[go: up one dir, main page]

TWI567803B - Compliant bipolar micro device transfer head with silicon electrodes - Google Patents

Compliant bipolar micro device transfer head with silicon electrodes Download PDF

Info

Publication number
TWI567803B
TWI567803B TW102123500A TW102123500A TWI567803B TW I567803 B TWI567803 B TW I567803B TW 102123500 A TW102123500 A TW 102123500A TW 102123500 A TW102123500 A TW 102123500A TW I567803 B TWI567803 B TW I567803B
Authority
TW
Taiwan
Prior art keywords
array
transfer head
electrode
interconnect structure
layer
Prior art date
Application number
TW102123500A
Other languages
Chinese (zh)
Other versions
TW201409551A (en
Inventor
果達丹瑞思
比柏安德瑞斯
Original Assignee
蘋果公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/543,675 external-priority patent/US8415767B1/en
Priority claimed from US13/543,680 external-priority patent/US8569115B1/en
Application filed by 蘋果公司 filed Critical 蘋果公司
Publication of TW201409551A publication Critical patent/TW201409551A/en
Application granted granted Critical
Publication of TWI567803B publication Critical patent/TWI567803B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0005Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same
    • B81C99/002Apparatus for assembling MEMS, e.g. micromanipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Micromachines (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

具有矽電極的相容雙極性微裝置轉移頭 Compatible bipolar micro device transfer head with tantalum electrode

本發明係關於微裝置。更特定而言,本發明的實施例係關於一種相容雙極性微裝置轉移頭及轉移一或更多個微裝置至接收基板的方法。 This invention relates to microdevices. More particularly, embodiments of the present invention relate to a compatible bipolar microdevice transfer head and a method of transferring one or more micro devices to a receiving substrate.

整合及包裝問題是諸如射頻(radio frequency;RF)微電機系統(microelectromechanical system;MEMS)微開關、發光二極體(light-emitting diode;LED)顯示系統及基於MEMS或石英的振盪器的微裝置商業化的主要障礙之一。 Integration and packaging issues are microdevices such as radio frequency (RF) microelectromechanical systems (MEMS) microswitches, light-emitting diode (LED) display systems, and MEMS or quartz based oscillators. One of the main obstacles to commercialization.

用於裝置的轉移的傳統技術包括藉由從轉移晶圓至接收晶圓的晶圓接合的轉移。一個此類實施方式為「直接列印」,包括一裝置陣列從轉移晶圓至接收晶圓的一個接合步驟,接著移除轉移晶圓。另一此類實施方式為「轉移列印」,包括二個接合/分離步驟。在轉移列印中,轉移晶圓可拾取來自施體晶圓的一裝置陣列,及隨後將該裝置陣列接合至接收晶圓,接著移除轉移晶圓。 Conventional techniques for device transfer include transfer by wafer bonding from transfer wafer to receiving wafer. One such implementation is "direct printing," which includes a bonding step of a device array from a transfer wafer to a receiving wafer, followed by removal of the transfer wafer. Another such embodiment is a "transfer print" that includes two joining/separating steps. In transfer printing, the transfer wafer can pick up an array of devices from the donor wafer and then bond the device array to the receiving wafer, followed by removal of the transfer wafer.

已經開發一些列印製程變體,其中在轉移製程期間可有選擇地接合及分離裝置。在傳統的直接列印及轉移列印 技術及直接列印及轉移列印技術的變體兩者中,轉移晶圓在將裝置接合至接收晶圓之後與裝置分離。此外,轉移製程中涉及具有該裝置陣列的整個轉移晶圓。 A number of printing process variations have been developed in which the device can be selectively joined and separated during the transfer process. Direct printing and transfer printing in the traditional In both the technology and variations of direct printing and transfer printing techniques, the transfer wafer is separated from the device after bonding the device to the receiving wafer. In addition, the entire transfer wafer with the array of devices is involved in the transfer process.

揭示一種相容雙極性微裝置轉移頭及頭陣列,及轉移一或更多個微裝置至接收基板的方法。舉例而言,接收基板可為(但不限於)顯示基板、照明基板、具有諸如電晶體或積體電路(integrated circuit;IC)的功能裝置的基板或具有金屬重新分配線路的基板。 A method of transferring a head and head array of compatible bipolar microdevices and transferring one or more microdevices to a receiving substrate is disclosed. For example, the receiving substrate can be, but is not limited to, a display substrate, an illumination substrate, a substrate having a functional device such as a transistor or an integrated circuit (IC), or a substrate having a metal redistribution line.

在實施例中,相容雙極性微裝置轉移頭陣列包括底座基板及底座基板上方的圖案化矽層。舉例而言,底座基板可為(100)塊狀矽基板。圖案化矽層包括第一矽互連結構、與該矽互連結構電性連接的第一矽電極陣列、第二矽互連結構及與該第二矽互連結構電性連接的第二矽電極陣列。第一矽電極陣列及第二矽電極陣列中的每一矽電極包括電極引線及檯面結構,該檯面結構伸出在第一矽互連結構及第二矽互連結構上方。第一矽電極陣列及第二矽電極陣列對齊為一雙極性矽電極對陣列且彼此電性絕緣。第一矽互連結構及第二矽互連結構可彼此平行。每一矽電極亦可偏轉至底座基板與矽電極之間的腔內。舉例而言,一或更多個腔可形成在底座基板中。在實施例中,第一矽電極陣列及第二矽電極陣列可偏轉至底座基板中的同一腔內。在此實施例中,雙極性矽電極對陣列可偏轉至底座基板中的同一腔內。腔亦可環繞第一矽電極及第二矽電極中的一者或兩者的端。在實施例中,雙極 性電極對的陣列中的每一雙極性矽電極對可偏轉至單獨的腔內。諸如二氧化矽、二氧化鉿、氧化鋁或氧化鉭的介電層覆蓋每一檯面結構的頂表面。埋入的氧化物層可形成在圖案化矽層與底座基板之間。 In an embodiment, the compatible bipolar microdevice transfer head array includes a base substrate and a patterned germanium layer over the base substrate. For example, the base substrate can be a (100) block-shaped germanium substrate. The patterned germanium layer includes a first germanium interconnect structure, a first germanium electrode array electrically connected to the germanium interconnect structure, a second germanium interconnect structure, and a second germanium electrically connected to the second germanium interconnect structure Electrode array. Each of the first tantalum electrode array and the second tantalum electrode array includes an electrode lead and a mesa structure that protrudes over the first tantalum interconnect structure and the second tantalum interconnect structure. The first tantalum electrode array and the second tantalum electrode array are aligned as an array of bipolar tantalum electrode pairs and are electrically insulated from each other. The first germanium interconnect structure and the second germanium interconnect structure may be parallel to each other. Each of the electrodes can also be deflected into the cavity between the base substrate and the ruthenium electrode. For example, one or more cavities can be formed in the base substrate. In an embodiment, the first tantalum electrode array and the second tantalum electrode array can be deflected into the same cavity in the base substrate. In this embodiment, the array of bipolar ruthenium electrode pairs can be deflected into the same cavity in the base substrate. The cavity may also surround the ends of one or both of the first and second electrodes. In an embodiment, bipolar Each bipolar 矽 electrode pair in the array of pairs of electrodes can be deflected into a separate cavity. A dielectric layer such as cerium oxide, cerium oxide, aluminum oxide or cerium oxide covers the top surface of each mesa structure. A buried oxide layer may be formed between the patterned germanium layer and the base substrate.

在實施例中,雙極性矽電極對陣列形成跨過矽互連結構與第二矽互連結構之間的支撐梁陣列。舉例而言,氧化物接頭陣列可形成在第一矽電極陣列與第二矽電極陣列之間。圖案化矽層可位於埋入的氧化物層上且與埋入的氧化物層直接接觸,其中氧化物接頭位於埋入的氧化物層上且與埋入的氧化物層直接接觸。氧化物接頭可與第一矽互連結構陣列及第二矽互連結構陣列平行或垂直,且氧化物接頭位於第一矽電極陣列及第二矽電極陣列的檯面結構之間。支撐梁亦可包括例如在矽電極的矽電極引線中之彎曲。氧化物接頭陣列可沿著支撐梁陣列的縱向長度或橫向寬度分離第一矽電極陣列及第二矽電極陣列。 In an embodiment, the array of bipolar germanium electrode pairs forms an array of support beams between the tantalum interconnect structure and the second tantalum interconnect structure. For example, an oxide tab array can be formed between the first tantalum electrode array and the second tantalum electrode array. The patterned germanium layer can be on the buried oxide layer and in direct contact with the buried oxide layer, wherein the oxide joint is on the buried oxide layer and is in direct contact with the buried oxide layer. The oxide junction may be parallel or perpendicular to the first tantalum interconnect structure array and the second tantalum interconnect structure array, and the oxide joint is between the first tantalum electrode array and the second tantalum electrode array mesa structure. The support beam can also include, for example, a bend in the tantalum electrode lead of the tantalum electrode. The array of oxide tabs can separate the first tantalum electrode array and the second tantalum electrode array along a longitudinal or lateral width of the array of support beams.

