[go: up one dir, main page]

KR20190110425A - 탐색 장치, 탐색 방법 및 플라스마 처리 장치 - Google Patents

탐색 장치, 탐색 방법 및 플라스마 처리 장치 Download PDF

Info

Publication number
KR20190110425A
KR20190110425A KR1020190005491A KR20190005491A KR20190110425A KR 20190110425 A KR20190110425 A KR 20190110425A KR 1020190005491 A KR1020190005491 A KR 1020190005491A KR 20190005491 A KR20190005491 A KR 20190005491A KR 20190110425 A KR20190110425 A KR 20190110425A
Authority
KR
South Korea
Prior art keywords
value
search
data
target
parameter value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020190005491A
Other languages
English (en)
Other versions
KR102311313B1 (ko
Inventor
다케시 오모리
?카 나카다
나오유키 고후지
마사요시 이시카와
마사루 구리하라
Original Assignee
가부시키가이샤 히다치 하이테크놀로지즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 하이테크놀로지즈 filed Critical 가부시키가이샤 히다치 하이테크놀로지즈
Publication of KR20190110425A publication Critical patent/KR20190110425A/ko
Application granted granted Critical
Publication of KR102311313B1 publication Critical patent/KR102311313B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32963End-point detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Software Systems (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Drying Of Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

[과제] 반도체 처리 장치에 있어서의 운용의 효율화를 도모한다.
[해결 수단] 목표 가공 형상으로 가공하기 위해 반도체 처리 장치에 설정하는 입력 파라미터값을 탐색하기 위해, 입력 파라미터값과, 반도체 처리 장치에 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값인 출력 파라미터값에 의거하여, 입력 파라미터값과 출력 파라미터값과의 관계를 나타내는 예측 모델을 생성하고, 이때, 반도체 처리 장치가 가공한 가공 결과의 실측값이 결손 데이터일 경우에는, 결손 데이터를 발생시킨 입력 파라미터값과 결손 데이터인 실측값을 치환한 결손 대체 데이터에 의거하여, 예측 모델을 생성한다.

