[go: up one dir, main page]

TWI681509B - Resistive random access memory and method for forming the same - Google Patents

Resistive random access memory and method for forming the same Download PDF

Info

Publication number
TWI681509B
TWI681509B TW107142235A TW107142235A TWI681509B TW I681509 B TWI681509 B TW I681509B TW 107142235 A TW107142235 A TW 107142235A TW 107142235 A TW107142235 A TW 107142235A TW I681509 B TWI681509 B TW I681509B
Authority
TW
Taiwan
Prior art keywords
forming
layer
random access
access memory
resistive random
Prior art date
Application number
TW107142235A
Other languages
Chinese (zh)
Other versions
TW202021052A (en
Inventor
鄭嘉文
陳宜秀
許博硯
王炳琨
林銘哲
趙鶴軒
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW107142235A priority Critical patent/TWI681509B/en
Application granted granted Critical
Publication of TWI681509B publication Critical patent/TWI681509B/en
Publication of TW202021052A publication Critical patent/TW202021052A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A method for forming a resistive random access memory device includes forming a layer stack, patterning the layer stack to form a plurality of stack structures, forming a protection layer along a sidewall of the plurality of stack structures, forming a first isolation structure between the plurality of stack structures, forming at least one recess in at least one stack structure to define a plurality of filament units, and forming a second isolation structure in the at least one recess. The layer stack includes a bottom electrode and a resistive switching layer on the bottom electrode.

Description

電阻式隨機存取記憶體及其形成方法 Resistance random access memory and its forming method

本發明是關於半導體製造技術,特別是有關於電阻式隨機存取記憶體及其形成方法。 The present invention relates to semiconductor manufacturing technology, in particular to resistive random access memory and its forming method.

電阻式隨機存取記憶體具有低功率消耗、低操作電壓、寫入及擦除時間短、持久性長、數據保留時間長、非破壞性讀取操作、多重狀態(multi-state)、製造簡單、及可擴充性質的優點,因而成為非揮發性記憶體的新興主流。電阻式隨機存取記憶體的基本結構包括一底電極、一電阻轉換層、及一頂電極的一金屬-絕緣體-金屬(MIM)堆疊。當對電阻式隨機存取記憶體施以一正向的設置電壓,電阻轉換層中可形成導電路徑以從高電阻狀態轉變為低電阻狀態,此過程稱為設置(SET)操作。當對電阻式隨機存取記憶體施以一反向的重置電壓,電阻轉換層中的導電路徑則會斷開以從低電阻狀態轉變為高電阻狀態,此過程稱為重置(RESET)操作。如此由外加電壓極性的不同來控制電阻的高低,藉此達到資訊儲存的目的。 Resistive random access memory has low power consumption, low operating voltage, short write and erase time, long durability, long data retention time, non-destructive read operation, multi-state, simple manufacturing , And the advantages of expandable nature, thus becoming the emerging mainstream of non-volatile memory. The basic structure of a resistive random access memory includes a bottom electrode, a resistance conversion layer, and a metal-insulator-metal (MIM) stack of a top electrode. When a positive setting voltage is applied to the resistance random access memory, a conductive path can be formed in the resistance conversion layer to change from the high resistance state to the low resistance state. This process is called a SET operation. When a reverse reset voltage is applied to the resistive random access memory, the conductive path in the resistance conversion layer will be disconnected to change from the low resistance state to the high resistance state. This process is called reset (RESET) operating. In this way, the difference in the polarity of the applied voltage controls the level of the resistance, thereby achieving the purpose of information storage.

由於現代記憶體晶片的高度整合,單個記憶體單元的結構已足夠小到易於受到宇宙射線及/或α粒子的影響,其可能導致位元翻轉,造成資料錯誤。由這些現象引發的錯誤被稱為軟性錯誤(soft error),故急需對電阻式隨機存取記憶體 的軟性錯誤提供進一步的改善。 Due to the high degree of integration of modern memory chips, the structure of a single memory cell is small enough to be easily affected by cosmic rays and/or alpha particles, which may cause bit flips and cause data errors. Errors caused by these phenomena are called soft errors, so there is an urgent need for resistive random access memory The soft errors provide further improvement.

本發明實施例提供一種電阻式隨機存取記憶體的形成方法。此方法包括形成一膜層堆疊、圖案化上述膜層堆疊,以形成複數個堆疊結構、沿著上述堆疊結構的側壁形成保護層、在上述堆疊結構之間形成第一隔離結構、在至少一堆疊結構中形成至少一凹槽,以在上述至少一堆疊結構中定義出複數個物理性分開的電絲單元、以及在上述至少一凹槽中形成第二隔離結構。上述膜層堆疊包括底電極層、以及位於該底電極層上的電阻轉換層。 The embodiment of the invention provides a method for forming a resistive random access memory. The method includes forming a film layer stack, patterning the film layer stack to form a plurality of stack structures, forming a protective layer along the sidewalls of the stack structure, forming a first isolation structure between the stack structures, and forming at least one stack At least one groove is formed in the structure to define a plurality of physically separated electric wire units in the at least one stacked structure, and a second isolation structure is formed in the at least one groove. The above film layer stack includes a bottom electrode layer and a resistance conversion layer on the bottom electrode layer.

本發明實施例提供一種電阻式隨機存取記憶體,包括複數個堆疊結構,其中上述這些堆疊結構分別藉由第一隔離結構彼此隔開。上述每一堆疊結構包括底電極以及複數個電絲單元、以及保護層。上述多個電絲單元設置於上述底電極上,且藉由至少一第二隔離結構彼此物理性分開,且其中每一電絲單元包括一電阻轉換結構,位於上述底電極上。上述保護層沿著上述堆疊結構的側壁。 An embodiment of the present invention provides a resistive random access memory including a plurality of stacked structures, wherein the stacked structures are separated from each other by a first isolation structure. Each stack structure described above includes a bottom electrode, a plurality of electric wire units, and a protective layer. The plurality of electric wire units are disposed on the bottom electrode, and are physically separated from each other by at least one second isolation structure, and each electric wire unit includes a resistance conversion structure located on the bottom electrode. The protective layer is along the sidewall of the stacked structure.

本發明實施例的電阻式隨機存取記憶體可應用於多種類型的半導體裝置中,為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉數個實施例,並配合所附圖式,作詳細說明如下。 The resistive random access memory according to the embodiments of the present invention can be applied to various types of semiconductor devices. The drawings are described in detail below.

10、20‧‧‧電阻式隨機存取記憶體 10, 20‧‧‧ resistive random access memory

100‧‧‧基板 100‧‧‧ substrate

101‧‧‧金屬間介電層 101‧‧‧Intermetallic dielectric layer

102、108‧‧‧導電結構 102, 108‧‧‧ conductive structure

104‧‧‧介電層 104‧‧‧dielectric layer

106、304‧‧‧導電層 106, 304‧‧‧ conductive layer

200‧‧‧底電極層 200‧‧‧Bottom electrode layer

200'‧‧‧底電極 200'‧‧‧Bottom electrode

202、202'‧‧‧電阻轉換層 202, 202'‧‧‧ resistance conversion layer

202"‧‧‧電阻轉換結構 202"‧‧‧Resistance conversion structure

204、204'‧‧‧第一阻障層 204, 204'‧‧‧ first barrier layer

204"‧‧‧第一阻障結構 204"‧‧‧The first barrier structure

206、206'‧‧‧氧氣交換層 206, 206'‧‧‧ oxygen exchange layer

206"‧‧‧氧氣交換結構 206"‧‧‧oxygen exchange structure

208、208'‧‧‧第二阻障層 208, 208'‧‧‧ second barrier layer

208"‧‧‧第二阻障結構 208"‧‧‧Second barrier structure

210、210'‧‧‧頂電極層 210, 210'‧‧‧ Top electrode layer

210A、210B‧‧‧頂電極 210A, 210B‧‧‧Top electrode

211、215‧‧‧光阻層 211、215‧‧‧Photoresist layer

212‧‧‧保護層 212‧‧‧Protective layer

214‧‧‧第一隔離結構 214‧‧‧Isolated structure

216‧‧‧凹槽 216‧‧‧groove

217‧‧‧絕緣層 217‧‧‧Insulation

217A‧‧‧凹口 217A‧‧‧Notch

218‧‧‧電絲單元 218‧‧‧Wire unit

220、220’‧‧‧第二隔離結 構 220, 220’‧‧‧Second isolation junction Construct

222‧‧‧第三隔離結構 222‧‧‧The third isolation structure

300‧‧‧金屬間介電層 300‧‧‧Intermetallic dielectric layer

302‧‧‧導電接觸件 302‧‧‧Conductive contact

400‧‧‧電晶體 400‧‧‧Transistor

406‧‧‧源極/汲極區 406‧‧‧Source/Drain

W1、W2‧‧‧寬度 W1, W2‧‧‧Width

以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製 且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 The embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. It should be noted that according to standard practices in the industry, various features are not drawn to scale It is for illustrative purposes only. In fact, the size of the elements may be arbitrarily enlarged or reduced to clearly show the features of the present disclosure.

