TW202147651A - Resistive random acessory memory and method of manufacturing the same - Google Patents
Resistive random acessory memory and method of manufacturing the same Download PDFInfo
- Publication number
- TW202147651A TW202147651A TW109119045A TW109119045A TW202147651A TW 202147651 A TW202147651 A TW 202147651A TW 109119045 A TW109119045 A TW 109119045A TW 109119045 A TW109119045 A TW 109119045A TW 202147651 A TW202147651 A TW 202147651A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- oxygen atom
- resistive random
- random access
- access memory
- Prior art date
Links
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
本發明實施例係有關於一種記憶體,且特別係有關於一種電阻式隨機存取記憶體及其製造方法。Embodiments of the present invention relate to a memory, and more particularly, to a resistive random access memory and a manufacturing method thereof.
電阻式隨機存取記憶體(resistive random access memory,RRAM)具有低功率消耗、低操作電壓、寫入及擦除時間短、持久性長、數據保留時間長、非破壞性讀取操作、多重狀態(multi-state)、製造簡單及可擴充性質的優點,因而成為非揮發性記憶體的新興主流。電阻式隨機存取記憶體的基本結構包含底電極、電阻轉換層及頂電極堆疊而成的金屬-絕緣體-金屬(MIM)結構。Resistive random access memory (RRAM) has low power consumption, low operating voltage, short write and erase time, long durability, long data retention time, non-destructive read operation, multiple states (multi-state), the advantages of simple manufacturing and scalable nature, and thus become the emerging mainstream of non-volatile memory. The basic structure of a resistive random access memory includes a metal-insulator-metal (MIM) structure formed by stacking a bottom electrode, a resistance switching layer and a top electrode.
電阻式隨機存取記憶體的轉態機制為利用電阻轉換層或氧原子交換層中的氧空缺(oxygen vacancies)或氧原子的移動來形成導電路徑(conductive filament)。The state transition mechanism of the resistive random access memory is to utilize oxygen vacancies or the movement of oxygen atoms in the resistance switching layer or the oxygen atom exchange layer to form conductive filaments.
當對電阻式隨機存取記憶體施加正向的設置電壓,電阻轉換層中的氧原子移動至氧原子交換層,而形成導電路徑且從高阻態轉變為低阻態,此過程稱為設置(SET)操作。當對電阻式隨機存取記憶體施加反向的重置電壓,氧原子交換層中的氧原子移動至電阻轉換層,使電阻轉換層中的導電路徑斷開,以從低阻態轉變為高阻態,此過程稱為重置(RESET)操作。透過外加電壓極性不同來控制電阻的高低,從而達到儲存數據的目的。When a positive setting voltage is applied to the resistive random access memory, the oxygen atoms in the resistance switching layer move to the oxygen atom exchange layer, forming a conductive path and changing from a high resistance state to a low resistance state, this process is called setting (SET) operation. When a reverse reset voltage is applied to the resistive random access memory, the oxygen atoms in the oxygen atom exchange layer move to the resistance switching layer, so that the conductive path in the resistance switching layer is disconnected to change from a low resistance state to a high resistance state resistance state, this process is called reset (RESET) operation. The level of the resistance is controlled by the polarity of the applied voltage, so as to achieve the purpose of storing data.
雖然現有的電阻式隨機存取記憶體可大致滿足它們原先預定的用途,但其仍未在各個方面皆徹底地符合需求。例如,每次將記憶體轉換到高阻態時,氧原子交換層中的氧原子不一定會填回電阻轉態層中的氧空缺,導致記憶體的操作電壓的變異性很大,且裝置穩定性差。因此,仍需一種新穎的電阻式隨機存取記憶體來改善上述問題。Although existing resistive random access memories can roughly meet their original intended use, they have not yet fully met the requirements in every respect. For example, each time the memory is switched to a high resistance state, the oxygen atoms in the oxygen atom exchange layer do not necessarily fill the oxygen vacancies in the resistance transition layer, resulting in a large variability in the operating voltage of the memory, and the device Poor stability. Therefore, there is still a need for a novel resistive random access memory to improve the above problems.
本發明提供一種電阻式隨機存取記憶體及其製造方法,可有效增加氧原子的交換效率,增加裝置的穩定度。The present invention provides a resistive random access memory and a manufacturing method thereof, which can effectively increase the exchange efficiency of oxygen atoms and increase the stability of the device.