Description

탐색 장치, 탐색 방법 및 플라스마 처리 장치{SEARCH APPARATUS, SEARCH METHOD AND PLASMA PROCESSING APPARATUS}
본 발명은 해(解)를 탐색하는 탐색 장치, 탐색 방법 및 플라스마 처리 장치에 관한 것이다.
반도체 디바이스의 성능 향상을 위해, 반도체 디바이스를 구성하는 신재료가 도입되고, 동시에 반도체 디바이스의 구조가 복잡화된다. 또한, 반도체 디바이스의 가공에서는, 나노미터 레벨의 정밀도가 요구된다. 또한, 반도체 디바이스의 생산성 향상을 위해, 당해 정밀도를 유지한 상태에서의 양산 처리를 가능한 한 계속하는 것이 요구된다. 이들 요구를 만족시키기 위해서는, 반도체 디바이스는 다종의 재료 및 구조를 매우 고정밀도로 가공할 수 있을 필요가 있다. 따라서, 반도체 디바이스를 처리하는 반도체 처리 장치의 제어 범위가 확대되어, 다수의 제어 파라미터가 추가된다. 반도체 처리 장치를 이용함으로써, 높은 생산성을 유지하면서, 고성능의 반도체 디바이스가 생산된다.
다른 한편, 반도체 처리 장치의 성능을 충분히 끌어내기 위해서는, 반도체 처리 장치마다 수종 내지 수십종에도 달하는 입력 파라미터를 결정할 필요가 있다. 또한 1개의 공정 내에서 다수의 스텝이 있고, 그 스텝마다 입력 파라미터를 변경할 필요가 있다. 따라서, 목표하는 가공 결과가 얻어지는 입력 파라미터의 조합을 밝혀내는 것이 매우 곤란하다. 그 때문에, 가공 조건 개발의 장기화에 의해, 개발 비용이 증대하고 있다. 또한, 고난도의 공정 수가 증가하고 있어, 이에 대응할 수 있는 고도의 지식과 기술을 가진 톱 엔지니어가 부족하다.
생산성의 유지 및 향상을 위해서는, 반도체 디바이스를 양산 중의 반도체 처리 장치의 상태 및 가공 결과의 데이터를 취득할 필요가 있다. 이들 데이터 취득을 목적으로 한 복수의 센서 및 모니터가 반도체 처리 장치에 탑재되어 있다. 반도체 디바이스를 양산 중의 반도체 처리 장치의 상태 및 가공 결과의 데이터 변동을 보정하기 위한 제어를 실시하기 위해서는, 센서 데이터 및 모니터 데이터와 가공 결과와의 관계를 해석하여, 제어용 파라미터를 찾아낼 필요가 있다. 나노미터 레벨의 가공 제어를 행하기 위해, 반도체 처리 장치에 탑재되는 센서 및 제조 상황의 모니터의 수가 증가하고, 데이터 취득의 빈도도 증가하고 있다. 이에 따라, 취득되는 데이터량이 증대한다. 따라서, 필요해지는 고정밀도의 반도체 처리 장치의 제어 방법의 개발은, 방대한 데이터의 해석 및 제어 성능의 검증이 필요하여, 매우 곤란하다.
반도체 디바이스와 같은 첨단 디바이스의 제조는, 생산성을 확보하기 위해, 반도체 처리 장치의 에이징 방법의 개발을 요구한다. 반도체 처리 장치의 에이징 방법이란, 반도체 처리 장치간의 성능차의 억제, 양산 중의 가공 특성의 경시(經時) 변화의 보정, 및 반도체 처리 장치의 메인터넌스로 전부 보정할 수 없는 반도체 처리 장치간의 성능차를 축소하기 위한 방법이다. 반도체 처리 장치의 에이징 방법의 개발은, 고도의 지식과 기술을 가진 톱 엔지니어에 의해 실시된다. 그러나, 반도체 디바이스의 제조에 있어서의 웨이퍼 처리 매수 및 고난도의 공정 수가 계속해서 증가하고 있어, 톱 엔지니어의 인원수 부족이 심각화되고 있다. 그 때문에, 데이터가 취득되는 것만으로 해석까지 손이 미치지 않는 공정이 증가한다.
이상에서, 반도체 처리 장치 스스로가 자동적으로 반도체 처리 장치의 성능을 끌어내는 기능, 및 반도체 처리 장치의 성능을 끌어내는 엔지니어를 지원하는 기능이, 반도체 처리 장치에 요구된다.
특허문헌 1은, 생물학에 의거한 자율 학습 시스템을 이용하여, 제조 툴의 레시피를 인크리멘탈(incremental) 또는 랜덤으로 변경했을 때의 데이터를 학습하고, 그 결과를 이용하여 조절된 레시피를 생성하는 기술을 개시한다.
일본국 특표2013-518449호 공보
예를 들면, 반도체 처리 장치의 입력 파라미터는, 반도체 처리 장치의 동작을 결정하는 파라미터이며, 가스종, 가스 유량, 압력, 투입 전력, 전압, 전류, 처리 시간, 가열 온도, 냉각 온도, 도즈량, 광량과 같은 입력 파라미터가 있다. 반도체 처리 장치의 출력 파라미터는, 반도체 처리 장치에서의 처리 중 또는 처리된 처리 대상물(처리 결과)을 감시 또는 계측함으로써 얻어지는 파라미터이며, CD(Critical Dimension), 퇴적 막두께, ER(Etch Rate), 가공 형상, 마스크 선택비, 추가로 이들 웨이퍼 면 내 분포 및 균일성과 같은 가공 결과를 나타내는 출력 파라미터가 있다. 또한, 이들 가공 결과와 관련이 있는 센서 데이터 및 모니터 데이터로서는, 광반사 스펙트럼, 플라스마 광스펙트럼, 웨이퍼 입사 전류, 웨이퍼 전압, 웨이퍼 온도, 장치 부품 온도, 추가로 이들의 공간 분포 및 균일성을 나타내는 데이터도 있다. 센서 데이터 및 모니터 데이터도 또한 출력 파라미터이다.
반도체 처리 장치의 입출력 관계를 해석하기 위해서는, 1입력 1출력부터 다입력 다출력까지의 입출력 데이터를 해석할 수 있을 필요가 있다. 그리고, 목적하는 출력 결과를 만족시키는 입력 파라미터의 조합을 얻기 위해서는, 입력 파라미터 및 출력 파라미터로 이루어지는 광대한 장치 파라미터 공간을 탐색할 필요가 있다.
예를 들면, 탐색하는 입력 파라미터로서, 사용 가스 2종의 각 유량, 가스 압력, 방전 전력, 웨이퍼 인가 바이어스 전력과 같은 기본적인 5종류의 입력 파라미터를 선택했을 경우를 생각한다. 각 입력 파라미터의 제어 범위는 이하와 같다. 양(兩)가스 유량의 제어 범위는 100∼200[sccm], 가스 압력의 제어 범위는 1∼10[Pa], 방전 전력의 제어 범위는 500∼1500[W], 바이어스 전력의 제어 범위는 0∼100[W]와 같은 전형적인 범위로 한다. 또한, 각 파라미터를 변경할 때의 최소폭의 전형적인 값은 이하와 같다. 양가스 유량의 당해 값은 1[sccm], 가스 압력의 당해 값은 0.1[Pa], 방전 전력의 당해 값은 1[W], 바이어스 전력의 당해 값은 1[W]이다.
이 경우, 장치 파라미터의 공간 전체에 있어서의 입력 파라미터의 제어 범위의 전체 조합, 즉 탐색 조건 수를 개산(槪算)하면, 100×100×100×1000×100=1011이 된다. 탐색 1회에 걸리는 시간이 1분 정도일 경우에는, 전체 탐색 조건 수의 탐색에 10만년 이상 걸려, 실행 불가능하다.
또한, 탐색 1세트분에 있어서 입력 파라미터마다의 값의 설정 수를 10개로 하면, 탐색에 있어서의 입력 파라미터의 조합은 105이 된다. 탐색 1회의 시간이 1분 정도일 경우에는, 1세트분의 탐색에 2개월 이상의 시간이 필요해진다. 탐색 및 탐색 결과의 해석을 반복하여 목표하는 해에 도달하기 위해서는, 탐색 1세트에 걸리는 시간은 길 경우에도 수일 이하, 바람직하게는 1시간 이하로 할 필요가 있다. 따라서, 목표하는 해에 도달하기 위해서는, 탐색에 있어서의 입력 파라미터의 설정, 즉 탐색 영역의 결정이 매우 중요하다.
탐색 1세트에 있어서의 탐색 조건 수를 100조건, 또한 탐색 시간을 1시간으로 하여, 이 탐색을 반복함으로써 1일에 2000조건을 탐색했을 경우에는, 장치 파라미터 공간의 조건 수 1011 중, 1일에 0.000002%의 영역이 탐색된다. 이것을 1개월 계속했을 경우, 즉 탐색 6만 세트를 실행했을 경우에는 장치 파라미터 공간 중 0.00006%의 영역이 탐색된 것이 된다. 따라서, 탐색 1세트에 있어서의 탐색 영역이 좁을 경우에 있어서, 탐색 영역을 랜덤으로 변경했을 경우에는, 최적의 해에 도달할 수 있을 가능성은 매우 낮다. 또한, 중복된 탐색 영역이 있을 경우에는, 최적의 해에의 도달에 필요한 시간은 더 길어진다.
또한, 반도체 처리 장치의 입출력 관계는, 대부분의 경우에 있어서 비선형이며, 장치 파라미터 공간에는 다수의 국소해(局所解)가 존재한다. 그 때문에, 1회의 데이터 해석 및 추정에 의해, 출력 파라미터의 값을 만족시키는 입력 파라미터의 값이 발견되는 것은 매우 드물다. 장치 파라미터 공간 중 1%의 탐색 영역에 1개 정도의 국소해가 존재할 경우에 대해서 생각하면, 탐색 영역을 좁은 영역으로 하여, 탐색 영역을 랜덤으로 선택하면, 탐색 영역 내 또는 그 근방의 최량(最良)의 해에 도달할 수 있었다고 해도, 99%의 확률로 국소해에 도달하게 된다. 따라서, 국소해를 효율적으로 피하거나, 또는 국소해 도달 후에 있어서 해에 도달할 수 있을 가능성이 높아지도록 탐색 영역을 결정할 필요가 있다.
그러나, 상술한 특허문헌 1의 기술은, 데이터 학습시에, 레시피를 인크리멘탈 또는 랜덤으로 변경하는 것에 지나지 않기 때문에, 해가 되는 입력 파라미터인 최량해에 도달할 수 있을 가능성은 매우 낮다는 문제가 있다. 환언하면, 최량해와 비교해서 떨어진 결과가 되는 국소해에 도달해 버릴 가능성이 매우 높아진다는 문제가 있다.
또한, 상술한 바와 같이, 반도체 디바이스에의 새재료 도입, 디바이스 구조 복잡화, 및 나노미터 레벨의 정밀도에 의한 가공이 요구되고 있으며, 미세 패턴 가공 프로세스 개발에 있어서, 패턴의 일부 또는 전체의 변형, 도괴(倒壞), 소실이 빈번하게 발생한다는 문제가 있다. 또한, 이들 발생시에는, 가공 결과의 측정값을 취득할 수 없어, 가공 결과를 이용한 해석을 할 수 없다는 과제가 있다.
본 발명은 반도체 처리 장치에 있어서의 운용의 효율화를 도모하는 것을 목적으로 한다.
본원에 있어서 개시되는 발명의 일측면이 되는 탐색 장치는, 가공 대상을 소정의 가공 형상으로 가공하는 반도체 처리 장치에 대하여, 목표 가공 형상으로 가공하기 위해 반도체 처리 장치에 설정하는 입력 파라미터값을 탐색하는 탐색 장치로서, 프로세서와, 기억 디바이스와, 기억 디바이스에 저장되고, 프로세서로 실행됨으로써, 가공 대상을 목표 가공 형상으로 가공하기 위한 입력 파라미터값을 탐색하는 프로그램을 갖고, 프로그램은 생성부를 갖고, 생성부는, 입력 파라미터값과, 반도체 처리 장치에 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값인 출력 파라미터값에 의거하여, 입력 파라미터값과 출력 파라미터값과의 관계를 나타내는 예측 모델을 생성하고, 생성부는, 반도체 처리 장치가 가공한 가공 결과의 실측값이 결손 데이터일 경우에는, 결손 데이터를 발생시킨 입력 파라미터값과 결손 데이터인 실측값을 치환한 결손 대체 데이터에 의거하여, 예측 모델을 생성한다.
본 발명의 대표적인 실시형태에 따르면, 반도체 처리 장치에 있어서의 운용의 효율화 및 처리의 최적화를 도모할 수 있다. 상술한 것 이외의 과제, 구성 및 효과는, 이하의 실시예의 설명에 의해 분명해진다.
도 1은 본 발명의 실시예 1을 나타내고, 입력 파라미터의 탐색예를 나타내는 설명도.
도 2는 본 발명의 실시예 1을 나타내고, 반도체 제조 시스템의 시스템 구성예를 나타내는 설명도.
도 3은 본 발명의 실시예 1을 나타내고, 탐색 장치의 하드웨어 구성예를 나타내는 블록도.
도 4는 본 발명의 실시예 1을 나타내고, 탐색 장치의 기능적 구성예를 나타내는 블록도.
도 5는 본 발명의 실시예 1을 나타내고, 반도체 처리 장치의 제어 처리 절차예를 나타내는 플로우 차트 1.
도 6은 본 발명의 실시예 1을 나타내고, 반도체 처리 장치의 제어 처리 절차예를 나타내는 플로우 차트 2.
도 7은 본 발명의 실시예 1을 나타내고, 반도체 처리 장치의 제어 처리 절차예를 나타내는 플로우 차트 3.
도 8은 본 발명의 실시예 1을 나타내고, 반도체 처리 장치의 제어 처리 절차예를 나타내는 플로우 차트 4.
도 9는 본 발명의 실시예 1을 나타내고, 기차(機差) 억제 방법을 나타내는 플로우 차트.
도 10은 본 발명의 실시예 1을 나타내고, 경시 변화 보정 방법을 나타내는 플로우 차트.
도 11은 본 발명의 실시예 2를 나타내고, 입력 파라미터의 탐색예를 나타내는 설명도.
도 12는 본 발명의 실시예 2를 나타내고, 반도체 처리 장치의 제어 처리 절차예를 나타내는 플로우 차트.
도 13은 본 발명의 실시예 2를 나타내고, 반도체 처리 장치의 제어 처리 절차예를 나타내는 플로우 차트.
도 14는 본 발명의 실시예 2를 나타내고, 가공 형상의 최적화 방법을 나타내는 플로우 차트.
도 15는 본 발명의 실시예 2를 나타내고, 초기 데이터의 일례를 나타내는 설명도.
도 16은 본 발명의 실시예 2를 나타내고, 목표 데이터의 일례를 나타내는 설명도.
도 17은 본 발명의 실시예 2를 나타내고, 실증 실험 결과의 일례를 나타내는 설명도.
도 18은 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 단면도.
도 19는 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 단면도.
도 20은 본 발명의 실시예 2를 나타내고, 초기 설정 화면을 나타내는 설명도.
도 21은 본 발명의 실시예 2를 나타내고, 탐색 화면을 나타내는 설명도.
도 22는 본 발명의 실시예 2를 나타내고, 자율 탐색용 탐색 화면을 나타내는 설명도.
도 23a는 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 모식도.
도 23b는 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 모식도.
도 23c는 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 모식도.
도 24는 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 모식도.
도 25는 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 모식도.
도 26은 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 상면 구조의 일부를 나타내는 도면.
도 27은 본 발명의 실시예 2를 나타내고, 가공 형상의 일례를 나타내는 상면 구조의 일부를 나타내는 도면.
도 28은 본 발명의 실시예 2를 나타내고, 계측 가능한 데이터 및 결손 특정 데이터를 나타내는 도면.
도 29는 본 발명의 실시예 2를 나타내고, 가공 형상의 최적화 방법을 나타내는 플로우 차트.
도 30은 본 발명의 실시예 2를 나타내고, 초기 데이터의 일례를 나타내는 설명도.
도 31은 본 발명의 실시예 2를 나타내고, 목표 데이터의 일례를 나타내는 설명도.
도 32는 본 발명의 실시예 2를 나타내고, 실증 실험 결과의 일례를 나타내는 설명도.
도 33은 본 발명의 실시예 2를 나타내고, 최적 처리 조건 탐색 기능을 갖는 플라스마 처리 장치의 개략도.
이하, 본 발명의 실시형태를 첨부 도면에 의거하여 설명한다.
[실시예 1]
<입력 파라미터의 탐색예>
도 1은, 입력 파라미터의 탐색예를 나타내는 설명도이다. 도 1은, 반도체 처리 장치에 있어서 목표를 만족시키는 출력 데이터(상술한 출력 파라미터의 값)가 얻어지는 입력 데이터(상술한 입력 파라미터의 값)를 탐색할 때의 반도체 처리 장치에 대한 입출력 데이터(입력 데이터와 출력 데이터의 조합)의 예를 나타낸다.
여기에서, 반도체 처리 장치란, 반도체 또는 반도체를 포함하는 반도체 디바이스를 처리하는 장치이다. 반도체 처리 장치는, 구체적으로는, 예를 들면, 리소그래피 장치, 성막 장치, 패턴 가공 장치, 이온 주입 장치, 가열 장치, 세정 장치를 포함한다. 리소그래피 장치는, 노광 장치, 전자선 묘화 장치, X선 묘화 장치를 포함한다. 성막 장치는, 예를 들면, CVD(Chemical Vapor Deposition), PVD(Physical Vapor Deposition), 증착 장치, 스퍼터링 장치, 열산화 장치를 포함한다. 패턴 가공 장치는, 예를 들면, 웨트 에칭 장치, 드라이 에칭 장치, 전자빔 가공 장치, 레이저 가공 장치를 포함한다. 이온 주입 장치는, 플라스마 도핑 장치, 이온빔 도핑 장치를 포함한다. 가열 장치는, 예를 들면, 저항 가열 장치, 램프 가열 장치, 레이저 가열 장치를 포함한다. 세정 장치는, 액체 세정 장치, 초음파 세정 장치를 포함한다.
도 1은, X1축 및 X2축의 2축으로 2차원의 좌표 평면을 갖는 그래프(100)를 나타낸다. 당해 좌표 평면에 직교하는 축을 Y축으로 한다. X1축은, 반도체 처리 장치에의 입력이 되는 입력 파라미터(X1)의 좌표축이며, X2축은, 반도체 처리 장치에의 입력이 되는 입력 파라미터(X2)의 좌표축이다. X1축에는, 입력 파라미터(X1)의 값인 입력 데이터(x1n)(n=1, 2, 3, …)가 플롯되고, X2축에는, 입력 파라미터(X2)의 값인 입력 데이터(x2n)가 플롯된다. 그래프(100)는, 입력 데이터(x1n 및 x2n)로 결정되는 각 영역에 있어서의 Y축의 출력 데이터를, 등고선으로 표현한다. 예로서, 출력 데이터(y1)를 포함하는 영역을 최대값(즉, 최량해)으로 하고, y13의 영역을 최소값으로 했다. 또한, 그래프(100)에서는, X1축이 3분할되어, 영역 x1a, x1b, x1c로 한다. 마찬가지로, 그래프(100)에서는, X2축이 3분할되어, 영역 x2a, x2b, x2c로 한다.
예를 들면, 목표로서, 출력 데이터가 가장 높아지는 영역, 즉, 출력 데이터(y1)가 얻어지는 입력 데이터(x1n 및 x2n)의 조합을 탐색할 경우에는, 해석 방법으로서 장치 파라미터 공간의 출력 데이터(yn)의 기울기를 취득하여, 출력 데이터(yn)가 보다 커지는 방향으로 탐색을 진행시키면 된다.
그러나, 그때의 출력 데이터가 x1a 또한 x2b로 결정되는 영역의 출력 데이터를 포함하고 있지 않을 경우, 탐색은 국소해가 되는 정점(頂点)의 출력 데이터(y4')를 향한다. 또한 이 결과에 따라서 탐색해야 할 입력 파라미터를 결정하면, y4' 근방의 출력 데이터를 집중적으로 취득하게 되어, y4' 그 자체 또는 그것에 매우 가까운 출력 데이터가 얻어지는 입력 파라미터가 발견된다. 즉, 이 탐색으로 취득한 입력 파라미터의 값을 이용한 해석과 추가적인 탐색에 의한 출력 파라미터의 값의 취득을 반복했다고 해도, 출력 데이터(y1)에 대응하는 최량해의 입력 데이터를 찾을 수 없다.
또한, 출력 데이터(y1)의 주변이나 그 밖의 영역에 다수의 국소해가 존재할 경우, 장치 파라미터 공간의 넓이에 대하여, 취득한 입력 파라미터의 값이 적으면, 탐색은 국소해에 빠져 버려, 출력 데이터(y1)를 발견할 수 없을 가능성이 높아진다. 또한, 추정한 해가 존재하는 영역으로서 x13 또한 x23의 영역이 추정된 것으로 한다. 그 후에도 특허문헌 1과 같이 탐색 영역을 x13 또한 x23의 일부와 같은 미소한 영역에 한정하면, 출력 데이터(yn)의 기울기가 매우 작기 때문에, 출력 데이터(y1)에 간신히 도달할 때까지의 탐색 횟수가 방대해져 탐색에 실패할 가능성이 있다. 또한, 출력 데이터(yn)의 기울기가 출력 데이터(yn)에 포함되는 노이즈에 묻힘으로써, 탐색에 실패할 가능성이 있다. 해석 대상인 출력 데이터(yn)의 질이 나쁘면, 필연적으로 해의 추정도 나쁜 결과가 되기 때문에, 탐색을 성공시키기 위해서는, 해에 가까이 할 수 있는 질이 좋은 데이터를 취득하기 위한 탐색 공간을 지정할 필요가 있다.
도 1에서는, x1n, x2n 및 yn과 같은 3개의 파라미터를 이용하고 있다. 실제의 반도체 처리 장치에서는 다수의 입출력 파라미터를 가지기 때문에, 도 1의 각 축의 지표를 다차원 벡터화한 광대한 장치 파라미터 공간이 탐색된다. 따라서, 이러한 광대한 장치 파라미터 공간으로부터 효율적으로 해에 가까이 할 수 있는 질이 좋은 데이터를 취득하기 위해, 장치 파라미터 공간이 지정될 필요가 있다. 또한, 반도체 처리 장치의 입출력 관계는, 대부분의 경우에 있어서 비선형이며, 장치 파라미터 공간에는 다수의 국소해가 존재한다.
본 실시예에서는, 반도체 처리 장치의 입출력 데이터의 해석 결과를 고려한 다음에 장치 파라미터 공간을 탐색하기 위한 실험 조건을 자동으로 결정하고, 실험 결과(가공 결과)의 검증을 자동으로 행하고, 이들 자동 동작을 반복한다. 이에 따라, 장치 파라미터 공간을 탐색하여 최량해를 효율적으로 취득한다. 즉, 목표로 하는 반도체 처리 장치의 상태 및 가공 결과를 나타내는 출력 파라미터의 값이 얻어지는 입력 파라미터의 값을 효율적으로 발견한다.
<시스템 구성예>
도 2는, 반도체 제조 시스템의 시스템 구성예를 나타내는 설명도이다. 반도체 제조 시스템(200)은, 반도체 처리 장치(201)와, 장치 제어 시스템(202)과, 모니터 시스템(203)과, 센서 시스템(204)과, 데이터베이스(205)와, 자동 제어 시스템(탐색 장치)(206)을 갖는다.
반도체 처리 장치(201)는, 상술한 바와 같이, 웨이퍼 등의 기판이나 반도체 디바이스를 처리하는 장치이다. 반도체 처리 장치(201)는, 장치 제어 시스템(202), 모니터 시스템(203) 및 센서 시스템(204)에 접속된다.
장치 제어 시스템(202)은, 반도체 처리 장치(201)의 가동 및 처리를 할 때에 반도체 처리 장치(201)를 제어하는 시스템이다. 장치 제어 시스템(202)은, GUI 등의 입력 인터페이스를 갖고, 입력 인터페이스를 통해 입력된 입력 파라미터의 값으로 반도체 처리 장치(201)의 실행을 제어한다. 또한, 장치 제어 시스템(202)은, 네트워크 인터페이스를 갖고, 네트워크 인터페이스를 통해 외부의 컴퓨터 및 데이터베이스(205)로부터 입력 파라미터의 값을 취득한다.
장치 제어 시스템(202)은, 레시피 설정 컨트롤러(221)와, 장치 기본 설정 컨트롤러(222)와, 설정 에러 검출 시스템(223)을 갖는다. 레시피 설정 컨트롤러(221)는, 반도체 처리 장치(201)의 처리 중의 동작을 결정하는 입력 파라미터 및 그 값을 반도체 처리 장치(201)에 설정한다. 장치 기본 설정 컨트롤러(222)는, 반도체 처리 장치(201)가 가동하기 위한 입력 파라미터 및 그 값을 반도체 처리 장치(201)에 설정한다.
설정 에러 검출 시스템(223)은, 장치 기본 설정 컨트롤러(222)에서의 입력 파라미터의 설정시에, 실제로 반도체 처리 장치(201)에 입력 파라미터가 설정 가능한지를 판정한다. 구체적으로는, 예를 들면, 설정 에러 검출 시스템(223)은, 입력된 입력 파라미터가 입력 가능한 범위 내인지, 또한, 반도체 처리 장치(201)의 동작이 가능해지는 입력 파라미터의 값의 조합인지를 판정한다. 설정 불가능한 입력 파라미터의 값 또는 그 조합이 검출되었을 경우에는, 설정 에러 검출 시스템(223)은, 설정 에러로서, 엔지니어 또는, 반도체 처리 장치(201)가 접속되는 상위(上位)의 시스템에 보고한다. 설정 에러가 발생했을 때에는, 입력된 입력 파라미터의 변경 중지, 또는 입력된 입력 파라미터의 값을 이용한 처리를 중지한 것을 로그 데이터로서 기록한다.
모니터 시스템(203)은, 반도체 처리 장치(201)에서의 처리 중 또는 처리된 처리 대상물(가공 결과)을 감시 또는 계측하여 모니터 데이터를 취득하는 시스템이다. 모니터 시스템(203)은, 광학식 모니터, 전자 현미경을 이용한 가공 치수 계측 장치, 적외광을 이용한 온도 계측 장치, 켈빈프로브포스 현미경을 이용한 결함 검출 장치, 처리 대상물의 전기 특성을 평가하는 프로버 장치를 포함한다. 모니터 시스템(203)은, 예를 들면, 처리 대상물에 광, 레이저광 및 X선을 입사시켰을 때의 반사, 투과, 흡수 및 편광 스펙트럼을 계측함으로써, 처리 대상물의 가공 형상, 처리 대상막의 두께 및 가공 결함을 모니터 데이터로서 취득한다. 모니터 시스템(203)은, 반도체 처리 장치(201)에 직접 접속되어 있을 필요는 없고, 처리 대상을 모니터 시스템(203)에 운반함으로써 계측 결과를 취득하고, 그 결과를 데이터베이스(205)에 보존해도 된다. 또한, 처리 대상의 일부를 단편(斷片)으로서 취출하고, 그 단편을 모니터 시스템에 운반함으로써 계측 결과를 취득하고, 그 결과를 데이터베이스(205)에 보존해도 된다.
모니터 시스템(203)은, 처리시에 있어서 처리 대상물에 작용하는 플라스마, 가스, 액체 등의 처리에 사용되는 매체, 및 처리에 의해 발생하는 생성물을 감시한다. 이들 매체 및 생성물은, 처리 대상물과 직접 작용하거나, 그 작용의 결과 발생하는 것이다. 모니터 시스템(203)은, 광스펙트럼 계측을 이용한 플라스마 발광 모니터, 적외 분광 계측을 이용한 처리실 내의 퇴적물 모니터, 질량 분석기를 이용한 처리 대상으로부터 방출된 원자 및 분자 모니터, 탐침(探針)을 이용한 처리실 내의 전기 특성 모니터를 포함한다. 이들 모니터에 의한 감시는, 처리 결과를 간접적으로 평가할 수 있는 모니터 데이터를 리얼 타임 또한 처리 중에 있어서 그 자리에서 계측할 수 있다.
센서 시스템(204)은, 반도체 처리 장치(201)의 장치 상태를 나타내는 센서 데이터를 취득하는 시스템이다. 센서 시스템(204)은, 센서의 집합체이다. 센서 데이터는, 전압, 전류, 파워 등의 전원 출력값, 정합기 내의 콘덴서나 코일 등의 가변 전기 소자의 값, 각종 사용 가스의 유량, 장치 몸체나 장치 구성 부품의 온도, 처리실 내의 압력, 압력 제어 밸브의 개도(開度), 밸브 개폐 상태, 가스 배기 속도, 처리 및 장치의 동작 타이밍 및 동작 시각을 포함한다.
데이터베이스(205)는, 장치 제어 시스템(202)에 의해 설정되는 각종 입력 파라미터의 값, 반도체 처리 장치(201)로부터의 처리 결과인 출력 파라미터의 값, 모니터 시스템(203) 및 센서 시스템(204)이 취득한 모니터 데이터 및 센서 데이터를 보존한다. 또한, 데이터베이스(205)는, 학습 데이터를 보존한다. 학습 데이터란, 과거에 반도체 처리 장치(201)에 주어진 입력 파라미터의 값(입력 데이터)과 반도체 처리 장치(201)로부터 출력된 출력 파라미터의 값(출력 데이터)의 세트가 되는 입출력 데이터이다. 데이터베이스(205)는, 보존하는 각종 데이터를 서로 다른 기억 디바이스(302)에서 보존하는 분산형 데이터베이스(205)여도 된다. 각 시스템에서 취급하는 정보를 각각의 시스템 내에 보존하는 형태의 분산형 데이터베이스를 구축해도 된다.
자동 제어 시스템(206)은, 데이터베이스(205)에 보존된 데이터를 이용하여, 목표를 만족시키는 해를 탐색한다. 목표를 만족시키는 해는, 반도체 처리 장치(201)의 가동에 사용되는 입력 파라미터의 값, 및 처리 중의 반도체 처리 장치(201)의 동작에 사용되는 입력 파라미터의 값 중, 적어도 한쪽 파라미터의 값이다. 자동 제어 시스템(206)은, 목표 설정 컨트롤러(261)와, 자율 탐색 시스템(262)과, 불안정 동작 검출 시스템(263)을 갖는다.
목표 설정 컨트롤러(261)는, 탐색 개시 전의 초기값으로서, 목표로 하는 입력 파라미터의 값, 출력 파라미터의 값, 탐색 결과와 목표의 차 또는 괴리의 허용값의 입력을 접수한다. 또한, 목표 설정 컨트롤러(261)는, 탐색에 있어서 1개의 조건을 실행하는 시간의 상한, 탐색 횟수, 탐색 1세트의 합계 시간의 상한, 탐색 전체의 합계 시간의 상한, 탐색 결과의 해석 시간의 상한, 해석 데이터 수의 상한의 입력을 접수할 수 있다. 또한, 목표 설정 컨트롤러(261)는, 각 입력 파라미터에 대한 탐색 가부(可否)의 설정, 탐색하는 입력 파라미터의 제어 범위의 상한값 및 하한값, 탐색하는 입력 파라미터의 제어 범위를 한정하기 위한 값을 설정할 수 있다. 또한, 목표 설정 컨트롤러(261)는, 과거의 결과를 포함하는 탐색 개시 전의 최량의 해, 그 해를 얻기 위해 이용한 해석 대상 데이터, 그 해석으로부터 얻어진 목표와 입력 파라미터의 관계를 설명하는 모델 함수의 입력을 접수할 수 있다. 그리고 또한, 목표 설정 컨트롤러(261)는, 모니터 시스템에 의해 처리 대상을 계측할 때에 사용하는, 계측 위치의 결정 또는 계측 위치를 원하는 계측 위치로 유도하기 위한 위치 정보 데이터 및 화상 정보 데이터의 입력을 접수할 수 있다.
자율 탐색 시스템(262)은, 목표 설정 컨트롤러(261)에 입력된 내용을 취득하고, 1개 이상의 파라미터에 대하여, 탐색 가능한 입력 파라미터의 제어 범위를 2개 이상의 영역으로 나눈 분할 영역을 설정한다. 상술한 바와 같이, 탐색 및 탐색 결과의 해석을 반복하여 목표하는 해에 도달하기 위해서는, 탐색 1세트에 걸리는 시간은 길 경우에도 수일 이하, 바람직하게는 1시간 이하로 할 필요가 있다. 즉, 탐색 1세트의 탐색 조건 수(Ns), 탐색 1세트의 탐색 시간을 Ts[min], 검색 1조건에 필요한 시간 t1[min]으로 하면, 탐색 횟수는 식(1.1)이 된다.
Ts=t1·Ns …(1.1)
탐색 1세트를 1일 이내로 할 경우에는, Ts≤1440, 1시간 이내로 할 경우에는, Ts≤60이 되도록 탐색 조건 수(Ns)를 결정하면 된다.
탐색 조건 수(Ns)를 늘리기 위해서는, 탐색 결과를 평가하는 센서 및 모니터의 계측 시간을 짧게 하는 것이 유효하다. 특히, 탐색 실험 중에 있어서 리얼 타임으로 계측이 가능한 센서 및 모니터를 사용하는 것이 유효하다.
또한, 상술한 바와 같이, 처리 결과를 간접적으로 평가할 수 있는 데이터가 되는 처리 대상물에 작용하는 매체 및 처리에 의해 발생하는 생성물의 특성을, 센서 및 모니터에 의해 계측함으로써, 리얼 타임 또한 처리 중에 있어서 그 자리에서의 계측을 할 수 있다.
탐색에 있어서 변경하는 입력 파라미터의 종류가 증가함에 따라서, 탐색 시간(Ts)이 급격하게 증대한다. 예를 들면, 입력 파라미터의 종류의 수(Da)를 Da=10으로 하고, 각 파라미터의 영역 분할 수(A)를 A=3으로 했을 경우, 모든 파라미터의 조합을 탐색할 경우의 탐색 조건 수(Ns)는 식(1.2)이 된다.
Ns=ADa …(1.2)
탐색 조건 수(Ns)는 59049까지 증가한다. 이러한 경우, 해가 존재한다고 예측되는 각 입력 파라미터의 값을 예측하고, 당해 예측값을 중심 조건으로 하여, 탐색시에 동시에 변경 가능한 입력 파라미터의 수를 제한하는 것이 바람직하다. 이에 따라, 탐색 조건 수(Ns) 및 탐색 시간(Ts)은 실행 가능한 값이 된다. 중심 조건을 예측할 때에는, 과거의 탐색 결과 또는 엔지니어의 지식을 이용할 수 있다. 또는, 탐색의 초기값으로서, 적당한 중심 조건을 부여하여, 탐색을 개시하는 것도 가능하다.
그리고 또한, 취득 완료 학습 데이터에 포함되는 데이터 중에서, 목표와의 차이가 최소(목표에 가장 가까운)의 조건을 중심 조건으로 하는 것도 가능하다. 학습 데이터와 목표의 차이를 나타내는 값으로서는, 각 파라미터의 오차의 총합을 이용할 수 있다. 오차는, 각 파라미터의 차분, 절대값, 또는 제곱 오차 등을 이용하여 계산할 수 있다.
예를 들면, 입력 파라미터의 10종 중 5종류에 대해서, 해가 존재한다고 추정되는 분할 영역이 지정되었을 경우, 다른 5종류를 변경함으로써, 다음번 탐색 조건 수(Ns)는, Ns=35=243까지 적게 할 수 있다. 또한, 10종의 입력 파라미터 중, 한 번에 변경 가능한 입력 파라미터의 종류의 수를 Dc로 한다. 탐색 조건 수(Ns)는 조합론의 기호 C를 이용하여 식(1.3)에서 구해진다.
Figure pat00001
한 번에 변경 가능한 입력 파라미터를 한정함으로써, 탐색 조건 수(Ns)를 작게 할 수 있다. 예를 들면 변경 가능한 입력 파라미터의 종류의 수(Dc)를 Dc=1로 하면 탐색 조건 수(Ns)는 Ns=21, 마찬가지로 Dc를 Dc=2로 하면, Ns는 Ns=201까지 작게 할 수 있다. 또한, 입력 파라미터의 종류 중, 몇 개의 입력 파라미터에 있어서, 해가 존재한다고 추정되는 분할 영역을 지정하는 방법과, 한 번에 변경 가능한 파라미터의 종류를 지정하는 방법을 조합할 수도 있다.
불안정 동작 검출 시스템(263)은, 탐색 실행시에 있어서, 반도체 처리 장치(201)가 처리 동작을 계속 가능하기는 하지만, 처리가 불안정해질 경우를 검출한다. 입력 파라미터의 입력을 실행하기 전 단계에 있어서, 설정 에러 검출 시스템(223)은 입력 파라미터가 입력 가능한지를 확인한다. 그러나, 반도체 처리 장치(201) 내의 기기가 제어 대상으로 하는 매체 및 부품은 비선형성을 가지고, 또한 그것들을 조합함으로써 처리를 실행한다. 따라서, 설정 에러 검출 시스템(223)은 설정 에러(입력 파라미터의 입력 불가)를 검출할 수 없어, 실제로 처리를 실행했을 때에 처음에 동작 불안정해지는 입력 파라미터가 발견될 가능성이 있다.
또한, 입력 파라미터가 많아질수록, 장치 파라미터 공간은 확대되기 때문에, 장치 파라미터 공간에 있어서 국소적인 불안정 동작 영역이 존재했을 경우에, 사전에 검출할 수 없을 가능성이 높아진다.
따라서, 불안정 동작 검출 시스템(263)이 반도체 처리 장치(201)의 처리 중에 반도체 처리 장치(201)의 불안정 동작을 검출했을 경우, 반도체 처리 장치(201)는, 불안정 동작이 되었을 때의 입력 파라미터 및 그 값을 보존하고, 추가로 엔지니어 또는, 반도체 처리 장치(201)가 접속되는 상위의 시스템에 보고한다. 이에 따라, 반도체 처리 장치(201)의 불안정 동작에 의한 처리 및 탐색에 있어서의 동작 불량을 판단 또는 예측할 수 있다.
불안정 동작이 검출되었을 경우에는, 처리 완료 후에 반도체 처리 장치(201)를 정상 동작 상태로 복구하기 위한 시퀀스를 실시하거나, 처리를 즉시 정지하고, 반도체 처리 장치(201)를 정상 동작 상태로 복구하기 위한 시퀀스를 실시함으로써, 탐색이 계속된다.
이러한 불안정 동작으로서는, 처리 중에 있어서의 국소적인 이상(異常) 방전이나 방전 강도의 진동, 급격한 성막 속도 변동이나 막질 변동, 가스 압력의 진동, 투입 전력의 순간적인 증감이나 진동 등이 있다. 상술한 발광 스펙트럼 모니터, 퇴적물 모니터, 질량 분석 모니터, 전기 특성 모니터, 압력 모니터 등의 리얼 타임 또한 처리 중에 있어서 그 자리에서의 계측이 가능한 모니터가, 불안정 동작을 검출한다.
<탐색 장치의 하드웨어 구성예>
도 3은, 탐색 장치(300)의 하드웨어 구성예를 나타내는 블록도이다. 탐색 장치(300)는, 탐색 영역으로부터 해가 되는 입력 파라미터의 값을 탐색한다. 자동 제어 시스템(206)은, 탐색 장치(300)의 일례이다. 탐색 장치(300)는, 프로세서(301)와, 기억 디바이스(302)와, 입력 디바이스(303)와, 출력 디바이스(304)와, 통신 인터페이스(통신 IF(305))를 갖는다. 프로세서(301), 기억 디바이스(302), 입력 디바이스(303), 출력 디바이스(304), 및 통신 IF(305)는, 버스에 의해 접속된다. 프로세서(301)는, 탐색 장치(300)를 제어한다. 기억 디바이스(302)는, 프로세서(301)의 작업 에어리어가 된다. 또한, 기억 디바이스(302)는, 각종 프로그램이나 데이터를 기억하는 비일시적인 또는 일시적인 기록 매체이다. 기억 디바이스(302)로서는, 예를 들면, ROM(Read Only Memory), RAM(Random Access Memory), HDD(Hard Disk Drive), 플래시 메모리가 있다. 입력 디바이스(303)는, 데이터를 입력한다. 입력 디바이스(303)로서는, 예를 들면, 키보드, 마우스, 터치 패널, 숫자 키패드, 스캐너가 있다. 출력 디바이스(304)는, 데이터를 출력한다. 출력 디바이스(304)로서는, 예를 들면, 디스플레이, 프린터가 있다. 통신 IF(305)는, 네트워크와 접속하여, 데이터를 송수신한다.