在實施例中,雙極性矽電極對陣列形成跨過矽互連結構與第二矽互連結構之間的懸臂梁陣列。在實施例中,雙極性矽電極對中的每一矽電極為分離的懸臂梁,且開放空間位於第一矽電極陣列及第二矽電極陣列的檯面結構之間。懸臂梁可包括彎曲。在實施例中,第一矽電極陣列及第二矽電極陣列的檯面結構不藉由開放空間分離。舉例而言,氧化物接頭陣列可形成在懸臂梁陣列之第一矽電極與第二矽電極陣列之間。圖案化矽層可位於埋入的氧化物層上及與埋入的氧化物層直接接觸,其中氧化物接頭位於埋入的氧化物層上及 與埋入的氧化物層直接接觸。在實施例中,氧化物接頭沿著懸臂梁陣列的縱向長度分離第一矽電極陣列及第二矽電極陣列。在實施例中,氧化物接頭平行於第一矽互連結構及第二矽互連結構且位於第一矽電極陣列及第二矽電極陣列的檯面結構之間。 In an embodiment, the array of bipolar germanium electrode pairs forms an array of cantilever beams spanning between the tantalum interconnect structure and the second tantalum interconnect structure. In an embodiment, each of the bipolar iridium electrode pairs is a separate cantilever beam, and the open space is between the mesa structures of the first ruthenium electrode array and the second ruthenium electrode array. The cantilever beam can include a bend. In an embodiment, the mesa structures of the first tantalum electrode array and the second tantalum electrode array are not separated by an open space. For example, an array of oxide junctions can be formed between the first tantalum electrode and the second tantalum electrode array of the cantilever beam array. The patterned germanium layer may be on the buried oxide layer and in direct contact with the buried oxide layer, wherein the oxide joint is on the buried oxide layer and Direct contact with the buried oxide layer. In an embodiment, the oxide joint separates the first tantalum electrode array and the second tantalum electrode array along a longitudinal length of the cantilever beam array. In an embodiment, the oxide junction is parallel to the first tantalum interconnect structure and the second tantalum interconnect structure and between the mesa structures of the first tantalum electrode array and the second tantalum electrode array.

在實施例中,埋入的二氧化矽層位於圖案化矽層與底座基板之間。第一通孔延伸穿過底座基板及埋入的二氧化矽層,從底座基板的後側至圖案化矽層且與第一矽互連結構及第一矽電極陣列電性連接。第二通孔延伸穿過底座基板及埋入的二氧化矽層,從底座基板的後側至圖案化矽層且與第二矽互連結構及第二矽電極陣列電性連接。通孔可延伸穿過圖案化矽層或終止於圖案化矽層的底表面。 In an embodiment, the buried ruthenium dioxide layer is between the patterned ruthenium layer and the base substrate. The first via extends through the base substrate and the buried erbium oxide layer from the rear side of the base substrate to the patterned germanium layer and is electrically connected to the first germanium interconnect structure and the first germanium electrode array. The second via extends through the base substrate and the buried ceria layer from the rear side of the base substrate to the patterned germanium layer and is electrically connected to the second germanium interconnect structure and the second germanium electrode array. The via may extend through the patterned germanium layer or terminate in a bottom surface of the patterned germanium layer.

覆蓋該陣列及第二陣列中的每一檯面結構的頂表面的介電層可由諸如二氧化矽、二氧化鉿、氧化鋁及氧化鉭的材料形成。在一些實施例中,第一介電層橫向地位於雙極性電極配置中的矽電極陣列及第二矽電極陣列的檯面結構之間,且第一介電層位於覆蓋陣列及第二陣列中的每一檯面結構的頂表面的介電層下方。介電層可具有比第一介電層更高的介電常數或介電崩潰強度。 A dielectric layer covering the top surface of each of the array and the second array of the second array may be formed of a material such as hafnium oxide, hafnium oxide, aluminum oxide, and hafnium oxide. In some embodiments, the first dielectric layer is laterally located between the tantalum electrode array in the bipolar electrode configuration and the mesa structure of the second tantalum electrode array, and the first dielectric layer is located in the overlay array and the second array. Below the dielectric layer of the top surface of each mesa structure. The dielectric layer can have a higher dielectric constant or dielectric breakdown strength than the first dielectric layer.

在實施例中,形成相容雙極性微裝置轉移頭陣列的方法包括以下步驟:蝕刻絕緣體上矽堆疊的頂端矽層以形成與第一矽互連結構電性連接的第一矽電極陣列,及與第一矽電極陣列對齊且與第二矽互連結構電性連接的第二陣列矽電極,從而形成雙極性矽電極對陣列,其中第一矽電極陣列及 第二矽電極陣列中的每一矽電極包括電極引線及檯面結構,該檯面結構伸出在第一矽互連結構及第二矽互連結構上方。介電層隨後形成在第一矽電極陣列及第二矽電極陣列的上方,且一或更多個腔蝕刻至底座基板內正好在第一矽電極陣列及第二矽電極陣列下方,使得第一矽電極陣列及第二矽電極陣列中的每一矽電極可偏轉至一或更多個腔內。例如,使用SF6或XeF2的氟化電漿可完成一或更多個腔的蝕刻。在實施例中,在底座基板中正好在每一雙極性矽電極對下方蝕刻分離的腔。在實施例中,在底座基板中正好在雙極性矽電極對陣列下方蝕刻單個腔。在實施例中,在底座基板中蝕刻單個腔使得該單個腔環繞第一矽互連結構及第二矽互連結構中的一者或兩者。 In an embodiment, a method of forming a compatible bipolar micro device transfer head array includes the steps of etching a top germanium layer of a stack of insulators on an insulator to form a first germanium electrode array electrically connected to the first germanium interconnect structure, and a second array of germanium electrodes aligned with the first tantalum electrode array and electrically connected to the second tantalum interconnect structure, thereby forming an array of bipolar tantalum electrode pairs, wherein each of the first tantalum electrode array and the second tantalum electrode array The ruthenium electrode includes an electrode lead and a mesa structure that protrudes over the first 矽 interconnect structure and the second 矽 interconnect structure. a dielectric layer is then formed over the first tantalum electrode array and the second tantalum electrode array, and one or more cavities are etched into the base substrate just below the first tantalum electrode array and the second tantalum electrode array, such that the first Each of the tantalum electrode array and the second tantalum electrode array can be deflected into one or more cavities. For example, etching of one or more cavities can be accomplished using a fluorinated plasma of SF 6 or XeF 2 . In an embodiment, the separate chambers are etched just below each pair of bipolar germanium electrodes in the base substrate. In an embodiment, a single cavity is etched just below the array of bipolar germanium electrodes in the base substrate. In an embodiment, a single cavity is etched in the base substrate such that the single cavity surrounds one or both of the first germanium interconnect structure and the second germanium interconnect structure.

蝕刻頂端矽層可曝露埋入的氧化物層。可使用各種技術完成介電層的形成。在一些實施例中,介電層包括矽電極陣列的熱氧化。在一些實施例中,圖案化層形成於埋入的氧化物層上方及在形成介電層之後形成於介電層上方,且使用圖案化層蝕刻埋入的氧化物層以曝露底座基板的一部分。當在底座基板中正好在第一矽電極陣列及第二矽電極陣列下方蝕刻一或更多個腔時介電層可用作蝕刻遮罩。 Etching the top layer of germanium exposes the buried oxide layer. The formation of the dielectric layer can be accomplished using a variety of techniques. In some embodiments, the dielectric layer comprises thermal oxidation of a tantalum electrode array. In some embodiments, a patterned layer is formed over the buried oxide layer and over the dielectric layer after forming the dielectric layer, and the buried oxide layer is etched using the patterned layer to expose a portion of the base substrate . The dielectric layer can be used as an etch mask when one or more cavities are etched just below the first ruthenium electrode array and the second ruthenium electrode array in the base substrate.

在實施例中,在第一矽電極陣列及第二矽電極陣列的檯面結構之間蝕刻接頭溝槽陣列,同時蝕刻絕緣體上矽堆疊的頂端矽層以形成第一矽電極陣列及第二矽電極陣列。介電層亦可形成於接頭溝槽陣列的內部且直接接觸埋入的氧化物層,同時在第一矽電極陣列及第二矽電極陣列的上方形成 介電層。舉例而言,介電層可藉由第一矽電極陣列及第二矽電極陣列的熱氧化形成。介電層亦可使用介電層完全填充接頭溝槽陣列以在第一矽電極陣列與第二矽電極陣列之間形成氧化物接頭陣列。 In an embodiment, the joint trench array is etched between the mesa structures of the first tantalum electrode array and the second tantalum electrode array, and the top turn layer of the tantalum stack on the insulator is etched to form the first tantalum electrode array and the second tantalum electrode Array. The dielectric layer may also be formed inside the joint trench array and directly contact the buried oxide layer while forming over the first germanium electrode array and the second germanium electrode array. Dielectric layer. For example, the dielectric layer can be formed by thermal oxidation of the first tantalum electrode array and the second tantalum electrode array. The dielectric layer can also completely fill the joint trench array using a dielectric layer to form an oxide joint array between the first tantalum electrode array and the second tantalum electrode array.

第一後側通孔開口可經蝕刻穿過底座基板正好在第一矽互連結構下方,且第二後側通孔開口可經蝕刻穿過底座基板正好在第二矽互連結構下方,且鈍化層可形成於第一後側通孔開口及第二後側通孔開口內部。在實施例中,鈍化層藉由熱氧化底座基板形成於第一後側通孔開口及第二後側通孔開口內部,同時熱氧化第一矽電極陣列及第二矽電極陣列的陣列以形成介電層。圖案化導電層可例如藉由經由陰影遮罩沉積形成於第一通孔開口及第二通孔開口內部以與第一矽互連結構及第二矽互連結構進行電性接觸。 The first back side via opening may be etched through the base substrate just below the first germanium interconnect structure, and the second back side via opening may be etched through the base substrate just below the second germanium interconnect structure, and A passivation layer may be formed inside the first back side via opening and the second back side via opening. In an embodiment, the passivation layer is formed in the first back side via opening and the second back side via opening by thermally oxidizing the base substrate while thermally oxidizing the array of the first tantalum electrode array and the second tantalum electrode array to form Dielectric layer. The patterned conductive layer can be formed in the first via opening and the second via opening to be electrically contacted with the first germanium interconnect structure and the second germanium interconnect structure, for example, by shadow mask deposition.