根據本發明的一些實施例,提供一種電阻式隨機存取記憶體。此電阻式隨機存取記憶體包含基底、介電層、底電極、電阻轉換層、氧原子交換層、阻障層以及頂電極。前述介電層設置於基底上。前述底電極設置於介電層上。前述電阻轉換層設置於底電極上。前述氧原子交換層設置於電阻轉換層上,其中氧原子交換層與電阻轉換層的接觸面積小於電阻轉換層的頂面面積。前述阻障層設置於氧原子交換層上。前述頂電極設置於阻障層上。According to some embodiments of the present invention, a resistive random access memory is provided. The resistive random access memory includes a substrate, a dielectric layer, a bottom electrode, a resistance switching layer, an oxygen atom exchange layer, a barrier layer and a top electrode. The aforementioned dielectric layer is disposed on the substrate. The aforementioned bottom electrode is disposed on the dielectric layer. The aforementioned resistance conversion layer is disposed on the bottom electrode. The aforementioned oxygen atom exchange layer is disposed on the resistance conversion layer, wherein the contact area between the oxygen atom exchange layer and the resistance conversion layer is smaller than the top surface area of the resistance conversion layer. The aforementioned barrier layer is disposed on the oxygen atom exchange layer. The aforementioned top electrode is disposed on the barrier layer.
根據本發明的一些實施例,提供一種電阻式隨機存取記憶體的製造方法。此方法包含:提供基底;形成介電層於基底上;形成底電極於介電層上;形成電阻轉換層於底電極上;形成氧原子交換層於電阻轉換層上,其中氧原子交換層與電阻轉換層的接觸面積小於電阻轉換層的頂面面積;形成阻障層於氧原子交換層上;以及形成頂電極於阻障層上。According to some embodiments of the present invention, a method for manufacturing a resistive random access memory is provided. The method comprises: providing a substrate; forming a dielectric layer on the substrate; forming a bottom electrode on the dielectric layer; forming a resistance conversion layer on the bottom electrode; forming an oxygen atom exchange layer on the resistance conversion layer, wherein the oxygen atom exchange layer and the The contact area of the resistance switching layer is smaller than the top surface area of the resistance switching layer; a barrier layer is formed on the oxygen atom exchange layer; and a top electrode is formed on the barrier layer.
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。The present invention is more fully described with reference to the drawings of this embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numerals denote the same or similar elements, and will not be repeated in the following paragraphs.
第1至6圖根據本發明的一些實施例繪示電阻式隨機存取記憶體100之不同製造階段的剖面圖。請參閱第1圖,首先提供基底102。基底102可為半導體基底。前述半導體基底可為元素半導體,包含矽或鍺;化合物半導體,包含氮化鎵、碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦及/或銻化銦;合金半導體,包含矽鍺合金、磷砷鎵合金、砷鋁銦合金、砷鋁鎵合金、砷銦鎵合金、磷銦鎵合金及/或磷砷銦鎵合金、或上述材料之組合。在一實施例中,基底102可為單晶基底、多層基底(multi-layer substrate)、梯度基底(gradient substrate)、其他適當之基底、或上述之組合。此外,基底102也可以是絕緣層上覆矽基底,上述第二介電層覆半導體基底可包含底板、設置於底板上之埋藏氧化物層、或設置於埋藏氧化物層上之半導體層。此外,基底102中可經形成以具有主動元件及/或被動元件以及內連線結構(例如,導電層、接觸件等等)。主動元件可包含電晶體、二極體等,而被動元件可包含電阻、電容、電感等。FIGS. 1-6 are cross-sectional views illustrating different manufacturing stages of the resistive
接著,如第1圖所示,藉由化學氣相沉積(chemical vapor deposition,CVD)製程、原子層沉積(atomic layer deposition,ALD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、分子束沉積(molecular beam deposition,MBD)製程、電漿增強化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)或其他合適的沉積製程或前述之組合,在基底102上形成介電層104。在一實施例中,介電層104可為氧化物(例如氧化矽、二氧化矽)、氮化物、低介電常數介電材料(例如,介電常數低於二氧化矽的材料)、氮氧化矽、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽酸鹽玻璃、未摻雜的矽酸鹽玻璃、摻雜氟的矽酸鹽玻璃、有機矽酸鹽玻璃、SiOx
