TWI573806B - 生物活性胜肽 - Google Patents
生物活性胜肽 Download PDFInfo
- Publication number
- TWI573806B TWI573806B TW103127214A TW103127214A TWI573806B TW I573806 B TWI573806 B TW I573806B TW 103127214 A TW103127214 A TW 103127214A TW 103127214 A TW103127214 A TW 103127214A TW I573806 B TWI573806 B TW I573806B
- Authority
- TW
- Taiwan
- Prior art keywords
- peptide
- prt
- artificial sequence
- synthetic peptide
- seq
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/745—Blood coagulation or fibrinolysis factors
- C07K14/755—Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/04—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Hematology (AREA)
- Gastroenterology & Hepatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Diabetes (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Dermatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
Description
本發明係關於具有用於治療具有FV、FVII、FVIII、FX及/或FXI不足患者的促凝血活性(procoagulant activity)的低分子量胜肽。
凝血級聯包括一連串的絲胺酸蛋白酶酵素(酶原)和蛋白質輔因子。當需要時,無活性酶原前趨物被轉變成活性形式,其結果轉變級聯中的下一個酵素。其被劃分成三個明顯的部分:固有(接觸活化)、外來(組織因子)、和共有途徑。
在級聯之固有途徑中,血友病為最明顯的流血失調症,其導致藉由因子FIX(FIXa)/因子VIIIa(FVIIIa)複合物(固有tenase複合物)的因子Xa生產不足,導致血塊形成不足。流血可接著自發地或在傷害後發生。
血友病為一種遺傳性流血失調症,且已知有兩種形式的血友病,A型和B型血友病。A型血友病為FVIII不足的結果,且特徵在於出血至關節和肌肉中。FVIII於血漿中以非常低的濃度循環,且係非共價地結合至馮威里因子(von Willebrand factor,vWF)。在止血期間,FVIII被凝血酶活化,自vWF分離,並藉由提高活化之速率而扮演經活化FIXa介導性FX活化的輔因子。
具有少於1%正常FVIII的患者被視為具有嚴重的血友病,具有1-5%正常FVIII的患者被視為具有中度嚴重的血友病,而具有大於5%但小於40%正常FVIII的患者被視為具有輕微的血友病。
現今,處理A型血友病的精選治療為使用各種各樣的血漿衍生性或重組FVIII濃縮物的替換治療法。雖然有特別的病毒失活步驟(包括溶劑-洗潔劑處理或液相熱處理治療)以使病毒失活,在血漿衍生性濃縮物中特徵界定不足的劑(例如prion)之可能傳染仍然為在技術領域中討論的問題。
FVIII亦以供在流血失調症的治療用途之用的重組蛋白質之形式合成。如此產物具有降低的病毒性污染風險。市面上有許多用於治療A型血友病的重組產物。此等濃縮物之一為Advate® FVIII組成物,其於CHO細胞中生產並由巴克斯特健保公司(Baxter Healthcare Corporation)製造。此產品之細胞培養過程、純化、或最終調配中並未加入人類或動物血漿蛋白質。
雖然在過去幾十年間已有在FVIII製造方面的進展以確保純度、功效和病毒安全性,仍有一些限制。首先,嚴重A型血友病患者頻繁地受抗FVIII抑制抗體形成影響,使得治療無效。
接近30%具有嚴重HA的患者會發展出同種異體抗體抑制子,其可中和FVIII(Hay,Haemophilia 2006;12 Suppl 6:23-9;Peerlinck與Hermans,Haemophilia 2006;12:579-90)。此等抑制子典型為免疫球蛋白G(IgG),主要為IgG4次類型,其不修理補體且不造成對循環性免疫複合物所觀察到的末端器官損害。抑制子於年輕時發生(大約50%於10歲前),
主要於具有少於1% FVIII的患者中。此外,可能發生後天性血友病,其為在無FVIII不足之歷史的人中的FVIII抗體抑制子之發展。此病況可為特發性的(於年齡>50歲的人發生),其可與膠原蛋白血管疾病或周產期(peripartum period)相關,或其可展現藥物反應(例如,對青黴素)。為了臨床目的,抗體反應之強度可透過進行功能性抑制子分析(自其可獲得貝什斯達單位(Bethesda unit,BU)抑制子效價)而定量。高效價反應之國際血栓形成與止血協會(International Society of Thrombosis and Haemostasis,ISTH)定義為>5BU且其低效價反應之定義為介於0.5和5BU。
已嘗試已大劑量人類FVIII以壓倒抑制子。此外,已投予過豬FVIII(其與人類FVIII抗體有低交叉反應性)。更頻繁地,亦已使用過FVIII繞道劑,包括經活化凝血酶原複合物濃縮物(例如第八因子抑制子繞道劑(Factor Eight Inhibitor Bypassing Agent,FEIBA)和重組經活化因子FVII(FVIIa)。
因為除了發展出抑制子的缺點外,治療性多肽藥物(例如FVIII)亦會被蛋白質水解性酵素快速降解,FVIII需要頻繁地靜脈內投予。考慮到在循環中各種各樣的FVIII產物之平均半生期,此通常可藉由每週給予FVIII二至三次而達成。故,此治療對於門診患者族群(特別是幼小的兒童)而言係相當複雜。
故,目前許多FVIII之生產者之目標,係開發產生具有提高的藥力學和藥物動力學特性,同時維持所有其他產物特徵的下一代製造產物。因為具有較長循環半生期的改進的多肽藥物會減少必須投予之次數,多肽藥物之化學或酵素修改為達到此目的的較佳方法之一。
如此實例之一為多肽藥物之PEG化,其保護並改進多肽藥物之藥力學和藥物動力學特性(Harris與Chess,Nat Rev Drug Discov.2003;2:214-21)。美國專利第6,037,452號敘述一種聚(伸烷基氧化物)-FVIII或FIX共軛物,其中蛋白質係透過該FVIII之羰基共價地結合至聚(伸烷基氧化物)。
即使此等方法減小抑制子發展,其等仍然無法消除靜脈內投予之需求。最佳的選擇(其消除大部分以上所討論的血友病治療之缺點)會是開發低分子量化合物,例如具有改進凝血之能力且可藉由非靜脈內途徑投予的胜肽(胜肽模擬物(peptidomimetic))。雖然此等劑已被討論多年(例如Kaufman與Pipe,Haemophilia 1998;4.370-9;Llung,Thromb Haemost.1999;82:525-30),目前其仍非可得或於臨床開發中。
目前將小型胜肽用於凝血之技術水平於(例如)以下出版品中敘述:DK Liles、DM Monroe與HR Roberts(1997)Blood Vol 90 No 10增刊1,463a為海報摘要,其揭示來自FVIII的胜肽698-712,該胜肽可在磷脂表面上促進FX之FIXa介導性活化。然而,在FVIIIa存在下,該胜肽在磷脂表面上抑制FX之FIXa介導性活化。迄今,尚無此等作者的同行審查出版品確認此海報摘要所揭示的結果。
Blostein等人(2000)Biochemistry 39:12000-12006揭示了兩性阿伐螺旋可與FIXa Gla功能域交互作用,並在缺乏磷脂下增加FX之活化。胜肽似乎藉由模擬磷脂而獨立於胺基酸序列作用。並無建議使用如此胜肽於治療中。在正常情況下,經活化的血小板提供支持凝血的脂質[0]表面。由於血小板係藉由凝血酶(其在血管傷害位置形成)活化,凝血過程限於
受傷位置。提供身體是促凝血脂質的一般代替物的胜肽係高度不希望的,因為此會造成全身性凝血並最終導致散播性血管內凝血(disseminated intravascular coagulation,DIC)。因此,Blostein所述的胜肽於治療不會有用。
美國專利案第7,109,170號和第6,624,289號揭示了和FVIIIa交互作用的FIXa蛋白酶功能域之區域。該胜肽包括FIXa之FVIIIa結合位置並抑制FIXa與FVIIIa的結合。然而,其等僅有用於作為供預防或治療血栓形成之用的抗凝血劑。
US20010014456A1揭示了人類FVIII與類FVIII蛋白質的結合分子。此等多肽結合FVIII及/或類FVIII多肽且係有用於自溶液(例如血液或條件化培養基)偵測和純化人類FVIII及/或類FVIII多肽。
在美國專利案第7,033,590號中,FIX/FIXa活化性抗體和抗體衍生物係用於增加FIXa之醯胺水解活性,與用於治療凝血失調症,例如A型血友病和出血性素質。
在美國專利第7,084,109號中,揭示了FVIIa拮抗劑。此拮抗劑為抑制FVIIa活性的胜肽,且被認為係有用於組合血栓溶解治療法預防動脈血栓形成。
在本說明書中,之前出版文獻之列表或討論不應必然被視為承認該等文獻為目前技術水平之部分或為一般通常知識。
目前在技術領域中仍然有對具有用於治療具有A型血友病(FVIII不足)的患者之促凝血活性的低分子量胜肽的強大需求。本發明提供具有促凝血活性的新穎低分子量胜肽,其可用於非靜脈內治療A型血友病。本申請案亦提供此等新穎胜肽以用於治療FV、FVII、FX及/或FXI不
足。
本發明之第一方面提供胜肽或胜肽衍生物,其包括:(i)WDLYFEIVW(SEQ ID NO:1);或(i)包括一個、二個、三個或四個在WDLYFEIVW(SEQ ID NO:1)中的L-胺基酸取代的變異體胺基酸序列;或(iii)第(i)和(ii)部分之任一者之胜肽或胜肽衍生物之反-倒位(retro-inverso)變異體,其中該胜肽或胜肽衍生物具有促凝血活性。
為了避免不確定,序列WDLYFEIVW(SEQ ID NO:1)可使用用於胺基酸的三字母代碼,表現成L-胺基酸Trp-Asp-Leu-Tyr-Phe-Glu-Ile-Val-Trp。WDLYFEIVW(SEQ ID NO:1)之反-倒位變異體為wviefyldw且包括D-胺基酸。
本發明之第二方面提供胜肽或胜肽衍生物,其包括:(i)包括imfwydcye的胺基酸序列;或(ii)包括一個、二個、三個、四個、五個或六個在imfwydcye的胺基酸取代的變異體胺基酸序列,其中該胜肽或胜肽衍生物具有促凝血活性。
為了避免不確定,序列cimfwydcye可使用用於胺基酸的三字母代碼,表現成D-胺基酸ile-met-phe-trp-tyr-asp-cys-tyr-glu。
本發明之第三方面提供雙重胜肽,其包括共軛至另一個本發明之第一或第二方面之胜肽或胜肽衍生物的本發明之第一或第二方面之胜肽或胜肽衍生物,其中該二個胜肽/衍生物可彼此相同或彼此不同,且其中
該雙重胜肽具有促凝血活性。
本發明之第四方面提供醫藥組成物,其包括本發明之第一或第二方面之胜肽或胜肽衍生物或本發明之第三方面之雙重胜肽。
本發明之第五方面提供本發明之第一或第二方面之胜肽或胜肽衍生物或第三方面之雙重胜肽,其用於治療具有FV、FVII、FVIII、FX及/或FXI不足的患者。
本發明之第六方面提供發明之第一或第二方面之胜肽或胜肽衍生物或第三方面之雙重胜肽之用途,其係用於製造供治療患者中的FV、FVII、FVIII、FX及/或FXI不足之用的醫藥品。
本發明之第七方面提供治療具有FV、FVII、FVIII、FX及/或FXI不足的患者的方法,其包括投予治療有效量的第四方面之醫藥組成物。
本發明之第八方面提供具有促凝血活性的胜肽或胜肽衍生物,其中該胜肽或胜肽衍生物不為FVIII或其片段,且其中該促凝血活性為在明確固有凝血酶產生分析(Defined Intrinsic Thrombin Generation Assay)中25、50或100μM的胜肽、胜肽衍生物或雙重胜肽之凝血酶產生時間相等於至少100mU/mL第八因子抑制子繞道活性(Factor Eight Inhibitor Bypassing Activity,FEIBA),較佳至少300mU/mL FEIBA,更佳至少900mU/mL FEIBA,最佳為至少1200mU/mL FEIBA。
本發明之第九方面提供具有促凝血活性的胜肽或胜肽衍生物,其中該胜肽或胜肽衍生物不為FVIII或其片段,且其中該促凝血活性為在明確固有凝血酶產生分析中25、50或100μM的胜肽、胜肽衍生物或雙
重胜肽之凝血酶產生時間在30分鐘內,較佳在15分鐘內且最佳在10分鐘內達到高峰。
本發明之第十方面提供具有促凝血活性的胜肽或胜肽衍生物,其中該胜肽或胜肽衍生物不為FVIII或其片段,且其中該胜肽或胜肽衍生物當於A型嚴重人類血友病之動物模型中投予時,可至少部分地補償生物活性FVIII之缺乏。
圖1:核准用於治療血友病的治療劑於明確雙重途徑凝血酶產生分析中對高峰凝血酶產生和凝血酶高峰時間的功效
圖2:A01對FVIII -/-小鼠流血模型-血液損失之功效
術語「胺基酸」在本發明之範圍內意欲包括所有天然出現的L α-胺基酸。用於天然出現的胺基酸的一或三字母縮寫係用於本文中(Lehninger,Biochemistry,第2d版,Worth Publishers,紐約,1995:71-92)。術語「胺基酸」亦包括立體異構物(例如D-胺基酸)和天然出現的胺基酸之修改、非蛋白質生成性胺基酸、與設計成模擬胺基酸的結構。
經修改的和非蛋白質生成性胺基酸係於Grant,Synthetic Peptides:A User's Guide,Oxford University Press,1992中一般地敘述。
藉由導入各種各樣非天然出現的胺基酸,或藉由修改胺基酸,提供(例如)改進的穩定性和可溶性、對蛋白酶降解的抗性、和胜肽之活性是可能的,如在本文中所討論的。
非蛋白質生成性胺基酸可包括但不限於β-丙胺酸(β-Ala)、正纈胺酸(Nva)、正白胺酸(Nle)、4-胺基丁酸(γ-Abu)、2-胺基異丁酸(Aib)、6-胺基己酸(ε-Ahx)、鳥胺酸(orn)、羥脯胺酸(Hyp)、肉胺酸、瓜胺酸、氧化半胱胺酸(Coh)、和環己基丙胺酸、甲硫胺酸亞碸(Meo)、甲硫胺酸碸(Moo)、高絲胺酸甲酯(Hsm)、炔丙基甘胺酸(Eag)、5-氟色胺酸(5Fw)、6-氟色胺酸(6Fw)、3′,4′-二甲氧基苯基-丙胺酸(Ear)、3′,4′-二氟苯基丙胺酸(Dff)、4′-氟苯基-丙胺酸(Pff)、1-萘基-丙胺酸(1Ni)、1-甲基色胺酸(1Mw)、青黴胺(Pen)、高絲胺酸(Hse)。此外,此等胺基酸可包括(但不限於)α-胺基異丁酸、第三丁基甘胺酸、第三丁基丙胺酸、苯甘胺酸(Phg)、苯并噻吩基丙胺酸(Bta)、L-高-半胱胺酸(L-Hcys)、N-甲基-苯基丙胺酸(NMF)、2-噻吩基丙胺酸(Thi)、3,3-二苯基丙胺酸(Ebw)、高苯基丙胺酸(Hfe)、s-苄基-L-半胱胺酸(Ece)或環己基丙胺酸(Cha)。此等和其他非蛋白質生成性胺基酸可呈D-或L-異構物。當未指出異構物為何時,意味L-異構物。
設計成模擬胺基酸的結構係其中胺基酸之胺基及/或羧基以另一基團取代的化合物。非限制性實例為併入硫醯胺、脲、硫脲、醯肼、酯、烯烴、磺醯胺、磷酸醯胺、酮、醇、硼酸醯胺、苯并二氮平(benzodiazepine)和其他芳香族或非芳香族雜環(回顧請參見M.A.Estiarte、D.H.Rich於Burgers Medicinal Chemistry,第6版,第1卷,第4部分,John Wiley & Sons,紐約,2002)。若此等結構係包括在胜肽衍生物中,其等通常以至少一個以上提及的官能基(而非醯胺鍵)連接至胜肽衍生物之剩下部份。
使用「胜肽」時,吾人不止包括其中胺基酸殘基係藉由胜肽
(-CO-NH-)連接連合的分子,且亦包括其中胜肽鍵顛倒的分子。「反向修改的」胜肽為一種胜肽,其由其中在有關其為反向修改的方面胺基酸殘基相對於胜肽天然係反向裝配的胺基酸所組成。在天然胜肽包括L-胺基酸的情況下,「反向修改的」胜肽亦會包括L-胺基酸。然而,在天然胜肽包括D-胺基酸的情況下,「反向修改的」胜肽會包括D-胺基酸。反向胜肽包含NH-CO鍵而非CO-NH胜肽鍵。「倒位修改的」胜肽為一種胜肽,其中在有關其為倒位修改的方面胺基酸殘基與天然胜肽裝配方向相同,但胺基酸之對掌性被倒轉。故,在天然胜肽包括L-胺基酸的情況下,「倒位修改的」胜肽會包括D-胺基酸。在天然胜肽包括D-胺基酸的情況下,「倒位修改的」胜肽會包括L-胺基酸。倒位胜肽仍具有CO-NH胜肽鍵。「反-倒位修改的」胜肽意指一種胜肽,其由在有關其被反-倒位修的天然胜肽的方面係反向裝配且具有倒轉的對掌性的胺基酸殘基所組成。反-倒位類似物具有翻轉的末端和翻轉的胜肽鍵方向(即NH-CO)同時大概維持側鏈之拓樸學和在天然胜肽序列中相同。Guichard等人(1994)Proc.Natl.Acad.Sci USA 91:9765-9769敘述到反-倒位胜肽模擬天然L-胜肽IRGERA的(而非D-和反向胜肽的)結構和抗原性活性。如此反-倒位胜肽模擬物可使用技術領域中已知的方法製作,例如使用例如該等於Meziere等人(1997)J.Immunol.159,3230-3237(以引用方式納入本文中)中所敘述者。部分反-倒位胜肽類似物為其中僅部份序列被翻轉且以鏡像異構性胺基酸殘基替換的多肽。製作如此類似物之過程係於Pessi,A.、Pinori,M.、Verdini,A.S.和Viscomi,G.C.(1987)“Totally solid phase synthesis of peptide(s)-containing retro-inverted peptide bond,using crosslinked sarcosinyl copolymer as support”,歐洲專利案第97994-B號中敘述。
按照慣例地,L-胺基酸係使用大寫標示,而D-胺基酸係以小寫標示。本發明之胜肽和胜肽衍生物係以其等的較佳形式標示,但不將其等限於該等較佳形式。本發明之第一方面之胜肽係標示為包括WDLYFEIVW(SEQ ID NO:1)或其變異體。本發明之第一方面之胜肽亦可為WDLYFEIVW(SEQ ID NO:1)之反-倒位變異體或其變異體,即wviefyldw或其變異體。本發明之第二方面之胜肽標示為包括cimfwydcye或其變異體。
按照慣例地,在胺基酸係藉由胜肽鍵連合的情況下,胜肽係以在N-端的胺基陳列於左邊而在C-端的羧基陳列於右邊的方式呈現。根據本發明的胜肽和胜肽衍生物係以此方式表示。
「胜肽衍生物」包含一或多個胺基酸殘基或連接子基團或其他共價地連接的基團之修改。
衍生物之實例包括胺基端或另一個自由胺基之N-醯基衍生物、羧基端或另一個自由羧基或羥基之酯、藉由與氨或與適合的胺反應而產生的羧基端或另一個自由的羧基之醯胺、醣苷化衍生物、羥化衍生物、核苷酸化衍生物、ADP-核糖化衍生物、PEG化衍生物、磷酸化衍生物、共軛至親脂性部分的衍生物、和共軛至抗體或其他生物配位體的衍生物。化學衍生物中亦包括該等藉由修改胜肽鍵--CO--NH--(例如藉由還原成--CH2--NH--或烷化成--CO--N(烷基)--)所獲得者。
較佳的衍生化為C-端醯胺化。胜肽之C-端醯胺化移出C端的負電荷。具有C-端醯胺的胜肽衍生物係以「NH2」在C-端表示,例如Ac-WDLYFEIVW-NH2(SEQ ID NO:1)。另一個較佳的衍生化為N-端乙醯化。此移出在N-端的正電荷。封阻C-或N-端(例如藉由C-端醯胺化或N-端乙
醯化)可因為減小對外位切蛋白質水解性消化的敏感性而改進蛋白質水解性穩定性。
適合的連接子包括彈性連接子4,7,10-三-1,13-十三烷二胺(Ttds)、甘胺酸、6-胺基己酸、貝他-丙胺酸、或Ttds、甘胺酸、6-胺基己酸和貝他-丙胺酸之組合。
本發明之胜肽可藉由化學合成、重組DNA技術、較大分子之生物化學或酵素性片段化、上述者之組合或藉由任何其他方法生產。
胜肽(至少該等在胺基酸殘基間包含胜肽連接者)可藉由固相胜肽合成之Fmoc策略合成,如在“Fmoc Solid Phase Peptide Synthesis-A Practical Approach”,W.C.Chan、P.D.White編輯,Oxford University Press,紐約2000與其中的文獻所敘述。暫時性N-胺基保護係藉由9-茀基甲氧基羰基(Fmoc)提供。此高度鹼不穩定性保護性基團之反覆切裂係使用在N,N-二甲基甲醯胺中的20%哌啶實現。側鏈官能性可呈其等之丁基醚(在絲胺酸、羥丁胺酸和酪胺酸的例子中)、丁基酯(在麩胺酸和天冬胺酸的例子中)、丁氧基羰基衍生物(在離胺酸和組胺酸的例子中)、三苯甲基衍生物(在半胱胺酸、天冬醯胺酸和麩醯胺酸的例子中)和4-甲氧基-2,3,6-三甲基苯磺醯基衍生物(在精胺酸的例子中)而保護。固相撐體係基於由三個單體二甲基丙烯基醯胺(骨架-單體)、雙丙烯醯基伸乙二胺(交叉連接子)和丙烯醯基肉胺酸甲酯(官能化劑)構成的聚二甲基-丙烯基醯胺聚合物。所使用的胜肽-至-樹脂可切裂連接劑為酸不穩定性4-羥基甲基-苯氧乙酸衍生物,或在C-端醯胺之例子中,Rink-醯胺連接子。所有的胺基酸衍生物皆以其等預先形成的對稱無水衍生物的形式加入,例外為天冬醯胺酸麩醯胺酸,其等
係使用翻轉的N,N-二環己基-碳二亞胺/1-羥基苯并三唑介導性偶合程序加入。所有的偶合和去保護反應皆使用水合茚三酮(ninhydrin);三硝苯磺酸或isotin檢驗程序監視。在合成完成後,將胜肽自樹脂撐體切裂出,並伴隨著藉由以包含50%捕捉劑混合物的95%三氟醋酸處理移出側鏈保護性基團。通常使用的捕捉劑為乙二硫醇;氛、大茴香醚和水,而確切的選擇取決於所合成的胜肽之組成性胺基酸。三氟醋酸係藉由真空蒸發而移出,隨後以二乙醚研製提供粗胜肽。任何存在的捕捉劑係藉由簡單粹取程序移出,其在冷凍乾燥水相後提供不含捕捉劑的粗胜肽。用於胜肽合成的試劑一般可得自Calbiochem-Novabiochem(UK)Ltd,英國,諾丁罕NG7 2QJ。純化可藉由例如尺寸排除層析法、離子交換層析法、親合力層析法、可溶性差異分別性和(主要地)逆相高效液相層析法的技術之任一者(或其等之組合)實現。胜肽之分析可使用薄層層析法、逆相高效液相層析法、酸水解後的胺基-酸分析和藉由快速原子撞擊(fast atom bombardment,FAB)質譜分析而進行。
亦可使用SPOT-合成,其允許在連續纖維素膜上的胜肽之位置可尋址性化學合成(R Frank Tetrahedron(1992)48,9217)。
作為固相胜肽合成技術之外的選擇,胜肽亦可藉由重組蛋白質表現或試管內轉譯系統生產(Sambrook等人,”Molecular cloning:A laboratory manual”,2001,第3版,Cold Spring Harbor Laboratory Press,紐約,冷泉港)。當然,只有包含藉由天然出現的胜肽鍵連合的天然出現的胺基酸殘基的胜肽是藉由聚核苷酸編碼。在胜肽特別大(例如大於50個胺基酸,或大於100個胺基酸)的情況下,如此方法相較於固相胜肽合成技術
係較佳的。
關於本發明之第一方面所定義的「變異體」胺基酸序列可包括一個、二個、三個或四個在WDLYFEIVW(SEQ ID NO:1)中的L-胺基酸取代。
較佳地,變異體胺基酸序列包括包含X1X2X3YX4EX5X6X7的胺基酸序列,其中X1為W、L或P,X2為D或S,X3為L或F,X4為F、Phg、L、Ebw、Pff、Thi、1Ni、Hfe、Ece或Cha,X5為I或F,X6為S、V或G且X7為W或L(SEQ ID NO:1)。
更佳地,變異體胺基酸序列包括包含X1X2X3YX4EX5X6X7的胺基酸序列,其中X1為W或L,X2為D或S,X3為L或F,X4為F、Phg或L,X5為I或F,X6為S、V或G且X7為W或L(SEQ ID NO:1)。
關於本發明之第二方面所定義的「變異體」胺基酸序列可包括一個、二個、三個、四個、五個或六個在imfwydcye中的胺基酸取代。
較佳地,至少一個、二個、三個、四個、五個或六個在imfwydcye中的該取代為D-胺基酸。
任何在變異體內的取代可為非保守性的或保守性的。
使用「保守性的取代」時,吾人意指在以下群組內的取代:Val、Ile、Leu、Ala、Met;Asp、Glu;Asn、Gln;Ser、Thr、Gly、Ala;Lys、Arg、His;和Phe、Tyr、Trp。
較佳地,本發明之第一方面之胜肽或胜肽衍生物包括RMEFDVWDLYFEIVW(SEQ ID NO:325)或RMKFDVWDLYFEIVW(SEQ ID NO:326);或包括一個、二個、三個、四個、五個或六個在
RMEFDVWDLYFEIVW(SEQ ID NO:325)或RMKFDVWDLYFEIVW(SEQ ID NO:326)中的胺基酸取代的變異體胺基酸序列。
為了避免不確定,序列RMEFDVWDLYFEIVW(SEQ ID NO:325)可使用用於胺基酸的三字母代碼以Arg-Met-Glu-Phe-Asp-Val-Trp-Asp-Leu-Tyr-Phe-Glu-Ile-Val-Trp(SEQ ID NO:325)表現。RMKFDVWDLYFEIVW(SEQ ID NO:326)可使用用於胺基酸的三字母代碼以Arg-Met-Lys-Phe-Asp-Val-Trp-Asp-Leu-Tyr-Phe-Glu-Ile-Val-Trp(SEQ ID NO:326)表現。
更佳地,變異體胺基酸序列包括包含X8X9X10FDVX1X2X3YX4EX5X6X7的胺基酸序列,其中X8為R或P,X9為M、Nva、Moo、N、Nle、Meo、Q、Eag,X10為E、K或D,X1為W、L或P,X2為D或S,X3為L或F,X4為F、Phg、L、Ebw、Pff、Thi、1Ni、Hfe、Ece、Cha,X5為I或F,X6為S、V或G且X7為W或L(SEQ ID NO:2)。
更佳地,變異體胺基酸序列包括包含X8X9X10FDVX1X2X3YX4EX5X6X7的胺基酸序列,其中X8為R或P,X9為M或Nva,X10為E、K或D,X1為W或L,X2為D或S,X3為L或F,X4為F、Phg或L,X5為I或F,X6為S、V或G且X7為W或L(SEQ ID NO:2)。
適合地,本發明之第一方面之胜肽或胜肽衍生物為如下表中表現的胜肽或胜肽衍生物,或包括如以下表1至3中所表現的胜肽或胜肽衍生物之胺基酸序列或由其所組成:
在以上的表中,-ttds-係4,7,10-三-1,13-十三烷二胺。「N」係天冬醯胺酸。「NH2」係C-端醯胺基團。
較佳地,本發明之第一方面之胜肽或胜肽衍生物不包括以下列表中所表現的胜肽或不由其等所組成:AMKFDVWDLYFEIVW(SEQ ID NO:37)、CMKFDVWDLYFEIVW(SEQ ID NO:38)、DMKFDVWDLYFEIVW(SEQ ID NO:39)、EMKFDVWDLYFEIVW(SEQ ID NO:40)、FMKFDVWDLYFEIVW(SEQ ID NO:41)、GMKFDVWDLYFEIVW(SEQ ID NO:42)、HMKFDVWDLYFEIVW(SEQ ID
NO:43)、IMKFDVWDLYFEIVW(SEQ ID NO:44)、KMKFDVWDLYFEIVW(SEQ ID NO:45)、LMKFDVWDLYFEIVW(SEQ ID NO:46)、MMKFDVWDLYFEIVW(SEQ ID NO:47)、NMKFDVWDLYFEIVW(SEQ ID NO:48)、QMKFDVWDLYFEIVW(SEQ ID NO:49)、SMKFDVWDLYFEIVW(SEQ ID NO:50)、TMKFDVWDLYFEIVW(SEQ ID NO:51)、VMKFDVWDLYFEIVW(SEQ ID NO:52)、WMKFDVWDLYFEIVW(SEQ ID NO:53)、YMKFDVWDLYFEIVW(SEQ ID NO:54)、RAKFDVWDLYFEIVW(SEQ ID NO:55)、RCKFDVWDLYFEIVW(SEQ ID NO:56)、RDKFDVWDLYFEIVW(SEQ ID NO:57)、REKFDVWDLYFEIVW(SEQ ID NO:58)、RFKFDVWDLYFEIVW(SEQ ID NO:59)、RGKFDVWDLYFEIVW(SEQ ID NO:60)、RHKFDVWDLYFEIVW(SEQ ID NO:61)、RIKFDVWDLYFEIVW(SEQ ID NO:62)、RKKFDVWDLYFEIVW(SEQ ID NO:63)、RLKFDVWDLYFEIVW(SEQ ID NO:64)、RNKFDVWDLYFEIVW(SEQ ID NO:65)、RPKFDVWDLYFEIVW(SEQ ID NO:66)、RQKFDVWDLYFEIVW(SEQ ID NO:67)、RRKFDVWDLYFEIVW(SEQ ID NO:68)、RSKFDVWDLYFEIVW(SEQ ID NO:69)、RTKFDVWDLYFEIVW(SEQ ID NO:70)、RVKFDVWDLYFEIVW(SEQ ID NO:71)、RWKFDVWDLYFEIVW(SEQ ID NO:72)、RYKFDVWDLYFEIVW(SEQ ID NO:73)、RMAFDVWDLYFEIVW(SEQ ID NO:74)、RMCFDVWDLYFEIVW(SEQ ID NO:75)、RMFFDVWDLYFEIVW(SEQ ID NO:76)、RMGFDVWDLYFEIVW(SEQ ID NO:77)、RMHFDVWDLYFEIVW(SEQ ID NO:78)、RMIFDVWDLYFEIVW(SEQ ID NO:79)、RMLFDVWDLYFEIVW(SEQ ID NO:80)、RMMFDVWDLYFEIVW(SEQ