<탐색 장치(300)의 기능적 구성예>
도 4는, 탐색 장치(300)의 기능적 구성예를 나타내는 블록도이다. 탐색 장치(300)는, 입력부(401)와, 생성부(402)와, 특정부(403)와, 판단부(404)와, 설정부(405)와, 출력부(406)와, 결정부(407)와, 분할부(408)와, 검출부(409)를 갖는다. 각 구성(401∼409)은, 구체적으로는, 예를 들면, 도 3에 나타낸 기억 디바이스(302)에 기억된 프로그램을 프로세서(301)에 실행시킴으로써 실현되는 기능이다.
입력부(401)는, 유저 조작 또는 데이터베이스(205)로부터의 읽어들임에 의해, 각종 데이터의 입력을 접수한다. 구체적으로는, 예를 들면, 입력부(401)는, 반도체 디바이스를 처리하는 반도체 처리 장치(201)에 설정되는 조건값의 입력을 접수한다. 반도체 처리 장치(201)에 설정되는 조건이란, 상술한 입력 파라미터이다. 입력 파라미터는, 구체적으로는, 예를 들면, 가스종, 가스 유량, 압력, 투입 전력, 전압, 전류, 처리 시간, 가열 온도, 냉각 온도, 도즈량, 광량을 포함한다.
또한, 입력부(401)는, 반도체 처리 장치(201)에 의해 반도체가 처리된 가공 결과를 나타내는 목표값의 입력을 접수한다. 반도체 처리 장치(201)에 의해 반도체가 처리된 가공 결과란, 상술한 출력 파라미터이다. 출력 파라미터는, 구체적으로는, 예를 들면, 반도체 처리 장치(201)에 의한 반도체의 처리 결과(가공 결과)와, 반도체 처리 장치(201)의 장치 상태에 관한 데이터를 포함한다. 반도체 처리 장치(201)에 의한 반도체의 처리 결과는, 구체적으로는, 예를 들면, CD(Critical Dimension), 퇴적 막두께, ER(Etch Rate), 가공 형상, 마스크 선택비, 추가로 이들 웨이퍼 면 내 분포 및 균일성을 포함한다. 반도체 처리 장치(201)의 처리 결과, 및 반도체 처리 장치(201)의 장치 상태에 관한 데이터는, 구체적으로는, 예를 들면, 광반사 스펙트럼, 플라스마 광스펙트럼, 웨이퍼 입사 전류, 웨이퍼 전압, 웨이퍼 온도, 장치 부품 온도, 추가로 이들의 공간 분포 및 균일성을 나타내는 데이터(센서 데이터 및 모니터 데이터)를 포함한다. 반도체 처리 장치(201)에 의해 반도체가 처리된 가공 결과를 나타내는 목표값이란, 유저가 요구하는 반도체 처리 장치(201)의 출력 파라미터의 값이다.
또한, 입력부(401)는, 조건(입력 파라미터)과 가공 결과(출력 파라미터)의 범위에 의해 규정되는 탐색 영역 내에 있어서의 조건의 기준값의 입력을 접수한다. 탐색 영역이란, 입력 파라미터의 제어 범위와 반도체 처리 장치(201)의 출력 파라미터의 제어 범위에 의해 규정되고, 입력 파라미터의 값을 탐색하는 영역이다. 구체적으로는, 예를 들면, 도 1에 나타낸 탐색 영역(A)이다. 조건의 기준값이란, 입력 파라미터의 기준값이다. 구체적으로는, 예를 들면, 과거에 얻어진 입력 파라미터의 값이다.
또한, 입력부(401)는, 탐색 영역 내에 있어서의 가공 결과의 기준값의 입력을 접수한다. 가공 결과의 기준값이란, 입력 파라미터의 기준값이 반도체 처리 장치(201)에 주어졌을 경우에 있어서의 반도체 처리 장치(201)의 출력 파라미터의 값이다.
생성부(402)는, 탐색 영역 내의 조건의 설정값과, 당해 설정값을 반도체 처리 장치(201)에 주어졌을 경우의 가공 결과의 실측값에 의거하여, 조건과 가공 결과와의 관계를 나타내는 예측 모델을 생성한다. 조건의 설정값이란, 예를 들면, 학습 데이터로서 준비된 입력 파라미터의 값이다. 가공 결과의 실측값이란, 학습 데이터로서 준비된 입력 파라미터의 값(조건의 설정값)이 반도체 처리 장치(201)에 주어졌을 경우에 있어서의 반도체 처리 장치(201)의 출력 파라미터의 값이다. 예측 모델이란, 입력 파라미터와 출력 파라미터와의 관계를 나타내는 함수이다. 생성부(402)는, 뉴럴네트워크, 서포트 벡터 머신 등의 다입력 다출력에 응대 가능한 회귀 분석이나, 상관 분석, 주성분 분석, 중회귀 분석 등의 통계 분석에 의해, 탐색 영역 내의 조건의 설정값과 출력의 실측값과의 관계를 나타내는 예측 모델을 생성한다.
특정부(403)는, 생성부(402)에 의해 생성된 예측 모델에, 입력부(401)에 의해 입력된 목표값을 부여함으로써, 목표값에 대응하는 예측값을 예측 모델로부터 취득하고, 예측값의 존재 영역을 탐색 영역으로부터 특정한다. 또한, 예측값의 존재 영역의 출력 파라미터가 미취득일 경우에는 생성부(402)는, 분할 영역 내에 있어서의 조건의 설정값을 반도체 처리 장치(201)에 부여했을 경우의 출력의 실측값을, 분할 영역마다 취득한다.
목표값이 반도체 처리 장치(201)의 출력 파라미터의 값일 경우, 특정부(403)는, 예측 모델에 당해 출력 파라미터의 값을 부여함으로써, 목표값에 대응하는 예측값으로서 입력 파라미터의 값을 예측 모델로부터 취득한다. 그리고, 특정부(403)는, 예측값인 입력 파라미터의 값의 존재 영역을 탐색 영역으로부터 특정한다. 구체적으로는, 예를 들면, 도 1에 있어서, 목표값이 출력 파라미터의 값(y12)일 경우, 당해 목표값(y12)에 대응하는 예측값은, 도 1의 목표값(y12)의 등고선에 의해 특정되는 입력 파라미터(X1, X2)의 값이다. 따라서, 특정부(403)는, 탐색 영역(A)으로부터 목표값(y12)의 등고선에 의해 특정되는 입력 파라미터(X1, X2)의 값의 존재 영역(A1, A2, A3, A8, A9)을 특정한다.
판단부(404)는, 예측값에 대응하는 목표값이, 입력부(401)에 의해 입력된 가공 결과의 기준값보다 목표값에 가까운지의 여부를 판단한다. 구체적으로는, 예를 들면, 판단부(404)는, 탐색 영역(A)에 있어서, 예측값에 대응하는 목표값과 목표값 사이의 거리(제1 거리)와, 가공 결과의 기준값과 목표값 사이의 거리(제2 거리)를 구한다. 거리는, 예를 들면, 유클리드 거리이다. 판단부(404)는, 제1 거리가 제2 거리보다 짧을 경우, 예측값에 대응하는 목표값이 가공 결과의 기준값보다 목표값에 가깝다고 판단한다. 판단부(404)는, 제1 거리가 제2 거리보다 짧지 않을 경우, 예측값에 대응하는 목표값이 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단한다.
설정부(405)는, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이, 가공 결과의 기준값보다 목표값에 가깝다고 판단되었을 경우, 예측값 및 예측값에 대응하는 목표값을 조건의 기준값 및 가공 결과의 기준값으로 설정하고, 특정부(403)에 의해 특정된 예측값의 존재 영역을 탐색 영역으로 설정한다. 이에 따라, 기준값이 목표값에 접근하고, 탐색 영역도 예측값의 존재 영역으로 좁혀진다.
출력부(406)는, 예측값이 목표값의 달성 조건을 충족시켰을 경우에 달성 조건을 충족시킨 예측값을 출력한다. 달성 조건이란, 예를 들면, 목표값의 허용 범위이다. 출력부(406)는, 달성 조건을 충족시킨 예측값을 출력 디바이스(304)의 일례인 디스플레이에 표시해도 되고, 통신 IF(305)를 통해 외부 장치에 송신해도 되고, 기억 디바이스(302)나 데이터베이스(205)에 보존해도 된다.
결정부(407)는, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이, 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단되었을 경우, 예측값 및 예측값에 대응하는 목표값을 제외 데이터로 결정한다(도 6의 스텝 S601에서 후술). 제외 데이터란, 예측 모델에 부여하면 안되는 입력 파라미터의 값이다.
또한 이 경우, 설정부(405)는, 결정부(407)에 의해 결정된 제외 데이터를 제외한 데이터를 학습 데이터로 설정한다. 이에 따라, 생성부(402)는, 제외 데이터가 존재하지 않는 학습 데이터를 이용할 수 있다. 따라서, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
또한, 결정부(407)는, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단되었을 경우, 예측값의 존재 영역을 제외 영역으로 결정해도 된다(도 6의 스텝 S602에서 후술). 제외 영역이란, 예측 모델이 출력하면 안되는 입력 파라미터의 값의 영역이다.
또한 이 경우, 설정부(405)는, 탐색 영역으로부터 결정부(407)에 의해 결정된 제외 영역을 제외한 잔존 영역을 탐색 영역으로 설정한다. 이에 따라, 목표값에 가깝지 않은 가공 결과밖에 얻어지지 않는 예측값의 범위를 제외하여 탐색 영역을 좁힐 수 있다. 따라서, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
분할부(408)는, 탐색 영역을 복수의 영역으로 분할한다. 구체적으로는, 예를 들면, 분할부(408)는, 도 1에 나타낸 바와 같이, 탐색 영역(A)을 9개의 영역(분할 영역)(A1∼A9)으로 분할한다. 이 경우, 생성부(402)는, 분할 영역 내에 있어서의 조건의 설정값을 반도체 처리 장치(201)에 부여했을 경우의 출력의 실측값을, 분할 영역마다 취득한다. 그리고, 생성부(402)는, 각 분할 영역에서의 조건의 설정값과 출력의 실측값에 의거하여, 예측 모델을 생성한다. 복수의 반도체 처리 장치(201)를 이용함으로써, 실측값을 분할 영역마다 병렬로 취득할 수 있어, 예측 모델의 생성 속도의 향상을 도모할 수 있다.
또한, 설정부(405)는, 판단부(404)에 의해, 예측값에 대응하는 목표값 쪽이 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단되었을 경우, 예측값 및 예측값에 대응하는 목표값을, 조건의 기준값 및 가공 결과의 기준값으로 설정하지 않고, 예측값의 존재 영역을 탐색 영역으로 설정해도 된다(도 6의 스텝 S604∼S606에서 후술). 이에 따라, 탐색 영역을 더 세분화함으로써, 보다 상세한 해의 탐색을 실행하여, 해의 간과가 없는지 확인할 수 있다.
또한, 결정부(407)는, 상술한 바와 같이, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 가공 결과의 기준값보다 상기 목표값에 가깝지 않다고 판단되었을 경우, 예측값 및 예측값에 대응하는 목표값을 제외 데이터로 결정해도 된다. 이 경우, 생성부(402)는, 실측값으로부터 제외 데이터를 제외한 잔여의 실측값과, 설정값으로부터 잔여의 실측값에 대응하는 설정값을 제외한 잔여의 설정값에 의거하여, 예측 모델을 생성해도 된다(도 7에서 후술). 이에 따라, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
또한, 결정부(407)는, 상술한 바와 같이, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단되었을 경우, 예측값의 존재 영역을 제외 영역으로 결정해도 된다. 이 경우, 생성부(402)는, 탐색 영역으로부터 제외 영역을 제외한 잔여의 탐색 영역 내의 조건의 설정값과, 당해 설정값을 반도체 처리 장치(201)에 부여했을 경우의 출력의 실측값에 의거하여, 예측 모델을 생성해도 된다(도 8에서 후술). 이에 따라, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
검출부(409)는, 반도체 처리 장치(201)의 출력과, 소정의 출력 임계값에 의거하여, 반도체 처리 장치(201)의 불안정 동작을 검출한다. 검출부(409)는, 불안정 동작 검출 시스템(263)에 상당한다. 이 경우, 출력부(406)는, 검출부(409)에 의한 검출 결과를 출력한다.
<반도체 처리 장치(201)의 제어 처리 절차예>
도 5는, 반도체 처리 장치(201)의 제어 처리 절차예를 나타내는 플로우 차트 1이다. 탐색 장치(300)는, 목표로 하는 반도체 처리 장치(201)로부터의 출력값(출력 파라미터의 목표값), 및 탐색 설정의 입력을 접수한다(스텝 S501). 탐색 설정이란, 예를 들면, 탐색 결과와 목표값과의 차 또는 괴리의 허용값, 탐색에 있어서 1개의 조건을 실행하는 시간의 상한, 탐색 횟수, 탐색 1세트의 합계 시간의 상한, 탐색 전체의 합계 시간의 상한, 탐색 결과의 해석 시간의 상한, 해석 데이터 수의 상한, 반도체 처리 장치(201)로부터의 출력 데이터의 취득 빈도의 임계값, 반도체 처리 장치(201)로부터의 출력 데이터(출력 파라미터의 값)의 취득 시간의 상한, 반도체 처리 장치(201)로부터의 출력 데이터 수의 하한이다.
다음으로, 탐색 장치(300)는, 베이스가 되는 해의 입력 및 그 해에 관한 정보의 입력을 접수한다(스텝 S502). 구체적으로는, 예를 들면, 탐색 장치(300)는, 과거에 실제로 이용한 입력 파라미터 및 그 입력 파라미터를 이용했을 때의 출력 파라미터, 탐색 개시 전의 최량의 해(입력 파라미터의 값) 및 최량의 해를 이용했을 때의 출력 파라미터, 탐색 개시 전의 출력 파라미터의 목표값, 입력 파라미터와 출력 파라미터와의 관계를 설명하는 모델 함수의 입력을 접수한다.
다음으로, 탐색 장치(300)는, 스텝 S502에서 입력된 최량의 해를 최량해(OS1)로서 보존한다(스텝 S503). 해가 없을 경우에는, 해로부터 가장 먼 것을 나타내는 기호 또는 값이 설정된다.
다음으로, 탐색 장치(300)는, 기본 탐색 영역을 탐색 영역으로서 설정한다(스텝 S504). 구체적으로는, 예를 들면, 탐색 장치(300)는, 각 입력 파라미터에 대한 탐색 가부의 설정, 탐색하는 입력 파라미터의 제어 범위의 상한값 및 하한값, 탐색하는 입력 파라미터의 제어 범위를 한정하기 위한 값(예를 들면, 상한값이나 하한값)을 설정한다. 또한, 탐색 장치(300)는, 설정 에러 검출 시스템(223)에 의해 설정 에러로서 판단하는 입력 파라미터의 제어 범위를 참조하여, 탐색 영역을 결정한다. 또한, 탐색 장치(300)는, 불안정 동작 검출 시스템(263)에 의해 검출된 파라미터를 참조하여, 탐색 영역을 결정한다. 또한, 불안정 동작 검출 시스템(263)은 과거에, 반도체 처리 장치(201)의 동작이 불능 또는 불안정해진 입력 파라미터의 조합 또는 각 입력 파라미터 범위의 값을 유지하고 있으며, 이것을 이용하여 탐색 장치(300)는 탐색 영역을 결정할 수 있다.
예를 들면, 도 1에 있어서, 입력 파라미터의 종류로서 X1, X2의 2개의 입력 파라미터가 선택되었을 경우, 입력 파라미터(X1)의 제어 범위를 [x11, x1n], 입력 파라미터(X2)의 제어 범위를 [x21, x2n]으로 하면, 도 1에 나타낸 전체 범위의 영역(A)이 탐색 영역이 된다.
스텝 S501∼S504의 목표 설정 컨트롤러(261)의 입력 및 설정 내용은, 자율 탐색 시스템(262)으로 건네지고, 다음으로 설명하는 스텝 S505∼S510의 절차에 의해 자동 탐색이 실행된다.
탐색 장치(300)는, 탐색 영역을 분할한다(스텝 S505). 구체적으로는, 예를 들면, 탐색 장치(300)는, 1개 이상의 입력 파라미터에 대하여, 탐색 가능한 입력 파라미터의 제어 범위를 2개 이상의 영역으로 분할한다. 분할된 영역을 분할 영역이라고 한다. 탐색 조건 수가 많아져, 원하는 시간 내에 탐색을 완료할 수 없다고 예측될 경우에는, 입력 파라미터의 종류 중 몇 개의 입력 파라미터에 있어서 해가 존재한다고 추정되는 분할 영역을 지정하는 방법, 및 한 번에 변경 가능한 입력 파라미터의 종류를 지정하는 방법을 이용함으로써, 탐색 영역을 한정하거나, 탐색 조건 수를 적게 할 수 있다. 또한 이들 2가지 방법을 조합함으로써, 탐색 영역을 한정하거나, 탐색 조건 수를 적게 할 수 있다.
예를 들면, 도 1에 있어서, 입력 파라미터의 종류로서 X1, X2의 2개의 입력 파라미터가 선택되었을 경우, 입력 파라미터(X1)의 제어 범위[x11, x1n]가 x1a, x1b, x1c로 분할되고, 입력 파라미터(X2)의 제어 범위[x21, x2n]가 x2a, x2b, x2c로 분할되었다고 하면, 도 1에 나타낸 9개의 분할 영역(A1∼A9)이 얻어진다.
탐색 장치(300)는, 분할 영역마다 자율 탐색을 실행한다(스텝 S506). 구체적으로는, 예를 들면, 탐색 장치(300)는, 분할 영역 및 탐색 조건을 이용한 자율 탐색에 의해, 각 탐색 조건에 있어서의 반도체 처리 장치(201)의 입출력 데이터를 탐색 결과로서 취득한다. 입출력 데이터란, 반도체 처리 장치(201)에 주어지는 입력 파라미터의 값(입력 데이터)과 반도체 처리 장치(201)로부터 얻어지는 출력 파라미터의 값(출력 데이터)의 세트이다.
구체적으로는, 예를 들면, 탐색 장치(300)는, 분할 영역마다, 탐색 조건을 만족시키는 입력 파라미터의 값을 선택하고, 선택한 입력 파라미터의 값을 반도체 처리 장치(201)에 부여한다. 그리고, 탐색 장치(300)는, 반도체 처리 장치(201)로부터의 출력 데이터(출력 파라미터의 값)를 취득한다. 이 입력 파라미터의 값과, 당해 값에 대응하는 출력 파라미터의 값의 조합이 탐색 결과이다.
또한 이 경우, 불안정 동작 검출 시스템(263)은, 자율 탐색 실행시에 있어서, 반도체 처리 장치(201)가 처리 동작을 계속 가능하기는 하지만, 반도체 처리 장치(201)의 처리가 불안정해질 경우를 검출한다. 불안정 동작이 검출되었을 경우에는, 처리 완료 후에 반도체 처리 장치(201)를 정상 동작 상태로 복구하기 위한 시퀀스를 실시하거나, 처리를 즉시 정지하여 반도체 처리 장치(201)를 정상 동작 상태로 복구하기 위한 시퀀스를 실행함으로써, 목표 설정 컨트롤러(261)에 의한 자율 탐색을 계속한다.
탐색 장치(300)는, 분할 영역마다의 탐색 결과를 데이터베이스(205)에 보존한다(스텝 S507). 구체적으로는, 예를 들면, 탐색 장치(300)는, 분할 영역마다, 자율 탐색(스텝 S506)에서 이용된 입력 파라미터의 값과, 당해 입력 파라미터의 값을 이용하여 취득된 반도체 처리 장치(201)의 출력 파라미터의 값의 세트인 입출력 데이터를, 분할 영역마다의 탐색 결과로서 데이터베이스(205)에 보존한다.
탐색 장치(300)는, 목표(목표 출력)를 만족시키는 해(입력 파라미터)를 예측하기 위한 예측 모델을 생성한다(스텝 S508). 구체적으로는, 예를 들면, 탐색 장치(300)는, 스텝 S507에서 데이터베이스(205)에 보존된 학습 데이터를 이용하여, 반도체 처리 장치(201)의 입출력 데이터의 관계를 나타내는 함수를 예측 모델로서 생성한다. 입출력 데이터의 관계를 해석하는 방법으로서는, 뉴럴네트워크, 서포트 벡터 회귀, 커널법을 이용한 회귀 등의 다입력 다출력에 응대 가능한 회귀 분석을 사용할 수 있다. 또한, 상관 분석, 주성분 분석, 중회귀 분석 등의 통계 해석을 사용할 수 있다.
예측 모델의 생성에 있어서, 출력 데이터로서, 예를 들면, 반도체 처리 장치(201)의 처리 결과에 대한 간접적인 계측값을 취득하는 센서 데이터 및 모니터 데이터가 이용된다. 출력 데이터의 취득 빈도가 탐색 설정으로 규정한 빈도보다 낮거나, 또는, 탐색 설정으로 규정한 취득 시간보다 길고, 탐색에 의해 취득할 수 있는 출력 데이터 수가, 탐색 설정으로 규정한 출력 데이터 수보다 적어질 경우가 있다. 이 경우에는, 출력 데이터의 취득 수와 비교하여 많은 데이터 수가 취득 가능한 센서 데이터 및 모니터 데이터를 취득하면 된다. 이에 따라, 출력 데이터에 대한 센서 데이터 및 모니터 데이터의 관계나, 센서 데이터 및 모니터 데이터에 대한 입력 데이터의 관계를 해석할 수 있다. 또한, 이들 양쪽의 해석 결과를 이용함으로써, 출력 데이터에 대한 입력 데이터의 관계를 구할 수 있다.
탐색 장치(300)는, 해가 존재하는 분할 영역을 추정한다(스텝 S509). 해가 존재한다고 추정한 영역 내의 출력 데이터가 취득 완료일 경우(스텝 S5090A:Yes), 탐색 장치(300)는, 추정한 분할 영역 중에서 최량해(OS2)를 특정하고, 특정한 최량해(OS2)를 데이터베이스(205)에 보존한다(스텝 S510). 또한, 해가 존재한다고 추정한 영역 내의 출력 데이터가 미취득일 경우(스텝 S5090A:No), 탐색 장치(300)는, 추정한 영역 내의 자율 탐색을 실행하고(스텝 S5060A), 해가 존재한다고 추정한 영역 내의 출력 데이터, 즉 탐색 결과를 취득하고, 데이터베이스(205)에 보존한다(스텝 S5070A). 이들 자율 탐색 및 결과의 보존은 스텝 S506 및 스텝 S507과 마찬가지의 처리이다. 스텝 S509의 처리는, 2가지 방법이 있다. 1개는, 예측 모델에, 스텝 S501에서 주어진 출력 파라미터의 목표값을 부여하는 방법(제1 추정 방법)이다.
제1 추정 방법에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 스텝 S508에서 얻어진 예측 모델에, 스텝 S501에서 주어진 출력 파라미터의 목표값을 대입함으로써, 출력 파라미터의 목표값을 만족시키는 해가 되는 입력 데이터(입력 파라미터의 값)를 추정한다. 그리고, 탐색 장치(300)는, 해가 되는 입력 데이터가 존재하는 분할 영역을 특정한다. 예를 들면, 예측 모델이 도 1의 입출력 관계를 나타내는 함수일 경우, 출력 파라미터의 목표값으로서 y6이 주어지면, 분할 영역(A1∼A9) 중, 해가 존재하는 분할 영역으로서, A1, A4, A7의 3개의 분할 영역이 추정된다. A1, A4, A7의 각 분할 영역에 있어서 출력 데이터가 미취득일 경우에는, 상술한 바와 같이 스텝 S5060A 및 스텝 S5070A가 실행된다.
스텝 S510에 있어서, 탐색 장치(300)는, 취득 완료의 출력 데이터로부터 목표값(y6)과 동등한 출력 데이터가 존재하는 분할 영역, 출력 데이터와 목표값의 차 또는 괴리가 허용값(S501에서 주어진 허용값)보다 작은 출력 데이터가 존재하는 분할 영역, 또는 목표값(y6)에 가장 가까운 출력 데이터가 존재하는 분할 영역을 특정하고, 이 분할 영역을 최량해(OS2)가 존재하는 영역(이하, 특정한 분할 영역)으로 결정한다. 특정한 분할 영역이 될 수 있는 분할 영역이 복수 특정되었을 경우에는, 탐색 장치(300)는, 그들 모두를 최량해(OS2)가 존재하는 분할 영역으로 결정한다. 또는, 탐색 장치(300)는, 그들 복수의 분할 영역 중, 출력 데이터와 목표값의 차 또는 괴리가 허용값(S501에서 주어진 허용값)보다 작은 출력 데이터를 취득할 수 있었던 수가 가장 많은 분할 영역을, 최량해(OS2)가 존재하는 분할 영역으로 결정한다. 상기의 예의 경우, 취득한 출력 데이터가, 예측 모델이 나타낸 도 1과 마찬가지였을 경우에는, y6과 동등하거나 또는 y6에 가까운 값이 얻어진 분할 영역(A1, A4, A7) 모두, 또는 분할 영역(A4)이 특정한 분할 영역으로 결정된다. 탐색 장치(300)는, 특정한 분할 영역에 있어서 출력 파라미터의 목표값과 동등한, 출력 데이터와 목표값의 차 또는 괴리가 허용값(S501에서 주어진 허용값)보다 작거나, 또는 목표값에 가장 가까운 출력 데이터가 얻어졌을 때의 입력 파라미터의 값을 최량해(OS2)로 결정한다.
또 하나의 스텝 S509의 처리는, 예측 모델에 스텝 S501에서 주어진 출력 파라미터의 목표값을 대입하는 것으로는, 출력 파라미터의 목표값을 만족시키는 해가 되는 입력 파라미터를 직접 구할 수 없을 경우에 적용할 수 있는 방법이다(제2 추정 방법). 제2 추정 방법은, 예측 모델에 한 번에 부여하는 입력 파라미터를 1세트로 하여, 예측 모델에, 다수의 입력 파라미터의 세트를 부여하고, 추정 출력 파라미터를 계산하여, 가장 목표 출력에 가까운 가공 결과가 얻어지는 입력 파라미터의 세트를 취득하는 방법이다. 예를 들면, 탐색 장치(300)는, 각 분할 영역에 포함되는 입력 파라미터의 세트를, 분할 영역마다 1개 이상 작성하고, 이것을 예측 모델에 부여하여, 그때의 출력 파라미터를 계산할 수 있다. 분할 영역마다의 대표적인 추정 출력을 얻는 방법으로서는, 분할 영역에 포함되는 입력 파라미터의 세트로서, 분할 영역 내의 중심 좌표가 되는 값을 이용할 수 있다.
매우 다수의 입력 파라미터의 세트를 예측 모델에 부여하여 추정 출력을 계산할 경우에 있어서, 계산 시간이 방대해질 경우에는, 상기 식(1.1)∼식(1.3)을 이용하여 기술한 바와 같이, 탐색 장치(300)는, 예측 모델에 부여하는 입력 파라미터의 중심 조건을 결정하고, 그 중심 조건으로부터 변경 가능한 입력 파라미터의 종류를 제한함으로써, 계산 시간을 억제할 수 있다. 또한, 중심 조건으로부터 한 번에 변경 가능한 파라미터의 수를 제한함으로써, 계산 시간을 억제할 수 있다. 이에 따라, 탐색 장치(300)는, 예측 모델에 부여하는 입력 파라미터의 세트의 수를 삭감하면서, 목표 출력에 보다 가까운 결과가 얻어지는 입력 파라미터를 얻을 수 있다. 중심 조건을 설정할 때에는, 과거의 탐색 결과 또는 엔지니어의 지식을 이용할 수 있다. 또는, 전체 탐색 영역의 중심 좌표를 중심 조건으로 할 수 있다.
제2 추정 방법에서는, 구체적으로는, 탐색 장치(300)는, 스텝 S508에서 얻어진 예측 모델에, 입력 파라미터의 세트의 값을 대입함으로써, 예측값이 되는 출력 파라미터의 값을 취득한다. 예를 들면, 예측 모델이 도 1의 입출력 관계를 나타내는 함수일 경우, 예측 모델에 입력 파라미터의 값으로서, (x11, x21), (x11, x22), (x11, x23), (x12, x21), (x12, x22), (x12, x23), (x13, x21), (x13, x22), (x13, x23), (x1n, x21), (x1n, x22), (x1n, x23)이 주어지면, 각 입력 파라미터에 대응하는 추정 출력 파라미터를 얻을 수 있다.
이들 각 입력 파라미터에 대응하는 출력 파라미터가 미취득일 경우(스텝 S5090A:Yes)에는, 탐색 장치(300)는, 각 입력 파라미터를 이용하여 자율 탐색을 실행하고(스텝 S5060A), 해가 존재한다고 추정한 영역 내의 출력 데이터, 즉 탐색 결과를 취득하여 데이터베이스(205)에 보존한다(스텝 S5070A). 이들 자율 탐색 및 결과의 보존은 스텝 S506 및 스텝 S507과 마찬가지의 처리이다. 또한, 각 입력 파라미터에 대응하는 출력 파라미터가 취득 완료일 경우(스텝 S5090A:No), 스텝 S510으로 이행한다.
그리고, 스텝 S510에 있어서, 탐색 장치(300)는, 예를 들면, 분할 영역에 있어서, 출력 파라미터의 목표값으로부터 가장 가까운 예측값이 되는 출력 파라미터의 값이 얻어진 입력 파라미터의 값을 최량해(OS2)로 결정한다. 예를 들면, 취득한 출력 데이터가, 예측 모델이 나타낸 도 1과 마찬가지였을 경우에는, 출력 파라미터의 목표값이 y10이었을 경우, 입력 파라미터의 값(x13, x23)에 따른 출력 파라미터의 값(y10)이 가장 가까운 값이 된다. 따라서, 최량해(OS2)는, (x13, x23)이 된다. 또한, 제1 추정 방법 및 제2 추정 방법 중, 어느 것을 적용할지는 미리 설정된다.
탐색 장치(300)는, 최량해(OS2)의 값은 최량해(OS1)의 값보다 목표에 가까운 출력 파라미터가 얻어지는 해인지의 여부를 판단한다(스텝 S511). 그리고, 최량해(OS2)의 값은 최량해(OS1)의 값보다 목표에 가까운 출력 파라미터가 얻어지는 해일 경우(스텝 S511:Yes), 스텝 S512로 이행하고, 그렇지 않을 경우(스텝 S511:No), 스텝 S601(도 6)로 이행한다.
스텝 S511:Yes일 경우, 탐색 장치(300)는, 최량해(OS2)를 최량해(OS1)로 설정함으로써, 최량해(OS1)를 갱신한다(스텝 S512). 또한, 탐색 장치(300)는, 갱신 후의 최량해(OS1)의 분할 영역을 탐색 영역으로 설정함으로써, 탐색 영역을 갱신한다(스텝 S514).
이후, 탐색 장치(300)는, 목표가 달성되었는지의 여부를 판단한다(스텝 S514). 목표가 달성되었을 경우(스텝 S514:Yes), 탐색 장치(300)는, 제어 처리를 종료한다. 한편, 목표가 달성되어 있지 않을 경우(스텝 S514:No), 스텝 S505 또는 스텝 S601(도 6)로 이행한다. 스텝 S505 또는 스텝 S601(도 6) 중 어디로 이행할지는, 미리 설정되어 있어도 되고, 그때마다, 유저에게 선택시켜도 된다. 또한, 목표 미달성(스텝 S514:No)이며, 또한, 스텝 S505로 이행할 경우, 탐색 장치(300)는, 스텝 S513의 갱신 후의 탐색 영역을 분할하게 된다(스텝 S505).
스텝 S514에서는, 구체적으로는, 예를 들면, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 목표값과 동등하거나 또는 목표값과의 차가 허용 범위 내일 경우, 탐색 장치(300)는, 목표 달성이라고 판단한다(스텝 S514:Yes). 또한, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 목표값과 동등하거나 또는 목표값과의 차가 허용 범위 내가 아니어도, 스텝 S501에서 설정한 탐색 시간이 경과했을 경우, 목표를 달성했다고 판단한다(스텝 S514:Yes). 한편, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 목표값과 동등하거나 또는 목표값과의 차가 허용 범위 내가 아니며, 또한, 스텝 S501에서 설정한 탐색 시간이 경과해 있지 않을 경우, 목표 미달성이라고 판단한다(스텝 S514:No).
도 6은, 반도체 처리 장치(201)의 제어 처리 절차예를 나타내는 플로우 차트 2이다. 탐색 장치(300)는, 스텝 S509에서 얻어진 분할 영역 내의 탐색 데이터를 제외 데이터로 결정한다(스텝 S601). 구체적으로는, 예를 들면, 탐색 장치(300)는, 추정 영역 내의 입력 데이터(입력 파라미터의 값) 및 출력 데이터(출력 파라미터)를 제외 데이터로 결정한다. 제외 데이터는, 금후의 처리에서 제외될 가능성이 있는 데이터이다(실제의 해석 대상이 되는 데이터로부터의 제외는 도 7의 S703, 또는 도 6∼도 8의 S608에서 실시). 마찬가지로, 탐색 장치(300)는, 스텝 S510에서 얻어진 분할 영역을 제외 영역으로 결정한다(스텝 S602). 제외 영역은, 금후의 처리에서 제외될 가능성이 있는 영역이다(실제의 해석 대상이 되는 데이터로부터의 제외는 도 8의 S803, 또는 도 6∼도 8의 S608에서 실시).
이후, 탐색 장치(300)는, 스텝 S509에서 얻어진 분할 영역을 분할할지의 여부를 판단한다(스텝 S603). 분할할 경우(스텝 S603:Yes), 스텝 S604로 이행하고, 분할하지 않을 경우(스텝 S603:No), 스텝 S608로 이행한다.
스텝 S603에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 유저로부터의 분할 지시 입력의 유무에 의해, 분할 영역을 분할할지의 여부를 판단한다. 또한, 탐색 장치(300)는, 강제적으로 분할 영역을 분할해도 된다(스텝 S603:Yes).
이후, 탐색 장치(300)는, 스텝 S508과 마찬가지로 예측 모델을 생성한다(스텝 S604). 다음으로, 탐색 장치(300)는, 스텝 S509와 마찬가지로, 스텝 S603에서 분할된 분할 영역군 중, 해가 존재하는 분할 영역을 추정한다(스텝 S605). 추정된 분할 영역을, 추정 분할 영역이라고 한다. 그리고, 탐색 장치(300)는, 스텝 S6090A, S6060A, S6070A에 있어서, 스텝 S5090A, S5060A, S5070A와 마찬가지의 처리를 실행한다. 구체적으로는, 예를 들면, 해가 존재한다고 추정한 영역 내의 출력 데이터가 취득 완료일 경우(스텝 S6090:Yes)에는, 탐색 장치(300)는, 추정한 분할 영역 중에서 최량해(OS3)를 특정하고, 특정한 최량해(OS3)를 데이터베이스(205)에 보존한다(스텝 S606). 또한 마찬가지로, 해가 존재한다고 추정한 영역 내의 출력 데이터가 미취득일 경우(스텝 S6090:No)에는, 탐색 장치(300)는, 추정한 영역 내의 자율 탐색을 실행하고(스텝 S6060A), 해가 존재한다고 추정한 영역 내의 출력 데이터, 즉 탐색 결과를 취득하여, 데이터베이스(205)에 보존한다(스텝 S6070A).
이후, 스텝 S511과 마찬가지로, 탐색 장치(300)는, 최량해(OS3)에 대응하는 출력 파라미터의 값은 최량해(OS1)에 대응하는 출력 파라미터의 값보다 목표에 가까운 해인지의 여부를 판단한다(스텝 S607). 그리고, 최량해(OS3)에 대응하는 출력 파라미터의 값은 최량해(OS1)에 대응하는 출력 파라미터의 값보다 목표에 가까운 해일 경우(스텝 S607:Yes), 스텝 S512로 이행하고, 그렇지 않을 경우(스텝 S607:No), 스텝 S608로 이행한다. 스텝 S608에 있어서, 탐색 장치(300)는, 탐색 영역으로부터 제외 영역을 제외하거나, 제외 영역의 제외 및 제외 데이터를 제외함으로써, 탐색 영역을 갱신하여(스텝 S608), 스텝 S505로 이행한다.
도 7은, 반도체 처리 장치(201)의 제어 처리 절차예를 나타내는 플로우 차트 3이다. 플로우 차트 3은, 도 6에 나타낸 플로우 차트 2의 다른 처리예이다. 또한, 도 6과 동일 처리에 대해서는, 동일 스텝 번호를 붙여 설명을 생략한다. 탐색 장치(300)는, 스텝 S601 후, 탐색 장치(300)는, 스텝 S601에서 결정된 제외 데이터를 제외할지의 여부를 판단한다(스텝 S703). 제외하고 해석할 경우(스텝 S703:Yes), 스텝 S604로 이행하고, 제외하지 않고 해석할 경우(스텝 S703:No), 스텝 S608로 이행한다.
스텝 S703에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 유저로부터의 제외 지시 입력의 유무에 의해, 제외 데이터를 제외하고 해석할지의 여부를 판단한다. 또한, 탐색 장치(300)는, 강제적으로 제외 데이터를 제외하고 해석해도 된다(스텝 S703:Yes).
이후, 탐색 장치(300)는, 제외 데이터를 사용하지 않고, 분할 영역의 예측 모델을 생성하고(스텝 S604), 스텝 S605, S6090A, S6060A, S6070A, S606, S607, S608을 실행한다.
도 8은, 반도체 처리 장치(201)의 제어 처리 절차예를 나타내는 플로우 차트 4이다. 플로우 차트 4는, 도 6에 나타낸 플로우 차트 2의 다른 처리예이다. 또한, 도 6과 동일 처리에 대해서는, 동일 스텝 번호를 붙여 설명을 생략한다. 탐색 장치(300)는, 스텝 S602 후, 탐색 장치(300)는, 스텝 S602에서 결정된 제외 영역을 제외하고 해석할지의 여부를 판단한다(스텝 S803). 제외하고 해석할 경우(스텝 S803:Yes), 스텝 S604로 이행하고, 제외하지 않고 해석할 경우(스텝 S803:No), 스텝 S608로 이행한다.
