TWI694487B - 製程窗優化器 - Google Patents
製程窗優化器 Download PDFInfo
- Publication number
- TWI694487B TWI694487B TW107106250A TW107106250A TWI694487B TW I694487 B TWI694487 B TW I694487B TW 107106250 A TW107106250 A TW 107106250A TW 107106250 A TW107106250 A TW 107106250A TW I694487 B TWI694487 B TW I694487B
- Authority
- TW
- Taiwan
- Prior art keywords
- processing
- pattern
- defect
- substrate
- parameter
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 200
- 230000008569 process Effects 0.000 title claims description 88
- 238000012545 processing Methods 0.000 claims abstract description 186
- 230000007547 defect Effects 0.000 claims abstract description 151
- 239000000758 substrate Substances 0.000 claims abstract description 123
- 238000004519 manufacturing process Methods 0.000 claims abstract description 46
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000001459 lithography Methods 0.000 description 89
- 230000005855 radiation Effects 0.000 description 53
- 230000003287 optical effect Effects 0.000 description 27
- 210000001747 pupil Anatomy 0.000 description 22
- 238000004088 simulation Methods 0.000 description 18
- 238000007689 inspection Methods 0.000 description 16
- 238000009826 distribution Methods 0.000 description 15
- 230000010287 polarization Effects 0.000 description 13
- 235000012431 wafers Nutrition 0.000 description 13
- 238000013145 classification model Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 238000005286 illumination Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005094 computer simulation Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 244000208734 Pisonia aculeata Species 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000007477 logistic regression Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 239000010432 diamond Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000005405 multipole Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70525—Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706837—Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本文揭示一種用於一器件製造製程之電腦實施缺陷預測方法,該器件製造製程涉及將一圖案處理至一基板上,該方法包含:自該圖案識別一處理窗限制圖案(PWLP);判定該PWLP被處理所依據之一處理參數;及使用該處理參數來判定或預測運用該器件製造製程自該PWLP產生的一缺陷之存在、存在機率、一特性或其一組合。
Description
本發明係關於一種優化半導體製造製程之效能之方法。該方法可結合微影裝置而使用。
微影裝置為將所要圖案施加至基板之目標部分上之機器。微影裝置可用於(例如)積體電路(IC)製造中。在彼情況下,圖案化器件(其替代地被稱作光罩或比例光罩)可用以產生對應於IC之個別層之電路圖案,且可將此圖案成像至具有輻射敏感材料(抗蝕劑)層之基板(例如,矽晶圓)上之目標部分(例如,包含晶粒之部分、一個晶粒或若干晶粒)上。一般而言,單一基板將含有經順次地曝光之鄰近目標部分之網路。已知微影裝置包括:所謂步進器,其中藉由一次性將整個圖案曝光至目標部分上來輻照每一目標部分;及所謂掃描器,其中藉由在給定方向(「掃描」方向)上經由光束而掃描圖案同時平行或反平行於此方向而同步地掃描基板來輻照每一目標部分。
本文揭示一種用於一器件製造製程之電腦實施缺陷判定或預測方法,該器件製造製程涉及將圖案處理至一基板上,該方法包含:自該等圖案識別一或多個處理窗限制圖案(PWLP);判定該等PWLP被處理所依據之一或多個處理參數;使用該一或多個處理參數來判定或預測運用該器件製造製程自該等PWLP中之至少一者產生的一缺陷之存在、存在機率、一或多個特性或其一組合。在一實施例中,緊接在處理該等PWLP之前判定該一或多個處理參數。在一實施例中,該缺陷在不可逆地處理該基板之前不可偵測。該缺陷不可偵測之事實可歸因於用以進行標準檢測之檢測工具之受限制品質。若使用本文所揭示之電腦實施缺陷預測方法來預測此缺陷,則特定缺陷可藉由非標準檢測工具檢測以進一步評估所預測缺陷之嚴重性。替代地,缺陷可能太小而根本不能用在草擬本文時可用之檢測工具中任一者來偵測。在此狀況下,使用本文所揭示之方法進行之缺陷之預測可用以決定重工晶粒或晶圓以避免關於該產品之所預測缺陷。 根據一實施例,使用該一或多個處理參數來判定或預測存在、存在機率、一或多個特性或其一組合進一步使用該等PWLP之一特性、該等圖案之一特性,或此兩者。 根據一實施例,該方法進一步包含使用該缺陷之該存在、該存在機率、該一或多個特性或其一組合來調整該一或多個處理參數。在一實施例中,可反覆進行判定或預測一缺陷之存在、存在機率、一或多個特性或其一組合,及調整該一或多個處理參數。 根據一實施例,該方法進一步包含使用經調整之該一或多個微影參數來判定或預測使用該器件製造製程自該等PWLP中之至少一者產生的一殘餘缺陷之存在、存在機率、一或多個特性或其一組合。 根據一實施例,該方法進一步包含判定該等PWLP之製程窗。 根據一實施例,該方法進一步包含將該一或多個處理參數編譯成一處理參數映像。 根據一實施例,使用一經驗模型或一計算模型來識別該一或多個PWLP。 根據一實施例,該一或多個處理參數係選自由如下各者組成之一群組:聚焦、劑量、源參數、投影光學件參數、自度量衡獲得之資料,及來自處理裝置之操作者的資料。 根據一實施例,自一繞射工具或一電子顯微鏡獲得自度量衡獲得之該資料。 根據一實施例,使用模型或藉由查詢一資料庫而判定或預測該一或多個處理參數。 根據一實施例,判定或預測該缺陷之該存在、該存在機率、該一或多個特性或其一組合包含比較該一或多個處理參數與該製程窗。 根據一實施例,判定或預測該缺陷之該存在、該存在機率、該一或多個特性或其一組合包含使用一分類模型,其中該一或多個處理參數作為至該分類模型之輸入。 根據一實施例,該分類模型係選自由邏輯回歸及多項式對數優劣比(multinomial logit)、機率單位回歸、感知器演算法、支援向量機器、匯入向量機器及線性判別分析組成的一群組。 根據一實施例,判定或預測該缺陷之該存在、該存在機率、該一或多個特性或其一組合包含依據該等處理參數來模擬該等PWLP中之至少一者之一影像或所預期圖案化輪廓且判定影像或輪廓參數。 根據一實施例,該器件製造製程涉及使用一微影裝置。 本文揭示一種製造一器件之方法,其涉及將圖案處理至一基板上或處理至該基板之一晶粒上,該方法包含:在處理該基板或該晶粒之前判定處理參數;使用在處理該基板或該晶粒之前之該等處理參數且使用該基板或該晶粒之一特性、待處理至該基板或該晶粒上之圖案之幾何形狀之一特性或此兩者來預測或判定一缺陷之存在、一缺陷之存在機率、一缺陷之一特性或其一組合;基於該預測或判定而調整該等處理參數以便消除、縮減該缺陷之機率或嚴重性。 根據一實施例,該方法進一步包含自該等圖案識別一或多個處理窗限制圖案(PWLP)。 根據一實施例,該缺陷為自該等PWLP中之至少一者產生之一缺陷。 根據一實施例,該基板或該晶粒之該特性為該等PWLP中之至少一者之一製程窗。 本文揭示一種製造一器件之方法,其涉及將圖案處理至一基板批量上,該方法包括:處理該基板批量;破壞性地檢測該批量之不到2%、不到1.5%或不到1%以判定經處理至該等基板上之該等圖案中之缺陷之存在。 根據一實施例,使用一微影裝置來處理該基板批量。 本文揭示一種製造一器件之方法,其包含:上文所描述之該電腦實施缺陷預測方法;及至少部分地基於該缺陷之經判定或經預測之該存在、存在機率、一或多個特性或其一組合而指示檢測哪些PWLP。 根據一實施例,該缺陷為選自如下各者中之一或多者:頸縮、線拉回、線薄化、CD誤差、重疊、抗蝕劑頂部損耗、抗蝕劑底切及/或橋接。 本文揭示一種用於一微影製程之缺陷判定或預測方法,其中該方法包含使用該微影製程之至少一部分之一模擬來判定或預測一缺陷之存在、存在機率、一特性或其一組合之一步驟。 根據一實施例,該微影製程包含一器件製造製程,該器件製造製程涉及將一圖案處理至一基板上,該缺陷之經判定或經預測之該存在、存在機率、特性或其組合為該圖案之部分。 根據一實施例,在將該圖案不可逆地處理至該基板上之前判定或預測該缺陷。 根據一實施例,在將該圖案蝕刻至該基板之至少部分中時或在使用該圖案之至少一部分以將離子植入至該基板中時將該圖案不可逆地處理至該基板上。 根據一實施例,該方法包含針對使用該微影製程而處理之每一基板判定或預測該缺陷之存在、存在機率、特性或其組合。 根據一實施例,一微影生產工具之一生產參數係取決於判定或預測該缺陷之存在、存在機率、特性或其組合之該步驟,該微影生產工具經組態以用於在該微影製程中執行至少一步驟。 本文揭示一種用於在一微影製程中分類一缺陷或一可能缺陷之缺陷分類方法,該方法包含使用該微影製程之至少一部分之一模擬來分類該缺陷或該可能缺陷之一步驟。 根據一實施例,該微影製程包含一器件製造製程,該器件製造製程涉及將一圖案處理至一基板上。 本文揭示一種改良一微影製程中之一缺陷之一捕捉速率之方法,該方法包含使用該微影製程之至少一部分之一模擬來判定或預測該缺陷之存在、存在機率、特性或其組合之一步驟。 根據一實施例,該微影製程包含一器件製造製程,該器件製造製程涉及將一圖案處理至一基板上。 本文揭示一種在一微影製程中自複數個圖案選擇待檢測之一圖案之方法,該方法包含至少部分地基於該微影製程之至少一部分之一模擬而選擇待檢測之該圖案之一步驟。 根據一實施例,該微影製程包含一器件製造製程,該器件製造製程涉及將該複數個圖案處理至一基板上。 根據一實施例,檢測該選定圖案以評估該選定圖案是否有缺陷或該選定圖案之一部分是否包含一缺陷。 本文揭示一種在一微影製程中定義一缺陷之一判定或預測之一準確度的方法,該方法包含定義該微影製程之至少一部分之一模擬之一準確度之一步驟,該模擬係用於判定或預測該缺陷之一存在、存在機率、特性或其組合。 根據一實施例,該微影製程包含一器件製造製程,該製造製程涉及將一圖案處理至一基板上。 根據一實施例,該缺陷之該判定或預測之該準確度高於用於該微影製程中之一缺陷檢測工具之一準確度。 本文揭示一種電腦程式產品,其包含經記錄有指令之一電腦可讀媒體,該等指令在由一電腦執行時實施上文之方法中任一者。