在實施例中,蝕刻介電層以曝露第一矽互連結構及第二矽互連結構的一部分,同時蝕刻穿過埋入的氧化物層以曝露底座基板的部分。隨後蝕刻第一上側通孔開口穿過第一矽互連結構的第一曝露部分及埋入的氧化物層,且蝕刻第二上側通孔開口穿過第二矽互連結構的第二曝露部分及埋入的氧化物層。圖案化導電層隨後可形成於第一上側通孔開口及第二上側通孔開口內部以與第一矽互連結構及第二矽互連結構電性接觸。 In an embodiment, the dielectric layer is etched to expose a portion of the first germanium interconnect structure and the second germanium interconnect structure while etching through the buried oxide layer to expose portions of the base substrate. Subsequently etching the first upper via opening through the first exposed portion of the first germanium interconnect structure and the buried oxide layer, and etching the second upper via opening through the second exposed portion of the second germanium interconnect structure And a buried oxide layer. A patterned conductive layer can then be formed in the first upper via opening and the second upper via opening to electrically contact the first germanium interconnect structure and the second germanium interconnect structure.

在實施例中,蝕刻介電層以曝露檯面結構中的每一者,同時蝕刻穿過埋入的氧化物層以曝露底座基板的部分。第二介電層可隨後形成於檯面結構的每一者上方。在實施例 中,此可藉由第二介電層的毯覆沉積、接著去除第二介電層之一部分而完成。在一些實施例中,毯覆沉積可藉由原子層沉積完成。在實施例中,可額外地蝕刻介電層以曝露第一矽互連結構及第二矽互連結構的一部分,接著蝕刻第一上側通孔開口穿過第一矽互連結構的曝露部分及埋入的氧化物層,蝕刻第二上側通孔開口穿過第二矽互連結構的曝露部分及埋入的氧化物層,及在第一上側通孔開口及第二上側通孔開口內部形成圖案化導電層以與矽互連結構及第二矽互連結構進行電性接觸。形成於檯面結構的每一者上方的第二介電層及形成於第一上側通孔開口及第二上側通孔開口內部的導電層在蝕刻一或更多個腔時亦可用作蝕刻遮罩。 In an embodiment, the dielectric layer is etched to expose each of the terrace surface structures while etching through the buried oxide layer to expose portions of the base substrate. A second dielectric layer can then be formed over each of the mesa structures. In the embodiment This can be accomplished by blanket deposition of the second dielectric layer followed by removal of a portion of the second dielectric layer. In some embodiments, blanket deposition can be accomplished by atomic layer deposition. In an embodiment, the dielectric layer may be additionally etched to expose a portion of the first germanium interconnect structure and the second germanium interconnect structure, and then the first upper via opening is etched through the exposed portion of the first germanium interconnect structure and a buried oxide layer, etching the second upper via opening through the exposed portion of the second germanium interconnect structure and the buried oxide layer, and forming inside the first upper via opening and the second upper via opening The patterned conductive layer is in electrical contact with the germanium interconnect structure and the second germanium interconnect structure. The second dielectric layer formed over each of the mesa structures and the conductive layer formed inside the first upper via opening and the second upper via opening may also be used as an etch mask when etching one or more cavities cover.

100‧‧‧矽基板相容雙極性微裝置轉移頭陣列 100‧‧‧矽 substrate compatible bipolar micro device transfer head array

102‧‧‧相容轉移頭 102‧‧‧Compatible transfer head

104‧‧‧矽跡線互連結構 104‧‧‧矽 Trace interconnect structure

106‧‧‧匯流排互連結構 106‧‧‧ Bus Bar Interconnect Structure

110‧‧‧矽電極 110‧‧‧矽 electrode

112‧‧‧檯面結構 112‧‧‧ countertop structure

114‧‧‧電極引線 114‧‧‧Electrode lead

115‧‧‧彎曲 115‧‧‧Bend

116‧‧‧溝槽 116‧‧‧ trench

117‧‧‧接頭溝槽 117‧‧‧ joint groove

118‧‧‧介電層 118‧‧‧ dielectric layer

119‧‧‧氧化物接頭 119‧‧‧Oxide joint

120‧‧‧通孔 120‧‧‧through hole

120A‧‧‧通孔開口 120A‧‧‧through opening

120B‧‧‧通孔開口 120B‧‧‧through opening

121‧‧‧光阻劑 121‧‧‧ photoresist

122‧‧‧圖案化導電層 122‧‧‧ patterned conductive layer

123‧‧‧圖案化導電層 123‧‧‧ patterned conductive layer

124‧‧‧埋入的氧化物層 124‧‧‧buried oxide layer

126‧‧‧第二介電層 126‧‧‧Second dielectric layer

130‧‧‧底座基板 130‧‧‧Base substrate

132‧‧‧鈍化層 132‧‧‧ Passivation layer

133‧‧‧鈍化層 133‧‧‧passivation layer

136‧‧‧腔 136‧‧‧ cavity

137‧‧‧溝槽區域 137‧‧‧groove area

140‧‧‧矽層 140‧‧‧矽

142‧‧‧圖案化硬遮罩層 142‧‧‧ patterned hard mask

144‧‧‧島 144‧‧ Island

160‧‧‧轉移頭元件 160‧‧‧Transfer head components

200‧‧‧載體基板 200‧‧‧ Carrier substrate

202‧‧‧微裝置 202‧‧‧Microdevice

300‧‧‧接收基板 300‧‧‧ receiving substrate

3810‧‧‧操作 3810‧‧‧ operation

3820‧‧‧操作 3820‧‧‧ operation

3830‧‧‧操作 3830‧‧‧ operation

3840‧‧‧操作 3840‧‧‧ operation

3850‧‧‧操作 3850‧‧‧ operation

第1A圖為根據本發明的實施例的無接頭的具有單側夾緊懸臂梁對的相容雙極性微裝置轉移頭陣列的平面視圖。 1A is a plan view of a jointless, compatible bipolar microdevice transfer head array having a single side clamping cantilever pair, in accordance with an embodiment of the present invention.

第1B圖為根據本發明的實施例的具有一對單側夾緊懸臂梁及無接頭的相容雙極性微裝置轉移頭的平面視圖。 1B is a plan view of a compatible bipolar microdevice transfer head having a pair of single-sided clamping cantilever beams and jointless, in accordance with an embodiment of the present invention.

第1C圖為根據本發明的實施例的沿第1B圖中圖示的相容雙極性微裝置轉移頭的橫向線C-C的橫截面側視圖。 1C is a cross-sectional side view of the transverse line C-C of the compatible bipolar microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention.

第1D圖為根據本發明的實施例的沿第1B圖中圖示的相容雙極性微裝置轉移頭的縱向線D-D的橫截面側視圖。 1D is a cross-sectional side view of a longitudinal line D-D of the compatible bipolar microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention.

第2A圖至第2B圖為根據本發明的實施例的沿著第1A圖的線V-V、W-W、X-X、Y-Y及Z-Z的組合平面視圖及組合橫截面側視圖,圖示包括一對矽電極之間的開口接頭溝 槽及後側通孔開口的相容雙極性微裝置轉移頭。 2A through 2B are combined plan views and combined cross-sectional side views along lines VV, WW, XX, YY, and ZZ of Fig. 1A, including a pair of yttrium electrodes, in accordance with an embodiment of the present invention. Open joint groove Compatible bipolar microdevice transfer head with slot and rear side opening.

第3A圖至第3B圖為根據本發明的實施例的相容雙極性微裝置轉移頭的組合平面視圖及組合橫截面側視圖,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及該對矽電極之間及連接該對矽電極的氧化物接頭以及上側通孔開口及後側通孔開口。 3A-3B are combined plan views and combined cross-sectional side views of a compatible bipolar microdevice transfer head including a double-sided clamping support beam, in accordance with an embodiment of the present invention. And an oxide connector connecting the pair of electrodes and connecting the pair of electrodes, and an upper through hole opening and a rear side through opening.

第4A圖至第4B圖為根據本發明的實施例的相容雙極性微裝置轉移頭的組合平面視圖及組合橫截面側視圖,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及沉積介電層、一對矽電極110之間及連接該對矽電極110的氧化物接頭119以及上側通孔開口及後側通孔開口。 4A through 4B are combined plan views and combined cross-sectional side views of a compatible bipolar microdevice transfer head including a double-sided clamping support beam, in accordance with an embodiment of the present invention. And a deposition dielectric layer, a pair of germanium electrodes 110, and an oxide joint 119 connecting the pair of germanium electrodes 110, and an upper through hole opening and a rear side through hole opening.

第5A圖至第15B圖圖示根據本發明的實施例的形成包括該對矽電極之間的開口接頭溝槽及後側通孔開口的相容雙極性微裝置轉移頭的方法。 5A through 15B illustrate a method of forming a compatible bipolar microdevice transfer head including an open joint groove and a rear side through hole opening between the pair of turns electrodes, in accordance with an embodiment of the present invention.