第1A-1I圖係根據一些實施例,繪示出電阻式隨機存取記憶體之生產的不同中間階段下的剖面示意圖。 FIGS. 1A-1I are schematic cross-sectional views of the resistive random access memory at different intermediate stages in accordance with some embodiments.

第2A-2G圖係根據另一些實施例,繪示出電阻式隨機存取記憶體之生產裝置的不同中間階段下的剖面示意圖。 Figures 2A-2G are schematic cross-sectional views of a resistive random access memory production device at different intermediate stages according to other embodiments.

以下的揭示內容提供許多不同的實施例或範例,以展示本揭露的不同特徵。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的元件符號。這些元件符號的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。 The following disclosure provides many different embodiments or examples to show the different features of the present disclosure. The following will disclose specific examples of components and arrangements in this specification to simplify the disclosure. Of course, these specific examples are not intended to limit this disclosure. For example, if the following summary of the description of this specification describes the formation of the first component on or above the second component, it means that it includes an embodiment where the formed first and second components are in direct contact, and also includes Additional components can be formed between the first and second components, and the first and second components are embodiments that are not in direct contact. In addition, various examples in this disclosure may use repeated element symbols. The purpose of these element symbols is to simplify and clarify, not to limit the relationship between various embodiments and/or the configurations.

雖然所述的一些實施例中的步驟以特定順序進行,這些步驟亦可以其他合邏輯的順序進行。在不同實施例中,可替換或省略一些所述的步驟,亦可於本發明實施例所述的步驟之前、之中、及/或之後進行一些其他操作。本發明實施例中的電阻式隨機存取記憶體可加入其他的特徵。在不同實施例中,可替換或省略一些特徵。 Although the steps in some of the described embodiments are performed in a specific order, these steps may also be performed in other logical orders. In different embodiments, some of the described steps may be replaced or omitted, and some other operations may be performed before, during, and/or after the steps described in the embodiments of the present invention. The resistive random access memory in the embodiments of the present invention may incorporate other features. In different embodiments, some features may be replaced or omitted.

一電晶體-一電阻(1 transistor-1 resistor,1T1R)結 構的電阻式隨機存取記憶體(resistive random access memory,RRAM)裝置於單一記憶體單元(cell)中僅具有一個電絲單元(filament unit)(即,電絲傳輸通道)。1T1R結構在電絲形成後,於設置/重置過程中容易產生軟性錯誤位元,由於軟性錯誤位元為隨機產生且將不可預期發生機率,因此現行方式多採用兩電晶體-兩電阻(2T2R)結構,使2T2R結構的電阻式隨機存取記憶體在單一記憶體單元中具有兩個電絲單元,並在電路設計上以感測法(sensing method)搭配組合模式(combination mode)或差動模式(differential mode),來解決此問題。然而,記憶體單元尺寸也隨之增加,且仍然存在軟性錯誤問題。 One transistor-one resistor (1 transistor-1 resistor, 1T1R) junction A structured resistive random access memory (resistive random access memory, RRAM) device has only one filament unit (ie, a filament transmission channel) in a single memory cell. The 1T1R structure is easy to generate soft error bits during the setting/resetting process after the wire is formed. Because the soft error bits are randomly generated and the probability of unpredictable occurrence, the current method mostly uses two transistors-two resistors (2T2R ) Structure, the 2T2R resistive random access memory has two wire units in a single memory unit, and the sensing method (sensing method) is combined with the combination mode or differential in the circuit design Differential mode to solve this problem. However, the size of the memory cell has also increased, and there are still soft errors.

本發明提供一種電阻式隨機存取記憶體及其形成方法,特別是一種在1T1R結構之單一記憶體單元中具有多個電絲單元的電阻式隨機存取記憶體。由於在單一記憶體單元中具有多個電絲單元,可在不增加記憶體單元尺寸的情況下提高單一記憶體單元產生的位元數,進而改善軟性錯誤位元發生的機率。舉例來說,使用感測法操作於組合模式時,即使軟性錯誤位元發生,仍然保留其他傳輸通道以降低軟性錯誤位元產生的機率。 The invention provides a resistive random access memory and a method for forming the same, in particular to a resistive random access memory having a plurality of electric wire units in a single memory unit of 1T1R structure. Since there are multiple electric wire units in a single memory unit, the number of bits generated by a single memory unit can be increased without increasing the size of the memory unit, thereby improving the probability of occurrence of soft error bits. For example, when using the sensing method to operate in the combined mode, even if a soft error bit occurs, other transmission channels are still reserved to reduce the probability of soft error bit generation.

第1A-1I圖係根據一些實施例,繪示出電阻式隨機存取記憶體之生產的不同中間階段下的剖面示意圖。請參考第1A圖,首先提供一基板100。基板100可以為半導體基板、絕緣體上覆矽基板。舉例而言,半導體基板的材料可包括經摻雜或未經摻雜的半導體材料,例如是矽、鍺、砷化鎵、碳化矽、砷化銦或磷化銦等等。此外,基板100中可經形成以具有主動元 件及/或被動元件。主動元件可包括電晶體、二極體等,而被動元件可包括電阻、電容、電感等。在一些實施例中,基板100可以包括記憶體控制元件(將稍後於關於第1I圖中詳述),記憶體控制元件包括主動控制元件(例如,電晶體)以及內連線結構(例如,導電層、接觸件等等)。 FIGS. 1A-1I are schematic cross-sectional views of the resistive random access memory at different intermediate stages in accordance with some embodiments. Please refer to FIG. 1A to provide a substrate 100 first. The substrate 100 may be a semiconductor substrate or a silicon-on-insulator substrate. For example, the material of the semiconductor substrate may include doped or undoped semiconductor materials, such as silicon, germanium, gallium arsenide, silicon carbide, indium arsenide, or indium phosphide. In addition, the substrate 100 may be formed to have active elements Components and/or passive components. Active components may include transistors, diodes, etc., while passive components may include resistors, capacitors, inductors, etc. In some embodiments, the substrate 100 may include a memory control element (to be described in detail later in FIG. 1I). The memory control element includes an active control element (eg, transistor) and an interconnect structure (eg, Conductive layers, contacts, etc.).

如第1A圖所示,在基板100上形成金屬間介電層101。金屬間介電層101可以包括或為氧化物(例如氧化矽、二氧化矽)、氮化物、低介電常數(low-K)介電材料(例如,介電常數低於二氧化矽的材料)、氮氧化矽、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽酸鹽玻璃、未摻雜的矽酸鹽玻璃、摻雜氟的矽酸鹽玻璃、有機矽酸鹽玻璃、SiOxCy、碳矽材料或上述之組合。在一實施例中,金屬間介電層101厚度可在約300nm至約400nm。此外,金屬間介電層101形成有導電結構102,用於將電阻式隨機存取記憶體連接至基板100中之主動控制元件及/或內連線結構。在一實施例中,導電結構102可以包括鋁、銅、鎢、或其他合適的導電材料。 As shown in FIG. 1A, an intermetal dielectric layer 101 is formed on the substrate 100. The inter-metal dielectric layer 101 may include or be an oxide (such as silicon oxide, silicon dioxide), nitride, or low-k dielectric material (for example, a material with a dielectric constant lower than silicon dioxide ), silicon oxynitride, phosphosilicate glass, borosilicate glass, borophosphosilicate glass, undoped silicate glass, fluorine-doped silicate glass, organic silicate glass, SiOxCy , Carbon silicon material or a combination of the above. In one embodiment, the thickness of the intermetal dielectric layer 101 may be about 300 nm to about 400 nm. In addition, the inter-metal dielectric layer 101 is formed with a conductive structure 102 for connecting the resistive random access memory to the active control element and/or interconnect structure in the substrate 100. In one embodiment, the conductive structure 102 may include aluminum, copper, tungsten, or other suitable conductive materials.