儘管在本文中可特定地參考微影裝置在IC製造中之使用,但應理解,本文所描述之微影裝置可具有其他應用,諸如,製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭,等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,可認為本文對術語「晶圓」或「晶粒」之任何使用分別與更一般術語「基板」或「目標部分」同義。可在曝光之前或之後在(例如)塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)或度量衡或檢測工具中處理本文所提及之基板。適用時,可將本文之揭示內容應用於此等及其他基板處理工具。另外,可將基板處理一次以上,例如,以便產生多層IC,使得本文所使用之術語「基板」亦可指已經含有多個經處理層之基板。 本文所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如,具有為365奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV)輻射(例如,具有在5奈米至20奈米之範圍內之波長);以及粒子束(諸如,離子束或電子束)。 本文所使用之術語「圖案化器件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的器件。應注意,被賦予至輻射光束之圖案可能不會確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之器件(諸如,積體電路)中之特定功能層。 圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減相移之光罩類型,以及各種混合式光罩類型。可程式化鏡面陣列之一實例使用小鏡面之矩陣配置,該等小鏡面中每一者可個別地傾斜,以便在不同方向上反射入射輻射光束;以此方式,經反射光束經圖案化。 支撐結構固持圖案化器件。支撐結構以取決於圖案化器件之定向、微影裝置之設計及其他條件(諸如,圖案化器件是否被固持於真空環境中)的方式來固持圖案化器件。支撐件可使用機械夾持、真空或其他夾持技術,例如,在真空條件下之靜電夾持。支撐結構可為(例如)框架或台,其可根據需要而固定或可移動且可確保圖案化器件(例如)相對於投影系統處於所要位置。可認為本文中對術語「比例光罩」或「光罩」之任何使用皆與更一般術語「圖案化器件」同義。 本文所使用之術語「投影系統」應被廣泛地解譯為涵蓋適於(例如)所使用之曝光輻射或適於諸如浸潤流體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射光學系統、反射光學系統及反射折射光學系統。可認為本文對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」同義。 照明系統亦可涵蓋各種類型之光學組件,包括用於導向、塑形或控制輻射光束的折射、反射及反射折射光學組件,且此等組件亦可在下文中被集體地或單個地稱作「透鏡」。 微影裝置可屬於具有兩個(雙載物台)或兩個以上基板台(及/或兩個或兩個以上支撐結構)之類型。在此等「多載物台」機器中,可並行地使用額外台,或可在一或多個台上進行預備步驟,同時將一或多個其他台用於曝光。 微影裝置亦可屬於如下類型:其中基板被浸潤於具有相對高折射率之液體(例如,水)中,以便填充投影系統之最終元件與基板之間的空間。浸潤技術在此項技術中被熟知用於增加投影系統之數值孔徑。 圖1示意性地描繪根據本發明之一特定實施例之微影裝置。該裝置包含: - 照明系統(照明器) IL,其用以調節輻射光束PB (例如,UV輻射或DUV輻射); - 支撐結構MT,其用以支撐圖案化器件(例如,光罩)MA,且連接至用以相對於項目PL而準確地定位該圖案化器件之第一定位器件PM; - 基板台(例如,晶圓台) WT,其用於固持基板(例如,抗蝕劑塗佈晶圓)W,且連接至用於相對於項目PL而準確地定位該基板之第二定位器件PW;及 - 投影系統(例如,折射投影透鏡) PL,其經組態以將由圖案化器件MA賦予至輻射光束PB之圖案成像至基板W之目標部分C (例如,包含一或多個晶粒)上。 如此處所描繪,裝置屬於透射類型(例如,使用透射光罩)。替代地,裝置可屬於反射類型(例如,使用如以上所提及之類型之可程式化鏡面陣列)。 照明器IL自輻射源SO接收輻射光束。舉例而言,當輻射源為準分子雷射時,輻射源及微影裝置可為分離實體。在此等狀況下,不認為輻射源形成微影裝置之部件,且輻射光束係憑藉包含(例如)合適導向鏡面及/或光束擴展器之光束遞送系統BD而自輻射源SO傳遞至照明器IL。在其他狀況下,舉例而言,當輻射源為水銀燈時,輻射源可為裝置之整體部件。輻射源SO及照明器IL連同光束遞送系統BD(在需要時)可被稱作輻射系統。 照明器IL可變更光束之強度分佈。照明器可經配置以限制輻射光束之徑向範圍使得在照明器IL之光瞳平面中之環形區內之強度分佈為非零。另外或替代地,照明器IL可操作以限制光束在光瞳平面中之分佈使得在光瞳平面中之複數個同等間隔之區段中的強度分佈為非零。輻射光束在照明器IL之光瞳平面中之強度分佈可被稱作照明模式。 照明器IL可包含經組態以調整光束之強度分佈之調整器AM。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。照明器IL可操作以變化光束之角度分佈。舉例而言,照明器可操作以變更強度分佈為非零的光瞳平面中之區段之數目及角度範圍。藉由調整光束在照明器之光瞳平面中之強度分佈,可達成不同照明模式。舉例而言,藉由限制照明器IL之光瞳平面中之強度分佈之徑向及角度範圍,強度分佈可具有多極分佈,諸如,偶極、四極或六極分佈。可(例如)藉由將提供彼照明模式之光學件插入至照明器IL中或使用空間光調變器來獲得所要照明模式。 照明器IL可操作以變更光束之偏振且可操作以使用調整器AM來調整偏振。橫越照明器IL之光瞳平面之輻射光束的偏振狀態可被稱作偏振模式。使用不同偏振模式可允許在形成於基板W上之影像中達成較大對比度。輻射光束可為非偏振的。替代地,照明器可經配置以使輻射光束線性地偏振。輻射光束之偏振方向可橫越照明器IL之光瞳平面而變化。輻射之偏振方向在照明器IL之光瞳平面中之不同區中可不同。可取決於照明模式來選擇輻射之偏振狀態。對於多極照明模式,輻射光束之每一極之偏振可大體上垂直於照明器IL之光瞳平面中之彼極的位置向量。舉例而言,對於偶極照明模式,輻射可在實質上垂直於將偶極之兩個對置區段二等分之線的方向上線性地偏振。輻射光束可在可被稱作經X偏振狀態及經Y偏振狀態之兩個不同正交方向中之一者上偏振。對於四極照明模式,每一極之區段中之輻射可在實質上垂直於將彼區段二等分之線之方向上線性地偏振。此偏振模式可被稱作XY偏振。相似地,對於六極照明模式,每一極之區段中之輻射可在實質上垂直於將彼區段二等分之線之方向上線性地偏振。此偏振模式可被稱作TE偏振。 另外,照明器IL通常包含各種其他組件,諸如,積光器IN及聚光器CO。照明器提供在橫截面中具有所要均一性及強度分佈的經調節輻射光束PB。 輻射光束PB入射於被固持於支撐結構MT上之圖案化器件(例如,光罩) MA上。在已橫穿圖案化器件MA的情況下,光束PB傳遞通過透鏡PL,透鏡PL將該光束聚焦至基板W之目標部分C上。憑藉第二定位器件PW及位置感測器IF (例如,干涉量測器件),可準確地移動基板台WT,例如,以便使不同目標部分C定位於光束PB之路徑中。相似地,第一定位器件PM及另一位置感測器(其未在圖1中被明確地描繪)可用以(例如)在自光罩庫之機械擷取之後或在掃描期間相對於光束PB之路徑來準確地定位圖案化器件MA。一般而言,將憑藉形成定位器件PM及PW之部件之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT及WT之移動。然而,在步進器(相對於掃描器)之狀況下,支撐結構MT可僅連接至短衝程致動器,或可固定。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件MA及基板W。 所描繪裝置可用於以下較佳模式中: 1. 在步進模式中,在將被賦予至光束PB之整個圖案一次性投影至目標部分C上時,使支撐結構MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中成像之目標部分C之大小。 2. 在掃描模式中,在將被賦予至光束PB之圖案投影至目標部分C上時,同步地掃描支撐結構MT及基板台WT (亦即,單次動態曝光)。藉由投影系統PL之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。 3. 在另一模式中,在將被賦予至光束PB之圖案投影至目標部分C上時,使支撐結構MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在一掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡陣列)之無光罩微影。 亦可使用對上文所描述之使用模式之組合及/或變化或完全不同之使用模式。 投影系統PL具有可非均一之光學轉移函數,其可影響成像於基板W上之圖案。對於非偏振輻射,此等效應可由兩個純量映像相當良好地描述,該兩個純量映像描述依據射出投影系統之輻射光瞳之平面中之位置而變化的該輻射之透射(變跡)及相對相位(像差)。可將可被稱作透射映像及相對相位映像之此等純量映像表達為基底函數之完整集合之線性組合。一特別方便集合為任尼克多項式,其形成單位圓上所定義之正交多項式集合。每一純量映像之判定可涉及判定此展開式中之係數。因為任尼克多項式在單位圓上正交,所以可藉由依次演算測定純量映像與每一任尼克多項式之內積且將此內積除以彼任尼克多項式之範數之平方來判定任尼克係數。 透射映像及相對相位映像係場及系統相依的。亦即,一般而言,每一投影系統PL將針對每一場點(亦即,針對投影系統PL之影像平面中之每一空間位置)具有一不同任尼克展開式。可藉由將輻射(例如)自投影系統PL之物件平面(亦即,圖案化器件MA之平面)中之類點源投影通過投影系統PL且使用剪切干涉計以量測波前(亦即,具有相同相位之點之軌跡)來判定投影系統PL在其光瞳平面中之相對相位。剪切干涉計係常見路徑干涉計且因此,有利的是,無需次級參考光束來量測波前。剪切干涉計可包含一繞射光柵,例如,投影系統之影像平面(亦即,基板台WT)中之二維柵格;及一偵測器,其經配置以偵測與投影系統PL之光瞳平面共軛的平面中之干涉圖案。干涉圖案係與輻射相位相對於在剪切方向上之光瞳平面中之座標之導數有關。偵測器可包含感測元件陣列,諸如,電荷耦合器件(CCD)。 可在兩個垂直方向上順序地掃描繞射光柵,該兩個垂直方向可與投影系統PL之座標系統之軸線(x及y)重合或可與此等軸線成諸如45度之角度。可遍及整數個光柵週期(例如,一個光柵週期)執行掃描。該掃描使在一個方向上之相位變化達到平均數,從而允許重新建構在另一方向上之相位變化。此情形允許依據兩個方向來判定波前。 目前先進技術之微影裝置LA之投影系統PL可能不產生可見條紋,且因此,可使用相位步進技術(諸如,移動繞射光柵)來增強波前之判定之準確度。可在繞射光柵之平面中且在垂直於量測之掃描方向之方向上執行步進。步進範圍可為一個光柵週期,且可使用至少三個(均一地分佈)相位步進。因此,舉例而言,可在y方向上執行三個掃描量測,在x方向上針對一不同位置執行每一掃描量測。繞射光柵之此步進將相位變化有效地變換成強度變化,從而允許判定相位資訊。光柵可在垂直於繞射光柵之方向(z方向)上步進以校準偵測器。 可藉由將輻射(例如)自投影系統PL之物件平面(亦即,圖案化器件MA之平面)中之類點源投影通過投影系統PL且使用偵測器來量測與投影系統PL之光瞳平面共軛的平面中之輻射強度來判定投影系統PL在其光瞳平面中之透射(變跡)。可使用與用以量測波前以判定像差的偵測器同一個偵測器。投影系統PL可包含複數個光學(例如,透鏡)元件,且可進一步包含一調整機構PA,該調整機構PA經組態以調整光學元件中之一或多者以便校正像差(橫越遍及場之光瞳平面之相位變化)。為了達成此調整,調整機構PA可操作而以一或多個不同方式操控投影系統PL內之一或多個光學(例如,透鏡)元件。