스텝 S803에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 유저로부터의 제외 지시 입력의 유무에 의해, 제외 영역 내의 해(입력 파라미터의 값)를 제외하고 해석할지의 여부를 판단한다. 또한, 탐색 장치(300)는, 강제적으로 제외 영역을 제외하고 해석해도 된다(스텝 S803:Yes).
이후, 탐색 장치(300)는, 스텝 S604와 마찬가지로, 분할 영역의 예측 모델을 생성한다(스텝 S604). 다음으로, 탐색 장치(300)는, 제외 영역 내의 해(입력 파라미터의 값)를 사용하지 않고, 스텝 S603에서 분할된 분할 영역군 중, 해가 존재하는 분할 영역을 추정한다(스텝 S605). 추정된 분할 영역을, 추정 분할 영역이라고 한다. 그리고, 탐색 장치(300)는, 스텝 S6090A, S6060A, S6070A, S606, S607, S608을 실행한다.
또한, 본 제어 처리에 있어서, 데이터의 해석, 보존, 전송 등의 규모가 커지고, 그 실행 시간이 1조건을 탐색하는 시간보다 길어질 경우에는, 그들 실행과 병렬하여 탐색을 계속하는 것이 가능하다. 그때에는, 탐색 조건에 있어서 변경하는 입력 파라미터 수, 동시에 변경하는 입력 파라미터 수, 탐색 영역의 분할 수 중 1개 이상을 증가시킨다. 이에 따라, 탐색 조건 수를 증가시켜, 이 조건을 탐색함으로써, 해석 등을 실행하는 시간을 이용하여 탐색 결과를 증가시킬 수 있다. 특히, 데이터의 해석에 필요한 시간은 몇 분 내지 몇 시간 이상이 될 경우가 있어, 그 해석 중에 탐색을 계속함으로써, 탐색 속도를 향상시킬 수 있다.
<반도체 처리 장치(201)의 제어 처리의 적용예 1A>
다음으로, 반도체 디바이스의 양산 전에 있어서의 반도체 처리 장치(201)의 메인터넌스에 있어서, 반도체 처리 장치(201)의 장치차를 보정하기 위한 제어 처리의 적용예를 나타낸다. 여기에서는 기차 억제의 절차를 설명하는 예로서, 반도체 처리 장치(201)를, 방전 처리를 행하는 에칭 장치로 했다. 또한, 여기에서는 방전 처리를 실행할 때의 입력 파라미터를 레시피라고 한다. 방전 처리를 행하는 에칭 장치에서는, 보정 대상이 되는 출력으로서, 처리 결과 또는 처리에 이용하는 방전의 특성을 들 수 있다. 보정의 방법으로서는, 기준이 되는 에칭 장치와 동일한 출력이 얻어지도록 다른 에칭 장치를 보정하는 방법, 또는 복수의 에칭 장치의 출력이 균일해지도록 보정하는 방법이 있다.
도 9는, 기차 억제 방법을 나타내는 플로우 차트이다. 도 9는, 구체적으로는, 예를 들면, 반도체 디바이스의 양산 전에 있어서의 반도체 처리 장치(201)의 메인터넌스 처리 절차예를 나타낸다. 장치차의 보정을 행하기 위해, 탐색 장치(300)는, 메인터넌스 후 방전 데이터 취득을 개시한다.
우선, 탐색 장치(300)는, 기본적인 방전 처리를 행하기 위한 레시피를 이용하여 기준 레시피 방전을 행하고, 그때의 입출력 데이터를 취득한다. 또한, 양산에서 이용되는 레시피에 의한 방전을 행하고, 그때의 출력 데이터(출력 파라미터의 값)를 취득한다(스텝 S901). 스텝 S901은, 스텝 S501∼S504에 대응하는 처리이다.
다음으로, 탐색 장치(300)는, 장치차 보정 레시피를 탐색한다(스텝 S902). 스텝 S902는, 스텝 S505∼S507에 대응하는 처리이다. 그리고, 탐색 장치(300)는, 스텝 S902의 탐색한 장치차 보정 레시피를 이용한 장치차 보정을 실행한다(스텝 S903). 스텝 S903은, 스텝 S508∼S513, 도 6∼도 8의 처리에 대응하는 처리이다. 보정 목표를 달성하고 있지 않을 경우(스텝 S904:No), 스텝 S902로 돌아가고, 보정 목표를 달성했을 경우(스텝 S904:Yes), 처리를 종료한다. 스텝 S904는, 스텝 S514에 대응하는 처리이다.
또한, 동일한 에칭 장치를 복수 이용하여 탐색을 병렬로 진행시킴으로써 탐색 속도를 향상시켜도 된다. 그때에는, 도 9의 절차에 의해 장치차가 보정된 복수의 에칭 장치를 사용함으로써, 목표를 만족시키는 해를 탐색할 수 있을 가능성을 높일 수 있다. 또한, 탐색된 해를 그들 복수의 장치로 전개(展開)하여 보정을 행하는 것이 가능해진다.
이와 같이, 반도체 처리 장치(201)의 메인터넌스 후에 탐색 장치(300)에 의한 탐색 방법을 실행함으로써, 반도체 처리 장치(201)의 출력 파라미터의 값을 기준이 되는 출력 파라미터의 값에 가까이 할 수 있다(자동 기차 보정 기능).
<반도체 처리 장치(201)의 제어 처리의 적용예 2A>
다음으로, 반도체 디바이스의 양산 처리에 있어서, 경시 변화를 보정하기 위한 제어 처리의 적용예를 나타낸다.
도 10은, 경시 변화 보정 방법을 나타내는 플로우 차트이다. 도 10에서는, 도 9와 마찬가지로, 경시 변화를 보정하는 절차를 설명하는 예로서, 반도체 처리 장치(201)를, 처리에 방전을 사용하는 에칭 장치로 했다. 양산 전 방전 데이터 취득에서는, 양산 중의 경시 변화의 보정을 행하기 위해, 탐색 장치(300)는, 우선 기본적인 방전 처리를 행하기 위한 기준 레시피를 에칭 장치에 부여하여 기준 레시피 방전을 행하고, 그때의 출력 데이터(출력 파라미터의 값)를 취득한다(스텝 S1011). 스텝 S1011은, 스텝 S501∼S504에 대응하는 처리이다.
다음으로, 탐색 장치(300)는, 장치차 보정 후보 레시피를 탐색한다(스텝 S1012). 스텝 S1012에서는, 과거의 양산시의 입출력 데이터의 해석 결과로부터, 보정 대상의 경시 변화를 예측할 수 있는 출력 데이터 또는 센서 데이터 및 모니터 데이터가 이용된다. 그리고, 탐색 장치(300)는, 양산 개시 전의 에칭 장치에 있어서, 이들 경시 변화를 예상할 수 있는 데이터를 경시 변화 후의 값으로까지 변동시키기 위한 장치차 보정 후보 레시피의 탐색을 실행한다. 스텝 S1012는, 스텝 S505∼S507에 대응하는 처리이다.
다음으로, 탐색 장치(300)는, 장치차 보정을 실행한다(스텝 S1013). 스텝 S1013에서는, 탐색 장치(300)는, 경시 변화가 발생하고 있지 않은 상태에서 이용하는 기본의 양산용 레시피와 스텝 S1012에서 탐색된 장치차 보정 후보 레시피를 비교하여, 장치차 보정 후보 레시피에서 변경된 입력 파라미터를 분명하게 한다. 이에 따라, 양산 전 단계에서, 보정 대상의 입력 파라미터와 출력 파라미터와의 관계를 설명하는 함수를 생성하는 것이 가능해지고, 또한 그 관계로부터 보정 후보가 되는 레시피를 생성할 수 있다. 스텝 S1013은, 스텝 S508∼S513, 도 6∼도 8의 처리에 대응하는 처리이다. 이후, 양산 처리가 개시된다.
스텝 S1013 후, 반도체 디바이스의 양산 처리가 개시되면, 웨이퍼가 처리실에 도입되고(스텝 S1021), 에칭 장치가, 웨이퍼를 에칭한다(스텝 S1022). 에칭(스텝 S1022)은, 1스텝 또는 복수 스텝으로 구성된다. 에칭(스텝 S1022)이 복수 스텝일 경우, 각 스텝의 에칭은, 방전 조건을 변경하여 실행된다. 에칭(스텝 S1022)의 완료 후에, 웨이퍼는, 처리실 외로 반출된다(스텝 S1023). 그리고, 에칭 중에 발생하여 처리실 표면에 퇴적된 반응 생성물을 제거하기 위해, 플라스마 클리닝이 실시된다(스텝 S1024). 다음 웨이퍼가 있으면(스텝 S1025:Yes), 스텝 S1021로 돌아가고, 다음 웨이퍼가 없으면(스텝 S1025:No), 양산 후 방전 데이터 취득으로 이행한다.
양산 중의 에칭 장치의 입출력 데이터는, 데이터베이스(205)에 보존되고, 탐색 장치(300)는, 병렬하여 입출력 데이터를 리얼 타임으로 계속해서 해석한다. 이에 따라, 보정 대상의 경시 변화를 예측할 수 있는 출력 데이터 또는 센서 데이터 및 모니터 데이터의 추정을 양산 중에 계속하는 것이 가능하다. 또한, 탐색 장치(300)는, 동일한 양산 처리를 실행하는 복수의 에칭 장치의 입출력 데이터를 집약함으로써, 데이터 수를 증가시킬 수 있다.
양산 후 또는 양산 개시로부터 지정된 시간이 경과했을 때에 방전 데이터를 취득했을 경우, 탐색 장치(300)는, 경시 변화를 보정하는 레시피의 탐색을 실행한다(스텝 S1031). 구체적으로는, 예를 들면, 탐색 장치(300)는, 스텝 S1011, S1012에서 취득한 데이터, 해석된 입출력 데이터의 관계, 및 보정 후보 레시피를 스텝 S502의 입력으로서 사용하고, 경시 변화 보정 레시피를 탐색한다. 스텝 S1031은, 스텝 S505∼S507에 대응하는 처리이다.
그리고, 탐색 장치(300)는, 탐색 결과인 경시 변화 보정 레시피를 이용하여, 보정 결과의 검증을 행한다(스텝 S1032). 스텝 S1032는, 스텝 S508∼S513, 도 6∼도 8의 처리에 대응하는 처리이다.
또한, 스텝 S1031, S1032의 실행 전에, 탐색 장치(300)는, 반도체 디바이스의 양산 중에 취득한 출력 데이터를 해석하고, 보정 대상의 경시 변화를 예측할 수 있는 출력 데이터 또는 센서 데이터 및 모니터 데이터를 추정하고, 스텝 S1012를 실행해도 된다. 이에 따라, 보정 대상의 입력 파라미터와 출력 파라미터와의 관계를 설명하는 함수를 생성하고, 또한 그 관계로부터 보정 후보가 되는 레시피를 생성할 수 있다. 이들 결과를, 스텝 S502에서 이용함으로써, 탐색 장치(300)는, 스텝 S1031, S1032를 실행할 수 있다.
또한, 상기 탐색에 있어서의 스텝 S502의 입력으로서는, 엔지니어의 지식을 이용하여, 보정에 빈번하게 이용되는 입력 파라미터를 변경한 레시피, 및 그 레시피를 이용하여 방전했을 때의 입출력 데이터와 그 해석 결과를 이용해도 된다.
그리고, 보정 목표를 달성하고 있지 않을 경우(스텝 S1033:No), 스텝 S1031로 돌아가고, 보정 목표를 달성했을 경우(스텝 S1033:Yes), 처리를 종료한다. 스텝 S1033은, 스텝 S514에 대응하는 처리이다. 도 10에 나타낸 탐색을 실행할 때에는, 동일한 양산 처리를 실시한 양산 후의 에칭 장치를 복수 이용하여 탐색을 병렬로 진행시킴으로써 탐색 속도를 향상시킬 수 있다. 또한, 탐색된 해(입력 파라미터)는, 동일한 양산 처리를 실행하는 복수의 에칭 장치로 전개하여 보정을 실행하는 것이 가능하다.
이와 같이, 반도체의 양산 후에 있어서 탐색 장치(300)에 의한 탐색 방법을 실행함으로써, 양산 중의 반도체 처리 장치(201)의 출력 파라미터의 값의 경시 변화를 보정할 수 있다(자동 경시 변화 보정 기능).
이와 같이, 탐색 장치(300)는, 반도체 처리 장치(201)의 입력 파라미터의 값 및 출력 파라미터의 값을 자동 해석하고, 그 해석 결과를 고려한 다음에, 입력 파라미터의 값을 탐색하기 위한 실험 조건을 자동으로 결정한다. 그리고, 탐색 장치(300)는, 당해 실험 결과의 검증을 자동으로 행하고, 이들 자동 동작을 반복함으로써, 목표로 하는 장치 상태 및 처리 결과(출력 파라미터의 값)가 얻어지는 입력 파라미터의 값을 자동적으로 탐색할 수 있다. 이에 따라, 반도체 처리 장치(201) 스스로가 자동적으로 장치 성능을 끌어낼 수 있고, 이에 더하여 장치 성능을 끌어내기 위한 제어 모델 개발이나 장치 파라미터(입력 파라미터와 출력 파라미터의 조합)의 선정을 행하는 엔지니어를 지원할 수 있다.
이상 설명한 바와 같이, 본 실시예에 따른 탐색 장치(300)는, 반도체를 처리하는 반도체 처리 장치(201)에 설정되는 조건 또는 반도체 처리 장치(201)에 의해 반도체가 처리된 가공 결과를 나타내는 목표값과, 조건과 가공 결과의 범위에 의해 규정되는 탐색 영역 내에 있어서의 조건 또는 가공 결과 중 목표값이 나타내는 쪽의 기준값의 입력을 접수하는 입력부(401)와, 탐색 영역 내의 조건의 설정값과, 당해 설정값을 반도체 처리 장치(201)에 부여했을 경우의 가공 결과의 실측값에 의거하여, 조건과 가공 결과와의 관계를 나타내는 예측 모델을 생성하는 생성부(402)와, 생성부(402)에 의해 생성된 예측 모델에, 입력부(401)에 의해 입력된 목표값을 부여함으로써, 예측 모델로부터 예측값을 취득하고, 예측값의 존재 영역을 탐색 영역으로부터 특정하는 특정부(403)와, 예측값에 대응하는 상기 가공 결과의 실측값이 입력부(401)에 의해 입력된 기준값보다 목표값에 가까운지의 여부를 판단하는 판단부(404)와, 판단부(404)에 의해 예측값에 대응하는 상기 가공 결과의 실측값 쪽이 목표값에 가깝다고 판단되었을 경우, 예측값을 기준값으로 설정하고, 특정부에 의해 특정된 예측값의 존재 영역을 탐색 영역으로 설정하는 설정부(405)와, 예측값에 대응하는 상기 가공 결과의 실측값이 목표값의 달성 조건을 충족시켰을 경우에 달성 조건을 충족시킨 예측값을 출력하는 출력부(406)를 갖는다.
이에 따라, 반도체 처리 장치(201)의 입출력에 관한 최량해에의 도달 정밀도의 향상을 도모할 수 있다. 따라서, 반도체 처리 장치(201)에 있어서의 운용의 효율화 및 처리의 최적화를 도모할 수 있다.
또한, 탐색 장치(300)는, 판단부(404)에 의해 예측 모델로부터 얻어진 예측값에 대응하는 상기 가공 결과의 실측값 쪽이 목표값에 가깝지 않다고 판단되었을 경우, 결정부(407)에 의해 예측값의 존재 영역 내의 예측값 및 예측값에 대응하는 상기 가공 결과의 실측값을 제외 데이터로 결정하고, 설정부(405)에 의해 탐색 영역으로부터 제외 데이터와 당해 제외 데이터가 얻어졌을 경우에 반도체 처리 장치(201)에 주어진 목표값에 의해 특정되는 제외 영역을 제외한 잔존 영역을 탐색 영역으로 설정한다. 이에 따라, 목표값에 가깝지 않은 예측값과 목표값의 조합이 존재하는 제외 영역을 최신의 탐색 영역으로부터 제외할 수 있어, 최량해에의 도달 정밀도의 향상을 도모할 수 있다.
또한, 탐색 장치(300)는, 분할부(408)에 의해 탐색 영역을 복수의 영역으로 분할하고, 판단부(404)에 의해 예측값에 대응하는 상기 가공 결과의 실측값 쪽이 목표값에 가깝다고 판단되었을 경우, 특정부(403)에 의해, 예측값을 기준값으로 설정하고, 예측값의 존재 영역을 복수의 분할 영역 중에서 특정한다. 이에 따라, 예측값의 존재 영역을 용이하게 특정할 수 있어, 탐색 속도의 향상을 도모할 수 있다.
또한, 탐색 장치(300)는, 분할부(408)에 의해 탐색 영역을 복수의 영역으로 분할하고, 생성부(402)에 의해, 분할 영역 내에 있어서의 조건의 설정값을 반도체 처리 장치(201)에 부여했을 경우의 가공 결과의 실측값을, 분할 영역마다 취득하고, 생성부(402)에 의해, 각 분할 영역에서의 조건의 설정값과 가공 결과의 실측값에 의거하여 예측 모델을 생성한다. 이에 따라, 복수의 반도체 처리 장치(201)를 이용함으로써, 실측값을 분할 영역마다 병렬로 취득할 수 있어, 예측 모델의 생성 속도의 고속화를 도모할 수 있다.
또한, 탐색 장치(300)는, 판단부(404)에 의해 예측값에 대응하는 상기 가공 결과의 실측값 쪽이 목표값에 가깝지 않다고 판단되었을 경우, 결정부(407)에 의해 예측값의 존재 영역 내에서 취득한 데이터를 제외 데이터로 결정하고, 생성부(402)에 의해, 실측값으로부터 제외 데이터를 제외한 특정한 실측값과, 설정값으로부터 제외 데이터가 얻어졌을 경우에 반도체 처리 장치(201)에 주어진 설정값을 제외한 특정한 설정값에 의거하여 예측 모델을 생성한다. 또한, 목표값에 가깝지 않은 예측값과 설정값의 조합이 존재하는 제외 영역을 예측값의 후보로부터 제외할 수 있어, 예측 모델의 정밀도 향상을 도모할 수 있다. 따라서, 생성된 예측 모델에 의해, 보다 좋은 예측값을 얻을 수 있다.
또한, 탐색 장치(300)는, 검출부(409)에 의해, 가공 결과의 실측값과, 소정의 출력 임계값에 의거하여 반도체 처리 장치(201)의 불안정 동작을 검출하고, 출력부(406)에 의해, 검출부(409)에 의한 검출 결과를 출력한다. 이에 따라, 탐색의 계속 가부를 유저에게 촉구할 수 있다.
[실시예 2]
본 실시예 2는, 상기 실시예 1의 영역 분할에 더해, 예측 모델에 의거하여 실증 실험을 행하여, 목표를 만족시키는 최적의 해를 탐색한다. 이 때문에, 본 실시예 2에서는, 실증 실험의 결과(가공 결과)를 학습 데이터에 더해 예측 모델의 갱신을, 목표를 만족시킬 때까지 반복하여 실시하고, 또한, 목표를 서서히 최종 목표를 향하여 갱신함으로써 최적의 해를 탐색한다. 반도체 제조 시스템에 대해서는, 상기 실시예 1과 마찬가지의 구성이며, 처리의 내용에 대해서는, 상기 실시예 1과 상위(相違)하는 부분에 대해서 설명한다.
<입력 파라미터의 탐색예>
도 11은, 입력 파라미터의 탐색예를 나타내는 설명도이다. 도 11은, 상기 실시예 1의 도 1과 마찬가지인, 반도체 처리 장치에 있어서 목표를 만족시키는 출력 데이터(출력 파라미터의 값)가 얻어지는 입력 데이터(상술한 입력 파라미터의 값)를 탐색할 때의 반도체 처리 장치에 대한 입력 데이터와 출력 데이터의 조합의 예를 나타낸다.
본 실시예 2에서는, 탐색 장치(300)에 도면 중 초기 데이터점(동그라미 표시)의 파라미터를 부여하여 예측 모델을 생성시키고, 예측 모델에 의한 예측 결과를 도면 중 제1회 예측점(삼각 표시)으로 하여 산출시킨다. 탐색 장치(300)는 반도체 처리 장치(201)에서 제1회 예측점의 데이터로, 실증 실험을 실시하고, 실증 실험 결과(가공 결과)를 학습 데이터로 하여, 예측 모델을 갱신한다.
탐색 장치(300)는, 전회의 실증 실험 결과를 더한 학습 데이터로부터 예측 모델을 갱신하여, 예측 모델에 의한 예측 결과를 도면 중 제2회 예측점(사각 표시)으로 하여 산출한다. 실증 실험의 결과(가공 결과)가 목표를 만족시킬 때까지 상기의 처리를 반복함으로써, 최적의 해를 탐색할 수 있다.
상기 실시예 1의 도 4에 나타낸 각 기능부는, 본 실시예 2에서는 이하와 같은 기능으로 한다. 특정부(403)는, 생성부(402)에 의해 생성된 예측 모델에, 입력부(401)에 의해 입력된 목표값을 부여함으로써, 목표값에 대응하는 예측값을 예측 모델로부터 복수 취득한다. 그리고, 특정부(403)는, 각 예측값을 반도체 처리 장치(201)에 설정값으로서 부여했을 경우의 각 출력의 실측값을 취득한다.
목표값이 반도체 처리 장치(201)의 출력 파라미터의 값일 경우, 특정부(403)는, 예측 모델에 당해 출력 파라미터의 값을 부여함으로써, 목표값에 대응하는 예측값으로서 입력 파라미터의 값을 예측 모델로부터 취득한다.
구체적으로는, 예를 들면, 도 11에 있어서, 목표값이 출력 파라미터의 값(y12)일 경우, 당해 목표값(y12)에 대응하는 예측값은, 도 11의 목표값(y12)의 등고선에 의해 특정되는 입력 파라미터(X1, X2)의 값이다. 따라서, 특정부(403)는, 탐색 영역(A)으로부터 목표값(y12)의 등고선에 의해 특정되는 입력 파라미터(X1, X2)((x11, x21), (x12, x21), (x13, x21) 등)를 특정한다.
판단부(404)는, 상기 실시예 1과 마찬가지이며, 예측값에 대응하는 목표값이, 입력부(401)에 의해 입력된 가공 결과의 기준값보다 목표값에 가까운지의 여부를 판단한다.
설정부(405)는, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이, 가공 결과의 기준값보다 목표값에 가깝다고 판단되었을 경우, 예측값 및 예측값에 대응하는 목표값을 조건의 기준값 및 가공 결과의 기준값으로 설정한다.
출력부(406)는, 상기 실시예 1과 마찬가지이며, 예측값이 목표값의 달성 조건을 충족시켰을 경우에 달성 조건을 충족시킨 예측값을 출력한다.
결정부(407)는, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이, 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단되었을 경우, 예측값 및 예측값에 대응하는 목표값을 제외 데이터로 결정한다(도 13의 스텝 A601에서 후술). 제외 데이터란, 예측 모델에 부여하면 안되는 입력 파라미터의 값이다.
또한 이 경우, 설정부(405)는, 결정부(407)에 의해 결정된 제외 데이터를 제외한 데이터를 학습 데이터로 설정한다. 이에 따라, 생성부(402)는, 제외 데이터가 존재하지 않는 학습 데이터를 이용할 수 있다. 따라서, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
또한, 결정부(407)는, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단되었을 경우, 예측값의 주변 영역을 제외 영역으로 결정해도 된다(도 13의 스텝 A602에서 후술). 제외 영역이란, 예측 모델이 출력하면 안되는 입력 파라미터의 값의 영역이다. 또한, 예측값의 주변 영역에 포함되는 취득 완료의 데이터를 제외 데이터로 결정해도 된다.
또한 이 경우, 설정부(405)는, 탐색 영역으로부터 결정부(407)에 의해 결정된 제외 영역을 제외한 잔존 영역을 탐색 영역으로 설정한다. 이에 따라, 목표값에 가깝지 않은 가공 결과밖에 얻어지지 않는 예측값의 범위를 제외하여 탐색 영역을 좁힐 수 있다. 따라서, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
분할부(408)는, 상기 실시예 1과 마찬가지이며 탐색 영역을 복수의 영역으로 분할한다.
또한, 결정부(407)는, 상술한 바와 같이, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 가공 결과의 기준값보다 상기 목표값에 가깝지 않다고 판단되었을 경우, 예측값 및 예측값에 대응하는 목표값을 제외 데이터로 결정해도 된다. 이 경우, 생성부(402)는, 상기 실시예 1의 도 9와 마찬가지로, 실측값으로부터 제외 데이터를 제외한 잔여의 실측값과, 설정값으로부터 잔여의 실측값에 대응하는 설정값을 제외한 잔여의 설정값에 의거하여, 예측 모델을 생성해도 된다. 이에 따라, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
또한, 결정부(407)는, 상술한 바와 같이, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 가공 결과의 기준값보다 목표값에 가깝지 않다고 판단되었을 경우, 예측값의 주변 영역을 제외 영역으로 결정해도 된다. 이 경우, 생성부(402)는, 상기 실시예 1의 도 6과 마찬가지로, 탐색 영역으로부터 제외 영역을 제외한 잔여의 탐색 영역 내의 조건의 설정값과, 당해 설정값을 반도체 처리 장치(201)에 부여했을 경우의 출력의 실측값에 의거하여, 예측 모델을 생성해도 된다. 이에 따라, 해인 입력 파라미터의 값의 탐색 속도의 향상을 도모할 수 있다.
검출부(409)는, 상기 실시예 1과 마찬가지이며, 반도체 처리 장치(201)의 출력과, 소정의 출력 임계값에 의거하여, 반도체 처리 장치(201)의 불안정 동작을 검출한다.
<반도체 처리 장치(201)의 제어 처리 절차예>
도 12는, 본 실시예 2에 있어서의 반도체 처리 장치(201)의 제어 처리 절차예를 나타내는 플로우 차트이다. 도면 중 스텝 A501∼A504는, 상기 실시예 1의 도 5의 스텝 S501∼S504와 마찬가지이다. 탐색 장치(300)는, 목표로 하는 반도체 처리 장치(201)로부터의 출력값(출력 파라미터의 목표값), 및 탐색 설정의 입력을 접수한다(스텝 A501).
다음으로, 탐색 장치(300)는, 베이스가 되는 해의 입력 및 그 해에 관한 정보의 입력을 접수한다(스텝 A502).
다음으로, 탐색 장치(300)는, 스텝 A502에서 입력된 최량의 해를 최량해(OS1)로서 보존한다(스텝 A503). 해가 없을 경우에는, 해로부터 가장 먼 것을 나타내는 기호 또는 값이 설정된다.
다음으로, 탐색 장치(300)는, 기본 탐색 영역을 탐색 영역으로서 설정한다(스텝 A504).
예를 들면, 도 11에 있어서, 입력 파라미터의 종류로서 X1, X2의 2개의 입력 파라미터가 선택되었을 경우, 입력 파라미터(X1)의 제어 범위를 [x11, x1n], 입력 파라미터(X2)의 제어 범위를 [x21, x2n]으로 하면, 도 11에 나타낸 전체 범위의 영역(A)이 탐색 영역이 된다.
스텝 A501∼A504의 목표 설정 컨트롤러(261)의 입력 및 설정 내용은, 자율 탐색 시스템(262)으로 건네지고, 다음으로 설명하는 스텝 A505∼A509의 절차에 의해 자동 탐색, 혹은 탐색 실행이나 계속의 가부를 엔지니어가 지시하는 형태의 반자동 탐색이 실행된다.
탐색 장치(300)는, 목표(목표 출력)를 만족시키는 해(입력 파라미터)를 예측하기 위한 예측 모델을 생성한다(스텝 A505). 구체적으로는, 예를 들면, 탐색 장치(300)는, 스텝 A505에서 데이터베이스(205)에 보존된 데이터(예를 들면, 초기 데이터)를 이용하여, 반도체 처리 장치(201)의 입출력 데이터의 관계를 나타내는 함수를 예측 모델로서 생성한다. 입출력 데이터란, 반도체 처리 장치(201)에 주어지는 입력 파라미터의 값(입력 데이터)과 반도체 처리 장치(201)로부터 얻어지는 출력 파라미터의 값(출력 데이터)의 세트이다. 또한, 입출력 데이터의 관계를 해석하는 방법으로서는, 상기 실시예 1과 마찬가지이며, 뉴럴네트워크, 서포트 벡터 회귀, 커널법을 이용한 회귀 등의 다입력 다출력에 응대 가능한 회귀 분석을 사용할 수 있다. 또한, 상관 분석, 주성분 분석, 중회귀 분석 등의 통계 해석을 사용할 수 있다.
예측 모델의 생성에 있어서, 출력 데이터로서, 예를 들면, 반도체 처리 장치(201)의 가공 결과에 대한 간접적인 계측값을 취득하는 센서 데이터 및 모니터 데이터가 이용된다. 출력 데이터의 취득 빈도가 탐색 설정으로 규정한 빈도보다 낮거나, 또는, 탐색 설정으로 규정한 취득 시간보다 길고, 탐색에 의해 취득할 수 있는 출력 데이터 수가, 탐색 설정으로 규정한 출력 데이터 수보다 적어질 경우가 있다. 이 경우에는, 탐색 설정으로 규정한 출력 데이터의 취득 수와 비교하여 많은 데이터 수가 취득 가능한 센서 데이터 및 모니터 데이터를 취득하면 된다. 이에 따라, 출력 데이터에 대한 센서 데이터 및 모니터 데이터의 관계나, 센서 데이터 및 모니터 데이터에 대한 입력 데이터의 관계를 해석할 수 있다. 또한, 이들 양쪽의 해석 결과를 이용함으로써, 출력 데이터에 대한 입력 데이터의 관계를 구할 수 있다.
또한, 예측 모델의 생성에 있어서, 처리 대상의 일부를 단편으로서 취출하고, 그 단편을 모니터 시스템(203)으로 운반함으로써 계측 결과(가공 결과)를 취득하고, 그 결과로서 데이터베이스(205)에 보존된 데이터를, 출력 결과로서 이용할 수도 있다. 그때, 처리 대상의 단편화 및 데이터 취득을 위해 필요한 시간이 랜덤이거나, 또는 장시간이 될 경우에는, 반도체 처리 장치(201)로부터의 출력 데이터(출력 파라미터의 값)의 취득 시간의 상한을 충분히 긴 시간으로 하면 된다. 혹은, 출력 데이터의 취득 시간의 상한을 설정하지 않고, 취득 종료의 신호를 별도, 탐색 장치(300)로 송신함으로써, 처리를 계속할 수 있다.
모니터 시스템(203)에서의 계측시에는, 목표 설정 컨트롤러(261)에 입력된, 상술한 위치 정보 데이터, 화상 정보 데이터를 사용함으로써, 처리 대상의 원하는 위치로부터 원하는 출력 데이터를 자동적으로 계측할 수 있다.
다음으로, 탐색 장치(300)는, 생성된 예측 모델을 이용하여, 목적하는 해가 얻어지거나, 혹은 목적하는 해에 가까운 가공 결과를 얻기 위한 파라미터를 예측하고, 예측 결과로서 보존한다(스텝 A506).
예를 들면, 도 11에 있어서, 입력 파라미터의 종류로서 X1, X2의 2개의 입력 파라미터가 선택되었을 경우에 있어서, 해석 모델을 작성하기 위한 데이터로서, 도 11 중의 초기 데이터(A1∼A9)가 주어졌을 경우를 이용하여, 예측 결과의 출력에 대해서 설명한다. 또한, 이때의 목표는, 출력 파라미터(y)가 가장 커지는 입력 파라미터(X1, X2)를 탐색하는 것이다.
탐색 장치(300)는, 초기 데이터를 이용하여, 그 입출력 관계를 구하는 회귀 모델을 예측 모델로서 생성한다. 상술한 바와 같이, 입력 파라미터(X1)의 제어 범위를 [x11, x1n], 입력 파라미터(X2)의 제어 범위를 [x21, x2n]으로 분할하면, 그래프(100)의 영역 수는 n2이 된다. X1, X2를 16분할할 경우에는, 영역 수는 n2=256이 된다. 도 11에서는, 초기 데이터 수는 9점이기 때문에, 전체 영역의 약 3.5%의 데이터가 취득되어져 있는 것이 된다.
따라서, 그래프(100)에 나타낸 Y의 정확한 분포를 알 수는 없기 때문에, 예측 모델로부터 얻어지는, 예측 결과로서, 최량해(y1)가 얻어지는 X1 및 X2의 조합(x15, x210)을 한 번의 예측으로 탐색하는 것은 매우 어렵다. 또한, 상술한 바와 같이, 입력 파라미터 공간이, 다차원 벡터화하여 광대해졌을 경우에, 보다 최량해의 탐색이 곤란해진다.
한 번의 예측으로 최량해를 탐색하기 위해서는, 탐색 공간 내의 전체 영역을 망라하는 데이터를 취득하여 해석할 필요가 있지만, 상술한 바와 같이, 파라미터 수의 증가에 따라, 파라미터의 조합이 방대해지기 때문에, 전체 영역의 탐색은 탐색 시간이 방대해져, 실시하는 것이 매우 곤란해진다.
이들 문제를 회피하면서, 효율적으로 해를 탐색하기 위해서는, (a) 모델 작성용 데이터의 취득, (b) 예측 모델의 작성, (c) 예측 결과의 취득, (d) 예측 결과의 실증 실험을 행하고, 추가로 (a') 실증 실험 데이터를 모델 작성용 데이터에 추가함으로써, 예측과 검증을 반복하면 된다. 즉, 도 11 중의 초기 데이터를 이용하여, (a)∼(d)를 행하고, 도 11 중의 제1회 예측 데이터(=실증 데이터)를 모델 작성용 데이터로서 데이터베이스(205)에 추가하고, (b), (c), (d)를 반복하고, 추가로 (a')∼(d)를 계속해서 반복하면 된다.
이들 (a), (b), (c), (d)는, 도 12의, A502, A505, A506, A507의 각각의 스텝에 대응한다. 또한 (a')는 스텝 A508에 대응한다.
구체적으로는, 예를 들면, 탐색 장치(300)는, 예측 조건을 탐색 조건으로 하여, 자율 탐색에 의해, 각 탐색 조건에 있어서의 반도체 처리 장치(201)의 입출력 데이터를 실증 실험 결과, 즉 탐색 결과로서 취득한다.
구체적으로는, 예를 들면, 탐색 장치(300)는, 분할 영역마다, 탐색 조건을 만족시키는 입력 파라미터의 값을 선택하고, 선택한 입력 파라미터의 값을 반도체 처리 장치(201)에 부여한다. 그리고, 탐색 장치(300)는, 반도체 처리 장치(201)로부터의 출력 데이터(출력 파라미터의 값)를 취득한다. 이 입력 파라미터의 값과, 당해 값에 대응하는 출력 파라미터의 값의 조합이 탐색 결과이다.
또한 이 경우, 불안정 동작 검출 시스템(263)은, 자율 탐색 실행시에 있어서, 반도체 처리 장치(201)가 처리 동작을 계속 가능하기는 하지만, 반도체 처리 장치(201)의 처리가 불안정해질 경우를 검출한다. 불안정 동작이 검출되었을 경우에는, 처리 완료 후에 반도체 처리 장치(201)를 정상 동작 상태로 복구하기 위한 시퀀스를 실시하거나, 처리를 즉시 정지하여 반도체 처리 장치(201)를 정상 동작 상태로 복구하기 위한 시퀀스를 실행함으로써, 목표 설정 컨트롤러(261)에 의한 자율 탐색을 계속한다.
탐색 장치(300)는, 탐색 결과를 데이터베이스(205)에 보존한다(스텝 A508). 구체적으로는, 예를 들면, 탐색 장치(300)는, 자율 탐색(스텝 A507)에서 이용된 입력 파라미터의 값과, 당해 입력 파라미터의 값을 이용하여 취득된 반도체 처리 장치(201)의 출력 파라미터의 값의 세트인 입출력 데이터를, 탐색 결과로서 데이터베이스(205)에 보존한다.
스텝 A506의 한 번에 예측하는 점 수가 1점 이상 있으면, 상기 (a) 또는 (a')∼(d)를 반복하는 것이 가능하다. 단, 예측점 수가 1점일 경우에는, 최종적인 최적해에 도달할 때까지, 모델로부터 예측되는 국소해를 하나씩 경유하게 되고, 국소해가 많아질수록 탐색이 장기화된다.
또한, 실증 실험에 있어서의 1점의 데이터 취득에 필요한 시간에 대하여, 예측 모델 작성과 예측 결과의 출력의 합계 시간이 길 경우에는, 예측점 수를 1점으로 하면, 예측 결과가 출력될 때까지 반도체 처리 장치(201)는 대기 상태가 된다. 상술한 (a')∼(d)를 반복할 때마다 이 대기 시간이 발생하기 때문에, 탐색이 장기화된다.
따라서, 예측 데이터점을 복수 구해둠으로써, 예측 모델 작성 및 예측 결과의 출력 중에 실증 실험을 진행시키는 것이 가능해져, 탐색을 효율화할 수 있다.
또한, 예측 데이터를 복수점으로 함으로써, 보다 광범위한 탐색 영역을 고려했을 때의 최량해가 얻어지기 때문에, 최종적인 최적해가 될 가능성이 낮은 국소해를 피하면서, 효율적으로 탐색을 진행시킬 수 있다.
스텝 A507 및 A508에서 취득되는 데이터는, 지금까지 미취득인 새로운 데이터이기 때문에, 본 데이터를 엔지니어에게 제공함으로써, 엔지니어가 행하는 해석 및 결과의 파악을 지원할 수 있다.
그 때문에, 엔지니어가 요구하는 데이터의 갱신 속도, 즉 데이터를 갱신해야 할 시간폭이 있을 경우에는, 그 시간폭에 맞춰 스텝 A507의 탐색 시간을 설정하는 것이 바람직하다. 엔지니어가 요구하는 데이터를 갱신해야 하는 시간이란, 예를 들면 24시간, 8시간, 1시간, 30분 등이다.
그러므로, 엔지니어의 데이터 갱신 요구 시간에 맞춰, 스텝 A506의 예측 결과의 출력 수, 즉 예측 데이터 수를 늘릴 수 있다. 예를 들면, 엔지니어가 1시간마다의 데이터 갱신을 요구하고 있고, 1회의 탐색에 10분을 요할 경우에는, 그것에 맞춰, 예측 데이터점 수를 6점으로 하는 것이 바람직하다.
이에 따라, 도 12의 탐색 및 엔지니어의 해석을 효율적으로 진행시킬 수 있다. 스텝 A505의 예측 모델의 작성에서는, 예측 모델 작성에서 채용한 해석 방법, 예를 들면, 뉴럴네트워크, 서포트 벡터 회귀, 커널법을 이용한 회귀 방법에 의존한 예측 모델이 작성된다. 각종 해석 모델은, 입출력 데이터의 종류, 그들 데이터가 가지는 분포 특성, 데이터 수에 대하여, 모델마다 장단점이 있어, 예측 정밀도가 상하(上下)한다. 그 때문에 단일한 예측 엔진을 이용했을 경우에는, 그 예측 엔진이 취득한 입출력 데이터에 부적절한 경우가 있어, 탐색 시간이 장기화된다. 따라서, 복수의 종류의 예측 모델(예측 엔진)을 이용하여, 복수의 예측 데이터를 구함으로써, 다양한 입출력 데이터에 대응하면서, 보다 좋은 예측 결과를 출력할 수 있을 가능성을 높일 수 있다.
또한, 예측 결과로서 출력된 데이터에 대응하는 실증 실험 데이터가 취득 완료일 경우에는, 그 데이터의 실증 실험을 행하지 않음으로써, 탐색을 효율화할 수 있다.