ID NO:81)、RMNFDVWDLYFEIVW(SEQ ID NO:82)、RMPFDVWDLYFEIVW(SEQ ID NO:83)、RMQFDVWDLYFEIVW(SEQ ID NO:84)、RMRFDVWDLYFEIVW(SEQ ID NO:85)、RMSFDVWDLYFEIVW(SEQ ID NO:86)、RMTFDVWDLYFEIVW(SEQ ID NO:87)、RMVFDVWDLYFEIVW(SEQ ID NO:88)、RMWFDVWDLYFEIVW(SEQ ID NO:89)、RMYFDVWDLYFEIVW(SEQ ID NO:90)、RMKADVWDLYFEIVW(SEQ ID NO:91)、RMKCDVWDLYFEIVW(SEQ ID NO:92)、RMKDDVWDLYFEIVW(SEQ ID NO:93)、RMKEDVWDLYFEIVW(SEQ ID NO:94)、RMKGDVWDLYFEIVW(SEQ ID NO:95)、RMKHDVWDLYFEIVW(SEQ ID NO:96)、RMKIDVWDLYFEIVW(SEQ ID NO:97)、RMKKDVWDLYFEIVW(SEQ ID NO:98)、RMKLDVWDLYFEIVW(SEQ ID NO:99)、RMKMDVWDLYFEIVW(SEQ ID NO:100)、RMKNDVWDLYFEIVW(SEQ ID NO:101)、RMKPDVWDLYFEIVW(SEQ ID NO:102)、RMKQDVWDLYFEIVW(SEQ ID NO:103)、RMKRDVWDLYFEIVW(SEQ ID NO:104)、RMKSDVWDLYFEIVW(SEQ ID NO:105)、RMKTDVWDLYFEIVW(SEQ ID NO:106)、RMKVDVWDLYFEIVW(SEQ ID NO:107)、RMKWDVWDLYFEIVW(SEQ ID NO:108)、RMKYDVWDLYFEIVW(SEQ ID NO:109)、RMKFAVWDLYFEIVW(SEQ ID NO:110)、RMKFCVWDLYFEIVW(SEQ ID NO:111)、RMKFEVWDLYFEIVW(SEQ ID NO:112)、RMKFFVWDLYFEIVW(SEQ ID NO:113)、RMKFGVWDLYFEIVW(SEQ ID NO:114)、RMKFHVWDLYFEIVW(SEQ ID NO:115)、RMKFIVWDLYFEIVW(SEQ ID NO:116)、RMKFKVWDLYFEIVW(SEQ ID NO:117)、
RMKFLVWDLYFEIVW(SEQ ID NO:118)、RMKFMVWDLYFEIVW(SEQ ID NO:119)、RMKFNVWDLYFEIVW(SEQ ID NO:120)、RMKFPVWDLYFEIVW(SEQ ID NO:121)、RMKFQVWDLYFEIVW(SEQ ID NO:122)、RMKFRVWDLYFEIVW(SEQ ID NO:123)、RMKFSVWDLYFEIVW(SEQ ID NO:124)、RMKFTVWDLYFEIVW(SEQ ID NO:125)、RMKFVVWDLYFEIVW(SEQ ID NO:126)、RMKFWVWDLYFEIVW(SEQ ID NO:127)、RMKFYVWDLYFEIVW(SEQ ID NO:128)、RMKFDAWDLYFEIVW(SEQ ID NO:129)、RMKFDCWDLYFEIVW(SEQ ID NO:130)、RMKFDDWDLYFEIVW(SEQ ID NO:131)、RMKFDEWDLYFEIVW(SEQ ID NO:132)、RMKFDFWDLYFEIVW(SEQ ID NO:133)、RMKFDGWDLYFEIVW(SEQ ID NO:134)、RMKFDHWDLYFEIVW(SEQ ID NO:135)、RMKFDIWDLYFEIVW(SEQ ID NO:136)、RMKFDKWDLYFEIVW(SEQ ID NO:137)、RMKFDLWDLYFEIVW(SEQ ID NO:138)、RMKFDMWDLYFEIVW(SEQ ID NO:139)、RMKFDNWDLYFEIVW(SEQ ID NO:140)、RMKFDPWDLYFEIVW(SEQ ID NO:141)、RMKFDQWDLYFEIVW(SEQ ID NO:142)、RMKFDRWDLYFEIVW(SEQ ID NO:143)、RMKFDSWDLYFEIVW(SEQ ID NO:144)、RMKFDTWDLYFEIVW(SEQ ID NO:145)、RMKFDWWDLYFEIVW(SEQ ID NO:146)、RMKFDYWDLYFEIVW(SEQ ID NO:147)、RMKFDVADLYFEIVW(SEQ ID NO:148)、RMKFDVCDLYFEIVW(SEQ ID NO:149)、RMKFDVDDLYFEIVW(SEQ ID NO:150)、RMKFDVEDLYFEIVW(SEQ ID NO:151)、RMKFDVFDLYFEIVW(SEQ ID NO:152)、RMKFDVGDLYFEIVW(SEQ ID NO:153)、RMKFDVHDLYFEIVW(SEQ ID NO:
154)、RMKFDVIDLYFEIVW(SEQ ID NO:155)、RMKFDVKDLYFEIVW(SEQ ID NO:156)、RMKFDVLDLYFEIVW(SEQ ID NO:157)、RMKFDVMDLYFEIVW(SEQ ID NO:158)、RMKFDVNDLYFEIVW(SEQ ID NO:159)、RMKFDVPDLYFEIVW(SEQ ID NO:160)、RMKFDVQDLYFEIVW(SEQ ID NO:161)、RMKFDVRDLYFEIVW(SEQ ID NO:162)、RMKFDVSDLYFEIVW(SEQ ID NO:163)、RMKFDVTDLYFEIVW(SEQ ID NO:164)、RMKFDVVDLYFEIVW(SEQ ID NO:165)、RMKFDVYDLYFEIVW(SEQ ID NO:166)、RMKFDVWALYFEIVW(SEQ ID NO:167)、RMKFDVWCLYFEIVW(SEQ ID NO:168)、RMKFDVWELYFEIVW(SEQ ID NO:169)、RMKFDVWFLYFEIVW(SEQ ID NO:170)、RMKFDVWGLYFEIVW(SEQ ID NO:171)、RMKFDVWHLYFEIVW(SEQ ID NO:172)、RMKFDVWILYFEIVW(SEQ ID NO:173)、RMKFDVWKLYFEIVW(SEQ ID NO:174)、RMKFDVWLLYFEIVW(SEQ ID NO:175)、RMKFDVWMLYFEIVW(SEQ ID NO:176)、RMKFDVWNLYFEIVW(SEQ ID NO:177)、RMKFDVWPLYFEIVW(SEQ ID NO:178)、RMKFDVWQLYFEIVW(SEQ ID NO:179)、RMKFDVWRLYFEIVW(SEQ ID NO:180)、RMKFDVWSLYFEIVW(SEQ ID NO:181)、RMKFDVWTLYFEIVW(SEQ ID NO:182)、RMKFDVWVLYFEIVW(SEQ ID NO:183)、RMKFDVWWLYFEIVW(SEQ ID NO:184)、RMKFDVWYLYFEIVW(SEQ ID NO:185)、RMKFDVWDAYFEIVW(SEQ ID NO:186)、RMKFDVWDCYFEIVW(SEQ ID NO:187)、RMKFDVWDDYFEIVW(SEQ ID NO:188)、RMKFDVWDEYFEIVW(SEQ ID NO:189)、RMKFDVWDFYFEIVW(SEQ ID NO:190)、RMKFDVWDGYFEIVW
(SEQ ID NO:191)、RMKFDVWDHYFEIVW(SEQ ID NO:192)、RMKFDVWDIYFEIVW(SEQ ID NO:193)、RMKFDVWDKYFEIVW(SEQ ID NO:194)、RMKFDVWDMYFEIVW(SEQ ID NO:195)、RMKFDVWDNYFEIVW(SEQ ID NO:196)、RMKFDVWDPYFEIVW(SEQ ID NO:197)、RMKFDVWDQYFEIVW(SEQ ID NO:198)、RMKFDVWDRYFEIVW(SEQ ID NO:199)、RMKFDVWDSYFEIVW(SEQ ID NO:200)、RMKFDVWDTYFEIVW(SEQ ID NO:201)、RMKFDVWDVYFEIVW(SEQ ID NO:202)、RMKFDVWDWYFEIVW(SEQ ID NO:203)、RMKFDVWDYYFEIVW(SEQ ID NO:204)、RMKFDVWDLAFEIVW(SEQ ID NO:205)、RMKFDVWDLCFEIVW(SEQ ID NO:206)、RMKFDVWDLDFEIVW(SEQ ID NO:207)、RMKFDVWDLEFEIVW(SEQ ID NO:208)、RMKFDVWDLFFEIVW(SEQ ID NO:209)、RMKFDVWDLGFEIVW(SEQ ID NO:210)、RMKFDVWDLHFEIVW(SEQ ID NO:211)、RMKFDVWDLIFEIVW(SEQ ID NO:212)、RMKFDVWDLKFEIVW(SEQ ID NO:213)、RMKFDVWDLLFEIVW(SEQ ID NO:214)、RMKFDVWDLMFEIVW(SEQ ID NO:215)、RMKFDVWDLNFEIVW(SEQ ID NO:216)、RMKFDVWDLPFEIVW(SEQ ID NO:217)、RMKFDVWDLQFEIVW(SEQ ID NO:218)、RMKFDVWDLRFEIVW(SEQ ID NO:219)、RMKFDVWDLSFEIVW(SEQ ID NO:220)、RMKFDVWDLTFEIVW(SEQ ID NO:221)、RMKFDVWDLVFEIVW(SEQ ID NO:222)、RMKFDVWDLWFEIVW(SEQ ID NO:223)、RMKFDVWDLYAEIVW(SEQ ID NO:224)、RMKFDVWDLYCEIVW(SEQ ID NO:225)、RMKFDVWDLYDEIVW(SEQ ID NO:226)、RMKFDVWDLYEEIVW(SEQ ID NO:227)、
RMKFDVWDLYGEIVW(SEQ ID NO:228)、RMKFDVWDLYHEIVW(SEQ ID NO:229)、RMKFDVWDLYIEIVW(SEQ ID NO:230)、RMKFDVWDLYKEIVW(SEQ ID NO:231)、RMKFDVWDLYLEIVW(SEQ ID NO:232)、RMKFDVWDLYMEIVW(SEQ ID NO:233)、RMKFDVWDLYNEIVW(SEQ ID NO:234)、RMKFDVWDLYPEIVW(SEQ ID NO:235)、RMKFDVWDLYQEIVW(SEQ ID NO:236)、RMKFDVWDLYREIVW(SEQ ID NO:237)、RMKFDVWDLYSEIVW(SEQ ID NO:238)、RMKFDVWDLYTEIVW(SEQ ID NO:239)、RMKFDVWDLYVEIVW(SEQ ID NO:240)、RMKFDVWDLYWEIVW(SEQ ID NO:241)、RMKFDVWDLYYEIVW(SEQ ID NO:242)、RMKFDVWDLYFAIVW(SEQ ID NO:243)、RMKFDVWDLYFCIVW(SEQ ID NO:244)、RMKFDVWDLYFDIVW(SEQ ID NO:245)、RMKFDVWDLYFFIVW(SEQ ID NO:246)、RMKFDVWDLYFGIVW(SEQ ID NO:247)、RMKFDVWDLYFHIVW(SEQ ID NO:248)、RMKFDVWDLYFIIVW(SEQ ID NO:249)、RMKFDVWDLYFKIVW(SEQ ID NO:250)、RMKFDVWDLYFLIVW(SEQ ID NO:251)、RMKFDVWDLYFMIVW(SEQ ID NO:252)、RMKFDVWDLYFNIVW(SEQ ID NO:253)、RMKFDVWDLYFPIVW(SEQ ID NO:254)、RMKFDVWDLYFQIVW(SEQ ID NO:255)、RMKFDVWDLYFRIVW(SEQ ID NO:256)、RMKFDVWDLYFSIVW(SEQ ID NO:257)、RMKFDVWDLYFTIVW(SEQ ID NO:258)、RMKFDVWDLYFVIVW(SEQ ID NO:259)、RMKFDVWDLYFWIVW(SEQ ID NO:260)、RMKFDVWDLYFYIVW(SEQ ID NO:261)、RMKFDVWDLYFEAVW(SEQ ID NO:262)、RMKFDVWDLYFECVW(SEQ ID NO:263)、
RMKFDVWDLYFEDVW(SEQ ID NO:264)、RMKFDVWDLYFEEVW(SEQ ID NO:265)、RMKFDVWDLYFEFVW(SEQ ID NO:266)、RMKFDVWDLYFEGVW(SEQ ID NO:267)、RMKFDVWDLYFEHVW(SEQ ID NO:268)、RMKFDVWDLYFEKVW(SEQ ID NO:269)、RMKFDVWDLYFELVW(SEQ ID NO:270)、RMKFDVWDLYFEMVW(SEQ ID NO:271)、RMKFDVWDLYFENVW(SEQ ID NO:272)、RMKFDVWDLYFEPVW(SEQ ID NO:273)、RMKFDVWDLYFEQVW(SEQ ID NO:274)、RMKFDVWDLYFERVW(SEQ ID NO:275)、RMKFDVWDLYFESVW(SEQ ID NO:276)、RMKFDVWDLYFETVW(SEQ ID NO:277)、RMKFDVWDLYFEVVW(SEQ ID NO:278)、RMKFDVWDLYFEWVW(SEQ ID NO:279)、RMKFDVWDLYFEYVW(SEQ ID NO:280)、RMKFDVWDLYFEIAW(SEQ ID NO:281)、RMKFDVWDLYFEICW(SEQ ID NO:282)、RMKFDVWDLYFEIDW(SEQ ID NO:283)、RMKFDVWDLYFEIEW(SEQ ID NO:284)、RMKFDVWDLYFEIFW(SEQ ID NO:285)、RMKFDVWDLYFEIGW(SEQ ID NO:286)、RMKFDVWDLYFEIHW(SEQ ID NO:287)、RMKFDVWDLYFEIIW(SEQ ID NO:288)、RMKFDVWDLYFEIKW(SEQ ID NO:289)、RMKFDVWDLYFEILW(SEQ ID NO:290)、RMKFDVWDLYFEIMW(SEQ ID NO:291)、RMKFDVWDLYFEINW(SEQ ID NO:292)、RMKFDVWDLYFEIPW(SEQ ID NO:293)、RMKFDVWDLYFEIQW(SEQ ID NO:294)、RMKFDVWDLYFEIRW(SEQ ID NO:295)、RMKFDVWDLYFEISW(SEQ ID NO:296)、RMKFDVWDLYFEITW(SEQ ID NO:297)、RMKFDVWDLYFEIWW(SEQ ID
NO:298)、RMKFDVWDLYFEIYW(SEQ ID NO:299)、RMKFDVWDLYFEIVA(SEQ ID NO:300)、RMKFDVWDLYFEIVC(SEQ ID NO:301)、RMKFDVWDLYFEIVD(SEQ ID NO:302)、RMKFDVWDLYFEIVE(SEQ ID NO:303)、RMKFDVWDLYFEIVF(SEQ ID NO:304)、RMKFDVWDLYFEIVG(SEQ ID NO:305)、RMKFDVWDLYFEIVH(SEQ ID NO:306)、RMKFDVWDLYFEIVI(SEQ ID NO:307)、RMKFDVWDLYFEIVK(SEQ ID NO:308)、RMKFDVWDLYFEIVL(SEQ ID NO:309)、RMKFDVWDLYFEIVM(SEQ ID NO:310)、RMKFDVWDLYFEIVN(SEQ ID NO:311)、RMKFDVWDLYFEIVP(SEQ ID NO:312)、RMKFDVWDLYFEIVQ(SEQ ID NO:313)、RMKFDVWDLYFEIVR(SEQ ID NO:314)、RMKFDVWDLYFEIVS(SEQ ID NO:315)、RMKFDVWDLYFEIVT(SEQ ID NO:316)、RMKFDVWDLYFEIVV(SEQ ID NO:317)、RMKFDVWDLYFEIVY(SEQ ID NO:318)、MKFDVWDLYFEIVW(SEQ ID NO:319)、KFDVWDLYFEIVW(SEQ ID NO:320)。
較佳地,本發明之第二方面之胜肽或胜肽衍生物包括:(i)包括cimfwydcye的胺基酸序列;或(ii)包括一個、二個、三個、四個、五個、六個或七個在cimfwydcye的胺基酸取代的變異體胺基酸序列。
較佳地,至少一個、二個、三個、四個、五個、六個或七個在cimfwydcye中的該取代為D-胺基酸。
較佳地,本發明之第二方面之胜肽或胜肽衍生物包括:包括X1X2X3X4X5X6X7X8X9X10的胺基酸序列,其中X1(在存在的情況下)為c、s、y、i、D-Pen、C、t、D-Nva、D-Nle或k,X2為i、y、w或d,X3為c或m,
X4為f、t、v或c,X5為w或c,X6為y或c,X7為d、e或f,X8為c、e、f、y或d,X9為y或w且X10為e或i,且相較於cimfwydcye具有不多於七個胺基酸取代。
較佳地,胜肽或胜肽衍生物包括包含X1X2X3X4wydX8ye的胺基酸序列,其中X1為c、C、D-Pen或s,X2為I、y或w,X3為c或m,X4為f、t、或v且X8為c或e。
較佳地,胜肽或胜肽衍生物包括包含X1X2mX4wydX8ye的胺基酸序列,其中X1為c、C或D-Pen,X2為i或y,X4為f、t、或v且X8為c或e。
適合地,本發明之第二方面之胜肽或胜肽衍生物係如在下表中所表現的胜肽或胜肽衍生物,或包括如在以下表4至6所表現的胜肽或胜肽衍生物之胺基酸序列或由其所組成:
在一個較佳的具體態樣中,胜肽B05、B06、B14、B15、B17、B18、B34、B35和B37為環狀。
在一個較佳的具體態樣中,胜肽B26、B27、B28、B30、B31、B32、B33、B36、B38和B39為環狀。
在一個較佳的具體態樣中,胜肽B01、B02、B11、B25和B29為環狀。
在以上的表中,-TTDS-係4,7,10-三-1,13-十三烷二胺。「NH2」係C-端醯胺基團。
在以上的表中B08被刪除,因為與B01相同。在以上的表中B12被刪除,因為與B02相同。
較佳地,本發明之第一方面之胜肽或胜肽衍生物不包括以下列表中所表現的胜肽或不由其所組成:feiycwdcym、ywcfiymced、dmwceyfcyi、ceicwyfdym、ccwfiemdyy、cemdwycyfi、aimfwydcye、dimfwydcye、eimfwydcye、fimfwydcye、himfwydcye、iimfwydcye、kimfwydcye、limfwydcye、mimfwydcye、nimfwydcye、pimfwydcye、qimfwydcye、rimfwydcye、simfwydcye、timfwydcye、vimfwydcye、wimfwydcye、yimfwydcye、camfwydcye、ccmfwydsye、cdmfwydcye、cemfwydcye、cfmfwydcye、chmfwydcye、ckmfwydcye、clmfwydcye、cmmfwydcye、cnmfwydcye、cpmfwydcye、cqmfwydcye、crmfwydcye、csmfwydcye、ctmfwydcye、cvmfwydcye、ciafwydcye、
cidfwydcye、ciefwydcye、ciffwydcye、cihfwydcye、ciifwydcye、cikfwydcye、cilfwydcye、cinfwydcye、cipfwydcye、ciqfwydcye、cirfwydcye、cisfwydcye、citfwydcye、civfwydcye、ciwfwydcye、ciyfwydcye、cimawydcye、cimcwydsye、cimdwydcye、cimewydcye、cimhwydcye、cimiwydcye、cimkwydcye、cimlwydcye、cimmwydcye、cimnwydcye、cimpwydcye、cimqwydcye、cimrwydcye、cimswydcye、cimwwydcye、cimywydcye、cimfaydcye、cimfcydsye、cimfdydcye、cimfeydcye、cimffydcye、cimfhydcye、cimfiydcye、cimfkydcye、cimflydcye、cimfmydcye、cimfnydcye、cimfpydcye、cimfqydcye、cimfrydcye、cimfsydcye、cimftydcye、cimfvydcye、cimfyydcye、cimfwadcye、cimfwcdsye、cimfwddcye、cimfwedcye、cimfwfdcye、cimfwhdcye、cimfwidcye、cimfwkdcye、cimfwldcye、cimfwmdcye、cimfwndcye、cimfwpdcye、cimfwqdcye、cimfwrdcye、cimfwsdcye、cimfwtdcye、cimfwvdcye、cimfwwdcye、cimfwyacye、cimfwycsye、cimfwyecye、cimfwyfcye、cimfwyhcye、cimfwyicye、cimfwykcye、cimfwylcye、cimfwymcye、cimfwyncye、cimfwypcye、cimfwyqcye、cimfwyrcye、cimfwyscye、cimfwytcye、cimfwyvcye、cimfwywcye、cimfwyycye、cimfwydaye、cimfwydfye、cimfwydhye、cimfwydiye、cimfwydkye、cimfwydlye、cimfwydmye、cimfwydnye、cimfwydpye、cimfwydqye、cimfwydrye、cimfwydsye、cimfwydtye、cimfwydvye、cimfwydwye、cimfwydyye、cimfwydcae、cimfwydsce、cimfwydcde、cimfwydcee、cimfwydcfe、cimfwydche、cimfwydcie、cimfwydcke、cimfwydcle、cimfwydcme、cimfwydcne、cimfwydcpe、cimfwydcqe、cimfwydcre、cimfwydcse、cimfwydcte、cimfwydcve、cimfwydcwe、cimfwydcya、cimfwydsyc、cimfwydcyd、cimfwydcyf、cimfwydcyh、cimfwydcyi、cimfwydcyk、cimfwydcyl、cimfwydcym、cimfwydcyn、cimfwydcyp、cimfwydcyq、
cimfwydcyr、cimfwydcys、cimfwydcyt、cimfwydcyv、cimfwydcyw、cimfwydcyy。
較佳地,本發明之第二方面之胜肽或胜肽衍生物為環狀胜肽。第一方面之胜肽或胜肽衍生物亦可為環狀。
術語「環狀胜肽」用於本文中意指胜肽之環狀衍生物,其中(例如)二或多個適用於環化的添加基團已被加至其上(往往於羧基端和於胺基端)。適合的基團包括胺基酸殘基。環狀胜肽可包含分子內雙硫鍵(即--S--S--)、介於兩個添加的殘基間的分子內醯胺鍵(即--CONH--或--NHCO--)、或分子內S-烷基鍵(即--S--(CH2)n--CONH--或--NH--CO(CH2)n--S--,其中n為1、2或更多且較佳不多於6)之任一者。環化亦可藉由三化學進行,如Scharn,D.等人,(2001)J.Org.Chem 66;507中所例示的。環狀胜肽序列係以胜肽序列前的字首「環」表示且序列之環狀部分被併入括號中並進一步藉由連字號與序列剩下的部分分開。
本發明之第一或第二方面的胜肽或胜肽衍生物可藉由共軛至聚乙二醇(polyethylene glycol,PEG)而修改。適合的PEG化方法係揭示於美國專利案第5,122,614號(Zalipsky;Enzon,Inc.)和第5,539,063號(Hakimi等人;Hoffmann-La Roche Inc.),所有其中的PEG化方法皆以引用方式納入本文中。可使用各種分子量的PEG,適合地為從5000至40000kD。較佳的分子量為5000kD。較佳地,PEG為單分散,意味PEG分子間分子量變化很小。PEG化可改進胜肽之可溶性和血漿半生期。
本發明之第三方面提供雙重胜肽,其包括共軛至另一個本發明之第一或第二方面的胜肽或胜肽衍生物的本發明之第一或第二方面的胜肽或胜肽衍生物,其中該胜肽或胜肽衍生物可與該另一個胜肽或胜肽衍生
物相同或不同,且其中該雙重胜肽具有促凝血活性。
雙重胜肽可包括兩個相同的(或兩個不同的)本發明之第一或第二方面的胜肽或胜肽衍生物,其等藉由彈性連接子(其可為胜肽性、胜肽模擬性或非胜肽性)或藉由可包括構形拘束性胜肽性、胜肽模擬性或非胜肽性建構嵌段(例如三部分)的構形拘束性連接子、或藉由任何技術領域中已知的其他可能方法之一共價地彼此連接。
較佳地,本發明之第一和第二方面的胜肽或胜肽衍生物和本發明之第三方面之雙重胜肽具有介於0.5和3.5kD的分子量。使用「分子量」時,吾人意指胜肽或胜肽衍生物之單體不包括任何相對離子或加合物的理論質量。對於經PEG化胜肽,分子量係定為單體分子不包括任何相對離子或加合物且不包括PEG部分或之質量。介於0.5kD和3.5kD間的胜肽、胜肽衍生物和雙重胜肽相較於較大的胜肽較容易合成,具有減小的致免疫風險,且一般可無困難地投予患者。小於0.5kD的胜肽可無困難地合成和投予且較不可能為致免疫性,但可能不具有所需的促凝血活性。不過,若具有適當的活性,小於0.5kD且大於3.5kD的胜肽、胜肽衍生物和雙重胜肽係被本發明所涵蓋。
本發明之第一和第二方面的胜肽和胜肽衍生物和本發明之第三方面之雙重胜肽具有促凝血活性。
使用「促凝血活性」時,吾人意味在適合的檢驗系統中促進凝血酶產生及/或纖維蛋白沉澱的能力。
應察知有不同的測定促凝血活性用分析。的確,有不同種類的促凝血活性。胜肽和胜肽衍生物可在耗盡FV、FVII、FVIII、FX或FXI
的血漿中促進凝血。在一個較佳的具體態樣中,本發明之胜肽或胜肽衍生物在FVIII被耗盡或不存在的血漿中促進凝血酶產生及/或纖維蛋白沉澱。此類型的活性稱為凝血FVIII活性。在血漿來自缺少FVIII的個體的情況下,活性典型地係稱為FVIII等價活性。在血漿包含針對FVIII的抑制子的情況下,活性典型地稱為FVIII抑制子繞道等價活性。其他促凝血活性包括FV活性、FVII活性、FX活性和FXI活性。
個別的胜肽和胜肽衍生物於不同種類的分析間相對功效可不同。因此,即使一胜肽或胜肽衍生物似乎在特定分析中具有低功效,其在另一個分析中仍然可具有適合的高水平促凝血活性。