投影系統可具有一座標系統,其中該投影系統之光軸在z方向上延伸。調整機構PA可操作以進行以下各項之任何組合:使一或多個光學元件位移;使一或多個光學元件傾斜;及/或使一或多個光學元件變形。光學元件之位移可在任何方向(x、y、z或其組合)上進行。光學元件之傾斜通常出自垂直於光軸之平面藉由圍繞在x或y方向上之軸線旋轉而進行,但對於非可旋轉對稱之非球面光學元件可使用圍繞z軸之旋轉。光學元件之變形可包括低頻形狀(例如,散光)及高頻形狀(例如,自由形式非球面)兩者。可(例如)藉由使用一或多個致動器以對光學元件之一或多個側施加力及/或藉由使用一或多個加熱元件以加熱光學元件之一或多個選定區來執行光學元件之變形。一般而言,沒有可能調整投影系統PL以校正變跡(橫越光瞳平面之透射變化)。可在設計用於微影裝置LA之圖案化器件(例如,光罩) MA時使用投影系統PL之透射映像。在使用計算微影技術的情況下,圖案化器件MA可經設計成用以至少部分地校正變跡。 圖案化器件上之各種圖案可具有不同製程窗(亦即,將在規格內產生圖案所依據之處理參數之空間)。關於潛在系統性缺陷之圖案規格之實例包括檢查頸縮、線拉回、線薄化、CD、邊緣置放、重疊、抗蝕劑頂部損耗、抗蝕劑底切及橋接。可藉由合併每一個別圖案之製程窗(例如,將每一個別圖案之製程窗重疊)來獲得圖案化器件上之所有圖案之製程窗。所有圖案之製程窗之邊界含有一些個別圖案之製程窗之邊界。換言之,此等個別圖案限制所有圖案之製程窗。此等圖案可被稱作「熱點」或「製程窗限制圖案(PWLP)」,「熱點」與「製程窗限制圖案(PWLP)」可在本文中可互換地使用。當控制微影製程時,有可能集中於熱點且集中於熱點係低成本的。當熱點並未有缺陷時,最有可能的是,所有圖案未有缺陷。 處理參數可隨著基板上之位置且隨著時間(例如,在若干基板之間、在若干晶粒之間)而變化。此等變化可由諸如溫度及濕度之環境之改變造成。此等變化之其他原因可包括諸如源、投影光學件、基板台之處理裝置中之一或多個組件之漂移,微影裝置中之基板表面之高度變化等等。意識到此等變化及其對PWLP之影響或潛在圖案化缺陷且調整微影製程以適應此等變化以便縮減實際缺陷將有益。為了縮減追蹤此等變化之計算成本,吾人可再次僅監視熱點。 圖2展示根據一實施例的用於判定微影製程中之缺陷之存在之方法的流程圖。在步驟211中,使用任何合適方法自圖案(例如,圖案化器件上之圖案)來識別熱點或其部位。舉例而言,可藉由使用經驗模型或計算模型來分析圖案化器件上之圖案而識別熱點。在經驗模型中,不模擬圖案之影像(例如,抗蝕劑影像、光學影像、蝕刻影像);取而代之,經驗模型基於處理參數、圖案之參數與缺陷之間的相關性來預測缺陷或缺陷機率。舉例而言,經驗模型可為分類模型或有缺陷傾向之圖案之資料庫。在計算模型中,演算或模擬影像之一部分或一特性,且基於該部分或該特性來識別缺陷。舉例而言,可藉由尋找太遠離所要部位之線端來識別線拉回缺陷;可藉由尋找兩條線不理想地接合之部位來識別橋接缺陷;可藉由尋找分離層上之不理想地重疊或不理想地未重疊之兩個特徵來識別重疊缺陷。經驗模型相比於計算模型通常計算上較不昂貴。有可能基於個別熱點之熱點部位及製程窗而判定熱點之製程窗及/或將熱點之製程窗編譯成映像—亦即,判定依據部位而變化之製程窗。此製程窗映像可特性化圖案之佈局特定敏感度及處理裕度。在另一實例中,可諸如藉由FEM晶圓檢測或合適度量衡工具而實驗上判定熱點、其部位及/或其製程窗。缺陷可包括在顯影後檢測(ADI)(通常為光學檢測)中無法偵測之彼等缺陷,諸如,抗蝕劑頂部損耗、抗蝕劑底切,等等。習知檢測僅揭露在不可逆地處理(例如,蝕刻、離子植入)基板之後的此等缺陷,此時無法重工晶圓。因此,在草擬此文件時無法使用當前光學技術來偵測此等抗蝕劑頂部損耗缺陷。然而,模擬可用以判定可在何處發生抗蝕劑頂部損耗且嚴重性將達何種程度。基於此資訊,可決定使用更準確檢測方法(且通常更耗時)來檢測特定可能缺陷以判定缺陷是否需要重工,或可決定在進行不可逆處理(例如,蝕刻)之前重工特定抗蝕劑層之成像(移除具有抗蝕劑頂部損耗缺陷之抗蝕劑層且重新塗佈晶圓以重新進行該特定層之成像)。 在步驟212中,判定熱點被處理(例如,經成像或經蝕刻至基板上)所依據之處理參數。處理參數可為局域的—取決於熱點之部位、晶粒之部位,或此兩者。處理參數可為全域的—與熱點及晶粒之部位無關。一種用以判定處理參數之例示性方式為判定微影裝置之狀態。舉例而言,可自微影裝置量測雷射頻寬、聚焦、劑量、源參數、投影光學件參數及此等參數之空間或時間變化。另一例示性方式為自對基板執行之度量衡而獲得之資料或自處理裝置之操作者推斷處理參數。舉例而言,度量衡可包括使用繞射工具(例如,ASML YieldStar)、電子顯微鏡或其他合適檢測工具來檢測基板。有可能獲得關於經處理基板上之任何部位(包括經識別熱點)之處理參數。可將處理參數編譯成依據部位而變化之映像—微影參數或製程條件。圖7展示用於聚焦之例示性映像。當然,其他處理參數可被表示為依據部位而變化,亦即,映像。在一實施例中,可在處理每一熱點之前且較佳緊接在處理每一熱點之前判定處理參數。在一替代實施例中,此映像包含可自不同資料源組成之處理參數。舉例而言,為了估計聚焦誤差,吾人可將來自度量衡系統(例如,以繞射為基礎之度量衡系統,諸如,ASML YieldStar)之晶圓度量衡資料與來自微影曝光工具(例如,來自微影曝光工具之用以在將輻射敏感層曝光於基板上之前位階量測微影曝光工具之曝光光學件下方的經曝光表面之位階量測系統)之資料組合。不同資料源中之一者可(例如)包括相對高資料密度,而另一資料源可(例如)包括較少資料點但更準確資料值。將此兩個不同資料源組合使能夠產生處理參數映像,其中相對高密度資料歸因於對另一資料源之較少、較準確資料點之校準而亦相對準確。可(例如)藉由將微影工具之全影像場劃分成(例如)大約1×1毫米大小之子區域且自此等子區域中之圖案分析判定處理參數映像—(例如,判定聚焦深度映像、劑量寬容度映像、聚焦映像或劑量偏移映像)來產生此處理參數映像。接下來,向每一子區域中之處理參數值指派一數目使得該子區域中之每一像素包含處理參數之一值(像素大小取決於該子區域內部之資料密度)。進一步替代地,甚至可針對包含圖案且用以使用微影工具將圖案轉印至基板上之特定比例光罩或光罩產生此處理參數映像。此情形將導致特定用於一特定光罩之處理參數映像。隨後,使用(例如)使用特定微影曝光工具之模型進行之模擬甚至可允許將該微影曝光工具之特性簽名包括至處理參數映像中使得處理參數映像甚至可變成光罩及曝光工具特定的。對多個工具執行此等模擬甚至可允許使用者自多個微影工具選擇最佳微影工具以使特定光罩成像—當然不考量微影曝光工具之任何時間飄移。此曝光工具特定映像亦可用以允許調整除處理參數映像中所映射之處理參數值以外的其他處理參數值,以確保可需要在非有利處理參數值下成像之PWLP仍在規格內變得成像。舉例而言,當一特定PWLP可能在聚焦時未正確地成像(此可對該PWLP之臨界尺寸有影響)時,諸如劑量之其他處理參數值可經調適—可能局域地—以確保該PWLP之總尺寸仍在規格內。最後,上述處理參數映像中每一者可(例如)經轉換成一種約束映像。此約束映像可(例如)指示在哪一範圍內某一部位處之處理參數可變化而不危害PWLP。替代地,約束映像可(例如)包含權重映像,該權重映像指示設計之哪些區域需要使處理參數接近最佳參數設定且設計之哪些區域允許較大範圍之處理參數值。 在步驟213中,使用熱點被處理所依據之處理參數來判定該熱點處之缺陷之存在、存在機率、特性或其組合。此判定可簡單地比較處理參數與熱點之製程窗—若處理參數落在製程窗內,則不存在缺陷;若處理參數落在製程窗外部,則將預期存在至少一缺陷。亦可使用合適經驗模型(包括統計模型)來進行此判定。舉例而言,分類模型可用以提供缺陷之存在機率。用以進行此判定之另一方式為使用計算模型以依據處理參數來模擬熱點之影像或所預期圖案化輪廓且量測影像或輪廓參數。在一實施例中,可緊接在處理圖案或基板之後(亦即,在處理圖案或下一基板之前)判定處理參數。缺陷之經判定存在及/或特性可用作用於處置(重工或接受)之決策之基礎。在一實施例中,處理參數可用以演算微影參數之移動平均值。移動平均值係用以捕捉微影參數之長期飄移,而不受到短期波動擾亂。 在選用步驟214中,可使用如步驟213中所判定之存在、存在機率、特性或其組合來調整處理參數(亦即,預測或判定經回饋以調整處理參數),使得消除缺陷或縮減缺陷之嚴重性。舉例而言,若熱點位於基板之凸塊上,則改變聚焦可消除彼熱點上之缺陷。較佳地,調整處理參數,緊接之後處理每一熱點。步驟213及214可反覆。亦可在一或多個基板之處理之後尤其在判定處理參數之平均值(例如,移動平均值)時調整處理參數,以便補償系統性或緩慢變化之製程變化,或處理較大數目個可調整處理參數。處理參數之調整可包括聚焦、劑量、源或光瞳相位調整。 在選用步驟215中,可使用經調整處理參數來判定殘餘缺陷之存在及/或特性。殘餘缺陷為無法藉由調整處理參數而消除之缺陷。此判定可簡單地比較經調整處理參數與熱點之製程窗--若處理參數落在製程窗內,則預期不存在殘餘缺陷;若處理參數落在製程窗外部,則將預期存在至少一殘餘缺陷。亦可使用合適經驗模型(包括統計模型)來進行此判定。舉例而言,分類模型可用以提供殘餘缺陷之存在機率。用以進行此判定之另一方式為使用計算模型以依據經調整處理參數來模擬熱點之影像或所預期圖案化輪廓且量測影像或輪廓參數。殘餘缺陷之經判定存在及/或特性可用作用於處置(重工或接受)之決策之基礎。 視情況,可使熱點經受檢測之指示至少部分地基於殘餘缺陷之經判定或經預測存在、存在機率、一或多個特性或其組合。舉例而言,若基板具有具有一或多個殘餘缺陷之機率,則該基板可經受基板檢測。殘餘缺陷之預測或判定前饋至檢測。 圖3展示處理參數350之例示性源。一個源可為處理裝置之資料310,諸如,微影裝置之源、投影光學件、基板載物台等等之參數。另一源可為來自各種基板度量衡工具之資料320,諸如,晶圓高度映像、聚焦映像、CDU映像,等等。可在使基板經受步階(例如,蝕刻)(此情形防止基板之重工)之前獲得資料320。另一源可為來自各種圖案化器件度量衡工具、光罩CDU映像、光罩膜堆疊參數變化等等之資料330。另一源可為來自處理裝置之操作者的資料340。 圖4A展示圖2之步驟213之實施。在步驟411中,藉由使用模型或藉由查詢資料庫而獲得熱點之製程窗。舉例而言,製程窗可為由諸如聚焦及劑量之處理參數跨越之空間。在步驟412中,將圖2之步驟212中所判定之處理參數與製程窗進行比較。若處理參數落在製程窗內,則不存在缺陷;若處理參數落在製程窗外部,則將預期存在至少一缺陷。 圖4B展示圖2之步驟213之替代實施。處理參數420可用作至分類模型430之輸入(例如,獨立變數)。處理參數420可包括源之特性(例如,強度、光瞳剖面,等等)、投影光學件之特性、劑量、聚焦、抗蝕劑之特性、抗蝕劑之顯影及曝光後烘烤之特性,及蝕刻之特性。術語「分類器」或「分類模型」有時亦係指藉由分類演算法實施之將輸入資料映射至一類別之數學函數。在機器學習及統計學中,分類為基於含有類別成員資格為吾人所知之觀測(或例項)之資料之訓練集而識別新觀測屬於類別440集合(子群體)之哪一類別的問題。個別觀測經分析成可定量屬性集合,其被稱為各種解釋性變數、特徵,等等。此等屬性可不同地為分類的(例如,「良好」—不產生缺陷之微影製程,或「不良」—產生缺陷之微影製程;「類型1」、「類型2」、……「類型n」—不同類型之缺陷)。分類被認為是監督學習之例項,亦即,經正確識別觀測之訓練集可用的學習。分類模型之實例為邏輯回歸及多項式對數優劣比、機率單位回歸、感知器演算法、支援向量機器、匯入向量機器,及線性判別分析。 處理參數之一個實例為基板位階量測。圖5A展示具有許多晶粒(被描繪為柵格)之例示性基板。在所召集之晶粒中,識別熱點(被描繪為圓圈)連同該晶粒中之圖案中之較不關鍵位置(亦即,並非製程窗限制之位置,其被描繪為菱形)。圖5B展示使用傳統方法而獲得的可用聚焦深度(uDOF)。uDOF為落在曝光隙縫中之所有圖案之製程窗內的聚焦深度。圖5C展示使用根據本文所描述之一實施例之方法而獲得的可用聚焦深度(uDOF),其中較不關鍵位置區(菱形)被允許漂移較遠離其各別最佳焦點以藉由調整包括基板位階量測之處理參數而使熱點(圓圈)之最佳焦點較接近,藉此增加uDOF。 根據一實施例,本文所描述之方法允許針對每一基板或甚至每一晶粒調整處理參數。圖6展示用於處理流程之示意性流程圖。在步驟610中,判定緊接在處理基板或晶粒之前(例如,在處理緊接前一基板或晶粒之後)之處理參數。