[go: up one dir, main page]

TWI692197B - 混頻模組 - Google Patents

混頻模組 Download PDF

Info

Publication number
TWI692197B
TWI692197B TW107144234A TW107144234A TWI692197B TW I692197 B TWI692197 B TW I692197B TW 107144234 A TW107144234 A TW 107144234A TW 107144234 A TW107144234 A TW 107144234A TW I692197 B TWI692197 B TW I692197B
Authority
TW
Taiwan
Prior art keywords
signal
terminal
mixing module
control
coupled
Prior art date
Application number
TW107144234A
Other languages
English (en)
Other versions
TW202023181A (zh
Inventor
鄭丁元
Original Assignee
立積電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立積電子股份有限公司 filed Critical 立積電子股份有限公司
Priority to TW107144234A priority Critical patent/TWI692197B/zh
Priority to CN201910030545.XA priority patent/CN111293984B/zh
Priority to US16/579,870 priority patent/US10797648B2/en
Application granted granted Critical
Publication of TWI692197B publication Critical patent/TWI692197B/zh
Publication of TW202023181A publication Critical patent/TW202023181A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1491Arrangements to linearise a transconductance stage of a mixer arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • H03D3/008Compensating DC offsets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1433Balanced arrangements with transistors using bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/46One-port networks
    • H03H11/48One-port networks simulating reactances
    • H03H11/483Simulating capacitance multipliers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0047Offset of DC voltage or frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

混頻模組包括混頻器、至少一直流偏置電路、濾波器以及控制器。混頻器對輸入信號混頻以產生第一信號。至少一直流偏置電路基於第一信號產生第二信號。濾波器濾除第二信號中的交流部分並依據第二信號中的直流部分產生第三信號。控制器基於第三信號控制至少一直流偏置電路以減少第一信號中的直流部分。