第16A圖為根據本發明的實施例的具有雙側夾緊支撐梁及檯面接頭的相容雙極性微裝置轉移頭陣列的平面視圖。 Figure 16A is a plan view of a compatible bipolar microdevice transfer head array having dual clamping support beams and mesa joints in accordance with an embodiment of the present invention.

第16B圖為根據本發明的實施例的具有雙側夾緊支撐梁及檯面接頭的相容雙極性微裝置轉移頭的平面視圖。 Figure 16B is a plan view of a compatible bipolar microdevice transfer head having dual clamping support beams and mesa joints in accordance with an embodiment of the present invention.

第16C圖為根據本發明的實施例的沿第16B圖中圖示的相容雙極性微裝置轉移頭的橫向線C-C的橫截面側視圖。 Figure 16C is a cross-sectional side view of transverse line C-C of the compatible bipolar microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention.

第16D圖為根據本發明的實施例的沿第16B圖中圖示的相容雙極性微裝置轉移頭的縱向線D-D的橫截面側視 圖。 Figure 16D is a cross-sectional side view of the longitudinal line D-D of the compatible bipolar microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention. Figure.

第17A圖至第24B圖圖示根據本發明之實施例的形成相容雙極性微裝置轉移頭的方法,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及在該對矽電極之間及連接該對矽電極的氧化物接頭以及上側通孔開口及後側通孔開口。 17A through 24B illustrate a method of forming a compatible bipolar microdevice transfer head including a double-sided clamping support beam and a pair of tantalum electrodes, in accordance with an embodiment of the present invention. And an oxide joint connecting the pair of electrodes and an upper through hole opening and a rear side through opening.

第25A圖至第30B圖圖示根據本發明之實施例的形成相容雙極性微裝置轉移頭的方法,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及沉積介電層、在該對矽電極之間及連接該對矽電極的氧化物接頭以及上側通孔開口及後側通孔開口。 25A through 30B illustrate a method of forming a compatible bipolar microdevice transfer head including a double-sided clamping support beam and a deposition dielectric layer, in accordance with an embodiment of the present invention, An oxide connector connecting the pair of electrodes and an upper side opening and a rear side opening are connected between the pair of electrodes.

第31圖為根據本發明的實施例的沿著具有懸臂梁及連續的接頭的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。 Figure 31 is a plan view and cross-sectional side view of line A-A along a compatible bipolar microdevice transfer head having a cantilever beam and a continuous joint, in accordance with an embodiment of the present invention.

第32圖為根據本發明的實施例的沿著具有懸臂梁及檯面接頭的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。 Figure 32 is a plan view and cross-sectional side view of line A-A along a compatible bipolar microdevice transfer head having a cantilever beam and a mesa joint, in accordance with an embodiment of the present invention.

第33圖為根據本發明的實施例的沿著具有雙側夾緊梁及連續的接頭的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。 Figure 33 is a plan view and cross-sectional side view of line A-A along a compatible bipolar microdevice transfer head having a double sided clamping beam and a continuous joint, in accordance with an embodiment of the present invention.

第34圖為根據本發明的實施例的沿著具有包括一對矽電極(具有雙彎曲及檯面接頭)的雙側夾緊梁的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。 Figure 34 is a plan view and cross-section of line AA of a compatible bipolar microdevice transfer head having a double sided clamping beam including a pair of 矽 electrodes (with double bends and mesa joints) in accordance with an embodiment of the present invention. Sectional side view.

第35圖為根據本發明的實施例的沿著具有包括一對矽電極(具有單個彎曲及檯面接頭)的雙側夾緊梁的相容 雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。 Figure 35 is a diagram of compatibility along a double-sided clamping beam having a pair of tantalum electrodes (with a single curved and mesa joint) in accordance with an embodiment of the present invention. A plan view and a cross-sectional side view of line A-A of the bipolar microdevice transfer head.

第36圖為根據本發明的實施例的沿著具有包括一對矽電極(具有雙彎曲及檯面接頭)的雙側夾緊梁的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。 Figure 36 is a plan view and cross-section of line AA of a compatible bipolar microdevice transfer head having a double-sided clamping beam including a pair of tantalum electrodes (with double bends and mesa joints) in accordance with an embodiment of the present invention. Sectional side view.

第37圖為根據本發明的實施例的沿著具有包括一對矽電極(具有雙彎曲及檯面接頭)的雙側夾緊梁的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。 Figure 37 is a plan view and cross-section of line AA of a compatible bipolar microdevice transfer head having a double sided clamping beam including a pair of 矽 electrodes (with double bends and mesa joints) in accordance with an embodiment of the present invention. Sectional side view.

第38圖為圖示根據本發明的實施例的從載體基板拾取及轉移微裝置陣列至接收基板的方法的流程圖。 Figure 38 is a flow chart illustrating a method of picking up and transferring a microdevice array from a carrier substrate to a receiving substrate in accordance with an embodiment of the present invention.

第39圖為根據本發明的實施例的位於載體基板上的微裝置陣列上方的相容雙極性微裝置轉移頭陣列的橫截面側視圖。 Figure 39 is a cross-sectional side view of a compatible bipolar microdevice transfer head array over a microdevice array on a carrier substrate in accordance with an embodiment of the present invention.

第40圖為根據本發明的實施例的接觸微裝置陣列的相容雙極性微裝置轉移頭陣列的橫截面側視圖。 Figure 40 is a cross-sectional side view of a compatible bipolar microdevice transfer head array of contact microdevice arrays in accordance with an embodiment of the present invention.

第41圖為根據本發明的實施例的拾取微裝置陣列的相容雙極性微裝置轉移頭陣列的橫截面側視圖。 Figure 41 is a cross-sectional side view of a compatible bipolar microdevice transfer head array of a pick-up microdevice array in accordance with an embodiment of the present invention.

第42圖為根據本發明的實施例的釋放至接收基板上的微裝置陣列的橫截面側視圖。 Figure 42 is a cross-sectional side view of an array of micro devices released onto a receiving substrate in accordance with an embodiment of the present invention.

本發明的實施例描述一種相容雙極性微裝置轉移頭及頭陣列,及轉移微裝置及微裝置陣列至接收基板的方法。舉例而言,相容雙極性微裝置轉移頭及頭陣列可用於將諸如但不限於二極體、LED、電晶體、IC及MEMS的微裝置從載體基板轉移至諸如但不限於顯示基板、照明基板及具有功能 裝置(諸如電晶體或積體電路(IC))的基板或具有金屬重新分配線路的基板的接收基板。 Embodiments of the present invention describe a compatible bipolar microdevice transfer head and head array, and a method of transferring a microdevice and a microdevice array to a receiving substrate. For example, compatible bipolar micro device transfer heads and head arrays can be used to transfer micro devices such as, but not limited to, diodes, LEDs, transistors, ICs, and MEMS from a carrier substrate to, for example, but not limited to, display substrates, illumination Substrate and function A substrate of a device such as a transistor or an integrated circuit (IC) or a receiving substrate of a substrate having a metal redistribution line.

在各種實施例中,參閱圖式進行描述。然而,可無需此等具體細節中的一或更多個來實踐某些實施例,或結合其他已知的方法及配置來實踐某些實施例。在以下描述中,闡明許多具體細節,諸如具體配置、尺寸及製程等等,以便提供對本發明的透徹理解。在其他情況中,沒有以特定細節描述眾所周知的半導體製程及製造技術,以便不會不必要地模糊本發明。遍及此說明書引用「一個實施例」及「實施例」等等意謂結合實施例描述的特定特徵、結構、配置或特性包括在本發明的至少一個實施例中。因此,遍及此說明書各處的片語「在一個實施例中」、「實施例」等等的出現不一定代表本發明的相同實施例。此外,在一或更多個實施例中,特定特徵、結構、配置或特性可以任何適當的方式組合。 In various embodiments, the description is made with reference to the drawings. However, some embodiments may be practiced without one or more of these specific details, or in combination with other known methods and configurations. In the following description, numerous specific details are set forth, such as, In other instances, well-known semiconductor processes and fabrication techniques have not been described in detail, so as not to unnecessarily obscure the invention. The specific features, structures, configurations, or characteristics described in connection with the embodiments are included in the description of the embodiments. Thus, appearances of the phrases "in one embodiment", "the embodiment" Furthermore, the particular features, structures, configurations, or characteristics may be combined in any suitable manner in one or more embodiments.

如此處使用的術語「之上方」、「至」、「之間」及「之上」可代表一個層相對於其他層的相對位置。在另一層「之上方」或「之上」或接合「至」另一層的一個層可與該另一層直接接觸或可具有一或更多個插入層。層「之間」的一個層可直接接觸該等層或可具有一或更多個插入層。 The terms "above", "to", "between" and "above" as used herein may denote the relative position of one layer relative to the other. A layer "on" or "above" another layer or "on" another layer may be in direct contact with the other layer or may have one or more intervening layers. A layer "between" the layers may be in direct contact with the layers or may have one or more intervening layers.

如此處使用的術語「微」裝置或「微」LED結構可代表根據本發明的實施例的某些裝置或結構的描述性大小。如此處所使用的,術語「微」裝置或結構意謂代表1μm至100μm的數量級。然而,將理解,本發明的實施例非必要地限制於此,且實施例的某些態樣可適合於更大的或可能更小的尺 寸數量級。 The term "micro" device or "micro" LED structure as used herein may refer to a descriptive size of certain devices or structures in accordance with embodiments of the present invention. As used herein, the term "micro" device or structure means of the order of 1 μm to 100 μm. However, it will be understood that embodiments of the invention are not necessarily limited thereto, and that certain aspects of the embodiments may be adapted to larger or possibly smaller feet. Insult order.