在步驟620中,使用緊接在處理基板或晶粒之前之處理參數且使用基板或晶粒之特性(例如,如自度量衡對基板或晶粒所判定)及/或待處理至基板或晶粒上之圖案之幾何形狀之特性來進行缺陷之存在、缺陷之存在機率、缺陷之特性或其組合的預測或判定。在步驟630中,基於預測而調整處理參數以便消除、縮減缺陷之機率或嚴重性。替代地,自待處理之佈局之模擬可知,PWLP可位於晶粒內之特定區域處。在此情形下,成像工具中之確保晶粒在成像工具中之曝光之前之位階量測的系統可確保此特定區域焦點對準,從而允許晶粒之其他區域自焦點轉向較遠以確保PWLP係在規格內成像。模擬可進一步用以判定較不關鍵結構歸因於由於含有PWLP之區域之較佳位階量測準確度之較不有利處理條件是否仍正確地成像。模擬亦可用以確保實際上在設計中找到所有類型之PWLP且所有PWLP之部位實際上為吾人所知且較佳置於PWLP映像中。此外,可橫越晶片設計應用搜尋演算法以找到(例如)為吾人所知且可(例如)在一種「熱點資料庫」中列出之PWLP。儘管很可能稍微較不準確,但此搜尋演算法相比於模擬全晶片設計可較快且可用以相對快速地找到已知PWLP。根據一實施例,本文所描述之方法允許在生產批量當中檢測較少基板,同時維持可比得上習知處理流程中之缺陷率的缺陷率。習知處理流程涉及處理(例如,在微影裝置中曝光)一基板批量,該批量之2%至3%或更多必須經檢測以便捕獲大多數缺陷。藉由使用根據當前實施例之缺陷預測方法,使用可用度量衡資料以虛擬地檢測晶圓且預測此等晶圓上之可能缺陷。因為根據該等實施例之缺陷預測方法係虛擬的,所以微影製程中所產生之實質上每一晶圓可被「虛擬地」檢測且因此達成實質上100%檢測涵蓋範圍。此廣泛「虛擬」檢測亦提供較多回饋資料,其實現較準確且較快的校正動作式樣,此情形通常縮減微影曝光工具中之任何漂移。 可使用以下條項來進一步描述本發明: 1. 一種用於一器件製造製程之電腦實施缺陷判定或預測方法,該器件製造製程涉及將一圖案處理至一基板上,該方法包含: 自該圖案識別一處理窗限制圖案(PWLP); 判定該PWLP被處理所依據之一處理參數;及 使用該處理參數來判定或預測運用該器件製造製程自該PWLP產生的一缺陷之存在、存在機率、一特性或其一組合。 2. 如條項1之方法,其中該判定或預測該存在、該存在機率、該特性或其該組合進一步使用該PWLP之一特性、該圖案之一特性,或此兩者。 3. 如條項1或2之方法,其進一步包含使用該缺陷之該存在、該存在機率、該特性或其該組合來調整該處理參數。 4. 如條項3之方法,其進一步包含反覆進行該判定或預測該缺陷之該存在、該存在機率、該特性或其該組合,及調整該處理參數。 5. 如條項3或4之方法,其進一步包含使用該經調整處理參數來判定或預測使用該器件製造製程自該PWLP產生的一殘餘缺陷之存在、存在機率、一特性或其一組合。 6. 如條項5之方法,其進一步包含至少部分地基於該殘餘缺陷之經判定或經預測之該存在、存在機率、該特性或其該組合而指示檢測複數個PWLP中之哪一者。 7. 如條項1至6中任一項之方法,其進一步包含判定該PWLP之一製程窗。 8. 如條項7之方法,其中該判定或預測該缺陷之該存在、該存在機率、該特性或其該組合包含比較該處理參數與該製程窗。 9. 如條項1至8中任一項之方法,其進一步包含將該處理參數編譯成一處理參數映像。 10. 如條項1至9中任一項之方法,其中使用一經驗模型或一計算模型來識別該PWLP。 11. 如條項1至10中任一項之方法,其中該處理參數為選自如下各者中之任一或多者:聚焦、劑量、一源參數、一投影光學件參數、自度量衡獲得之資料,及/或來自用於該器件製造製程中之一處理裝置之一操作者的資料。 12. 如條項11之方法,其中該處理參數為自度量衡獲得之資料,且自度量衡獲得之該資料係自一繞射工具或一電子顯微鏡而獲得。 13. 如條項1至12中任一項之方法,其中使用一模型或藉由查詢一資料庫而判定或預測該處理參數。 14. 如條項1至13中任一項之方法,其中該判定或預測該缺陷之該存在、該存在機率、該特性或其該組合包含使用一分類模型,其中該處理參數作為至該分類模型之輸入。 15. 如條項14之方法,其中該分類模型係選自由邏輯回歸及多項式對數優劣比、機率單位回歸、感知器演算法、支援向量機器、匯入向量機器及線性判別分析組成的一群組。 16. 如條項1至12中任一項之方法,其中該判定或預測該缺陷之該存在、該存在機率、該特性或其該組合包含依據該處理參數來模擬該PWLP之一影像或所預期圖案化輪廓且判定一影像或輪廓參數。 17. 如條項1至16中任一項之方法,其中該器件製造製程涉及使用一微影裝置。 18. 如條項1至17中任一項之方法,其中緊接在處理該PWLP之前判定該處理參數。 19. 如條項1至18中任一項之方法,其中該處理參數係選自局域處理參數或全域處理參數。 20. 如條項1至19中任一項之方法,其中識別該PWLP包括識別其一部位。 21. 如條項1至20中任一項之方法,其中該缺陷在不可逆地處理該基板之前不可偵測。 22. 一種製造一器件之方法,其涉及將一圖案處理至一基板上或處理至該基板之一晶粒上,該方法包含: 在處理該基板或該晶粒之前判定一處理參數; 使用在處理該基板或該晶粒之前之該處理參數且使用該基板或該晶粒之一特性、待處理至該基板或該晶粒上之一圖案之幾何形狀之一特性或此兩者來預測或判定一缺陷之存在、一缺陷之存在機率、一缺陷之一特性或其一組合; 基於該預測或判定而調整該處理參數以便消除、縮減該缺陷之機率或縮減該缺陷之嚴重性。 23. 如條項22之方法,其進一步包含自該圖案識別一處理窗限制圖案(PWLP)。 24. 如條項23之方法,其中該缺陷為自該PWLP產生之一缺陷。 25. 如條項23之方法,其中該基板或該晶粒之該特性為該PWLP之一製程窗。 26. 一種製造一器件之方法,其涉及將一圖案處理至一基板批量上,該方法包括:處理該基板批量;及破壞性地檢測該批量之不到2%、不到1.5%或不到1%以判定經處理至該等基板上之該圖案中之一缺陷之存在。 27. 如條項26之方法,其中使用一微影裝置來處理該基板批量。 28. 一種製造一器件之方法,其包含: 如條項1至27中任一項之電腦實施缺陷預測方法;及 至少部分地基於該缺陷之經判定或經預測之該存在、存在機率、特性或其該組合而指示檢測複數個PWLP中之哪一者。 29. 如條項1至28中任一項之方法,其中該缺陷為選自如下各者中之一或多者:頸縮、線拉回、線薄化、CD誤差、重疊、抗蝕劑頂部損耗、抗蝕劑底切及/或橋接。 30. 一種電腦程式產品,其包含經記錄有指令之一電腦可讀媒體,該等指令在由一電腦執行時實施如條項1至29中任一項之方法。 31. 一種用於一微影製程之缺陷判定或預測方法,其中該方法包含使用該微影製程之至少一部分之一模擬來判定或預測一缺陷之存在、存在機率、一特性或其一組合之一步驟。 32. 如條項31之缺陷判定或預測方法,其中該微影製程包含一器件製造製程,該器件製造製程涉及將一圖案處理至一基板上,該缺陷之經判定或經預測之該存在、存在機率、特性或其組合為該圖案之部分。 33. 如條項32之缺陷判定或預測方法,其中在將該圖案不可逆地處理至該基板上之前判定或預測該缺陷。 34. 如條項33之缺陷判定或預測方法,其中在將該圖案蝕刻至該基板之至少部分中時或在使用該圖案之至少一部分以將離子植入至該基板中時將該圖案不可逆地處理至該基板上。 35. 如條項31至34中任一項之缺陷判定或預測方法,其中該方法包含針對使用該微影製程而處理之每一基板判定或預測該缺陷之存在、存在機率、特性或其組合。 36. 如條項31至35中任一項之缺陷判定或預測方法,其中一微影生產工具之一生產參數係取決於判定或預測該缺陷之存在、存在機率、特性或其組合之該步驟,該微影生產工具經組態以用於在該微影製程中執行至少一步驟。 37. 一種用於分類一微影製程中之一缺陷或一可能缺陷之缺陷分類方法,該方法包含使用該微影製程之至少一部分之一模擬來分類該缺陷或該可能缺陷之一步驟。 38. 如條項37之缺陷分類方法,其中該微影製程包含一器件製造製程,該器件製造製程涉及將一圖案處理至一基板上。 39. 一種改良一微影製程中之一缺陷之一捕捉速率之方法,該方法包含使用該微影製程之至少一部分之一模擬來判定或預測該缺陷之存在、存在機率、特性或其組合之一步驟。 40. 如條項39之方法,其中該微影製程包含一器件製造製程,該器件製造製程涉及將一圖案處理至一基板上。 41. 一種在一微影製程中自複數個圖案選擇待檢測之一圖案之方法,該方法包含至少部分地基於該微影製程之至少一部分之一模擬而選擇待檢測之該圖案之一步驟。 42. 如條項41之方法,其中該微影製程包含一器件製造製程,該器件製造製程涉及將該複數個圖案處理至一基板上。 43. 如條項41或42中任一項之方法,其中檢測該選定圖案以評估該選定圖案是否有缺陷或該選定圖案之一部分是否包含一缺陷。 44. 一種在一微影製程中定義一缺陷之一判定或預測之一準確度的方法,該方法包含定義該微影製程之至少一部分之一模擬之一準確度之一步驟,該模擬係用於判定或預測該缺陷之一存在、存在機率、特性或其組合。 45. 如條項44之方法,其中該微影製程包含一器件製造製程,該器件製造製程涉及將一圖案處理至一基板上。 46. 如條項44或45中任一項之方法,其中該缺陷之該判定或預測之該準確度高於用於該微影製程中之一缺陷檢測工具之一準確度。 47. 一種電腦程式產品,其包含經記錄有指令之一電腦可讀媒體,該等指令在由一電腦執行時實施如條項31至46中任一項之方法。 48. 如條項47之電腦可讀媒體,其中由該等機器可執行指令進一步包含用於使用自一遠端電腦至該電腦可讀媒體之一連接而啟動該等方法步驟中之至少一些之指令。 49. 如條項48之電腦可讀媒體,其中與該遠端電腦之該連接係一安全連接。 50. 如條項48及49中任一項之電腦可讀媒體,其中該處理參數係由該遠端電腦提供。 51. 如條項50之電腦可讀媒體,其中該方法經進一步組態以用於將使用該處理參數而對運用該器件製造製程產生的一缺陷之該存在、存在機率、一特性或其一組合之該判定或預測返回提供至該遠端電腦。 52 一種缺陷檢測系統,其經組態以用於檢測使用如條項1至46中任一項之方法或使用如條項47至51中任一項之電腦可讀媒體而判定或預測之處理窗限制圖案。 53. 如條項52之缺陷檢測系統,其中該遠端電腦為該缺陷檢測系統之部分。 54. 一種基板,其包含處理窗限制圖案(PWLP)且進一步包含一度量衡目標,該度量衡目標用於判定該處理窗限制圖案被處理所依據之處理參數,以用於根據如條項1至46中任一項之方法或根據如條項47至51中任一項之電腦可讀媒體而判定或預測運用器件製造製程自該PWLP而產生的一缺陷之存在、存在機率、一特性或其一組合。 55. 如條項54之基板,其中該基板為包含一積體電路之層中之至少一些之一晶圓。 56. 一種微影成像裝置,其經組態以用於使處理窗限制圖案成像且經進一步組態以用於判定該處理窗限制圖案被處理所依據之處理參數。 57. 如條項56之微影成像裝置,其中該微影成像裝置包含遠端電腦,該遠端電腦用於將該處理參數提供至如條項50之電腦可讀媒體。 58. 一種資料庫,其包含供如條項1至46中任一項之方法中使用或供如條項47至51中任一項之電腦可讀媒體中使用之處理參數。 59. 如條項58之資料庫,其中該資料庫進一步包含與該等處理參數相關聯之該處理窗限制圖案。 60. 一種資料載體,其包含如條項58及59中任一項之資料庫。 本發明之實施例可以硬體、韌體、軟體或其任何組合來實施。本發明之實施例亦可被實施為儲存於機器可讀媒體上之指令,該等指令可由一或多個處理器讀取及執行。機器可讀媒體可包括用於儲存或傳輸以可由機器(例如,計算器件)讀取之形式之資訊的任何機構。舉例而言,機器可讀媒體可包括:唯讀記憶體(ROM);隨機存取記憶體(RAM);磁碟儲存媒體;光學儲存媒體;快閃記憶體器件;電學、光學、聲學或其他形式之傳播信號(例如,載波、紅外線信號、數位信號,等等);及其他者。另外,韌體、軟體、常式、指令可在本文中被描述為執行某些動作。然而,應瞭解,此等描述僅僅為方便起見,且此等動作事實上係由計算器件、處理器、控制器或執行韌體、軟體、常式、指令等等之其他器件引起。 雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。該描述不意欲限制本發明。
