(步驟S703)。除外而解析的情況(步驟S703:Yes)下,轉移至步驟S604,不除外而進行解析的情況(步驟S703:No)下,轉移至步驟S608。
在步驟S703,具體而言,例如探索裝置300依來自使用者的除外指示輸入的有無,判斷是否將除外資料除外而進行解析。另外,亦可探索裝置300強制將除外資料除外而進行解析(步驟S703:Yes)。
之後,探索裝置300在不使用除外資料之下,生成分割區域的預測模型(步驟S604),執行步驟S605、S6090A、S6060A、S6070A、S606、S607、S608。
圖8係示出半導體處理裝置201的控制處理順序例的流程圖4。流程圖4係示於圖6的流程圖2的其他處理例。另外,與圖6相同處理方面,標注相同步驟編號,省略說明。探索裝置300在步驟S602之後,探索裝置300判斷是否將在步驟S602決定的除外區域除外而解析(步驟S803)。除外而解析的情況(步驟S803:Yes)下,轉移至步驟S604,不除外而進行解析的情況(步驟S803:No)下,轉移至步驟S608。
在步驟S803,具體而言,例如探索裝置300依來自使用者的除外指示輸入的有無,判斷是否將除外區域內的解(輸入參數的值)除外而解析。另外,亦可探索裝置300強制將除外區域除外而解析(步驟S803:Yes)。
之後,探索裝置300如同步驟S604,生成分割區域的預測模型(步驟S604)。接著,探索裝置300在不使用除外區域內的解(輸入參數的值)之下,在步驟S603分割的分割區域群之中,推定存在解的分割區域(步驟S605)。將推定的分割區域,稱為推定分割區域。然後,探索裝置300執行步驟S6090A、S6060A、S6070A、S606、S607、S608。
另外,於本控制處理,資料的解析、保存、轉送等的規模變大,其執行時間變比探索1條件的時間長的情況下,可與該等執行並列而持續探索。該情況下,使於探索條件進行變更的輸入參數數、同時變更的輸入參數數、探索區域的分割數之中一個以上增加。據此,使探索條件數增加,探索此條件,使得可利用執行解析等的時間而使探索結果增加。尤其,存在資料的解析所需的時間從數分鐘成為數小時以上的情況,在該解析中持續探索,使得可使探索速度提升。
<半導體處理裝置201的控制處理的適用例1A>
接著,示出為了在半導體裝置的量產前的半導體處理裝置201的保養中校正半導體處理裝置201的裝置差用的控制處理的適用例。此處,作為就機差抑制的順序進行說明之例,使半導體處理裝置201為進行放電處理的蝕刻裝置。另外,此處係將執行放電處理之際的輸入參數稱為配方。在進行放電處理的蝕刻裝置,在成為校正對象的輸出方面,舉例處理結果或使用於處理的放電的特性。校正的方法方面,包括以獲得與成為基準的蝕刻裝置相同的輸出的方式校正其他蝕刻裝置的方法、或以複數個蝕刻裝置的輸出成為均勻的方式校正的方法。
圖9係示出機差抑制方法的流程圖。圖9係具體而言示出例如在半導體裝置的量產前的半導體處理裝置201的保養處理順序例。為了進行裝置差的校正,探索裝置300開始保養後放電資料取得。
首先,探索裝置300利用為了進行基本的放電處理用的配方而進行基準配方放電,取得該情況下的輸出入資料。另外,進行依在量產使用的配方下的放電,取得該情況下的輸出資料(輸出參數的值)(步驟S901)。步驟S901係與步驟S501~S504對應的處理。
接著,探索裝置300探索裝置差校正配方(步驟S902)。步驟S902係與步驟S505~S507對應的處理。然後,探索裝置300執行利用步驟S902探索的裝置差校正配方下的裝置差校正(步驟S903)。步驟S903係與步驟S508~S513、圖6~圖8的處理對應的處理。未達成校正目標的情況(步驟S904:No)下,返回步驟S902,達成校正目標的情況(步驟S904:Yes)下,結束處理。步驟S904係與步驟S514對應的處理。
另外,亦可利用複數個相同的蝕刻裝置並列進行探索從而使探索速度提升。該情況下,使用已依圖9的順序校正裝置差的複數個蝕刻裝置,使得可提高可探索符合目標的解的可能性。再者,使得可將探索的解展開於該等複數個裝置,進行校正。
如此般,在半導體處理裝置201的保養後執行利用探索裝置300下的探索方法,使得可使半導體處理裝置201的輸出參數的值接近成為基準的輸出參數的值(自動機差校正功能)。
<半導體處理裝置201的控制處理的適用例2A>
接著,示出為了於半導體裝置的量產處理校正歷時變化用的控制處理的適用例。
圖10係示出歷時變化校正方法的流程圖。在圖10,如同圖9,作為說明校正歷時變化的順序之例,使半導體處理裝置201為在處理中使用放電的蝕刻裝置。在量產前放電資料取得,為了進行量產中的歷時變化的校正,探索裝置300首先將為了進行基本的放電處理用的基準配方給予蝕刻裝置而進行基準配方放電,取得該情況下的輸出資料(輸出參數的值)(步驟S1011)。步驟S1011係與步驟S501~S504對應的處理。
接著,探索裝置300探索裝置差校正候補配方(步驟S1012)。在步驟S1012,使用可從過去的量產時的輸出入資料的解析結果預測作為校正對象的歷時變化的輸出資料或感測器資料及監視資料。然後,探索裝置300係於量產開始前的蝕刻裝置,執行為了使可預想此等歷時變化的資料變動至歷時變化後的值用的裝置差校正候補配方的探索。步驟S1012係與步驟S505~S507對應的處理。
接著,探索裝置300執行裝置差校正(步驟S1013)。在步驟S1013,探索裝置300比較未發生歷時變化的狀態下使用的基本的量產用配方與在步驟S1012探索的裝置差校正候補配方,使以裝置差校正候補配方而變更的輸入參數明確化。藉此,使得可在量產前的階段生成說明作為校正對象的輸入參數與輸出參數的關係之函數,此外可從該關係生成成為校正候補的配方。步驟S1013係與步驟S508~S513、圖6~圖8的處理對應的處理。之後,開始量產處理。
步驟S1013之後,開始半導體裝置的量產處理時,晶圓被導入處理室(步驟S1021),蝕刻裝置蝕刻晶圓(步驟S1022)。蝕刻(步驟S1022)由一個步驟或複數個步驟構成。蝕刻(步驟S1022)為複數個步驟的情況下,各步驟的蝕刻係變更放電條件而被執行。蝕刻(步驟S1022)的完成後,晶圓被往處理室外搬出(步驟S1023)。然後,為了除去在蝕刻中產生並堆積於處理室表面的反應性生物,實施電漿清潔(步驟S1024)。存在下個晶圓時(步驟S1025:Yes),返回步驟S1021,無下個晶圓時(步驟S1025:No),轉移至量產後放電資料取得。
量產中的蝕刻裝置的輸出入資料保存於資料庫205,探索裝置300並列以實時繼續解析輸出入資料。藉此,可在量產中持續可預測作為校正對象的歷時變化之輸出資料或感測器資料及監視資料的推定。另外,探索裝置300匯集執行相同的量產處理的複數個蝕刻裝置的輸出入資料,使得可使資料數增加。
在量產後或量產開始後經過指定的時間之際取得放電資料的情況下,探索裝置300執行校正歷時變化的配方的探索(步驟S1031)。具體而言,例如,探索裝置300將在步驟S1011、S1012取得的資料、解析的輸出入資料的關係、及校正候補配方作為步驟S502的輸入而使用,探索歷時變化校正配方。步驟S1031係與步驟S505~S507對應的處理。
然後,探索裝置300利用作為探索結果的歷時變化校正配方,進行校正結果的檢證(步驟S1032)。步驟S1032係與步驟S508~S513、圖6~圖8的處理對應的處理。
另外,亦可在步驟S1031、S1032的執行前,探索裝置300解析在半導體裝置的量產中取得的輸出資料,推定可預測作為校正對象的歷時變化的輸出資料或感測器資料及監視資料,執行步驟S1012。藉此,生成說明作為校正對象的輸入參數與輸出參數的關係之函數,此外可從該關係生成成為校正候補的配方。將此等結果,在步驟S502使用,使得探索裝置300可執行步驟S1031、S1032。
再者,上述探索中的步驟S502的輸入方面,亦可使用利用工程師的知識變更於校正頻繁使用的輸入參數後的配方、及利用該配方而放電之際的輸出入資料與該解析結果。
然後,未達成校正目標的情況(步驟S1033:No)下,返回步驟S1031,達成校正目標的情況(步驟S1033:Yes)下,結束處理。步驟S1033係與步驟S514對應的處理。在執行示於圖10的探索之際,利用複數個實施相同的量產處理下的量產後的蝕刻裝置而並列進行探索使得可使探索速度提升。再者,探索的解(輸入參數)可展開於執行相同的量產處理的複數個蝕刻裝置,執行校正。
如此般,在半導體的量產後,執行探索裝置300所為的探索方法,使得可校正量產中的半導體處理裝置201的輸出參數的值的歷時變化(自動歷時變化校正功能)。
如此般,探索裝置300自動解析半導體處理裝置201的輸入參數的值及輸出參數的值,在考量該解析結果之下,自動決定為了探索輸入參數的值用的實驗條件。然後,探索裝置300自動進行該實驗結果的檢證,反復此等自動動作,使得可自動探索獲得作為目標的裝置狀態及處理結果(輸出參數的值)之輸入參數的值。藉此,半導體處理裝置201自行可自動抽出裝置性能,另外可支援進行為了抽出裝置性能用的控制模型開發、裝置參數(輸入參數與輸出參數之組合)的選定之工程師。
如以上所說明,本實施例相關的探索裝置300具有:輸入部401,其受理設定於處理半導體的半導體處理裝置201的條件或顯示由半導體處理裝置201處理半導體後的加工結果之目標值、依條件與加工結果的範圍而界定的探索區域內之條件或加工結果之中顯示目標值的基準值的輸入;生成部402,其基於探索區域內的條件的設定值、和將該設定值給予半導體處理裝置201的情況下的加工結果的實測值,生成顯示條件與加工結果的關係之預測模型;特定部403,其對由生成部402生成的預測模型,給予透過輸入部401輸入的目標值,從而從預測模型取得預測值,從探索區域特定出預測值的存在區域;判斷部404,其判斷與預測值對應的前述加工結果的實測值是否比被透過輸入部401輸入的基準值接近目標值;設定部405,其在透過判斷部404判斷為與預測值對應的前述加工結果的實測值較接近目標值的情況下,將預測值設定為基準值,將透過特定部特定出的預測值的存在區域設定為探索區域;和輸出部406,其在與預測值對應的前述加工結果的實測值具備目標值的達成條件的情況下輸出具備達成條件下的預測值。
藉此,可謀求往與半導體處理裝置201的輸出入相關的最佳解的到達精度的提升。因此,可謀求半導體處理裝置201方面的運用的效率化及處理的最佳化。
另外,探索裝置300在透過判斷部404判斷為與從預測模型獲得的預測值對應之前述加工結果的實測值較不接近目標值的情況下,透過決定部407將預測值的存在區域內的預測值及與預測值對應之前述加工結果的實測值決定為除外資料,透過設定部405將排除從探索區域透過除外資料與在獲得該除外資料的情況下給予半導體處理裝置201的目標值而特定出的除外區域後的殘存區域設定為探索區域。據此,可將存在不接近目標值的預測值與目標值之組合的除外區域從最新的探索區域除外,可謀求往最佳解的到達精度的提升。
另外,探索裝置300透過分割部408將探索區域分割為複數個區域,透過判斷部404判斷為與預測值對應的前述加工結果的實測值較接近目標值的情況下,透過特定部403,將預測值設定為基準值,從複數個分割區域之中特定出預測值的存在區域。據此,可易於特定出預測值的存在區域,可謀求探索速度的提升。
另外,探索裝置300透過分割部408將探索區域分割為複數個區域,透過生成部402,將分割區域內的條件的設定值給予半導體處理裝置201的情況下的加工結果的實測值,按分割區域取得,透過生成部402,基於在各分割區域的條件的設定值與加工結果的實測值,生成預測模型。據此,透過使用複數個半導體處理裝置201,使得可按分割區域並列地取得實測值,可謀求預測模型的生成速度的高速化。
另外,探索裝置300在透過判斷部404判斷為與預測值對應的前述加工結果的實測值較不接近目標值的情況下,透過決定部407將在預測值的存在區域內取得的資料決定為除外資料,透過生成部402,基於從實測值除去除外資料後的特定的實測值、和從設定值將獲得除外資料的情況下給予半導體處理裝置201的設定值除外後的特定的設定值,生成預測模型。另外,可將存在不接近目標值的預測值與設定值之組合的除外區域從預測值的候補除外,可謀求預測模型的精度提升。因此,透過生成的預測模型,可獲得較佳的預測值。
另外,探索裝置300透過檢測部409,基於加工結果的實測值與既定的輸出閾值,檢測半導體處理裝置201的不穩定動作,透過輸出部406,輸出透過檢測部409而得的檢測結果。據此,可向使用者催促探索的繼續可否。
[實施例2]
本實施例2係除前述實施例1的區域分割以外,基於預測模型進行證實實驗,探索符合目標的最佳的解。為此,在本實施例2,將證實實驗的結果(加工結果)加於學習資料,就預測模型的更新,反復實施直到符合目標,再者將目標逐漸朝向最終目標更新從而探索最佳的解。半導體製造系統方面係與前述實施例1同樣的構成,就處理的內容說明有關與前述實施例1不同的部分。