適合的測定促凝血活性的分析為以下所敘述的明確固有凝血酶產生分析。在此分析中,若在濃度25、50或100μM時化合物可於60分鐘內,且較佳於50、40、30、20或10分鐘內刺激產生5nM凝血酶,其被視為具有促凝血活性。較佳地,其可在60分鐘內,且更佳地在50、40、30、20或10分鐘內刺激產生10nM凝血酶。另一可選擇的分析為以下所敘述的明確雙重途徑凝血酶產生分析(Defined Dual-Pathway Thrombin Generation Assay,DDPTGA)。在此分析中,若在濃度25、50或100μM時化合物可於70分鐘內,且較佳於60、50、40、30或20分鐘內刺激產生5nM凝血酶,其被視為具有促凝血活性。較佳地,其可在70分鐘,且更佳地在60、50、40、30或20分鐘內刺激產生10nM凝血酶。以上分析特別有用於測定凝血FVIII活性,因為其等係在FVIII被耗盡或被抑制血漿之存在下實施。然而,其等可藉由以適合的被耗盡或被抑制血漿取代FVIII被耗盡或被抑制血漿而無困難地修改以檢驗其他種類的促凝血活性。
適合地,促凝血活性為在明確固有凝血酶產生分析中25、50或100μM的化合物之凝血酶產生時間相等於至少100mU/mL第八因子抑制子繞道活性(FEIBA),較佳至少300mU/mL FEIBA,更佳至少600mU/mL FEIBA且最佳為至少1200mU/mL FEIBA的。凝血酶產生時間或高峰時間為從將預加溫的血漿加至以下所述的分析中之另一個組份,到凝血酶高峰最大值之時間的時間間隔。
或者,促凝血活性為在明確雙重途徑凝血酶產生分析(DDPTGA)中25、50或100μM的化合物之凝血酶高峰最大值相等於至少1mU/mL第八因子抑制子繞道活性(FEIBA),較佳至少5mU/mL FEIBA,最佳為至少10mU/mL FEIBA的。凝血酶高峰最大值(亦稱為高峰IIa)為在分析期間產生的最大凝血酶濃度。若以適合的因子被耗盡血漿取代FVIII不足或FVIII被抑制血漿,可使用明確雙重途徑凝血酶產生分析測定FVIII活性外的凝血活性。本發明之胜肽、胜肽衍生物或雙重胜肽若於濃度25、50或100μM,在120分鐘其間分別使用FV、FVII、FX或FXI不足血漿於DDPTGA中相較於在缺乏胜肽下刺激可刺激產生更多凝血酶,則被視為具有FV、FVII、FX或FXI活性。
適合地,促凝血活性為在明確固有凝血酶產生分析中25、50或100μM的化合物之凝血酶產生時間在30分鐘內,較佳在15分鐘內且最佳在10分鐘內達到高峰。[0]或者,促凝血活性為在明確雙重途徑凝血酶產生分析中25、50或100μM的化合物之凝血酶產生時間在50分鐘內,較佳在45分鐘內且最佳為在30分鐘內達到高峰。
胜肽或胜肽衍生物或雙重胜肽對凝血酶生產的功效可於
FVIII免疫抑制的、FVIII免疫耗盡的、FVIII抑制子患者或A型血友病患者血漿或其他類型的凝血因子不足血漿中,例如藉由在黑色96-槽孔微盤(Cliniplate,Thermo Labsystems)中連續監視凝血酶專一性螢光受質I-1140(Bachem)之緩慢切裂而測定,如以下所敘述。可在凝血酶產生分析中有用地測量以測定胜肽或胜肽衍生物之功效的參數為於高峰時間的凝血酶濃度;於高峰凝血酶之凝血酶產生時間;凝血酶產生曲線之增殖期之斜率和凝血酶產生之滯後時間(起始期)。
凝血酶產生之固有途徑可藉由包括FXIa和磷脂而在凝血酶產生分析中分析。在如此分析中(其類似於經活化局部血栓形成質時間(activated partial thromboplastin time,aPTT)檢驗),凝血酶產生僅僅透過固有途徑指引,且為FVIII依賴性。適合的分析為以下所敘述的明確固有凝血酶產生分析。或者,藉由利用低濃度的TF和磷脂取代FXIa和磷脂,凝血酶係藉由外來(組織因子)和固有途徑兩者產生。此形式的凝血酶產生分析為較生理學者,因為凝血酶產生途徑兩者皆包含在內;其為部分FVIII依賴性。適合的分析為明確雙重途徑凝血酶產生分析。
明確固有凝血酶產生分析係如下進行。人類血漿之FVIII活性係藉由以10μl於山羊引起的經加熱失活的抗人類FVIII血漿(600BU/ml,於56℃培養6小時)培養(2小時,37℃)40μl的人類正常血漿而抑制。將15μl的FXIa(16.67nM)(Enzyme Research Laboratories)和磷脂(磷脂醯膽鹼/磷脂醯絲胺酸60%/40%,120μM)(Avanti Polar Lipids)之混合物,15μl的3.33mM I-1140和50mM CaCl2之混合物以及10μl胜肽溶液(不同濃度)加至10μl 2x HNa/HSA5(50mM Hepes,350mM NaCl,pH7.35,10mg/ml HSA)。於
37℃培養六分鐘後,凝血酶產生係藉由加入50μl預加溫的(37℃)FVIII經抑制血漿而開始。代替FVIII經抑制血漿,可使用FVIII抑制子患者血漿或數個經耗盡血漿。立即將微盤放入GENios Plus(Tecan)或Safire 2(Tecan)螢光讀取器並藉由每21秒讀盤一次而動力學地追蹤螢光訊號(ex 340nm/em 440nM)。藉由離差原始螢光數據,從使用凝血酶的濃度範圍構築的標準曲線計算所產生凝血酶之量。
為計算活性等價單位,以第八因子抑制子繞道劑(FEIBA,Baxter AG)、Immunate(人類FVIII,衍生自經純化血漿)、參考標準(Baxter AG)或Recombinate標準(人類FVIII,經純化重組,Baxter AG)之稀釋進行實驗。線性擬合對照於高峰凝血酶的凝血酶產生時間繪製的FEIBA(FVIII)濃度之對數得到標準曲線。使用此曲線,對所界定的胜肽濃度計算FEIBA(FVIII)等價活性。
在胜肽濃度於本文中給定的情況下,應被理解其非在最後分析體積中的胜肽濃度,而是對血漿體積校正濃度。最後分析體積中的濃度為除以2.5的經校正濃度。故,在給定濃度100μM的情況下,最後分析體積中的實際濃度為40μM。類似地,FEIBA等價活性亦對血漿體積校正。故,若陳述於100μM胜肽在DITGA中具有相等於100mU/ml FEIBA的活性,在最後分析體積中胜肽之濃度為40μM且在對照組分析中FEIBA之等價濃度為40mU/ml FEIBA。
明確雙重途徑凝血酶產生分析係如以下所敘述,使用市售檢驗套組(Technothrombin TGA,Technoclone GmbH,澳洲,維也納)進行。簡而言之,將40μl 1.25mM螢光受質(Z-GGR-AMC)18.75mM CaCl2、10μl TGA
試劑B(包含17.9pM重組人類組織因子的磷脂媒劑磷脂醯膽鹼/磷脂醯絲胺酸80%/20%(3.2μM);Technoclone GmbH)或10μl TGA試劑C high(包含71.6pM重組人類組織因子的磷脂媒劑磷脂醯膽鹼/磷脂醯絲胺酸80%/20%(32μM);Technoclone GmbH)和10μl胜肽稀釋、FEIBA參考標準或FVIIa標準稀釋(Enzyme Research Laboratories,美國,印第安那州,南本德)的混合物於37℃培養四分鐘。較佳地,使用試劑C high。凝血酶產生係藉由加入40μl數種人類血漿(37℃)之一而開始。螢光受質借由凝血酶的轉換係藉由立即將盤放入預熱的(37℃)微盤螢光讀取器(Tecan Safire 2,ex 360nm/em 460nm)並每30秒動力學地讀盤一次而追蹤。藉由離差原始螢光數據,自使用凝血酶之濃度範圍所構築的標準曲線計算所產生凝血酶之量。對照凝血酶產生曲線之高峰的凝血酶或至高峰凝血酶的時間繪製的因子VIIa或FEIBA濃度之非線性回歸分析獲得標準曲線。使用此等曲線,可對界定的胜肽濃度計算因子VIIa或FEIBA等價活性。如關於DITGA所敘述的,在胜肽濃度於本文中係關於DDPTGA而給定的情況下,應了解其非在最後分析體積中的胜肽濃度,而是對血漿體積校正的濃度。在最後分析體積中的濃度係除以2.5的經校正濃度。FEIBA等價活性亦藉由應用相同的校正因子對血漿體積校正。
另一個用以測定促凝血活性,且特別是FVIII等價活性或FVIII抑制子繞道活性的適合的分析,為如以下所敘述的明確纖維蛋白沉澱分析。適合地,明確纖維蛋白沉澱分析中的25μM檢驗化合物樣本之促凝血活性相等於至少30mU/mL第八因子抑制子繞道活性(FEIBA),較佳至少80mU/mL FEIBA,最佳為至少200mU/mL FEIBA。此分析特別有用於測定
凝血FVIII活性,因為其係在FVIII經耗盡或經抑制血漿之存在下實施。
明確纖維蛋白沉澱分析係如以下進行。人類檸檬酸鹽化血漿(Baxter AG)之FVIII活性係首先藉由以25μl於山羊引起的經加熱失活抗人類FVIII血漿(300BU/ml,於56℃培養6小時)培養(2小時,37℃)100μl的人類正常血漿而抑制。對於每個欲檢驗的樣本,將125μl的此FVIII經抑制人類正常血漿轉移至預加溫的光析管並加入75μl檢驗化合物或FEIBA參考標準(Baxter AG)之稀釋。檢驗化合物或FEIBA參考標準之稀釋包含50mM咪唑、100mM NaCl和10mg/ml人類血清白蛋白(Sigma)pH 7.4。作為觸發物且用於提供促凝血表面,納入100μl於50mM咪唑、100mM NaCl、10mg/ml人類血清白蛋白(Sigma)pH 7.4中的人類因子XIa(3.13nM,Enzyme Research Laboratories)和磷脂(PL)媒劑(磷脂醯膽鹼/磷脂醯絲胺酸60%/40%,30μM;Avanti Polar Lipids)之混合物。在37℃培養三分鐘後,藉由加入100μl的25mM CaCl2開始凝血反應。藉由凝血計(KC10A,德國,Amelung)監視血塊形成。簡而言之,每個光析管於磁性偵測裝置上緩慢旋轉且包含小型磁性金屬球。在血漿組份存留於溶液中時,球坐落於光析管底部。隨時間過去,血塊開始形成,使得球於旋轉的光析管中開始隨著血塊成長而旋轉。紀錄「凝塊時間」,其定義為從加入CaCl2的時間至生長中的血塊開始旋轉磁性球的時間。對FEIBA參考標準稀釋藉由對數FEIBA濃度(x軸)對比凝塊時間(y軸)之線性回歸計算標準曲線。基於每個化合物濃度之凝塊時間,根據此標準曲線計算FEIBA等價活性。
在胜肽濃度於本文中係關於明確纖維蛋白沉澱分析而給定的情況下,應了解其非最終分析體積中的胜肽濃度,而是對血漿體積校正
的濃度。最終分析體積中的濃度係除以4的經校正濃度。故,在給定濃度100μM之情況下,在最終分析體積中的實際濃度係25μM。類似地,FEIBA等價活性亦對血漿體積校正。故,若陳述在明確纖維蛋白沉澱分析中於100μM胜肽具有相等於100mU/ml FEIBA的活性,最終分析體積中胜肽濃度係25μM且在對照組分析中FEIBA之等價濃度係25mU/ml FEIBA。
較佳地,本發明之第一和第二方面的胜肽和胜肽衍生物和本發明之第三方面之雙重胜肽當於A型嚴重人類血友病之動物模型中投予時,可至少部分地補償生物活性FVIII之缺乏。例如,其等可於FVIII不足小鼠(例如由Bi等人(Nat Genet.1995;10:119-21)詳細敘述的品系,其中FVIII之外顯子17或外顯子16被中斷)中有效控制流血。外顯子16 FVIII-/-小鼠可自Jackson Laboratory,美國,緬因州,Bar Harbor,04609,600 Main Street(品系名:B6;129S4-F8 tmlKaz /J)獲得。
檢驗化合物控制流血能力的適合分析為尾夾分析。將胜肽、胜肽衍生物或雙重胜肽於適合的媒劑投予小鼠,典型的地為i.v.、i.p.或s.c。可將不同劑量的每種胜肽或胜肽衍生物投予不同組的小鼠以測定劑量依賴性。小鼠之群組(典型為8-16隻具有嚴重出血性素質的雄性與雌性外顯子17 FVIII剔除小鼠)接受單一i.v.(尾靜脈)、i.p.或s.c.快速注射(10ml/kg體重)。尾夾兩分鐘前,將動物藉由i.p.施用100mg/kg氯胺酮與5mg/kg賽拉嗪而麻醉。i.v.投予胜肽或胜肽衍生物五分鐘後與i.p.或s.c.投予胜肽或胜肽衍生物60分鐘後,切出0.5cm尾尖。於規定的時間期間(例如0-2分鐘、2-4分鐘、4-6分鐘、6-8、8-10、10-12、12-14、14-16、16-20、20-24、24-28、28-32、32-42、42-52和52-62分鐘)將自創傷滴下的血液收集在包含5.0ml 0.04
% NH3的管子中。打破在每個管子中的血液細胞並藉由室溫三小時培養期萃取血紅素,接著以超音波處理。萃取物於414nm和620nm的吸光度係於微滴定盤測定。620nm為參考波長而A620讀取值係自A414讀取值減去。對應於經減去讀取值的萃取物中的血液量係藉由來自野生型對照小鼠(例如C57/B16小鼠)之血液之已知量所創造的標準曲線計算。欲紀錄的小鼠之流血特徵之參數為總血液損失、流血速率、流血時間、1小時、2小時、3小時、4小時、24小時和48小時存活率。累積的血液損失係藉由對每個時間期間計算血液量的總合而計算。平均每組動物之數據並對照流血時間繪圖。在每個時間點,藉由用於統計意義的Student氏t-檢驗分析治療和媒劑控制組的數據組。
較佳地,投予胜肽、胜肽衍生物或雙重胜肽的小鼠在尾夾62分鐘後於尾夾分析中具有不多於單獨以媒劑投予的小鼠之血液損失的70%,更佳不多於單獨以媒劑投予的小鼠之血液的60%且最佳為不多於50%的血液損失。
較佳地,在尾夾2小時後以上分析中投予胜肽、胜肽衍生物或雙重胜肽的小鼠之存活率為至少40%,更佳至少60%且最佳為至少80%。較佳地,在尾夾24小時後尾夾分析中投予胜肽或胜肽衍生物的小鼠之存活為至少20%,更佳至少30%且最佳為至少40%。
較佳地,本發明之第一和第二方面的胜肽或胜肽衍生物或本發明之第三方面之雙重胜肽具有至少50%,較佳至少70%,更佳至少80%且最佳為至少90%的30分鐘人類血漿中穩定性。測定於人類血漿中穩定性的適合分析係於實施例中敘述。
較佳地,本發明之第一和第二方面的胜肽或胜肽衍生物或本發明之第三方面之雙重胜肽於25℃在磷酸鹽緩衝食鹽水pH 7.4中具有至少25μM,較佳至少60μM且最佳為至少100μM的水溶性。測定於25℃於磷酸鹽緩衝食鹽水pH 7.4中水溶性的適合分析係於實施例中敘述。
本文中,術語「因子VIII」或「FVIII」意指任何FVIII部分,其展現與天然FVIII有關連的生物活性。FVIII之序列可以NCBI登錄編號NP_000123或UniProtKB/Swiss-Prot登錄號P00451找到。
用於本文中,「血漿衍生性FVIII」包括在獲自哺乳類動物的血液找到且具有活化凝血途徑之特性的所有蛋白質之形式。
用於本文中,「rFVIII」表示透過重組DNA技術獲得的FVIII。
本發明之第四方面提供醫藥組成物,其包括本發明之第一或第二方面之胜肽或胜肽衍生物或本發明之第三方面之雙重胜肽。胜肽、胜肽衍生物和雙重胜肽可呈醫藥上可接受的鹽、溶劑合物或水合物之形式。適合地,醫藥組成物包括醫藥上可接受的載劑。載劑可較佳地為液體調配物,且較佳為經緩衝的、等張的水溶液。適合地,醫藥組成物具有生理的、或接近生理的pH。適合地,其具有生理的或接近生理學滲透壓和鹽度。其可包含氯化鈉及/或醋酸鈉。本發明之胜肽、胜肽衍生物和雙重胜肽可被製造而無明顯的生物治療之生產中可能發生的發熱性。此可為重要的,特別對靜脈內的調配(其僅可容忍低水平的內毒素)而言。較佳地,皮下、腹膜內、頰部、靜脈內和其他非經腸調配物為無菌且無內毒素。
醫藥上可接受的載劑亦可包括賦形劑,例如稀釋劑、以及類似者,和添加劑,例如穩定劑、防腐劑、助溶劑、以及類似者。本發明之
胜肽亦可呈任何醫藥上可接受的鹽之形式。
用於本文中,術語「醫藥上可接受的」意指由美國或歐盟或其他政府之管理機構核准或列於美國藥典或其他一般被承認的藥典且用於人類者。
組成物亦可例如為懸浮劑、乳劑、持續釋放調配物、乳霜、凝膠或粉末。組成物可以傳統的黏合劑和載劑(例如三酸甘油酯),調配成栓劑。
儘管可能靜脈內投遞本發明之胜肽、胜肽衍生物和雙重胜肽,非靜脈內的途徑(特別是皮下投遞、鼻部投遞、頰部投遞、口服或肺部投遞)是較佳的。亦可使用腹膜內(i.p.)投遞。
醫藥組成物可另外包括(例如)水、緩衝溶液(例如,中性緩衝食鹽水或磷酸鹽緩衝食鹽水)、乙醇、礦物油、植物油、二甲基亞碸、碳水化合物(例如,葡萄糖、甘露糖、蔗糖或聚葡萄醣)、甘露糖醇、蛋白質、佐劑、多肽或胺基酸,例如甘胺酸、抗氧化劑、螯合劑,例如EDTA或麩胱甘肽及/或防腐劑之一或多者。此外,本文中所提供的醫藥組成物可(但非必須)包括一或多種其他的活性成分。
可調配醫藥組成物以用於任何適當投予方式,包括(例如)局部投予(例如,穿皮投予或眼部投予)、口服、頰部投予、鼻部投予、陰道投予、直腸投予或非經腸投予。術語非經腸用於本文中包括皮下、皮內、血管內(例如,靜脈內)、肌肉內、脊髓、顱內、腦脊膜內、眼內、眼周圍、眼窩內、滑膜內和腹膜內注射,以及任何類似的注射或輸注技術。適用於口服使用的形式包括(例如)錠劑、片劑、菱形錠、水性或油性懸浮劑、
可分散粉末或細粒、乳劑、硬或軟膠囊、或糖漿或酏劑。本文中所提供的組成物可調配成凍乾物。
水性懸浮劑包含活性成分混合適用於製造水性懸浮劑的賦形劑。如此賦形劑包括懸浮劑(例如,羧甲基纖維素鈉、甲基纖維素、氫丙基甲基纖維素、藻酸鈉、聚乙烯基吡咯啶酮、特拉卡甘膠和亞拉伯樹膠);和分散或濕潤劑(例如,天然出現的磷脂,例如卵燐脂、伸烷基氧化物與脂肪酸之縮合產物,例如聚氧伸乙基硬脂酸酯、伸乙基氧化物和長鏈脂肪族醇之縮合產物,例如十七伸乙基氧基鯨蠟醇、伸乙基氧化物和衍生自脂肪酸的部分酯和已醣醇之縮合產物,例如聚氧伸乙基山梨醇單油酸酯、或伸乙基氧化物和衍生自脂肪酸的部分酯和已醣醇酐之縮合產物,例如聚伸乙基山梨醇酐單油酸酯)。水性懸浮劑亦可包括一或多種防腐劑,例如乙基、或正丙基對羥基苯甲酸酯、一或多種著色劑、一或多種調味劑、和一或多種增甜劑,例如蔗糖或糖精。
胜肽或胜肽衍生物可被調配以用於地方性或局部投予,例如用於局部施用至皮膚、創傷或黏膜,例如於眼中。用於局部投予的調配物典型地包括與活性劑組合的局部媒劑,且有或無額外視需要的組份。適合的局部媒劑和額外組份係技術領域中所熟知的,且很明顯媒劑之選擇會取決於特殊的物理形式與投遞之模式。局部媒劑包括水;有機溶劑,例如醇(例如,乙醇或異丙醇)或甘油;二醇(例如,丁二醇、異戊二醇或丙二醇);脂肪族醇(例如,羊毛脂);水和有機溶劑之混合物與有機溶劑之混合物,例如醇和甘油;基於脂質的物質,例如脂肪酸、醯基甘油(包括油,例如礦物油、和天然或合成來源的脂肪)、磷甘油酯、神經鞘脂質和蠟;基
於蛋白質基的物質,例如膠原和明膠;基於矽氧樹脂的物質(非揮發性和揮發性兩者);和基於碳水化合物的物質,例如微囊海棉(microsponge)和聚合物基質。組成物可進一步包括一或多種適應於改進所施用調配物之穩定性或有效性的組份,例如穩定劑、懸浮劑、乳化劑、黏性調節劑、膠化劑、防腐劑、抗氧化劑、皮膚穿透提高劑、加濕劑和持續釋放物質。如此組份之實例係於Martindale-The Extra Pharmacopoeia(Pharmaceutical Press,倫敦1993)和Martin(ed.),Remington's Pharmaceutical Sciences敘述。調配物可包括微膠囊,例如羥基甲基纖維素或明膠微膠囊、脂質體、白蛋白微球、微乳劑、奈米粒子或奈米膠囊。
醫藥組成物可調配成吸入調配物,包括噴霧、煙霧、或氣溶膠。對於吸入調配物,本文中所提供的化合物可藉由任何熟習該項技術者已知的吸入方法投遞。如此吸入方法和裝置包括(但不限於)使用推進劑(例如CFC或HFA或生理上環境上可接受的推進劑)的計量給劑吸入器。其他適合的裝置為呼吸操作性吸入器、多劑乾粉吸入器和氣溶膠噴霧器。用於主題方法的氣溶膠調配物典型會包括推進劑、介面活性劑和共溶劑,且可填充入藉由適合的計量給予閥關閉的慣例氣溶膠容器。
吸入劑組成物可包括液體或粉末化組成物,其包含適用於霧化和氣管內使用的活性成分,或氣溶膠組成物,其藉由氣溶膠單位分配計量給予劑投予。適合的液體組成物包括在水性、醫藥上可接受的吸入劑溶劑(例如,等張食鹽水或制菌水)中的活性成分。溶液係藉由泵或擠壓作動性霧化噴霧分配器之方法投予,或藉由用於造成或使液體組成物之需要劑量被吸入患者的肺臟成為可能的任何其他慣例方法投予。用於投予(例
如,呈鼻部噴霧或呈鼻部滴劑)的適合調配物(其中該載劑為液體)包括活性成分之水性或油性溶液。
適用於鼻部投予的調配物或組成物(其中該載劑為為固體)包括具有(例如)範圍在20至500微米粒子尺寸的粗粉末,其係以投予鼻粉的方式投予(即,藉由從拿著靠近鼻部的粉末之容器通過鼻部通路快速吸入)。適合的粉末組成物包括(舉例而言)活性成分與乳糖或對氣管內投予而言是可接受的其他惰性粉末徹底混合之粉末化製劑。粉末組成物可通過氣溶膠分配器投予,或包裝在可破壞膠囊,其可藉由患者插入刺穿膠囊並將粉末在適用於吸入的穩定氣流中吹出的裝置。
醫藥組成物可調配成持續釋放調配物(即,實現投予後緩慢釋放調節劑的調配物(例如膠囊))。如此調配物一般可使用已熟知的技術製備並藉由(例如)口服、直腸、或皮下的植入投予,或藉由植入於所欲的目標位置而投予。用於如此調配物中的載劑為生物可相容的,且亦可為生物可降解的;較佳地,調配物提供相對固定水平的調節劑釋放。於持續釋放調配中所包含的調節劑之量取決於(例如)植入位置、釋放之速率和預期的持續期間和欲治療或預防的病況之本質。
醫藥組成物可以某種劑調配以改進生物可利用性,例如有機溶劑。例如,Cremophor EL®(產物編號00647/1/63;BASF Aktiengesellschaft,德國)為聚乙氧化蓖麻油,其係藉由將35莫耳的伸乙基氧化物與每莫耳的蓖麻油反應而製備。其可用於在穩定化水性系統中穩定非極性物質之乳劑。或者,可將胜肽、胜肽衍生物或雙重胜肽併入蛋白質微米或奈米粒子中或結合至蛋白質微米或奈米粒子,以改進生物可利用性。適合的微米或
奈米粒子係於美國專利第5,439,686號(Desai等人;Vivorx Pharmaceuticals,Inc.,加州)和美國專利第US 5,498,421號(Grinstaff等人;Vivorx Pharmaceuticals,Inc.,加州)中敘述。適合地,蛋白質奈米粒子包括人類血清白蛋白,特別是人類血清白蛋白或其重組形式。WO 2007/077561(Gabbai;Do-Coop Technologies Ltd.,以色列)敘述了另一種包括奈米結構和液體的適合載劑,該文中稱其為NeowaterTM。
對於口服和非經腸投予至患者(包括人類患者),本發明之胜肽、胜肽衍生物或雙重胜肽之每日劑量水平通常會為自2至2000mg每成年者(即,從大約0.03至30mg/kg),以單劑或分開的劑投予。
故,(例如)本發明之胜肽、胜肽衍生物或雙重胜肽之錠劑或膠囊可包含自2mg至2000mg的活性化合物,其適當地用於一次投予單一或二或多劑。醫師無論如何會決定實際劑量,其會最適用於任何個別患者,且會隨年齡、體重和特別患者之反應而改變。以上劑量為平均事例之示範。當然,可以有個別的實例,於該情況中應用較高或較低劑量範圍且該等範圍係落入本發明的範圍內。
對於獸醫使用,本發明之胜肽、胜肽衍生物或雙重胜肽係根據正常獸醫實施呈適合的可接受調配物投予,且獸醫外科醫師會測定會最適合於特殊動物的投予給藥攝生法和途徑。
本文中所揭示的胜肽、胜肽衍生物和雙重胜肽可用於醫學應用和動物飼養或獸醫應用。典型地,產物係用於人類。術語「患者」意欲表示哺乳類動物個體,且在整個說明書和申請專利範圍中如此使用。
本發明之第五方面提供本發明之第一或第二方面之胜肽或
胜肽衍生物或第三方面之雙重胜肽,其用於治療具有FV、FVII、FVIII、FX及/或FXI不足的患者。
本發明之第六方面提供本發明之第一或第二方面之胜肽或胜肽衍生物或第三方面之雙重胜肽之用途,其係用於製造供治療患者中的FV、FVII、FVIII、FX及/或FXI不足之用的醫藥品。
本發明之第七方面提供治療具有FV、FVII、FVIII、FX及/或FXI不足的患者的方法,其包括投予治療有效量的第四方面之醫藥組成物。
本發明之胜肽、胜肽衍生物和雙重胜肽可用於治療FV、FVII、FVIII、FX及/或FXI不足,用於預防和治療急性流血兩者。具有FVIII不足(A型血友病)的患者往往發展出針對FVIII的抑制抗體。(針對FIX的)抑制子發展亦稱為FIX不足(B型血友病)。由於FV、FVII、FXI和FX不足為非常少見的先天失調症,對於抑制子發展所知甚少,雖然具有如此失調症的患者可能發展出抑制子是合理的。治療抑制子患者為第五、第六和第七方面之較佳具體態樣。如此抑制劑患者可具有大於5BU的高效價反應或介於0.5和5BU間的低效價反應。典型地,抑制子係針對FVIII和患者具有A型血友病。
針對FVIII的抗體反應之強度可使用功能性抑制子分析(例如該等於Kasper CK等人(1975)Proceedings:A more uniform measurement of factor VIII inhibitors.Thromb Diath Haemorrh.34(2):612中敘述者)而定量。FXI抑制子可藉由如Kasper所述的aPTT分析定量。FV、FVII和FX之抑制子可按照Kasper之程序藉由基於PT的分析定量。
根據本發明之第八、第九或第十方面的胜肽或胜肽衍生物不為FVIII或其片段。典型地,其不會包括任何FVIII蛋白質(無論是人類、哺乳類動物或脊椎動物來源的)胺基酸序列或由其所組成。其亦非由FVIII蛋白質之片段所組成。典型地,其包括少於50個、少於20個、少於10個、少於5個FVIII蛋白質(例如人類FVIII蛋白質)之連續的胺基酸。較佳的胜肽和胜肽衍生物為本發明之第一和第二方面的胜肽和胜肽衍生物,或本發明之第三方面的雙重胜肽。可合成和檢驗可選擇的胜肽和胜肽衍生物以用於促凝血活性,如關於例示性胜肽和胜肽衍生物所敘述的。
本發明之第八、第九或第十方面的胜肽和胜肽衍生物可調配成醫藥組成物,如以上所敘述的,且可如以上所敘述的用於醫藥。
本發明係進一步於以下實施例中闡明,但不限於其等。
實施例1:具有凝血酶產生性活性的化合物之合成與鑑認
使用「明確固有凝血酶產生分析」(其中凝血酶產生係在因子XIa和磷脂媒劑之存在下於FVIII經抑制的人類血漿試管內定量)篩選化合物。進一步,化合物係於以上分析中,且於使用組織因子和磷脂而非因子XIa和磷脂的「明確雙重途徑凝血酶產生分析」中篩選(如於具體敘述中所述的)。
化合物(其為胜肽和胜肽衍生物)係藉由典型的固相胜肽合成或SPOT-合成(其允許於連續纖維素膜上位置性可尋址化學合成胜肽)以50-100nmol胜肽每點合成。胜肽係溶解在水中的10%或50% DMSO中。
胜肽和胜肽衍生物之PEG化係如下進行。將PEG5000 NHS-酯在溶液中偶合至經HPLC純化胜肽之N-端。若胜肽序列中存在離胺酸,
此胺基酸係以ivDde保護性基團保護以避免於-胺基基團PEG化。在偶合PEG5000至N-端後,將ivDde保護性基團藉由二甲基甲醯胺中的3%肼水合物切出,接著藉由HPLC再純化最後產物。
鑑認出被認為促進凝血酶產生的化合物,如以下表7和8中所指出的。
在上表中,O-為4,7,10-三-1,13-十三烷二胺(ttds)
在上表中,-O-為4,7,10-三-1,13-十三烷二胺(ttds)。此研究中所使用的實際胜肽(標示為B01、B02、B05和B06)係環狀。
實施例2:固有和雙重途徑凝血酶產生分析中化合物之檢驗
使用人類FVIII經抑制血漿在明確固有凝血酶產生分析中檢驗各種濃度的每種胜肽。結果係於下表顯示。
基於切裂Z-GGR-AMC以釋放螢光團AMC的試管內凝血酶產生分析係使用正常人類血漿開發,即明確雙重途徑凝血酶產生分析。高峰凝血酶產生和凝血酶高峰時間之組織因子依賴性係在包含固定濃度磷脂(即3.2μM)的組成物中定特徵。磷脂依賴性係在包含固定濃度組織因子(即7.2pM)的組成物中定特徵。高峰時間(至高峰凝血酶產生的時間)取決於磷脂或組織因子之濃度。此分析之最後版本係如具體敘述中所述的,其中包含(32μM磷脂和71.6pM組織因子)的10μl試劑C high係於總體積100μl中使用。
進一步研究係在FVIII不足或經抑制血漿中使用3.2μM磷脂和7.2pM組織因子實施,以定出對各種各樣的凝血因子製劑之高峰凝血酶產生和凝血酶高峰時間的功效之特徵。此等研究提供可自其比較分析中化合物之功效的基礎。簡而言之,rFVIII(Recombinate® FVIII,得自Baxter)係於FVIII不足血漿中以0、5、10、20、40和80mU/ml檢驗。FEIBA係於FVIII經抑制血漿中以0、8、16、31、63和125mU/ml檢驗。FVIIa係於FVIII經抑制血漿以0、0.1、0.4、1.6、6.3和25nM檢驗。結果係於圖1顯示。對於在FVIII不足血漿中的重組FVIII(Recombinate®)和對於FVIII免疫的經抑制血漿中的FEIBA和FVIIa兩者,觀察到凝血酶產生參數之濃度依賴性改進。高峰凝血酶增加且滯後時間和凝血酶高峰時間皆減少。
使用試劑C high(Technoclone)以觸發凝血酶產生,在此明確雙重途徑凝血酶產生分析(DDPTGA)中檢驗化合物。結果係於下表顯示。儘管此分析相較於明確固有凝血酶產生分析(DITGA)對類FVIII活性較不敏感,數種化合物具有可偵測的活性。
「高峰IIa」為於凝血酶產生曲線之高峰所產生的凝血酶之量。「高峰時間」為從凝血酶產生反應之開始至產生最大量時的時間。BLS=低於最低標準。