211‧‧‧步驟212‧‧‧步驟213‧‧‧步驟214‧‧‧步驟215‧‧‧步驟310‧‧‧資料320‧‧‧資料330‧‧‧資料340‧‧‧資料350‧‧‧處理參數411‧‧‧步驟412‧‧‧步驟420‧‧‧處理參數430‧‧‧分類模型440‧‧‧類別610‧‧‧步驟620‧‧‧步驟630‧‧‧步驟AM‧‧‧調整器BD‧‧‧光束遞送系統C‧‧‧目標部分CO‧‧‧聚光器IF‧‧‧位置感測器IL‧‧‧照明系統/照明器IN‧‧‧積光器M1‧‧‧圖案化器件對準標記M2‧‧‧圖案化器件對準標記MA‧‧‧圖案化器件MT‧‧‧支撐結構/物件台P1‧‧‧基板對準標記P2‧‧‧基板對準標記PB‧‧‧輻射光束PL‧‧‧項目/投影系統/透鏡PM‧‧‧第一定位器件PW‧‧‧第二定位器件SO‧‧‧輻射源W‧‧‧基板WT‧‧‧基板台/物件台
現在將參看隨附示意性圖式而僅作為實例來描述本發明之實施例,在該等圖式中,對應元件符號指示對應部件,且在該等圖式中: 圖1描繪根據本發明之一實施例之微影裝置; 圖2展示根據一實施例的用於判定微影製程中之缺陷之存在之方法的流程圖; 圖3展示處理參數之例示性源; 圖4A展示圖2之步驟213之實施; 圖4B展示圖2之步驟213之替代實施。 圖5A展示具有許多晶粒之例示性基板。 圖5B展示使用傳統方法而獲得的可用聚焦深度(uDOF)。 圖5C展示使用根據本文所描述之一實施例之方法而獲得的可用聚焦深度(uDOF)。 圖6展示用於處理流程之示意性流程圖。 圖7展示用於聚焦之例示性映像。
Claims (10)
- 一種用於一器件製程之缺陷判定或預測方法,該器件製程涉及將一圖案處理至一基板上,該方法包含:自該圖案識別一處理窗限制圖案(PWLP);判定該處理窗限制圖案被處理所依據之一處理參數;將該處理參數編譯(compiling)成一處理參數映像(map);及使用該處理參數映像來判定或預測運用該器件製程自該處理窗限制圖案產生的一缺陷。
- 如請求項1之方法,其中該處理參數映像係自複數個資料源組成。
- 如請求項2之方法,其中該複數個資料源之一第一者包括一相對高資料密度且該複數個資料源之一第二者包括一相對低資料密度。
- 如請求項1之方法,其進一步包含將該處理參數映像轉換成一約束(constraint)映像。
- 如請求項4之方法,其中該約束映像指示該處理參數可在哪一範圍內變化而不危害該處理窗限制圖案。
- 如請求項4之方法,其中該約束映像包含一權重映像,該權重映像指示該圖案之哪些區域需要使該處理參數接近該器件製造製程之一最佳參數 設定。
- 如請求項4之方法,其中該約束映像包含一權重映像,該權重映像指示該圖案之哪些區域允許該處理參數之值之一較大範圍。
- 如請求項1之方法,其中使用一經驗模型或一計算模型來識別該處理窗限制圖案。
- 如請求項1之方法,其中該處理參數為選自如下各者中之任一或多者:聚焦、劑量、一源參數、一投影光學件參數、自度量衡獲得之資料,及/或來自用於該器件製造製程中之一處理裝置之一操作者的資料。
- 一種製造一器件之方法,其包含:如請求項1至9中任一項之方法;及至少部分地基於該缺陷而指示檢測複數個處理窗限制圖案中之哪一者。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461939071P | 2014-02-12 | 2014-02-12 | |
US61/939,071 | 2014-02-12 | ||
US201461943834P | 2014-02-24 | 2014-02-24 | |
US61/943,834 | 2014-02-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201834016A TW201834016A (zh) | 2018-09-16 |
TWI694487B true TWI694487B (zh) | 2020-05-21 |
Family
ID=52302232
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107106250A TWI694487B (zh) | 2014-02-12 | 2015-01-26 | 製程窗優化器 |
TW104102587A TWI628696B (zh) | 2014-02-12 | 2015-01-26 | 製程窗優化器 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104102587A TWI628696B (zh) | 2014-02-12 | 2015-01-26 | 製程窗優化器 |
Country Status (8)
Country | Link |
---|---|
US (4) | US9990451B2 (zh) |
EP (1) | EP3105636B1 (zh) |
JP (2) | JP6386569B2 (zh) |
KR (4) | KR102359050B1 (zh) |
CN (2) | CN109283800B (zh) |
SG (1) | SG11201606207WA (zh) |
TW (2) | TWI694487B (zh) |
WO (1) | WO2015120996A1 (zh) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5969848B2 (ja) * | 2012-07-19 | 2016-08-17 | キヤノン株式会社 | 露光装置、調整対象の調整量を求める方法、プログラム及びデバイスの製造方法 |
CN105849643B (zh) | 2013-12-17 | 2019-07-19 | Asml荷兰有限公司 | 良品率估计和控制 |
CN106463434B (zh) | 2014-06-10 | 2020-12-22 | Asml荷兰有限公司 | 计算晶片检验 |
KR102250062B1 (ko) * | 2014-07-04 | 2021-05-11 | 삼성전자주식회사 | 반도체 소자의 제조 방법 및 장치 |
CN107077077B (zh) | 2014-09-22 | 2019-03-12 | Asml荷兰有限公司 | 过程窗口识别符 |
US10514614B2 (en) | 2015-02-13 | 2019-12-24 | Asml Netherlands B.V. | Process variability aware adaptive inspection and metrology |
WO2017080729A1 (en) * | 2015-11-13 | 2017-05-18 | Asml Netherlands B.V. | Methods for identifying a process window boundary |
NL2017739A (en) | 2015-11-27 | 2017-06-07 | Asml Netherlands Bv | Metrology target, method and apparatus, computer program and lithographic system |
WO2017108432A1 (en) | 2015-12-22 | 2017-06-29 | Asml Netherlands B.V. | Apparatus and method for process-window characterization |
KR102190292B1 (ko) | 2015-12-31 | 2020-12-14 | 에이에스엠엘 네델란즈 비.브이. | 패터닝 공정들을 위한 측정 위치들의 선택 |
KR102376200B1 (ko) * | 2016-05-12 | 2022-03-18 | 에이에스엠엘 네델란즈 비.브이. | 기계 학습에 의한 결함 또는 핫스폿의 식별 |
US10877381B2 (en) | 2016-10-21 | 2020-12-29 | Asml Netherlands B.V. | Methods of determining corrections for a patterning process |
US10908515B2 (en) * | 2016-12-23 | 2021-02-02 | Asml Netherlands B.V. | Method and apparatus for pattern fidelity control |
US10140400B2 (en) * | 2017-01-30 | 2018-11-27 | Dongfang Jingyuan Electron Limited | Method and system for defect prediction of integrated circuits |
WO2018153711A1 (en) | 2017-02-22 | 2018-08-30 | Asml Netherlands B.V. | Computational metrology |
US10599046B2 (en) | 2017-06-02 | 2020-03-24 | Samsung Electronics Co., Ltd. | Method, a non-transitory computer-readable medium, and/or an apparatus for determining whether to order a mask structure |
US11403453B2 (en) * | 2017-07-12 | 2022-08-02 | Asml Netherlands B.V. | Defect prediction |
WO2019043780A1 (ja) | 2017-08-29 | 2019-03-07 | ギガフォトン株式会社 | データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法 |
US11282695B2 (en) | 2017-09-26 | 2022-03-22 | Samsung Electronics Co., Ltd. | Systems and methods for wafer map analysis |
US10445452B2 (en) * | 2017-10-04 | 2019-10-15 | Mentor Graphics Corporation | Simulation-assisted wafer rework determination |
EP3495888A1 (en) * | 2017-12-06 | 2019-06-12 | ASML Netherlands B.V. | Method for controlling a lithographic apparatus and associated apparatuses |
WO2019115426A1 (en) | 2017-12-13 | 2019-06-20 | Asml Netherlands B.V. | Prediction of out of specification physical items |
CN111512235B (zh) * | 2017-12-19 | 2022-08-05 | Asml荷兰有限公司 | 基于计算量测的校正和控制 |
CN111512237B (zh) | 2017-12-22 | 2023-01-24 | Asml荷兰有限公司 | 基于缺陷概率的过程窗口 |
KR102536331B1 (ko) * | 2017-12-31 | 2023-05-26 | 에이에스엠엘 네델란즈 비.브이. | 결함 검사 및 검토를 위한 시스템들 및 방법들 |
CN113065101B (zh) * | 2018-01-03 | 2024-04-02 | 第四范式(北京)技术有限公司 | 逻辑回归模型的可视化解释方法及装置 |
KR102708993B1 (ko) * | 2018-02-08 | 2024-09-23 | 도쿄엘렉트론가부시키가이샤 | 정보 처리 장치, 프로그램, 프로그램 처리 실행 장치 및 정보 처리 시스템 |
US11287748B2 (en) * | 2018-02-23 | 2022-03-29 | Asml Netherlands B.V. | Guided patterning device inspection |