<輸入參數的探索例>
圖11係示出輸入參數的探索例的說明圖。圖11係示出如同前述實施例1的圖1的在半導體處理裝置中就可獲得符合目標的輸出資料(輸出參數的值)的輸入資料(上述的輸入參數的值)進行探索之際的相對於半導體處理裝置之輸入資料與輸出資料之組合之例。
在本實施例2,對探索裝置300給予圖中初始資料點(圓形記號)的參數而予以生成預測模型,將利用預測模型而得的預測結果予以算出為圖中第1次預測點(三角印)。探索裝置300係在半導體處理裝置201以第1次預測點的資料,實施證實實驗,將證實實驗結果(加工結果)作為學習資料,更新預測模型。
探索裝置300從施加前次的證實實驗結果後的學習資料更新預測模型,將利用預測模型而得的預測結果算出為圖中第2次預測點(方形標記)。反復上述的處理直到證實實驗的結果(加工結果)符合目標,從而可探索最佳的解。
示於前述實施例1的圖4的各功能部在本實施例2發揮如以下的功能。特定部403對由生成部402生成的預測模型,給予透過輸入部401輸入的目標值,從而從預測模型取得複數個與目標值對應的預測值。然後,特定部403取得對半導體處理裝置201作為設定值而給予各預測值的情況下的各輸出的實測值。
目標值為半導體處理裝置201的輸出參數的值的情況下,特定部403對預測模型給予該輸出參數的值,從而從預測模型取得輸入參數的值作為與目標值對應的預測值。
具體而言,例如,於圖11中,目標值為輸出參數的值y12之情況下,與該目標值y12對應的預測值係透過圖11的目標值y12的等高線而特定的輸入參數X1、X2的值。因此,特定部403從探索區域A特定出透過目標值y12的等高線特定出的輸入參數X1、X2((x11、x21),(x12、x21),(x13、x21)等)。
判斷部404係如同前述實施例1,判斷與預測值對應的目標值是否比透過輸入部401而輸入的作為加工結果的基準值接近目標值。
設定部405在透過判斷部404判斷為與預測值對應的目標值作為加工結果的基準值接近目標值的情況下,將預測值及與預測值對應的目標值設定為條件的基準值及作為加工結果的基準值。
輸出部406係如同前述實施例1,在預測值符合目標值的達成條件的情況下輸出具備達成條件下的預測值。
決定部407在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近目標值的情況下,將預測值及與預測值對應的目標值決定為除外資料(在圖13的步驟A601後述)。除外資料係不可向預測模型給予的輸入參數的值。
此外此情況下,設定部405將透過決定部407決定的除外資料以外的資料設定為學習資料。據此,生成部402可使用不存在除外資料的學習資料。因此,可謀求作為解的輸入參數的值的探索速度的提升。
另外,決定部407亦可在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近目標值的情況下,將預測值的周邊區域決定為除外區域(在圖13的步驟A602後述)。除外區域係預測模型不可輸出的輸入參數的值的區域。再者,亦可將含於預測值的周邊區域的已取得的資料決定為除外資料。
此外此情況下,設定部405將從探索區域除去透過決定部407決定的除外區域後的殘存區域設定為探索區域。據此,可將只能獲得不接近目標值的加工結果的預測值的範圍除外而縮小探索區域。因此,可謀求作為解的輸入參數的值的探索速度的提升。
分割部408係如同前述實施例1,將探索區域分割為複數個區域。
另外,決定部407係如上所述,亦可在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近前述目標值的情況下,將預測值及與預測值對應的目標值決定為除外資料。此情況下,生成部402係亦可如同前述實施例1的圖9,基於從實測值除去除外資料後的剩餘的實測值、和從設定值除去與剩餘的實測值對應的設定值後的剩餘的設定值,生成預測模型。據此,可謀求作為解的輸入參數的值的探索速度的提升。
另外,決定部407係如上所述,在透過判斷部404判斷為與預測值對應的目標值比作為加工結果的基準值不接近目標值的情況下,可將預測值的周邊區域決定為除外區域。此情況下,生成部402係亦可如同前述實施例1的圖6,基於將從探索區域除去除外區域後的剩餘的探索區域內的條件的設定值、和將該設定值給予半導體處理裝置201的情況下的輸出的實測值,生成預測模型。據此,可謀求作為解的輸入參數的值的探索速度的提升。
檢測部409係如同前述實施例1,基於半導體處理裝置201的輸出與既定的輸出閾值,檢測半導體處理裝置201的不穩定動作。
<半導體處理裝置201的控制處理順序例>
圖12係就本實施例2中的半導體處理裝置201的控制處理順序例進行繪示的流程圖。圖中步驟A501~A504係如同前述實施例1的圖5的步驟S501~S504。探索裝置300受理作為目標的來自半導體處理裝置201的輸出值(輸出參數的目標值)、及探索設定的輸入(步驟A501)。
接著,探索裝置300受理成為基底的解的輸入及與該解相關的資訊的輸入(步驟A502)。
接著,探索裝置300將在步驟A502輸入的最佳的解保存為最佳解OS1(步驟A503)。無解的情況下,設定表示離解最遠的情況的記號或值。
接著,探索裝置300將基本探索區域設定為探索區域(步驟A504)。
例如,於圖11中,選擇X1、X2的2個輸入參數作為輸入參數的種類的情況下,使輸入參數X1的控制範圍為[x11、x1n]、使輸入參數X2的控制範圍為[x21、x2n]時,示於圖11的全範圍的區域A成為探索區域。
步驟A501~A504的目標設定控制器261的輸入及設定內容係交往自主探索系統262,透過接下來說明的步驟A505~A509的順序,執行自動探索、或工程師指示探索執行、繼續的可否之形式的半自動探索。
探索裝置300生成為了預測符合目標(目標輸出)的解(輸入參數)用的預測模型(步驟A505)。具體而言,例如,探索裝置300利用在步驟A505保存於資料庫205的資料(例如,初始資料),生成表示半導體處理裝置201的輸出入資料的關係的函數作為預測模型。輸出入資料係給予半導體處理裝置201的輸入參數的值(輸入資料)與從半導體處理裝置201獲得的輸出參數的值(輸出資料)之組。另外,解析輸出入資料的關係的方法方面,如同前述實施例1,可使用神經網路、支援向量回歸、利用核方法下的回歸等的可應付多輸入多輸出的回歸分析。另外,可使用相關分析、主成分分析、多元回歸分析等的統計解析。
於預測模型的生成,輸出資料方面,例如使用取得半導體處理裝置201的加工結果方面的間接的計測值的感測器資料及監視資料。存在輸出資料的取得頻率比在探索設定界定的頻率低、或比在探索設定界定的取得時間長、可透過探索而取得的輸出資料數比在探索設定界定的輸出資料數少的情況。此情況下,取得可取得比以探索設定而界定的輸出資料的取得數多的資料數的感測器資料及監視資料即可。據此,可解析相對於輸出資料之感測器資料及監視資料的關係、相對於感測器資料及監視資料之輸入資料的關係。另外,使用此等雙方的解析結果,使得可求出相對於輸出資料之輸入資料的關係。
另外,於預測模型的生成,將處理對象的一部分作為分段而取出,將該分段往監視器系統203搬運從而取得計測結果(加工結果),可將作為其結果而保存於資料庫205的資料,作為輸出結果而使用。此情況下,為了處理對象的分段化及資料取得所需的時間成為隨機、或長時間的情況下,使來自半導體處理裝置201的輸出資料(輸出參數的值)的取得時間之上限為充分長的時間即可。或者,在不設定輸出資料的取得時間之上限之下,將取得結束的信號另外往探索裝置300發送,從而可繼續處理。
在監視器系統203的計測之際,使用往目標設定控制器261輸入的前述的位置資訊資料、影像資訊資料,從而可從處理對象的期望的位置自動計測期望的輸出資料。
接著,探索裝置300利用生成的預測模型,預測為了獲得目的之解或獲得接近目的之解的加工結果用的參數,作為預測結果而保存(步驟A506)。
例如,利用在於圖11中在選擇X1、X2的兩個輸入參數作為輸入參數的種類的情況下在為了作成解析模組用的資料方面被給予圖11中的初始資料(A1~A9)的情況,就預測結果的輸出進行說明。另外,此時的目標指探索輸出參數y成為最大的輸入參數X1、X2。
探索裝置300利用初始資料,生成求出該輸出入關係的回歸模型作為預測模型。如前述,將輸入參數X1的控制範圍分割為[x11、x1n]、將輸入參數X2的控制範圍分割為[x21、x2n]時,圖形100的區域數成為n2
。將X1、X2進行16分割的情況下,區域數成為n2
=256。在圖11,初始資料數為9點,故取得全區的約3.5%的資料。
因此,無法獲悉示於圖形100的Y的正確的分布,故從預測模型獲得之預測結果方面,極難以利用一次的預測探索獲得最佳解y1之X1及X2之組合(x15、x210)。另外,如前述,輸入參數空間多維向量化而廣大的情況下,最佳解的探索變更困難。
要以一次的預測探索最佳解,需要取得網羅探索空間內的全區的資料,進行解析,惟如前述,隨著參數數的增加,參數之組合變龐大,故全區的探索係探索時間變龐大,極難以實施。
要一面迴避此等問題,一面效率佳地採索解,進行(a)模型作成用資料的取得、(b)預測模型的作成、(c)預測結果的取得、(d)預測結果的證實實驗,進一步將(a’)證實實驗資料往模型作成用資料,從而予以反復預測與檢證即可。亦即,利用圖11中的初始資料,進行(a)~(d),將圖11中的第1次預測資料(=證實資料)作為模型作成用資料往資料庫205追加,反復(b)、(c)、(d),再持續反復(a’)~(d)即可。
此等(a)、(b)、(c)、(d)係與圖12的A502、A505、A506、A507的個別的步驟對應。此外(a’)係與步驟A508對應。
具體而言,例如,探索裝置300使預測條件作為探索條件,透過自主探索,取得各探索條件下的半導體處理裝置201的輸出入資料作為證實實驗結果,亦即取得作為探索結果。
具體而言,例如,探索裝置300係按分割區域,選擇符合探索條件的輸入參數的值,將選擇的輸入參數的值給予半導體處理裝置201。然後,探索裝置300取得來自半導體處理裝置201的輸出資料(輸出參數的值)。此輸入參數的值和與該值對應的輸出參數的值的組合為探索結果。
此外此情況下,不穩定動作檢測系統263係於自主探索執行時,檢測半導體處理裝置201雖可繼續處理動作惟半導體處理裝置201的處理變不穩定的情況。檢測出不穩定動作的情況下,在處理完畢後實施為了將半導體處理裝置201往固定動作狀態恢復用的序列、或直接停止處理而執行為了將半導體處理裝置201往固定動作狀態恢復用的序列,從而繼續利用目標設定控制器261所為的自主探索。
探索裝置300將探索結果保存於資料庫205 (步驟A508)。具體而言,例如探索裝置300將作為在自主探索(步驟A507)使用的輸入參數的值、和利用該輸入參數的值而取得的半導體處理裝置201的輸出參數的值之組的輸出入資料,作為探索結果保存於資料庫205。
步驟A506的一次預測的數量為一點以上時,可反復上述(a)或(a’)~(d)。然而,預測點數為一點的情況下,變成一次經由一個從模型進行預測的局部解直到到達最終的最佳解為止,局部解越多,探索越延長化。
另外,相對於證實實驗中的一點的資料取得所需的時間,預測模型作成與預測結果的輸出的合計時間長的情況下,使預測點數為一點時,半導體處理裝置201成為待機狀態直到輸出預測結果為止。每次反復前述的(a’)~(d)即產生此待機時間,故探索延長化。
因此,先求出複數個預測資料點,使得可在預測模型作成及預測結果的輸出中進行證實實驗,可使探索效率化。
另外,使預測資料為複數點,使得可獲得在考量廣範圍的探索區域之際的最佳解,故可一面迴避成為最終的最佳解的可能性低的局部解,一面效率佳地進行探索。
在步驟A507及A508取得的資料係迄今為止未取得的新的資料,故將本資料向工程師提供,從而可支援工程師進行的解析及結果的掌握。
為此,存在工程師要求的資料的更新速度,亦即存在應更新資料的時寬的情況下,依該時寬設定步驟A507的探索時間為優選。應更新工程師要求的資料的時間係例如24小時、8小時、1小時、30分鐘等。
因此,可依工程師的資料更新要求時間,增加步驟A506的預測結果的輸出數,亦即增加預測資料數。例如,工程師要求每一小時的資料更新,在一次的探索需要10分鐘的情況下,優選上依其而使預測資料點數為6點。
據此,可效率佳地進行圖12的探索及工程師的解析。在步驟A505的預測模型的作成,作成依存於在預測模型作成所採用的解析手法如神經網路、支援向量回歸、利用核方法下的回歸手法的預測模型。各種解析模型係相對於輸出入資料的種類、該等資料具有的分布特性、資料數,按模型具有優劣,預測精度會上下。為此,使用單一個預測引擎的情況下,該預測引擎取得的輸出入資料方面存在不適切的情況,探索時間會延長化。因此,利用複數個種類的預測模型(預測引擎),求出複數個預測資料,從而可一面應付各種的輸出入資料,一面提高可輸出更佳的預測結果的可能性。