繼續參考第1A圖,接下來,在金屬間介電層101上形成膜層堆疊。具體而言,形成的膜層堆疊可以包括依序形成的底電極層200、電阻轉換層(resistive switching layer)202、第一阻障層204、氧氣交換層(oxygen exchange layer)206、第二阻障層208、以及頂電極層210。 With continued reference to FIG. 1A, next, a film layer stack is formed on the intermetal dielectric layer 101. Specifically, the formed film layer stack may include a bottom electrode layer 200, a resistive switching layer 202, a first barrier layer 204, an oxygen exchange layer 206, and a second resistor formed in sequence The barrier layer 208 and the top electrode layer 210.

在一實施例中,底電極層200可包括鎢、鉑、鋁、鈦、氮化鈦、或前述之組合,且厚度可為約25nm至約35nm。在一實施例中,電阻轉換層202可以包括過渡金屬氧化物,例如氧化鉿、氧化鈦、氧化鎢、氧化鉭、氧化鋯、或前述之組合,且厚度可約為3nm至10nm。在一實施例中,第一阻障層204及第二阻障層208可包括氧化鋁(Al2O3)或氮化矽(SiN4),且厚度可約為0.4nm至1nm。在一實施例中,第一阻障層204厚於上述第二阻障層208。在一實施例中,氧氣交換層206可包括鋁、鈦、或前述之組合,且厚度可約為20nm至40nm。在一實施例中,可藉由電子束蒸發、濺鍍、或物理氣相沉積依序形成上述用於膜層堆疊的底電極層200、電阻轉換層202、第一阻障層204、氧氣交換層206、以及第二阻障層208。 In an embodiment, the bottom electrode layer 200 may include tungsten, platinum, aluminum, titanium, titanium nitride, or a combination of the foregoing, and the thickness may be about 25 nm to about 35 nm. In one embodiment, the resistance conversion layer 202 may include a transition metal oxide, such as hafnium oxide, titanium oxide, tungsten oxide, tantalum oxide, zirconium oxide, or a combination of the foregoing, and the thickness may be about 3 nm to 10 nm. In an embodiment, the first barrier layer 204 and the second barrier layer 208 may include aluminum oxide (Al 2 O 3 ) or silicon nitride (SiN 4 ), and the thickness may be about 0.4 nm to 1 nm. In one embodiment, the first barrier layer 204 is thicker than the second barrier layer 208 described above. In one embodiment, the oxygen exchange layer 206 may include aluminum, titanium, or a combination of the foregoing, and the thickness may be approximately 20 nm to 40 nm. In one embodiment, the bottom electrode layer 200, the resistance conversion layer 202, the first barrier layer 204, and the oxygen exchange for the film stack can be sequentially formed by electron beam evaporation, sputtering, or physical vapor deposition Layer 206 and second barrier layer 208.

請參照第1B圖,對膜層堆疊進行圖案化製程以形成分別對應於導電結構102的堆疊結構。詳細而言,可在膜層堆疊上形成暴露出膜層堆疊的部分頂表面的圖案化光阻層211。接著,藉由圖案化光阻層211對膜層堆疊進行一圖案化製程,以依序圖案化底電極層200、電阻轉換層202、第一阻障層204、氧氣交換層206、第二阻障層208、以及頂電極層210,以於金屬間介電層101上形成複數個堆疊結構。每一個堆疊結構即為一個記憶體單元。每一個堆疊結構包括依序堆疊於金屬間介電層101上的底電極200’、電阻轉換層202’、第一阻障層204’、氧氣交換層206’、第二阻障層208’、以及頂電極層210’。然後,可通過例如灰化或濕式剝除等製程移除圖案化光阻層211。 Referring to FIG. 1B, a patterning process is performed on the film stack to form stack structures corresponding to the conductive structures 102, respectively. In detail, a patterned photoresist layer 211 exposing a portion of the top surface of the film layer stack may be formed on the film layer stack. Next, a patterning process is performed on the film stack by patterning the photoresist layer 211 to sequentially pattern the bottom electrode layer 200, the resistance conversion layer 202, the first barrier layer 204, the oxygen exchange layer 206, and the second resistance The barrier layer 208 and the top electrode layer 210 form a plurality of stacked structures on the intermetal dielectric layer 101. Each stacked structure is a memory unit. Each stack structure includes a bottom electrode 200', a resistance conversion layer 202', a first barrier layer 204', an oxygen exchange layer 206', and a second barrier layer 208' sequentially stacked on the intermetal dielectric layer 101 And the top electrode layer 210'. Then, the patterned photoresist layer 211 can be removed through processes such as ashing or wet stripping.

在一實施例中,可以藉由例如旋轉塗佈製程,在上述膜層堆疊上形成光阻層,且藉由使用適當光罩將光阻曝光來圖案化光阻。可接著去除光阻的曝光或未曝光部分,其取決於使用的是正光阻或是負光阻,以形成上述圖案化光阻層 211。 In one embodiment, a photoresist layer can be formed on the above film layer stack by, for example, a spin coating process, and the photoresist can be patterned by exposing the photoresist using an appropriate photomask. The exposed or unexposed portions of the photoresist can then be removed, depending on whether a positive or negative photoresist is used to form the patterned photoresist layer 211.

接下來,請參考第1C圖,沿著上述堆疊結構的側壁及在堆疊結構的頂表面上順應性地形成保護層212,並在各個堆疊結構之間形成第一隔離結構214。在一些實施例中,形成第一隔離結構214的方法例如是先在基底100上毯覆性的形成上述絕緣材料,接著對上述絕緣材料使用平坦化製程直到露出位於堆疊結構上的保護層212,以在堆疊結構之間形成上述第一隔離結構214(如第1C圖)。在另一些實施例中,可以實施上述平坦化製程直到露出堆疊結構之頂表面(即,圖案化頂電極層210’),使堆疊結構之頂表面與絕緣材料齊平(未繪示)。在一些實施例中,上述平坦化製程可以包括化學機械研磨製程或回蝕刻(etch back)製程。保護層212與第一隔離結構214包括不同的材料,兩者之間的能帶差異可防止電子遷移,進而避免相鄰的記憶體單元干擾彼此,以確保電阻式隨機存取記憶體的功能性。保護層212可以包括金屬氧化物,例如氧化鋁(Al2O3)或氮化矽(SiN4),且厚度可約為0.4nm至1nm。並可藉由原子層沉積製程、化學氣相沉積製程、或上述之組合,來形成保護層212。第一隔離結構214可包括或為絕緣材料,例如氧化物(例如氧化矽)、氮化物、或上述之組合。並可藉由例如高密度電漿化學氣相沉積(high density plasma CVD,HDP-CVD)、流動式化學氣相沉積(flowable CVD,FCVD)、或任何合適的沉積技術將上述絕緣材料填充在堆疊結構之間。 Next, referring to FIG. 1C, a protective layer 212 is compliantly formed along the sidewalls of the above-mentioned stacked structure and on the top surface of the stacked structure, and a first isolation structure 214 is formed between the stacked structures. In some embodiments, the method of forming the first isolation structure 214 is, for example, first blanket forming the above-mentioned insulating material on the substrate 100, and then using a planarization process on the above-mentioned insulating material until the protective layer 212 on the stacked structure is exposed, In order to form the first isolation structure 214 (as shown in FIG. 1C) between the stacked structures. In other embodiments, the above planarization process may be performed until the top surface of the stacked structure (ie, the patterned top electrode layer 210') is exposed, so that the top surface of the stacked structure is flush with the insulating material (not shown). In some embodiments, the above planarization process may include a chemical mechanical polishing process or an etch back process. The protective layer 212 and the first isolation structure 214 include different materials. The difference in energy band between the two prevents electron migration, thereby preventing adjacent memory cells from interfering with each other to ensure the functionality of the resistance random access memory . The protective layer 212 may include a metal oxide, such as aluminum oxide (Al 2 O 3 ) or silicon nitride (SiN 4 ), and the thickness may be about 0.4 nm to 1 nm. The protective layer 212 may be formed by an atomic layer deposition process, a chemical vapor deposition process, or a combination thereof. The first isolation structure 214 may include or be an insulating material, such as oxide (eg, silicon oxide), nitride, or a combination thereof. The above insulating materials can be filled in the stack by, for example, high density plasma chemical vapor deposition (HDP-CVD), flowable chemical vapor deposition (flowable CVD, FCVD), or any suitable deposition technique Between structures.