Cy
、碳矽材料或上述之組合。在一實施例中,介電層104的厚度介於300nm至400nm之間。此外,在介電層104形成導電結構105,用於將電阻式隨機存取記憶體連接至基底102中之主動元件及/或內連線結構。Next, as shown in FIG. 1, by chemical vapor deposition (CVD) process, atomic layer deposition (ALD) process, physical vapor deposition (PVD) process, molecular The
在一實施例中,導電結構105包含襯層106和導電材料108。襯層106的材料可包含導電材料,例如氮化鎢、氮化鈦、氮化鉭或前述之組合。導電材料108的材料可包含非晶矽、多晶矽、金屬、金屬氮化物、導電金屬氧化物或前述之組合。舉例而言,導電材料108的材料可包含鎢、銅、氮化鵭、釕、銀、金、銠、鉬、鎳、鈷、鎘、鋅、前述之合金或組合。In one embodiment, the
接著,在介電層104上形成底電極110。形成底電極110的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,底電極110的材料包含導電材料,例如非晶矽、多晶矽、金屬、金屬氮化物、導電金屬氧化物或前述之組合。舉例而言,底電極110的材料可包含鎢、銅、氮化鵭、釕、銀、金、銠、鉬、鎳、鈷、鎘、鋅、前述之合金或組合。在一實施例中,底電極110的厚度介於25 nm至35 nm之間。Next, a
接著,在底電極110上形成電阻轉換層112。形成電阻轉換層112的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,電阻轉換層112的材料包含過渡金屬氧化物,例如氧化鉿、氧化鈦、氧化鎢、氧化鉭、氧化鋯或前述之組合。在一實施例中,電阻轉換層112的厚度介於3 nm至10 nm之間。Next, the
接著,在電阻轉換層112上形成氧原子交換層114。形成氧原子交換層114的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,氧原子交換層114的材料包含鋁、鈦、鉿、鉭、銥、或前述之組合。Next, an oxygen
然後,在氧原子交換層114上形成硬遮罩116。形成硬遮罩116的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,硬遮罩層116的材料可為氮化物或四乙氧基矽烷(tetraethoxysilane,TEOS)。Then, a
接著,藉由合適的製程例如旋轉塗佈、CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合,將光阻材料形成於硬遮罩116的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料,而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻、中性束蝕刻或前述之組合,來蝕刻氧原子交換層114和硬遮罩116,以形成對應至導電結構105的圖案化的氧原子交換層114和硬遮罩116。接著,可藉由蝕刻或其他合適的方法,來移除圖案化的光阻層。Next, a photoresist material is formed on the top surface of the
圖案化的氧原子交換層114不完全覆蓋電阻轉換層112。換句話說,圖案化的氧原子交換層114與電阻轉換層112之間的接觸面積小於電阻轉換層112的頂面面積。由於氧原子交換層不完全覆蓋電阻轉換層的頂面,所以當記憶體從高阻態轉換到低阻態時,只有電阻轉換層中的某一區域的氧原子會移動至氧原子交換層,且導電路徑僅會形成於一特定區域。因此,當記憶體從低阻態轉換到高阻態時,氧原子更容易回填至電阻轉換層在低阻態時所產生的氧空缺,藉此增加裝置的穩定性。The patterned oxygen
電阻轉換層112具有左側壁及與左側壁相對的右側壁。在一實施例中,氧原子交換層114介於左側壁和右側壁之間。具體而言,氧原子交換層114不與電阻轉換層112的左側壁和右側壁齊平。由於現有的電阻式隨機存取記憶體的氧原子交換層並非介於電阻轉換層的側壁之間,且電阻轉換層的側壁容易被後續製程所影響,所以在低阻態轉換至高阻態的期間,一部分的氧原子會從氧原子交換層移動至電阻轉換層的側壁而產生懸浮鍵(dangling bond),降低氧原子交換的效率。因此,當氧原子交換層介於左側壁和右側壁之間時,氧原子交換層中的氧原子不會移動至電阻轉換層的側壁,也就不會產生懸浮鍵,藉此可增加氧原子交換的效率。The
請繼續參閱第1圖,在電阻轉換層112上形成介電層118。形成介電層118的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,介電層118的材料類似於介電層104的材料。Please continue to refer to FIG. 1 , a
接著,請參閱第2圖,執行平坦化製程例如化學機械研磨法,來移除部分的介電層118和硬遮罩116。然後,在介電層118和硬遮罩116上形成氮化物層120。形成氮化物層120的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,氮化物層120的材料包含氮化矽、氮化碳矽、碳化矽或前述之組合。Next, referring to FIG. 2 , a planarization process such as chemical mechanical polishing is performed to remove part of the
接著,請參閱第3圖,藉由合適的製程例如旋轉塗佈、CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合,將光阻材料形成於氮化物層120的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料,而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻、中性束蝕刻或前述之組合,來蝕刻氮化物層120、介電層118、電阻轉換層112和底電極110以形成溝槽121,以定義出個別的記憶體單元10。接著,可藉由蝕刻或其他合適的方法,來移除圖案化的光阻層。Next, referring to FIG. 3, a photoresist material is formed on top of the
由於電阻轉換層和氧原子交換層是在分別在不同的製程中被蝕刻,所以可防止氧原子交換層的側壁受損。Since the resistance conversion layer and the oxygen atom exchange layer are etched in different processes, the sidewalls of the oxygen atom exchange layer can be prevented from being damaged.