Description

混頻模組
本發明是有關於一種信號混頻技術,且特別是有關於一種混頻模組。
在通訊系統中,信號必須進行上變頻(up conversion)或下變頻(down conversion)後才能進行信號傳播和處理。這種變頻步驟在傳統上稱為混頻,是接收和發射信號鏈必不可少的過程。並且,隨着無線通訊標準的不斷演進,現行較為先進的通訊系統(如,5G通訊)採用全雙工技術,接收器與發射器能夠在同一頻段上同時接收和發射信號,以期提高無線網路的傳輸能力。
然而,在接收器與發射器同時啟動的情況下,當接收器內部的混頻器所接收的信號(如,需做混頻的信號與用來做混頻的信號)具有相同頻率的部分時,將會產生直流偏置(DC offset),使得經由混頻器輸出的信號具有直流部分,導致信號無法有效地接收,因而降低通訊系統的性能。
本發明的混頻模組包括混頻器、至少一直流偏置電路、濾波器以及控制器。混頻器對一輸入信號混頻以產生一第一信號。至少一直流偏置電路基於所述第一信號產生一第二信號。濾波器濾除所述第二信號中的一交流部分並依據所述第二信號中的一直流部分產生一第三信號。控制器基於所述第三信號控制所述至少一直流偏置電路以減少所述第一信號中的一直流部分。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100、200、300、400、600:混頻模組
110:混頻器
120、121、1201、1201’、1202:直流偏置電路
130:濾波器
140、1401、1401’、1402、1402’:控制器
250:類比-數位轉換器
260:數位信號處理器
370:放大器
441、441’、642:控制電路
480:低噪音放大器
510、510’:比較器
520、520’:計數器
530、530’:暫存器
540、540’:數位-類比轉換器
550:多工器
910、910’:電容器模組
930、930’:電容式倍增濾波器
1000、1010、1020、C1、C2:電容器電路
AMP:信號的振幅
B:緩衝器
Clock:時脈信號
CT:數值
CCS1、CCS2、CCS3、CCS4:可控電流源
CS、CS1、CS2、CS3、CS4:電流源
Cf:電容器
I1、I1×a:電流值
M1~M7:電晶體
N1、N2:電容器電路的第一端
RS:比較結果
R、R1~R6:電阻
SIN、SIN1、SIN2:輸入信號
SLO、SLO1、SLO2:本地振盪信號
SD:數位輸出信號
S1、S11、S12、S2、S21、S22、S3、S31、S32:信號
S2’、S21’、S22’:經放大的信號
SC、SC11、SC12、SC21、SC22、
Figure 107144234-A0305-02-0025-3
:控制信號
SW1、SW2、SW3、SW4:開關
T、T1:時間
Vref:預定電壓
Val1、IDAC_DATA:校正數值
V1、V2:參考電壓端
圖1繪示本發明一實施例的混頻模組的方塊圖。
圖2繪示本發明另一實施例的混頻模組的方塊圖。
圖3繪示本發明另一實施例的混頻模組的方塊圖。
圖4繪示本發明一實施例的混頻模組的詳細方塊圖。
圖5A繪示本發明一實施例中控制器的詳細方塊圖。
圖5B繪示本發明另一實施例中控制器的詳細方塊圖。
圖5C繪示本發明另一實施例中控制器的詳細方塊圖。
圖5D繪示本發明另一實施例中控制器的詳細方塊圖。
圖6繪示本發明另一實施例的混頻模組的詳細方塊圖。
圖7A至圖7C分別說明不同實施例中直流偏置電路的細部電路示意圖。
圖8A至圖8B說明不同實施例中濾波器的細部電路示意圖。
圖9A至圖9C說明不同實施例中電容器電路的細部電路示意圖。
圖10繪示本發明一實施例經混頻模組的信號的波形圖。
圖1繪示本發明一實施例的混頻模組的方塊圖。請參照圖1,混頻模組100包括混頻器110、至少一直流偏置電路120、濾波器130以及控制器140。混頻器110耦接直流偏置電路120,且直流偏置電路120耦接濾波器130以及控制器140。
在本發明實施例中,混頻器110對輸入信號SIN進行混頻以產生信號S1。具體而言,在一些實施例中,混頻器110接收本地振盪信號SLO以對輸入信號SIN進行混頻。直流偏置電路120基於信號S1產生信號S2。濾波器130濾除信號S2中的交流部分,並且依據信號S2中的直流部分產生信號S3。控制器140基於信號S3控制直流偏置電路120以減少信號S1中的直流部分。詳細來說,控制器140是基於信號S3產生控制信號SC,以控制直流偏置電路120減少信號S1中的直流部分以產生信號S2。本實施例的混頻模組100藉由直流偏置電路120調整混頻後的輸入信號(信號S1)中的直流部分,使得經調整的混頻後的輸入信號(信 號S2)中的直流部分被減少。因此,混頻模組100得以輸出準確的信號而提高整個系統的性能。
圖2繪示本發明另一實施例的混頻模組的方塊圖。請參照圖2,圖2的混頻模組200與圖1的混頻模組100不同之處在於,混頻模組200還可選擇性地包括類比-數位轉換器250以及數位信號處理器260。類比-數位轉換器250耦接於直流偏置電路120與數位信號處理器260之間。類比-數位轉換器250接收信號S2,並且將信號S2轉換為數位輸出信號SD。數位信號處理器260接收數位輸出信號SD,基於數位輸出信號SD產生校正數值Val1,並將校正數值Val1輸出至控制器140。在本實施例中,控制器140是基於信號S3或校正數值Val1產生控制信號SC,以控制直流偏置電路120。
圖3繪示本發明另一實施例的混頻模組的方塊圖。請參照圖3,圖3的混頻模組300與圖1的混頻模組100不同之處在於,混頻模組300還可選擇性地包括至少一放大器370。放大器370耦接於直流偏置電路120與濾波器130之間。放大器370將信號S2進行放大,並且輸出經放大的信號S2’至濾波器130。放大器370例如為中頻(intermediate frequency;IF)放大器,而本發明並不限制放大器370的類型。在一些實施例中,混頻模組300包括多個串聯的放大器,藉由使用多個具有較小增益值的放大器達到與使用一個放大器相同的放大效果。舉例而言,將增益值為2的放大器以及增益值為5的放大器串聯以達到增益值為10的放大 器的放大效果。