如第1D圖所示,在上述堆疊結構上形成圖案化光阻層215。在一些實施例中,形成圖案化光阻層215所使用之光 罩可以相同於用以形成第1B圖中的圖案化光阻層211所使用的光罩,而無需使用額外的光罩。舉例來說,使用不同型態的光阻,以形成具有與第1B圖中的圖案化光阻層211反相的互補圖案的圖案化光阻層215。在一些實施例中,圖案化光阻層211為正光阻,而此圖案化光阻215層為負光阻。在另一些實施例中,也可以使用額外的光罩來形成圖案化光阻層215。 As shown in FIG. 1D, a patterned photoresist layer 215 is formed on the stack structure. In some embodiments, the light used to form the patterned photoresist layer 215 The mask may be the same as the mask used to form the patterned photoresist layer 211 in FIG. 1B without using an additional mask. For example, different types of photoresists are used to form a patterned photoresist layer 215 having a complementary pattern inverse to the patterned photoresist layer 211 in FIG. 1B. In some embodiments, the patterned photoresist layer 211 is a positive photoresist, and the patterned photoresist layer 215 is a negative photoresist. In other embodiments, an additional photomask can also be used to form the patterned photoresist layer 215.

請繼續參照第1D圖,接著藉由合適的沉積製程在圖案化光阻層215上形成絕緣層217,例如化學氣相沉積或原子層沉積。在一些實施例中,絕緣層217可以包括或為氧化物(例如氧化矽)、氮化物(nitride)、或上述之組合。如第1D圖所示,絕緣層217具有多個凹口217A,凹口217A的底部具有一寬度W1,寬度W1範圍約為堆疊結構頂表面寬度W2的1/20~3/20。 Please continue to refer to FIG. 1D, and then form an insulating layer 217 on the patterned photoresist layer 215 by a suitable deposition process, such as chemical vapor deposition or atomic layer deposition. In some embodiments, the insulating layer 217 may include or be oxide (eg, silicon oxide), nitride, or a combination of the foregoing. As shown in FIG. 1D, the insulating layer 217 has a plurality of notches 217A. The bottom of the notch 217A has a width W1, and the width W1 ranges from about 1/20 to 3/20 of the width W2 of the top surface of the stacked structure.

請參照第1E圖,藉由圖案化光阻層215及絕緣層217之組合為蝕刻遮罩,對上述堆疊結構進行蝕刻,以形成凹槽216。凹槽216穿過堆疊結構至底電極200’,並露出一部分的底電極200’。凹槽216在上述堆疊結構中定義出兩個物理性分開的電絲單元218以及分別位於各電絲單元218上的頂電極210A。如第1E圖所示,電絲單元218包括電阻轉換結構202”、第一阻障結構204”、氧氣交換結構206”、第二阻障結構208”。電絲單元218即為電絲傳輸通道。氧氣交換結構206”可以輔助電阻轉換結構202”形成電絲。具體而言,在電阻轉換結構202”中形成電絲之後,游離的氧離子可儲存在氧氣交換結構206”中。此外,第一及第二阻障結構204”及208”可幫助將游離的氧離子限制在氧氣交換結構206”中,以允許更多穩定的電絲形 成在電絲單元218中並使電阻式隨機存取記憶體具有更好的電絲再現率。在一些實施例中,上述蝕刻堆疊結構的步驟可以包括任何合適的非等向性乾蝕刻製程,例如反應離子蝕刻、中性束蝕刻(neutral beam etch,NBE)或上述之組合。接著,去除圖案化光阻層215及絕緣層217。舉例來說,可使用例如灰化或濕式剝除製程來去除圖案化光阻層215。舉例來說,可使用例如濕式剝除製程或合適的蝕刻製程來上述絕緣層217。在一些實施例中,凹槽216的寬度約為堆疊結構的寬度W2的1/20至3/20。 Referring to FIG. 1E, the patterned photoresist layer 215 and the insulating layer 217 are used as an etching mask to etch the stack structure to form the groove 216. The groove 216 passes through the stacked structure to the bottom electrode 200' and exposes a part of the bottom electrode 200'. The groove 216 defines two physically separated electric wire units 218 and a top electrode 210A on each electric wire unit 218 in the above-mentioned stacked structure. As shown in FIG. 1E, the wire unit 218 includes a resistance conversion structure 202", a first barrier structure 204", an oxygen exchange structure 206", and a second barrier structure 208". The wire unit 218 is a wire transmission channel. The oxygen exchange structure 206" may assist the resistance conversion structure 202" to form an electric wire. Specifically, after the electric wire is formed in the resistance conversion structure 202", free oxygen ions may be stored in the oxygen exchange structure 206". In addition, the first and second barrier structures 204" and 208" can help confine free oxygen ions to the oxygen exchange structure 206" to allow more stable wire shapes It is built into the wire unit 218 and enables the resistance random access memory to have a better wire reproducibility. In some embodiments, the step of etching the stacked structure may include any suitable anisotropic dry etching process, such as reactive ion etching, neutral beam etching (NBE), or a combination thereof. Next, the patterned photoresist layer 215 and the insulating layer 217 are removed. For example, the patterned photoresist layer 215 may be removed using, for example, ashing or wet stripping processes. For example, the insulating layer 217 can be formed using, for example, a wet stripping process or a suitable etching process. In some embodiments, the width of the groove 216 is about 1/20 to 3/20 of the width W2 of the stacked structure.

儘管第1E圖中顯示出每一個堆疊結構中具有一個凹槽216,但在其他實施例中,也可以在每一個堆疊結構中形成兩個以上的凹槽216。換句話說,可以在每一個堆疊結構中定義出三個以上的電絲單元218。舉例來說,可以在每一堆疊結構中形成兩個凹槽216,以形成三個電絲單元218。 Although FIG. 1E shows that each stacked structure has one groove 216, in other embodiments, more than two grooves 216 may be formed in each stacked structure. In other words, more than three wire units 218 can be defined in each stack structure. For example, two grooves 216 may be formed in each stacked structure to form three wire units 218.

如第1F-1及1F-2圖所示,在凹槽216中形成第二隔離結構220且在上述堆疊結構上形成金屬間介電層300。在一些實施例中,第二隔離結構220可以包括或為絕緣材料,例如氧化物(例如氧化矽)、氮化物、或上述之組合。在一些實施例中,金屬間介電層300可以包括為氧化物(例如氧化矽、二氧化矽)、氮化物、低介電常數介電材料(例如,介電常數低於二氧化矽的材料)、氮氧化矽、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽酸鹽玻璃、未摻雜的矽酸鹽玻璃、摻雜氟的矽酸鹽玻璃、有機矽酸鹽玻璃、SiOxCy、碳矽材料、上述之化合物、上述之複合物、或上述之組合。在一些實施例中,金屬間介電層300厚度 可在約200nm至約400nm。 As shown in FIGS. 1F-1 and 1F-2, a second isolation structure 220 is formed in the groove 216 and an intermetal dielectric layer 300 is formed on the above-mentioned stacked structure. In some embodiments, the second isolation structure 220 may include or be an insulating material, such as oxide (eg, silicon oxide), nitride, or a combination thereof. In some embodiments, the inter-metal dielectric layer 300 may include oxides (eg silicon oxide, silicon dioxide), nitrides, and low dielectric constant dielectric materials (eg, materials having a dielectric constant lower than silicon dioxide ), silicon oxynitride, phosphosilicate glass, borosilicate glass, borophosphosilicate glass, undoped silicate glass, fluorine-doped silicate glass, organic silicate glass, SiO x C y , carbon-silicon material, the above compound, the above compound, or a combination of the above. In some embodiments, the thickness of the intermetal dielectric layer 300 may be about 200 nm to about 400 nm.

在一些實施例中,如第1F-1圖所示,第二隔離結構220及金屬間介電層300可以在不同的步驟中形成。在此實施例中,可以藉由任何合適的沉積製程(例如HDP-CVD或FCVD)將上述絕緣材料填入凹槽216中,並使得上述堆疊結構被過量的絕緣材料覆蓋。接著再對上述絕緣材料進行平坦化製程(例如,化學機械研磨製程或回蝕刻製程),來去除位於堆疊結構上之過量的絕緣材料,使堆疊結構之頂表面與絕緣材料齊平,以於凹槽216中形成第二隔離結構220。然後,可以使用任何合適的沉積製程在上述堆疊結構及第二隔離結構220之上形成金屬間介電層300。 In some embodiments, as shown in FIG. 1F-1, the second isolation structure 220 and the inter-metal dielectric layer 300 may be formed in different steps. In this embodiment, the above-mentioned insulating material can be filled into the groove 216 by any suitable deposition process (such as HDP-CVD or FCVD), and the above-mentioned stacked structure can be covered with excess insulating material. Then, a planarization process (for example, a chemical mechanical polishing process or an etch-back process) is performed on the above-mentioned insulating materials to remove excess insulating material on the stacked structure, so that the top surface of the stacked structure is flush with the insulating material, so that the concave The second isolation structure 220 is formed in the groove 216. Then, any suitable deposition process may be used to form the inter-metal dielectric layer 300 over the stack structure and the second isolation structure 220.