EP3749505B1 (en) | 2018-04-26 | 2022-12-14 | Hewlett-Packard Development Company, L.P. | Printing production quality prediction |
CN112313581B (zh) * | 2018-06-25 | 2024-05-03 | Asml荷兰有限公司 | 基于性能匹配的调谐扫描器的波前优化 |
WO2020039581A1 (ja) * | 2018-08-24 | 2020-02-27 | 技術研究組合次世代3D積層造形技術総合開発機構 | 情報処理装置、情報処理方法、情報処理プログラム、積層造形装置およびプロセスウィンドウ生成方法 |
EP3627225A1 (en) | 2018-09-19 | 2020-03-25 | ASML Netherlands B.V. | Particle beam apparatus, defect repair method, lithographic exposure process and lithographic system |
US11244873B2 (en) * | 2018-10-31 | 2022-02-08 | Tokyo Electron Limited | Systems and methods for manufacturing microelectronic devices |
WO2020094385A1 (en) * | 2018-11-08 | 2020-05-14 | Asml Netherlands B.V. | Prediction of out of specification based on spatial characteristic of process variability |
US20220028052A1 (en) * | 2018-12-14 | 2022-01-27 | Asml Netherlands B.V. | Apparatus and method for grouping image patterns to determine wafer behavior in a patterning process |
WO2020135997A1 (en) | 2018-12-26 | 2020-07-02 | Asml Netherlands B.V. | System and method for inspecting a wafer |
US11550309B2 (en) * | 2019-01-08 | 2023-01-10 | Kla Corporation | Unsupervised defect segmentation |
US11263737B2 (en) * | 2019-01-10 | 2022-03-01 | Lam Research Corporation | Defect classification and source analysis for semiconductor equipment |
US11348813B2 (en) | 2019-01-31 | 2022-05-31 | Applied Materials, Inc. | Correcting component failures in ion implant semiconductor manufacturing tool |
CN110034034B (zh) * | 2019-03-04 | 2021-06-15 | 上海华力集成电路制造有限公司 | 缺陷观察设备晶圆载台精度偏移的补偿方法 |
TWI845690B (zh) * | 2019-06-06 | 2024-06-21 | 日商東京威力科創股份有限公司 | 基板檢查裝置、基板檢查系統、基板檢查方法及電腦程式產品 |
US11442021B2 (en) * | 2019-10-11 | 2022-09-13 | Kla Corporation | Broadband light interferometry for focal-map generation in photomask inspection |
JP7508325B2 (ja) * | 2020-10-02 | 2024-07-01 | キヤノン株式会社 | フィードバック制御装置、リソグラフィ装置、測定装置、加工装置、平坦化装置、物品の製造方法、コンピュータプログラム、およびフィードバック制御方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777901A (en) * | 1995-09-29 | 1998-07-07 | Advanced Micro Devices, Inc. | Method and system for automated die yield prediction in semiconductor manufacturing |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5934459B2 (ja) | 1978-09-08 | 1984-08-22 | 太洋鋳機株式会社 | 鋳型砂冷却装置 |
JPS5934459U (ja) | 1982-08-27 | 1984-03-03 | 三菱電機株式会社 | 直流電動機 |
US6324298B1 (en) * | 1998-07-15 | 2001-11-27 | August Technology Corp. | Automated wafer defect inspection system and a process of performing such inspection |
US6466314B1 (en) * | 1998-09-17 | 2002-10-15 | Applied Materials, Inc. | Reticle design inspection system |
JP4597509B2 (ja) * | 1999-08-26 | 2010-12-15 | 株式会社ナノジオメトリ研究所 | パターン検査装置およびパターン検査方法 |
AU2002245560A1 (en) * | 2001-03-20 | 2002-10-03 | Numerial Technologies, Inc. | System and method of providing mask defect printability analysis |
US7363099B2 (en) * | 2002-06-07 | 2008-04-22 | Cadence Design Systems, Inc. | Integrated circuit metrology |
JP2004053683A (ja) | 2002-07-16 | 2004-02-19 | Fujitsu Ltd | パターン形成プロセスの管理方法及び管理装置 |
US6925860B1 (en) * | 2003-02-21 | 2005-08-09 | Nanometrics Incorporated | Leveling a measured height profile |
US9002497B2 (en) * | 2003-07-03 | 2015-04-07 | Kla-Tencor Technologies Corp. | Methods and systems for inspection of wafers and reticles using designer intent data |
US7003758B2 (en) * | 2003-10-07 | 2006-02-21 | Brion Technologies, Inc. | System and method for lithography simulation |
KR101056142B1 (ko) * | 2004-01-29 | 2011-08-10 | 케이엘에이-텐코 코포레이션 | 레티클 설계 데이터의 결함을 검출하기 위한 컴퓨터로구현되는 방법 |
WO2005098686A2 (en) * | 2004-04-02 | 2005-10-20 | Clear Shape Technologies, Inc. | Modeling resolution enhancement processes in integrated circuit fabrication |
US7295291B2 (en) * | 2004-05-12 | 2007-11-13 | Litel Instruments | Apparatus and process for the determination of static lens field curvature |
US7593565B2 (en) * | 2004-12-08 | 2009-09-22 | Rudolph Technologies, Inc. | All surface data for use in substrate inspection |
CN101002141B (zh) * | 2004-07-21 | 2011-12-28 | 恪纳腾技术公司 | 生成用于生成掩模版的仿真图像的仿真程序的输入的计算机实现的方法 |
US7814456B2 (en) * | 2004-11-22 | 2010-10-12 | Tela Innovations, Inc. | Method and system for topography-aware reticle enhancement |
DE102005009536A1 (de) * | 2005-02-25 | 2006-08-31 | Carl Zeiss Sms Gmbh | Verfahren zur Maskeninspektion im Rahmen des Maskendesigns und der Maskenherstellung |
US7297453B2 (en) * | 2005-04-13 | 2007-11-20 | Kla-Tencor Technologies Corporation | Systems and methods for mitigating variances on a patterned wafer using a prediction model |
US7760929B2 (en) * | 2005-05-13 | 2010-07-20 | Applied Materials, Inc. | Grouping systematic defects with feedback from electrical inspection |
US7853920B2 (en) | 2005-06-03 | 2010-12-14 | Asml Netherlands B.V. | Method for detecting, sampling, analyzing, and correcting marginal patterns in integrated circuit manufacturing |
US7769225B2 (en) | 2005-08-02 | 2010-08-03 | Kla-Tencor Technologies Corp. | Methods and systems for detecting defects in a reticle design pattern |
JP2007053202A (ja) | 2005-08-17 | 2007-03-01 | Toshiba Corp | 近接効果の計算方法、危険箇所検出装置及びプログラム |
DE102005041311B4 (de) | 2005-08-31 | 2012-04-12 | Globalfoundries Inc. | Verfahren und System zum automatischen Erkennen belichteter Substrate mit einer hohen Wahrscheinlichkeit für defokussierte Belichtungsfelder |