在一些實施例中,混頻模組300還可選擇性地包括圖2的混頻模組200中的類比-數位轉換器250以及數位信號處理器260。在本實施例中,放大器370進一步耦接於直流偏置電路120與類比-數位轉換器250之間。類比-數位轉換器250接收經放大的信號S2’,並且將經放大的信號S2’轉換為數位輸出信號SD。隨後,數位信號處理器260接收數位輸出信號SD,基於數位輸出信號SD產生校正數值Val1,並將校正數值Val1輸出至控制器140。
在此需特別說明的是,混頻模組可應用於單端電路或雙端電路。當應用於單端電路時,混頻器例如為單平衡混頻器(single balanced mixer);當應用於雙端電路時,混頻器例如為雙平衡混頻器(double balanced mixer)。本發明不限制混頻器的類型。此外,在一些實施例中,濾波器例如為低通濾波器(low pass filter),且低通濾波器例如為電容式倍增濾波器(capacitive multiple filter),而本發明不限制濾波器的類型。在一些實施例中,數位信號處理器例如為應用於數位信號處理(digital signal processing;DSP)的基頻電路(baseband circuit),本發明並不加以限制。
圖4繪示本發明一實施例的混頻模組的詳細方塊圖。圖4是以混頻模組應用於雙端電路為例。請參照圖4,圖4的混頻模組400與圖3的混頻模組300不同之處在於,混頻模組400還包括直流偏置電路121以及低噪音放大器480。
在本實施例中,輸入信號SIN包括一對差動信號,分別 為輸入信號SIN1以及輸入信號SIN2。本地振盪信號SLO包括一對差動信號,分別為本地振盪信號SLO1以及本地振盪信號SLO2。信號S1包括一對差動信號,分別為信號S11以及信號S12。信號S2包括一對差動信號,分別為信號S21以及信號S22。經放大的信號S2’包括一對差動信號,分別為經放大的信號S21’以及經放大的信號S22’。信號S3包括一對差動信號,分別為信號S31以及信號S32。控制信號SC包括一對差動信號,分別為控制信號SC11以及控制信號SC12。然而,在一些實施例中,輸入信號SIN、本地振盪信號SLO、信號S1至S3、控制信號SC可為一單端信號,本發明並不加以限制。
具體而言,低噪音放大器480耦接混頻器110,用以產生輸入信號SIN1及SIN2。混頻器110接收本地振盪信號SLO1及SLO2以對輸入信號SIN1及SIN2進行混頻來產生信號S11及S12。直流偏置電路120及121分別基於信號S11及S12產生信號S21及S22。放大器370將信號S21及S22進行放大,並且輸出經放大的信號S21’及S22’至濾波器130及類比-數位轉換器250。濾波器130濾除經放大的信號S21’及S22’中的交流部分,並且依據經放大的信號S21’及S22’中的直流部分產生信號S31及S32。類比-數位轉換器250將經放大的信號S21’及S22’轉換為數位輸出信號SD。數位信號處理器260接收數位輸出信號SD,基於數位輸出信號SD產生校正數值Val1,並輸出至控制器140。控制器140基於信號S31至S32或校正數值Val1分別控制直流偏置電路120及121, 以減少信號S11及S12中的直流部分以產生信號S21及S22。
在本實施例中,混頻模組400中的控制器140包括控制電路441,用以對直流偏置電路120及121進行粗調操作,以減少信號S11及S12中的直流部分。具體來說,控制電路441基於信號S31至S32或校正數值Val1產生控制信號SC11及SC12,接著直流偏置電路120及121基於控制信號SC11及SC12減少信號S11及S12中的直流部分。
在此將以圖5A至圖5D說明控制器140進行粗調操作的細部動作,圖5A繪示本發明一實施例中控制器的詳細方塊圖。特別是,當混頻模組應用於單端電路時,適用於圖5A的控制器1401。請參照圖5A,控制器1401中的控制電路441包括比較器510、計數器520、暫存器530以及數位-類比轉換器540。暫存器530耦接比較器510、計數器520及數位-類比轉換器540。
在本發明實施例中,比較器510比較濾波器130所輸出的信號S3與一預定電壓Vref以產生比較結果RS。計數器520接收時脈信號Clock以計數數值CT。暫存器530依據比較結果RS以及數值CT產生校正數值IDAC_DATA。數位-類比轉換器540將校正數值IDAC_DATA轉換為控制信號SC。在本實施例中,控制電路441例如為可執行二分搜尋法(binary search)來產生控制信號SC的硬體元件,暫存器530例如為循續漸近式暫存器(successive approximation register),本發明並不加以限制。在本實施例中,預定電壓Vref例如為共模電壓(common mode voltage), 本發明並不加以限制。在一些實施例中,控制電路441的比較器510可直接比較濾波器130所輸出的信號S3與預定電壓Vref以產生控制信號SC。
圖5B繪示本發明另一實施例中控制器的詳細方塊圖。特別是,當混頻模組應用於雙端電路時,適用於圖5B的控制器1401’。請參照圖5B,圖5B的控制器1401’與圖5A的控制器1401不同之處在於,控制器1401’中,控制電路441’的比較器510’比較信號S31與S32以產生比較結果RS。也就是說,比較器510’接收的信號S3包括一對差動信號。計數器520’接收時脈信號Clock以計數數值CT。暫存器530’依據比較結果RS以及數值CT產生校正數值IDAC_DATA。數位-類比轉換器540’將校正數值IDAC_DATA轉換為控制信號SC11及SC12。在一些實施例中,控制電路441’的比較器510’可直接比較信號S31與S32以產生控制信號SC11及SC12。
在一些實施例中,數位-類比轉換器540及540’例如為電流型數位-類比轉換器,且控制信號SC、SC11及SC12包括電流控制信號。在其他實施例中,數位-類比轉換器540及540’也可以為電壓型數位-類比轉換器,且控制信號SC、SC11及SC12包括電壓控制信號,本發明並不限制數位-類比轉換器的類型。