另外,已取得與作為預測結果而輸出的資料對應的證實實驗資料的情況下,不進行該資料的證實實驗,從而可使探索效率化。
接著,從取得的資料特定出最佳解OS2,將特定出的最佳解OS2保存於資料庫205(步驟A509)。
步驟A505至A509的處理包括兩種方法。一種係對預測模型給予在步驟S501給予的輸出參數的目標值的方法(第1推定方法)。
在第1推定方法,具體而言,例如,探索裝置300對在步驟A505獲得的預測模型代入在步驟A501給予的輸出參數的目標值,從而推定成為符合輸出參數的目標值的解之輸入資料(輸入參數的值)。
探索裝置300係於步驟A507,進行預測的輸入資料的證實實驗,將該結果取得的輸出資料在步驟A508往資料庫205保存。
於步驟A509,探索裝置300從已取得的輸出資料特定出,可取得與目標值相等的輸出資料之輸入參數、可取得輸出資料與目標值的差或背離比容許值(在S501給予的容許值)小的輸出資料的輸入參數、或可取得最接近目標值的輸出資料的輸入參數,此等輸入參數之中,將最接近目標值者決定為最佳解OS2。
在第1推定方法,使用可無歧異求出獲得輸出參數的目標值的輸入參數的預測模型。此情況下,預測結果係一資料。
要增加預測點的數量,將輸出參數的目標值的容許範圍方面的上限值、下限值、目標值與上限值之中間值、將目標值與上限值之間均等分割之際的值、目標值與下限值之中間值、目標值與下限值之間均等分割之際的值給予預測模型即可。另外,如前述,使用複數個預測模型,使得可使預測點數增加。
上述之例的情況下,利用圖11中的初始資料而作成預測模型,對預測模型作為目標值給予y1,進行預測,於證實實驗所取得的輸出資料與預測模型所示的圖11同樣的情況下,作為第1次預測點的輸出資料,取得(x16、x211(圖11的資料(I)))的情況下,迄今為止取得的輸出資料中成為最佳的獲得y5的輸入參數(x16、x211)成為最佳解OS2。
另一個的步驟A505~A509的處理係將在步驟A501給予的輸出參數的目標值代入預測模型無法直接求出成為符合輸出參數的目標值的解的輸入參數的情況下可適用的方法(第2推定方法)。
為如下方法:使對預測模型一次給予的輸入參數為一組,對預測模型,給予多數個輸入參數之組,計算推定輸出參數,取得獲得最接近目標輸出的加工結果的輸入參數之組。作成預測模型後,如例示於圖11,將圖形100的探索區域分割為A1~A9等,將含於各分割區域的輸入參數之組,按分割區域作成一個以上,將此給予預測模型,使得可計算該情況下的輸出參數。獲得每個分割區域的具代表性的推定輸出之方法方面,作為含於分割區域的輸入參數之組,可使用成為分割區域內之中心座標的值。
將極多數個輸入參數之組給予預測模型而計算推定輸出的情況下,計算時間變龐大時,如利用式(1.1)~式(1.3)而敘述,決定給予預測模型的輸入參數之中心條件,從該中心條件限制可變更的輸入參數的種類,從而可抑制計算時間。另外,從中心條件限次可一次變更的參數的數量,使得可抑制計算時間。據此,可一面削減給予預測模型的輸入參數之組的數量,一面獲得取得較接近目標輸出的加工結果的輸入參數。在設定中心條件之際,可利用過去的探索結果或工程師的知識。或者,可使全探索區域之中心座標為中心條件。
在第2推定方法,具體而言,探索裝置300對在步驟A506獲得的預測模型代入輸入參數之組的值,從而取得成為預測值之輸出參數的值。例如,利用圖11的初始資料而作成預測模型,對於預測模型,作為輸入參數的值,給予(x11、x21)、(x11、x22)、(x11、x23)、(x12、x21)、(x12、x22)、(x12、x23)、(x13、x21)、(x13、x22)、(x13、x23)、(x1n、x21)、(x1n、x22)、(x1n、x23)時,可獲得與各輸入參數對應的推定輸出參數。
此等推定輸出參數之中,特定出可取得推定輸出資料與目標值的差或背離比容許值(在S501給予的容許值)小的輸出資料的輸入參數、或可取得最接近目標值的輸出資料的輸入參數,將此等推定輸出資料及輸入參數作為預測結果而保存。
圖11的第1次預測點係利用初始資料而作成預測模型並使目標值為y1且使y6以上為容許值之際的預測結果之例。在此例,從非常少的數量的初始資料進行預測,故預測為成為y6以上的值之各點係與示於圖11的實際的輸出值不同。
接著,取得第1次預測點的實際的資料。然後,利用初始資料及第1次預測點的輸出資料,更新預測模型。利用更新的預測模型而得的預測結果之例為圖11中的第2次預測點。含於第1次預測結果的輸出資料中的最佳解係獲得輸出y5的(x16、x211)。相對於此,對初始資料追加第1次預測及預測點的證實實驗資料(輸出資料),使得在第2次預測及預測點的證實實驗資料,獲得為更接近目標的y1的輸出結果的(x14、x210(圖11的資料(II)))。
透過反復上述,使得可獲得符合作為目標值之輸出y1的輸入參數。另外,抑抑直到獲得成為目標的結果為止需要的資料數,使得可效率佳地進行探索。
然後,於步驟A509,探索裝置300例如將獲得成為最接近輸出參數的目標值之輸出參數的值之輸入參數的值決定為最佳解OS2。另外,第1推定方法及第2推定方法之中,適用何者係被預先設定。
探索裝置300判斷最佳解OS2的值是否為獲得比最佳解OS1的值接近目標的輸出參數之解(步驟A510)。然後,最佳解OS2的值係獲得比最佳解OS1的值接近目標的輸出參數之解的情況(步驟A510:Yes)下,轉移至步驟A511,不是的情況(步驟A510:No)下,轉移至步驟A601(圖13)。
步驟A510:Yes的情況下,探索裝置300將最佳解OS2設定於最佳解OS1,從而更新最佳解OS1(步驟A511)。
之後,探索裝置300判斷是否達成當前的目標(步驟A510)。達成當前的目標的情況(步驟A512:Yes)下,探索裝置300往步驟A513轉移,判斷是否達成最終的目標。另一方面,未達成當前的目標的情況(步驟A512:No)下,轉移至步驟A505。
之後,探索裝置300判斷是否達成最終的目標(步驟A513)。達成最終的目標的情況(步驟A513:Yes)下,探索裝置300結束控制處理。另一方面,未達成目標的情況(步驟A513:No)下,轉移至步驟A514,進行目標的更新。
在步驟A512,具體而言,例如與更新後的最佳解OS1對應的輸出參數和當前的目標值相等或與當前的目標值的差在容許範圍內的情況下,探索裝置300判斷為達成當前的目標(步驟A512:Yes)。另外,非與更新後的最佳解OS1對應的輸出參數和當前的目標值相等或與當前的目標值的差在容許範圍內的情況下,經過在步驟A501設定的探索時間時,判斷為達成目標(步驟A512:Yes)。另一方面,非與更新後的最佳解OS1對應的輸出參數和當前的目標值相等或與當前的目標值的差在容許範圍內的情況且未經過在步驟A501設定的探索時間的情況下,判斷為目標未達成(步驟A512:No)。
在步驟A513,具體而言,例如與更新後的最佳解OS1對應的輸出參數和最終的目標值相等或與最終的目標值的差在容許範圍內的情況下,探索裝置300判斷為達成最終的目標(步驟A513:Yes)。另外,非與更新後的最佳解OS1對應的輸出參數和最終的目標值相等或與最終的目標值的差在容許範圍內的情況下,經過在步驟A501設定的探索時間時,判斷為達成目標(步驟A513:Yes)。另一方面,非與更新後的最佳解OS1對應的輸出參數和最終的目標值相等或與最終的目標值的差在容許範圍內的情況且未經過在步驟A501設定的探索時間的情況下,判斷為目標未達成(步驟A513:No)。
在步驟A514,進行目標值、探索結果與目標值的差、或背離的容許值的更新。進行A505至A512的處理之際,給予最初至最終的目標的情況、在探索結果與目標值的差或背離的容許值方面給予非常小的值的情況下,更佳的最佳解OS2的難易度上升,有可能無法找出解。為了迴避此,在探索的初始階段,可給予與最終目標不同的目標作為當前的目標。達成該當前的目標且不符合最終目標的情況(步驟A513:No)下,於步驟A514,使目標值階段性地接近最終目標值,使得可將可找出達成最終的目標的解的可能性提高。
另外,作為當前的目標,在探索結果與目標值的差或背離的容許值方面給予大的值,達成該當前的目標且不符合最終目標的情況(步驟A513:No)下,使目標值階段性地接近最終目標值,使得可將可找出達成最終的目標的解的可能性提高。
從初始目標往最終目標的階段性的更新方法方面,準備複數個具有成為初始目標與最終目標之間之值的目標值,作為最初的當前的目標,給予初始目標,每次達成當前的目標,將往最終目標接近的目標值,作為當前的目標值而更新即可。或者,亦可作為最初的當前的目標,給予初始目標,以依一定比例逐漸往最終目標接近的方式準備複數個目標值而使用之。
另外,在上述資料雖說明有關已取得初始資料的情況,惟無初始資料的情況下,可利用前述實施例1的區域分割方法,取得初始資料。或者,亦可利用實驗設計,決定初始資料取得用的條件,取得初始資料。區域分割方法亦即為包含設定基本探索區域並將探索區域分割而按分割區域實施自主探索的各步驟之前述實施例1的圖5中的步驟S501~步驟S507的處理方法。
圖13係示出半導體處理裝置201的控制處理順序例的流程圖。探索裝置300在圖12的步驟A510的判斷結果為No的情況下,往圖13的A601轉移。在步驟A601,就直到步驟A505為止獲得的資料,將最佳解OS1或直到最佳解OS1被更新為止獲得的資料決定為除外資料。
最佳解OS1的更新具體而言例如指:至圖11的第1次預測資料點為止獲得的時點下的OS1透過第2次預測資料點的資料取得從而被設定新的最佳解OS1。此例的情況下,直到最佳解OS1被更新為止獲得的資料係第2次預測資料點,於步驟A601,被決定為除外資料。
另外,在以下,說明有關使最佳解OS1為除外資料的對象之情況。在步驟A601,具體而言,例如,探索裝置300將最佳解OS1的輸入資料(輸入參數的值)及輸出資料(輸出參數)決定為除外資料。除外資料係具有在今後的處理被除外的可能性的資料。
接著,探索裝置300將在步驟A601決定的除外資料的周邊區域決定為除外區域(步驟A602)。除外區域係具有在今後的處理被除外的可能性的區域。
以下,如同在步驟A601的說明,說明有關使最佳解OS1為除外資料的對象之情況。
除外資料的周邊區域的決定方法方面,可使用從最佳解OS1的各參數使既定的比例變化之值。亦即,例如使予以變化的比例為1%時為最佳解OS1的各參數±1%,此外±5%時,最佳解OS1的各參數±5%即可。另外,亦可按最佳解OS1的參數設定此比例。另外,比例的設定方法方面,亦可使用相對於可取得各參數之值的範圍。亦即,可取得最佳解OS1的參數A的範圍為0~200,使予以變化的比例為3%,最佳解OS1的參數A的值為150的情況下,150±6成為最佳解OS1的參數A的除外區域。
探索裝置300在步驟A602之後,判斷是否將在步驟A601決定的除外資料除外(步驟A603)。除外的情況(步驟A603:Yes)下,轉移至步驟A604,不除外的情況(步驟A603:No)下,轉移至步驟A605。
在步驟A603,具體而言,例如探索裝置300依來自使用者的除外指示輸入的有無,判斷是否將除外資料除外。另外,亦可探索裝置300強制將除外資料除外(步驟A603:Yes)。
探索裝置300在步驟A603之後,探索裝置300判斷是否將在步驟A602決定的除外區域中的資料除外(步驟A604)。決定除外的情況(步驟A604:Yes)、不除外的情況(步驟A604:No)後,轉移至步驟A505。
在步驟A604,具體而言,例如探索裝置300依來自使用者的除外指示輸入的有無,判斷是否將除外區域內的資料除外。另外,亦可探索裝置300強制將除外區域內的資料除外(步驟A604:Yes)。
探索裝置300係於步驟A603,不將除外區域的解從解除外而進行解析的情況(步驟A603:No)下,往步驟A605轉移,於步驟A605,將除外區域中的資料除外後,轉移至步驟A505。
另外,於步驟A601,可使用利用前述實施例1的圖6、圖7及圖8的區域分割方法下的除外資料及除外區域的指定方法。前述實施例1的圖5~圖8的流程圖內的「A」、「B」、「C」、「D」係「A」與步驟A601:No對應,「B」及「C」與步驟A604及步驟A605~步驟A505對應,「D」與步驟A511~步驟A512的各流程圖對應。
於本控制處理,資料的解析、保存、轉送等的規模變大,其執行時間變比探索1條件的時間長的情況下,可與該等執行並列而持續探索。該情況下,使於探索條件進行變更的輸入參數數、同時變更的輸入參數數、探索區域的分割數之中一個以上增加。據此,使探索條件數增加,探索此條件,使得可利用執行解析等的時間而使探索結果增加。尤其,存在資料的解析所需的時間從數分鐘成為數小時以上的情況,在該解析中持續探索,使得可使探索速度提升。
<半導體處理裝置201的控制處理的適用例1B>