US7695876B2 (en) * | 2005-08-31 | 2010-04-13 | Brion Technologies, Inc. | Method for identifying and using process window signature patterns for lithography process control |
US7570796B2 (en) * | 2005-11-18 | 2009-08-04 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
EP2016620A2 (en) | 2006-04-17 | 2009-01-21 | Omnivision Cdm Optics, Inc. | Arrayed imaging systems and associated methods |
US7954072B2 (en) * | 2006-05-15 | 2011-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Model import for electronic design automation |
US8102408B2 (en) | 2006-06-29 | 2012-01-24 | Kla-Tencor Technologies Corp. | Computer-implemented methods and systems for determining different process windows for a wafer printing process for different reticle designs |
US20080074678A1 (en) * | 2006-09-26 | 2008-03-27 | Tokyo Electron Limited | Accuracy of optical metrology measurements |
JP4851924B2 (ja) * | 2006-12-08 | 2012-01-11 | 株式会社東芝 | 危険箇所集計方法、パターン修正方法およびプログラム |
US7694244B2 (en) * | 2006-12-18 | 2010-04-06 | Cadence Design Systems, Inc. | Modeling and cross correlation of design predicted criticalities for optimization of semiconductor manufacturing |
US7987150B1 (en) * | 2007-02-09 | 2011-07-26 | Siglaz | Method and apparatus for automated rule-based sourcing of substrate microfabrication defects |
US7689948B1 (en) * | 2007-02-24 | 2010-03-30 | Cadence Design Systems, Inc. | System and method for model-based scoring and yield prediction |
US7725845B1 (en) * | 2007-02-24 | 2010-05-25 | Cadence Design Systems, Inc. | System and method for layout optimization using model-based verification |
JP4846635B2 (ja) * | 2007-03-22 | 2011-12-28 | 株式会社東芝 | パターン情報生成方法 |
JP4333770B2 (ja) * | 2007-04-12 | 2009-09-16 | ソニー株式会社 | マスクパターン作成プログラム、半導体製造方法、マスクパターン作成方法および半導体設計プログラム |
JP4958616B2 (ja) * | 2007-04-20 | 2012-06-20 | 株式会社日立ハイテクノロジーズ | ホットスポット絞り込み装置、ホットスポット絞り込み方法、ホットスポット絞り込みプログラム、ホットスポット検査装置、および、ホットスポット検査方法 |
US7962863B2 (en) * | 2007-05-07 | 2011-06-14 | Kla-Tencor Corp. | Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer |
US7707526B2 (en) * | 2007-05-25 | 2010-04-27 | Synopsys, Inc. | Predicting IC manufacturing yield based on hotspots |
NL1036189A1 (nl) * | 2007-12-05 | 2009-06-08 | Brion Tech Inc | Methods and System for Lithography Process Window Simulation. |
US8260034B2 (en) | 2008-01-22 | 2012-09-04 | International Business Machines Corporation | Multi-modal data analysis for defect identification |
NL1036558A1 (nl) * | 2008-03-25 | 2009-09-28 | Asml Netherlands Bv | Method and lithographic apparatus for acquiring height data relating to a substrate surface. |
WO2009148976A1 (en) * | 2008-06-03 | 2009-12-10 | Brion Technologies, Inc. | Lens heating compensation methods |
JP6185693B2 (ja) * | 2008-06-11 | 2017-08-23 | ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation | ウェーハー上の設計欠陥および工程欠陥の検出、ウェーハー上の欠陥の精査、設計内の1つ以上の特徴を工程監視特徴として使用するための選択、またはそのいくつかの組み合わせのためのシステムおよび方法 |
NL2003654A (en) * | 2008-11-06 | 2010-05-10 | Brion Tech Inc | Methods and system for lithography calibration. |
NL2003699A (en) | 2008-12-18 | 2010-06-21 | Brion Tech Inc | Method and system for lithography process-window-maximixing optical proximity correction. |
US8312406B2 (en) * | 2009-06-22 | 2012-11-13 | Cadence Design Systems, Inc. | Method and system performing RC extraction |
US8108803B2 (en) * | 2009-10-22 | 2012-01-31 | International Business Machines Corporation | Geometry based electrical hotspot detection in integrated circuit layouts |
NL2005523A (en) | 2009-10-28 | 2011-05-02 | Asml Netherlands Bv | Selection of optimum patterns in a design layout based on diffraction signature analysis. |
CN102054074B (zh) * | 2009-10-30 | 2015-06-24 | 新思科技有限公司 | 后绕线布局的光刻热点的更正方法及系统 |
EP2537069B1 (en) * | 2010-02-19 | 2020-03-04 | ASML Netherlands BV | Lithographic apparatus and device manufacturing method |
US8534135B2 (en) * | 2010-04-30 | 2013-09-17 | Nanometrics Incorporated | Local stress measurement |
US9201022B2 (en) * | 2011-06-02 | 2015-12-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Extraction of systematic defects |
US8502146B2 (en) * | 2011-10-03 | 2013-08-06 | Kla-Tencor Corporation | Methods and apparatus for classification of defects using surface height attributes |
US8935643B2 (en) * | 2011-10-06 | 2015-01-13 | Mentor Graphics Corporation | Parameter matching hotspot detection |
US9053259B1 (en) * | 2011-11-28 | 2015-06-09 | Cadence Design Systems, Inc. | Methods, systems, and articles of manufacture for implementing pattern-based design enabled manufacturing of electronic circuit designs |
US9858658B2 (en) * | 2012-04-19 | 2018-01-02 | Applied Materials Israel Ltd | Defect classification using CAD-based context attributes |
US8843875B2 (en) * | 2012-05-08 | 2014-09-23 | Kla-Tencor Corporation | Measurement model optimization based on parameter variations across a wafer |
US10330608B2 (en) * | 2012-05-11 | 2019-06-25 | Kla-Tencor Corporation | Systems and methods for wafer surface feature detection, classification and quantification with wafer geometry metrology tools |
US8948495B2 (en) | 2012-08-01 | 2015-02-03 | Kla-Tencor Corp. | Inspecting a wafer and/or predicting one or more characteristics of a device being formed on a wafer |
US9189844B2 (en) * | 2012-10-15 | 2015-11-17 | Kla-Tencor Corp. | Detecting defects on a wafer using defect-specific information |