圖5C繪示本發明另一實施例中控制器的詳細方塊圖。特別是,當混頻模組應用於單端電路,且混頻模組包括類比-數位轉換器250以及數位信號處理器260時,適用於圖5C的控制器1402。 請參照圖5C,圖5C的控制器1402與圖5A的控制器1401不同之處在於,圖5C的控制器1402還包括多工器(multiplexer;MUX)550。在本發明實施例中,控制電路441可基於信號S3產生校正數值IDAC_DATA。多工器550的輸出端耦接控制電路441的數位輸入端。多工器550的第一端接收控制電路441所輸出的校正數值IDAC_DATA,多工器550的第二端接收數位信號處理器260所輸出的校正數值Val1,多工器550的控制端(圖未示)受控於數位信號處理器260。數位信號處理器260控制多工器550選擇校正數值Val1與IDAC_DATA的其中之一作為輸出至控制電路441。控制電路441基於多工器550的輸出產生控制信號SC。具體而言,當數位信號處理器260判斷校正數值IDAC_DATA超出一預設範圍時,數位信號處理器260控制多工器550選擇校正數值Val1作為輸出;當數位信號處理器260判斷校正數值IDAC_DATA未超出預設範圍時,數位信號處理器260控制多工器550選擇校正數值IDAC_DATA作為輸出。在一些實施例中,數位信號處理器260也可控制多工器550直接選擇校正數值Val1作為輸出,而不需再進行校正數值IDAC_DATA是否超出預設範圍的判斷。
圖5D繪示本發明另一實施例中控制器的詳細方塊圖。特別是,當混頻模組應用於雙端電路,且混頻模組包括類比-數位轉換器250以及數位信號處理器260時,適用於圖5D的控制器1402’。請參照圖5D,圖5D的控制器1402’與圖5C的控制器1402不同之處在於控制器1402’中的控制電路441’,控制電路441’的電路結 構及功用與圖5B的控制電路441’相近似,在此不予贅述。
圖6繪示本發明另一實施例的混頻模組的詳細方塊圖。圖6的混頻模組600與圖4的混頻模組400不同之處在於,圖6的混頻模組600中的控制器140還包括控制電路642,用以對直流偏置電路120及121進行細調操作。換言之,圖6的控制器140可對直流偏置電路120及121進行粗調及細調操作,以減少信號S11及S12中的直流部分。然而,在一些實施例中,混頻模組600中的控制器140也可僅包括控制電路642而僅對直流偏置電路120及121進行細調操作。此外,在一些實施例中,當混頻模組應用於單端電路時,控制器140亦可選擇性地包括控制電路441及/或642。
請參照圖6,在本發明實施例中,控制器140中的控制電路441及642分別對直流偏置電路120及121進行粗調及細調操作。在本發明實施例中,控制器140還基於信號S31及S32產生控制信號SC2,控制信號SC2包括一對差動信號,分別為控制信號SC21以及控制信號SC22。細調操作是控制電路642基於信號S31及S32產生控制信號SC21及SC22,而使得直流偏置電路120及121還基於控制信號SC21及SC22減少信號S11及S12中的直流部分。在本實施例中,直流偏置電路120是受控於經結合的控制信號SC11及SC21,直流偏置電路121是受控於經結合的控制信號SC12及SC22,本發明並不加以限制。在一些實施例中,控制電路642包括跨導放大器(transconductance amplifier),本發明 並不加以限制。
圖7A至圖7C將分別說明不同實施例中直流偏置電路120及/或121的細部電路示意圖。需特別注意的是,圖7A至圖7C是以直流偏置電路受控於控制器140產生的控制信號SC為例。
圖7A繪示本發明一實施例的直流偏置電路的電路圖。請參照圖7A,在本發明實施例中,直流偏置電路1201包括可控電流源CCS1、可控電流源CCS2以及電阻R。可控電流源CCS1的第一端耦接參考電壓端V1,可控電流源CCS2的第二端耦接參考電壓端V2,電阻R的第一端與第二端分別耦接可控電流源CCS1的第二端以及可控電流源CCS2的第一端,且電阻R的第一端與第二端的其中之一還耦接混頻器110的輸出端,用以接收信號S1;電阻R的第一端與第二端的其中之另一還耦接濾波器130或放大器370,用以產生信號S2。可控電流源CCS1及CCS2受控於控制器140。在本發明實施例中,透過調整可控電流源CCS1及CCS2的電流值以在電阻R的第一端與第二端之間產生壓降,藉由此壓降補償信號S1中的直流偏置,以減少信號S1中的直流部分。
圖7B繪示本發明另一實施例的直流偏置電路的電路圖,圖7B的直流偏置電路1201’與圖7A的直流偏置電路1201不同之處在於,直流偏置電路1201’還包括可控電流源CCS3及可控電流源CCS4。可控電流源CCS3的第一端耦接參考電壓端V1,可控電流源CCS4的第二端耦接參考電壓端V2。電阻R的第一端與第 二端還分別耦接可控電流源CCS4的第一端以及可控電流源CCS3的第二端。可控電流源CCS3及CCS4受控於控制器140。在本發明實施例中,透過調整可控電流源CCS1至CCS4的電流值以在電阻R的第一端與第二端之間產生壓降,藉由此壓降補償信號S1中的直流偏置,以減少信號S1中的直流部分。
圖7C繪示本發明另一實施例的直流偏置電路的電路圖。請參照圖7C,在本發明實施例中,直流偏置電路1202包括電流源CS、開關SW1、開關SW2、開關SW3、開關SW4以及電阻R。電流源CS的第一端耦接參考電壓端V1,開關SW1及SW3的第一端耦接電流源CS的第二端,開關SW2及SW4的第二端耦接參考電壓端V2,電阻R的第一端耦接開關SW1的第二端及開關SW4的第一端,電阻R的第二端耦接開關SW3的第二端及開關SW2的第一端,且電阻R的第一端與第二端的其中之一還耦接混頻器110的輸出端,用以接收信號S1;電阻R的第一端與第二端的其中之另一還耦接濾波器130或放大器370,用以產生信號S2。開關SW1至SW4受控於控制器140。在本發明實施例中,透過調整開關SW1至SW4的導通狀態以在電阻R的第一端與第二端之間產生壓降,藉由此壓降補償信號S1中的直流偏置,以減少信號S1中的直流部分。在本發明實施例中,可透過在控制器140的輸出端耦接一反相器,使開關SW1、SW2與開關SW3、SW4所接收的控制信號互為反相(如圖7C是以SC與