接著,示出為了在半導體裝置的量產前的半導體處理裝置201的保養中校正半導體處理裝置201的裝置差用的控制處理的適用例。此處,作為就機差抑制的順序進行說明之例,使半導體處理裝置201為進行放電處理的蝕刻裝置。另外,此處係將執行放電處理之際的輸入參數稱為配方。在進行放電處理的蝕刻裝置,在成為校正對象的輸出方面,舉例處理結果或使用於處理的放電的特性。校正的方法方面包括以獲得與成為基準的蝕刻裝置相同的輸出的方式校正其他蝕刻裝置的方法、或以複數個蝕刻裝置的輸出成為均勻的方式校正的方法。
就機差抑制方法係如同前述實施例1的圖9,探索裝置300開始保養後放電資料取得。
首先,探索裝置300利用為了進行基本的放電處理用的配方而進行基準配方放電,取得該情況下的輸出入資料。另外,進行依在量產使用的配方下的放電,取得該情況下的輸出資料(輸出參數的值)(圖9的步驟S901)。步驟S901係與步驟A501~A504對應的處理。
在基準配方放電,可如同前述實施例1的圖9般利用區域分割方法設定配方,取得該情況下的輸出入資料。或者,可利用實驗設計設定配方,取得該情況下的輸出入資料。
接著,探索裝置300預測裝置差校正配方的候補(圖9的步驟S902)。步驟S902係與本實施例2的步驟A505~A506對應的處理。
然後,探索裝置300利用在步驟S902在預測的裝置差校正配方,執行兼作證實實驗下的裝置差校正(圖9的步驟S903)。步驟S903係與步驟A507~A511、圖13的處理對應的處理。未達成校正目標的情況(步驟S904:No)下,返回步驟S902,達成校正目標的情況(步驟S904:Yes)下,結束處理。步驟S904係與步驟A512及A513對應的處理。
另外,亦可利用複數個相同的蝕刻裝置並列進行探索從而使探索速度提升。該情況下,使用已依圖9的順序校正裝置差的複數個蝕刻裝置,使得可提高可探索符合目標的解的可能性。再者,使得可將探索的解展開於該等複數個裝置,進行校正。
如此般,在半導體處理裝置201的保養後執行利用探索裝置300下的探索方法,使得可使半導體處理裝置201的輸出參數的值接近成為基準的輸出參數的值(自動機差校正功能)。
<半導體處理裝置201的控制處理的適用例2B>
接著,於半導體裝置的量產處理,為了校正歷時變化用的控制處理係如同前述實施例1的圖10。
在本實施例2,如同前述實施例1的圖9,作為說明校正歷時變化的順序之例,使半導體處理裝置201為在處理中使用放電的蝕刻裝置。在量產前放電資料取得,為了進行量產中的歷時變化的校正,探索裝置300首先將為了進行基本的放電處理用的基準配方給予蝕刻裝置而進行基準配方放電,取得該情況下的輸出資料(輸出參數的值)(步驟S1011)。步驟S1011係與步驟A501~A504對應的處理。
在基準配方放電,可利用前述實施例1的區域分割方法而設定配方,取得該情況下的輸出入資料。或者,可利用實驗設計設定配方,取得該情況下的輸出入資料。
接著,探索裝置300預測裝置差校正候補配方(步驟S1012)。在步驟S1012,使用可從過去的量產時的輸出入資料的解析結果預測作為校正對象的歷時變化的輸出資料或感測器資料及監視資料。然後,探索裝置300係於量產開始前的蝕刻裝置,執行為了使可預想此等歷時變化的資料變動至歷時變化後的值用的裝置差校正候補配方的預測。步驟S1012係與步驟A505~A506對應的處理。
接著,探索裝置300利用在步驟S1012預測的裝置差校正配方,執行兼作證實實驗下的裝置差校正(步驟S1013)。
在步驟S1013,探索裝置300比較未發生歷時變化的狀態下使用的基本的量產用配方與在步驟S1012探索的裝置差校正候補配方,使以裝置差校正候補配方而變更的輸入參數明確化。據此,使得可在量產前的階段生成說明作為校正對象的輸入參數與輸出參數的關係之函數,此外可從該關係生成成為校正候補的配方。步驟S1013係與步驟A507~A511、圖13的處理對應的處理。之後,開始量產處理。
步驟S1013之後,開始半導體裝置的量產處理時,晶圓被導入處理室(步驟S1021),蝕刻裝置蝕刻晶圓(步驟S1022)。蝕刻(步驟S1022)係由一個步驟或複數個步驟構成。蝕刻(步驟S1022)為複數個步驟的情況下,各步驟的蝕刻係變更放電條件而被執行。蝕刻(步驟S1022)的完成後,晶圓被往處理室外搬出(步驟S1023)。然後,為了除去在蝕刻中產生並堆積於處理室表面的反應性生物,實施電漿清潔(步驟S1024)。存在下個晶圓時(步驟S1025:Yes),返回步驟S1021,無下個晶圓時(步驟S1025:No),轉移至量產後放電資料取得。
量產中的蝕刻裝置的輸出入資料係保存於資料庫205,探索裝置300並列以實時繼續解析輸出入資料。據此,可在量產中持續可預測作為校正對象的歷時變化之輸出資料或感測器資料及監視資料的推定。另外,探索裝置300匯集執行相同的量產處理的複數個蝕刻裝置的輸出入資料,使得可使資料數增加。
在量產後或量產開始後經過指定的時間之際取得放電資料的情況下,探索裝置300預測校正歷時變化的配方的候補(步驟S1031)。具體而言,例如探索裝置300將在步驟S1011、S1012取得的資料、解析的輸出入資料的關係及校正候補配方作為步驟A502的輸入而使用,預測歷時變化校正配方的候補。步驟S1031係與步驟A505~A506對應的處理。
然後,探索裝置300利用在步驟1031預測的歷時校正配方,進行兼作證實實驗下的校正的執行,亦即進行校正結果的檢證(步驟S1032)。步驟S1032係與步驟A507~A511、圖13的處理對應的處理。
另外,亦可在步驟S1031、S1032的執行前,探索裝置300解析在半導體裝置的量產中取得的輸出資料,推定可預測作為校正對象的歷時變化的輸出資料或感測器資料及監視資料,執行步驟S1012。據此,可生成說明作為校正對象的輸入參數與輸出參數的關係之函數,此外從該關係生成成為校正候補的配方。將此等結果在步驟S502使用,使得探索裝置300可執行步驟S1031、S1032。
再者,上述處理中的步驟A502的輸入方面,亦可使用利用工程師的知識而變更於校正頻繁使用的輸入參數後的配方、及利用該配方而放電之際的輸出入資料與該解析結果。
然後,未達成校正目標的情況(步驟S1033:No)下,返回步驟S1031,達成校正目標的情況(步驟S1033:Yes)下,結束處理。步驟S1033係與步驟A512及A513對應的處理。在執行示於圖10的探索之際,利用複數個實施相同的量產處理下的量產後的蝕刻裝置而並列進行探索使得可使探索速度提升。再者,探索的解(輸入參數)可展開於執行相同的量產處理的複數個蝕刻裝置,執行校正。
如此般,在半導體的量產後,執行探索裝置300所為的探索方法,使得可校正量產中的半導體處理裝置201的輸出參數的值的歷時變化(自動歷時變化校正功能)。
<半導體處理裝置201的控制處理的適用例3>
接著,示出為了於半導體裝置的處理將加工形狀最佳化用的控制處理的適用例。
圖14係就加工形狀的最佳化方法的概要進行繪示的流程圖。在圖14,如同圖10,使半導體處理裝置201之例為在處理中使用放電的蝕刻裝置。
另外,加工形狀的最佳化中的輸出入資料之例方面,使裝置的輸入資料為配方、使輸出資料為加工形狀資料而說明。
首先,探索裝置300利用可蝕刻加工對象膜的基本的配方而進行蝕刻,取得該情況下的輸出入資料作為初始資料(步驟A901)。步驟A901係與示於圖12之步驟A501~A504對應的處理。
在上述的初始資料取得,可利用與前述實施例1同樣的區域分割方法而設定配方,取得利用該配方而蝕刻之際的輸出入資料。或者,可利用實驗設計設定配方,取得利用該配方而蝕刻之際的輸出入資料。
接著,對探索裝置300,給予成為目標的加工形狀(步驟A902)。然後,探索裝置300預測加工形狀最佳化配方的候補(步驟A903)。
步驟A902係與步驟A502對應的處理,步驟A903係與步驟A505~A506對應的處理。
然後,探索裝置300利用在步驟A903預測的加工形狀最佳化配方,執行證實實驗,輸出證實實驗結果A9030(步驟A904)。之後,判定是否證實實驗結果符合目標值(步驟A905)。
步驟A904及A905係與步驟A507~A511、圖13的處理對應的處理。未達成目標的情況(步驟A905:No)下,將以證實實驗取得的資料(證實實驗結果A9030)往資料庫追加,從而更新資料(步驟A906),返回步驟A903。
達成校正目標的情況(步驟S905:Yes)下,結束處理。步驟A905係與步驟A512及A513對應的處理。
在步驟A901使用的初始資料方面,可輸入在圖15示出的複數個配方、和利用該各配方而蝕刻之際的加工形狀資料。利用包含各種的蝕刻形狀的初始資料,使得可在利用預測模型下的解的預測之際,就在配方參數空間內的何區域存在實現目標形狀的配方參數,效率佳地進行預測。
初始資料A9010方面,如在圖15示出,示出錐形(條件1)、圓形(條件2、4)、倒錐形(條件3)、底切形(條件1、2,4、5、N),其他形狀方面,包括蝕刻完全未進展的蝕刻中止形狀、曲折形(弓形)、遮罩被蝕刻的形狀等。例如,初始資料中的形狀僅有一種類的情況下,以從該資料求出的預測模型,難以預測符合其他形狀的解。為此,此等形狀之中,於初始資料包含至少兩種類以上,優選上包含三種類以上。
另外,圖15係就初始資料A9010的一例進行繪示的圖。初始資料A9010以與條件1~N對應的加工結果1~N之對而構成,加工結果1~N顯示加工對象的剖面形狀之例。
在步驟A902使用的目標資料方面,例如給予如示於圖16的目標資料A9020的垂直加工形狀。另外,圖16係就目標資料A9020的一例進行繪示的圖。目標資料A9020顯示以加工前的加工對象的剖面形狀、和目標的剖面形狀而構成之例。
步驟A903的證實實驗結果之例如示於在圖17繪示的證實實驗結果A9030,此情況下,比含於初始資料中之形狀,獲得接近目標形狀的輸出(加工形狀),此與步驟A510:Yes對應。另外,圖17係就證實實驗結果A9030的一例進行繪示的圖。證實實驗結果A9030以與證實條件a~e對應的證實結果a~e之對而構成,證實結果a~e顯示加工對象的剖面形狀之例。
另外,亦可利用複數個相同的蝕刻裝置並列進行探索從而使探索速度提升。該情況下,使用透過與前述實施例1的圖10同樣的順序校正裝置差下的複數個蝕刻裝置,使得可提高可探索符合目標的解的可能性。再者,將探索的解展開於該等複數個裝置使得可探索可獲得最佳的加工形狀的配方。
圖18、圖19係利用電子顯微鏡取得加工後的剖面形狀之例,圖18係溝或孔加工,圖19係線路或柱體(柱狀)加工的剖面形狀。初始資料方面,可使用剖面的影像本身。另外,如示於圖18、圖19,可使用(1)遮罩頂寬、(2)遮罩底寬、(3)遮罩厚度、(4)加工部頂寬、(5)加工部中央部的寬度、(6)加工底的寬度、(7)加工部最大寬、(8)加工深度、(9)微溝的寬度、(10)底切寬、(11)底切深度、(12)表面粗糙度、(13)遮罩消耗、(14)基底穿透深度、(15)槽口寬、(16)槽口高度等的計測值作為加工形狀資料。另外,各值係優選上取得較正確的值,惟亦能以大/中/小、○/△/×、或將此等以0/1/2等的離散化的數值而表現,使用此等資料。另外,可將不同的溝、孔、線路、柱體的剖面的各輸出資料的差分資料作為加工形狀資料而使用。
如此般,於半導體處理裝置201,透過執行利用探索裝置300下的探索方法,使得可使半導體處理裝置201的輸出參數的值接近作為目標的輸出參數的值(裝置輸出最佳化功能)。
圖20及圖21係作為探索裝置300的使用者介面的GUI之例。
圖20係為了指定解析對象的初始資料用的初始設定畫面110。在初始設定畫面110,首先以檔名輸入出入資料(裝置輸入資料)111、輸出資料112、及目標資料(目標值)113。解析對象的初始資料方面,雖亦可指定匯集輸出入資料的檔案,惟該情況下,於檔案內部,需要記載判別輸入參數與輸出參數的識別符。
進行上述的資料指定後,點擊執行鍵114,使得各資料被讀取,往資料庫205保存。另外,亦可於初始設定畫面110顯示:顯示檔案保存的進展之指示器、進展程度、至保存完成為止的時間、從保存開始的經過時間。
點擊圖20的執行鍵114後,往為了執行圖21的探索條件的設定及探索用的探索畫面120轉移。在探索畫面120,首先以檔名輸入探索設定121。另外,能以檔名輸入透過證實實驗而取得的輸入資料122與輸出資料123。
亦可在探索畫面120顯示:成為學習對象的資料中所含的學習資料數124、學習循環數125、輸入參數數126、輸出參數數127。學習循環數125係已取得預測模型生成用的學習資料之組的次數,每次進行證實實驗,將其結果取得的輸入資料122與輸出資料123作為漸進式學習資料往資料庫205追加,即加算1。
指定探索設定條件時,中心條件的候補顯示於區域128,作為中心條件要採用何者,可依顯示的中心條件而選擇。選擇中心條件,點擊探索(預測)按鍵129,使得預測開始,預測中或預測完成後,預測結果顯示於區域130。