即使不加入胜肽,在此分析仍然產生凝血酶。故,在高峰IIa於特殊的胜肽濃度為「BLS」的情況下,仍然有凝血酶高峰,但其低於最低濃度的標準品(其為5mU/ml FVIII、8mU/ml FEIBA或0.1nM FVII)所達到者。類似地,在高峰時間為「BLS」的情況下,至高峰凝血酶產生的時間大於最低濃度的標準品所達到的高峰時間。胜肽可對高峰時間但非高峰IIa具有顯著的功效,或反之亦然。然而,較佳為胜肽具有對高峰時間和高峰IIa兩者的功效。B03、B04和A15正面地影響凝血酶產生之兩方面。在一些胜肽的例子中,對凝血酶產生的功效之濃度依賴性於高胜肽濃度未看到,其可由非專一性交互作用解釋。
實施例3:使用數個耗盡血漿的凝血酶產生分析中化合物之檢驗
使用基於切裂Z-GGR-AMC以釋放螢光團AMC的試管內凝血酶產生分析(於具體敘述中敘述,即明確雙重途徑凝血酶產生分析)以
定在數個耗盡人類血漿中化合物之功效的特徵。在此等實驗中,每個100μl反應包含10μl試劑B,其包括磷脂媒劑磷脂醯膽鹼/磷脂醯絲胺酸80%/20%(3.2μM)和17.9pM重組人類組織因子。使用10μl胜肽稀釋、40μl TGA受質和40μl血漿,如具體敘述中所述的。
用於實驗中的血漿係新鮮冷凍的且為因子V、因子VII/VIIa、因子VIII、因子X或因子XI不足(George King Bio-Medical,Inc.)。不足血漿之殘餘凝血因子水平係具體指明小於1%。
對每個實驗中所使用的耗盡血漿,於兩種濃度(即50μM和80、90或100μM)檢驗化合物。使用負對照組,其中不包括檢驗化合物。結果總結在下表中。
凝血酶產生之刺激:「+」意指刺激;「-」意指無刺激。在對照組實驗中,不包括胜肽。
在缺乏胜肽下,所有所檢驗的耗盡血漿皆顯示無或非常低凝血酶產生,表示在所使用的組織因子濃度所有凝血因子之相互作用對於凝
血酶產生而言是重要的。在所有酶原經耗盡血漿(FVII、FX或FXI)中,數種胜肽刺激凝血酶產生,而在FV經耗盡血漿中凝血酶產生為低,表示共有途徑對於胜肽刺激性凝血酶產生而言是重要的。
實施例4:明確纖維蛋白沉澱分析中化合物之活性
在明確纖維蛋白沉澱分析中檢驗各種各樣的胜肽刺激纖維蛋白沉澱之能力,如具體敘述中所述的。結果係於下表顯示。
所有檢驗化合物皆縮短FVIII經抑制血漿之凝塊時間和纖維蛋白形成。與凝血酶產生實驗組合,此確認檢驗化合物之促凝血活性。大部分的化合物以濃度依賴性方式作用。雖然少數於較高濃度具有減小的活性,其可能是由於非專一性交互作用。
實施例5:用於定性化合物的試管內分析
不止定化合物在凝血酶產生分析中的活性特徵且亦定化合物之藥物動力學、可溶性、HERG抑制和分子量特徵。
藥物動力學(PK)研究
對於活體內功效研究之設計和闡明而言,PK研究係必須的。血漿蛋白質結合、血漿穩定性和微粒體穩定性皆包括在此範疇中。
1.血漿蛋白質結合
化合物結合至人類血漿(Bioreclamation,紐約,希克斯維)、小鼠血漿(Lampire Laboratory,賓夕法尼亞,Pipersville)或小鼠血清白蛋白(Sigma,密蘇里,聖路易斯)(稱為基質)之範圍,係在96槽孔微平衡透析區組系統(HDT-96;HTDialysis,LLC,康乃迪克,Gales Ferry)中測定。簡而言之,每單位的系統包括由半滲透膜分開的供給室和接受室。實驗之原理為蛋白質(和結合至蛋白質的化合物)被保留在供給室中且無法穿過膜。自由的化合物可於兩個室間通過膜擴散並在實驗期間達到平衡。在此等實驗中,半滲透膜係由再生性纖維製造且具有分子量截止值12-14kD(目錄編號1101,HTDialysis,LLC)。
蛋白酶抑制劑混合物(P2714-1BTL)(購自Sigma)係包括在分析中以抑制檢驗化合物之蛋白質水解。其係新鮮地在蒸餾水中以50×
儲存溶液製備。小鼠血清白蛋白係新鮮地於磷酸鹽緩衝食鹽水(PBS)中以40g/L製備。PBS係購自Invitrogen(加利福尼亞,喀斯巴德),且其在使用前被調整至pH 7.4。血漿係不經過稀釋就使用。將蛋白酶抑制劑儲存溶液以最終1×濃度加至每個基質(即在PBS中的小鼠血清白蛋白)。每個檢驗化合物之儲存溶液以及控制化合物(殺鼠靈),係在DMSO中製備。將殺鼠靈(其為高蛋白質結合性化合物)包括在每個儲存溶液中以確保整個實驗期間膜之完整性。將儲存溶液之分裝加至每個基質以產生最終濃度5μM的檢驗化合物和10μM的殺鼠靈。DMSO之最終濃度為0.72%(v/v)。藉由加入其他組份的基質稀釋係可忽略的(小於4%)。將膜長條於蒸餾水中水合1小時;將膜浸泡在30%乙醇水性溶液20分鐘,並接著將膜以蒸餾水潤洗兩次。在潤洗後,將膜放置於PBS中並準備好使用。透析區組之組合係依照生產者的程序。組合後,將150μl的每個基質/檢驗化合物之分裝加至分開的供給室並將150μl的PBS加至在膜之另一側的對應接受室。將每個基質/檢驗化合物之剩下者儲存在-80℃以供進一步分析。測量此等基質中檢驗化合物和殺鼠靈之濃度並將值用於回收計算。接著將96槽孔透析區組置於隔絕的經加熱搖晃器(其預加溫至37℃)中,並允許培養6小時。培養後,在兩側取樣。藉由LC/MS/MS分析測量檢驗化合物(以及殺鼠靈)之濃度。
如下計算回收和蛋白質結合值:%回收=[(供給室中的濃度+接受室中的濃度)/(基質中測量的濃度)]×100% (1)
%結合=[(供給室中的濃度-接受室中的濃度)/(供給室中的濃度)]×100% (2)
「%回收」為多少加至基質的化合物可從給室中和接受室回收的度量。在回收少於100%的情況下,部分的化合物可能已結合至膜或室
之塑膠表面或其可能已被降解。「%結合」為多少化合物已結合至基質且因此無法在供給室和接受室間平衡的度量。
於下表中顯示A01和殺鼠靈(對照組)之結果。
2.血漿穩定性
在人類或小鼠血漿中化合物之半生期,或在人類或小鼠血漿中培養後繼續存留的化合物之百分比,係如下測定。在實驗程序中,檢驗化合物濃度為5μM,其自DMSO中的10mM檢驗化合物儲存溶液製備。使用丙胺太林(Propantheline)作為標準。為製備檢驗樣本,DMSO中的檢驗化合物儲存溶液之1/20稀釋係於50%乙腈/50% H2O中製備,且此接著在1.5ml Eppendorf管於預加溫的(37℃)血漿中稀釋1/100(5μl化合物[1/20稀釋]+ 495μl血漿)。標準化合物2mM丙胺太林係於DMSO中稀釋1/4並隨後
在1.5ml Eppendorf管於預加溫的血漿中稀釋1/100(5μl化合物[1/4稀釋]+ 495μl血漿)。將所有的樣本於37℃培養在水浴中。化合物(或丙胺太林標準)已和血漿混合後,立即加入500μl乙腈(標示為t=0min)。在所選擇的培養期間後(一般於t=60min),將每個樣本與另外500μl的乙腈混合。將樣本在漩渦混合器上混合30秒並置於冰上10分鐘並收集以供離心。將樣本於4℃以20 000g離心10分鐘。將500μl的上清液轉移至新的1.5ml Eppendorf管並加入相同體積的乙腈。將樣本使用漩渦混合器再次混合30秒。在第二離心步驟(20000g,10分鐘,4℃)後,將250μl的上清液轉移至HPLC玻璃管以用於HPLC-MS分析。用於進行HPLC的條件如下:注射體積設為20μl。溫度設為25℃。線性梯度從95:5至5:95水:乙腈(皆包含0.05%三氟醋酸(TFA)(v/v))係以流率0.3ml/分鐘施用10分鐘。PDA偵測器係從210-400nm掃描。離子阱係裝配有ESI來源,溫度280℃,質量掃描係從50-2000amu於完整掃描模式中完成,接著為使用1.5V撞擊能量的動力排除MS2-實驗(105為親本離子之分鐘計數)。百分比穩定性係從曲線下面積(area-under-curve,AUC)比率計算,其監視於60分鐘培養時間(所選擇時間)vs.0分鐘培養時間在完整掃描模式中總離子流(total-ion-current,tic)中的標的化合物之質子化分子質量。
結果係於下表顯示。化合物濃度隨時間的減少可能由於蛋白質水解性降解及/或化學修改。
3.微粒體穩定性
使用檢驗以測定在來自人類或動物的微粒體製劑中化合物之穩定性。微粒體穩定性係於由Cerep(法國,目錄參考號900-8h)所提供的分析中測量或藉由以下所敘述的方法測量。10mM/5mM之化合物溶液(檢驗化合物、標準品維拉帕米(verapamil)、米帕明(imipramine)、和特非那定(terfenadine))係於100% DMSO中製備。其等係藉由經蒸餾H2O/MeOH稀釋,以得到分析中最終濃度1μM,且最終混合物中DMSO少於0.4%(v/v)。用於穩定性分析的主混合物係於10ml Falcon管(總體積4.4ml)中製備:3414μl蒸餾水、440μl 500mM NaPO4經緩衝pH 7.4、440μl NADP(10mM)、22μl Glc-6-P(1M)、17.6μl Glc-6-P-DH之1U/ml溶液、66μl肝臟微粒體(大鼠或小鼠,分析中最終濃度300μg/ml)。將主混合物在水浴中於37℃預先培養10分鐘。將5μl的60μM化合物溶液與300μl的反應混合物(經預培養主混合物)加至96-槽孔-U-盤(PP-Nunc)的每個槽孔。所有的槽孔必須小心地混合以確保在下一個步驟前均質懸浮。於t=0分鐘,對每個化合物取75μl樣本(二重複)。將盤密封並放回水浴/熱混合器30分鐘。將檢驗化合物/標準品藉由加入200μl甲醇,亦包括內部標準,而萃取。內部標準
為「Pep770」(Jerini AG,德國,柏林)並以最終濃度6.25ng/ml使用。將樣本於4℃以1300g離心10分鐘。將200μl的上清液轉移至96-槽孔盤,每槽孔有10μl DMSO。化合物穩定性係藉由HPLC-MS分析測量(三重複)。30分鐘後重複相同的程序。計算平均「t=0分鐘的AUC」和「t=30分鐘的AUC」之比率並在30後測定剩下的化合物之量之百分比。對所有高峰,訊號對雜訊比率必須為5:1或更佳。必須使用於不同的時間點的比率AUC分析物:AUC標準品。針對對照組化合物所計算的穩定性必須落入某種範圍以證實分析。
結果係於下表顯示。
可溶性
水溶性係於由Cerep(法國,目錄參考號900-11a)所提供的分析或藉由以下所敘述的方法,於pH 7.4在PBS中測量。此程序之目標乃藉由使用HPLC估計在緩衝溶液中的候選物之飽和濃度,測定藥物候選物(分析物)在緩衝溶液中的之可溶性。使用在有機溶劑中已知濃度的候選物作為標準品。檢驗化合物於DMSO中的儲存溶液必須於最初步驟製備。取決於化合物之最大可溶性,應達到在DMSO濃度50mM。DMSO儲存溶液被以DMSO(100%參考溶液)和緩衝溶液(檢驗溶液)稀釋至最終濃度
50μM,以提供每個500μL的最小體積。兩種溶液皆在Eppendorf「熱混合器蓋被(Thermomixer confort)」中於25℃以950rpm搖動至少60分鐘。將懸浮液於22℃以330g離心至少兩分鐘,並將100μL的上清液轉移至再玻璃管中的聚伸丙基插入物並以折斷環蓋(snap-ring cap)密封。或者,可以前敘開始溶劑體積之一半於微滴定盤中製備溶液。為測定可溶性,將所有樣本以三重複藉由HPLC分析。注射體積為至少10μL。所獲得的數據係藉由「Chemstation軟體」(Agilent,德國,Waldbronn)分析。積分來自有機溶液之分析的高峰並以「AUC 1」(於HPLC所注入的已知量之參考面積)報導算數平均。對獲自緩衝溶液之分析的光譜應用相同程序以得到「AUC 2」(溶解於緩衝溶液中的化合物之未知量之面積)。一般而言,AUC必須大於20面積單位且訊號對雜訊(高峰之高度)必須比3佳。計算平均「AUC 2」和「AUC 1」之比率並因此獲得於緩衝溶液中化合物之溶解量之百分比,且可溶性可以μM報導。
結果係於下表顯示。
HERG抑制
QT延長係藉由以膜片箝制(patch-clamp)技術或Rb+逸出測量的HERG抑制而評估。
使用Rb+逸出方法(Cerep,法國,目錄編號900-36rb)於最初篩選。對於Rb+逸出分析,同時檢驗參考化合物阿司咪唑(Astemizole)與檢驗化合物以評估分析適合性。其係於10μM檢驗且數據係與於Cerep測定的歷史值比較。
對於HERG抑制之精確定性,應用膜片箝制分析(Cerep,法國,目錄參考號900-36)。一般效力排名系統(general potency ranking system)係改編自Roche等人,2002,Chem Bio Chem 3:455-459。未確保分析之敏感性的改變沒有發生,使用10nM E-4031(Wako,目錄編號052-06523)對相同(殖系)批次的細胞實施分開的實驗,產生可與於Cerep歷史獲得的數據(58.4±2.0%抑制,平均±SEM,n=3)相比較的結果(56.7±1.8%抑制,平均±SEM,n=3)。檢驗化合物(10mM儲存溶液)係溶於二甲基亞碸(DMSO)中。1μM的溶液包含0.01% DMSO。包含至多達1% DMSO的水浴溶液對HERG編碼的尾電流無顯著功效。
於10μM藉由Rb+逸出方法篩選數個化合物指出無HERG通道活性之抑制。在更敏感的膜片箝制分析中,化合物A01、A05和A16可歸類為低效力HERG通道封阻劑而B03被鑑認為高效力HERG通道封阻劑。結果係於下表提供。
分子量
分子量定義為量不包括任何相對離子或加合物的單體分子之理論質。化合物之分子量係於下表指出。
實施例6:ADME-Tox
各種各樣的化合物之ADME-Tox分析係如實施例5所述進行。摘要結果係於下表顯示。
簡而言之,水溶性係於PBS pH 7.4中檢驗。結果係以μM給予。蛋白質水解性穩定性係於人類血漿檢驗30分鐘。對於每個的結果係以%穩定性給予。微粒體穩定性係於小鼠微粒體製劑檢驗30分鐘。結果係以%穩定性給予。HERG通道抑制係使用膜片箝制方法(其中胜肽或胜肽衍生物為1μM)檢驗且係以%抑制給予。
實施例7:動物模型
以下分析係於動物中進行。
1.急性毒理學
毒理學研究涉及監視施用後立即的導因於毒性功效的姿勢改變以及每天兩次;監視體重;腦、心臟、腎臟、肝臟、肺臟之組織病理學。實驗係於C57Bl/6小鼠進行。
2.藥物動力學
化合物之藥物動力學係於1-30mg/kg的C57Bl/6小鼠或Wistar大鼠檢驗。血流中化合物濃度係使用LC-MS於適當的間隔監視。
3.循環分析
在C57Bl/6小鼠監視血壓和心跳速率並紀錄心電圖。
4.動物疾病模型
於FVIII -/-(E17)小鼠、FIX -/-小鼠和C57Bl/6對照組小鼠使用尾夾模型。所定量的參數係總血液損失、流血時間、流血速率和存活。
實施例8:急性毒理學
重量18-20g的C57Bl/6小鼠,係尾靜脈i.v.或i.p.或s.c投予10ml/kg在適合媒劑中的化合物。所投予化合物之量範圍為0.075至125mg/kg(i.v.)、15-125mg/kg(i.p.)和125mg/kg(s.c.)。每組有四隻小鼠。導因於毒性功效的姿勢改變係於投予化合物後立即監視以及於60分鐘後監視。投予後監視體重五天。投予5天後,挑選小鼠並進行驗屍。切片檢查腦、心臟、腎臟、肝臟、肺藏和脾臟。結果係如以下所述。
表21:於不同的化合物劑量導因於毒性功效的姿勢改變
在上表中,報導了在整個投予後60分鐘的期間,所檢驗的最大劑量帶來無偵測到的毒性、一些毒性或嚴重毒性。「無偵測到的毒性」意指無急性毒性觀察資料。「一些毒性」意指紀錄到運動失調或強直性昏厥,但無動物死亡。「嚴重毒性」意指化合物施用1小時內有1隻動物死亡。
概括言之,大部分的化合物被良好地容忍。當藉由特殊途徑投予時會造成嚴重毒性的化合物之劑量,並未根據該途徑在藥物動力學、循環分析或動物疾病模型中檢驗。
對於大多數的化合物,即使在最高的劑量,在五天自存活小鼠收集到的切片樣本中並未觀察到巨觀病態發現,表示化合物被良好地容忍。在任何動物中唯一鑑認出的病態改變為在肝臟、腎臟、肺藏或心臟的次要異常。此等係可能導因於非化合物相關性次要感染或導因於挑選的在
單一動物中的自發觀察。
對於每種所檢的驗化合物,未紀錄到對生存小鼠之平均體重之功效(表示不良反應)。
實施例9:化合物之藥物動力學
進行藥物動力學研究以監視iv.、i.p.或s.c.投予後血漿中的化合物濃度。研究係於重量接近20g的C57Bl/6小鼠中實施。
對於每種胜肽,對於所有的投予途徑使用相同的調配物,如下:將A01調配於5% DMSO、5% Cremophor EL(Sigma-Aldrich)、0.5% TWEen 80中;將A02和A09各自調配於5% DMSO、30% PEG 400(聚乙二醇)50mM磷酸鈉pH 7.4中;將A05調配於5% DMSO、20mM甘胺酸pH 9.0中;將A06和A07各自調配於5% DMSO,0.9% NaCl,50mM磷酸鈉pH 7.4中。
血漿中胜肽濃度係藉由在Surveyor HPLC組合裝配有ESI來源的質譜儀LCQ classic或Advantage(皆來自Thermo Electron,美國)的HPLC-MS而分析。所有HPLC實驗皆於Phenomenex C-18 Luna管柱(50mm x 2.0mm,5μl注射體積)進行,其使用線性梯度:溶析物A於水中的0.05%三氟醋酸(TFA);溶析物B於乙腈中的0.05% TFA;流率10分鐘內0.3mL/min。UV光譜係從220至400nm藉由PDA紀錄。內部標準係製備成在100%甲醇中的0.1μg/ml溶液。混合50μl血漿和50μl內部標準。加入100μl甲醇並徹底混合。培養在冰上30分鐘後,將管子於4℃(20820g)離心15分鐘。將150μl的上清液轉移至HPLC管內。
在i.v.或i.p.投予後的結果係於下表顯示。簡而言之,在i.v.投予後胜肽自血漿之清除採取大約對數方式。在i.p.投予後,Cmax在40和
60分鐘間達到。在該處後接著為在化合物濃度的減少。此特性對i.p.或s.c.投予而言係典型的。
實施例10:投予A01後的循環分析
在三組三隻雄性和三隻雌性C57Bl/6小鼠(每隻重量大約20g),監視平均動脈血壓和心跳速率並紀錄心電圖。將群組指定為i.v.接受10ml/kg NaCl的「對照組」;i.v.接受10ml/kg的「媒劑組」;或i.v.接受在媒劑中的20mg/kg A01的「化合物組」。「媒劑」為注射用水中的DMSO 5%、Cremophor EL(Sigma-Aldrich)5%、Tween 800.05%。
對於每隻小鼠,將充以食鹽水/肝素的導管固定至頸動脈。導管係通過訊號轉換器連接至血壓Plugsys-模組(Hugo Sachs Electronik-Harvard Apparatus GmbH,德國(HSE))。將ECG電極s.c.植入並通過ECG Plugsys-模組(HSE)連接至PC。從ECG計算心跳速率。在穩定
循環參數的至少十分鐘期間,食鹽水、媒劑或化合物通過連接至頸靜脈的導管適當投予。投予後,監視並紀錄循環參數共60分鐘。對於每隻動物,在研究藥物投予後觀察期間內平均動脈血壓和心跳速率中的時間進程係使用線性梯形定則使用曲線下面積(AUC)估計。個體AUC(A01 20mg/kg i.v.)係與媒劑(10mL/kg i.v.)和食鹽水(10mL/kg i.v.)AUC比較。虛無假設(化合物和媒劑或食鹽水間無差異)係使用精確Wilcoxon秩和檢定評估。對多重比較計算未經調整的和經調整的兩端(two-sided)p值。對多重性的調整係藉由使用Bonferroni-Holm方法進行。顯著性水平設定為5%。所有的統計分析皆以R Version 2.4.0進行。無差異之虛無假設係對照兩端二則一檢驗。結果係於下表顯示。
A01 20mg/kg i.v.和食鹽水10ml/kg i.v.間以及A01 20mg/kg i.v.和媒劑10ml/kg i.v.間在研究藥物投予後於60分鐘內平均動脈血壓之AUC無統計上有意義的差異(於5%水平)。A01 20mg/kg i.v.和食鹽水10ml/kg i.v.間以及A01 20mg/kg i.v.和媒劑10ml/kg i.v.間在研究藥物投予後於60分鐘內心跳速率之AUC無統計上有意義的差異(於5%水平)。
實施例11:動物疾病模型-對照組實驗
進行實驗以開發小鼠尾夾分析以定在FVIII(E17)-/-、FIX-/-(Lin HF Blood 1997;90:3962-6)和野生型C57Bl/6小鼠之流血參數和其等
對凝血因子製劑的反應的特徵。
所檢驗的凝血因子製劑為Advate®和Immunine®。Advate®係一種rFVIII製劑(Baxter AG,奧地利)。Immunine®為經純化血漿FIX製劑(Baxter AG,奧地利)。
血液損失係在尾夾62分鐘後在如在具體敘述中敘述的尾夾分析中監視。FVIII -/-小鼠係以25、50或100U/kg的rFVIII(Advate®)i.v.投予或單獨以媒劑投予。媒劑為Advate調配緩衝溶液,其為38mg/ml甘露糖醇、10mg/ml海藻糖、108mEq/l鈉、12mM組胺酸、12mM Tris、1.9mM鈣、0.17mg/ml聚山梨糖醇酯-80、0.1mg/ml麩胱甘肽。作為對照組,C57Bl/6小鼠係單獨以媒劑投予。在62分鐘的期間,投予rFVIII導致血液損失之劑量依賴性減低。實驗之存活數據係於下表顯示。
血液損失係在以50、100或200U/kg的Immunine® FIX i.v.投予或單獨以媒劑投予的FIX -/-小鼠之尾夾後監視62分鐘。作為對照組,C57Bl/6小鼠係單獨以媒劑投予。在62分鐘的期間,投予FIX導致劑量依賴
性血液損失減低。實驗之存活數據係於下表顯示。
數據顯示在FVIII -/-模型中,25-100U/kg的Advate® FVIII劑量依賴性地改進流血參數和存活。在FIX -/-模型中,50-200U/kg的Immunine® FIX劑量依賴性地改進流血參數和存活。故,FVIII -/-模型係檢驗先導化合物之凝血FVIII活性的適當的模型。FIX -/-模型係檢驗化合物之凝血FIX活性的適當的模型。
實施例12:動物疾病模型-A01之功效
所投予A01對FVIII -/-小鼠之流血參數和存活的功效係於具體敘述中所述的尾夾模型中檢驗。類似實驗係於FIX -/-小鼠中進行。
相較於單獨投予媒劑的小鼠之對照組的血液損失之平均體積,在大部分的時間點,在8隻雄性和8隻雌性FVIII -/-小鼠的群組中(其等在尾夾前五分鐘i.v.投予20mg/kg的A01),尾夾後的血液損失之平均體積係顯著地不同(p<0.05)。媒劑為於供注射水中的5% DMSO、5% Cremophor EL、0.05% Tween 80。於尾夾後52和62分鐘,差異於p<0.01係顯著的。數據係於圖2和下表顯示。用於比較在此實驗中小鼠之存活曲線的對數行列
(log-rank)檢驗顯示,使用A01 20mg/kg i.v.相較於使用媒劑對照組統計上有意義的較長存活(p值=0.0028)。
重複以上實驗以提供其再現性之指示。結果於下表中顯示。雖然此二個獨立進行的實驗中觀察到變化,以A01治療的動物流血較少且生存較久。
使用相同的模型獲得進一步的數據,雖然尾夾為1cm而非0.5cm,且小鼠係根據性別分組。將劑i.v.投予。在此實驗中,似乎A01在雌性中比在雄性小鼠中更有效。結果於下表顯示。
每組包含相同數目的雄性和雌性小鼠,除非另加指出。
相較於單獨投予媒劑的小鼠之對照組的血液損失之平均體積,於任何時間點,在16 FIX -/-小鼠之群組(其等在尾夾前五分鐘i.v.投予20mg/kg的A01)中,尾夾後血液損失之平均體積無顯著地不同(p<0.05)。投予A01的小鼠和單獨投予媒劑的小鼠存活無顯著差異。
此等結果證實A01可至少部分地補償FVIII-/-小鼠中FVIII之缺少,其藉由尾夾後減少血液損失並增加存活,但於FIX-/-小鼠中無功效。A01被認為是最佳的胜肽,因為其已於血友病模型中展現功效。
實施例13:在FVIII-/-小鼠尾夾模型中檢驗的化合物之結果
A01被進一步使用0.5cm尾夾於FVIII -/-尾夾模型中藉由i.p.投予而檢驗。數據於下表中概述。
相較於以媒劑10ml/kg i.p.投予的雌性小鼠,以A01 20mg/kg投予的雌性小鼠具有統計上有意義的(於5%水平)較長存活(兩端p-值p=0.0073;對數行列檢驗)。以A01 20mg/kg i.p.投予的雄性小鼠和以媒劑10ml/kg i.p.投予的雄性小鼠間於存活曲線無統計上有意義的差異(於5%水平)。在此實驗中,對照組中的雄性似乎比對照組中的雌性存活更佳。
實施例14:用於定先導化合物特徵的實驗之摘要
以下化合物在明確固有凝血酶產生分析中具有活性:A01、A03、A05、A19、B01、A02、B03、B05、B06、A06、A20、A07、A08、A09和B07。其中,A03,A02,B03,A08和A09具有於100μM至少1200mU/mL FEIBA之凝血酶產生活性。
以下化合物在明確雙重途徑凝血酶產生分析中具有活性:A02、A03、A08、A09、A18、B03、B04、A07、A15、A06和A17。其中,A09具有於50μM至少10mU/mL FEIBA之高峰IIa活性。B03、B04和A15具有於50或100μM至少10mU/mL FEIBA之高峰IIa活性。
以下化合物在晰纖維蛋白沉澱分析中具有活性:A01、B01、A05、B03、A06和A07。
以下化合物在人類血漿中培養30分鐘後具有至少50%之穩定性:A01、A19、A07、A20、A06、A02、A03、A08、A09、B07、B06、B05和A05。
以下化合物具有在PBS pH 7.4中至少25μM的可溶性:A09、B03、B07、B06、B05、A07、A20、A06、A02、A03和A16。其中,B03、B07、B05、A07、A20、A06、A03和A16具有在PBS pH 7.4中至少100
μM的可溶性。
A01、A05和A16被鑑定為低潛力HERG-通道封阻劑。
A01被鑑定為在FVIII-/- mice中於尾夾分析具有活性。
實施例15:在成年人類個體中治療A型血友病
對A型血友病患者而言,在高劑量FVIII治療後發展出針對FVIII的同種異體抗體抑制子係典型的。在一個典型的情況中,在自患者的血液血漿製備的血清中如此抗體之存在係由臨床醫師監視。當抗體反應之效價變得無法接受的高時(例如大約5BU)時,臨床醫師可決定停止以FVIII輸注患者,並開始投予本發明之胜肽,例如胜肽A01。
胜肽可調配成在白蛋白殼中直徑大約10μm的微粒,懸浮在水性基質中,如美國專利案第5,439,686號所述的。患者可使用噴霧器藉由吸入自我投予調配物。可吸入每日一劑或每日兩劑5或10mg。臨床醫師可在開始胜肽治療法後立即檢驗局部血栓形成質時間,以確認功效。取決於結果,可相應改變劑量。若必須實質上增加劑量,可使用較小的微粒,典型為直徑大約5μm,且其等可靜脈內投予。
<110> 巴克斯特國際公司
巴克斯特保健公司
<120> 生物活性胜
<150> US 61/009,326
<151> 2008-04-17
<150> US 61/113,055
<151> 2008-11-10
<160> 434
<170> PatentIn第3.5版
<210> 1
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 變異體
<222> (1)..(1)
<223> Xaa為Trp、Leu或Pro
<220>
<221> 變異體
<222> (2)..(2)
<223> Xaa為Asp或Ser
<220>
<221> 變異體
<222> (3)..(3)
<223> Xaa為Leu或Phe
<220>
<221> 變異體
<222> (5)..(5)
<223> Xaa為Phe、Phg、Leu、Ebw、Pff、Thi、1Ni、Hfe、Ece或Cha
<220>
<221> 變異體
<222> (7)..(7)
<223> Xaa為Ile或Phe
<220>
<221> 變異體
<222> (8)..(8)
<223> Xaa為Val、Ser或Gly
<220>
<221> 變異體
<222> (9)..(9)
<223> Xaa為Trp或Leu
<400> 1
<210> 2
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 變異體
<222> (1)..(1)
<223> Xaa為Arg或Pro
<220>
<221> 變異體
<222> (2)..(2)
<223> Xaa為Met、Nva、Moo、Asn、Nle、Meo、Gln或Eag
<220>
<221> 變異體
<222> (3)..(3)
<223> Xaa為Glu、Lys或Asp
<220>
<221> 變異體
<222> (7)..(7)
<223> Xaa為Trp、Leu或Pro
<220>
<221> 變異體
<222> (8)..(8)
<223> Xaa為Asp或Ser
<220>
<221> 變異體
<222> (9)..(9)
<223> Xaa為Leu或Phe
<220>
<221> 變異體
<222> (11)..(11)
<223> Xaa為Phe、Phg、Leu、Ebw、Pff、Thi、1Ni、Hfe、Ece或Cha
<220>
<221> 變異體
<222> (13)..(13)
<223> Xaa為Ile或Phe
<220>
<221> 變異體
<222> (14)..(14)