Figure 107144234-A0305-02-0014-1
表示控制信號互為反相)。在一些實施例中,直流偏置電路1202可包括電流源CS以及 電阻R。電流源CS的第一端與第二端分別耦接於參考電壓端V1與V2之間。電阻R的第一端與第二端分別耦接於電流源CS的第二端與參考電壓端V2之間,且電阻R的第一端與第二端的其中之一還耦接混頻器110的輸出端,用以接收信號S1;電阻R的第一端與第二端的其中之另一還耦接濾波器130或放大器370,用以產生信號S2。控制器140用以調整電阻R的第一端與第二端之間的壓降。
在一些實施例中,上述直流偏置電路1201至1202中的參考電壓端V1例如為用以接收供電電壓,參考電壓端V2例如為用以接收接地電壓,本發明並不加以限制。
圖8A至圖8B將說明不同實施例中濾波器130的細部電路示意圖。需特別注意的是,圖8A至圖8B是以濾波器為低通濾波器,且低通濾波器為電容式倍增濾波器為例。
圖8A繪示本發明一實施例的電容式倍增濾波器的電路圖。特別是,當混頻模組應用於單端電路時,適用於圖8A的電容式倍增濾波器930。請參照圖8A,在本發明實施例中,電容式倍增濾波器930包括電容器模組910、電阻R1、電阻R2、電阻R3以及緩衝器(buffer)B。電容器模組910包括電容器電路C1。電容器電路C1將於圖9A至圖9C中詳細描述。在此先行說明電容式倍增濾波器930的電路連接關係。在本實施例中,電阻R1的第一端耦接電容式倍增濾波器930的第一輸入端。電阻R2的第一端耦接電阻R1的第二端。電阻R3的第一端耦接電阻R1的第二端 以及電阻R2的第一端,電阻R3的第二端耦接電容式倍增濾波器930的第一輸出端。緩衝器B的第一接收端耦接電阻R2的第二端及電容器電路C1的第一端N1,緩衝器B的第一輸出端耦接電阻R3的第二端。電容器電路C1的第二端耦接參考電壓端V2。電容式倍增濾波器930的第一輸入端用以接收信號S2或經放大的信號S2’,電容式倍增濾波器930的第一輸出端用以輸出信號S3。
圖8B繪示本發明另一實施例的電容式倍增濾波器的電路圖。特別是,當混頻模組應用於雙端電路時,適用於圖8B的電容式倍增濾波器930’。
請參照圖8B,在本發明實施例中,圖8B的電容式倍增濾波器930’與圖8A的電容式倍增濾波器930不同之處在於,緩衝器B還包括第二接收端以及第二輸出端,電容式倍增濾波器930’還包括第二輸入端、第二輸出端、電阻R4、電阻R5以及電阻R6,且電容式倍增濾波器930’中的電容器模組910’還包括另一電容器電路C2,電容器電路C2相同於電容器電路C1,電容器電路C1與C2將於圖9A至圖9C中詳細描述。在此,先說明電容式倍增濾波器930’的電路連接關係。在本實施例中,電阻R4的第一端耦接電容式倍增濾波器930’的第二輸入端。電阻R5的第一端耦接電阻R4的第二端。電阻R6的第一端耦接電阻R4的第二端以及電阻R5的第一端,電阻R6的第二端耦接電容式倍增濾波器930’的第一輸出端。緩衝器B的第二接收端耦接電阻R5的第二端及電容器電路C2的第一端N2,緩衝器B的第一輸出端耦接電容式倍增 濾波器930’的第一輸出端,緩衝器B的第二輸出端耦接電阻R3的第二端。電阻R3的第二端耦接電容式倍增濾波器930’的第二輸出端。電容器電路C2的第二端耦接參考電壓端V2。電容式倍增濾波器930’的第一輸入端用以接收信號S21或經放大的信號S21’,電容式倍增濾波器930’的第二輸入端用以接收信號S22或經放大的信號S22’。電容式倍增濾波器930’的第一輸出端用以輸出信號S31,電容式倍增濾波器930’的第二輸出端用以輸出信號S32。
圖8B中,電容器模組910’的電容器電路C1與C2具有相同的等效電容值Ceff,且電容器模組910’的等效電路為電容器電路C1與C2串聯,使得電容器模組910’的等效電容值Cm約等於(1/2)×Ceff。
圖9A至圖9C將說明不同實施例中電容器電路C1與C2的細部電路示意圖。
圖9A繪示本發明一實施例的電容器電路C1與C2的細部電路示意圖。請參照圖9A,在本發明實施例中,電容器電路1000包括第一端N1/N2、參考電壓端V2、電晶體M1、電晶體M2、電晶體M3、電容器Cf。電晶體M1的第一端用以耦接電流源CS1及電容器電路的第一端N1/N2,電晶體M1的第二端耦接參考電壓端V2。電晶體M2的第一端用以耦接電流源CS2,電晶體M2的第二端耦接參考電壓端V2,電晶體M2的控制端耦接電晶體M2的第一端及電晶體M1的控制端。電晶體M3的第一端用以耦接電流源CS3及電晶體M1的第一端,電晶體M3的第二端耦接參考 電壓端V2,電晶體M3的控制端耦接電晶體M2的控制端。電容器Cf的第一端耦接電容器電路的第一端N1/N2,電容器Cf的第二端耦接電晶體M1的控制端。在本實施例中,電晶體M1至M3的第二端作為電容器電路的第二端。
在本實施例中,電流源CS1與CS2產生電流值為I1的電流(如圖是以I1表示),且電流源CS3產生電流值為I1乘以倍數a的電流(如圖是以I1×a表示)。流經電晶體M1及流經電容器Cf的小信號電流為電流值為Ic的電流,流經電晶體M3的小信號電流為電流值為Ic×a的電流。電晶體M1與M2具備相同的通道寬長比(channel width-to-length ratio),且電晶體M3的通道寬長比為電晶體M1的通道寬長比乘以倍數a的數值。基於上述條件,使得電容器電路1000的等效電容值約等於(2+a)×C,其中C為電容器Cf的電容值。
圖9B繪示本發明另一實施例的電容器電路C1與C2的細部電路示意圖。圖9B的電容器電路1010利用三個疊接(cascode)電路所配置而成。
請參照圖9B,在本發明實施例中,圖9B的電容器電路1010與圖9A的電容器電路1000不同之處在於,電容器電路1010還包括電晶體M4、電晶體M5以及電晶體M6。電晶體M4的第一端與第二端分別耦接於電晶體M1的第二端與參考電壓端V2之間。電晶體M5的第一端與第二端分別耦接於電晶體M2的第二端與參考電壓端V2之間,電晶體M5的控制端耦接電晶體M5的第 一端及電晶體M4的控制端。電晶體M6的第一端與第二端分別耦接於電晶體M3的第二端與參考電壓端V2之間,電晶體M6的控制端耦接電晶體M5的控制端。在本實施例中,電晶體M4至M6的第二端作為電容器電路的第二端。