在另一些實施例中,如第1F-2圖所示,第二隔離結構220’及金屬間介電層300可以在同一沉積製程中形成。在此實施例中,可以藉由任何合適的沉積製程將上述絕緣材料至少沉積在堆疊結構之上,以在堆疊結構上形成金屬間介電層300。相較於關於第1F-1圖所描述的沉積製程,可以不需選用高填溝能力之沉積製程及/或參數,因此上述絕緣材料可能沒有填充在凹槽216中,或可能僅部分填充凹槽216,以形成包括氣隙的第二隔離結構220’,如第1F-2圖所示。應注意的是,雖然在第1F-1圖所示之結構中,第二隔離結構220為完全填充,但在製程中亦可形成包括氣隙的第二隔離結構220。 In other embodiments, as shown in FIG. 1F-2, the second isolation structure 220' and the inter-metal dielectric layer 300 may be formed in the same deposition process. In this embodiment, the above-mentioned insulating material can be deposited at least on the stacked structure by any suitable deposition process to form the intermetal dielectric layer 300 on the stacked structure. Compared with the deposition process described in relation to FIG. 1F-1, a deposition process and/or parameters with high trench filling capacity may not be required, so the above insulating material may not be filled in the groove 216, or may only partially fill the recess The groove 216 to form a second isolation structure 220' including an air gap, as shown in FIG. 1F-2. It should be noted that although the second isolation structure 220 is completely filled in the structure shown in FIG. 1F-1, the second isolation structure 220 including an air gap may also be formed during the manufacturing process.

請參照第1G圖,穿過金屬間介電層300及保護層212形成對應於各頂電極210A的導電接觸件302。具體而言,可先藉由微影及蝕刻製程形成在金屬間介電層300及保護層212 中形成對應並暴露出各頂電極210A的開口。接著,再於上述開口中形成襯層(例如,擴散阻障層、黏著層、或相似膜層)及導電材料。上述襯層可以包括鈦、氮化鈦、鉭、氮化鉭。上述導電材料可以是銅、銅合金、銀、金、鎢、鈷、鋁、鎳。然後,可以進行例如化學機械研磨的平坦化製程,以移除金屬間介電層300上的襯層及導電材料,並於上述開口中形成導電接觸件302,如第1G圖所示。在另一些實施例中,亦可使用例如鑲嵌製程來形成導電接觸件302。 Referring to FIG. 1G, a conductive contact 302 corresponding to each top electrode 210A is formed through the intermetal dielectric layer 300 and the protective layer 212. Specifically, it can be formed on the intermetal dielectric layer 300 and the protective layer 212 by a lithography and etching process An opening corresponding to and exposing each top electrode 210A is formed in. Next, a liner layer (for example, a diffusion barrier layer, an adhesion layer, or a similar film layer) and a conductive material are formed in the opening. The liner layer may include titanium, titanium nitride, tantalum, and tantalum nitride. The conductive material may be copper, copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel. Then, a planarization process such as chemical mechanical polishing may be performed to remove the liner layer and the conductive material on the intermetal dielectric layer 300, and form a conductive contact 302 in the opening, as shown in FIG. 1G. In other embodiments, the conductive contact 302 can also be formed using, for example, a damascene process.

接著,請參照第1H圖,在金屬間介電層300上形成複數個導電層304。在一些實施例中,可以使用鑲嵌製程或雙鑲嵌製程等方法來形成導電層304。導電層304可以是銅、銅合金、銀、金、鎢、鈷、鋁、鎳、或相似材料。 Next, referring to FIG. 1H, a plurality of conductive layers 304 are formed on the intermetal dielectric layer 300. In some embodiments, the conductive layer 304 may be formed using a damascene process or a dual damascene process. The conductive layer 304 may be copper, copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel, or similar materials.

第1I圖為根據本發明一實施例繪示出包含控制元件之電阻式隨機存取記憶體10之一示例。如第1I圖所示,除了第1H所製成的結構外,電阻式隨機存取記憶體10更具有形成於基底100上的電晶體400、位於電晶體400兩側的源極/汲極區406、介於基底100及金屬間介電層101之間的介電層104、形成於介電層104中以將導電結構102電性連接至源極/汲極區406的導電層106及導電結構108。 FIG. 11I illustrates an example of a resistive random access memory 10 including a control element according to an embodiment of the invention. As shown in FIG. 1I, in addition to the structure made in 1H, the resistive random access memory 10 further has a transistor 400 formed on the substrate 100, and source/drain regions on both sides of the transistor 400 406, a dielectric layer 104 between the substrate 100 and the intermetal dielectric layer 101, a conductive layer 106 formed in the dielectric layer 104 to electrically connect the conductive structure 102 to the source/drain region 406, and conductive Structure 108.

在第1A-1I圖所示的實施例中,電阻式隨機存取記憶體包括複數個記憶體單元,其中上述記憶體單元分別藉由第一隔離結構214彼此隔開。每一記憶體單元包括底電極200’、設置於底電極200’上的複數個電絲單元218、形成於各電絲單元218上的頂電極210A、第二隔離結構220、以及沿著底電極 200’、電絲單元218及頂電極210A共平面的側壁所形成的保護層212。第一隔離結構214之材料與保護層212之材料為不同的材料,兩者之間的能帶差異可防止電子遷移,進而避免相鄰的記憶體單元干擾彼此,以確保電阻式隨機存取記憶體的功能性。 In the embodiment shown in FIGS. 1A-1I, the resistive random access memory includes a plurality of memory cells, wherein the memory cells are separated from each other by a first isolation structure 214. Each memory cell includes a bottom electrode 200', a plurality of wire units 218 disposed on the bottom electrode 200', a top electrode 210A formed on each wire unit 218, a second isolation structure 220, and a bottom electrode 200', a protective layer 212 formed on the side walls of the wire unit 218 and the top electrode 210A on the same plane. The material of the first isolation structure 214 and the material of the protective layer 212 are different materials. The difference in energy bands between the two can prevent electron migration, thereby preventing adjacent memory cells from interfering with each other to ensure resistive random access memory Functionality of the body.

各電絲單元藉由第二隔離結構220彼此物理性分開。每一個電絲單元包括位於底電極200’上的電阻轉換結構202’、位於電阻轉換結構202’上的第一阻障結構204’、位於第一阻障結構204’上的氧氣交換結構206’、以及位於氧氣交換結構206’上的第二阻障結構208’。由於在各個記憶體單元中具有物理性分開的電絲單元,可在不增加記憶體單元體積的情況下形成多個位元。如此一來,以感測法搭配組合模式/差動模式時,可以降低軟性錯誤位元的發生率。 The wire units are physically separated from each other by the second isolation structure 220. Each wire unit includes a resistance conversion structure 202' on the bottom electrode 200', a first barrier structure 204' on the resistance conversion structure 202', and an oxygen exchange structure 206' on the first barrier structure 204' And a second barrier structure 208' located on the oxygen exchange structure 206'. Since there are physically separated electric wire units in each memory unit, multiple bits can be formed without increasing the volume of the memory unit. In this way, when combining the combined mode/differential mode with the sensing method, the occurrence rate of soft error bits can be reduced.

第2A-2G圖係根據另一些實施例,繪示出電阻式隨機存取記憶體之生產的不同中間階段下的剖面示意圖。除了在此實施例中,在單一記憶體單元中的多個電絲單元共用一個頂電極之外,此實施例相似於先前第1A-1I圖的實施例。在此將不再重複關於此實施例的與先前描述的實施例相似的細節。 Figures 2A-2G are schematic cross-sectional views of the resistive random access memory at different intermediate stages of production according to other embodiments. This embodiment is similar to the previous embodiment of FIGS. 1A-1I except that in this embodiment, multiple wire units in a single memory unit share a top electrode. Details of this embodiment that are similar to the previously described embodiments will not be repeated here.

請參考第2A圖,首先提供基板100。接著,在基板100上形成金屬間介電層101。金屬間介電層101包括用於將電阻式隨機存取記憶體連接至基板100中之主動控制元件及/或內連線結構的導電結構102。接著,在金屬間介電層101上形成膜層堆疊,上述形成膜層堆疊可以包括依序形成的底電極層200、電阻轉換層202、第一阻障層204、氧氣交換層206、以及 第二阻障層208。第2A圖所示之實施例與前述第1A圖之實施例的差別在於,上述膜層堆疊中並未包括頂電極層210。 Please refer to FIG. 2A to provide the substrate 100 first. Next, the intermetal dielectric layer 101 is formed on the substrate 100. The inter-metal dielectric layer 101 includes a conductive structure 102 for connecting the resistive random access memory to the active control element and/or interconnect structure in the substrate 100. Next, a film layer stack is formed on the intermetal dielectric layer 101. The film layer stack may include a bottom electrode layer 200, a resistance conversion layer 202, a first barrier layer 204, an oxygen exchange layer 206, and Second barrier layer 208. The difference between the embodiment shown in FIG. 2A and the previous embodiment shown in FIG. 1A is that the top electrode layer 210 is not included in the above film layer stack.