接著,請參閱第4圖,藉由CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合,在溝槽121中及氮化物層120上形成介電層122。在一實施例中,介電層122的材料類似於介電層104的材料。Next, referring to FIG. 4 , a
接著,參閱第5圖,藉由前述的類似製程來蝕刻介電層122、氮化物層120和介電層118,以形成露出氧原子交換層114的開口O。在一實施例中,介電層122、氮化物層120和介電層118可在同一製程中被蝕刻。在另一實施例中,介電層122、氮化物層120和介電層118可在不同的製程中被蝕刻。Next, referring to FIG. 5 , the
接著,參閱第6圖,在開口O中順應性地形成阻障層124。形成阻障層124的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。阻障層124可防止氧原子擴散至其他不必要的層體。在一實施例中,阻障層124的材料包含氧化鋁、氧化鉿、氧化鋯或前述之組合。Next, referring to FIG. 6 , the
然後,在阻障層124上形成頂電極126。形成頂電極126的方法可包括CVD、ALD、PVD、MBD、PECVD、其他合適的沉積製程或前述之組合。在一實施例中,頂電極126的材料類似於底電極110的材料。具體而言,頂電極126覆蓋氧原子交換層114的頂面和側壁。由於頂電極同時覆蓋氧原子交換層的頂面及側壁,所以當對電阻式隨機存取記憶體施加反向的重置電壓,會促使氧原子交換層中的氧原子往一特定方向移動,從而增加氧原子交換的效率。透過開口O的形成,頂電極126具有自我對準的功能。Then, a
頂電極126的一部分延伸至氮化物層120上。由於氮化物層120在介電層118和部分的頂電極126之間,所以比較好控制開口O的形狀,從而增加製程的寬裕度。A portion of the
頂電極126具有上部部分及下部部分,其中頂電極126的上部部分在氮化物層120上;而頂電極126的下部部分在氮化物層120下。頂電極126的上部部分作為與其他元件電性連接的導線。接著,執行平坦化製程使介電層122、阻障層124和頂電極126的頂面共平面。The
本發明所提供之電阻式隨機存取記憶體及其製造方法具有以下優點:(1) 由於頂電極同時覆蓋氧原子交換層的頂部及側壁,所以當對電阻式隨機存取記憶體施加反向的重置電壓,會促使氧原子交換層中的氧原子往一特定方向移動,從而增加氧原子交換的效率。(2) 藉由使氧原子交換層不完全覆蓋電阻轉換層的頂面,所以當記憶體從高阻態轉換到低阻態時,電阻轉換層中只有某一區域的氧原子會移動至氧原子交換層,且導電路徑僅會形成於一特定區域。因此,當記憶體從低阻態轉換到高阻態時,氧原子更容易回填至電阻轉換層在低阻態時所產生的氧空缺,藉此增加裝置的穩定性。(3) 由於氧原子交換層介於左側壁和右側壁之間,所以氧原子交換層中的氧原子不會移動至電阻轉換層的側壁,也就不會產生懸浮鍵,藉此可增加氧原子交換的效率。(4) 由於電阻轉換層和氧原子交換層是在分別在不同的製程中被蝕刻,所以可防止氧原子交換層的側壁受損。(5) 由於氮化物層在第二介電層和部分的頂電極之間,所以比較好控制開口的形狀,從而增加製程的寬裕度。The resistive random access memory and its manufacturing method provided by the present invention have the following advantages: (1) Since the top electrode covers the top and sidewalls of the oxygen atom exchange layer at the same time, when the resistive random access memory is subjected to reverse The reset voltage of , will promote the oxygen atoms in the oxygen atom exchange layer to move in a specific direction, thereby increasing the efficiency of oxygen atom exchange. (2) By making the oxygen atom exchange layer incompletely covering the top surface of the resistance switching layer, when the memory switches from a high resistance state to a low resistance state, only a certain area of oxygen atoms in the resistance switching layer will move to oxygen atoms Atomic exchange layer, and the conductive path will only be formed in a specific area. Therefore, when the memory is switched from a low-resistance state to a high-resistance state, oxygen atoms are more likely to backfill into the oxygen vacancies generated when the resistance switching layer is in the low-resistance state, thereby increasing the stability of the device. (3) Since the oxygen atom exchange layer is between the left side wall and the right side wall, the oxygen atoms in the oxygen atom exchange layer will not move to the side wall of the resistance conversion layer, and no dangling bonds will be generated, thereby increasing the oxygen Efficiency of atomic swaps. (4) Since the resistance conversion layer and the oxygen atom exchange layer are etched in different processes, the sidewalls of the oxygen atom exchange layer can be prevented from being damaged. (5) Since the nitride layer is between the second dielectric layer and part of the top electrode, it is better to control the shape of the opening, thereby increasing the process margin.