亦可於探索畫面120顯示:預測的進展程度、從預測開始的經過時間、繼續預測的剩餘時間、及可預測之解的候補的數量。另外,亦可顯示至預測完成為止的推定時間。
於探索畫面120,作為預測結果,顯示預測的輸入與輸出中的任一者或兩者,可選擇證實實驗的候補。選擇證實實驗,點擊證實實驗鍵131,使得證實實驗開始。亦可於探索畫面120顯示:證實實驗的進展程度、從證實實驗開始的經過時間及繼續證實實驗的剩餘時間。
另外,亦可顯示在上述選擇的證實實驗的數量、證實實驗完成的數量與剩餘的數量、及至證實實驗完成為止的推定時間。證實實驗結束後,將證實實驗結果往前述的漸進式學習資料,從而反復預測及證實實驗,以使學習循環進展,繼續探索。
中心條件的候補及證實實驗的候補的選擇、及預測及證實實驗的開始係工程師可進行指示。或者,於探索設定輸入,預先指定中心條件的候補及證實實驗的候補的選擇手法,使得可自動選擇候補。另外,輸出資料透過使用感測器或監視器從而可自動取得的情況下,可自動開始預測及證實事件。
圖22係自動進行中心條件的候補及證實實驗的候補的選擇、及預測及證實實驗的開始的情況下的探索畫面140,進行探索設定輸入141後,點擊自主探索鍵142,使得自動繼續探索。
如此般,探索裝置300自動解析半導體處理裝置201的輸入參數的值及輸出參數的值,在考量該解析結果之下,自動決定為了探索輸入參數的值用的實驗條件。然後,探索裝置300自動進行該實驗結果的檢證,反復此等自動動作,使得可自動探索獲得作為目標的裝置狀態及處理結果(輸出參數的值)之輸入參數的值。據此,半導體處理裝置201自行可自動抽出裝置性能,另外可支援進行為了抽出裝置性能用的控制模型開發、裝置參數(輸入參數與輸出參數之組合)的選定之工程師。
如以上所說明,本實施例相關的探索裝置300具有:輸入部401,其受理設定於處理半導體的半導體處理裝置201的條件或顯示由半導體處理裝置201處理半導體後的結果之目標值、依條件與加工結果的範圍而界定的探索區域內之條件或加工結果之中顯示目標值的基準值的輸入;生成部402,其基於探索區域內的條件的設定值、和將該設定值給予半導體處理裝置201的情況下的加工結果的實測值,生成顯示條件與加工結果的關係之預測模型;特定部403,其對由生成部402生成的預測模型,給予透過輸入部401輸入的目標值,從而從預測模型取得預測值;判斷部404,其判斷預測值是否比透過輸入部而輸入的基準值接近目標值;設定部405,其在透過判斷部404判斷為與預測值對應的目標值較接近目標值的情況下,將預測值設定為基準值,將透過特定部特定出的預測值的存在區域設定為探索區域;和輸出部406,其在預測值符合目標值的達成條件的情況下輸出具備達成條件下的預測值;。
據此,可謀求往與半導體處理裝置201的輸出入相關的最佳解的到達精度的提升。因此,可謀求半導體處理裝置201方面的運用的效率化及處理的最佳化。
另外,探索裝置300在透過判斷部404判斷為與從預測模型獲得的預測值對應之目標值較不接近目標值的情況下,透過決定部407將預測值及作為與預測值對應的輸出資料而取得的資料決定為除外資料,透過設定部405將從探索區域將除外資料與獲得該除外資料之情況下設定的除外區域排除後的殘存區域設定為探索區域。據此,可將存在不接近目標值的預測值與目標值之組合的除外區域從最新的探索區域除外,可謀求往最佳解的到達精度的提升。
另外,探索裝置300在透過分割部408將探索區域分割為複數個區域,透過判斷部404判斷為預測值較接目標值的情況下,透過特定部403,將預測值設定為基準值,從複數個分割區域之中特定出預測值的存在區域。據此,可易於特定出預測值的存在區域,可謀求探索速度的提升。
另外,探索裝置300透過分割部408將探索區域分割為複數個區域,透過生成部402按分割區域取得將分割區域內的條件的設定值給予半導體處理裝置201的情況下的加工結果的實測值,透過生成部402,基於在各分割區域的條件的設定值與加工結果的實測值,生成預測模型。據此,透過使用複數個半導體處理裝置201,使得可按分割區域並列地取得實測值,可謀求預測模型的生成速度的高速化。
另外,探索裝置300在透過判斷部404判斷為與預測值對應的目標值較不接近目標值的情況下,透過決定部407將預測值及作為與預測值對應的輸出資料而取得的資料決定為除外資料,透過生成部402,基於從實測值除去除外資料後的特定的實測值、和從設定值將獲得除外資料的情況下給予半導體處理裝置201的設定值除外後的特定的設定值,生成預測模型。另外,可將存在不接近目標值的預測值與設定值之組合的除外區域從預測值的候補除外,可謀求預測模型的精度提升。因此,可透過生成的預測模型,獲得較佳的預測值。
另外,探索裝置300透過檢測部409基於加工結果的實測值、和既定的輸出閾值,檢測半導體處理裝置201的不穩定動作,透過輸出部406輸出透過檢測部409而得的檢測結果。據此,可向使用者催促探索的繼續可否。
<半導體處理裝置201的控制處理的適用例4>
示出將半導體處理裝置201的控制處理適用於為了於半導體裝置的處理將加工形狀最佳化用的控制處理之別例。於微細圖案加工程序開發,往往發生圖案的一部分或整體的變形、倒塌、消失,發生無法取得加工結果的測定值之如此的情況。說明有關處理對象的計測不可能的情況下或省略計測因而在輸出資料產生缺損資料的情況下使用成為缺損資料的替代的缺損代替資料的方法。其具體例方面,示出作為輸出資料使用圖案上部表面的計測值之例。
在成為處理對象的圖案,發生變形或在圖案的一部分發生倒塌或消失的情況下,輸出資料為圖案剖面的計測值時,作為計測結果的輸出資料恐因進行處理對象的剖面計測的位置而大為不同,無法進行加工結果的評價。另外,無法進行利用加工結果下的解析及精度佳的預測模型的生成。為此,於如此之情況下,為了精度佳地評價加工結果,優選上使用圖案上部表面的計測值作為輸出資料。
於圖23A~C、圖24、圖25,利用電子顯微鏡,示出取得加工後的圖案上部表面形狀的影像(俯視圖)及其剖面圖(皆為示意圖)。圖23A~C係在圖案發生變形的情況下的概要圖,圖之上部分為上部表面的影像(俯視圖),沿著該點線A-A’下的剖面的影像(剖面圖)示於下部分。圖23B及圖23C的情況下,依存於圖案的變形方式,成為剖面形狀因剖面取得位置而不同者。因此,要獲得無如此的變形的形狀,需要使可從圖案之上部表面取得的變形的資訊為輸出資料,以該輸出資料與在加工使用的輸入資料為輸出入資料而生成預測模型,以無變形的形狀為目標,探索解。
圖24係進行取得因應於計測圖案的高度及材質下的灰階的影像的計測之例。透過此灰階資訊,可取得遮罩及加工對象等的各層的邊界及邊緣位置。溝或線加工下之上部表面的輸出資料方面,可使用(1t)遮罩頂寬、(2t)遮罩中央部的寬度、(3t)遮罩底寬、(4t)加工部頂寬、(5t)加工部中央部的寬度、(6t)加工底的寬度等的計測值作為加工形狀資料。
另外,如示於圖25,在線路被垂直加工的情況下,(1t)~(6t)成為相同的值。另一方面,圖26係將此線部分之上表面構造放大而示出者。如示於圖26,在微細的溝或線加工,逐漸成為無法無視產生於與溝或線路的長邊方向垂直的方向的邊緣的凹凸者。於相同的溝或線路,可使用計測複數點線寬度((1t)~(6t)中的任一者,依計測定義)的情況下的平均值、分散、標準差(線寬粗糙度(LWR))作為加工形狀資料。
另外,圖27係定義示於圖24的線寬度的兩個邊界線之中就一個進行繪示者。使將線路直線近似下的線、或相對於線路的特定的線為軸d1、使與軸d1垂直的軸為軸d2的情況下,可使用為計測複數點線路與軸d1之間的軸d2方向的距離的情況下的標準差的線邊緣粗糙度(LER)作為加工形狀資料。
再者,可使用不同的溝或線路方面的上部表面的各輸出資料的差分資料作為加工形狀資料。
發生超過可計測範圍的非常大的圖案變形的情況、發生圖案的一部分或整體的倒塌或消失的情況下,變得無法計測此等輸出資料的一部分或全部。計測不可能的輸出參數成為缺損資料。一般而言,無法直接利用包含缺損資料的輸出入資料而建構預測模型。要迴避此,將包含缺損資料的輸入或輸出參數值、或產生缺損資料之際取得的輸出入資料除去,僅使用不含缺損資料的剩下的輸出入資料而建構預測模型即可。然而,頻繁產生缺損資料的情況下,可使用的輸出入資料的取得成功率降低,至建構精度佳的預測模型為止,需要極大的時間。初始學習資料取得、或證實實驗的失敗所致的處理對象樣品的損耗持續時,裝置作動所需的能量及原料等亦持續損失。
為此,產生缺損資料的情況下,為了使輸出入資料的取得效率提升,且建構精度佳的預測模型,缺損代替資料方面,使用從目標值的距離偏離至少一定的值以上的值。此原因在於以下的理由。一般而言,全部的輸出入參數為正確的計測資料如此的前提下,預測模型被建構。然而,發生圖案的一部分或整體的倒塌或消失的情況下,稍加工後的剖面、上表面計測的計測值的一部分或其全部方面,真的值變不明。如此的狀況下,透過不適切的缺損代替資料如是否進行期望的加工的缺損代替資料而建構的預測模型的情況下,基於該預測模型下的預測當然成為從實際的解大為偏離者。
為此,缺損代替資料的決定時,使與輸出資料的目標值的差成為容許範圍內的範圍之上限值及下限值,分別為上限容許值及下限容許值,使此等上限容許值或下限容許值為缺損代替資料的基準值。
缺損代替資料的值需要為與目標值的差成為容許範圍外的值,例如可使用上限容許值的常數倍以上、比上限容許值的常數倍大的值、下限容許值以下、不足下限容許值、將下限容許值除以常數後的值以下、不足將下限容許值除以常數後的值等。此處的常數可任意定為一以上、或比一大的數值。或者,亦可使用將目標值的常數倍或目標值除以常數後的值(其中,任一情況皆需要與目標值的差成為容許範圍外)。
另外,亦可依處理對象進行設定。例如,就溝與線路反復的線隙圖案,作為相對於線寬度(溝寬)的缺損代替資料的基準值,可使用溝及線路的合計寬的全距或為其一半的值之半間距。
另外,亦可依在加工時產生的現象而設定。例如,發生圖案的一部分或整體的倒塌或消失的情況下,無法進行與圖案的寬度相關的值的計測。此情況下,與線路等的加工後剩餘的部分的寬度相關的缺損代替資料的值方面可使用0。寬度的具體例方面,包括圖24的(1t)遮罩頂寬、(2t)遮罩中央部的寬度、(3t)遮罩底寬、(4t)加工部頂寬、(5t)加工部中央部的寬度、(6t)加工底的寬度、圖19的(1)遮罩頂寬、(2)遮罩底寬、(4)加工部頂寬、(5)加工部中央部的寬度、(6)加工底的寬度、(7)加工部最大寬。另外,遮罩等的加工後剩餘的部分的厚度方面,亦可使用0作為缺損代替資料的值。該厚度尺寸的具體例方面,包括圖18的(3)遮罩厚度、圖19的(3)遮罩厚度。
此外,完全無法進行圖案的加工的情況下,無法計測透過加工始形成的圖案的寬度方面的值。此情況下,作為與線路等的加工後殘留的部分的寬度相關的缺損代替資料的值,可使用半間距或全距。該寬度的具體例方面為圖24的(4t)加工部頂寬、(5t)加工部中央部的寬度、(6t)加工底的寬度、圖18的(1)遮罩頂寬、(2)遮罩底寬、(4)加工部頂寬、(5)加工部中央部的寬度、(6)加工底的寬度、(7)加工部最大寬、圖19的(4)加工部頂寬、(5)加工部中央部的寬度、(6)加工底的寬度、(7)加工部最大寬。
另外,於已取得的輸出資料,亦可將與目標值的差成為容許範圍外的值,亦即亦可將從目標值的距離最遠的值作為缺損代替資料的基準值使用。亦可作成預先指定輸出入資料的取得次數,至取得指定的數量的輸出入資料為止,使用上述之上限容許值、下限容許值、全距、或半間距作為缺損代替資料的基準值,取得已指定的數量的輸出入資料後,使用與目標值的差成為容許範圍外的值且各參數方面與目標值的距離最遠的值作為缺損代替資料的基準值。此係於一定程度累積輸出入資料的階段,使缺損代替資料的基準值為實際取得的最差的輸出資料,使得可能給予接近更真的值的缺損代替資料。
即管如此,只要為缺損代替資料,則比起已取得的輸出資料,應為與目標值的差較大的值。因此,存在已取得的輸出資料的情況下,比較缺損代替資料的值與已取得的輸出資料的值,將與目標值的差成為容許範圍外的值,亦即將與目標值的差較大者的值使用為缺損代替資料的值,使得可使預測模型的精度提升。
反之,就已取得指定的數量以上的輸出入資料下的輸出入參數,從已取得輸出入資料生成預測缺損資料的模型,從此缺損資料預測模型,可預測缺損值。使預測的值為缺損預測資料時,可代替缺損代替資料而使用缺損預測資料。
另外,在缺損代替資料的保存後,要判斷是否可計測輸出資料、是否計測不可能或省略計測,由於特定出識別可計測的資料與缺損資料或缺損資料,故對各輸出參數給予記號或數值,保存為計測可否資料即可。再者,亦可作為輸出資料使用計測可否資料,利用與該計測可否資料對應的輸入資料而生成預測模型。利用此預測模型,預測證實實驗方面的計測可否,使得可挑選實際上進行證實實驗的條件。