在一個態樣中,不受限於特定理論,本發明的實施例描述微裝置轉移頭及頭陣列,該等微裝置轉移頭及頭陣列根據靜電夾的原理操作、使用相反電荷的吸引力拾取微裝置。根據本發明的實施例,拉入電壓被施加至微裝置轉移頭,以便在微裝置上產生夾緊壓力及拾取微裝置。舉例而言,轉移頭可包括雙極性電極配置。 In one aspect, without being limited to a particular theory, embodiments of the present invention describe microdevice transfer heads and head arrays that operate according to the principle of electrostatic chucks, using oppositely charged attractive pickups Micro device. In accordance with an embodiment of the invention, a pull-in voltage is applied to the microdevice transfer head to create a clamping pressure and pick up the microdevice on the microdevice. For example, the transfer head can include a bipolar electrode configuration.

在一個態樣中,本發明的實施例描述相容雙極性微裝置轉移頭及轉移的方法,在該方法中,相較於非相容轉移頭陣列,相容雙極性微裝置轉移頭陣列賦能與微裝置陣列的改良的接觸。相容雙極性微裝置轉移頭包括雙極性矽電極對陣列,該雙極性矽電極對陣列可偏轉至底座基板與雙極性矽電極對之間的一或更多個腔內。在應用中,當相容雙極性微裝置轉移頭陣列下降至微裝置陣列上時,與較高的或受污染的微裝置相關的可偏轉的矽電極可比與載體基板上的較矮的微裝置相關的矽電極偏轉更多。以此方式,相容雙極性微裝置轉移頭可補償微裝置的高度的變化。補償高度變化可導致施加至某些微裝置的壓縮力減少,從而保護微裝置及轉移頭陣列的實體完整性。補償高度變化亦可幫助每一相容轉移頭與每一微裝置進行接觸,且保證拾取每一所欲的微裝置。沒有微裝置轉移頭的相容性質,不規則微裝置高度或單個微裝置的頂表面上的顆粒可防止其餘的轉移頭與陣列中其餘的微裝置進行接觸。因此,氣隙可形成於彼等轉移頭與微裝置之間。因有此氣隙,有可能目標施加電壓不會產生充分的克服 氣隙的夾緊壓力,從而產生不完全的拾取製程。 In one aspect, embodiments of the present invention describe a compatible bipolar microdevice transfer head and transfer method in which a compatible bipolar micro device transfer head array is assigned to an incompatible transfer head array. Improved contact with micro device arrays. The compatible bipolar microdevice transfer head includes an array of bipolar tantalum electrode pairs that are deflectable into one or more cavities between the base substrate and the bipolar tantalum electrode pair. In an application, when the compatible bipolar microdevice transfer head array is lowered onto the micro device array, the deflectable germanium electrode associated with the higher or contaminated microdevice can be compared to the shorter microdevice on the carrier substrate The associated tantalum electrode deflects more. In this manner, the compatible bipolar microdevice transfer head can compensate for variations in the height of the micro device. Compensating for height variations can result in reduced compression forces applied to certain microdevices, thereby protecting the physical integrity of the microdevice and transfer head array. Compensating for height variations can also help each compatible transfer head to make contact with each micro device and to ensure that each desired micro device is picked up. Without the compatible nature of the microdevice transfer head, irregular microdevice heights or particles on the top surface of a single microdevice can prevent the remaining transfer heads from coming into contact with the remaining microdevices in the array. Thus, an air gap can be formed between their transfer heads and the microdevice. Because of this air gap, it is possible that the target voltage will not be fully overcome. The clamping pressure of the air gap, resulting in an incomplete pick-up process.

在另一態樣中,本發明的實施例描述由可購買的包括底座基板、埋入氧化物層及頂端矽層的絕緣體上矽(silicon-on-insulator;SOI)基板,形成相容雙極性微裝置轉移頭陣列的方式。在此實施例中,矽互連結構及電極陣列由SOI基板的頂端矽層形成。在實施例中,雙極性靜電轉移頭包括一對矽電極,其中每一矽電極包括檯面結構及電極引線。用於該對矽電極的檯面結構伸出在該對矽電極各自的矽互連結構上方以提供本地的接觸點,從而在拾取操作期間拾取特定的微裝置。以此方式,形成圖案化金屬電極為非必要的。已經觀察到當金屬電極及電極引線的圖案化使用負光阻劑時,例如,可能難以控制光阻劑在不同深度(例如,沿著檯面結構的頂表面及下側壁兩者)的曝露。在光阻劑移除期間亦已經觀察到圖案化金屬層的剝落,潛在影響轉移頭的可操作性。根據本發明的實施例,在檯面結構上方形成圖案化金屬電極並非必需。相反,檯面結構的伸出輪廓藉由圖案化矽電極形成以包括對應於檯面結構的凸起部分,該凸起部分遠離底座基板及在矽互連結構上方伸出。 In another aspect, embodiments of the invention describe a compatible silicon-on-insulator (SOI) substrate comprising a base substrate, a buried oxide layer, and a top germanium layer to form a compatible bipolar The way the micro device transfers the array of heads. In this embodiment, the germanium interconnect structure and the electrode array are formed by the top layer of the SOI substrate. In an embodiment, the bipolar electrostatic transfer head includes a pair of tantalum electrodes, wherein each of the tantalum electrodes includes a mesa structure and electrode leads. A mesa structure for the pair of turns electrodes extends over the respective turns interconnect structure of the pair of turns electrodes to provide local contact points for picking up particular micro devices during the picking operation. In this way, it is not necessary to form a patterned metal electrode. It has been observed that when the metal electrode and electrode lead are patterned using a negative photoresist, for example, it may be difficult to control the exposure of the photoresist at different depths (eg, along both the top and bottom sidewalls of the mesa structure). Peeling of the patterned metal layer has also been observed during photoresist removal, potentially affecting the operability of the transfer head. According to an embodiment of the invention, it is not necessary to form a patterned metal electrode over the mesa structure. In contrast, the projecting profile of the mesa structure is formed by patterning the erbium electrode to include a raised portion corresponding to the mesa structure that extends away from the base substrate and over the 矽 interconnect structure.

根據本發明的實施例製備的矽電極可包括整體形成的檯面結構,該等檯面結構相較於非整體地形成的具有圖案化金屬電極的檯面結構實質上更高。光刻法可限制圖案化金屬電極結構至5μm至10μm的高度,然而矽電極檯面結構可達到20μm至30μm或更高。用於矽電極結構的檯面結構高度藉由蝕刻縱橫比及電極間隙(例如,一對雙極性矽電極的 檯面結構之間的溝槽)限制。在實施例中,矽電極檯面結構的檯面結構高度與溝槽寬度的縱橫比範圍可為10:1至20:1。舉例而言,雙極性電極配置中的矽電極檯面結構可為20μm高,藉由檯面結構之間的2μm的溝槽間隙分離。更高的電極結構亦可為污染物顆粒提供更大的間隙且減少非目標微裝置上出現的雜散效應。當相較於金屬化檯面結構時,對於表面污染及微裝置轉移頭關於微裝置載體基板的平面對準的誤差,具有整體形成的檯面結構的矽電極可為更穩健的。 The tantalum electrode prepared in accordance with an embodiment of the present invention may comprise an integrally formed mesa structure that is substantially higher than a mesa structure having a patterned metal electrode that is not integrally formed. Photolithography can limit the patterned metal electrode structure to a height of 5 μm to 10 μm, whereas the tantalum electrode mesa structure can reach 20 μm to 30 μm or higher. The mesa structure height for the germanium electrode structure is etched by the aspect ratio and the electrode gap (eg, a pair of bipolar germanium electrodes) The groove between the mesa structures is limited. In an embodiment, the aspect ratio of the mesa structure height to the trench width of the tantalum electrode mesa structure may range from 10:1 to 20:1. For example, the tantalum electrode mesa structure in a bipolar electrode configuration can be 20 μm high, separated by a 2 μm trench gap between mesa structures. Higher electrode configurations can also provide greater clearance for contaminant particles and reduce spurious effects on non-target microdevices. The tantalum electrode having an integrally formed mesa structure may be more robust when compared to metallized mesa structures, for surface contamination and errors in the planar alignment of the microdevice transfer substrate with respect to the microdevice carrier substrate.

在另一態樣中,本發明的實施例描述由可購買的絕緣體上矽(SOI)基板形成微裝置轉移頭陣列的方式,該方式允許具有最少處理步驟的處理序列。處理序列並不要求金屬沉積及圖案化步驟來形成金屬電極,此減輕了熱處理限制且允許藉由高溫熱氧化形成介電層及鈍化層,引起沉積及圖案化操作的減少。根據本發明的實施例的處理序列可合併不同特徵結構的同時蝕刻或氧化操作,減少處理期間需要的遮罩的數量。 In another aspect, embodiments of the present invention describe a manner in which a microdevice transfer head array is formed from a commercially available insulator-on-insulator (SOI) substrate that allows for a processing sequence with minimal processing steps. The processing sequence does not require metal deposition and patterning steps to form the metal electrode, which reduces heat treatment limitations and allows the formation of dielectric and passivation layers by high temperature thermal oxidation, resulting in reduced deposition and patterning operations. A processing sequence in accordance with embodiments of the present invention can incorporate simultaneous etching or oxidation operations of different features to reduce the number of masks required during processing.