接下來,進行相同或相似於前述關於第1B至1E圖所描述的製程,以形成如第2B圖之結構。請參照第2B圖,如先前所提及的,凹槽216在底電極200’上定義出兩個物理性分開的電絲單元218,電絲單元218包括電阻轉換結構202”、第一阻障結構204”、氧氣交換結構206”、第二阻障結構208”。如第2B圖所示,保護層212沿著底電極200’、電阻轉換結構202”、第一阻障結構204”、氧氣交換結構206”、及第二阻障結構208”共平面的側壁,且位於第二阻障結構208”的頂表面上。在另一實施例中,保護層212僅沿著底電極200’、電阻轉換結構202”、第一阻障結構204”、氧氣交換結構206”、及第二阻障結構208”共平面的側壁,但沒有位於第二阻障結構208”的頂表面上(未繪示)。 Next, the same or similar processes as described above with respect to FIGS. 1B to 1E are performed to form the structure as shown in FIG. 2B. Please refer to FIG. 2B. As mentioned previously, the groove 216 defines two physically separated wire units 218 on the bottom electrode 200'. The wire unit 218 includes a resistance conversion structure 202" and a first barrier Structure 204", oxygen exchange structure 206", and second barrier structure 208". As shown in FIG. 2B, the protective layer 212 is along the coplanar side walls of the bottom electrode 200', the resistance conversion structure 202", the first barrier structure 204", the oxygen exchange structure 206", and the second barrier structure 208", And is located on the top surface of the second barrier structure 208". In another embodiment, the protective layer 212 only runs along the bottom electrode 200', the resistance conversion structure 202", the first barrier structure 204", and the oxygen exchange structure 206 ", and the second barrier structure 208" are coplanar side walls, but are not located on the top surface of the second barrier structure 208" (not shown).

接著,請參考第2C圖,在凹槽216中形成第二隔離結構220,且在電絲單元218上形成頂電極層210。形成頂電極層210A的製程及材料與第1A圖相似,在此不再贅述。形成第二隔離結構的製程及材料與第1F-1及1F-2圖相似,在此不再贅述。相似於第1F-1及1F-2圖所提及的,第二隔離結構220可以為絕緣材料(第2C圖)、或可以包括氣隙(未繪示)。為求方便,在後續第2D-2G圖中,僅將第二隔離結構220繪示為完全填充。 Next, referring to FIG. 2C, a second isolation structure 220 is formed in the groove 216, and a top electrode layer 210 is formed on the wire unit 218. The process and materials for forming the top electrode layer 210A are similar to those in FIG. 1A, and will not be described here. The processes and materials for forming the second isolation structure are similar to those in FIGS. 1F-1 and 1F-2, and are not repeated here. Similar to those mentioned in FIGS. 1F-1 and 1F-2, the second isolation structure 220 may be an insulating material (FIG. 2C), or may include an air gap (not shown). For convenience, in the subsequent 2D-2G diagrams, only the second isolation structure 220 is depicted as completely filled.

接下來,請參考第2D圖,利用合適的圖案化光阻(未繪示)對頂電極層210進行一圖案化製程,以形成多個頂電極210B。如第2D圖所示,每一頂電極210B分別對應於一底電極 200’,並同時覆蓋兩個電絲單元218。 Next, referring to FIG. 2D, a patterning process is performed on the top electrode layer 210 using a suitable patterned photoresist (not shown) to form a plurality of top electrodes 210B. As shown in FIG. 2D, each top electrode 210B corresponds to a bottom electrode 200', and cover two electric wire units 218 at the same time.

值得一提的是,此處所使用之光罩可相同於先前形成複數個堆疊結構的步驟中所使用的光罩,而無需使用額外的遮罩。在其他實施例中,當每一堆疊結構上形成有多個第二隔離結構220及多個電絲單元218時,頂電極210B同時覆蓋該堆疊結構上的多個電絲單元218。 It is worth mentioning that the photomask used here can be the same as the photomask used in the previous steps of forming a plurality of stacked structures without using an additional mask. In other embodiments, when a plurality of second isolation structures 220 and a plurality of electric wire units 218 are formed on each stacked structure, the top electrode 210B simultaneously covers the plurality of electric wire units 218 on the stacked structure.

請參考第2E圖,在頂電極210B之間形成第三隔離結構222且在頂電極210B上形成金屬間介電層300。在一些實施例中,第三隔離結構222可以包括絕緣材料,例如氧化物(例如氧化矽)、氮化物、或上述之組合。形成金屬間介電層300的製程及材料與第1F-1及1F-2圖中相似,在此不再贅述。 Referring to FIG. 2E, a third isolation structure 222 is formed between the top electrodes 210B and an intermetal dielectric layer 300 is formed on the top electrode 210B. In some embodiments, the third isolation structure 222 may include an insulating material, such as oxide (eg, silicon oxide), nitride, or a combination thereof. The processes and materials for forming the inter-metal dielectric layer 300 are similar to those in FIGS. 1F-1 and 1F-2, and will not be repeated here.

在一些實施例中,第三隔離結構222及金屬間介電層300可以在不同的步驟中形成。在此實施例中,可藉由合適的沉積製程(例如HDP-CVD或FCVD)將上述絕緣材料填充在頂電極210B之間,並使得頂電極210B被過量的絕緣材料覆蓋。接著進行一平坦化製程(例如化學機械研磨製程或回蝕刻製程),移除位於頂電極210B上之過量的絕緣材料,使頂電極210B之頂表面與絕緣材料齊平,以在頂電極210B之間形成第三隔離結構222。接著,可以使用任何合適沉積製程在頂電極210B之上形成金屬間介電層300。 In some embodiments, the third isolation structure 222 and the inter-metal dielectric layer 300 may be formed in different steps. In this embodiment, the above-mentioned insulating material can be filled between the top electrodes 210B by a suitable deposition process (such as HDP-CVD or FCVD), and the top electrode 210B is covered with excess insulating material. Next, a planarization process (such as a chemical mechanical polishing process or an etch-back process) is performed to remove excess insulating material on the top electrode 210B, so that the top surface of the top electrode 210B is flush with the insulating material so that the top electrode 210B The third isolation structure 222 is formed. Next, any suitable deposition process may be used to form the inter-metal dielectric layer 300 over the top electrode 210B.

在另一些實施例中,第三隔離結構222及金屬間介電層300可以在相同的步驟中形成。在此實施例中,可以在基底100上毯覆性的形成上述絕緣材料以作為第三隔離結構222及金屬間介電層300。 In other embodiments, the third isolation structure 222 and the inter-metal dielectric layer 300 may be formed in the same step. In this embodiment, the above insulating material can be blanket formed on the substrate 100 to serve as the third isolation structure 222 and the inter-metal dielectric layer 300.

請參照第2F圖,穿過金屬間介電層300形成對應於各頂電極210B的導電接觸件302。接著,在金屬間介電層300上形成複數個導電層304。形成導電接觸件302及導電層304的製程及材料與第1G及1H圖相似,在此不再贅述。 Referring to FIG. 2F, a conductive contact 302 corresponding to each top electrode 210B is formed through the intermetal dielectric layer 300. Next, a plurality of conductive layers 304 are formed on the intermetal dielectric layer 300. The processes and materials for forming the conductive contact 302 and the conductive layer 304 are similar to those in FIGS. 1G and 1H, and will not be repeated here.

第2G圖為根據本發明另一實施例繪示出包含控制元件之電阻式隨機存取記憶體20之一示例。在此實施例中,除了在單一記憶體單元中的多個電絲單元共用一個頂電極之外,其他部份與第1I圖的實施例相似,在此不再贅述。 FIG. 2G is an example of a resistive random access memory 20 including a control element according to another embodiment of the invention. In this embodiment, except that a plurality of electric wire units in a single memory unit share a top electrode, the other parts are similar to the embodiment of FIG. 1I, and will not be repeated here.