頻繁發生成為目標的圖案的一部分或整體的倒塌或消失的情況下,透過取得與成為目標的圖案同時處理、或以相同輸入參數處理的與目標係不同的圖案或樣品的輸出資料,從而可增加可取得的輸出資料。輸出資料方面,選擇與目標圖案存在相關惟與目標係不同的試驗圖案或試驗樣品,利用此等的輸出資料而生成預測模型,使得可使預測精度提升。試驗圖案係比起目標圖案,容易變成可計測輸出資料,亦即不易發生圖案的一部分或整體的倒塌或消失者為佳。例如,目標圖案為溝、孔、線路、柱體、線隙的情況下,試驗圖案方面,可選擇尺寸較大的溝、孔、線路、柱體、線隙。另外,蝕刻對象的蝕刻不進展如此的狀況下,作為試驗樣品可使用未形成遮罩層的覆蓋膜。另外,使用複數種類的試驗圖案、試驗樣品,使得可更增加可計測的輸出資料。
加工對象的圖案中所含的厚度或深度的值可利用光學干涉儀而計測。另外,由於圖案的一部分或整體的倒塌,使得無法進行成為目標的圖案部分的利用光學干涉儀下的計測時,可利用與前述的目標係不同的圖案部分,計測厚度或深度。
接著,示出於半導體裝置的處理利用成為缺損資料的替代的缺損代替資料下的為了將加工形狀最佳化用的控制處理的適用例。
此處,利用作為輸出資料使用加工圖案之上部表面的輸出資料、或上部表面及剖面的輸出資料的情況進行說明。計測1方面取得上部表面的輸出資料、計測2方面取得剖面的輸出資料的情況下,將計測的輸出資料、缺損資料之例示於圖28。
於圖28中,計測1方面的LER11、LER12係前述的LER的值、CDtv11、CDtv12係前述的(1t)~(6t)寬度(圖24參照)。另外,計測2方面的CD21、CD22係前述的剖面方面的寬度,Depth21、Depth22係前述的剖面方面的深度尺寸。於計測1可計測LER11、CDtv11,取得計測值。另一方面,LER12、CDtv12係計測不能,給予表示缺損資料的N/A。缺損資料N/A係變成置換為與各輸出參數對應的缺損代替資料。
計測1後進行計測2的情況下,於計測2亦如同計測1,對為計測不能的項目給予表示缺損資料的N/A,缺損資料N/A置換為與各輸出參數對應的缺損代替資料。
另外,於計測1的輸出資料包含缺損資料的情況下,有時計測2方面亦成為缺損資料。具體而言,發生圖案的一部分或整體的變形、倒塌、消失的情況下,就此等狀況,可透過計測1之上部表面的計測下的缺損資料的發生從而掌握。此情況下,計測2的剖面的計測成為缺損資料,故實際的計測成為非必要。如此般,依計測1的輸出資料的缺損資料的發生有無、或缺損資料的項目的數量,省略計測2,使得可縮短探索時間。亦即,為了輸出資料的取得而進行複數個計測的情況下,依先進行的計測結果方面的缺損資料的發生有無、或缺損資料的項目的數量,省略在之後進行計測本身,可縮短探索時間。
省略計測2的情況下,如示於圖28的計測2般全部的輸出參數成為缺損資料。對省略計測下的輸出參數,給予與在雖進行計測惟計測不可能的情況下給予的缺損資料(N/A)係別的數值或記號,使得可識別兩者。例如,於計測2係非N/A,亦可給予Skip等的記號。另外,此情況下,變成將表示省略的記號或數值,置換為與各輸出參數對應的缺損代替資料。
將顯示加工形狀的最佳化方法的概要的流程圖示於圖29。圖29係與圖14同樣的流程圖,圖14與圖29的步驟編號相同的步驟方面,於圖29亦進行與圖14同樣的流程。
已設定各輸出參數為計測不可能、或省略計測的情況下使用的缺損代替資料的值及計測可否資料的值或記號的情況下,該等值或記號係被給予作為初始資料(步驟A901a)。另外,在步驟A901a,在透過監視器系統實測加工形狀之際使用的為了計測位置的決定或將計測位置往期望的計測位置誘導用的位置資訊資料及影像資訊資料方面亦被給予作為初始資料。步驟A901a係與圖5的S501、圖12的A501、圖14的A901的探索設定輸入、初始資料的輸入對應的處理。
缺損資料的特定、及往缺損資料的缺損代替資料的置換係在計測結果的輸出或證實實驗結果的保存下進行(A9031、A9032)。或者,亦可在計測結果的輸出時進行(A9041、A9042)。此係對應於與圖5的S507、圖6、圖7及圖8的S6070A、圖12的A508、圖14的A9030對應的探索結果、證實實驗結果的保存。或可在此等探索結果、證實實驗結果的保存後進行。
在此例,於步驟A9041的證實實驗結果的保存,保存為計測1的輸出資料的上部表面的輸出資料。此輸出資料之中,對計測不能的項目,給予表示缺損資料的N/A。缺損資料N/A係置換為與各輸出參數對應的缺損代替資料。計測1之後無其他計測的情況下,進行步驟A905的結果判定、步驟A906的資料的更新,於步驟A903,輸出利用包含缺損代替資料的輸出入資料下的預測模型的生成及預測結果,進行步驟A904的解的探索。
在計測1(步驟A9041)之後,進行計測2(步驟A9042)的情況下,於計測2亦如同計測1,對為計測不能的項目給予表示缺損資料的N/A,缺損資料N/A置換為與各輸出參數對應的缺損代替資料。之後,輸出利用包含缺損代替資料的輸出入資料下的預測模型的生成及預測結果,進行解的探索。
另外,步驟A9041的計測1的輸出資料中包含缺損資料(或缺損代替資料)的情況下,有時在步驟A9042的計測2仍產生缺損資料。例如,發生圖案的一部分或整體的變形、倒塌、消失的情況下,就此等狀況,可透過計測1之上部表面的計測下的缺損資料的發生從而掌握。如此之情況下,即使進行計測2的剖面的計測仍僅得到缺損資料,故實際的計測成為非必要。為此,依計測1(步驟A9041)的輸出資料方面的缺損資料的發生有無、或缺損資料的項目的數量省略計測2(步驟A9042),藉此可縮短探索時間。
如此般進行複數個計測的情況下,依先進行的計測結果方面的缺損資料的發生有無、或缺損資料的項目的數量,省略在之後進行的計測,藉此可縮短探索時間。進行複數個計測的情況下,在後階實施的計測方面需要長時間時,可大幅縮短探索時間,故有效性高。
對省略計測下的輸出參數,給予與N/A係別的數值或記號,使得可進行計測不可能的情況與省略計測下的情況的識別。另外,此情況下,將表示省略的記號或數值,置換為與各輸出參數對應的缺損代替資料,從而可進行預測模型的生成及解的探索。
將缺損資料(包含計測不可能的情況、省略計測的情況中的任一者)置換為缺損代替資料的動作可自動進行,亦可工程師決定置換的可否。此情況下,亦可工程師決定使用於改寫的缺損代替資料。此情況下,亦可作成提示使用事前指定的缺損代替資料的值、使用缺損代替資料的基準值、或使用與目標值的差成為容許範圍外之值且各參數方面從目標值的距離最遠之值如此的選項,工程師進行切換。
在步驟A901a使用的初始資料方面,不限於如示於圖15的圖案,可輸入如在圖30示出的複數個配方、和利用該各配方而蝕刻之際的圖案上部表面的加工形狀資料。利用包含各種的蝕刻形狀的初始資料,使得在利用預測模型下的解的預測之際,就在配方參數空間內的何區域存在實現目標形狀的配方參數,可效率佳地進行預測。
初始資料A9010a方面,如示於圖30,顯示圖案變形(條件1)、擺動(條件2)、圖案邊緣粗糙度(條件N),其他形狀方面,包括蝕刻完全未進展的蝕刻中止形狀、圖案的一部分或全部的消失、圖案的一部分或全部的倒塌等。例如,初始資料中的形狀僅有一種類的情況下,以從該資料求出的預測模型,難以預測符合其他形狀的解。為此,此等形狀之中,於初始資料包含至少兩種類以上,優選上包含三種類以上。
另外,圖30係就初始資料A9010a的一例進行繪示的圖。初始資料A9010a以與條件1~N對應的加工結果1~N之對而構成,加工結果1~N顯示加工對象的圖案上部表面形狀之例。
在步驟A902使用的目標資料方面,例如給予如示於圖31的目標資料A9020a的垂直加工形狀。另外,圖31係就目標資料A9020a的一例進行繪示的圖。目標資料A9020a顯示以加工前的加工對象的圖案上部表面形狀、和目標的圖案上部表面形狀而構成之例。
步驟A904的證實實驗的結果之例係如示於在圖32繪示的證實實驗結果A9031,此情況下,比含於初始資料中之形狀,獲得接近目標形狀的輸出(加工形狀),此與步驟A510:Yes對應。另外,圖32係就證實實驗結果A9031的一例進行繪示的圖。證實實驗結果A9031以與證實條件a~c對應的證實結果a~c之對而構成,證實結果a~c顯示加工對象的圖案上部表面形狀之例。
如此般,於半導體處理裝置201,透過執行利用探索裝置300下的探索方法,使得可使半導體處理裝置201的輸出參數的值接近作為目標的輸出參數的值(裝置輸出最佳化功能)。
在變化例方面,於半導體處理裝置的裝置控制系統(圖2參照),亦可搭載目前為止說明的探索裝置的功能。於圖33作為半導體處理裝置之例示出具有最佳處理條件探索功能的電漿處理裝置的示意圖。具備電漿產生用的天線56與使高頻電壓施加於其之高頻電源51及第1高頻整合器52。為了對處理室60內導入複數個氣體種類,設置第1流路61、第2流路62。另外,此處雖僅示出兩系統,惟非特別限定流路數者。使在天線56產生的高頻的交變電磁場作用於導入的混合氣體,從而予以生成從反應粒子所感應耦合的電漿63。另外,裝置具備:供於予以進行利用產生的電漿63所為的處理用的基板電壓產生器54及第2高頻整合器53。另外,具備可就作為處理對象的基板(樣品)59監控在加工時發生的電漿的變動的終點判定裝置55,具有將透過終點判定裝置55獲得的信號往第1質流控制器57及第2質流控制器58反饋的機構。依終點判定裝置55的信號,第1質流控制器57可調整第1流路61的氣流量,第2質流控制器58可調整第2流路62的氣流量。
電漿處理裝置的裝置控制系統70就裝置的高頻電源51、基板電壓產生器54、終點判定裝置55等的電漿生成裝置進行控制,對基板59實施蝕刻加工等的電漿處理(與配方設定控制器221、裝置基本設定控制器222對應),同時透過安裝儲存於探索裝置中的記憶裝置302(圖3參照)的相當於為了執行探索處理用的程式的處理程式,從而可實施至目前為止說明的探索處理。如此般,作為半導體處理裝置的一功能,搭載探索處理功能,使得可透過探索的輸入參數值控制電漿生成裝置而進行電漿處理。
另外,本發明係非限定於前述的實施例者,在包含申請專利的範圍的趣旨內的各種的變形例及同等的構成。例如,前述的實施例係為了就本發明以容易理解的方式說明而詳細說明者,本發明非限定必定具備說明的全部的構成者。另外,亦可將某實施例的構成的一部分置換為其他實施例的構成。另外,亦可於某實施例的構成力入其他實施例的構成。另外,亦可就各實施例的構成的一部分,進行其他構成的追加、刪除或置換。
另外,前述的各構成、功能、處理部、處理手段等可將該等之一部分或全部,透過例如以積體電路進行設計等,從而以硬體實現,亦可透過處理器解譯並執行實現個別的功能的程式,從而以軟體實現。
實現各功能的程式、表、檔案等的資訊可儲存於記憶體、硬碟、SSD(Solid State Drive)等的記憶裝置、或IC(Integrated Circuit)卡、SD卡、DVD(Digital Versatile Disc)的記錄媒體。
另外,控制線、資訊線等係示出說明上應需要者,不一定示出安裝上必要的全部的控制線、資訊線等。實際上,可想成幾乎全部的構成相互連接。
200‧‧‧半導體製造系統
201‧‧‧半導體處理裝置
202‧‧‧裝置控制系統
203‧‧‧監視器系統
204‧‧‧感測器系統
205‧‧‧資料庫
206‧‧‧自動控制系統
221‧‧‧配方設定控制器
222‧‧‧裝置基本設定控制器
223‧‧‧設定錯誤檢測系統
261‧‧‧目標設定控制器
262‧‧‧自主探索系統
263‧‧‧不穩定動作檢測系統
300‧‧‧探索裝置
401‧‧‧輸入部
402‧‧‧生成部
403‧‧‧特定部
404‧‧‧判斷部
405‧‧‧設定部
406‧‧‧輸出部
407‧‧‧決定部
408‧‧‧分割部
409‧‧‧檢測部
[圖1]示出本發明的實施例1且示出輸入參數的探索例的說明圖。
[圖2]示出本發明的實施例1且示出半導體製造系統的系統構成例的說明圖。
[圖3]示出本發明的實施例1且示出探索裝置的硬體構成例的方塊圖。
[圖4]示出本發明的實施例1且示出探索裝置的功能性構成例的方塊圖。
[圖5]示出本發明的實施例1且示出半導體處理裝置的控制處理順序例的流程圖1。
[圖6]示出本發明的實施例1且示出半導體處理裝置的控制處理順序例的流程圖2。
[圖7]示出本發明的實施例1且示出半導體處理裝置的控制處理順序例的流程圖3。
[圖8]示出本發明的實施例1且示出半導體處理裝置的控制處理順序例的流程圖4。
[圖9]示出本發明的實施例1且示出機差抑制方法的流程圖。
[圖10]示出本發明的實施例1且示出歷時變化校正方法的流程圖。
[圖11]示出本發明的實施例2且示出輸入參數的探索例的說明圖。
[圖12]示出本發明的實施例2且示出半導體處理裝置的控制處理順序例的流程圖。
[圖13]示出本發明的實施例2且示出半導體處理裝置的控制處理順序例的流程圖。
[圖14]示出本發明的實施例2且示出加工形狀的最佳化方法的流程圖。
[圖15]示出本發明的實施例2且示出初始資料的一例的說明圖。
[圖16]示出本發明的實施例2且示出目標資料的一例的說明圖。
[圖17]示出本發明的實施例2且示出證實實驗結果的一例的說明圖。