在本實施例中,電流源CS1與CS2產生電流值為I1的電流(如圖是以I1表示),且電流源CS3產生電流值為I1乘以倍數a的電流(如圖是以I1×a表示)。流經電晶體M1及流經電容器Cf的小信號電流為電流值為Ic的電流,流經電晶體M3的小信號電流為電流值為Ic×a的電流。電晶體M1、M2、M4以及M5具備相同的通道寬長比,電晶體M3與M6具備相同的通道寬長比,且電晶體M3的通道寬長比為電晶體M1的通道寬長比乘以倍數a的數值。基於上述條件,使得電容器電路1010的等效電容值約等於(2+a)×C,其中C為電容器Cf的電容值。
圖9C繪示本發明另一實施例的電容器電路C1與C2的細部電路示意圖。請參照圖9C,在本發明實施例中,電容器電路1020包括第一端N1/N2、參考電壓端V2、電晶體M1至M7以及電容器Cf。電晶體M1的第一端用以耦接電流源CS1及電容器電路的第一端N1/N2。電晶體M2的第一端用以耦接電流源CS2,電晶體M2的控制端耦接電晶體M1的控制端。電晶體M3的第一端用以耦接電流源CS3及電晶體M1的第一端,電晶體M3的控制端耦接電晶體M2的控制端。電晶體M4的第一端耦接電晶體M1的第二端,電晶體M4的第二端耦接參考電壓端V2。電晶體M5 的第一端耦接電晶體M2的第二端,電晶體M5的第二端耦接參考電壓端V2,電晶體M5的控制端耦接電晶體M2的第一端及電晶體M4的控制端。電晶體M6的第一端耦接電晶體M3的第二端,電晶體M6的第二端耦接參考電壓端V2,電晶體M6的控制端耦接電晶體M5的控制端。電晶體M7的第一端用以耦接電流源CS4,電晶體M7的第二端耦接參考電壓端V2,電晶體M7的控制端耦接電晶體M7的第一端及電晶體M3的控制端。電容器Cf的第一端耦接電容器電路的第一端N1/N2,電容器Cf的第二端耦接電晶體M1的控制端。在本實施例中,電晶體M4至M7的第二端作為電容器電路的第二端。
在本實施例中,電流源CS1、CS2與CS4產生電流值為I1的電流(如圖是以I1表示),且電流源CS3產生電流值為I1乘以倍數a的電流(如圖是以I1×a表示)。流經電晶體M1的小信號電流為電流值為Ic×n的電流,流經電容器Cf及流經電晶體M7的小信號電流為電流值為Ic的電流,流經電晶體M3的小信號電流為電流值為Ic×n×a的電流。電晶體M1、M2、M4與M5具備相同的通道寬長比,電晶體M3與M6具備相同的通道寬長比,且電晶體M3的通道寬長比為電晶體M1的通道寬長比乘以倍數a的數值。電晶體M7的通道寬長比為電晶體M1的通道寬長比乘以倍數k的數值。基於上述條件,使得電容器電路1020的等效電容值約等於(1+n+a×n)×C,其中C為電容器Cf的電容值,n為倍數k的函數值。在一些實施例中,n約等於1,k約等於0.25,本發明 並不加以限制。
值得注意的是,此經特殊設計的電路結構所建構的電容器電路1000、1010或1020,所提供的等效電容值與倍數a有關,因此相較於相同電容值的單顆電容器能提供較大的等效電容值,並具有較小的面積,從而降低混頻模組、電容器電路及電容式倍增濾波器的設計面積。且採用上述電容器電路1000、1010或1020的電容式倍增濾波器,相較於僅將單顆電容器耦接於緩衝器的第一接收端與參考電壓端(如圖8A中的參考電壓端V2)之間或僅將單顆電容器耦接於緩衝器的第一接收端與第二接收端之間的電容式倍增濾波器,可具有較大的時間常數(time constant)。此外,採用上述電容器電路1000、1010或1020的電容式倍增濾波器皆可應用於低頻,用以將中頻信號濾掉。應用本實施例者亦可將電容器電路1000、1010或1020應用至其他電子設備或不同技術領域的信號濾波設備中,本發明不限制電容器電路1000、1010或1020的應用領域。
在一些實施例中,上述電流源CS1至CS4可設置於電容器電路1000至1020的內部或外部,電流源CS1至CS4各自的第一端分別耦接參考電壓端V1,電流源CS1至CS4各自的第二端分別耦接對應的電晶體M1至M3及M7。在一些實施例中,當於單端電路應用時,上述電容器電路C1、C2、1000至1020中的參考電壓端V2例如為用以接收共模電壓;當於雙端電路應用時,參考電壓端V2例如為用以接收接地電壓,本發明並不加以限制。在一 些實施例中,參考電壓端V1例如為用以接收供電電壓,本發明並不加以限制。在一些實施例中,電晶體M1至M7例如為P型金氧半導體電晶體(PMOS)、N型金氧半導體電晶體(NMOS)或雙極性接面型電晶體(BJT),本發明並不加以限制。
圖10繪示本發明一實施例經混頻模組的信號的波形圖。需特別注意的是,為便於觀察信號S1中的直流部分,此處將以經放大的信號S21’、S22’以及信號S31、S32進行說明。
請同時參照圖6及圖10,圖10呈現採用本發明實施例的混頻模組600時,經放大的信號S21’、S22’以及信號S31、S32的波形圖。圖10的橫軸為時間T,縱軸為信號的振幅AMP。如圖10所示,在時間T1之前,控制器140中的控制電路441對直流偏置電路120及121進行粗調操作,在時間T1時,控制器140中的控制電路642開始對直流偏置電路120及121進行細調操作,從而減少經放大的信號S21’、S22’以及信號S31、S32中的直流部分。應用本實施例者可依其需求調整進行粗調操作及進行細調操作的時間。
綜上所述,本發明實施例所提供的混頻模組、電容器電路及電容式倍增濾波器藉由直流偏置電路調整混頻後的輸入信號中的直流部分,使得經調整的混頻後的輸入信號中的直流部分被減少。因此,混頻模組得以輸出準確的信號而提高整個系統的性能。另一方面,本發明實施例利用經特殊設計的電路結構所建構的電容器電路,相較於相同電容值的單顆電容器能提供較大的等 效電容值,並具有較小的面積,從而降低混頻模組、電容器電路及電容式倍增濾波器的設計面積。此外,本發明實施例的電容式倍增濾波器包括上述的電容器電路,因此可具有較大的時間常數,並可應用於低頻。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:混頻模組
110:混頻器
120:直流偏置電路
130:濾波器
140:控制器
SIN:輸入信號
SLO:本地振盪信號
S1~S3:信號
SC:控制信號