<223> Xaa為Val、Ser或Gly
<220>
<221> 變異體
<222> (15)..(15)
<223> Xaa為Trp或Leu
<400> 2
<210> 3
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A06
<400> 3
<210> 4
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A09
<400> 4
<210> 5
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A12
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa為Nva
<400> 5
<210> 6
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A14
<400> 6
<210> 7
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A19
<400> 7
<210> 8
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 8
<210> 9
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A24
<400> 9
<210> 10
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A30
<400> 10
<210> 11
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A33
<400> 11
<210> 12
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A34
<400> 12
<210> 13
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A35
<400> 13
<210> 14
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A52
<400> 14
<210> 15
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A57
<400> 15
<210> 16
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A58
<400> 16
<210> 17
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A84
<400> 17
<210> 18
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A85
<400> 18
<210> 19
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A86
<400> 19
<210> 20
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A87
<400> 20
<210> 21
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A89
<400> 21
<210> 22
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A92
<400> 22
<210> 23
<211> 10
<212> PRT
<213> 人工序列A93
<220>
<223> 合成的肽A93
<400> 23
<210> 24
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A95
<400> 24
<210> 25
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A96
<400e 25
<210> 26
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A97
<400> 26
<210> 27
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A22
<400> 27
<210> 28
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A45
<400> 28
<210> 29
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A47
<400> 29
<210> 30
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A73
<400> 30
<210> 31
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A88
<400> 31
<210> 32
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A98
<400> 32
<210> 33
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A99
<400> 33
<210> 34
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A10
<400> 34
<210> 35
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A60
<400> 35
<210> 36
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A75
<400> 36
<210> 37
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 37
<210> 38
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 38
<210> 39
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 39
<210> 40
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 40
<210> 41
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 41
<210> 42
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 42
<210> 43
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 43
<210> 44
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 44
<210> 45
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 45
<210> 46
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 46
<210> 47
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 47
<210> 48
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 48
<210> 49
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 49
<210> 50
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 50
<210> 51
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 51
<210> 52
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 52
<210> 53
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 53
<210> 54
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 54
<210> 55
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 55
<210> 56
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 56
<210> 57
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 57
<210> 58
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 58
<210> 59
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 59
<210> 60
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 60
<210> 61
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 61
<210> 62
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 62
<210> 63
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 63
<210> 64
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 64
<210> 65
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 65
<210> 66
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 66
<210> 67
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 67
<210> 68
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 68
<210> 69
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 69
<210> 70
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 70
<210> 71
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 71
<210> 72
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 72
<210> 73
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 73
<210> 74
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 74
<210> 75
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 75
<210> 76
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 76
<210> 77
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 77
<210> 78
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 78
<210> 79
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 79
<210> 80
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 80
<210> 81
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 81
<210> 82
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 82
<210> 83
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 83
<210> 84
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 84
<210> 85
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 85
<210> 86
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 86
<210> 87
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 87
<210> 88
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 88
<210> 89
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 89
<210> 90
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 90
<210> 91
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 91
<210> 92
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 92
<210> 93
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 93
<210> 94
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 94
<210> 95
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 95
<210> 96
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 96
<210> 97
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 97
<210> 98
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 98
<210> 99
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 99
<210> 100
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 100
<210> 101
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 101
<210> 102
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 102
<210> 103
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 103
<210> 104
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 104
<210> 105
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 105
<210> 106
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 106
<210> 107
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 107
<210> 108
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 108
<210> 109
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 109
<210> 110
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 110
<210> 111
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 111
<210> 112
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 112
<210> 113
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 113
<210> 114
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 114
<210> 115
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 115
<210> 116
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 116
<210> 117
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 117
<210> 118
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 118
<210> 119
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 119
<210> 120
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 120
<210> 121
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 121
<210> 122
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 122
<210> 123
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 123
<210> 124
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 124
<210> 125
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 125
<210> 126
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 126
<210> 127
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 127
<210> 128
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 128
<210> 129
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 129
<210> 130
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 130
<210> 131
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 131
<210> 132
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 132
<210> 133
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 133
<210> 134
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 134
<210> 135
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 135
<210> 136
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 136
<210> 137
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 137
<210> 138
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 138
<210> 139
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 139
<210> 140
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 140
<210> 141
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 141
<210> 142
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 142
<210> 143
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 143
<210> 144
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 144
<210> 145
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 145
<210> 146
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 146
<210> 147
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 147
<210> 148
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 148
<210> 149
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 149
<210> 150
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 150
<210> 151
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 151
<210> 152
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 152
<210> 153
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 153
<210> 154
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 154
<210> 155
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 155
<210> 156
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 156
<210> 157
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 157
<210> 158
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 158
<210> 159
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 159
<210> 160
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 160
<210> 161
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 161
<210> 162
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 162
<210> 163
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 163
<210> 164
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 164
<210> 165
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 165
<210> 166
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 166
<210> 167
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 167
<210> 168
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 168
<210> 169
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 169
<210> 170
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 170
<210> 171
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 171
<210> 172
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 172
<210> 173
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 173
<210> 174
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 174
<210> 175
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 175
<210> 176
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 176
<210> 177
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 177
<210> 178
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 178
<210> 179
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 179
<210> 180
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 180
<210> 181
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 181
<210> 182
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 182
<210> 183