[圖18]示出本發明的實施例2且示出加工形狀的一例的剖面圖。
[圖19]示出本發明的實施例2且示出加工形狀的一例的剖面圖。
[圖20]示出本發明的實施例2且示出初始設定畫面的說明圖。
[圖21]示出本發明的實施例2且示出探索畫面的說明圖。
[圖22]示出本發明的實施例2且示出自主探索用的探索畫面的說明圖。
[圖23A]示出本發明的實施例2且示出加工形狀的一例的示意圖。
[圖23B]示出本發明的實施例2且示出加工形狀的一例的示意圖。
[圖23C]示出本發明的實施例2且示出加工形狀的一例的示意圖。
[圖24]示出本發明的實施例2且示出加工形狀的一例的示意圖。
[圖25]示出本發明的實施例2且示出加工形狀的一例的示意圖。
[圖26]示出本發明的實施例2且為示出加工形狀的一例的上表面構造的一部分。
[圖27]示出本發明的實施例2且為示出加工形狀的一例的上表面構造的一部分。
[圖28]示出本發明的實施例2且就可計測的資料及缺損特定資料進行繪示的圖。
[圖29]示出本發明的實施例2且示出加工形狀的最佳化方法的流程圖。
[圖30]示出本發明的實施例2且示出初始資料的一例的說明圖。
[圖31]示出本發明的實施例2且示出目標資料的一例的說明圖。
[圖32]示出本發明的實施例2且示出證實實驗結果的一例的說明圖。
[圖33]示出本發明的實施例2且為具有最佳處理條件探索功能的電漿處理裝置的示意圖。
Claims (15)
- 一種探索裝置,其為探索一輸入參數值者,前述輸入參數值為用於獲得在半導體製造裝置中的目標處理形狀者,前述探索裝置具有:記憶裝置、和探索用於獲得前述目標處理形狀的輸入參數值並儲存於前述記憶裝置的程式;透過前述程式執行一生成步驟,前述生成步驟為根據輸入參數值和一輸出參數值而生成顯示輸入參數值和輸出參數值的關係的預測模型者,前述輸出參數值為前述半導體製造裝置的處理結果的實測值,前述生成步驟在前述實測值為缺損資料的情況下,根據促使生成前述缺損資料的輸入參數值和為前述缺損資料之實測值被置換的缺損代替資料而生成前述預測模型,前述缺損資料為計測不可能或計測被跳過的資料。
- 如請求項1的探索裝置,其中,在使用對應於目標輸出參數值且透過前述預測模型進行預測的輸入參數值而從透過前述半導體製造裝置進行處理完的處理結果取得的實測值不符合對應於前述目標處理形狀的目標值的情況下,使用前述預測的輸入參數值和前述取得的實測值而更新前述預測模型。
- 如請求項1的探索裝置,其中,前述程式具有受理部,透過前述程式執行:受理位置資訊作為初始資料的步驟、和使用前述位置資訊而實測前述處理結果的步驟。
- 如請求項1的探索裝置,其中,前述缺損代替資料被決定為與輸出參數值的目標值的差在容許範圍外之值。
- 如請求項4的探索裝置,其中,使用在前述處理結果的實測值之中與前述輸出參數值的目標值的距離最大的值作為前述缺損代替資料的基準值。
- 如請求項1的探索裝置,其中,包含前述處理結果之上表面形狀的計測值及剖面形狀的計測值作為表示前述處理形狀的輸出參數。
- 一種探索方法,其為探索一輸入參數值者,前述輸入參數值為用於獲得在半導體製造裝置中的目標處理形狀者,前述探索方法具有根據輸入參數值和一輸出參數值而 生成顯示輸入參數值和輸出參數值的關係的預測模型的生成程序,前述輸出參數值為前述半導體製造裝置的處理結果的實測值,前述生成程序在前述實測值為缺損資料的情況下,根據促使生成前述缺損資料的輸入參數值和為前述缺損資料之實測值被置換的缺損代替資料而生成前述預測模型,前述缺損資料為計測不可能或計測被跳過的資料。
- 如請求項7的探索方法,其中,前述缺損代替資料被決定為與輸出參數值的目標值的差在容許範圍外之值。
- 如請求項7的探索方法,其中,前述輸出參數值具有透過第1計測而取得的第1輸出參數值和透過第2計測而取得的第2輸出參數值,根據前述第1輸出參數值而判斷前述第2計測的可否。
- 一種電漿處理裝置,其為具備樣品被電漿處理的處理室、供應生成電漿用的高頻電力的高頻電源、和載置前述樣品的樣品台者,其進一步具備根據輸入參數值和一輸出參數值而生成顯示輸入參數值和輸出參數值的關係的預測模型的控制裝置,前述輸出參數值為前述半導體製造裝置的處理結果的實測值, 前述控制裝置在前述實測值為缺損資料的情況下,根據促使生成前述缺損資料的輸入參數值和為前述缺損資料之實測值被置換的缺損代替資料而生成前述預測模型,前述缺損資料為計測不可能或計測被跳過的資料。
- 如請求項10的電漿處理裝置,其中,前述缺損代替資料被決定為與輸出參數值的目標值的差在容許範圍外之值。
- 如請求項10的電漿處理裝置,其中,包含前述處理結果之上表面形狀的計測值及剖面形狀的計測值作為表示前述樣品的處理形狀的輸出參數。
- 一種探索裝置,其為探索一輸入參數值者,前述輸入參數值為用於獲得在半導體製造裝置中的目標處理形狀者,前述探索裝置具有:記憶裝置、和探索用於獲得前述目標處理形狀的輸入參數值並儲存於前述記憶裝置的程式;透過前述程式執行一生成步驟,前述生成步驟為根據輸入參數值和一輸出參數值而生成顯示輸入參數值和輸出參數值的關係的預測模型者,前述輸出參數值為前述半導體製造裝置的處理結果的實測值, 在使用對應於目標輸出參數值且透過前述預測模型進行預測的輸入參數值而從透過前述半導體製造裝置進行處理完的處理結果取得的實測值不符合對應於前述目標處理形狀的目標值的情況下,使用前述預測的輸入參數值和前述取得的實測值而更新前述預測模型,包含前述處理結果之上表面形狀的計測值及剖面形狀的計測值作為表示前述處理形狀的輸出參數。
- 如請求項13的探索裝置,其中,在前述實測值為缺損資料的情況下,根據促使生成前述缺損資料的輸入參數值和為前述缺損資料之實測值被置換的缺損代替資料而生成前述預測模型,前述缺損資料為計測不可能或計測被跳過的資料。
- 如請求項14的探索裝置,其中,前述缺損代替資料被決定為與輸出參數值的目標值的差在容許範圍外之值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018052162A JP7137943B2 (ja) | 2018-03-20 | 2018-03-20 | 探索装置、探索方法及びプラズマ処理装置 |
JP2018-052162 | 2018-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201941115A TW201941115A (zh) | 2019-10-16 |
TWI737959B true TWI737959B (zh) | 2021-09-01 |
Family
ID=67984311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108103034A TWI737959B (zh) | 2018-03-20 | 2019-01-28 | 探索裝置、探索方法及電漿處理裝置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11189470B2 (zh) |
JP (1) | JP7137943B2 (zh) |
KR (1) | KR102311313B1 (zh) |
TW (1) | TWI737959B (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7121506B2 (ja) | 2018-03-14 | 2022-08-18 | 株式会社日立ハイテク | 探索装置、探索方法及びプラズマ処理装置 |
JP7056592B2 (ja) * | 2019-01-17 | 2022-04-19 | Jfeスチール株式会社 | 金属材料の製造仕様決定方法、製造方法、および製造仕様決定装置 |
KR102287460B1 (ko) * | 2019-08-16 | 2021-08-10 | 엘지전자 주식회사 | 인공지능 무빙 에이전트 |
WO2021085522A1 (ja) * | 2019-10-30 | 2021-05-06 | Alitecs株式会社 | 処理条件推定装置、方法及びプログラム |
US11747774B2 (en) | 2019-12-03 | 2023-09-05 | Hitachi High-Tech Corporation | Search device, search program, and plasma processing apparatus |
US11761969B2 (en) * | 2020-01-21 | 2023-09-19 | Kla Corporation | System and method for analyzing a sample with a dynamic recipe based on iterative experimentation and feedback |
JP7267966B2 (ja) * | 2020-03-19 | 2023-05-02 | 株式会社東芝 | 情報処理装置及び情報処理方法 |
WO2022008174A1 (en) | 2020-07-09 | 2022-01-13 | Asml Netherlands B.V. | Method for adjusting a patterning process |
JP2022043780A (ja) * | 2020-09-04 | 2022-03-16 | 東京エレクトロン株式会社 | パラメータ選択方法および情報処理装置 |
JP7596106B2 (ja) | 2020-09-28 | 2024-12-09 | キヤノン株式会社 | 情報処理装置、検査方法、プログラム、露光装置、決定方法、及び物品の製造方法 |
JP7571612B2 (ja) | 2021-02-22 | 2024-10-23 | 株式会社Sumco | 加工条件設定装置、加工条件設定方法、及びウェーハの製造システム |
JP7595278B2 (ja) | 2021-03-26 | 2024-12-06 | bacoor dApps株式会社 | 再学習用データ管理システム、及び、再学習用データ管理方法 |
JP2023108302A (ja) * | 2022-01-25 | 2023-08-04 | 株式会社日立ハイテク | 観察システム、観察方法およびプログラム |
WO2023167887A1 (en) * | 2022-03-03 | 2023-09-07 | Advanced Energy Industries, Inc. | Adaptive predictive control system |
US11990324B2 (en) * | 2022-03-03 | 2024-05-21 | Advanced Energy Industries, Inc. | Adaptive predictive control system |
TW202407483A (zh) | 2022-05-06 | 2024-02-16 | 日商東京威力科創股份有限公司 | 模型產生方法、電腦程式及資訊處理裝置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201104452A (en) * | 2009-03-31 | 2011-02-01 | Tokyo Electron Ltd | Method and system for detection of tool performance degradation and mismatch |
TW201202876A (en) * | 2010-01-29 | 2012-01-16 | Tokyo Electron Ltd | Method and system for self-learning and self-improving a semiconductor manufacturing tool |
WO2017149267A1 (en) * | 2016-03-01 | 2017-09-08 | The Aluminium Lighting Company Ltd | Monitoring the structural health of columns and like structures |
US20180052907A1 (en) * | 2013-07-24 | 2018-02-22 | Dynatrace Llc | Method And System For Real-Time, False Positive Resistant, Load Independent And Self-Learning Anomaly Detection Of Measured Transaction Execution Parameters Like Response Times |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920002268A (ko) | 1990-07-17 | 1992-02-28 | 유끼노리 가까즈 | 인텔리젠트가공장치 |