Claims (20)

  1. 一種混頻模組,包括:一混頻器,對一輸入信號混頻以產生一第一信號;至少一直流偏置電路,基於所述第一信號產生一第二信號;一濾波器,濾除所述第二信號中的一交流部分並依據所述第二信號中的一直流部分產生一第三信號;以及一控制器,基於所述第三信號控制所述至少一直流偏置電路以減少所述第一信號中的一直流部分。
  2. 如申請專利範圍第1項所述的混頻模組,還包括:一類比-數位轉換器,接收所述第二信號並將其轉換為一數位輸出信號;以及一數位信號處理器,接收所述數位輸出信號,基於所述數位輸出信號產生一第一校正數值,其中所述控制器是基於所述第三信號或所述第一校正數值產生一第一控制信號以控制所述至少一直流偏置電路。
  3. 如申請專利範圍第1項所述的混頻模組,還包括:至少一放大器,耦接於所述至少一直流偏置電路與所述濾波器之間,所述至少一放大器將所述第二信號進行放大並輸出經放大的所述第二信號。
  4. 如申請專利範圍第3項所述的混頻模組,還包括:一類比-數位轉換器,接收經放大的所述第二信號並將其轉換為一數位輸出信號;以及 一數位信號處理器,接收所述數位輸出信號,基於所述數位輸出信號產生一第一校正數值,其中所述控制器是基於所述第三信號或所述第一校正數值產生一第一控制信號以控制所述至少一直流偏置電路。
  5. 如申請專利範圍第2或4項所述的混頻模組,其中所述控制器包括:一第一控制電路,基於所述第三信號產生一第二校正數值;以及一多工器,所述多工器的一輸出端耦接所述第一控制電路的一數位輸入端,所述多工器的一第一端接收所述第二校正數值,所述多工器的一第二端接收所述第一校正數值,所述多工器的一控制端受控於所述數位信號處理器,所述數位信號處理器控制所述多工器選擇所述第一校正數值與所述第二校正數值的其中之一作為輸出至所述第一控制電路,其中所述第一控制電路基於所述多工器的所述輸出產生所述第一控制信號。
  6. 如申請專利範圍第1項所述的混頻模組,其中所述控制器包括:一第一控制電路,基於所述第三信號產生一第一控制信號,其中所述至少一直流偏置電路基於所述第一控制信號減少所述第一信號中的所述直流部分。
  7. 如申請專利範圍第6項所述的混頻模組,其中所述第一控制電路包括:一比較器,比較所述第三信號與一預定電壓以產生所述第一控制信號。
  8. 如申請專利範圍第6項所述的混頻模組,其中所述第三信號包括一第四信號與一第五信號,所述第四信號與所述第五信號互為差動信號,所述第一控制電路包括:一比較器,比較所述第四信號與所述第五信號以產生所述第一控制信號,其中所述第一控制信號包括一對差動信號。
  9. 如申請專利範圍第6項所述的混頻模組,其中所述第一控制電路包括:一比較器,比較所述第三信號與一預定電壓以產生一比較結果;一計數器,接收一時脈信號以計數一數值;一暫存器,依據所述比較結果以及所述數值產生一第二校正數值;以及一數位-類比轉換器,將所述第二校正數值轉換為所述第一控制信號。
  10. 如申請專利範圍第6項所述的混頻模組,其中所述第三信號包括一第四信號與一第五信號,所述第四信號與所述第五信號互為差動信號,所述第一控制電路包括: 一比較器,比較所述第四信號與所述第五信號以產生一比較結果;一計數器,接收一時脈信號以計數一數值;一暫存器,依據所述比較結果以及所述數值產生一第二校正數值;以及一數位-類比轉換器,將所述第二校正數值轉換為所述第一控制信號,其中所述第一控制信號包括一對差動信號。
  11. 如申請專利範圍第6項所述的混頻模組,其中所述控制器還包括:一第二控制電路,基於所述第三信號產生一第二控制信號,其中所述至少一直流偏置電路還基於所述第二控制信號減少所述第一信號中的所述直流部分,其中所述第一控制電路用以對所述至少一直流偏置電路進行粗調操作,所述第二控制電路用以對所述至少一直流偏置電路進行細調操作。
  12. 如申請專利範圍第11項所述的混頻模組,其中所述第二控制電路包括跨導放大器。
  13. 如申請專利範圍第1項所述的混頻模組,其中所述混頻器還接收一本地振盪信號以對所述輸入信號進行混頻。
  14. 如申請專利範圍第1項所述的混頻模組,其中所述至少一直流偏置電路包括: 一第一可控電流源,包括一第一端耦接一第一參考電壓端;一第二可控電流源,包括一第二端耦接一第二參考電壓端;以及一電阻,包括一第一端與一第二端,分別耦接所述第一可控電流源的一第二端以及所述第二可控電流源的一第一端,且所述電阻的所述第一端與所述第二端的其中之一還耦接所述混頻器的一輸出端,所述電阻的所述第一端與所述第二端的其中之另一還耦接所述濾波器,其中,所述第一可控電流源及所述第二可控電流源受控於所述控制器。
  15. 如申請專利範圍第14項所述的混頻模組,其中所述至少一直流偏置電路還包括:一第三可控電流源,包括一第一端耦接所述第一參考電壓端;以及一第四可控電流源,包括一第二端耦接所述第二參考電壓端,所述電阻的所述第一端與所述第二端還分別耦接所述第四可控電流源的一第一端以及所述第三可控電流源的一第二端,其中,所述第三可控電流源及所述第四可控電流源受控於所述控制器。
  16. 如申請專利範圍第1項所述的混頻模組,其中所述至少一直流偏置電路包括: 一電流源,包括一第一端與一第二端,分別耦接於一第一參考電壓端與一第二參考電壓端之間;以及一電阻,包括一第一端與一第二端,分別耦接於所述電流源的所述第二端與所述第二參考電壓端之間,且所述電阻的所述第一端與所述第二端的其中之一還耦接所述混頻器的一輸出端,所述電阻的所述第一端與所述第二端的其中之另一還耦接所述濾波器,其中,所述控制器用以調整所述電阻的所述第一端與所述第二端之間的壓降。
  17. 如申請專利範圍第1項所述的混頻模組,其中所述混頻器包括單平衡混頻器或雙平衡混頻器。
  18. 如申請專利範圍第1項所述的混頻模組,其中所述輸入信號、所述第一信號、所述第二信號、所述第三信號分別包括一對差動信號。
  19. 如申請專利範圍第1項所述的混頻模組,其中所述濾波器包括低通濾波器。
  20. 如申請專利範圍第19項所述的混頻模組,其中所述低通濾波器包括電容式倍增濾波器。
TW107144234A 2018-12-07 2018-12-07 混頻模組 TWI692197B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107144234A TWI692197B (zh) 2018-12-07 2018-12-07 混頻模組
CN201910030545.XA CN111293984B (zh) 2018-12-07 2019-01-14 混频模组
US16/579,870 US10797648B2 (en) 2018-12-07 2019-09-24 Mixer module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107144234A TWI692197B (zh) 2018-12-07 2018-12-07 混頻模組