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 183
<210> 184
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 184
<210> 185
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 185
<210> 186
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 186
<210> 187
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 187
<210> 188
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 188
<210> 189
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 189
<210> 190
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 190
<210> 191
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 191
<210> 192
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 192
<210> 193
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 193
<210> 194
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 194
<210> 195
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 195
<210> 196
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 196
<210> 197
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 197
<210> 198
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 198
<210> 199
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 199
<210> 200
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 200
<210> 201
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 201
<210> 202
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 202
<210> 203
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 203
<210> 204
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 204
<210> 205
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 205
<210> 206
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 206
<210> 207
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 207
<210> 208
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 208
<210> 209
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 209
<210> 210
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 210
<210> 211
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 211
<210> 212
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 212
<210> 213
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 213
<210> 214
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 214
<210> 215
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 215
<210> 216
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 216
<210> 217
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 217
<210> 218
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 218
<210> 219
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 219
<210> 220
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 220
<210> 221
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 221
<210> 222
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 222
<210> 223
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 223
<210> 224
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 224
<210> 225
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 225
<210> 226
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 226
<210> 227
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 227
<210> 228
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 228
<210> 229
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 229
<210> 230
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 230
<210> 231
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 231
<210> 232
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 232
<210> 233
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 233
<210> 234
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 234
<210> 235
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 235
<210> 236
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 236
<210> 237
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 237
<210> 238
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 238
<210> 239
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 239
<210> 240
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 240
<210> 241
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 241
<210> 242
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 242
<210> 243
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 243
<210> 244
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 244
<210> 245
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 245
<210> 246
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 246
<210> 247
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 247
<210> 248
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 248
<210> 249
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 249
<210> 250
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 250
<210> 251
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 251
<210> 252
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 252
<210> 253
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 253
<210> 254
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 254
<210> 255
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 255
<210> 256
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 256
<210> 257
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 257
<210> 258
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 258
<210> 259
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 259
<210> 260
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 260
<210> 261
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 261
<210> 262
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 262
<210> 263
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 263
<210> 264
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 264
<210> 265
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 265
<210> 266
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 266
<210> 267
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 267
<210> 268
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 268
<210> 269
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 269
<210> 270
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 270
<210> 271
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 271
<210> 272
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 272
<210> 273
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 273
<210> 274
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 274
<210> 275
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 275
<210> 276
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 276
<210> 277
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 277
<210> 278
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 278
<210> 279
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 279
<210> 280
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 280
<210> 281
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 281
<210> 282
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 282
<210> 283
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 283
<210> 284
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 284
<210> 285
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 285
<210> 286
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 286
<210> 287
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 287
<210> 288
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 288
<210> 289
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 289
<210> 290
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 290
<210> 291
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 291
<210> 292
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 292
<210> 293
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 293
<210> 294
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 294
<210> 295
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 295
<210> 296
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 296
<210> 297
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 297
<210> 298
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 298
<210> 299
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 299
<210> 300
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 300
<210> 301
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 301
<210> 302
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 302
<210> 303
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 303
<210> 304
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 304
<210> 305
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 305
<210> 306
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 306
<210> 307
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 307
<210> 308
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 308
<210> 309
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 309
<210> 310
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 310
<210> 311
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 311
<210> 312
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 312
<210> 313
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 313
<210> 314
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 314
<210> 315
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 315
<210> 316
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 316
<210> 317
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 317
<210> 318
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 318
<210> 319
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 319
<210> 320
<211> 13
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 320
<210> 321
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽A72
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa為Nle
<400> 321
<210> 322
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 322
<210> 323
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 變異體
<222> (1)..(1)
<223> Xaa為Trp、Leu或Pro
<220>
<221> 變異體
<222> (2)..(2)
<223> Xaa為Asp或Ser
<220>
<221> 變異體
<222> (3)..(3)
<223> Xaa為Leu或Phe
<220>
<221> 變異體
<222> (5)..(5)
<223> Xaa為Phe、Phg、Leu、Ebw、Pff、Thi、1Ni、Hfe、Ece或Cha
<220>
<221> 變異體
<222> (7)..(7)
<223> Xaa為Ile或Phe
<220>
<221> 變異體
<222> (8)..(8)
<223> Xaa為Ser、Val或Gly
<220>
<221> 變異體
<222> (9)..(9)
<223> Xaa為Trp或Leu
<400> 323
<210> 324
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 變異體
<222> (1)..(1)
<223> Xaa為Trp或Leu
<220>
<221> 變異體
<222> (2)..(2)
<223> Xaa為Asp或Ser
<220>
<221> 變異體
<222> (3)..(3)
<223> Xaa為Leu或Phe
<220>
<221> 變異體
<222> (5)..(5)
<223> Xaa為Phe、Phg或Leu
<220>
<221> 變異體
<222> (7)..(7)
<223> Xaa為Ile或Phe
<220>
<221> 變異體
<222> (8)..(8)
<223> Xaa為Ser、Val或Gly
<220>
<221> 變異體
<222> (9)..(9)
<223> Xaa為Trp或Leu
<400> 324
<210> 325
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 325
<210> 326
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<400> 326
<210> 327
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 變異體
<222> (1)..(1)
<223> Xaa為Arg或Pro
<220>
<221> 變異體
<222> (2)..(2)
<223> Xaa為Met、Nva、Moo、Asn、Nle、Meo、Gln或Eag
<220>
<221> 變異體
<222> (3)..(3)
<223> Xaa為Glu、Lys或Asp
<220>
<221> 變異體
<222> (7)..(7)
<223> Xaa為Trp、Leu或Pro
<220>
<221> 變異體
<222> (8)..(8)
<223> Xaa為Asp或Ser
<220>
<221> 變異體
<222> (9)..(9)
<223> Xaa為Leu或Phe
<220>
<221> 變異體
<222> (11)..(11)
<223> Xaa為Phe、Phg、Leu、Ebw、Pff、Thi、1Ni、Hfe、Ece、Cha
<220>
<221> 變異體
<222> (13)..(13)
<223> Xaa為Ile或Phe
<220>
<221> 變異體
<222> (14)..(14)
<223> Xaa為Ser、Val或Gly
<220>
<221> 變異體
<222> (15)..(15)
<223> Xaa為Trp或Leu
<400> 327
<210> 328
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 變異體
<222> (1)..(1)
<223> Xaa為Arg或Pro
<220>
<221> 變異體
<222> (2)..(2)
<223> Xaa為Met或Nva
<220>
<221> 變異體
<222> (3)..(3)
<223> Xaa為Glu、Lys或Asp
<220>
<221> 變異體
<222> (7)..(7)
<223> Xaa為Trp或Leu
<220>
<221> 變異體
<222> (8)..(8)
<223> Xaa為Asp或Ser
<220>
<221> 變異體
<222> (9)..(9)
<223> Xaa為Leu或Phe
<220>
<221> 變異體
<222> (11)..(11)
<223> Xaa為Phe、Phg或Leu
<220>
<221> 變異體
<222> (13)..(13)
<223> Xaa為Ile或Phe
<220>
<221> 變異體
<222> (14)..(14)
<223> Xaa為Ser、Val或Gly
<220>
<221> 變異體
<222> (15)..(15)
<223> Xaa為Trp或Leu
<400> 328
<210> 329
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 329
<210> 330
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 330
<210> 331
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 331
<210> 332
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 332
<210> 333
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> C端醯胺化
<400> 333
<210> 334
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 334
<210> 335
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(10)
<223> Trp藉由ttds連接子連接至Glu
<400> 335
<210> 336
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> 連接至ttds
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 336
<210> 337
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 337
<210> 338