JPH1074188A (ja) * | 1996-05-23 | 1998-03-17 | Hitachi Ltd | データ学習装置およびプラント制御装置 |
JPH10301979A (ja) | 1997-04-30 | 1998-11-13 | Oki Electric Ind Co Ltd | モデルパラメータ抽出方法およびモデルパラメータ抽出装置 |
JP3086794B2 (ja) | 1997-09-19 | 2000-09-11 | 豊田工機株式会社 | 数値制御研削盤 |
JP3708031B2 (ja) | 2001-06-29 | 2005-10-19 | 株式会社日立製作所 | プラズマ処理装置および処理方法 |
JP4215454B2 (ja) * | 2001-07-12 | 2009-01-28 | 株式会社日立製作所 | 試料の凹凸判定方法、及び荷電粒子線装置 |
US6941301B2 (en) * | 2002-01-18 | 2005-09-06 | Pavilion Technologies, Inc. | Pre-processing input data with outlier values for a support vector machine |
US7272459B2 (en) | 2002-11-15 | 2007-09-18 | Applied Materials, Inc. | Method, system and medium for controlling manufacture process having multivariate input parameters |
JP4671594B2 (ja) | 2003-10-08 | 2011-04-20 | 株式会社日立ハイテクノロジーズ | データ収集管理方法およびそのシステム |
JP2006074067A (ja) | 2005-11-08 | 2006-03-16 | Hitachi Ltd | プラズマ処理装置および処理方法 |
JP2007165721A (ja) * | 2005-12-15 | 2007-06-28 | Omron Corp | プロセス異常分析装置及びプログラム |
EP2001410B1 (en) | 2006-03-22 | 2016-12-28 | Ascension Orthopedics, Inc. | Prosthetic implant and assembly method |
US7567700B2 (en) | 2006-03-28 | 2009-07-28 | Tokyo Electron Limited | Dynamic metrology sampling with wafer uniformity control |
US20080279434A1 (en) * | 2007-05-11 | 2008-11-13 | William Cassill | Method and system for automated modeling |
US8190543B2 (en) | 2008-03-08 | 2012-05-29 | Tokyo Electron Limited | Autonomous biologically based learning tool |
JP5489681B2 (ja) | 2009-12-02 | 2014-05-14 | キヤノン株式会社 | 固体撮像装置 |
JP5751045B2 (ja) | 2010-08-31 | 2015-07-22 | 富士電機株式会社 | プラントの運転条件最適化システム、プラントの運転条件最適化方法、プラントの運転条件最適化プログラム |
CN103582819B (zh) | 2011-04-06 | 2016-09-14 | 科磊股份有限公司 | 用于提供经改进过程控制的质量度量的方法及系统 |
TWI549007B (zh) | 2013-02-07 | 2016-09-11 | 先知科技股份有限公司 | 製程參數的搜尋與分析方法及其電腦程式產品 |
JP6316578B2 (ja) | 2013-12-02 | 2018-04-25 | 株式会社日立ハイテクノロジーズ | 走査電子顕微鏡システム及びそれを用いたパターン計測方法並びに走査電子顕微鏡 |
US9396443B2 (en) * | 2013-12-05 | 2016-07-19 | Tokyo Electron Limited | System and method for learning and/or optimizing manufacturing processes |
JP6101650B2 (ja) | 2014-02-27 | 2017-03-22 | 日本電信電話株式会社 | システムパラメタ学習装置、情報処理装置、方法、及びプログラム |
CN107004060B (zh) | 2014-11-25 | 2022-02-18 | Pdf决策公司 | 用于半导体制造工艺的经改进工艺控制技术 |
US9558545B2 (en) | 2014-12-03 | 2017-01-31 | Kla-Tencor Corporation | Predicting and controlling critical dimension issues and pattern defectivity in wafers using interferometry |
US9711327B2 (en) | 2015-07-16 | 2017-07-18 | Applied Materials Israel, Ltd. | Method and system for optimizing configurable parameters of inspection tools |
KR102413703B1 (ko) | 2015-08-20 | 2022-06-27 | 삼성전자주식회사 | 무선 통신 시스템에서 버퍼 상태 정보 송수신 방법 및 장치 |
JP2017102619A (ja) | 2015-11-30 | 2017-06-08 | オムロン株式会社 | 制御パラメータ調整装置、制御パラメータ調整方法、制御パラメータ調整プログラム |
JP6650786B2 (ja) | 2016-03-03 | 2020-02-19 | 三菱日立パワーシステムズ株式会社 | 制御パラメータ自動調整装置、制御パラメータ自動調整方法、及び制御パラメータ自動調整装置ネットワーク |
JP2018068752A (ja) | 2016-10-31 | 2018-05-10 | 株式会社Preferred Networks | 機械学習装置、機械学習方法及びプログラム |
JP6778666B2 (ja) | 2017-08-24 | 2020-11-04 | 株式会社日立製作所 | 探索装置及び探索方法 |
JP6883787B2 (ja) | 2017-09-06 | 2021-06-09 | パナソニックIpマネジメント株式会社 | 学習装置、学習方法、学習プログラム、推定装置、推定方法、及び推定プログラム |
JP6974712B2 (ja) | 2017-10-24 | 2021-12-01 | 富士通株式会社 | 探索方法、探索装置および探索プログラム |
JP7121506B2 (ja) | 2018-03-14 | 2022-08-18 | 株式会社日立ハイテク | 探索装置、探索方法及びプラズマ処理装置 |
-
2018
- 2018-03-20 JP JP2018052162A patent/JP7137943B2/ja active Active
-
2019
- 2019-01-16 KR KR1020190005491A patent/KR102311313B1/ko active Active
- 2019-01-28 TW TW108103034A patent/TWI737959B/zh active
- 2019-02-27 US US16/287,679 patent/US11189470B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201104452A (en) * | 2009-03-31 | 2011-02-01 | Tokyo Electron Ltd | Method and system for detection of tool performance degradation and mismatch |
TW201202876A (en) * | 2010-01-29 | 2012-01-16 | Tokyo Electron Ltd | Method and system for self-learning and self-improving a semiconductor manufacturing tool |
US20180052907A1 (en) * | 2013-07-24 | 2018-02-22 | Dynatrace Llc | Method And System For Real-Time, False Positive Resistant, Load Independent And Self-Learning Anomaly Detection Of Measured Transaction Execution Parameters Like Response Times |
WO2017149267A1 (en) * | 2016-03-01 | 2017-09-08 | The Aluminium Lighting Company Ltd | Monitoring the structural health of columns and like structures |
Also Published As
Publication number | Publication date |
---|---|
KR102311313B1 (ko) | 2021-10-12 |
JP2019165123A (ja) | 2019-09-26 |
JP7137943B2 (ja) | 2022-09-15 |
TW201941115A (zh) | 2019-10-16 |
US11189470B2 (en) | 2021-11-30 |
KR20190110425A (ko) | 2019-09-30 |
US20190295827A1 (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI737959B (zh) | 探索裝置、探索方法及電漿處理裝置 | |
JP6778666B2 (ja) | 探索装置及び探索方法 | |
KR102039394B1 (ko) | 탐색 장치 및 탐색 방법 | |
JP7636418B2 (ja) | 半導体製造プロセスのための性能予測子 | |
US10254641B2 (en) | Layout pattern proximity correction through fast edge placement error prediction | |
JP5095999B2 (ja) | 半導体処理ツールによって実行されるプロセスを分析する第1の原理シミュレーションを使用するシステム及び方法。 | |
JP4795957B2 (ja) | 半導体製造プロセスを制御する第1の原理シミュレーションを用いたシステム及び方法。 | |
JP5032118B2 (ja) | 半導体製造プロセスにおいて第1の原理シミュレーションを用いたシステム及び方法。 | |
CN112136135B (zh) | 使用关键尺寸扫描型电子显微镜的工艺仿真模型校正 | |
JP6754878B2 (ja) | 探索装置および探索方法 | |
US20240427308A1 (en) | Substrate process operation analysis application and generation of visualizations | |
JP2024544815A (ja) | 製造システムにおけるマルチレベルrfパルス監視およびrfパルス化パラメータ最適化 |