雖然本發明的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the embodiments of the present invention and their advantages have been disclosed above, it should be understood that those skilled in the art can make changes, substitutions and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present invention should be determined by the scope of the appended patent application.
10:記憶體單元
100:電阻式隨機存取記憶體
102:基底
104、118、122:介電層
105:導電結構
106:襯層
108:導電材料
110:底電極
112:電阻轉換層
114:氧原子交換層
116:硬遮罩
120:氮化物層
121:溝槽
124:阻障層
126:頂電極
O:開口10: Memory unit
100: Resistive random access memory
102:
為了讓本發明實施例之特徵和優點能更明顯易懂、下文特舉出一些實施例,並配合所附圖式作詳細說明如下: 第1至6圖根據本發明的一些實施例繪示電阻式隨機存取記憶體之不同製造階段的剖面圖。In order to make the features and advantages of the embodiments of the present invention more obvious and easy to understand, some embodiments are listed below and described in detail with the accompanying drawings as follows: FIGS. 1-6 are cross-sectional views illustrating different manufacturing stages of a resistive random access memory according to some embodiments of the present invention.
10:記憶體單元10: Memory unit
100:電阻式隨機存取記憶體100: Resistive random access memory
102:基底102: Substrate
104,118,122:介電層104, 118, 122: Dielectric Layers
105:導電結構105: Conductive Structure
106:襯層106: Liner
108:導電材料108: Conductive Materials
110:底電極110: Bottom electrode
112:電阻轉換層112: Resistance conversion layer
114:氧原子交換層114: Oxygen atom exchange layer
120:氮化物層120: Nitride layer
124:阻障層124: Barrier Layer
126:頂電極126: Top electrode
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109119045A TW202147651A (en) | 2020-06-05 | 2020-06-05 | Resistive random acessory memory and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109119045A TW202147651A (en) | 2020-06-05 | 2020-06-05 | Resistive random acessory memory and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202147651A true TW202147651A (en) | 2021-12-16 |
Family
ID=80784033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109119045A TW202147651A (en) | 2020-06-05 | 2020-06-05 | Resistive random acessory memory and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202147651A (en) |
-
2020
- 2020-06-05 TW TW109119045A patent/TW202147651A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202013780A (en) | Method for manufacturing a memory device and integrated circuit | |
TWI734351B (en) | Integrated chip and method for manufacturing the same | |
US10636842B1 (en) | Resistive random access memory and method for forming the same | |
TW202010158A (en) | Memory device and method for forming thereof | |
JP5324724B2 (en) | Method for manufacturing nonvolatile memory device | |
US9818938B2 (en) | Method of forming a semiconductor structure | |
US11925127B2 (en) | Phase-change memory device and method | |
TW202143522A (en) | Memory cell and manufacturing method thereof | |
TW202109767A (en) | Memory cell, memory device and method for forming memory device | |
TW202042418A (en) | Memory device, programmable metallization cell and manufacturing method thereof | |
TWI769574B (en) | Memory device, integrated chip and method for forming the same | |
KR20220000374A (en) | Memory device and method for fabricating the same | |
TW202125713A (en) | Phase-change memory | |
TW202245248A (en) | Memory array, semiconductor chip and manufacturing method of memory array | |
US11424407B2 (en) | Resistive random access memory and method of manufacturing the same | |
TWI717138B (en) | Resistive random access memory and manufacturing method thereof | |
CN113517393A (en) | Phase change memory device and method of forming the same | |
TW202125854A (en) | Phase-change memory | |
TW202147651A (en) | Resistive random acessory memory and method of manufacturing the same | |
TWI681509B (en) | Resistive random access memory and method for forming the same | |
TWI604446B (en) | Resistive random-access memory structure and method for fabricating the same | |
CN113889569A (en) | Resistive random access memory and manufacturing method thereof | |
TWI785921B (en) | Resistive random access memory and method for forming the same | |
TWI824655B (en) | Resistive random access memory and manufacturing method thereof | |
TWI682533B (en) | Memory devices and methods for forming the same |