在另一態樣中,本發明的實施例描述轉移頭及轉移頭陣列,該轉移頭及轉移頭陣列包括延伸穿過底座基板從底座基板的後側至圖案化矽層的通孔,該通孔用於連接電極與轉移頭元件的工作電路系統。根據本發明的實施例的處理序列亦賦能延伸穿過底座基板的通孔使用高溫熱氧化生長的鈍化。 In another aspect, embodiments of the present invention describe a transfer head and a transfer head array including a through hole extending through a base substrate from a rear side of the base substrate to the patterned ruthenium layer, the pass The holes are used to connect the electrodes to the working circuitry of the transfer head element. The processing sequence in accordance with an embodiment of the present invention also imparts passivation that extends through the via of the base substrate using high temperature thermal oxidation growth.

在又一態樣中,本發明的實施例描述用於使用相容轉移頭陣列大量轉移預先製造的微裝置的陣列的方式。舉例 而言,預先製造的微裝置可具有特定功能,諸如但不限於,用於發光的LED、用於邏輯及記憶體的矽IC及用於射頻(RF)通訊的砷化鎵(GaAs)電路。在一些實施例中,將可能用於拾取的微LED裝置陣列描述為具有10μm乘以10μm節距,或5μm乘以5μm節距。在此等密度下,6吋基板(例如)可容納具有10μm乘以10μm節距的大約1.65億個微LED裝置,或具有5μm乘以5μm節距的大約6.6億個微LED裝置。包括匹配對應的微LED裝置陣列的節距的整數倍數的相容轉移頭陣列的轉移工具可用於拾取及轉移微LED裝置陣列至接收基板。以此方式,有可能以高轉移率整合及裝配微LED裝置至不均相整合的系統,包括從微顯示器至大面積顯示器範圍中的任何大小的基板。舉例而言,1cm乘以1cm的微裝置轉移頭陣列可拾取及轉移十萬個以上的微裝置,其中更大的微裝置轉移頭陣列能夠轉移更多的微裝置。 In yet another aspect, embodiments of the present invention describe a manner for mass transfer of an array of pre-fabricated microdevices using a compatible transfer head array. Example In other words, pre-fabricated microdevices may have specific functions such as, but not limited to, LEDs for illumination, germanium ICs for logic and memory, and gallium arsenide (GaAs) circuits for radio frequency (RF) communication. In some embodiments, an array of micro LED devices that may be used for picking is described as having a pitch of 10 [mu]m by 10 [mu]m, or a pitch of 5 [mu]m by 5 [mu]m. At these densities, a 6-inch substrate, for example, can accommodate approximately 165 million micro-LED devices having a pitch of 10 μm by 10 μm, or approximately 660 million micro-LED devices having a pitch of 5 μm by 5 μm. A transfer tool comprising a compatible transfer head array that matches an integer multiple of the pitch of the corresponding array of micro LED devices can be used to pick up and transfer the array of micro LED devices to the receiving substrate. In this way, it is possible to integrate and assemble micro-LED devices to a heterogeneously integrated system at high transfer rates, including substrates of any size ranging from microdisplays to large area displays. For example, a 1 cm by 1 cm microdevice transfer head array can pick up and transfer more than 100,000 micro devices, with a larger micro device transfer head array capable of transferring more micro devices.

現在參閱第1A圖,提供用於沒有接頭的具有單側夾緊懸臂梁對的雙極性微裝置轉移頭陣列的一部分的平面視圖,且平面視圖包括在不同深度的視圖。在圖示的特定實施例中,從相容雙極性微裝置轉移頭陣列的頂表面來看,陰影區域圖示矽電極及矽互連結構的佈置。從相容雙極性微裝置轉移頭陣列的後側表面來看,較暗的陰影圖示後側通孔連接。以此方式,平面視圖提供關於已經由SOI晶圓的兩側形成的結構的細節。 Referring now to FIG. 1A, a plan view of a portion of a bipolar microdevice transfer head array having a single-sided clamp cantilever pair without a joint is provided, and the plan view includes views at different depths. In the particular embodiment illustrated, the shaded regions illustrate the arrangement of the germanium electrodes and the germanium interconnect structure as viewed from the top surface of the compatible bipolar microdevice transfer head array. From the rear side surface of the compatible bipolar microdevice transfer head array, the darker shading shows the rear side via connection. In this way, the plan view provides details about the structure that has been formed by the sides of the SOI wafer.

如圖所示,相容雙極性微裝置轉移頭陣列100包括連接至矽跡線互連結構104及匯流排互連結構106的佈置的 相容轉移頭102之陣列。如圖所示,匯流排互連結構106可形成在包括相容轉移頭102之陣列的相容雙極性轉移頭陣列的工作區域週邊周圍或外面。在實施例中,每一相容轉移頭102包括一對矽電極110,其中每一矽電極110包括檯面結構112及連接至矽跡線互連結構104的電極引線114。如圖所示,每一相容轉移頭102採用一對單側夾緊懸臂梁的形式在矽跡線互連結構104的對側夾緊。用於第1A圖圖示的實施例的每一相容轉移頭102的該對矽電極110沒有接合,如藉由該對檯面結構112之間的接頭溝槽117所示。在圖示的實施例中,相容雙極性微裝置轉移頭陣列100中的檯面結構112對陣列以與待拾取的微裝置大約相同的節距佈置,例如,10μm乘以10μm,或5μm乘以5μm。 As shown, the compatible bipolar microdevice transfer head array 100 includes an arrangement that is coupled to the turns trace interconnect structure 104 and the bus bar interconnect structure 106. An array of compatible transfer heads 102. As shown, the busbar interconnect structure 106 can be formed around or outside the perimeter of the work area of the compatible bipolar transfer head array including the array of compatible transfer heads 102. In an embodiment, each compatible transfer head 102 includes a pair of germanium electrodes 110, wherein each germanium electrode 110 includes a mesa structure 112 and an electrode lead 114 connected to the germanium trace interconnect structure 104. As shown, each compatible transfer head 102 is clamped on the opposite side of the meander line interconnect structure 104 in the form of a pair of single-sided clamp cantilever beams. The pair of germanium electrodes 110 for each of the compatible transfer heads 102 of the embodiment illustrated in FIG. 1A are not joined, as shown by the joint trenches 117 between the pair of mesa structures 112. In the illustrated embodiment, the mesa structure 112 in the compatible bipolar microdevice transfer head array 100 is arranged at approximately the same pitch as the micro device to be picked up, for example, 10 μm by 10 μm, or 5 μm multiplied by 5 μm.

在實施例中,形成複數個通孔120穿過底座基板的後側至圖案化矽層以與匯流排互連結構106進行接觸,以便電性連接矽電極110與轉移頭元件的工作電路系統。在第1A圖圖示的實施例中,圖式左側的匯流排互連結構106可連接至第一電壓源VA,且圖式右側的匯流排互連結構106可連接至第二電壓源VB。當每一相容轉移頭102為作為雙極性轉移頭可操作時,電壓源VA及電壓源VB可同時地施加相反的電壓,使得各自的相容轉移頭102中的矽電極110的每一者具有相反的電壓。 In an embodiment, a plurality of vias 120 are formed through the back side of the base substrate to the patterned germanium layer to make contact with the bus bar interconnect structure 106 to electrically connect the germanium electrode 110 with the operating circuitry of the transfer head element. In the embodiment illustrated in FIG. 1A, the busbar interconnect structure 106 on the left side of the drawing can be connected to the first voltage source V A , and the bus bar interconnect structure 106 on the right side of the drawing can be connected to the second voltage source V. B. When each compatible transfer head 102 is operable as a bipolar transfer head, the voltage source V A and the voltage source V B can simultaneously apply opposite voltages such that each of the tantalum electrodes 110 in the respective compatible transfer heads 102 One has the opposite voltage.