다음으로, 취득한 데이터로부터 최량해(OS2)를 특정하고, 특정한 최량해(OS2)를 데이터베이스(205)에 보존한다(스텝 A509).
스텝 A505 내지 A509의 처리는, 2가지의 방법이 있다. 1개는, 예측 모델에, 스텝 S501에서 주어진 출력 파라미터의 목표값을 부여하는 방법(제1 추정 방법)이다.
제1 추정 방법에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 스텝 A505에서 얻어진 예측 모델에, 스텝 A501에서 주어진 출력 파라미터의 목표값을 대입함으로써, 출력 파라미터의 목표값을 만족시키는 해가 되는 입력 데이터(입력 파라미터의 값)를 추정한다.
탐색 장치(300)는, 스텝 A507에 있어서, 예측된 입력 데이터의 실증 실험을 행하고, 그 결과 취득된 출력 데이터를 스텝 A508에서 데이터베이스(205)에 보존한다.
스텝 A509에 있어서, 탐색 장치(300)는, 취득 완료의 출력 데이터로부터 목표값과 동등한 출력 데이터를 취득할 수 있었던 입력 파라미터와, 출력 데이터와 목표값의 차 또는 괴리가 허용값(S501에서 주어진 허용값)보다 작은 출력 데이터를 취득할 수 있었던 입력 파라미터, 또는 목표값에 가장 가까운 출력 데이터를 취득할 수 있었던 입력 파라미터를 특정하고, 이들 입력 파라미터 중, 가장 목표값에 가까운 것을 최량해(OS2)로 결정한다.
제1 추정 방법에서는, 출력 파라미터의 목표값이 얻어지는 입력 파라미터를 일의(一意)로 구할 수 있는 예측 모델을 이용한다. 이 경우, 예측 결과는 1데이터가 된다.
예측점의 수를 늘리기 위해서는, 출력 파라미터의 목표값의 허용 범위에 있어서의 상한값, 하한값, 목표값과 상한값의 중간값, 목표값과 상한값 사이를 균등 분할했을 때의 값, 목표값과 하한값의 중간값, 목표값과 하한값 사이를 균등 분할했을 때의 값을, 예측 모델에 부여하면 된다. 이에 더하여, 상술한 바와 같이, 복수의 예측 모델을 이용함으로써, 예측점 수를 증가시킬 수 있다.
상기의 예의 경우, 도 11 중의 초기 데이터를 이용하여 예측 모델을 작성하고, 예측 모델에 목표값으로서 y1을 부여하여, 예측을 행하고, 실증 실험에 있어서 취득한 출력 데이터가, 예측 모델이 나타낸 도 11과 마찬가지였을 경우에 있어서, 제1회 예측점의 출력 데이터로서, (x16, x211(도 11의 데이터(I)))을 취득했을 경우에는, 그때까지 취득한 출력 데이터에서 최량이 되는, y5가 얻어진 입력 파라미터(x16, x211)가 최량해(OS2)가 된다.
또 하나의 스텝 A505 내지 A509의 처리는, 예측 모델에 스텝 A501에서 주어진 출력 파라미터의 목표값을 대입함으로써는, 출력 파라미터의 목표값을 만족시키는 해가 되는 입력 파라미터를 직접 구할 수 없을 경우에 적용할 수 있는 방법이다(제2 추정 방법).
예측 모델에 한 번에 부여하는 입력 파라미터를 1세트로 하여, 예측 모델에, 다수의 입력 파라미터의 세트를 부여하고, 추정 출력 파라미터를 계산하고, 가장 목표 출력에 가까운 가공 결과가 얻어지는 입력 파라미터의 세트를 취득하는 방법이다. 예측 모델을 작성한 후, 예를 들면, 도 11에 나타내는 바와 같이, 그래프(100)의 탐색 영역을 A1∼A9 등으로 분할하고, 각 분할 영역에 포함되는 입력 파라미터의 세트를, 분할 영역마다 1개 이상 작성하고, 이것을 예측 모델에 부여함으로써, 그때의 출력 파라미터를 계산할 수 있다. 분할 영역마다의 대표적인 추정 출력을 얻는 방법으로서는, 분할 영역에 포함되는 입력 파라미터의 세트로서, 분할 영역 내의 중심 좌표가 되는 값을 이용할 수 있다.
매우 다수의 입력 파라미터의 세트를 예측 모델에 부여하여 추정 출력을 계산할 경우에 있어서, 계산 시간이 방대해질 경우에는, 식(1.1)∼식(1.3)을 이용하여 기술한 바와 같이, 예측 모델에 부여하는 입력 파라미터의 중심 조건을 결정하고, 그 중심 조건으로부터 변경 가능한 입력 파라미터의 종류를 제한함으로써, 계산 시간을 억제할 수 있다. 또한, 중심 조건으로부터 한 번에 변경 가능한 파라미터의 수를 제한함으로써, 계산 시간을 억제할 수 있다. 이에 따라, 예측 모델에 부여하는 입력 파라미터의 세트의 수를 삭감하면서, 목표 출력에 보다 가까운 가공 결과가 얻어지는 입력 파라미터를 얻을 수 있다. 중심 조건을 설정할 때에는, 과거의 탐색 결과 또는 엔지니어의 지식을 이용할 수 있다. 또는, 전체 탐색 영역의 중심 좌표를 중심 조건으로 할 수 있다.
제2 추정 방법에서는, 구체적으로는, 탐색 장치(300)는, 스텝 A506에서 얻어진 예측 모델에, 입력 파라미터의 세트의 값을 대입함으로써, 예측값이 되는 출력 파라미터의 값을 취득한다. 예를 들면, 도 11의 초기 데이터를 이용하여 예측 모델을 작성하고, 예측 모델에 입력 파라미터의 값으로서, (x11, x21), (x11, x22), (x11, x23), (x12, x21), (x12, x22), (x12, x23), (x13, x21), (x13, x22), (x13, x23), (x1n, x21), (x1n, x22), (x1n, x23)이 주어지면, 각 입력 파라미터에 대응하는 추정 출력 파라미터를 얻을 수 있다.
이들 추정 출력 파라미터 중, 추정 출력 데이터와 목표값의 차 또는 괴리가 허용값(S501에서 주어진 허용값)보다 작은 출력 데이터를 취득할 수 있었던 입력 파라미터, 또는 목표값에 가장 가까운 추정 출력 데이터를 취득할 수 있었던 입력 파라미터를 특정하고, 이들 추정 출력 데이터 및 입력 파라미터를 예측 결과로서 보존한다.
도 11의 제1회 예측점은, 초기 데이터를 이용하여 예측 모델을 작성하고, 목표값을 y1로 하여, y6 이상을 허용값으로 했을 때의, 예측 결과의 예이다. 이 예에서는, 매우 적은 수의 초기 데이터로부터 예측을 행하고 있기 때문에, y6 이상의 값이 된다고 예측된 각 점은, 도 11에 나타난 실제의 출력값과는 다르다.
다음으로, 제1회 예측점의 실제의 데이터가 취득된다. 그리고, 초기 데이터 및 제1회 예측점의 출력 데이터를 이용하여, 예측 모델이 갱신된다. 갱신된 예측 모델에 의한 예측 결과의 예가 도 11 중의 제2회 예측점이다. 제1회 예측 결과의 출력 데이터에 포함되는 최량해는 출력(y5)이 얻어진 (x16, x211)이다. 그것에 대하여, 초기 데이터에 제1회 예측 및 예측점의 실증 실험 데이터(출력 데이터)를 추가함으로써, 제2회 예측 및 예측점의 실증 실험 데이터에서는, 목표하는 y1에 보다 가까운 출력 결과인 (x14, x210(도 11의 데이터(Ⅱ)))가 얻어지고 있다.
상기를 반복함으로써, 목표값인 출력(y1)을 충족시키는 입력 파라미터를 얻을 수 있다. 또한, 목표가 되는 결과를 얻을 때까지 필요해지는 데이터 수를 억제함으로써, 효율적으로 탐색할 수 있다.
그리고, 스텝 A509에 있어서, 탐색 장치(300)는, 예를 들면, 출력 파라미터의 목표값으로부터 가장 가까운 출력 파라미터의 값이 얻어진 입력 파라미터의 값을 최량해(OS2)로 결정한다. 또한, 제1 추정 방법 및 제2 추정 방법 중, 어느 것을 적용할지는 미리 설정된다.
탐색 장치(300)는, 최량해(OS2)의 값은 최량해(OS1)의 값보다 목표에 가까운 출력 파라미터가 얻어지는 해인지의 여부를 판단한다(스텝 A510). 그리고, 최량해(OS2)의 값은 최량해(OS1)의 값보다 목표에 가까운 출력 파라미터가 얻어지는 해일 경우(스텝 A510:Yes), 스텝 A511로 이행하고, 그렇지 않을 경우(스텝 A510:No), 스텝 A601(도 13)로 이행한다.
스텝 A510:Yes의 경우, 탐색 장치(300)는, 최량해(OS2)를 최량해(OS1)로 설정함으로써, 최량해(OS1)를 갱신한다(스텝 A511).
이후, 탐색 장치(300)는, 현재의 목표가 달성되었는지의 여부를 판단한다(스텝 A510). 현재의 목표가 달성되었을 경우(스텝 A512:Yes), 탐색 장치(300)는, 스텝 A513으로 이행하여, 최종의 목표가 달성되었는지를 판단한다. 한편, 현재의 목표가 달성되어 있지 않을 경우(스텝 A512:No), 스텝 A505로 이행한다.
이후, 탐색 장치(300)는, 최종의 목표가 달성되었는지의 여부를 판단한다(스텝 A513). 최종의 목표가 달성되었을 경우(스텝 A513:Yes), 탐색 장치(300)는, 제어 처리를 종료한다. 한편, 목표가 달성되어 있지 않을 경우(스텝 A513:No), 스텝 A514로 이행하고, 목표의 갱신을 행한다.
스텝 A512에서는, 구체적으로는, 예를 들면, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 현재의 목표값과 동등하거나 또는 현재의 목표값과의 차가 허용 범위 내일 경우, 탐색 장치(300)는, 현재의 목표를 달성했다고 판단한다(스텝 A512:Yes). 또한, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 현재의 목표값과 동등하거나 또는 현재의 목표값과의 차가 허용 범위 내가 아니어도, 스텝 A501에서 설정한 탐색 시간이 경과했을 경우, 목표를 달성했다고 판단한다(스텝 A512:Yes). 한편, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 현재의 목표값과 동등하거나 또는 현재의 목표값과의 차가 허용 범위 내가 아니며, 또한, 스텝 A501에서 설정한 탐색 시간이 경과해 있지 않을 경우, 목표 미달성이라고 판단한다(스텝 A512:No).
스텝 A513에서는, 구체적으로는, 예를 들면, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 최종의 목표값과 동등하거나 또는 최종의 목표값과의 차가 허용 범위 내일 경우, 탐색 장치(300)는, 최종의 목표를 달성했다고 판단한다(스텝 A513:Yes). 또한, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 최종의 목표값과 동등하거나 또는 최종의 목표값과의 차가 허용 범위 내가 아니어도, 스텝 A501에서 설정한 탐색 시간이 경과했을 경우, 목표를 달성했다고 판단한다(스텝 A513:Yes). 한편, 갱신 후의 최량해(OS1)에 대응하는 출력 파라미터가 최종의 목표값과 동등하거나 또는 최종의 목표값과의 차가 허용 범위 내가 아니며, 또한, 스텝 A501에서 설정한 탐색 시간이 경과해 있지 않을 경우, 목표 미달성이라고 판단한다(스텝 A513:No).
스텝 A514에서는 목표값, 탐색 결과와 목표값과의 차, 또는 괴리의 허용값의 갱신을 행한다. A505부터 A512까지의 처리를 진행시킬 때에, 최초부터 최종적인 목표를 부여할 경우나, 탐색 결과와 목표값과의 차, 또는 괴리의 허용값으로서, 매우 작은 값을 부여했을 경우에는, 보다 좋은 최량해(OS2)의 난이도가 상승하여, 해를 발견할 수 없을 가능성이 있다. 이것을 피하기 위해, 탐색의 초기 단계에서는, 최종 목표와는 다른 목표를 현재의 목표로서 부여할 수 있다. 그 현재의 목표가 달성되며, 또한 최종 목표가 만족시켜지지 않을 경우(스텝 A513:No), 스텝 A514에 있어서, 목표값을 단계적으로 최종 목표값에 가까이함으로써, 최종적인 목표를 달성하는 해를 발견할 수 있을 가능성을 높일 수 있다.
또한, 현재의 목표로서, 탐색 결과와 목표값과의 차, 또는 괴리의 허용값으로서 큰 값을 부여하고, 그 현재의 목표가 달성되며, 또한 최종 목표가 만족시켜지지 않을 경우(스텝 A513:No), 목표값을 단계적으로 최종 목표값에 가까이함으로써, 최종적인 목표를 달성하는 해를 발견할 수 있을 가능성을 높일 수 있다.
초기 목표부터 최종 목표에의 단계적인 갱신 방법으로서는, 초기 목표와 최종 목표 사이가 되는 값을 가진 목표값을 복수 준비하고, 최초의 현재의 목표로서, 초기 목표를 부여하고, 현재의 목표가 달성될 때마다, 최종 목표에 가까워지는 목표값을, 현재의 목표값으로서 갱신하면 된다. 혹은, 최초의 현재의 목표로서, 초기 목표를 부여하고, 일정 비율로 서서히 최종 목표에 가까워지도록 목표값을 복수 준비하고, 그것을 이용할 수도 있다.
또한, 상기 데이터에서는 초기 데이터가 취득 완료인 경우에 대해서 설명했지만, 초기 데이터가 없을 경우에는, 상기 실시예 1의 영역 분할 방법을 이용하여, 초기 데이터를 취득할 수 있다. 또는, 실험 계획법을 이용하여, 초기 데이터 취득용 조건을 결정하고, 초기 데이터를 취득할 수도 있다. 영역 분할 방법이란, 즉, 기본 탐색 영역을 설정하고, 탐색 영역을 분할하고, 분할 영역마다 자율 탐색을 실시하는 각 스텝을 포함하는, 상기 실시예 1의 도 5에 있어서의 스텝 S501∼스텝 S507의 처리 방법이다.
도 13은, 반도체 처리 장치(201)의 제어 처리 절차예를 나타내는 플로우 차트이다. 탐색 장치(300)는, 도 12의 스텝 A510의 판단 결과가 No일 경우에는, 도 13의 A601로 이행한다. 스텝 A601에서는, 스텝 A505까지 얻어진 데이터에 대해서, 최량해(OS1), 또는 최량해(OS1)가 갱신될 때까지 얻은 데이터를 제외 데이터로 결정한다.
최량해(OS1)의 갱신은, 구체적으로는, 예를 들면, 도 11의 제1회 예측 데이터점까지 얻은 시점에서의 OS1이, 제2회 예측 데이터점의 데이터 취득에 의해, 새로운 최량해(OS1)가 설정되는 것이다. 이 예의 경우에는, 최량해(OS1)가 갱신될 때까지 얻은 데이터는, 제2회 예측 데이터점이며, 스텝 A601에 있어서, 제외 데이터로 결정된다.
또한, 이하에서는, 최량해(OS1)를 제외 데이터의 대상으로 할 경우에 대해서 설명한다. 스텝 A601에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 최량해(OS1)의 입력 데이터(입력 파라미터의 값) 및 출력 데이터(출력 파라미터)를 제외 데이터로 결정한다. 제외 데이터는, 금후의 처리에 의해 제외될 가능성이 있는 데이터이다.
다음으로, 탐색 장치(300)는, 스텝 A601에서 결정된 제외 데이터의 주변 영역을 제외 영역으로 결정한다(스텝 A602). 제외 영역은, 금후의 처리에 의해 제외될 가능성이 있는 영역이다.
이하, 스텝 A601에서의 설명과 마찬가지로, 최량해(OS1)를 제외 데이터의 대상으로 할 경우에 대해서 설명한다.
제외 데이터의 주변 영역의 결정 방법으로서는, 최량해(OS1)의 각 파라미터로부터 소정의 비율을 변화시킨 값을 이용할 수 있다. 즉, 예를 들면, 변화시키는 비율을 1%로 하면 최량해(OS1)의 각 파라미터 ±1%이며, 또한 ±5%로 하면, 최량해(OS1)의 각 파라미터 ±5%로 하면 된다. 또한, 최량해(OS1)의 파라미터마다 이 비율을 설정해도 된다. 또한, 비율의 설정 방법으로서는, 각 파라미터가 취할 수 있는 값의 범위에 대한 비율을 이용할 수도 있다. 즉, 최량해(OS1)의 파라미터 A가 취할 수 있는 범위가 0∼200이며, 변화시키는 비율을 3%로 하여, 최량해(OS1)의 파라미터 A의 값이 150일 경우에는, 150±6이 최량해(OS1)의 파라미터 A의 제외 영역이 된다.
탐색 장치(300)는, 스텝 A602 후, 스텝 A601에서 결정된 제외 데이터를 제외할지의 여부를 판단한다(스텝 A603). 제외할 경우(스텝 A603:Yes), 스텝 A604로 이행하고, 제외하지 않을 경우(스텝 A603:No), 스텝 A605로 이행한다.
스텝 A603에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 유저로부터의 제외 지시 입력의 유무에 의해, 제외 데이터를 제외할지의 여부를 판단한다. 또한, 탐색 장치(300)는, 강제적으로 제외 데이터를 제외해도 된다(스텝 A603:Yes).
탐색 장치(300)는, 스텝 A603 후, 탐색 장치(300)는, 스텝 A602에서 결정된 제외 영역 중의 데이터를 제외할지의 여부를 판단한다(스텝 A604). 제외할 경우(스텝 A604:Yes), 제외하지 않을 경우(스텝 A604:No)를 결정한 후, 스텝 A505로 이행한다.
스텝 A604에서는, 구체적으로는, 예를 들면, 탐색 장치(300)는, 유저로부터의 제외 지시 입력의 유무에 의해, 제외 영역 내의 데이터를 제외할지의 여부를 판단한다. 또한, 탐색 장치(300)는, 강제적으로 제외 영역 내의 데이터를 제외해도 된다(스텝 A604:Yes).
탐색 장치(300)는, 스텝 A603에 있어서 제외 영역의 해를, 해로부터 제외하고 해석하지 않을 경우(스텝 A603:No)에는, 스텝 A605로 이행하고, 스텝 A605에 있어서, 제외 영역 중의 데이터를 제외한 후, 스텝 A505로 이행한다.
또한, 스텝 A601에는, 상기 실시예 1의 도 6, 도 7 및 도 8의 영역 분할 방법을 이용한 제외 데이터 및 제외 영역의 지정 방법을 이용할 수 있다. 상기 실시예 1의 도 5∼도 8의 플로우 차트 내의 「A」, 「B」, 「C」, 「D」는, 「A」가 스텝 A601:No에 대응하고, 「B」 및 「C」가 스텝 A604 및 스텝 A605로부터 스텝 A505에 대응하고, 「D」가 스텝 A511로부터 스텝 A512의 각 플로우 차트에 대응한다.
본 제어 처리에 있어서, 데이터의 해석, 보존, 전송 등의 규모가 커지고, 그 실행 시간이 1조건을 탐색하는 시간보다 길어질 경우에는, 그것들의 실행과 병렬하여 탐색을 계속하는 것이 가능하다. 그때에는, 탐색 조건에 있어서 변경하는 입력 파라미터 수, 동시에 변경하는 입력 파라미터 수, 탐색 영역의 분할 수 중 1개 이상을 증가시킨다. 이에 따라, 탐색 조건 수를 증가시켜, 이 조건을 탐색함으로써, 해석 등을 실행하는 시간을 이용하여 탐색 결과를 증가시킬 수 있다. 특히, 데이터의 해석에 필요한 시간은 몇 분 내지 몇 시간 이상이 될 경우가 있어, 그 해석 중에 탐색을 계속함으로써, 탐색 속도를 향상시킬 수 있다.
<반도체 처리 장치(201)의 제어 처리의 적용예 1B>
다음으로, 반도체 디바이스의 양산 전에 있어서의 반도체 처리 장치(201)의 메인터넌스에 있어서, 반도체 처리 장치(201)의 장치차를 보정하기 위한 제어 처리의 적용예를 나타낸다. 여기에서는 기차 억제의 절차를 설명하는 예로서, 반도체 처리 장치(201)를, 방전 처리를 행하는 에칭 장치로 했다. 또한, 여기에서는 방전 처리를 실행할 때의 입력 파라미터를 레시피라고 한다. 방전 처리를 행하는 에칭 장치에서는, 보정 대상이 되는 출력으로서, 처리 결과 또는 처리에 이용하는 방전의 특성을 들 수 있다. 보정의 방법으로서는, 기준이 되는 에칭 장치와 동일한 출력이 얻어지도록 다른 에칭 장치를 보정하는 방법, 또는 복수의 에칭 장치의 출력이 균일해지도록 보정하는 방법이 있다.
기차 억제 방법에 대해서는, 상기 실시예 1의 도 9와 마찬가지이며, 탐색 장치(300)는, 메인터넌스 후 방전 데이터 취득을 개시한다.
우선, 탐색 장치(300)는, 기본적인 방전 처리를 행하기 위한 레시피를 이용하여 기준 레시피 방전을 행하고, 그때의 입출력 데이터를 취득한다. 또한, 양산에서 이용되는 레시피에 의한 방전을 행하고, 그때의 출력 데이터(출력 파라미터의 값)를 취득한다(도 9의 스텝 S901). 스텝 S901은, 스텝 A501∼A504에 대응하는 처리이다.
기준 레시피 방전에서는, 상기 실시예 1의 도 9와 마찬가지로 하여 영역 분할 방법을 이용하여 레시피를 설정하고, 그때의 입출력 데이터를 취득할 수 있다. 또는, 실험 계획법을 이용하여 레시피를 설정하고, 그때의 입출력 데이터를 취득할 수 있다.
다음으로, 탐색 장치(300)는, 장치차 보정 레시피의 후보를 예측한다(도 9의 스텝 S902). 스텝 S902는, 본 실시예 2의 스텝 A505∼A506에 대응하는 처리이다.
그리고, 탐색 장치(300)는, 스텝 S902에서 예측한 장치차 보정 레시피를 이용하여, 실증 실험을 겸한 장치차 보정을 실행한다(도 9의 스텝 S903). 스텝 S903은, 스텝 A507∼A511, 도 13의 처리에 대응하는 처리이다. 보정 목표를 달성하고 있지 않을 경우(스텝 S904:No), 스텝 S902로 돌아가고, 보정 목표를 달성했을 경우(스텝 S904:Yes), 처리를 종료한다. 스텝 S904는, 스텝 A512 및 A513에 대응하는 처리이다.
또한, 동일한 에칭 장치를 복수 이용하여 탐색을 병렬로 진행시킴으로써 탐색 속도를 향상시켜도 된다. 그때에는, 도 9의 절차에 의해 장치차가 보정된 복수의 에칭 장치를 사용함으로써, 목표를 만족시키는 해를 탐색할 수 있을 가능성을 높일 수 있다. 또한, 탐색된 해를 그들 복수의 장치로 전개하여 보정을 행하는 것이 가능해진다.
이와 같이, 반도체 처리 장치(201)의 메인터넌스 후에 탐색 장치(300)에 의한 탐색 방법을 실행함으로써, 반도체 처리 장치(201)의 출력 파라미터의 값을 기준이 되는 출력 파라미터의 값에 가까이 할 수 있다(자동 기차 보정 기능).
<반도체 처리 장치(201)의 제어 처리의 적용예 2B>
다음으로, 반도체 디바이스의 양산 처리에 있어서, 경시 변화를 보정하기 위한 제어 처리는, 상기 실시예 1의 도 10과 마찬가지이다.
본 실시예 2에서는, 상기 실시예 1의 도 9와 마찬가지로, 경시 변화를 보정하는 절차를 설명하는 예로서, 반도체 처리 장치(201)를, 처리에 방전을 사용하는 에칭 장치로 했다. 양산 전 방전 데이터 취득에서는, 양산 중의 경시 변화의 보정을 행하기 위해, 탐색 장치(300)는, 우선 기본적인 방전 처리를 행하기 위한 기준 레시피를 에칭 장치에 부여하여 기준 레시피 방전을 행하고, 그때의 출력 데이터(출력 파라미터의 값)를 취득한다(스텝 S1011). 스텝 S1011은, 스텝 A501∼A504에 대응하는 처리이다.
기준 레시피 방전에서는, 상기 실시예 1의 영역 분할 방법을 이용하여 레시피를 설정하고, 그때의 입출력 데이터를 취득할 수 있다. 또는, 실험 계획법을 이용하여 레시피를 설정하고, 그때의 입출력 데이터를 취득할 수 있다.
다음으로, 탐색 장치(300)는, 장치차 보정 후보 레시피를 예측한다(스텝 S1012). 스텝 S1012에서는, 과거의 양산시의 입출력 데이터의 해석 결과로부터, 보정 대상의 경시 변화를 예측할 수 있는 출력 데이터 또는 센서 데이터 및 모니터 데이터가 이용된다. 그리고, 탐색 장치(300)는, 양산 개시 전의 에칭 장치에 있어서, 이들 경시 변화를 예상할 수 있는 데이터를 경시 변화 후의 값으로까지 변동시키기 위한 장치차 보정 후보 레시피의 예측을 실행한다. 스텝 S1012는, 스텝 A505∼A506에 대응하는 처리이다.
다음으로, 탐색 장치(300)는, 스텝 S1012에서 예측한 장치차 보정 레시피를 이용하여, 실증 실험을 겸한 장치차 보정을 실행한다(스텝 S1013).
스텝 S1013에서는, 탐색 장치(300)는, 경시 변화가 발생하고 있지 않은 상태에서 이용하는 기본의 양산용 레시피와 스텝 S1012에서 탐색된 장치차 보정 후보 레시피를 비교하여, 장치차 보정 후보 레시피에서 변경된 입력 파라미터를 분명히 한다. 이에 따라, 양산 전 단계에서, 보정 대상의 입력 파라미터와 출력 파라미터와의 관계를 설명하는 함수를 생성하는 것이 가능해지고, 또한 그 관계로부터 보정 후보가 되는 레시피를 생성할 수 있다. 스텝 S1013은, 스텝 A507∼A511, 도 13의 처리에 대응하는 처리이다. 이후, 양산 처리가 개시된다.
스텝 S1013 후, 반도체 디바이스의 양산 처리가 개시되면, 웨이퍼가 처리실에 도입되고(스텝 S1021), 에칭 장치가, 웨이퍼를 에칭한다(스텝 S1022). 에칭(스텝 S1022)은, 1스텝 또는 복수 스텝으로 구성된다. 에칭(스텝 S1022)이 복수 스텝일 경우, 각 스텝의 에칭은, 방전 조건을 변경하여 실행된다. 에칭(스텝 S1022)의 완료 후에, 웨이퍼는, 처리실 외로 반출된다(스텝 S1023). 그리고, 에칭 중에 발생하여 처리실 표면에 퇴적된 반응 생성물을 제거하기 위해, 플라스마 클리닝이 실시된다(스텝 S1024). 다음 웨이퍼가 있으면(스텝 S1025:Yes), 스텝 S1021로 돌아가고, 다음 웨이퍼가 없으면(스텝 S1025:No), 양산 후 방전 데이터 취득으로 이행한다.
양산 중의 에칭 장치의 입출력 데이터는, 데이터베이스(205)에 보존되고, 탐색 장치(300)는, 병렬하여 입출력 데이터를 리얼 타임으로 계속해서 해석한다. 이에 따라, 보정 대상의 경시 변화를 예측할 수 있는 출력 데이터 또는 센서 데이터 및 모니터 데이터의 추정을 양산 중에 계속하는 것이 가능하다. 또한, 탐색 장치(300)는, 동일한 양산 처리를 실행하는 복수의 에칭 장치의 입출력 데이터를 집약함으로써, 데이터 수를 증가시킬 수 있다.
양산 후 또는 양산 개시로부터 지정된 시간이 경과했을 때에 방전 데이터를 취득했을 경우, 탐색 장치(300)는, 경시 변화를 보정하는 레시피의 후보를 예측한다(스텝 S1031). 구체적으로는, 예를 들면, 탐색 장치(300)는, 스텝 S1011, S1012에서 취득한 데이터, 해석된 입출력 데이터의 관계, 및 보정 후보 레시피를 스텝 A502의 입력으로서 사용하고, 경시 변화 보정 레시피의 후보를 예측한다. 스텝 S1031은, 스텝 A505∼A506에 대응하는 처리이다.
그리고, 탐색 장치(300)는, 스텝 S1031에서 예측한 경시 보정 레시피를 이용하여, 실증 실험을 겸한 보정의 실행, 즉 보정 결과의 검증을 행한다(스텝 S1032). 스텝 S1032는, 스텝 A507∼A511, 도 13의 처리에 대응하는 처리이다.
또한, 스텝 S1031, S1032의 실행 전에, 탐색 장치(300)는, 반도체 디바이스의 양산 중에 취득한 출력 데이터를 해석하고, 보정 대상의 경시 변화를 예측할 수 있는 출력 데이터 또는 센서 데이터 및 모니터 데이터를 추정하고, 스텝 S1012를 실행해도 된다. 이에 따라, 보정 대상의 입력 파라미터와 출력 파라미터와의 관계를 설명하는 함수를 생성하고, 또한 그 관계로부터 보정 후보가 되는 레시피를 생성할 수 있다. 이들 결과를, 스텝 S502에서 이용함으로써, 탐색 장치(300)는, 스텝 S1031, S1032를 실행할 수 있다.
또한, 상기 처리에 있어서의 스텝 A502의 입력으로서는, 엔지니어의 지식을 이용하여, 보정에 빈번하게 이용되는 입력 파라미터를 변경한 레시피, 및 그 레시피를 이용하여 방전했을 때의 입출력 데이터와 그 해석 결과를 이용해도 된다.
그리고, 보정 목표를 달성하고 있지 않을 경우(스텝 S1033:No), 스텝 S1031로 돌아가고, 보정 목표를 달성했을 경우(스텝 S1033:Yes), 처리를 종료한다. 스텝 S1033은, 스텝 A512 및 A513에 대응하는 처리이다. 도 10에 나타낸 탐색을 실행할 때에는, 동일한 양산 처리를 실시한 양산 후의 에칭 장치를 복수 이용하여 탐색을 병렬로 진행시킴으로써 탐색 속도를 향상시킬 수 있다. 또한, 탐색된 해(입력 파라미터)는, 동일한 양산 처리를 실행하는 복수의 에칭 장치로 전개하여 보정을 실행하는 것이 가능하다.
이와 같이, 반도체의 양산 후에 있어서 탐색 장치(300)에 의한 탐색 방법을 실행함으로써, 양산 중의 반도체 처리 장치(201)의 출력 파라미터의 값의 경시 변화를 보정할 수 있다(자동 경시 변화 보정 기능).
<반도체 처리 장치(201)의 제어 처리의 적용예 3>
다음으로, 반도체 디바이스의 처리에 있어서, 가공 형상을 최적화하기 위한 제어 처리의 적용예를 나타낸다.
도 14는, 가공 형상의 최적화 방법의 개요를 나타내는 플로우 차트이다. 도 14에서는, 도 10과 마찬가지로, 반도체 처리 장치(201)의 예를, 처리에 방전을 사용하는 에칭 장치로 했다.
또한, 가공 형상의 최적화에 있어서의 입출력 데이터의 예로서, 장치의 입력 데이터를 레시피, 출력 데이터를 가공 형상 데이터로서 설명한다.
우선, 탐색 장치(300)는, 가공 대상막을 에칭 가능한 기본적인 레시피를 이용하여 에칭을 행하고, 그때의 입출력 데이터를 초기 데이터로서 취득한다(스텝 A901). 스텝 A901은, 도 12에 나타낸 스텝 A501∼A504에 대응하는 처리이다.
상기의 초기 데이터 취득에서는, 상기 실시예 1과 마찬가지의 영역 분할 방법을 이용하여 레시피를 설정하고, 그 레시피를 이용하여 에칭했을 때의 입출력 데이터를 취득할 수 있다. 또는, 실험 계획법을 이용하여 레시피를 설정하고, 그 레시피를 이용하여 에칭했을 때의 입출력 데이터를 취득할 수 있다.
다음으로, 탐색 장치(300)에는, 목표가 되는 가공 형상이 주어진다(스텝 A902). 그리고, 탐색 장치(300)는, 가공 형상 최적화 레시피의 후보를 예측한다(스텝 A903).
스텝 A902는, 스텝 A502에 대응하는 처리이며, 스텝 A903은, 스텝 A505∼A506에 대응하는 처리이다.
그리고, 탐색 장치(300)는, 스텝 A903에서 예측한 가공 형상 최적화 레시피를 이용하여 실증 실험을 실행하고, 실증 실험 결과 A9030을 출력한다(스텝 A904). 그 후, 실증 실험 결과가 목표값을 만족시켰는지를 판정한다(스텝 A905).
스텝 A904 및 A905는, 스텝 A507∼A511, 도 13의 처리에 대응하는 처리이다. 목표를 달성하고 있지 않을 경우(스텝 A905:No), 실증 실험으로 취득한 데이터(실증 실험 결과 A9030)를 데이터베이스에 추가함으로써, 데이터를 갱신하고(스텝 A906), 스텝 A903으로 돌아간다.
보정 목표를 달성했을 경우(스텝 A905:Yes), 처리를 종료한다. 스텝 A905는, 스텝 A512 및 A513에 대응하는 처리이다.
스텝 A901에서 이용하는 초기 데이터에는, 도 15에서 나타낸 복수의 레시피와, 그 각 레시피를 이용하여 에칭했을 때의 가공 형상 데이터를 입력할 수 있다. 다양한 에칭 형상을 포함하는 초기 데이터를 이용함으로써, 예측 모델을 이용한 해의 예측시에, 레시피 파라미터 공간 내의 어느 영역에 목표 형상을 실현하는 레시피 파라미터가 존재하는지에 대해서, 효율적으로 예측하는 것이 가능해진다.
초기 데이터(A9010)에서는, 도 15에서 나타내는 바와 같이, 테이퍼 형상(조건 1), 라운드 형상(조건 2, 4), 역테이퍼 형상(조건 3), 언더컷 형상(조건 1, 2, 4, 5, N)을 나타내고 있고, 그 밖의 형상으로서는, 전혀 에칭이 진행되지 않은 에치스톱 형상, 보잉 형상(궁형(弓型) 형상), 마스크가 에칭되는 형상 등이 있다. 예를 들면, 초기 데이터 중의 형상이 1종류밖에 없을 경우에는, 그 데이터로부터 구한 예측 모델에서는, 다른 형상을 만족시키는 해를 예측하는 것은 어렵다. 그 때문에, 이들 형상 중, 적어도 2종류 이상, 바람직하게는 3종류 이상을 초기 데이터에 포함하는 것이 바람직하다.
또한, 도 15는, 초기 데이터(A9010)의 일례를 나타내는 도면이다. 초기 데이터(A9010)는, 조건(1∼N)에 대응한 가공 결과(1∼N)의 페어로 구성되고, 가공 결과(1∼N)는, 가공 대상의 단면(斷面) 형상의 예를 나타낸다.
스텝 A902에서 이용하는 목표 데이터로서는, 예를 들면, 도 16에 나타내는 목표 데이터(A9020)와 같은 수직 가공 형상이 주어진다. 또한, 도 16은, 목표 데이터(A9020)의 일례를 나타내는 도면이다. 목표 데이터(A9020)는, 가공 전의 가공 대상의 단면 형상과, 목표하는 단면 형상으로 구성되는 예를 나타낸다.
스텝 A903의 실증 실험 결과의 예는, 도 17에 나타내는 실증 실험 결과(A9030)에 나타내는 바와 같으며, 이 경우에는, 초기 데이터에 포함되는 형상보다, 목표 형상에 가까워진 출력(가공 형상)이 얻어져 있고, 이것은 스텝 A510:Yes에 대응한다. 또한, 도 17은, 실증 실험 결과(A9030)의 일례를 나타내는 도면이다. 실증 실험 결과(A9030)는, 실증 조건(a∼e)에 대응한 실증 결과(a∼e)의 페어로 구성되고, 실증 결과(a∼e)는, 가공 대상의 단면 형상의 예를 나타낸다.
또한, 동일한 에칭 장치를 복수 이용하여 탐색을 병렬로 진행시킴으로써 탐색 속도를 향상시켜도 된다. 그때에는, 상기 실시예 1의 도 10과 마찬가지의 절차에 의해 장치차가 보정된 복수의 에칭 장치를 사용함으로써, 목표를 만족시키는 해를 탐색할 수 있을 가능성을 높일 수 있다. 또한, 탐색된 해를 그들 복수의 장치로 전개하여 최적의 가공 형상이 얻어지는 레시피를 탐색하는 것이 가능해진다.
도 18, 도 19는 가공 후의 단면 형상을 전자 현미경을 이용하여 취득한 예이며, 도 18은 홈 또는 구멍 가공, 도 19는 라인 또는 필러(기둥 형상) 가공의 단면 형상이다. 초기 데이터로서, 단면의 화상 그 자체를 이용할 수 있다. 또한, 도 18, 도 19에 나타낸 바와 같이 (1) 마스크 톱폭, (2) 마스크 보텀폭, (3) 마스크 두께, (4) 가공부 톱폭, (5) 가공부 중앙부의 폭, (6) 가공 바닥의 폭, (7) 가공부 최대폭, (8) 가공 깊이, (9) 마이크로 홈의 폭, (10) 언더컷 폭, (11) 언더컷 깊이, (12) 표면 거칠기, (13) 마스크 소모, (14) 하지(下地)를 갖는 발출(拔出) 깊이, (15) 노치폭, (16) 노치 높이 등의 계측값을 가공 형상 데이터로서 이용할 수 있다. 또한, 각 값은 보다 정확한 값을 취득하는 것이 바람직하지만, 대/중/소, ○/△/×, 또는 이들을 0/1/2 등의 이산화(離散化)된 수치로 표현하여, 이들 데이터를 이용할 수도 있다. 또한, 서로 다른 홈, 구멍, 라인, 필러의 단면의 각 출력 데이터의 차분 데이터를 가공 형상 데이터로서 이용할 수 있다.
이와 같이, 반도체 처리 장치(201)에 있어서 탐색 장치(300)에 의한 탐색 방법을 실행함으로써, 반도체 처리 장치(201)의 출력 파라미터의 값을 목표로 하는 출력 파라미터의 값에 가까이 할 수 있다(장치 출력 최적화 기능).
도 20 및 도 21은, 탐색 장치(300)의 유저 인터페이스인 GUI의 예이다.
도 20은, 해석 대상의 초기 데이터를 지정하기 위한, 초기 설정 화면(110)이다. 초기 설정 화면(110)에서는, 우선 입력 데이터(장치 입력 데이터)(111)와, 출력 데이터(112), 및 목표 데이터(목표값)(113)가 파일명으로 입력된다. 해석 대상의 초기 데이터로서, 입출력 데이터를 정리한 파일을 지정하는 것도 가능하지만, 그때에는 파일 내부에, 입력 파라미터와 출력 파라미터를 판별하는 식별자가 기재되어 있을 필요가 있다.
상기의 데이터 지정을 행한 후, 실행 버튼(114)을 클릭함으로써, 각 데이터가 읽어들여져, 데이터베이스(205)에 보존된다. 또한, 초기 설정 화면(110)에는, 파일 보존의 진척을 나타내는 인디케이터, 진척 정도, 보존 완료까지의 시간, 보존 개시로부터의 경과 시간을 표시해도 된다.
도 20의 실행 버튼(114)이 클릭된 후, 도 21의 탐색 조건의 설정 및 탐색을 실행하기 위한 탐색 화면(120)으로 이행한다. 탐색 화면(120)에서는, 우선 탐색 설정(121)이 파일명으로 입력된다. 또한, 실증 실험에 의해 취득된 입력 데이터(122)와 출력 데이터(123)를 파일명으로 입력할 수 있다.