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa為正纈胺酸
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 338
<210> 339
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> 連接至ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為苯基甘胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 339
<210> 340
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<223> N端乙醯化
<400> 340
<210> 341
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(10)
<223> Trp藉由ttds連接子連接至Glu
<400> 341
<210> 342
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> 共價地結合至PEG5000
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 342
<210> 343
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> 共價地結合至PEG5000
<400> 343
<210> 344
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> 共價地結合至PEG5000
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 344
<210> 345
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 345
<210> 346
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端醯胺化
<220>
<221> 雜項特徵
<222> (12)..(12)
<223> C端醯胺化
<400> 346
<210> 347
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 347
<210> 348
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> Glu藉由ttds連接子連接至Trp
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 348
<210> 349
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(10)
<223> Trp藉由ttds連接子連接至Glu
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 349
<210> 350
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 350
<210> 351
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> Lys藉由ttds連接子連接至Arg
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 351
<210> 352
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<223> N端乙醯化
<400> 352
<210> 353
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 353
<210> 354
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(16)
<223> Trp藉由ttds連接子連接至Lys
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 354
<210> 355
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 355
<210> 356
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 356
<210> 357
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 357
<210> 358
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 358
<210> 359
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 359
<210> 360
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 360
<210> 361
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> Lys藉由ttds連接子連接至Arg
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 361
<210> 362
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(16)
<223> Trp藉由ttds連接子連接至Lys
<400> 362
<210> 363
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(10)
<223> Trp藉由ttds連接子連接至Glu
<400> 363
<210> 364
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 364
<210> 365
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 365
<210> 366
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 366
<210> 367
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 367
<210> 368
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 368
<210> 369
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 369
<210> 370
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 370
<210> 371
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 371
<210> 372
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (5)..(5)
<223> Xaa為Phg
<400> 372
<210> 373
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (5)..(5)
<223> Xaa為Phg
<400> 373
<210> 374
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 374
<210> 375
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 375
<210> 376
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (5)..(5)
<223> Xaa為Phg
<400> 376
<210> 377
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 377
<210> 378
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 378
<210> 379
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 379
<210> 380
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(10)
<223> Trp藉由ttds連接子連接至Lys
<400> 380
<210> 381
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> C端醯胺化
<400> 381
<210> 382
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 經修飾殘基
<222> (1)..(1)
<223> D-Trp
<220>
<221> 經修飾殘基
<222> (2)..(2)
<223> D-Val
<220>
<221> 經修飾殘基
<222> (3)..(3)
<223> D-Ile
<220>
<221> 經修飾殘基
<222> (4)..(4)
<223> D-Glu
<220>
<221> 經修飾殘基
<222> (5)..(5)
<223> D-Phe
<220>
<221> 經修飾殘基
<222> (6)..(6)
<223> D-Tyr
<220>
<221> 經修飾殘基
<222> (7)..(7)
<223> D-Leu
<220>
<221> 經修飾殘基
<222> (8)..(8)
<223> D-Asp
<220>
<221> 經修飾殘基
<222> (9)..(9)
<223> D-Trp
<220>
<221> 經修飾殘基
<222> (10)..(10)
<223> D-Val
<220>
<221> 經修飾殘基
<222> (11)..(11)
<223> D-Asp
<220>
<221> 經修飾殘基
<222> (12)..(12)
<223> D-Phe
<220>
<221> 經修飾殘基
<222> (13)..(13)
<223> D-Lys
<220>
<221> 經修飾殘基
<222> (14)..(14)
<223> D-Met
<220>
<221> 經修飾殘基
<222> (15)..(15)
<223> D-Arg
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 382
<210> 383
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 383
<210> 384
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯基藉由ttds連接子連接至Trp
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> C端醯胺化
<400> 384
<210> 385
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> C端醯胺化
<400> 385
<210> 386
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> 連接至ttds,其於醯胺終止
<400> 386
<210> 387
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯基藉由ttds連接子連接至Trp
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> 連接至ttds,其於醯胺終止
<400> 387
<210> 388
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> C端ttds
<400> 388
<210> 389
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> 連接至ttds,其於醯胺終止
<400> 389
<210> 390
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 390
<210> 391
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> Lys藉由ttds連接子連接至Trp
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 391
<210> 392
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 392
<210> 393
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 393
<210> 394
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa為甲硫胺酸碸
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 394
<210> 395
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 395
<210> 396
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為3,3-二苯基丙胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 396
<210> 397
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為4-氟苯基-丙胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 397
<210> 398
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 398
<210> 399
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 399
<210> 400
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<400> 400
<210> 401
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (5)..(5)
<223> Xaa為Phg
<400> 401
<210> 402
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (9)..(10)
<223> Trp藉由ttds連接子連接至Lys
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 402
<210> 403
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 403
<210> 404
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 404
<210> 405
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> 共價地結合至PEG5000
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 405
<210> 406
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (9)..(9)
<223> N端醯胺化
<400> 406
<210> 407
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 407
<210> 408
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 408
<210> 409
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 409
<210> 410
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> Xaa為氧化半胱胺酸
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> 氧化半胱胺酸藉由ttds連接子連接至Arg
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> 連接至ttds,其於醯胺終止
<400> 410
<210> 411
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> Xaa為葡萄糖苷基-胺氧基乙醯基
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> 葡萄糖苷基-胺氧基乙醯基藉由ttds連接子連接至Arg
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> 連接至ttds,其於醯胺終止
<400> 411
<210> 412
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (2)..(2)
<223> Xaa為甲硫胺酸碸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 412
<210> 413
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (2)..(2)
<223> Xaa為正白胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 413
<210> 414
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 414
<210> 415
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (2)..(2)
<223> Xaa為甲硫胺酸碸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 415
<210> 416
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (2)..(2)
<223> Xaa為正白胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 416
<210> 417
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端乙醯化
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> C端醯胺化
<400> 417
<210> 418
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (2)..(2)
<223> Xaa為正白胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 418
<210> 419
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 419
<210> 420
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa為正白胺酸
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 420
<210> 421
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa為甲硫胺酸亞碸
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 421
<210> 422
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 422
<210> 423
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa為炔丙基甘胺酸
<220>
<221> 雜項特徵
<222> (16)..(16)
<223> C端醯胺化
<400> 423
<210> 424
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為2-噻吩基丙胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 424
<210> 425
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為1-萘基-丙胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 425
<210> 426
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為高苯基丙胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 426
<210> 427
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為s-苄基-L-半胱胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 427
<210> 428
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(1)
<223> N端ttds
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa為環己基丙胺酸
<220>
<221> 雜項特徵
<222> (15)..(15)
<223> 連接至ttds,其於醯胺終止
<400> 428
<210> 429
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 429
<210> 430
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> Lys藉由ttds連接子連接至Trp
<220>
<221> 雜項特徵
<222> (10)..(10)
<223> C端醯胺化
<400> 430
<210> 431
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(3)
<223> Xaa可為任何天然存在的胺基酸
<220>
<221> 雜項特徵
<222> (5)..(5)
<223> Xaa可為任何天然存在的胺基酸
<220>
<221> 雜項特徵
<222> (7)..(9)
<223> Xaa可為任何天然存在的胺基酸
<400> 431
<210> 432
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (1)..(2)
<223> Xaa可為任何天然存在的胺基酸
<220>
<221> 雜項特徵
<222> (7)..(9)
<223> Xaa可為任何天然存在的胺基酸
<400> 432
<210> 433
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (3)..(3)
<223> Xaa可為任何天然存在的胺基酸
<400> 433
<210> 434
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成的肽
<220>
<221> 雜項特徵
<222> (11)..(11)
<223> Xaa可為任何天然存在的胺基酸
<400> 434
Claims (40)
- 一種胜肽或胜肽衍生物,其包括:(i)包含imfwydcye之胺基酸序列;或(ii)變異體胺基酸序列,其在imfwydcye中包含一個、兩個、三個、四個、五個或六個胺基酸取代,該變異體胺基酸序列包含X1X2X3X4X5X6X7X8X9X10,其中X1當存在時為c、s、y、i、D-Pen、C、t、D-NVa、D-Nle或k;X2為i、y、w或d;X3為c或m;X4為f、t、v或c;X5為w或c;X6為y或c;X7為d、e或f;X8為c、e、f、y或d;X9為y或w;且X10為e或I,其中該胜肽或胜肽衍生物具有促凝血活性(procoagulant activity)。
- 根據申請專利範圍第1項的胜肽或胜肽衍生物,其包括含有cimfwydcye的胺基酸序列。
- 根據申請專利範圍第1項的胜肽或胜肽衍生物,其中該變異體胺基酸序列含有包含X1X2X3X4wydX8ye的胺基酸序列,其中X1為c、C、D-Pen或s,X2為i、y或w,X3為c或m,X4為f、t、或v且X8為c或e。
- 根據申請專利範圍第1至3項中任一項的胜肽或胜肽衍生物,其在N-端被乙醯化,在C-端被醯胺化及/或在任一端被PEG化。
- 根據申請專利範圍第1至3項中任一項的胜肽或胜肽衍生物,其為環狀。
- 一種胜肽或胜肽衍生物,其包含以下者或由以下者組成:Ac-cimfwydeye-NH2、二硫化物-二聚體(Ac-cimfwydeye-NH2)2、Ac-TTDS-(cymfwydc)-ye-NH2、K-TTDS-(cymfwydc)-ye-NH2、Ac-cimtwydcye-NH2、Ac-cimvwydcye-NH2、cymfwydcye、 Ac-(cymfwydc)-yeG-NH2、Ac-(D-Pen)imfwydeye-NH2、O(CH2-CH2-O-CH2-CO-imfwydeye-NH2)2、吡啶-3,5-(CO-imfwydeye-NH2)2、H2N-E-TTDS-(cymfwydc)-ye-NH2、Ac-(cymfwydc)-yeK、Ac-(cymfwydc)-ye-TTDS-K、Ac-simfwydeye-NH2、Ac-simfwydeye-NH2、Ac-ydmcwcefyi-NH2、Ac-idmccyfywe-NH2、Ac-cimfwyddye-NH2、Ac-(cymfwydc)-ye、Ac-(cymfwydc)-ye-TTDS-NH2、Ac-TTDS-(cymfwydc)-ye-TTDS-NH2、K-(cymfwydc)-ye-NH2、Ac-K-(cymfwydc)-ye-NH2、E-(cymfwydc)-ye-NH2、Ac-K-TTDS-(cymfwydc)-ye-NH2、Ac-(cymfwydc)-yeK-NH2、Ac-(cymfwydc)-ye-TTDS-K-NH2、Ac-(cymfwydc)-ye-TTDS-E-NH2、Ac-timfwydeye-NH2、Ac-(cimfwydc)-ye-NH2、Ac-(cymfwydc)-ye-NH2、Ac-(cwmfwydc)-ye-NH2、Ac-cicfwydcye-NH2、Ac-(D-Nva)imfwydeye-NH2、Ac-(D-Nle)imfwydeye-NH2、Ac-(Cys)imfwydeye-NH2、(cymfwydc)-ye-NH2、TTDS-(cymfwydc)-ye-TTDS-NH2、Ac-kimfwydeye-NH2,其中-TTDS-為4,7,10-三-1,13-十三烷二胺,(D-Pen)為D-青黴胺,(D-Nva)為D-正纈胺酸,(D-Nle)為D-正白胺酸。
- 一種雙重胜肽,其包括如申請專利範圍第1-3及6項中任一項所定義的胜肽或胜肽衍生物,其共軛至的另一個如申請專利範圍1-3及6項中任一項所定義的胜肽或胜肽衍生物以形成雙重胜肽,其中該胜肽或胜肽衍生物可與該另一個胜肽或另一個胜肽衍生物相同或不同,且其中該雙重胜肽具有促凝血活性。