第1B圖為根據本發明的實施例的具有一對單側夾緊懸臂梁及無接頭的相容雙極性微裝置轉移頭的平面視圖。如圖所示,相對的矽電極110在對側夾緊至矽跡線互連結構 104。出於說明清楚的目的,第1B圖中僅圖示單個相容轉移頭102跨過兩個矽跡線互連結構104之間,儘管根據本發明的實施例,雙極性轉移頭陣列可跨過矽跡線互連結構104之間。用於每一相容轉移頭102的該對矽電極110沒有接合,如藉由該對檯面結構112之間的接頭溝槽117所示。在圖示的實施例中,接頭溝槽117平行於矽跡線互連結構104。第1C圖為根據本發明的實施例的沿第1B圖中圖示的相容雙極性微裝置轉移頭的橫向線C-C的橫截面側視圖。在第1C圖圖示的實施例中,雙極性電極配置中的每一矽電極110從分離的矽跡線互連結構104延伸。第1D圖為根據本發明的實施例的沿第1B圖中圖示的相容雙極性微裝置轉移頭的縱向線D-D的橫截面側視圖。如第1C圖至第1D圖所圖示,矽電極檯面結構112及電極引線114兩者在底座基板130與矽電極110之間的腔136上方延伸且可偏轉至腔136內。在實施例中,單個腔136形成在雙極性矽電極陣列110下方及兩個分離的矽跡線互連結構104之間。再次參閱第1A圖,單個或多個分離腔136可形成在矽跡線互連結構104之陣列之間。在實施例中,腔136為相同的腔。舉例而言,腔136可環繞矽跡線互連結構104及位於矽電極陣列110的下方。溝槽116亦可形成在圖案化矽層中界定矽電極110及矽跡線互連結構104及匯流排互連結構106,如以下描述更詳細描述的。若腔136不環繞矽跡線互連結構104的端,則溝槽116亦可形成在圖案化矽層中矽跡線互連結構104的該端處。 1B is a plan view of a compatible bipolar microdevice transfer head having a pair of single-sided clamping cantilever beams and jointless, in accordance with an embodiment of the present invention. As shown, the opposing tantalum electrode 110 is clamped to the tantalum trace interconnect structure on the opposite side. 104. For purposes of clarity, only a single compatible transfer head 102 is illustrated in FIG. 1B spanning between two turns of trace interconnect structure 104, although a bipolar transfer head array may be crossed in accordance with an embodiment of the present invention. Between the trace interconnect structures 104. The pair of turns electrodes 110 for each compatible transfer head 102 are not joined, as shown by the joint grooves 117 between the pair of mesa structures 112. In the illustrated embodiment, the joint trench 117 is parallel to the meander trace interconnect structure 104. 1C is a cross-sectional side view of the transverse line C-C of the compatible bipolar microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention. In the embodiment illustrated in FIG. 1C, each of the germanium electrodes 110 in the bipolar electrode configuration extends from the separate germanium trace interconnect structure 104. 1D is a cross-sectional side view of a longitudinal line D-D of the compatible bipolar microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention. As illustrated in FIGS. 1C-1D, both of the erbium mesa structure 112 and the electrode leads 114 extend over the cavity 136 between the base substrate 130 and the 矽 electrode 110 and can be deflected into the cavity 136. In an embodiment, a single cavity 136 is formed under the bipolar germanium electrode array 110 and between two separate germanium trace interconnect structures 104. Referring again to FIG. 1A, a single or multiple separation cavities 136 can be formed between the array of meander line interconnect structures 104. In an embodiment, the cavities 136 are the same cavity. For example, cavity 136 can surround germanium trace interconnect structure 104 and be located below germanium electrode array 110. Trench 116 may also be formed in the patterned germanium layer to define germanium electrode 110 and germanium trace interconnect structure 104 and busbar interconnect structure 106, as described in more detail below. If the cavity 136 does not surround the end of the meandering interconnect structure 104, the trench 116 may also be formed at the end of the patterned trace interconnect structure 104 in the patterned germanium layer.

現在參閱第2A圖至第2B圖、第3A圖至第3B圖及 第4A圖至第4B圖,該等圖一起圖示根據本發明的實施例的各種不同的相容雙極性轉移頭陣列配置。將理解,雖然分別圖示及描述以下變體,但該等變體不一定彼此不相容,且在一或更多個實施例中該等變體可以任何適當的方式組合。 Referring now to Figures 2A through 2B, Figures 3A through 3B and 4A through 4B, which together illustrate various different compatible bipolar transfer head array configurations in accordance with embodiments of the present invention. It will be understood that while the following variations are illustrated and described separately, the variations are not necessarily incompatible with each other, and in one or more embodiments the variations may be combined in any suitable manner.

第2A圖至第2B圖為根據本發明的實施例的沿著第1A圖的線V-V、W-W、X-X、Y-Y及Z-Z的組合平面視圖及組合橫截面側視圖。第3A圖至第3B圖及第4A圖至第4B圖為如在第2A圖至第2B圖中的彼等類似方式繪製的組合平面視圖及組合橫截面側視圖。組合視圖並非表示針對圖示的所有不同特徵結構的精確的相對位置,確切而言,組合視圖組合先前在第1A圖中識別的不同位置處的具體特徵結構,以便更容易地表示處理序列的特定變化。舉例而言,雖然組合橫截面側視圖圖示對應於一個矽電極110的一個通孔120時,但從第1A圖可見,一個通孔120可與沿著一或更多個矽跡線互連結構104的複數個矽電極110電性連接。如圖所示,線W-W及線Y-Y沿著通孔120。如圖所示,線V-V及線Z-Z沿著界定矽電極110及矽跡線互連結構104及匯流排互連結構106的一或更多個溝槽116。如圖所示,線X-X穿過包括一對矽電極110的雙極性轉移頭。再次參閱第1A圖,一或更多個腔136可形成在所有矽電極110周圍及下方,及矽跡線互連結構104及匯流排互連結構106之間。 2A through 2B are combined plan views and combined cross-sectional side views along lines V-V, W-W, X-X, Y-Y, and Z-Z of Fig. 1A, in accordance with an embodiment of the present invention. 3A to 3B and 4A to 4B are combined plan views and combined cross-sectional side views as drawn in the similar manners in Figs. 2A to 2B. The combined view does not represent an exact relative position for all of the different features of the illustration, in particular, the combined view combines the specific features at different locations previously identified in Figure 1A to more easily represent the specificity of the processing sequence Variety. For example, although a combined cross-sectional side view illustrates one via 120 corresponding to one germanium electrode 110, as seen in FIG. 1A, one via 120 can be interconnected along one or more traces The plurality of germanium electrodes 110 of the structure 104 are electrically connected. As shown, the line W-W and the line Y-Y are along the through hole 120. As shown, lines V-V and lines Z-Z are along one or more trenches 116 that define germanium electrode 110 and germanium trace interconnect structure 104 and busbar interconnect structure 106. As shown, line X-X passes through a bipolar transfer head that includes a pair of turns electrodes 110. Referring again to FIG. 1A, one or more cavities 136 can be formed around and below all of the germanium electrodes 110, and between the germanium trace interconnect structure 104 and the busbar interconnect structure 106.

再次參閱第2A圖至第2B圖,矽電極110包括檯面結構112及電極引線114,其中檯面結構112為矽電極110的凸起部分。介電層118可覆蓋該對矽電極110的頂表面。 介電層118亦可橫向地在相容轉移頭102中的該對矽電極110的該對檯面結構112之間覆蓋檯面結構112的側表面。在圖示的實施例中,每一懸臂梁相容轉移頭102藉由接頭溝槽117中的開放空間分離,且每一矽電極110可單獨地偏轉至腔136內。通孔開口120A可延伸穿過底座基板130從底座基板的後側至匯流排互連結構106所在的圖案化矽層140。在第2A圖至第2B圖圖示的特定實施例中,通孔開口120A延伸穿過埋入的氧化物層124且終止於匯流排互連結構106所在的圖案化矽層140的底表面。鈍化層132形成在底座基板130的後側上,且鈍化層133形成在通孔開口120A內部的側表面上。當底座基板由矽形成時,鈍化層132、鈍化層133絕緣通孔120之間的電短路。埋入的氧化物層124亦絕緣矽電極110之間及矽跡線互連結構104及匯流排互連結構106之間的電短路。 Referring again to FIGS. 2A-2B, the ruthenium electrode 110 includes a mesa structure 112 and an electrode lead 114, wherein the mesa structure 112 is a raised portion of the ruthenium electrode 110. A dielectric layer 118 may cover a top surface of the pair of germanium electrodes 110. The dielectric layer 118 may also laterally cover the side surface of the mesa structure 112 between the pair of mesa structures 112 of the pair of germanium electrodes 110 in the compatible transfer head 102. In the illustrated embodiment, each cantilever compatible transfer head 102 is separated by an open space in the joint groove 117, and each turn electrode 110 can be individually deflected into the cavity 136. The via opening 120A can extend through the base substrate 130 from the back side of the base substrate to the patterned germanium layer 140 where the busbar interconnect structure 106 is located. In the particular embodiment illustrated in FIGS. 2A-2B, the via opening 120A extends through the buried oxide layer 124 and terminates at the bottom surface of the patterned germanium layer 140 where the busbar interconnect structure 106 is located. A passivation layer 132 is formed on the rear side of the base substrate 130, and a passivation layer 133 is formed on a side surface inside the via opening 120A. When the base substrate is formed of tantalum, the passivation layer 132 and the passivation layer 133 insulate the electrical short between the vias 120. The buried oxide layer 124 also insulates electrical shorts between the germanium electrodes 110 and between the germanium trace interconnect structure 104 and the busbar interconnect structure 106.

第2A圖至第2B圖圖示的通孔120延伸穿過底座基板130從底座基板的後側至圖案化矽層140。在實施例中,通孔120接觸圖案化矽層140中的一或更多個匯流排互連結構106。在其他實施例中,通孔120可接觸圖案化矽層140中的其他特徵結構或互連結構。沿著線W-W的通孔120可電性連接至第一互連結構106,該第一匯流排互連結構106連接至第一電壓源VA,且沿著線Y-Y的通孔120可電性連接至第二匯流排互連結構106,該第二匯流排互連結構106連接至第二電壓源VB。在圖示的特定實施例中,通孔開口120A延伸穿過埋入的氧化物層124且終止於匯流排互連結構106的底表 面。鈍化層132形成在底座基板130的後側上及通孔開口120A內部的側表面上。導電層122形成在鈍化層133上且與匯流排互連結構106的底表面電性接觸。在圖示的特定實施例中,導電層122不完全地填充通孔開口120A,且導電層122為實體地及電性地分離,以便防止連接至不同的電壓源VA、VB的通孔120之間的短路。在實施例中,電性連接至同一電壓源的通孔120可或可不實體地及電性地連接。舉例而言,導電層122可橫跨第1A圖左側的兩個通孔120,且導電層122亦沿著第1A圖右側的線Y-Y電性地及實體地與通孔120分離。在實施例中,第2A圖至第2B圖圖示的結構使用共六個遮罩形成。 The through holes 120 illustrated in FIGS. 2A to 2B extend through the base substrate 130 from the rear side of the base substrate to the patterned ruthenium layer 140. In an embodiment, the vias 120 contact one or more of the bus bar interconnect structures 106 in the patterned germanium layer 140. In other embodiments, the vias 120 may contact other features or interconnect structures in the patterned germanium layer 140. The via 120 along the line WW can be electrically connected to the first interconnect structure 106, the first bus interconnect structure 106 is connected to the first voltage source V A , and the via 120 along the line YY is electrically Connected to the second busbar interconnect structure 106, the second busbar interconnect structure 106 is coupled to a second voltage source VB . In the particular embodiment illustrated, the via opening 120A extends through the buried oxide layer 124 and terminates at the bottom surface of the busbar interconnect structure 106. The passivation layer 132 is formed on the rear side of the base substrate 130 and the side surface inside the via opening 120A. Conductive layer 122 is formed on passivation layer 133 and in electrical contact with the bottom surface of bus bar interconnect structure 106. In the particular embodiment illustrated, the conductive layer 122 does not completely fill the via opening 120A, and the conductive layer 122 is physically and electrically separated to prevent vias connected to different voltage sources V A , V B . Short circuit between 120. In an embodiment, the vias 120 electrically connected to the same voltage source may or may not be physically and electrically connected. For example, the conductive layer 122 can span the two via holes 120 on the left side of FIG. 1A, and the conductive layer 122 is also electrically and physically separated from the via hole 120 along the line YY on the right side of FIG. In the embodiment, the structures illustrated in FIGS. 2A to 2B are formed using a total of six masks.