Publications (2)

Publication Number Publication Date
TWI692197B true TWI692197B (zh) 2020-04-21
TW202023181A TW202023181A (zh) 2020-06-16

Family

ID=70972731

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144234A TWI692197B (zh) 2018-12-07 2018-12-07 混頻模組

Country Status (3)

Country Link
US (1) US10797648B2 (zh)
CN (1) CN111293984B (zh)
TW (1) TWI692197B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282510A1 (en) * 2004-06-21 2005-12-22 Samsung Electronics Co., Ltd. Linear mixer with current amplifier
US20060040633A1 (en) * 2004-08-19 2006-02-23 Matsushita Electric Industrial Co., Ltd. Frequency mixer
US20110275341A1 (en) * 2010-05-10 2011-11-10 Sirf Technology Inc. Ip2 calibration measurement and signal generation
US20120002770A1 (en) * 2009-04-03 2012-01-05 Panasonic Corporation Second-order distortion correcting receiver and second-order distortion correcting method
US9312898B2 (en) * 2013-05-02 2016-04-12 Infineon Technologies Ag Apparatus and a method for handling a received signal, and a mixer unit

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605032A (en) 1970-05-04 1971-09-14 Nasa Active rc networks
US3891938A (en) 1974-07-19 1975-06-24 Northern Electric Co Functionally tunable active low-pass filter
FR2710209B1 (fr) * 1993-09-14 1995-11-03 Lacoste Frederic Guillaume Dispositif mélangeur de signaux analogiques adapté aux signaux continus et à fréquence basse.
US5724653A (en) * 1994-12-20 1998-03-03 Lucent Technologies Inc. Radio receiver with DC offset correction circuit
US6498929B1 (en) * 1996-06-21 2002-12-24 Kabushiki Kaisha Toshiba Receiver having DC offset decreasing function and communication system using the same
US5961215A (en) 1997-09-26 1999-10-05 Advanced Micro Devices, Inc. Temperature sensor integral with microprocessor and methods of using same
US6148047A (en) * 1998-05-06 2000-11-14 Philips Electronics North America Corporation DC offset compensation for zero if quadrature demodulator
TW405314B (en) * 1998-08-28 2000-09-11 Ind Tech Res Inst Device for eliminating DC offset utilizing noise regulation technique and its method
KR100358358B1 (ko) * 2000-01-27 2002-10-25 한국전자통신연구원 고 대역통과 특성에 의해 디씨 오프셋 특성을 개선한주파수 혼합기 회로
JP2002232271A (ja) * 2001-02-01 2002-08-16 Fujitsu Ltd Dcオフセットキャンセル回路、光−電気パルス変換回路、及びパルス整形回路
KR100474085B1 (ko) * 2003-02-07 2005-03-10 인티그런트 테크놀로지즈(주) 디씨 오프셋 보상 회로 및 방법과 이를 이용한 신호 처리장치
US6778004B1 (en) 2002-12-20 2004-08-17 Cypress Semiconductor Corporation Decoupling capacitor multiplier
EP1517445A2 (en) 2003-09-15 2005-03-23 Samsung Electronics Co., Ltd. Capacitance multiplier
KR100514085B1 (ko) 2003-09-15 2005-09-09 삼성전자주식회사 캐패시턴스 체배기
US7215266B2 (en) * 2004-05-21 2007-05-08 Wionics Research Hybrid DC offset cancellation scheme for wireless receiver
US8204466B2 (en) * 2004-05-21 2012-06-19 Realtek Semiconductor Corp. Dynamic AC-coupled DC offset correction
CN101212202B (zh) * 2006-12-27 2010-07-14 立积电子股份有限公司 具有滤波模块来滤除低频成分以降低噪声指数的混频器
US7466175B2 (en) 2006-12-29 2008-12-16 Motorola, Inc. Capacitance multiplier circuit
CN100593900C (zh) * 2007-03-23 2010-03-10 展讯通信(上海)有限公司 直流偏差去除装置和方法
US7642498B2 (en) 2007-04-04 2010-01-05 Aptina Imaging Corporation Capacitor multipler circuits and the applications thereof to attenuate row-wise temporal noise in image sensors
TW200915290A (en) 2007-07-24 2009-04-01 Koninkl Philips Electronics Nv A shift register circuit
US7933575B2 (en) * 2008-02-21 2011-04-26 Mediatek, Inc. Circuit for settling DC offset in direct conversion receiver
US9461622B2 (en) 2014-05-02 2016-10-04 Nxp B.V. Capacitance multiplier and method
US9484871B1 (en) 2014-05-16 2016-11-01 Marvell International Ltd. Complex bandpass filter having a transfer function with two poles
CN107508583A (zh) 2017-08-31 2017-12-22 电子科技大学 基于电流型电容倍增的长延时电路
US10484213B2 (en) * 2017-10-31 2019-11-19 Finisar Corporation DC offset cancellation and crosspoint control circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282510A1 (en) * 2004-06-21 2005-12-22 Samsung Electronics Co., Ltd. Linear mixer with current amplifier
US20060040633A1 (en) * 2004-08-19 2006-02-23 Matsushita Electric Industrial Co., Ltd. Frequency mixer
US20120002770A1 (en) * 2009-04-03 2012-01-05 Panasonic Corporation Second-order distortion correcting receiver and second-order distortion correcting method
US20110275341A1 (en) * 2010-05-10 2011-11-10 Sirf Technology Inc. Ip2 calibration measurement and signal generation
US9312898B2 (en) * 2013-05-02 2016-04-12 Infineon Technologies Ag Apparatus and a method for handling a received signal, and a mixer unit

Also Published As

Publication number Publication date
CN111293984A (zh) 2020-06-16
CN111293984B (zh) 2023-04-07
US10797648B2 (en) 2020-10-06
TW202023181A (zh) 2020-06-16
US20200186088A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US7974599B2 (en) Low noise amplifier with constant input impedance
US7877075B1 (en) Signal mixer having a single-ended input and a differential output
US7109801B2 (en) Low gate oxide stress power amplifier
US10348260B2 (en) Amplifier circuit and filter
US8441313B2 (en) Current-mode analog baseband apparatus
US7307478B2 (en) Adjustable power amplifier and applications thereof
CN107408927B (zh) 适用于噪声抑制的放大器
US20160336921A1 (en) Active balun for wideband applications
CN111294012B (zh) 电容器电路及电容倍增式滤波器
TWI692197B (zh) 混頻模組
JP3853604B2 (ja) 周波数変換回路
US20170111011A1 (en) Balanced up-conversion mixer
US20050208923A1 (en) High frequency peak detector and applications thereof
JP4383259B2 (ja) 周波数変換器およびそれを用いた無線通信デバイス
US11606069B2 (en) Single-ended-to-differential amplifier and radio frequency receiver
US10771023B2 (en) Amplifier
TWI670930B (zh) 無線接收裝置
KR20080075522A (ko) 인핸스드 믹서 디바이스
JPWO2013175681A1 (ja) ダイレクトコンバージョン方式の受信機
US20050079836A1 (en) Power amplifier having enhanced swing cascode architecture
US9425740B2 (en) Mixer circuit
JP2013223118A (ja) ミキサ回路
JAYARAM et al. RF CMOS 0.5 µm Low Noise Amplifier and Mixer Design