탐색 화면(120)에서는, 학습 대상이 되는 데이터에 포함되는 학습 데이터 수(124), 학습 사이클 수(125), 입력 파라미터 수(126), 출력 파라미터 수(127)가 표시되어 있어도 된다. 학습 사이클 수(125)는, 예측 모델 생성용 학습 데이터의 세트를 취득한 횟수이며, 실증 실험을 행하고, 그 결과 취득된 입력 데이터(122)와 출력 데이터(123)를 추가 학습 데이터로서 데이터베이스(205)에 추가할 때마다 1이 가산된다.
탐색 설정 조건이 지정되면, 중심 조건의 후보가 영역(128)에 표시되어, 중심 조건으로서 어느 것을 채용하거나, 표시된 중심 조건으로부터 선택할 수 있다. 중심 조건을 선택하여, 탐색(예측) 버튼(129)을 클릭함으로써 예측이 개시되고, 예측 중, 또는 예측 완료 후에 예측 결과가 영역(130)에 표시된다.
탐색 화면(120)에는, 예측의 진척 정도, 예측 개시부터의 경과 시간, 예측을 계속하는 잔여 시간, 및 예측할 수 있었던 해의 후보의 수를 표시해도 된다. 또한, 예측 완료까지의 추정 시간을 표시해도 된다.
탐색 화면(120)에는, 예측 결과로서, 예측된 입력과 출력 중 어느 한쪽, 또는 양쪽이 표시되어, 실증 실험의 후보를 선택할 수 있다. 실증 실험을 선택하여, 실증 실험 버튼(131)을 클릭함으로써, 실증 실험이 개시된다. 탐색 화면(120)에는, 실증 실험의 진척 정도, 실증 실험 개시부터의 경과 시간, 및 실증 실험을 계속하는 잔여 시간을 표시해도 된다.
또한, 상기에서 선택된 실증 실험의 수, 실증 실험이 완료된 수와 나머지 수, 및 실증 실험 완료까지의 추정 시간을 표시해도 된다. 실증 실험이 완료된 후, 실증 실험 결과를 상술한 추가 학습 데이터에 추가함으로써, 예측 및 실증 실험을 반복함으로써 학습 사이클을 진행시켜, 탐색이 계속된다.
중심 조건의 후보 및 실증 실험의 후보의 선택, 및 예측 및 실증 실험의 개시는, 엔지니어가 지시할 수 있다. 또는, 탐색 설정 입력에 있어서, 미리 중심 조건의 후보 및 실증 실험의 후보의 선택 방법을 지정해 둠으로써, 자동적으로 후보를 선택할 수 있다. 또한, 출력 데이터가 센서 또는 모니터를 이용함으로써, 자동 취득 가능할 경우에는, 예측 및 실증 사건을 자동으로 개시할 수 있다.
도 22는, 중심 조건의 후보 및 실증 실험의 후보의 선택, 및 예측 및 실증 실험의 개시를 자동으로 행할 경우의 탐색 화면(140)이며, 탐색 설정 입력(141)을 행한 후, 자율 탐색 버튼(142)을 클릭함으로써, 자동적으로 탐색이 계속된다.
이와 같이, 탐색 장치(300)는, 반도체 처리 장치(201)의 입력 파라미터의 값 및 출력 파라미터의 값을 자동 해석하고, 그 해석 결과를 고려한 다음에, 입력 파라미터의 값을 탐색하기 위한 실험 조건을 자동으로 결정한다. 그리고, 탐색 장치(300)는, 당해 실험 결과의 검증을 자동으로 행하고, 이들 자동 동작을 반복함으로써, 목표로 하는 장치 상태 및 처리 결과(출력 파라미터의 값)가 얻어지는 입력 파라미터의 값을 자동적으로 탐색할 수 있다. 이에 따라, 반도체 처리 장치(201) 스스로가 자동적으로 장치 성능을 끌어낼 수 있고, 이에 더하여 장치 성능을 끌어내기 위한 제어 모델 개발이나 장치 파라미터(입력 파라미터와 출력 파라미터의 조합)의 선정을 행하는 엔지니어를 지원할 수 있다.
이상 설명한 바와 같이, 본 실시예에 따른 탐색 장치(300)는, 반도체를 처리하는 반도체 처리 장치(201)에 설정되는 조건 또는 반도체 처리 장치(201)에 의해 반도체가 처리된 결과를 나타내는 목표값과, 조건과 가공 결과의 범위에 의해 규정되는 탐색 영역 내에 있어서의 조건 또는 가공 결과 중 목표값이 나타내는 쪽의 기준값의 입력을 접수하는 입력부(401)와, 탐색 영역 내의 조건의 설정값과, 당해 설정값을 반도체 처리 장치(201)에 부여했을 경우의 가공 결과의 실측값에 의거하여, 조건과 가공 결과와의 관계를 나타내는 예측 모델을 생성하는 생성부(402)와, 생성부(402)에 의해 생성된 예측 모델에, 입력부(401)에 의해 입력된 목표값을 부여함으로써, 예측 모델로부터 예측값을 취득하는 특정부(403)와, 예측값이 입력부에 의해 입력된 기준값보다 목표값에 가까운지의 여부를 판단하는 판단부(404)와, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 목표값에 가깝다고 판단되었을 경우, 예측값을 기준값으로 설정하고, 특정부에 의해 특정된 예측값의 존재 영역을 탐색 영역으로 설정하는 설정부(405)와, 예측값이 목표값의 달성 조건을 충족시켰을 경우에 달성 조건을 충족시킨 예측값을 출력하는 출력부(406)를 갖는다.
이에 따라, 반도체 처리 장치(201)의 입출력에 관한 최량해에의 도달 정밀도의 향상을 도모할 수 있다. 따라서, 반도체 처리 장치(201)에 있어서의 운용의 효율화 및 처리의 최적화를 도모할 수 있다.
또한, 탐색 장치(300)는, 판단부(404)에 의해 예측 모델로부터 얻어진 예측값에 대응하는 목표값 쪽이 목표값에 가깝지 않다고 판단되었을 경우, 결정부(407)에 의해 예측값 및 예측값에 대응하는 출력 데이터로서 취득한 데이터를 제외 데이터로 결정하고, 설정부(405)에 의해 탐색 영역으로부터 제외 데이터와 당해 제외 데이터가 얻어졌을 경우에 설정되는 제외 영역을 제외한 잔존 영역을 탐색 영역으로 설정한다. 이에 따라, 목표값에 가깝지 않은 예측값과 목표값의 조합이 존재하는 제외 영역을 최신의 탐색 영역으로부터 제외할 수 있어, 최량해에의 도달 정밀도의 향상을 도모할 수 있다.
또한, 탐색 장치(300)는, 분할부(408)에 의해 탐색 영역을 복수의 영역으로 분할하고, 판단부(404)에 의해 예측값 쪽이 목표값에 가깝다고 판단되었을 경우, 특정부(403)에 의해, 예측값을 기준값으로 설정하고, 예측값의 존재 영역을 복수의 분할 영역 중에서 특정한다. 이에 따라, 예측값의 존재 영역을 용이하게 특정할 수 있어, 탐색 속도의 향상을 도모할 수 있다.
또한, 탐색 장치(300)는, 분할부(408)에 의해 탐색 영역을 복수의 영역으로 분할하고, 생성부(402)에 의해, 분할 영역 내에 있어서의 조건의 설정값을 반도체 처리 장치(201)에 부여했을 경우의 가공 결과의 실측값을, 분할 영역마다 취득하고, 생성부(402)에 의해, 각 분할 영역에서의 조건의 설정값과 가공 결과의 실측값에 의거하여 예측 모델을 생성한다. 이에 따라, 복수의 반도체 처리 장치(201)를 이용함으로써, 실측값을 분할 영역마다 병렬로 취득할 수 있어, 예측 모델의 생성 속도의 고속화를 도모할 수 있다.
또한, 탐색 장치(300)는, 판단부(404)에 의해 예측값에 대응하는 목표값 쪽이 목표값에 가깝지 않다고 판단되었을 경우, 결정부(407)에 의해 예측값 및 예측값에 대응하는 출력 데이터로서 취득한 데이터를 제외 데이터로 결정하고, 생성부(402)에 의해, 실측값으로부터 제외 데이터를 제외한 특정한 실측값과, 설정값으로부터 제외 데이터가 얻어졌을 경우에 반도체 처리 장치(201)에 주어진 설정값을 제외한 특정한 설정값에 의거하여 예측 모델을 생성한다. 또한, 목표값에 가깝지 않은 예측값과 설정값의 조합이 존재하는 제외 영역을 예측값의 후보로부터 제외할 수 있어, 예측 모델의 정밀도 향상을 도모할 수 있다. 따라서, 생성된 예측 모델에 의해, 보다 좋은 예측값을 얻을 수 있다.
또한, 탐색 장치(300)는, 검출부(409)에 의해, 가공 결과의 실측값과, 소정의 출력 임계값에 의거하여, 반도체 처리 장치(201)의 불안정 동작을 검출하고, 출력부(406)에 의해, 검출부(409)에 의한 검출 결과를 출력한다. 이에 따라, 탐색의 계속 가부를 유저에게 촉구할 수 있다.
<반도체 처리 장치(201)의 제어 처리의 적용예 4>
반도체 처리 장치(201)의 제어 처리를, 반도체 디바이스의 처리에 있어서, 가공 형상을 최적화하기 위한 제어 처리에 적용하는 다른 예를 나타낸다. 미세 패턴 가공 프로세스 개발에 있어서는, 패턴의 일부 또는 전체의 변형, 도괴, 소실이 생겨, 가공 결과의 측정값을 취득할 수 없다는 경우가 때때로 생긴다. 처리 대상의 계측이 불가능할 경우 또는 계측을 스킵한 것에 의해 출력 데이터에 결손 데이터가 발생했을 경우에 있어서, 결손 데이터 대신이 되는 결손 대체 데이터를 이용하는 방법에 대해서 설명한다. 그 구체예로서, 출력 데이터로서, 패턴 상부 표면의 계측값을 이용하는 예를 나타낸다.
처리 대상으로 하는 패턴에 변형 혹은, 패턴의 일부에 도괴 또는 소실이 발생했을 경우, 출력 데이터가 패턴 단면의 계측값인 것으로 하면, 처리 대상의 단면 계측을 행하는 위치에 따라 계측 결과인 출력 데이터가 크게 달라져 버려, 가공 결과의 평가를 할 수 없다. 또한, 가공 결과를 이용한 해석 및 정밀도가 좋은 예측 모델의 생성을 할 수 없다. 이 때문에, 이러한 경우에는, 가공 결과를 정밀도 좋게 평가하기 위해, 출력 데이터로서 패턴 상부 표면의 계측값을 사용하는 것이 바람직하다.
도 23a∼c, 도 24, 도 25에, 전자 현미경을 이용하여, 가공 후의 패턴 상부 표면 형상을 취득한 화상(상면도), 및 그 단면도(모두 모식도)를 나타낸다. 도 23a∼c는 패턴에 변형이 발생했을 경우의 개요도이며, 도면의 상단이 상부 표면의 화상(상면도)이며, 그 점선 A-A'를 따른 단면의 화상(단면도)이 하단에 나타나 있다. 도 23b 및 도 23c의 경우, 패턴의 변형 방식에 의존하여, 단면 취득 위치에 따라 단면 형상이 서로 다른 것이 된다. 따라서, 이러한 변형이 없는 형상을 얻기 위해서는, 패턴의 상부 표면으로부터 취득 가능한 변형의 정보를 출력 데이터로 하고, 그 출력 데이터와 가공에서 사용되는 입력 데이터를 입출력 데이터로 하여 예측 모델을 생성하고, 변형이 없는 형상을 목표로 하여, 해를 탐색할 필요가 있다.
도 24는, 계측 패턴의 높이 및 재질에 따른 그레이스케일 계조(階調)의 화상을 취득하는 계측을 행한 예이다. 이 그레이스케일 정보로부터, 마스크 및 가공 대상 등의 각 층의 경계 및 에지 위치를 취득할 수 있다. 홈 또는 라인 가공에서의 상부 표면의 출력 데이터로서는, (1t) 마스크 톱폭, (2t) 마스크 중앙부의 폭, (3t) 마스크 보텀폭, (4t) 가공부 톱폭, (5t) 가공부 중앙부의 폭, (6t) 가공 바닥의 폭 등의 계측값을 가공 형상 데이터로서 이용할 수 있다.
또한, 도 25에 나타낸 바와 같이, 수직으로 라인이 가공되었을 경우에는 (1t)∼(6t)는 동일한 값이 된다. 한편, 도 26은 이 라인 부분의 상면 구조를 확대해서 나타낸 것이다. 도 26에 나타나는 바와 같이, 미세한 홈 또는 라인 가공에서는, 홈 또는 라인의 장변 방향에 수직인 방향으로 발생하는 에지의 요철을 무시할 수 없는 것이 되어진다. 동일한 홈 또는 라인에 있어서, 라인폭((1t)∼(6t) 중 어느 하나, 계측 정의에 따름)을 복수점 계측했을 경우의 평균값, 분산, 표준편차(라인폭 러프니스(LWR))를 가공 형상 데이터로서 이용할 수 있다.
또한, 도 27은, 도 24에 나타내는 라인폭을 정의하는 2개의 경계선 중 1개를 나타낸 것이다. 라인을 직선 근사(近似)한 선, 또는 라인에 대한 특정한 선을 축(d1), 축(d1)에 수직인 축을 축(d2)으로 했을 경우, 라인과 축(d1) 사이의 축(d2) 방향의 거리를 복수점 계측했을 경우의 표준편차인 라인 에지 러프니스(LER)를 가공 형상 데이터로서 이용할 수 있다.
또한, 서로 다른 홈 또는 라인에 있어서의 상부 표면의 각 출력 데이터의 차분 데이터를 가공 형상 데이터로서 이용할 수 있다.
계측 가능 범위를 초과하는 매우 큰 패턴 변형이 발생했을 경우나, 패턴의 일부 또는 전체의 도괴 또는 소실이 발생했을 경우에는, 이들 출력 데이터의 일부 또는 전부가 계측 불가능해진다. 계측 불가능한 출력 파라미터는 결손 데이터가 된다. 통상, 결손 데이터를 포함하는 입출력 데이터를 그대로 이용하여 예측 모델을 구축할 수는 없다. 이것을 회피하기 위해서는, 결손 데이터를 포함하는 입력 또는 출력 파라미터값, 혹은 결손 데이터가 발생했을 때에 취득된 입출력 데이터를 제거하고, 결손 데이터를 포함하지 않는 나머지 입출력 데이터만을 사용하여 예측 모델을 구축하면 된다. 그러나, 결손 데이터가 빈번하게 발생할 경우에 있어서는, 사용 가능한 입출력 데이터의 취득 성공률이 저하되어, 정밀도가 좋은 예측 모델을 구축할 때까지 많은 시간이 필요해진다. 초기 학습 데이터 취득, 또는 실증 실험의 실패에 의한, 처리 대상 샘플의 손실이 계속되면, 장치 가동에 필요해지는 에너지 및 원료 등도 계속해서 손실되어진다.
이 때문에, 결손 데이터가 발생할 경우에 있어서, 입출력 데이터의 취득 효율을 향상시키며, 또는 정밀도가 좋은 예측 모델을 구축하기 위해, 결손 대체 데이터로서, 목표값으로부터의 거리가 적어도 일정한 값 이상 떨어진 값을 사용하기로 한다. 이것은 이하의 이유에 따른다. 통상, 모든 입출력 파라미터가 올바른 계측 데이터라는 전제에서, 예측 모델은 구축된다. 그러나, 패턴의 일부 또는 전체의 도괴 또는 소실이 발생했을 경우에는, 가공 후의 단면이나 상면에서 계측되는 계측값의 일부 또는 그 전부에 대해서 참된 값이 불명해진다. 그러한 상황 하에서, 부적절한 결손 대체 데이터, 예를 들면 원하는 가공을 할 수 있었던 이러한 결손 대체 데이터에 의해 예측 모델을 구축했을 경우에는, 그 예측 모델에 의거하는 예측은, 당연, 실제의 해로부터 멀어진 것이 되어 버린다.
이 때문에, 결손 대체 데이터의 결정에 있어서, 출력 데이터의 목표값과의 차가 허용 범위 내가 되는 범위의 상한값 및 하한값을, 각각 상한 허용값 및 하한 허용값으로 하여, 이들 상한 허용값 또는 하한 허용값을 결손 대체 데이터의 기준값으로 한다.
결손 대체 데이터의 값은, 목표값과의 차가 허용 범위 외가 되는 값일 필요가 있고, 예를 들면, 상한 허용값의 정수(定數)배 이상, 상한 허용값의 정수배보다 큰 값, 하한 허용값 이하, 하한 허용값 미만, 하한 허용값을 정수로 나눈 값 이하, 하한 허용값을 정수로 나눈 값 미만 등을 이용할 수 있다. 여기에서의 정수는 1 이상, 또는 1보다 큰 수치로서 임의로 정할 수 있다. 또는, 목표값의 정수배 혹은 목표값을 정수로 나눈 값(단, 어느 경우도 목표값과의 차가 허용 범위 외가 되는 것이 필요함)을 사용해도 된다.
또한, 처리 대상에 따라 설정해도 된다. 예를 들면, 홈과 라인이 반복되는 라인 앤드 스페이스 패턴에 대해서는, 라인폭(홈폭)에 대한 결손 대체 데이터의 기준값으로서, 홈 및 라인의 합계폭인 풀(full) 피치, 또는 그 절반의 값인 하프(half) 피치를 사용할 수 있다.
또한, 가공시에 발생한 현상에 따라 설정해도 된다. 예를 들면, 패턴의 일부 또는 전체의 도괴 또는 소실이 발생했을 경우에는, 패턴의 폭 치수에 관한 값의 계측은 할 수 없다. 그때, 라인 등의 가공 후에 남겨지는 부분의 폭 치수에 관한 결손 대체 데이터의 값으로서 0을 사용할 수 있다. 폭 치수의 구체예로서는, 도 24의 (1t) 마스크 톱폭, (2t) 마스크 중앙부의 폭, (3t) 마스크 보텀폭, (4t) 가공부 톱폭, (5t) 가공부 중앙부의 폭, (6t) 가공 바닥의 폭, 도 19의 (1) 마스크 톱폭, (2) 마스크 보텀폭, (4) 가공부 톱폭, (5) 가공부 중앙부의 폭, (6) 가공 바닥의 폭, (7) 가공부 최대폭이 있다. 또한, 마스크 등의 가공 후에 남겨지는 부분의 두께에 대해서도, 결손 대체 데이터의 값으로서 0을 사용할 수 있다. 그 두께 치수의 구체예로서는, 도 18의 (3) 마스크 두께, 도 19의 (3) 마스크 두께가 있다.
또한, 패턴의 가공이 전혀 행해지지 않았을 경우에는, 가공에 의해 처음 형성되는 패턴의 폭 치수에 관한 값은 계측할 수 없다. 그때, 라인 등의 가공 후에 남겨지는 부분의 폭 치수에 관한 결손 대체 데이터의 값으로서, 하프 피치 또는 풀 피치를 사용할 수 있다. 그 폭 치수의 구체예로서는, 도 24의 (4t) 가공부 톱폭, (5t) 가공부 중앙부의 폭, (6t) 가공 바닥의 폭, 도 18의 (1) 마스크 톱폭, (2) 마스크 보텀폭, (4) 가공부 톱폭, (5) 가공부 중앙부의 폭, (6) 가공 바닥의 폭, (7) 가공부 최대폭, 도 19의 (4) 가공부 톱폭, (5) 가공부 중앙부의 폭, (6) 가공 바닥의 폭, (7) 가공부 최대폭이다.
또한, 이미 취득 완료의 출력 데이터에 있어서, 목표값과의 차가 허용 범위 외가 되는 값으로서, 목표값으로부터의 거리가 가장 먼 값을 결손 대체 데이터의 기준값으로서 사용하는 것도 가능하다. 입출력 데이터의 취득 횟수를 미리 지정하고, 지정한 수의 입출력 데이터가 취득될 때까지는, 상기의 상한 허용값, 하한 허용값, 풀 피치, 또는 하프 피치를 결손 대체 데이터의 기준값으로서 사용하고, 지정한 수의 입출력 데이터가 취득된 후에, 목표값과의 차가 허용 범위 외가 되는 값 또한, 각 파라미터에 대해서 목표값으로부터의 거리가 가장 먼 값을 결손 대체 데이터의 기준값으로서 사용하도록 해도 된다. 이것은, 어느 정도 입출력 데이터가 축적된 단계에 있어서는, 결손 대체 데이터의 기준값을 실제로 취득된 가장 나쁜 출력 데이터로 함으로써, 보다 참된 값에 가까운 결손 대체 데이터가 주어질 가능성이 있다.
하지만, 결손 대체 데이터인 이상, 취득 완료의 출력 데이터보다 목표값과의 차가 보다 큰 값이어야 한다. 따라서, 취득 완료의 출력 데이터가 존재할 경우에는, 결손 대체 데이터의 값과 취득 완료의 출력 데이터와의 값을 비교하여, 목표값과의 차가 허용 범위 외가 되는 값으로서, 보다 목표값과의 차가 커지는 쪽의 값을 결손 대체 데이터의 값으로서 사용함으로써, 예측 모델의 정밀도를 향상시킬 수 있다.
반대로, 지정한 수 이상의 입출력 데이터가 취득 완료로 되어 있는 입출력 파라미터에 대해서는, 취득 완료 입출력 데이터로부터 결손 데이터를 예측하는 모델을 생성하고, 이 결손 데이터 예측 모델로부터, 결손값을 예측하는 것이 가능하다. 예측된 값을 결손 예측 데이터로 하면, 결손 대체 데이터 대신에 결손 예측 데이터를 사용할 수 있다.
또한, 결손 대체 데이터의 보존 후에, 출력 데이터가 계측 가능했는지, 계측 불가능 또는 계측을 스킵했는지를 판단하기 위해서는, 계측 가능했던 데이터와 결손 데이터를 식별, 혹은 결손 데이터를 특정하기 위해, 각 출력 파라미터에 대하여 기호 또는 수치를 부여하고, 계측 가부 데이터로서 보존하면 된다. 또한, 출력 데이터로서 계측 가부 데이터를 이용하고, 그 계측 가부 데이터에 대응하는 입력 데이터를 이용하여 예측 모델을 생성할 수도 있다. 이 예측 모델을 이용하여, 실증 실험에 있어서의 계측 가부를 예측함으로써, 실제로 실증 실험을 행하는 조건을 선별할 수 있다.
목표가 되는 패턴의 일부 또는 전체의 도괴 또는 소실이 빈발할 경우에는, 목표가 되는 패턴과 동시 처리, 또는 동일 입력 파라미터로 처리되는, 목표와는 다른 패턴, 또는 샘플의 출력 데이터를 취득함으로써 취득 가능한 출력 데이터를 늘릴 수 있다. 출력 데이터에 관해서, 목표 패턴과 상관은 있지만, 목표와는 다른 시험 패턴 혹은 시험 샘플을 선택하고, 이들 출력 데이터를 이용하여 예측 모델을 생성함으로써 예측 정밀도를 향상시킬 수 있다. 시험 패턴은, 목표 패턴과 비교하여, 출력 데이터가 계측 가능해지기 쉬운, 즉 패턴의 일부 또는 전체의 도괴 또는 소실이 일어나기 어려운 것이 된다. 예를 들면, 목표 패턴이 홈, 구멍, 라인, 필러, 라인 앤드 스페이스일 경우, 시험 패턴으로서, 보다 치수가 큰 홈, 구멍, 라인, 필러, 라인 앤드 스페이스를 선택할 수 있다. 또한, 에칭 대상의 에칭이 진행되지 않는다는 상황에서는, 시험 샘플로서 마스크층이 형성되어 있지 않은 블랭킷막을 사용할 수 있다. 또한, 시험 패턴이나 시험 샘플을 복수 종류 사용함으로써, 보다 계측 가능한 출력 데이터를 늘릴 수 있다.
가공 대상의 패턴에 포함되는, 두께 또는 깊이의 값은, 광간섭계를 이용하여 계측할 수 있다. 또한, 패턴의 일부 또는 전체의 도괴에 의해, 목표가 되는 패턴 부분의 광간섭계에 의한 계측을 할 수 없을 경우에는, 상술한 목표와는 다른 패턴 부분을 이용하여, 두께 또는 깊이를 계측할 수 있다.
다음으로, 반도체 디바이스의 처리에 있어서, 결손 데이터 대신이 되는 결손 대체 데이터를 이용한, 가공 형상을 최적화하기 위한 제어 처리의 적용예를 나타낸다.
여기에서는, 출력 데이터로서, 가공 패턴의 상부 표면의 출력 데이터, 또는 상부 표면 및 단면의 출력 데이터를 이용할 경우를 이용하여 설명한다. 계측 1로서 상부 표면의 출력 데이터, 계측 2로서 단면의 출력 데이터를 취득할 경우에 있어서, 계측된 출력 데이터, 결손 데이터의 예를 도 28에 나타낸다.
도 28에 있어서, 계측 1에 있어서의 LER 11, LER 12는 상술한 LER의 값, CDtv 11, CDtv 12는 상술한 (1t)∼(6t) 폭 치수(도 24 참조)이다. 또한, 계측 2에 있어서의 CD 21, CD 22는 상술한 단면에 있어서의 폭 치수이며, Depth 21, Depth 22는 상술한 단면에 있어서의 깊이 치수이다. 계측 1에 있어서 LER 11, CDtv 11이 계측 가능하며, 계측값이 취득되어 있다. 한편, LER 12, CDtv 12는 계측 불능이며, 결손 데이터를 나타내는 N/A가 주어져 있다. 결손 데이터(N/A)는, 각 출력 파라미터에 대응한 결손 대체 데이터로 치환되는 것이 된다.
계측 1 후에 계측 2를 행할 경우에는, 계측 2에 있어서도 계측 1과 마찬가지로, 계측 불능이었던 항목에 대하여 결손 데이터를 나타내는 N/A가 주어지고, 결손 데이터(N/A)는 각 출력 파라미터에 대응한 결손 대체 데이터로 치환된다.
또한, 계측 1의 출력 데이터에 결손 데이터가 포함될 경우, 계측 2에서도 결손 데이터가 될 경우가 있다. 구체적으로는, 패턴의 일부 또는 전체의 변형, 도괴, 소실이 발생했을 경우에는, 이들 상황을 계측 1의 상부 표면의 계측에서의 결손 데이터의 발생에 의해 파악할 수 있다. 이 경우에는, 계측 2의 단면의 계측은 결손 데이터가 되기 때문에, 실제의 계측은 불필요해진다. 이와 같이, 계측 1의 출력 데이터의 결손 데이터의 발생 유무, 혹은 결손 데이터의 항목의 수에 따라, 계측 2를 스킵함으로써 탐색 시간을 단축할 수 있다. 즉, 출력 데이터의 취득을 위해 복수의 계측을 행할 경우에는, 앞서 행해진 계측 결과에 있어서의 결손 데이터의 발생 유무, 혹은 결손 데이터의 항목의 수에 따라, 그 이후에 행해지는 계측 그 자체를 스킵하여, 탐색 시간을 단축하는 것이 가능하다.
계측 2를 스킵했을 경우에는, 도 28에 나타내는 계측 2와 같이 모든 출력 파라미터가 결손 데이터가 된다. 계측이 스킵된 출력 파라미터에는, 계측을 행했지만 계측 불가능했을 경우에 부여하는 결손 데이터(N/A)와는 다른 수치 또는 기호를 부여함으로써, 양자를 식별할 수 있다. 예를 들면, 계측 2에 있어서는 N/A가 아니라, Skip 등의 기호를 부여해도 된다. 또한, 그 경우에는, 스킵을 나타내는 기호 또는 수치를, 각 출력 파라미터에 대응한 결손 대체 데이터로 치환하게 된다.
가공 형상의 최적화 방법의 개요를 나타내는 플로우 차트를 도 29에 나타낸다. 도 29는 도 14와 마찬가지의 플로우 차트이며, 도 14와 도 29의 스텝 번호가 같은 스텝에서는, 도 29에 있어서도 도 14와 마찬가지의 플로우를 행한다.
각 출력 파라미터가 계측 불가능, 혹은 계측을 스킵했을 경우에 사용하는 결손 대체 데이터의 값 및, 계측 가부 데이터의 값 혹은 기호를 설정했을 경우에는 그것들의 값 혹은 기호는, 초기 데이터로서 주어진다(스텝 A901a). 이에 더하여, 스텝 A901a에서는 모니터 시스템에 의해 가공 형상을 실측할 때에 사용하는, 계측 위치의 결정 또는 계측 위치를 원하는 계측 위치로 유도하기 위한 위치 정보 데이터 및 화상 정보 데이터에 대해서도 초기 데이터로서 주어진다. 스텝 A901a는, 도 5의 S501, 도 12의 A501, 도 14의 A901의 탐색 설정 입력, 초기 데이터의 입력에 대응하는 처리이다.
결손 데이터의 특정, 및 결손 데이터의 결손 대체 데이터로의 치환은, 계측 결과의 출력 또는 실증 실험 결과의 보존으로 행한다(A9031, A9032). 혹은, 계측 결과의 출력시에 행해도 된다(A9041, A9042). 이것은 도 5의 S507, 도 6, 도 7 및 도 8의 S6070A, 도 12의 A508, 도 14의 A9030에 대응하는 탐색 결과, 실증 실험 결과의 보존에 대응한다. 혹은 이들 탐색 결과, 실증 실험 결과의 보존 후에 행할 수 있다.
이 예에서는, 스텝 A9041의 실증 실험 결과의 보존에 있어서, 계측 1의 출력 데이터인, 상부 표면의 출력 데이터가 보존된다. 이 출력 데이터 중, 계측 불능이었던 항목에 대하여, 결손 데이터를 나타내는 N/A가 주어진다. 결손 데이터(N/A)는, 각 출력 파라미터에 대응한 결손 대체 데이터로 치환된다. 계측 1 이후에 다른 계측이 없을 경우에는, 스텝 A905의 결과 판정, 스텝 A906의 데이터의 갱신이 행해지고, 스텝 A903에 있어서, 결손 대체 데이터를 포함하는 입출력 데이터를 이용한 예측 모델의 생성 및 예측 결과가 출력되고, 스텝 A904의 해의 탐색이 행해진다.
계측 1(스텝 A9041) 후에, 계측 2(스텝 A9042)를 행할 경우에는, 계측 2에 있어서도 계측 1과 마찬가지로, 계측 불능이었던 항목에 대하여 결손 데이터를 나타내는 N/A가 주어지고, 결손 데이터(N/A)는 각 출력 파라미터에 대응한 결손 대체 데이터로 치환된다. 그 후, 결손 대체 데이터를 포함하는 입출력 데이터를 이용한 예측 모델의 생성 및 예측 결과가 출력되고, 해의 탐색이 행해진다.
또한, 스텝 A9041의 계측 1의 출력 데이터에 결손 데이터(혹은 결손 대체 데이터)가 포함될 경우, 스텝 A9042의 계측 2에서도 결손 데이터가 발생할 경우가 있다. 예를 들면, 패턴의 일부 또는 전체의 변형, 도괴, 소실이 발생했을 경우에는, 이들 상황을 계측 1의 상부 표면의 계측에서의 결손 데이터의 발생에 의해 파악할 수 있다. 이러한 경우, 계측 2의 단면의 계측을 행해도 결손 데이터밖에 얻어지지 않기 때문에, 실제의 계측은 불필요해진다. 이 때문에, 계측 1(스텝 A9041)의 출력 데이터에 있어서의 결손 데이터의 발생 유무, 혹은 결손 데이터의 항목의 수에 따라, 계측 2(스텝 A9042)를 스킵하고, 그것에 의해 탐색 시간을 단축할 수 있다.
이와 같이 복수의 계측을 행할 경우에는, 앞서 행해진 계측 결과에 있어서의 결손 데이터의 발생 유무, 혹은 결손 데이터의 항목의 수에 따라, 그 이후에 행해지는 계측을 스킵하고, 그것에 의해 탐색 시간을 단축하는 것이 가능하다. 복수의 계측을 행할 경우에 있어서, 후단에서 실시하는 계측에 장시간을 요할 경우에는, 탐색 시간을 대폭 단축할 수 있기 때문에 유효성이 높다.
계측이 스킵된 출력 파라미터에는, N/A와는 다른 수치 또는 기호를 부여함으로써, 계측 불가능할 경우와 계측을 스킵했을 경우의 식별을 할 수 있다. 또한, 그 경우에는, 스킵을 나타내는 기호 또는 수치를, 각 출력 파라미터에 대응한 결손 대체 데이터로 치환함으로써, 예측 모델의 생성 및 해의 탐색을 할 수 있다.
결손 데이터(계측 불가능할 경우, 계측을 스킵했을 경우 모두 포함함)를 결손 대체 데이터로 치환하는 동작은, 자동으로 행하는 것이 가능하지만, 치환의 가부를 엔지니어가 결정해도 된다. 그때, 엔지니어가 재기록에 사용하는 결손 대체 데이터를 결정해도 된다. 그때, 사전에 지정한 결손 대체 데이터의 값을 사용하거나, 결손 대체 데이터의 기준값을 사용하거나, 혹은 목표값과의 차가 허용 범위 외가 되는 값이며 또한, 각 파라미터에서 목표값으로부터의 거리가 가장 먼 값을 사용한다는 선택지를 제시하여, 엔지니어가 전환하도록 해도 된다.
스텝 A901a에서 이용하는 초기 데이터에는, 도 15에 나타낸 바와 같은 패턴뿐만 아니라, 도 30에서 나타낸 바와 같은 복수의 레시피와, 그 각 레시피를 이용하여 에칭했을 때의 패턴 상부 표면의 가공 형상 데이터를 입력할 수 있다. 다양한 에칭 형상을 포함하는 초기 데이터를 이용함으로써, 예측 모델을 이용한 해의 예측시에, 레시피 파라미터 공간 내의 어느 영역에 목표 형상을 실현하는 레시피 파라미터가 존재하는지에 대해서, 효율적으로 예측하는 것이 가능해진다.
초기 데이터(A9010a)에서는, 도 30에 나타내는 바와 같이, 패턴 변형(조건 1), 위그링(조건 2), 패턴 에지 거칠음(조건 N)을 나타내고 있으며, 그 밖의 형상으로서는, 전혀 에칭이 진행되지 않는 에치스톱 형상, 패턴의 일부 또는 모든 소실, 패턴의 일부 또는 모든 도괴 등이 있다. 예를 들면, 초기 데이터 중의 형상이 1종류밖에 없을 경우에는, 그 데이터로부터 구한 예측 모델에서는, 다른 형상을 만족시키는 해를 예측하는 것은 어렵다. 그 때문에 이들 형상 중, 적어도 2종류 이상, 바람직하게는 3종류 이상을 초기 데이터에 포함하는 것이 바람직하다.
또한, 도 30은, 초기 데이터(A9010a)의 일례를 나타내는 도면이다. 초기 데이터(A9010a)는, 조건(1∼N)에 대응한 가공 결과(1∼N)의 페어로 구성되고, 가공 결과(1∼N)는, 가공 대상의 패턴 상부 표면 형상의 예를 나타낸다.
스텝 A902에서 이용하는 목표 데이터로서는, 예를 들면, 도 31에 나타내는 목표 데이터(A9020a)와 같은 수직 가공 형상이 주어진다. 또한, 도 31은, 목표 데이터(A9020a)의 일례를 나타내는 도면이다. 목표 데이터(A9020a)는, 가공 전의 가공 대상의 패턴 상부 표면 형상과, 목표하는 패턴 상부 표면 형상으로 구성되는 예를 나타낸다.
스텝 A904의 실증 실험의 결과의 예는, 도 32에 나타내는 실증 실험 결과 A9031에 나타내는 바와 같으며, 이 경우에는, 초기 데이터에 포함되는 형상보다, 목표 형상에 가까워진 출력(가공 형상)이 얻어지고 있고, 이것은 스텝 A510:Yes에 대응한다. 또한, 도 32는, 실증 실험 결과(A9031)의 일례를 나타내는 도면이다. 실증 실험 결과(A9031)는, 실증 조건(a∼c)에 대응한 실증 결과(a∼c)의 페어로 구성되고, 실증 결과(a∼c)는, 가공 대상의 패턴 상부 표면 형상의 예를 나타낸다.
이와 같이, 반도체 처리 장치(201)에 있어서 탐색 장치(300)에 의한 탐색 방법을 실행함으로써, 반도체 처리 장치(201)의 출력 파라미터의 값을 목표로 하는 출력 파라미터의 값에 가까이 할 수 있다(장치 출력 최적화 기능).
변형예로서, 반도체 처리 장치의 장치 제어 시스템(도 2 참조)에, 지금까지 설명한 탐색 장치의 기능을 탑재하는 것도 가능하다. 도 33에 반도체 처리 장치의 예로서 최적 처리 조건 탐색 기능을 갖는 플라스마 처리 장치의 개략도를 나타낸다. 플라스마 발생용 안테나(56)와 그것에 고주파 전압을 인가시키는 고주파 전원(51) 및 제1 고주파 정합기(52)를 구비하고 있다. 처리실(60) 내에 복수의 가스종을 도입하기 위해, 제1 유로(61), 제2 유로(62)가 마련되어 있다. 또한, 여기에서는 2계통만 도시하고 있지만, 특별히 유로 수를 한정하는 것은 아니다. 안테나(56)에 있어서 발생한 고주파의 교번(交番) 전자장을 도입된 혼합 가스에 작용시킴으로써, 반응 입자로부터 유도 결합된 플라스마(63)를 생성시킨다. 또한, 장치는 발생된 플라스마(63)에 의한 처리를 시키기 위한 기판 전압 발생기(54) 및 제2 고주파 정합기(53)를 구비하고 있다. 또한, 처리 대상인 기판(시료)(59)을 가공시에 발생하는 플라스마의 변동을 모니터링할 수 있는 종점 판정 장치(55)를 구비하고 있고, 종점 판정 장치(55)로부터 얻어진 신호를 제1 매스플로우 컨트롤러(57), 및 제2 매스플로우 컨트롤러(58)에 피드백하는 기구를 가진다. 종점 판정 장치(55)의 신호에 따라, 제1 매스플로우 컨트롤러(57)는 제1 유로(61)의 가스 유량을, 제2 매스플로우 컨트롤러(58)는 제2 유로(62)의 가스 유량을 조정하는 것이 가능하다.
플라스마 처리 장치의 장치 제어 시스템(70)은, 장치의 고주파 전원(51), 기판 전압 발생기(54), 종점 판정 장치(55) 등의 플라스마 생성 장치를 제어하여, 기판(59)에 대하여 에칭 가공 등의 플라스마 처리를 실시함(레시피 설정 컨트롤러(221), 장치 기본 설정 컨트롤러(222)에 대응함)과 함께, 탐색 장치에 있어서의 기억 디바이스(302)(도 3 참조)에 저장되는, 탐색 처리를 실행하기 위한 프로그램에 상당하는 처리 프로그램을 실장(實裝)함으로써, 지금까지 설명한 탐색 처리를 실시하는 것이 가능하다. 이와 같이, 반도체 처리 장치의 1 기능으로서, 탐색 처리 기능을 탑재함으로써, 탐색한 입력 파라미터값에 의해 플라스마 생성 장치를 제어하여 플라스마 처리를 하는 것이 가능해진다.
또한, 본 발명은 상술한 실시예에 한정되는 것이 아니라, 첨부한 특허청구범위의 취지 내에 있어서의 다양한 변형예 및 동등한 구성이 포함된다. 예를 들면, 상술한 실시예는 본 발명을 이해하기 쉽게 설명하기 위해 상세하게 설명한 것이며, 반드시 설명한 모든 구성을 구비하는 것에 본 발명은 한정되지 않는다. 또한, 어떤 실시예의 구성의 일부를 다른 실시예의 구성으로 치환해도 된다. 또한, 어떤 실시예의 구성에 다른 실시예의 구성을 더해도 된다. 또한, 각 실시예의 구성의 일부에 대해서, 다른 구성의 추가, 삭제, 또는 치환을 해도 된다.
또한, 상술한 각 구성, 기능, 처리부, 처리 수단 등은, 그것들의 일부 또는 전부를, 예를 들면 집적 회로로 설계하는 등에 의해, 하드웨어로 실현해도 되고, 프로세서가 각각의 기능을 실현하는 프로그램을 해석하여 실행함으로써, 소프트웨어로 실현해도 된다.
각 기능을 실현하는 프로그램, 테이블, 파일 등의 정보는, 메모리, 하드디스크, SSD(Solid State Drive) 등의 기억 장치, 또는, IC(Integrated Circuit) 카드, SD 카드, DVD(Digital Versatile Disc)의 기록 매체에 저장할 수 있다.
또한, 제어선이나 정보선은 설명상 필요하다고 생각되는 것을 나타내고 있어, 실장상 필요한 모든 제어선이나 정보선을 나타내고 있다고는 할 수 없다. 실제로는, 거의 모든 구성이 상호 접속되어 있다고 생각해도 된다.
200: 반도체 제조 시스템 201: 반도체 처리 장치
202: 장치 제어 시스템 203: 모니터 시스템
204: 센서 시스템 205: 데이터베이스
206: 자동 제어 시스템 221: 레시피 설정 컨트롤러
222: 장치 기본 설정 컨트롤러 223: 설정 에러 검출 시스템
261: 목표 설정 컨트롤러 262: 자율 탐색 시스템
263: 불안정 동작 검출 시스템 300: 탐색 장치
401: 입력부 402: 생성부
403: 특정부 404: 판단부
405: 설정부 406: 출력부
407: 결정부 408: 분할부
409: 검출부