- 根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物,其 具有介於0.5和3.5kD的分子量。
- 根據申請專利範圍第7項的雙重胜肽,其具有介於0.5和3.5kD的分子量。
- 根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物,其中該促凝血活性為在明確固有凝血酶產生分析(Defined Intrinsic Thrombin Generation Assay)中25、50或100μM的胜肽或胜肽衍生物之凝血酶產生時間相等於至少100mU/mL第八因子抑制子繞道活性(Factor Eight Inhibitor Bypassing Activity,FEIBA)之凝血酶產生時間。
- 根據申請專利範圍第10項的胜肽或胜肽衍生物,其中該促凝血活性為25、50或100μM的胜肽或胜肽衍生物之凝血酶產生時間相等於至少900mU/mL FEIBA之凝血酶產生時間。
- 根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物,其中該促凝血活性為在明確固有凝血酶產生分析中25、50或100μM的胜肽或胜肽衍生物之凝血酶產生時間在30分鐘內達到高峰。
- 根據申請專利範圍第12項的胜肽或胜肽衍生物,其中該促凝血活性為在明確固有凝血酶產生分析中25、50或100μM的胜肽或胜肽衍生物之凝血酶產生時間在10分鐘內達到高峰。
- 根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物,其當於A型嚴重人類血友病之動物模型中投予時,至少部分地補償生物活性FVIII之缺乏。
- 根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物,其具有至少50%的30分鐘人類血漿中穩定性。
- 根據申請專利範圍第15項的胜肽或胜肽衍生物,其具有至少80%的30分鐘人類血漿中穩定性。
- 根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物, 其在pH 7.4的磷酸鹽緩衝食鹽水中具有至少25μM的水溶性。
- 根據申請專利範圍第17項的胜肽或胜肽衍生物,其在pH 7.4的磷酸鹽緩衝食鹽水中具有至少100μM的水溶性。
- 根據申請專利範圍第7項的雙重胜肽,其中該促凝血活性為在明確固有凝血酶產生分析中25、50或100μM的雙重胜肽之凝血酶產生時間相等於至少100mU/mL第八因子抑制子繞道活性(FEIBA)之凝血酶產生時間。
- 根據申請專利範圍第7項的雙重胜肽,其中該促凝血活性為在明確固有凝血酶產生分析中25、50或100μM的雙重胜肽之凝血酶產生時間在30分鐘內達到高峰。
- 根據申請專利範圍第7項的雙重胜肽,其當於A型嚴重人類血友病之動物模型中投予時,至少部分地補償生物活性FVIII之缺乏。
- 根據申請專利範圍第7項的雙重胜肽,其具有至少50%的30分鐘人類血漿中穩定性。
- 根據申請專利範圍第7項的雙重胜肽,其在pH 7.4的磷酸鹽緩衝食鹽水中具有至少25μM的水溶性。
- 一種醫藥組成物,其包括根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物以及一或多種醫藥上可接受的賦形劑、載劑及/或稀釋劑。
- 根據申請專利範圍第24項的醫藥組成物,其適用於皮下投予、鼻部投予、頰部投予、口服投予或肺部投予。
- 根據申請專利範圍第24項的醫藥組成物,其適用於靜脈內投予。
- 一種用於醫藥的根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物。
- 一種用於治療具有FV、FVII、FVIII、FX及/或FXI不足的患者的根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物。
- 一種根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物之用途,其係用於製造供治療患有FV、FVII、FVIII、FX及/或FXI不足之患者用的醫藥品。
- 根據申請專利範圍第28項的胜肽或胜肽衍生物,其中該患者具有針對FV、FVII、FVIII、FX及/或FXI的抑制抗體。
- 根據申請專利範圍第29項的用途,其中該患者具有針對FV、FVII、FVIII、FX及/或FXI的抑制抗體。
- 一種製造根據申請專利範圍第1至3及6項中任一項的胜肽或胜肽衍生物的方法,其藉由固相合成。
- 一種醫藥組成物,其包括根據申請專利範圍第7項的雙重胜肽以及一或多種醫藥上可接受的賦形劑、載劑及/或稀釋劑。
- 根據申請專利範圍第33項的醫藥組成物,其適用於皮下投予、鼻部投予、頰部投予、口服投予或肺部投予。
- 根據申請專利範圍第33項的醫藥組成物,其適用於靜脈內投予。
- 一種用於醫藥的根據申請專利範圍第7項的雙重胜肽。
- 一種用於治療具有FV、FVII、FVIII、FX及/或FXI不足的患者的根據申請專利範圍第7項的雙重胜肽。
- 根據申請專利範圍第37項的雙重胜肽,其中該患者具有針對FV、FVII、FVIII、FX及/或FXI的抑制抗體。
- 一種根據申請專利範圍第7項的雙重胜肽之用途,其係用於製造供治療患有FV、FVII、FVIII、FX及/或FXI不足之患者用的醫藥品。
- 根據申請專利範圍第39項的用途,其中該患者具有針對FV、FVII、FVIII、FX及/或FXI的抑制抗體。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US932608P | 2008-04-17 | 2008-04-17 | |
US11305508P | 2008-11-10 | 2008-11-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201443085A TW201443085A (zh) | 2014-11-16 |
TWI573806B true TWI573806B (zh) | 2017-03-11 |
Family
ID=40887122
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103127214A TWI573806B (zh) | 2008-04-17 | 2009-04-15 | 生物活性胜肽 |
TW098112448A TWI541020B (zh) | 2008-04-17 | 2009-04-15 | 生物活性胜肽 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098112448A TWI541020B (zh) | 2008-04-17 | 2009-04-15 | 生物活性胜肽 |
Country Status (19)
Country | Link |
---|---|
US (6) | US8563688B2 (zh) |
EP (2) | EP2279200B1 (zh) |
JP (3) | JP6038452B2 (zh) |
KR (2) | KR101606248B1 (zh) |
CN (2) | CN102007140B (zh) |
AR (1) | AR071478A1 (zh) |
AU (1) | AU2009244635B2 (zh) |
BR (1) | BRPI0911203A2 (zh) |
CA (1) | CA2721694C (zh) |
DK (2) | DK2279200T3 (zh) |
ES (2) | ES2739676T3 (zh) |
HK (2) | HK1154255A1 (zh) |
MX (1) | MX2010011397A (zh) |
NZ (1) | NZ588200A (zh) |
PL (1) | PL2279200T3 (zh) |
PT (1) | PT2279200T (zh) |
SG (2) | SG10201608071YA (zh) |
TW (2) | TWI573806B (zh) |
WO (1) | WO2009137256A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR071478A1 (es) * | 2008-04-17 | 2010-06-23 | Baxter Healthcare Sa | Peptidos de bajo peso molecular con actividad procoagulante para el tratamiento de pacientes con deficiencia de factor v (fv), fvii, fviii, fx y/o fxi |
JP2013502458A (ja) | 2009-08-24 | 2013-01-24 | アムニクス オペレーティング インコーポレイテッド | 凝固第vii因子組成物ならびにそれを製造および使用する方法 |
EP2596635B1 (en) | 2010-07-19 | 2020-05-20 | Dolby Laboratories Licensing Corporation | Enhancement methods for sampled and multiplexed image and video data |
EP2717898B1 (en) | 2011-06-10 | 2018-12-19 | Bioverativ Therapeutics Inc. | Pro-coagulant compounds and methods of use thereof |
EP3549953A1 (en) | 2012-02-15 | 2019-10-09 | Bioverativ Therapeutics Inc. | Recombinant factor viii proteins |
KR102097263B1 (ko) | 2012-02-15 | 2020-04-06 | 바이오버라티브 테라퓨틱스 인크. | Viii 인자 조성물 및 이를 제조하고 사용하는 방법 |
JP6246894B2 (ja) * | 2013-06-11 | 2017-12-13 | シージェイ チェイルジェダング コーポレイション | L−イソロイシンを生産する微生物及びこれを用いたl−イソロイシン製造方法 |
WO2015023894A1 (en) | 2013-08-14 | 2015-02-19 | Biogen Idec Ma Inc. | Recombinant factor viii proteins |
US10548953B2 (en) | 2013-08-14 | 2020-02-04 | Bioverativ Therapeutics Inc. | Factor VIII-XTEN fusions and uses thereof |
EP3065769A4 (en) | 2013-11-08 | 2017-05-31 | Biogen MA Inc. | Procoagulant fusion compound |
US9321812B2 (en) | 2014-03-28 | 2016-04-26 | Perle Bioscience | Insulin independence among patients with diabetes utilizing an optimized hamster REG3 gamma peptide |
JP6484468B2 (ja) * | 2014-06-03 | 2019-03-13 | AvanStrate株式会社 | ガラス板製造方法およびガラス板製造装置 |
GB201410507D0 (en) * | 2014-06-12 | 2014-07-30 | Univ Bath | Drug delivery enhancement agents |
MX2018001497A (es) | 2015-08-03 | 2018-05-15 | Bioverativ Therapeutics Inc | Proteinas de fusion de factor ix y metodos para producirlas y usarlas. |
WO2018064098A1 (en) | 2016-09-28 | 2018-04-05 | Cohbar, Inc. | Therapeutic mots-c related peptides |
US12161696B2 (en) | 2016-12-02 | 2024-12-10 | Bioverativ Therapeutics Inc. | Methods of treating hemophilic arthropathy using chimeric clotting factors |
KR20190112763A (ko) | 2017-01-31 | 2019-10-07 | 바이오버라티브 테라퓨틱스 인크. | 인자 ix 융합 단백질 및 이의 제조 및 사용 방법 |
MX2020012397A (es) | 2018-05-18 | 2021-04-12 | Bioverativ Therapeutics Inc | Metodos de tratamiento de la hemofilia a. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050124544A1 (en) * | 2001-10-17 | 2005-06-09 | Claude Granier | Peptide decoys for the preparation of medicaments intended for the prevention or treatment of autoimmune pathologies or disorders linked to the appearance of antibodies directed against exogenous proteins |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4447356A (en) * | 1981-04-17 | 1984-05-08 | Olivera Baldomero M | Conotoxins |
IT1190891B (it) | 1982-06-24 | 1988-02-24 | Anic Spa | Metodo per la sintesi in fase solida di polipeptidi retroinvertiti |
US5122614A (en) | 1989-04-19 | 1992-06-16 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
US5093317A (en) * | 1989-06-05 | 1992-03-03 | Cephalon, Inc. | Treating disorders by application of insulin-like growth factor |
JPH0725794B2 (ja) * | 1990-03-23 | 1995-03-22 | 呉羽化学工業株式会社 | 新規なペプチド |
US5595732A (en) | 1991-03-25 | 1997-01-21 | Hoffmann-La Roche Inc. | Polyethylene-protein conjugates |
US6037452A (en) * | 1992-04-10 | 2000-03-14 | Alpha Therapeutic Corporation | Poly(alkylene oxide)-Factor VIII or Factor IX conjugate |
PT693924E (pt) * | 1993-02-22 | 2004-09-30 | American Biosciences | Processos para administracao (in vivo) de substancias biologicas e composicoes utilizadas nestes processos |
US5439686A (en) | 1993-02-22 | 1995-08-08 | Vivorx Pharmaceuticals, Inc. | Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor |
US6005166A (en) * | 1994-12-30 | 1999-12-21 | Seminis Vegetable Seeds, Inc. | Papaya ringspot virus replicase gene |
US5532153A (en) * | 1995-03-23 | 1996-07-02 | New England Biolabs, Inc. | Method for cloning and producing the SacI restriction endonuclease |
US7279548B2 (en) * | 1996-04-03 | 2007-10-09 | Cytogen Corporation | Identification and isolation of novel polypeptides having WW domains and methods of using same |
US6197526B1 (en) | 1999-01-04 | 2001-03-06 | Dyax Corp. | Polypeptides for binding human factor VIII and fragments of human factor VIII |
US6624289B1 (en) * | 1999-06-16 | 2003-09-23 | Saint Louis University | Region of factor IXa protease domain that interacts with factor VIIIa and methods therefor |
US7109170B2 (en) * | 1999-06-16 | 2006-09-19 | Saint Louis University | Region of factor IXa protease domain that interacts with factor VIIIa and methods therefor |
EP1196432A2 (en) | 1999-07-02 | 2002-04-17 | Genentech, Inc. | FVIIa ANTAGONISTS |
AT411997B (de) * | 1999-09-14 | 2004-08-26 | Baxter Ag | Faktor ix/faktor ixa aktivierende antikörper und antikörper-derivate |
WO2001039799A2 (en) * | 1999-12-06 | 2001-06-07 | Panacea Pharmaceuticals, Llc. | Passive desensitization |
US20020197266A1 (en) * | 2000-02-08 | 2002-12-26 | Waldemar Debinski | Immunotherapy using interleukin 13 receptor subunit alpha 2 |
NZ529314A (en) * | 2001-05-11 | 2007-01-26 | Res Dev Foundation | Inhibitors of receptor activator of NF-kappaB and uses thereof |
WO2007077561A2 (en) | 2006-01-04 | 2007-07-12 | Do-Coop Technologies Ltd. | Compositions and methods for enhancing in-vivo uptake of pharmaceutical agents |
US20060204503A1 (en) * | 2005-01-31 | 2006-09-14 | Biogen Idec Ma Inc. | Treatment of cancer using antibodies to polypeptides differentially expressed in human lung tumors |
CN101379077A (zh) * | 2005-12-07 | 2009-03-04 | 夏洛特·豪泽 | 因子ⅷ和因子ⅷ-类似蛋白的小肽或者拟肽亲合性配体 |
AR071478A1 (es) * | 2008-04-17 | 2010-06-23 | Baxter Healthcare Sa | Peptidos de bajo peso molecular con actividad procoagulante para el tratamiento de pacientes con deficiencia de factor v (fv), fvii, fviii, fx y/o fxi |
-
2009
- 2009-04-15 AR ARP090101328A patent/AR071478A1/es active IP Right Grant
- 2009-04-15 TW TW103127214A patent/TWI573806B/zh active
- 2009-04-15 TW TW098112448A patent/TWI541020B/zh active
- 2009-04-16 CA CA2721694A patent/CA2721694C/en active Active
- 2009-04-16 MX MX2010011397A patent/MX2010011397A/es active IP Right Grant
- 2009-04-16 NZ NZ588200A patent/NZ588200A/xx unknown
- 2009-04-16 WO PCT/US2009/040857 patent/WO2009137256A1/en active Application Filing
- 2009-04-16 EP EP09743243.9A patent/EP2279200B1/en active Active
- 2009-04-16 AU AU2009244635A patent/AU2009244635B2/en active Active
- 2009-04-16 KR KR1020137024826A patent/KR101606248B1/ko active IP Right Grant
- 2009-04-16 BR BRPI0911203A patent/BRPI0911203A2/pt not_active Application Discontinuation
- 2009-04-16 JP JP2011505212A patent/JP6038452B2/ja active Active
- 2009-04-16 PT PT97432439T patent/PT2279200T/pt unknown
- 2009-04-16 SG SG10201608071YA patent/SG10201608071YA/en unknown
- 2009-04-16 US US12/425,277 patent/US8563688B2/en active Active
- 2009-04-16 SG SG10201809286XA patent/SG10201809286XA/en unknown
- 2009-04-16 KR KR1020107025687A patent/KR101434712B1/ko active IP Right Grant
- 2009-04-16 DK DK09743243.9T patent/DK2279200T3/en active
- 2009-04-16 CN CN200980114502.4A patent/CN102007140B/zh active Active
- 2009-04-16 CN CN201610040575.5A patent/CN105524163A/zh active Pending
- 2009-04-16 PL PL09743243T patent/PL2279200T3/pl unknown
- 2009-04-16 ES ES16172509T patent/ES2739676T3/es active Active
- 2009-04-16 DK DK16172509.8T patent/DK3115370T3/da active
- 2009-04-16 EP EP16172509.8A patent/EP3115370B1/en active Active
- 2009-04-16 ES ES09743243.9T patent/ES2594706T3/es active Active
-
2011
- 2011-08-03 HK HK11108062.3A patent/HK1154255A1/zh unknown
- 2011-09-21 US US13/238,751 patent/US8822638B2/en active Active
-
2013
- 2013-12-20 JP JP2013263345A patent/JP5977223B2/ja active Active
-
2014
- 2014-07-24 US US14/340,231 patent/US9206234B2/en active Active
-
2015
- 2015-11-13 US US14/941,163 patent/US9598464B2/en active Active
-
2016
- 2016-07-21 JP JP2016143368A patent/JP2017019797A/ja active Pending
- 2016-10-19 HK HK16112064.8A patent/HK1223946A1/zh unknown
-
2017
- 2017-02-27 US US15/443,949 patent/US10287319B2/en active Active
-
2019
- 2019-03-20 US US16/359,763 patent/US10822376B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050124544A1 (en) * | 2001-10-17 | 2005-06-09 | Claude Granier | Peptide decoys for the preparation of medicaments intended for the prevention or treatment of autoimmune pathologies or disorders linked to the appearance of antibodies directed against exogenous proteins |
Non-Patent Citations (1)
Title |
---|
NCBI GenBank: AB102675,2004/3/30. * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI573806B (zh) | 生物活性胜肽 | |
EP2717898B1 (en) | Pro-coagulant compounds and methods of use thereof | |
ES2343681T3 (es) | Antagonistas de interaccion de factor viii con una proteina relacionada con el receptor de lipoproteinas de baja densidad. | |
AU2019202888B2 (en) | Biologically active peptides | |
AU2012205202B2 (en) | Biologically Active Peptides |