在第2A-2G圖所示的實施例中,電阻式隨機存取記憶體包括複數個記憶體單元,其中上述記憶體單元分別藉由第一隔離結構214彼此隔開。每一記憶體單元包括底電極200’、設置於底電極上200’的複數個電絲單元218、覆蓋複數個電絲單元218的頂電極210B、以及沿著底電極200’及電絲單元218共平面的側壁所形成的保護層212。第一隔離結構214之材料與保護層212之材料為不同的材料,兩者之間的能帶差異可防止電子遷移,進而避免相鄰的記憶體單元干擾彼此,以確保電阻式隨機存取記憶體的功能性。 In the embodiment shown in FIGS. 2A-2G, the resistive random access memory includes a plurality of memory cells, wherein the memory cells are separated from each other by the first isolation structure 214, respectively. Each memory cell includes a bottom electrode 200', a plurality of wire units 218 disposed on the bottom electrode 200', a top electrode 210B covering the plurality of wire units 218, and along the bottom electrode 200' and the wire unit 218 The protective layer 212 is formed on the side walls of the coplanar surface. The material of the first isolation structure 214 and the material of the protective layer 212 are different materials. The difference in energy bands between the two can prevent electron migration, thereby preventing adjacent memory cells from interfering with each other to ensure resistive random access memory Functionality of the body.

電絲單元218藉由至少一個第二隔離結構220彼此物理性分開。每一個電絲單元包括位於底電極200’上的電阻轉換結構202’、位於電阻轉換結構202’上的第一阻障結構204’、位於第一阻障結構204’上的氧氣交換結構206’、以及位於氧氣交換結構206’上的第二阻障結構208’。在各個記憶體單元中具有物理性分開的電絲單元,可在不增加記憶體單元體積的情況下形成多個位元。如此一來,以感測法搭配組合模式/差動模 式時,可以降低軟性錯誤位元的發生率。 The electric wire units 218 are physically separated from each other by at least one second isolation structure 220. Each wire unit includes a resistance conversion structure 202' on the bottom electrode 200', a first barrier structure 204' on the resistance conversion structure 202', and an oxygen exchange structure 206' on the first barrier structure 204' And a second barrier structure 208' located on the oxygen exchange structure 206'. Each memory cell has physically separated electric wire cells, which can form multiple bits without increasing the volume of the memory cell. In this way, combining the combined mode/differential mode with the sensing method In the formula, the incidence of soft error bits can be reduced.

雖然第1A-1I圖及第2A-2G圖所繪示的實施例皆顯示多個電絲單元218共用一個底電極,但各電絲單元218亦可以具有獨立的底電極。換句話說,多個電絲單元218可以具有獨立頂電極/共用底電極(如第1I圖)、共用頂電極/共用底電極(如第2G圖)、共用頂電極/獨立底電極(未繪示)、或獨立頂電極/獨立底電極(未繪示)。 Although the embodiments shown in FIGS. 1A-1I and FIGS. 2A-2G show that a plurality of wire units 218 share a bottom electrode, each wire unit 218 may also have an independent bottom electrode. In other words, the plurality of electric wire units 218 may have an independent top electrode/common bottom electrode (as in FIG. 1I), a common top electrode/common bottom electrode (as in FIG. 2G), and a common top electrode/independent bottom electrode (not shown) Shown), or independent top electrode/independent bottom electrode (not shown).

第1I、2G圖所示的電阻式隨機存取記憶體可適用於解決1T1R結構的電阻式隨機存取記憶體的軟性錯誤位元問題。在單一記憶體單元中形成多個電絲單元,可在不增加記憶體單元體積的情況下形成多個位元。如此一來,以感測法搭配組合模式/差動模式時,可以降低軟性錯誤位元的發生率。此外,形成在記憶體單元側壁的保護層,可與記憶體單元之間的隔離結構形成能帶差異,進而避免相鄰的記憶體單元干擾彼此,確保電阻式隨機存取記憶體的功能性。 The resistive random access memory shown in FIGS. 1I and 2G can be used to solve the soft error bit problem of the resistive random access memory of 1T1R structure. Forming multiple wire units in a single memory unit can form multiple bits without increasing the volume of the memory unit. In this way, when combining the combined mode/differential mode with the sensing method, the occurrence rate of soft error bits can be reduced. In addition, the protective layer formed on the side wall of the memory cell can form an energy band difference with the isolation structure between the memory cells, thereby preventing adjacent memory cells from interfering with each other and ensuring the functionality of the resistance random access memory.

以上概略說明了本揭露數個實施例的特徵,使所屬技術領域內具有通常知識者對於本揭露可更為容易理解。任何所屬技術領域內具有通常知識者應瞭解到本說明書可輕易作為其他結構或製程的變更或設計基礎,以進行相同於本揭露實施例的目的及/或獲得相同的優點。任何所屬技術領域內具有通常知識者亦可理解與上述等同的結構或製程並未脫離本揭露之精神及保護範圍內,且可在不脫離本揭露之精神及範圍內,當可作更動、替代與潤飾。 The above outlines the features of several embodiments of the present disclosure, so that those with ordinary knowledge in the art can more easily understand the present disclosure. Anyone with ordinary knowledge in the technical field should understand that this specification can be easily used as a basis for changes or design of other structures or processes to perform the same purposes and/or obtain the same advantages as the embodiments of the present disclosure. Any person with ordinary knowledge in the technical field can also understand that the structure or process equivalent to the above does not deviate from the spirit and scope of the disclosure, and can be changed or replaced without departing from the spirit and scope of the disclosure With retouch.

10‧‧‧電阻式隨機存取記憶體 10‧‧‧Resistance random access memory

100‧‧‧基板 100‧‧‧ substrate

101‧‧‧金屬間介電層 101‧‧‧Intermetallic dielectric layer

102‧‧‧導電結構 102‧‧‧Conductive structure

104‧‧‧介電層 104‧‧‧dielectric layer

106、304‧‧‧導電層 106, 304‧‧‧ conductive layer

108‧‧‧導電結構 108‧‧‧Conductive structure

200'‧‧‧底電極 200'‧‧‧Bottom electrode

202"‧‧‧電阻轉換結構 202"‧‧‧Resistance conversion structure

204"‧‧‧第一阻障結構 204"‧‧‧The first barrier structure

206"‧‧‧氧氣交換結構 206"‧‧‧oxygen exchange structure

208"‧‧‧第二阻障結構 208"‧‧‧Second barrier structure

210A‧‧‧頂電極 210A‧‧‧Top electrode

212‧‧‧保護層 212‧‧‧Protective layer

214‧‧‧第一隔離結構 214‧‧‧Isolated structure

218‧‧‧電絲單元 218‧‧‧Wire unit

220‧‧‧第二隔離結構 220‧‧‧Second isolation structure

300‧‧‧金屬間介電層 300‧‧‧Intermetallic dielectric layer

302‧‧‧導電接觸件 302‧‧‧Conductive contact

400‧‧‧電晶體 400‧‧‧Transistor

406‧‧‧源極/汲極區 406‧‧‧Source/Drain

Claims (20)