Claims (15)

  1. 가공 대상을 소정의 가공 형상으로 가공하는 반도체 처리 장치에 대하여, 목표 가공 형상으로 가공하기 위해 상기 반도체 처리 장치에 설정하는 입력 파라미터값을 탐색하는 탐색 장치로서,
    프로세서와,
    기억 디바이스와,
    상기 기억 디바이스에 저장되고, 상기 프로세서로 실행됨으로써, 상기 가공 대상을 상기 목표 가공 형상으로 가공하기 위한 입력 파라미터값을 탐색하는 프로그램을 갖고,
    상기 프로그램은 생성부를 갖고,
    상기 생성부는, 입력 파라미터값과, 상기 반도체 처리 장치에 당해 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값인 출력 파라미터값에 의거하여, 입력 파라미터값과 출력 파라미터값과의 관계를 나타내는 예측 모델을 생성하고,
    상기 생성부는, 상기 반도체 처리 장치가 가공한 가공 결과의 실측값이 결손 데이터일 경우에는, 상기 결손 데이터를 발생시킨 입력 파라미터값과 결손 데이터인 실측값을 치환한 결손 대체 데이터에 의거하여, 상기 예측 모델을 생성하는 탐색 장치.
  2. 제1항에 있어서,
    상기 프로그램은 특정부를 갖고,
    상기 특정부는, 목표 출력 파라미터값을 상기 예측 모델에 부여함으로써, 상기 목표 출력 파라미터값에 대응하는 입력 파라미터값을 예측하고, 상기 반도체 처리 장치에 당해 예측된 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값을 취득하고,
    상기 생성부는, 상기 특정부에 의해 취득된 실측값이 상기 목표 가공 형상을 만족시키지 않을 경우에는, 상기 특정부에 의해 예측된 입력 파라미터값과 취득된 실측값을 추가하여, 상기 예측 모델을 생성하는 탐색 장치.
  3. 제1항에 있어서,
    상기 프로그램은 접수부를 갖고,
    상기 접수부는, 초기 데이터로서 위치 정보를 접수하고,
    상기 위치 정보를 이용하여 상기 가공 결과를 실측하는 탐색 장치.
  4. 제1항에 있어서,
    상기 결손 대체 데이터는, 출력 파라미터값의 목표값과의 차가 허용 범위 외가 되는 값으로서 결정되는 탐색 장치.
  5. 제4항에 있어서,
    상기 결손 대체 데이터의 기준값으로서, 상기 반도체 처리 장치가 가공한 가공 결과의 실측값 중, 상기 출력 파라미터값의 목표값과의 거리가 가장 큰 값을 이용하는 탐색 장치.
  6. 제1항에 있어서,
    상기 가공 형상을 나타내는 출력 파라미터로서, 상기 가공 결과의 상면(上面) 형상의 계측값 및 단면(斷面) 형상의 계측값을 포함하는 탐색 장치.
  7. 가공 대상을 소정의 가공 형상으로 가공하는 반도체 처리 장치에 대하여, 탐색 장치를 이용하여, 목표 가공 형상으로 가공하기 위해 상기 반도체 처리 장치에 설정하는 입력 파라미터값을 탐색하는 탐색 방법으로서,
    상기 탐색 장치는, 생성부와, 특정부를 갖고 있고,
    상기 생성부는, 입력 파라미터값과, 상기 반도체 처리 장치에 당해 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값인 출력 파라미터값에 의거하여, 입력 파라미터값과 출력 파라미터값과의 관계를 나타내는 예측 모델을 생성하고,
    상기 특정부는, 목표 출력 파라미터값을 상기 예측 모델에 부여함으로써, 상기 목표 출력 파라미터값에 대응하는 입력 파라미터값을 예측하고, 상기 반도체 처리 장치에 당해 예측된 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값을 취득하고,
    상기 생성부는, 상기 특정부에 의해 취득된 실측값이 상기 목표 가공 형상을 만족시키지 않을 경우에는, 상기 특정부에 의해 예측된 입력 파라미터값과 취득된 실측값을 추가하여, 상기 예측 모델을 생성하고,
    상기 반도체 처리 장치가 가공한 가공 결과의 실측값이 결손 데이터일 경우에는, 상기 결손 데이터를 발생시킨 입력 파라미터값과 결손 데이터인 실측값을 치환한 결손 대체 데이터에 의거하여, 상기 예측 모델을 생성하는 탐색 방법.
  8. 제7항에 있어서,
    상기 결손 대체 데이터를, 출력 파라미터값의 목표값과의 차가 허용 범위 외가 되는 값으로 결정하는 탐색 방법.
  9. 제7항에 있어서,
    상기 출력 파라미터값은, 제1 계측에 의해 취득되는 제1 출력 파라미터값과, 제2 계측에 의해 취득되는 제2 출력 파라미터값을 갖고,
    상기 제1 출력 파라미터값에 의거하여, 상기 제2 계측의 가부(可否)를 판단하는 탐색 방법.
  10. 플라스마를 이용하여 시료를 플라스마 처리하는 플라스마 처리 장치로서,
    처리실과,
    상기 처리실 내에 플라스마를 생성시키는 플라스마 생성 장치와,
    상기 시료를 목표 가공 형상으로 가공하기 위해 설정하는 입력 파라미터값을 탐색하고, 탐색한 입력 파라미터값에 의해 상기 처리실 내에 재치(載置)되는 상기 시료의 플라스마 처리를 행하도록 상기 플라스마 생성 장치를 제어하는 제어 시스템을 갖고,
    상기 제어 시스템은,
    입력 파라미터값과, 당해 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값인 출력 파라미터값에 의거하여, 입력 파라미터값과 출력 파라미터값과의 관계를 나타내는 예측 모델을 생성하고,
    목표 출력 파라미터값을 상기 예측 모델에 부여함으로써, 상기 목표 출력 파라미터값에 대응하는 입력 파라미터값을 예측하고, 당해 예측된 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값을 취득하고,
    상기 취득된 실측값이 상기 목표 가공 형상을 만족시키지 않을 경우에는, 상기 예측된 입력 파라미터값과 상기 취득된 실측값을 추가하여, 상기 예측 모델을 생성하고,
    상기 가공 결과의 실측값이 결손 데이터일 경우에는, 상기 결손 데이터를 발생시킨 입력 파라미터값과 결손 데이터인 실측값을 치환한 결손 대체 데이터에 의거하여, 상기 예측 모델을 생성하고,
    상기 취득된 실측값이 상기 목표 가공 형상을 만족시킬 경우에는, 상기 예측된 입력 파라미터값에 의해 상기 처리실 내에 재치되는 상기 시료의 플라스마 처리를 행하는 플라스마 처리 장치.
  11. 제10항에 있어서,
    상기 결손 대체 데이터를, 출력 파라미터값의 목표값과의 차가 허용 범위 외가 되는 값으로 결정하는 플라스마 처리 장치.
  12. 제10항에 있어서,
    상기 시료의 가공 형상을 나타내는 출력 파라미터로서, 상기 가공 결과의 상면 형상의 계측값 및 단면 형상의 계측값을 포함하는 플라스마 처리 장치.
  13. 가공 대상을 소정의 가공 형상으로 가공하는 반도체 처리 장치에 대하여, 목표 가공 형상으로 가공하기 위해 상기 반도체 처리 장치에 설정하는 입력 파라미터값을 탐색하는 탐색 장치로서,
    프로세서와,
    기억 디바이스와,
    상기 기억 디바이스에 저장되고, 상기 프로세서로 실행됨으로써, 상기 가공 대상을 상기 목표 가공 형상으로 가공하기 위한 입력 파라미터값을 탐색하는 프로그램을 갖고,
    상기 프로그램은, 생성부와, 특정부를 갖고,
    상기 생성부는, 입력 파라미터값과, 상기 반도체 처리 장치에 당해 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값인 출력 파라미터값에 의거하여, 입력 파라미터값과 출력 파라미터값과의 관계를 나타내는 예측 모델을 생성하고,
    상기 특정부는, 목표 출력 파라미터값을 상기 예측 모델에 부여함으로써, 상기 목표 출력 파라미터값에 대응하는 입력 파라미터값을 예측하고, 상기 반도체 처리 장치에 당해 예측된 입력 파라미터값을 설정하여 가공한 가공 결과의 실측값을 취득하고,
    상기 생성부는, 상기 특정부에 의해 취득된 실측값이 상기 목표 가공 형상을 만족시키지 않을 경우에는, 상기 특정부에 의해 예측된 입력 파라미터값과 취득된 실측값을 추가하여, 상기 예측 모델을 생성하고,
    상기 가공 형상을 나타내는 출력 파라미터로서, 상기 가공 결과의 상면 형상의 계측값 및 단면 형상의 계측값을 포함하는 탐색 장치.
  14. 제13항에 있어서,
    상기 생성부는, 상기 반도체 처리 장치가 가공한 가공 결과의 실측값이 결손 데이터일 경우에는, 상기 결손 데이터를 발생시킨 입력 파라미터값과 결손 데이터인 실측값을 치환한 결손 대체 데이터에 의거하여, 상기 예측 모델의 생성을 행하는 탐색 장치.
  15. 제14항에 있어서,
    상기 결손 대체 데이터는, 출력 파라미터값의 목표값과의 차가 허용 범위 외가 되는 값으로서 결정되는 탐색 장치.
KR1020190005491A 2018-03-20 2019-01-16 탐색 장치, 탐색 방법 및 플라스마 처리 장치 Active KR102311313B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2018-052162 2018-03-20
JP2018052162A JP7137943B2 (ja) 2018-03-20 2018-03-20 探索装置、探索方法及びプラズマ処理装置