NL2011683A (en) * | 2012-12-13 | 2014-06-16 | Asml Netherlands Bv | Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product. |
KR102019534B1 (ko) * | 2013-02-01 | 2019-09-09 | 케이엘에이 코포레이션 | 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출 |
US9064084B2 (en) * | 2013-03-14 | 2015-06-23 | Globalfoundries Singapore Pte. Ltd. | Topography driven OPC and lithography flow |
US9081919B2 (en) * | 2013-03-15 | 2015-07-14 | Globalfoundries Singapore Pte. Ltd. | Design-for-manufacturing—design-enabled-manufacturing (DFM-DEM) proactive integrated manufacturing flow |
US9702829B1 (en) * | 2013-04-09 | 2017-07-11 | Kla-Tencor Corporation | Systems and methods for wafer surface feature detection and quantification |
US9466101B2 (en) * | 2013-05-01 | 2016-10-11 | Taiwan Semiconductor Manufacturing Company Limited | Detection of defects on wafer during semiconductor fabrication |
US9857291B2 (en) * | 2013-05-16 | 2018-01-02 | Kla-Tencor Corporation | Metrology system calibration refinement |
US20150112649A1 (en) * | 2013-10-18 | 2015-04-23 | International Business Machines Corporation | Clustering Lithographic Hotspots Based on Frequency Domain Encoding |
US10649347B2 (en) * | 2013-10-29 | 2020-05-12 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9518932B2 (en) * | 2013-11-06 | 2016-12-13 | Kla-Tencor Corp. | Metrology optimized inspection |
CN105849643B (zh) * | 2013-12-17 | 2019-07-19 | Asml荷兰有限公司 | 良品率估计和控制 |
CN106463434B (zh) * | 2014-06-10 | 2020-12-22 | Asml荷兰有限公司 | 计算晶片检验 |
US9747520B2 (en) * | 2015-03-16 | 2017-08-29 | Kla-Tencor Corporation | Systems and methods for enhancing inspection sensitivity of an inspection tool |
US10062158B2 (en) * | 2015-07-10 | 2018-08-28 | Globalwafers Co., Ltd. | Wafer nanotopography metrology for lithography based on thickness maps |
US10181185B2 (en) * | 2016-01-11 | 2019-01-15 | Kla-Tencor Corp. | Image based specimen process control |
US10796070B2 (en) * | 2018-07-19 | 2020-10-06 | Mentor Graphics Corporation | Layout pattern similarity determination based on binary turning function signatures |
WO2020094385A1 (en) * | 2018-11-08 | 2020-05-14 | Asml Netherlands B.V. | Prediction of out of specification based on spatial characteristic of process variability |
-
2015
- 2015-01-07 KR KR1020217002743A patent/KR102359050B1/ko active Active
- 2015-01-07 CN CN201811040666.4A patent/CN109283800B/zh active Active
- 2015-01-07 KR KR1020187036426A patent/KR102211093B1/ko active Active
- 2015-01-07 KR KR1020167025138A patent/KR101939288B1/ko active Active
- 2015-01-07 JP JP2016549131A patent/JP6386569B2/ja active Active
- 2015-01-07 SG SG11201606207WA patent/SG11201606207WA/en unknown
- 2015-01-07 KR KR1020227003222A patent/KR102427139B1/ko active Active
- 2015-01-07 EP EP15700059.7A patent/EP3105636B1/en active Active
- 2015-01-07 WO PCT/EP2015/050168 patent/WO2015120996A1/en active Application Filing
- 2015-01-07 CN CN201580008223.5A patent/CN105980934B/zh active Active
- 2015-01-26 TW TW107106250A patent/TWI694487B/zh active
- 2015-01-26 TW TW104102587A patent/TWI628696B/zh active
- 2015-02-09 US US14/616,905 patent/US9990451B2/en active Active
-
2018
- 2018-06-04 US US15/996,899 patent/US11238189B2/en active Active
- 2018-06-15 JP JP2018114918A patent/JP6641422B2/ja active Active
-
2022
- 2022-01-28 US US17/586,856 patent/US12141507B2/en active Active
-
2024
- 2024-10-28 US US18/928,905 patent/US20250053702A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777901A (en) * | 1995-09-29 | 1998-07-07 | Advanced Micro Devices, Inc. | Method and system for automated die yield prediction in semiconductor manufacturing |
Non-Patent Citations (1)
Title |
---|
Duo Ding,Xiang Wu,Joydeep Ghosh and David Z. Pan," Machine Learning based Lithographic Hotspot Detection with Critical-Feature Extraction and Classification",IC DESIGN AND TECHNOLOGY,2009 ICICDT`09 IEEE INTERNATIONAL CONFERENCE .IEEE PISCATAWAY,NJ,USA,18 MAY 2009,pages 219-222 * |
Also Published As
Publication number | Publication date |
---|---|
US20150227654A1 (en) | 2015-08-13 |
US20220147665A1 (en) | 2022-05-12 |
CN105980934A (zh) | 2016-09-28 |
US20250053702A1 (en) | 2025-02-13 |
KR102211093B1 (ko) | 2021-02-03 |
JP2018194847A (ja) | 2018-12-06 |
EP3105636B1 (en) | 2023-07-12 |
US11238189B2 (en) | 2022-02-01 |
EP3105636A1 (en) | 2016-12-21 |
KR20210014745A (ko) | 2021-02-09 |
JP6641422B2 (ja) | 2020-02-05 |
WO2015120996A1 (en) | 2015-08-20 |
CN109283800B (zh) | 2021-01-01 |
KR102427139B1 (ko) | 2022-07-29 |
KR20220019070A (ko) | 2022-02-15 |
US9990451B2 (en) | 2018-06-05 |
JP2017505460A (ja) | 2017-02-16 |
KR20160122217A (ko) | 2016-10-21 |
CN105980934B (zh) | 2018-10-09 |
TWI628696B (zh) | 2018-07-01 |
KR20180136581A (ko) | 2018-12-24 |
TW201834016A (zh) | 2018-09-16 |
KR101939288B1 (ko) | 2019-01-16 |
SG11201606207WA (en) | 2016-09-29 |
TW201532124A (zh) | 2015-08-16 |
US12141507B2 (en) | 2024-11-12 |
CN109283800A (zh) | 2019-01-29 |
KR102359050B1 (ko) | 2022-02-08 |
JP6386569B2 (ja) | 2018-09-05 |
US20180330030A1 (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12141507B2 (en) | Process window optimizer | |
US12067340B2 (en) | Computational wafer inspection | |
US20230042759A1 (en) | Separation of contributions to metrology data | |
TWI641959B (zh) | 處理窗識別符 | |
TWI767163B (zh) | 用於預測藉由掃描電子顯微鏡(sem)進行後續掃描之缺陷位置之方法、用於檢測晶圓之系統、及相關電腦程式產品 | |
CN112530828B (zh) | 计算机可读介质 |