一種電阻式隨機存取記憶體的形成方法,包括:形成一膜層堆疊,其中該膜層堆疊包括:一底電極層;以及一電阻轉換層,位於該底電極層上;圖案化該膜層堆疊,以形成複數個堆疊結構;沿著該些堆疊結構的側壁形成一保護層;在該些堆疊結構之間形成一第一隔離結構;在至少一堆疊結構中形成至少一凹槽,以在該至少一堆疊結構中定義出複數個物理性分開的電絲(filament)單元;以及在該至少一凹槽中形成一第二隔離結構。 A method for forming a resistive random access memory includes: forming a film layer stack, wherein the film layer stack includes: a bottom electrode layer; and a resistance conversion layer on the bottom electrode layer; patterning the film layer Stacking to form a plurality of stacked structures; forming a protective layer along the sidewalls of the stacked structures; forming a first isolation structure between the stacked structures; forming at least one groove in at least one stacked structure to A plurality of physically separated filament units are defined in the at least one stacked structure; and a second isolation structure is formed in the at least one groove. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,其中該膜層堆疊更包括:一第一阻障層,位於該電阻轉換層上;一氧氣交換層,位於該第一阻障層上;以及一第二阻障層,位於該氧氣交換層上。 The method for forming a resistive random access memory as described in item 1 of the patent application scope, wherein the film layer stack further includes: a first barrier layer on the resistance conversion layer; and an oxygen exchange layer on the On the first barrier layer; and a second barrier layer on the oxygen exchange layer. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,在形成該膜層堆疊之前,更包括形成複數個導電層,每一導電層電性連接至該些堆疊結構其中一者。 The method for forming a resistive random access memory as described in item 1 of the patent application scope, before forming the film layer stack, further includes forming a plurality of conductive layers, each conductive layer is electrically connected to the stack structures One. 如申請專利範圍第3項所述之電阻式隨機存取記憶體的形成方法,在形成該些導電層之前,更包括形成複數個電晶體,每一電晶體藉由每一導電層與該些堆疊結構其中一者電性連接。 The method for forming a resistive random access memory as described in item 3 of the patent application scope, before forming the conductive layers, further includes forming a plurality of transistors, each of the transistors One of the stacked structures is electrically connected. 如申請專利範圍第2項所述之電阻式隨機存取記憶體 的形成方法,其中該膜層堆疊更包括一頂電極層,位於該第二阻障層上,且其中形成該至少一凹槽的步驟中,更包括形成複數個頂電極,分別位於每一電絲單元上。 Resistive random access memory as described in item 2 of patent scope Forming method, wherein the film layer stack further includes a top electrode layer located on the second barrier layer, and wherein the step of forming the at least one groove further includes forming a plurality of top electrodes located on each electrode On the wire unit. 如申請專利範圍第5項所述之電阻式隨機存取記憶體的形成方法,其中該些頂電極彼此物理性分開。 The method for forming a resistive random access memory as described in item 5 of the patent application scope, wherein the top electrodes are physically separated from each other. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,更包括:在形成該至少一凹槽之後,分別在該些堆疊結構上形成一頂電極結構。 The method for forming a resistive random access memory as described in item 1 of the scope of the patent application further includes: after forming the at least one groove, forming a top electrode structure on the stacked structures respectively. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,其中該第二隔離結構包括氣隙(air gap)。 The method for forming a resistive random access memory as described in item 1 of the patent scope, wherein the second isolation structure includes an air gap. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,其中該第一隔離結構之材料與該保護層之材料為不同的材料。 The method for forming a resistive random access memory as described in item 1 of the patent application scope, wherein the material of the first isolation structure and the material of the protective layer are different materials. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,其中該保護層包括氧化鋁或氮化矽。 The method for forming a resistive random access memory as described in item 1 of the patent scope, wherein the protective layer includes aluminum oxide or silicon nitride. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,其中該電阻轉換層包括氧化鉿、氧化鈦、氧化鎢、氧化鉭、氧化鋯、或前述之組合。 The method for forming a resistive random access memory as described in item 1 of the patent scope, wherein the resistance conversion layer includes hafnium oxide, titanium oxide, tungsten oxide, tantalum oxide, zirconium oxide, or a combination of the foregoing. 如申請專利範圍第1項所述之電阻式隨機存取記憶體的形成方法,其中該氧氣轉換層包括鋁、鈦或前述之組合。 The method for forming a resistive random access memory as described in item 1 of the patent scope, wherein the oxygen conversion layer includes aluminum, titanium, or a combination of the foregoing. 一種電阻式隨機存取記憶體,包括:複數個堆疊結構,其中該些堆疊結構分別藉由一第一隔離結構彼此隔開,且其中每一堆疊結構包括: 一底電極;以及複數個電絲單元,設置於該底電極上,且藉由至少一第二隔離結構彼此物理性分開,且其中每一電絲單元包括一電阻轉換結構,位於該底電極上;以及一保護層,形成於該底電極及每該電絲單元共平面的側壁。 A resistive random access memory includes a plurality of stacked structures, wherein the stacked structures are separated from each other by a first isolation structure, and each of the stacked structures includes: A bottom electrode; and a plurality of electric wire units, disposed on the bottom electrode, and physically separated from each other by at least a second isolation structure, and wherein each electric wire unit includes a resistance conversion structure located on the bottom electrode ; And a protective layer formed on the side wall of the bottom electrode and each of the wire unit coplanar. 如申請專利範圍第13項所述之電阻式隨機存取記憶體,其中該電絲單元更包括:一第一阻障結構,位於該電阻轉換結構上;一氧氣交換結構,位於該第一阻障結構上;以及一第二阻障結構,位於該氧氣交換結構上。 The resistance random access memory as described in item 13 of the patent application scope, wherein the wire unit further includes: a first barrier structure located on the resistance conversion structure; and an oxygen exchange structure located on the first resistance On the barrier structure; and a second barrier structure on the oxygen exchange structure. 如申請專利範圍第13項所述之電阻式隨機存取記憶體,更包括複數個導電層,每一導電層電性連接至該些堆疊結構其中一者。 The resistance random access memory as described in item 13 of the patent application scope further includes a plurality of conductive layers, and each conductive layer is electrically connected to one of the stacked structures. 如申請專利範圍第15項所述之電阻式隨機存取記憶體,更包括複數個電晶體,每一電晶體藉由每一導電層與該些堆疊結構其中一者電性連接。 The resistance random access memory as described in item 15 of the patent application scope further includes a plurality of transistors, each transistor is electrically connected to one of the stacked structures through each conductive layer. 如申請專利範圍第13項所述之電阻式隨機存取記憶體,其中每一堆疊結構更包括複數個頂電極,分別位於該些電絲單元上。 The resistive random access memory as described in item 13 of the patent application scope, wherein each stacked structure further includes a plurality of top electrodes respectively located on the wire units. 如申請專利範圍第13項所述之電阻式隨機存取記憶體,其中每一堆疊結構更包括一頂電極,位於該些電絲單元上。 The resistive random access memory as described in item 13 of the patent application scope, wherein each stacked structure further includes a top electrode located on the wire units. 如申請專利範圍第13項所述之電阻式隨機存取記憶 體,其中該第二隔離結構包括氣隙(air gap)。 Resistive random access memory as described in item 13 of patent scope The second isolation structure includes an air gap. 如申請專利範圍第13項所述之電阻式隨機存取記憶體,其中該第一隔離結構之材料與該保護層之材料為不同的材料。 The resistive random access memory as described in item 13 of the patent application scope, wherein the material of the first isolation structure and the material of the protective layer are different materials.
TW107142235A 2018-11-27 2018-11-27 Resistive random access memory and method for forming the same TWI681509B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107142235A TWI681509B (en) 2018-11-27 2018-11-27 Resistive random access memory and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142235A TWI681509B (en) 2018-11-27 2018-11-27 Resistive random access memory and method for forming the same

Publications (2)

Publication Number Publication Date
TWI681509B true TWI681509B (en) 2020-01-01
TW202021052A TW202021052A (en) 2020-06-01

Family

ID=69942413

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142235A TWI681509B (en) 2018-11-27 2018-11-27 Resistive random access memory and method for forming the same

Country Status (1)

Country Link
TW (1) TWI681509B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270394A (en) * 2021-05-19 2021-08-17 上海华虹宏力半导体制造有限公司 Method for forming semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201735020A (en) * 2016-02-23 2017-10-01 三星電子股份有限公司 Memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201735020A (en) * 2016-02-23 2017-10-01 三星電子股份有限公司 Memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270394A (en) * 2021-05-19 2021-08-17 上海华虹宏力半导体制造有限公司 Method for forming semiconductor device
CN113270394B (en) * 2021-05-19 2024-01-23 上海华虹宏力半导体制造有限公司 Method for forming semiconductor device

Also Published As

Publication number Publication date
TW202021052A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
US10636842B1 (en) Resistive random access memory and method for forming the same
TWI715196B (en) Memory device and method for manufacturing the same
TWI739174B (en) Memory cell and method for manufacturing the same
CN110875353B (en) Memory device and forming method thereof
CN110957422A (en) Methods and integrated circuits for making memory devices
TWI685135B (en) Semiconductor devices and methods for manufacturing the same
JP2017195360A (en) Resistance change type memory device having height increased data storage layer
CN113782564A (en) Metal bonding on top electrode of RRAM
TW201906086A (en) Resistive random access memory device
TWI792079B (en) Memory cell, menufacturing method thereof and memory device
JP4964407B2 (en) Semiconductor device and manufacturing method thereof
CN106252273A (en) There is memory device and the manufacture method thereof of composite spacer
TW202143522A (en) Memory cell and manufacturing method thereof
TWI814065B (en) Memory device
TWI550778B (en) Semiconductor structure
TWI834125B (en) Memory device and method of forming the same
TW202310359A (en) Memory cell
TWI681509B (en) Resistive random access memory and method for forming the same
TWI717138B (en) Resistive random access memory and manufacturing method thereof
CN111326539B (en) Resistive random access memory and forming method thereof
TWI682533B (en) Memory devices and methods for forming the same
KR100955263B1 (en) Method of manufacturing semiconductor device
TW202147651A (en) Resistive random acessory memory and method of manufacturing the same
CN113889569A (en) Resistive random access memory and manufacturing method thereof
KR20070060346A (en) Method of manufacturing semiconductor device