Publications (2)

Publication Number Publication Date
KR20190110425A true KR20190110425A (ko) 2019-09-30
KR102311313B1 KR102311313B1 (ko) 2021-10-12

Family

ID=67984311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190005491A Active KR102311313B1 (ko) 2018-03-20 2019-01-16 탐색 장치, 탐색 방법 및 플라스마 처리 장치

Country Status (4)

Country Link
US (1) US11189470B2 (ko)
JP (1) JP7137943B2 (ko)
KR (1) KR102311313B1 (ko)
TW (1) TWI737959B (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121506B2 (ja) 2018-03-14 2022-08-18 株式会社日立ハイテク 探索装置、探索方法及びプラズマ処理装置
JP7056592B2 (ja) * 2019-01-17 2022-04-19 Jfeスチール株式会社 金属材料の製造仕様決定方法、製造方法、および製造仕様決定装置
KR102287460B1 (ko) * 2019-08-16 2021-08-10 엘지전자 주식회사 인공지능 무빙 에이전트
WO2021085522A1 (ja) * 2019-10-30 2021-05-06 Alitecs株式会社 処理条件推定装置、方法及びプログラム
US11747774B2 (en) 2019-12-03 2023-09-05 Hitachi High-Tech Corporation Search device, search program, and plasma processing apparatus
US11761969B2 (en) * 2020-01-21 2023-09-19 Kla Corporation System and method for analyzing a sample with a dynamic recipe based on iterative experimentation and feedback
JP7267966B2 (ja) * 2020-03-19 2023-05-02 株式会社東芝 情報処理装置及び情報処理方法
WO2022008174A1 (en) 2020-07-09 2022-01-13 Asml Netherlands B.V. Method for adjusting a patterning process
JP2022043780A (ja) * 2020-09-04 2022-03-16 東京エレクトロン株式会社 パラメータ選択方法および情報処理装置
JP7596106B2 (ja) 2020-09-28 2024-12-09 キヤノン株式会社 情報処理装置、検査方法、プログラム、露光装置、決定方法、及び物品の製造方法
JP7571612B2 (ja) 2021-02-22 2024-10-23 株式会社Sumco 加工条件設定装置、加工条件設定方法、及びウェーハの製造システム
JP7595278B2 (ja) 2021-03-26 2024-12-06 bacoor dApps株式会社 再学習用データ管理システム、及び、再学習用データ管理方法
JP2023108302A (ja) * 2022-01-25 2023-08-04 株式会社日立ハイテク 観察システム、観察方法およびプログラム
WO2023167887A1 (en) * 2022-03-03 2023-09-07 Advanced Energy Industries, Inc. Adaptive predictive control system
US11990324B2 (en) * 2022-03-03 2024-05-21 Advanced Energy Industries, Inc. Adaptive predictive control system
TW202407483A (zh) 2022-05-06 2024-02-16 日商東京威力科創股份有限公司 模型產生方法、電腦程式及資訊處理裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074188A (ja) * 1996-05-23 1998-03-17 Hitachi Ltd データ学習装置およびプラント制御装置
KR100463256B1 (ko) * 2001-06-29 2005-01-07 가부시끼가이샤 히다치 세이사꾸쇼 플라즈마처리제어장치 및 처리제어방법
JP2006074067A (ja) * 2005-11-08 2006-03-16 Hitachi Ltd プラズマ処理装置および処理方法
KR20070064259A (ko) * 2005-12-15 2007-06-20 오므론 가부시키가이샤 프로세스 이상 분석 장치 및 프로그램
JP2013518449A (ja) 2010-01-29 2013-05-20 東京エレクトロン株式会社 半導体製造ツールを自己学習及び自己改善するための方法及びシステム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002268A (ko) 1990-07-17 1992-02-28 유끼노리 가까즈 인텔리젠트가공장치
JPH10301979A (ja) 1997-04-30 1998-11-13 Oki Electric Ind Co Ltd モデルパラメータ抽出方法およびモデルパラメータ抽出装置
JP3086794B2 (ja) 1997-09-19 2000-09-11 豊田工機株式会社 数値制御研削盤
JP4215454B2 (ja) * 2001-07-12 2009-01-28 株式会社日立製作所 試料の凹凸判定方法、及び荷電粒子線装置
US6941301B2 (en) * 2002-01-18 2005-09-06 Pavilion Technologies, Inc. Pre-processing input data with outlier values for a support vector machine
US7272459B2 (en) 2002-11-15 2007-09-18 Applied Materials, Inc. Method, system and medium for controlling manufacture process having multivariate input parameters
JP4671594B2 (ja) 2003-10-08 2011-04-20 株式会社日立ハイテクノロジーズ データ収集管理方法およびそのシステム
EP2001410B1 (en) 2006-03-22 2016-12-28 Ascension Orthopedics, Inc. Prosthetic implant and assembly method
US7567700B2 (en) 2006-03-28 2009-07-28 Tokyo Electron Limited Dynamic metrology sampling with wafer uniformity control
US20080279434A1 (en) * 2007-05-11 2008-11-13 William Cassill Method and system for automated modeling
US8190543B2 (en) 2008-03-08 2012-05-29 Tokyo Electron Limited Autonomous biologically based learning tool
US8725667B2 (en) * 2008-03-08 2014-05-13 Tokyo Electron Limited Method and system for detection of tool performance degradation and mismatch
JP5489681B2 (ja) 2009-12-02 2014-05-14 キヤノン株式会社 固体撮像装置
JP5751045B2 (ja) 2010-08-31 2015-07-22 富士電機株式会社 プラントの運転条件最適化システム、プラントの運転条件最適化方法、プラントの運転条件最適化プログラム
CN103582819B (zh) 2011-04-06 2016-09-14 科磊股份有限公司 用于提供经改进过程控制的质量度量的方法及系统
TWI549007B (zh) 2013-02-07 2016-09-11 先知科技股份有限公司 製程參數的搜尋與分析方法及其電腦程式產品
US9817884B2 (en) * 2013-07-24 2017-11-14 Dynatrace Llc Method and system for real-time, false positive resistant, load independent and self-learning anomaly detection of measured transaction execution parameters like response times
JP6316578B2 (ja) 2013-12-02 2018-04-25 株式会社日立ハイテクノロジーズ 走査電子顕微鏡システム及びそれを用いたパターン計測方法並びに走査電子顕微鏡
US9396443B2 (en) * 2013-12-05 2016-07-19 Tokyo Electron Limited System and method for learning and/or optimizing manufacturing processes
JP6101650B2 (ja) 2014-02-27 2017-03-22 日本電信電話株式会社 システムパラメタ学習装置、情報処理装置、方法、及びプログラム
GB201603561D0 (en) * 2016-03-01 2016-04-13 Aluminium Lighting Company The Ltd Monitoring the structural health of columns and like structures
CN107004060B (zh) 2014-11-25 2022-02-18 Pdf决策公司 用于半导体制造工艺的经改进工艺控制技术
US9558545B2 (en) 2014-12-03 2017-01-31 Kla-Tencor Corporation Predicting and controlling critical dimension issues and pattern defectivity in wafers using interferometry
US9711327B2 (en) 2015-07-16 2017-07-18 Applied Materials Israel, Ltd. Method and system for optimizing configurable parameters of inspection tools
KR102413703B1 (ko) 2015-08-20 2022-06-27 삼성전자주식회사 무선 통신 시스템에서 버퍼 상태 정보 송수신 방법 및 장치
JP2017102619A (ja) 2015-11-30 2017-06-08 オムロン株式会社 制御パラメータ調整装置、制御パラメータ調整方法、制御パラメータ調整プログラム
JP6650786B2 (ja) 2016-03-03 2020-02-19 三菱日立パワーシステムズ株式会社 制御パラメータ自動調整装置、制御パラメータ自動調整方法、及び制御パラメータ自動調整装置ネットワーク
JP2018068752A (ja) 2016-10-31 2018-05-10 株式会社Preferred Networks 機械学習装置、機械学習方法及びプログラム
JP6778666B2 (ja) 2017-08-24 2020-11-04 株式会社日立製作所 探索装置及び探索方法
JP6883787B2 (ja) 2017-09-06 2021-06-09 パナソニックIpマネジメント株式会社 学習装置、学習方法、学習プログラム、推定装置、推定方法、及び推定プログラム
JP6974712B2 (ja) 2017-10-24 2021-12-01 富士通株式会社 探索方法、探索装置および探索プログラム
JP7121506B2 (ja) 2018-03-14 2022-08-18 株式会社日立ハイテク 探索装置、探索方法及びプラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074188A (ja) * 1996-05-23 1998-03-17 Hitachi Ltd データ学習装置およびプラント制御装置
KR100463256B1 (ko) * 2001-06-29 2005-01-07 가부시끼가이샤 히다치 세이사꾸쇼 플라즈마처리제어장치 및 처리제어방법
JP2006074067A (ja) * 2005-11-08 2006-03-16 Hitachi Ltd プラズマ処理装置および処理方法
KR20070064259A (ko) * 2005-12-15 2007-06-20 오므론 가부시키가이샤 프로세스 이상 분석 장치 및 프로그램
JP2013518449A (ja) 2010-01-29 2013-05-20 東京エレクトロン株式会社 半導体製造ツールを自己学習及び自己改善するための方法及びシステム

Also Published As

Publication number Publication date
KR102311313B1 (ko) 2021-10-12
JP2019165123A (ja) 2019-09-26
JP7137943B2 (ja) 2022-09-15
TW201941115A (zh) 2019-10-16
US11189470B2 (en) 2021-11-30
TWI737959B (zh) 2021-09-01
US20190295827A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
KR102311313B1 (ko) 탐색 장치, 탐색 방법 및 플라스마 처리 장치
KR102295211B1 (ko) 탐색 장치 및 탐색 방법
KR102039394B1 (ko) 탐색 장치 및 탐색 방법
JP7636418B2 (ja) 半導体製造プロセスのための性能予測子
KR102583830B1 (ko) 제조 동안의 고급 반도체 프로세스 최적화 및 적응형 제어
US10930531B2 (en) Adaptive control of wafer-to-wafer variability in device performance in advanced semiconductor processes
US10254641B2 (en) Layout pattern proximity correction through fast edge placement error prediction
CN112136135B (zh) 使用关键尺寸扫描型电子显微镜的工艺仿真模型校正
KR20240067834A (ko) 피처 모델들을 사용한 프로세스 레시피 생성 및 매칭
JP6754878B2 (ja) 探索装置および探索方法
CN117836895A (zh) 制造系统处的多级rf脉冲监测和rf脉冲化参数优化
TW202347188A (zh) 探索裝置及探索方法以及半導體裝置製造系統

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190116

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200626

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20210426

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210715

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20211005

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20211006

End annual number: 3

Start annual number: 1

PG1601 Publication of registration