第3A圖至第3B圖為根據本發明的實施例的相容雙極性微裝置轉移頭的組合平面視圖及組合橫截面側視圖,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及該對矽電極110之間及連接該對矽電極110的氧化物接頭119以及上側通孔開口及後側通孔開口。應理解,雖然在第3A圖至第3B圖中共同圖示氧化物接頭119以及上側通孔開口及後側通孔開口,但本發明的實施例不受此限制,且不必需氧化物接頭119連同上側通孔開口及後側通孔開口一起。如圖所示,在一個實施例中,氧化物接頭119形成在用於該對矽電極110的檯面結構112之間且連接檯面結構112,且氧化物接頭119位於埋入的氧化物層140上且直接接觸埋入的氧化物層124。由於氧化物接頭119連接矽電極110,故第3A圖至第3B圖圖示的雙極性電極元件表徵為跨過矽互連結構之間的支撐梁結 構。如圖所示,在一個實施例中,上側通孔開口120B可形成在後側通孔開口120A的上方以形成通孔120。將自以下描述中明顯看出,可形成上側通孔開口120B以便與匯流排互連結構106進行電性接觸及在不與光刻術挑戰相關的情況下形成開口穿過埋入的氧化物層124,而不會不利地影響沿著通孔開口120A的側壁的該鈍化層133。導電層123可視情況形成在匯流排互連結構106的曝露的頂表面上方及匯流排互連結構106的內側表面內部。以此方式,在匯流排互連結構106的頂表面上方部分地形成導電層123可提供更大的表面面積用於與匯流排互連結構106的歐姆接觸。由於匯流排互連結構106比SOI結構的後側表面更靠近SOI結構的頂表面,故根據一些實施例,與從SOI結構的後表面相比,從SOI結構的頂表面上方在匯流排互連結構106的內側表面的內部形成導電層123可能更有效率。導電層123可由與導電層122相同或不同的材料形成。導電層122、導電層123可沿著通孔120的側表面形成連續的導電層。在實施例中,使用共七個遮罩形成第3A圖至第3B圖圖示的結構。 3A-3B are combined plan views and combined cross-sectional side views of a compatible bipolar microdevice transfer head including a double-sided clamping support beam, in accordance with an embodiment of the present invention. And the pair of germanium electrodes 110 and the oxide joint 119 connecting the pair of germanium electrodes 110, and the upper through hole opening and the rear side through hole opening. It should be understood that although the oxide joint 119 and the upper through hole opening and the rear side through opening are collectively illustrated in FIGS. 3A to 3B, the embodiment of the present invention is not limited thereto, and the oxide joint 119 is not necessary. Together with the upper through hole opening and the rear side through hole opening. As shown, in one embodiment, an oxide joint 119 is formed between the mesa structures 112 for the counter electrode 110 and is coupled to the mesa structure 112, and the oxide tab 119 is located on the buried oxide layer 140. And directly contacting the buried oxide layer 124. Since the oxide joint 119 is connected to the tantalum electrode 110, the bipolar electrode elements illustrated in FIGS. 3A to 3B are characterized as supporting beam junctions between the tantalum interconnect structures. Structure. As shown, in one embodiment, an upper through hole opening 120B may be formed over the rear side through hole opening 120A to form a through hole 120. As will be apparent from the description below, the upper via opening 120B can be formed to make electrical contact with the busbar interconnect structure 106 and to form an opening through the buried oxide layer without being associated with lithography challenges. 124, without adversely affecting the passivation layer 133 along the sidewalls of the via opening 120A. Conductive layer 123 may optionally be formed over the exposed top surface of bus bar interconnect structure 106 and inside the inner side surface of bus bar interconnect structure 106. In this manner, forming the conductive layer 123 partially over the top surface of the busbar interconnect structure 106 can provide a larger surface area for ohmic contact with the busbar interconnect structure 106. Since the bus bar interconnect structure 106 is closer to the top surface of the SOI structure than the back side surface of the SOI structure, in accordance with some embodiments, the bus bar interconnects from above the top surface of the SOI structure as compared to the back surface of the SOI structure. Forming the conductive layer 123 inside the inner surface of the structure 106 may be more efficient. The conductive layer 123 may be formed of the same or different material as the conductive layer 122. The conductive layer 122 and the conductive layer 123 may form a continuous conductive layer along a side surface of the via 120. In the embodiment, the structures illustrated in FIGS. 3A to 3B are formed using a total of seven masks.

第4A圖至第4B圖為根據本發明的實施例的相容雙極性微裝置轉移頭的組合平面視圖及組合橫截面側視圖,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及沉積介電層126、該對矽電極110之間及連接該對矽電極110的氧化物接頭119以及上側通孔開口及後側通孔開口。應理解,雖然在第4A圖至第4B圖中共同圖示沉積介電層126、氧化物接頭119以及上側後側通孔開口及後側通孔開口,但本發明的實施 例不受此限制,且不必需沉積介電層126連同氧化物接頭119以及上側通孔開口及後側通孔開口一起。如圖所示,在一個實施例中,可部分地或完全地移除介電層118。在第4A圖至第4B圖圖示的特定實施例中,從檯面結構112上方移除介電層118。第二介電層126在檯面結構112的頂部表面上方及轉移頭陣列的剩餘外形上方形成,該第二介電層126可包括介電層118的部分。介電層126亦可覆蓋氧化物接頭119、上側通孔開口120B及對應的導電層123中的任一者,且介電層126可部分地或完全地填充匯流排互連結構106內部的上側通孔開口120B。在實施例中,介電層126具有比介電層118更高的介電常數及/或介電崩潰強度。在實施例中,介電層118為熱生長的SiO2且介電層126為原子層沉積(atomic layer deposition;ALD)SiO2、Al2O3、Ta2O5或RuO2。應理解,雖然第4A圖至第4B圖圖示為第3A圖至第3B圖的變體,但介電層126的特徵可與第2A圖至第2B圖中圖示的實施例組合。在實施例中,使用共八個遮罩形成第4A圖至第4B圖圖示的結構。 4A through 4B are combined plan views and combined cross-sectional side views of a compatible bipolar microdevice transfer head including a double-sided clamping support beam, in accordance with an embodiment of the present invention. And a deposition dielectric layer 126, an oxide interface 119 between the pair of germanium electrodes 110 and the pair of germanium electrodes 110, and an upper via opening and a rear via opening. It should be understood that although the dielectric layer 126, the oxide tab 119, and the upper back side via opening and the back side via opening are collectively illustrated in FIGS. 4A-4B, embodiments of the present invention are not limited thereto. It is not necessary to deposit the dielectric layer 126 along with the oxide tab 119 and the upper via opening and the back via opening. As shown, in one embodiment, the dielectric layer 118 can be partially or completely removed. In the particular embodiment illustrated in FIGS. 4A-4B, dielectric layer 118 is removed from mesa structure 112. A second dielectric layer 126 is formed over the top surface of the mesa structure 112 and over the remaining profile of the transfer head array, and the second dielectric layer 126 can include portions of the dielectric layer 118. The dielectric layer 126 may also cover any of the oxide via 119, the upper via opening 120B, and the corresponding conductive layer 123, and the dielectric layer 126 may partially or completely fill the upper side of the interior of the busbar interconnect structure 106. Through hole opening 120B. In an embodiment, dielectric layer 126 has a higher dielectric constant and/or dielectric breakdown strength than dielectric layer 118. In an embodiment, the dielectric layer 118 is thermally grown SiO 2 and the dielectric layer 126 is atomic layer deposition (ALD) SiO 2 , Al 2 O 3 , Ta 2 O 5 or RuO 2 . It should be understood that although FIGS. 4A-4B illustrate variants of FIGS. 3A-3B, the features of dielectric layer 126 may be combined with the embodiments illustrated in FIGS. 2A-2B. In the embodiment, a structure illustrated in FIGS. 4A to 4B is formed using a total of eight masks.

第5A圖至第15B圖圖示根據本發明的實施例的形成包括一對矽電極之間的開口接頭溝槽及後側通孔開口的相容雙極性微裝置轉移頭的一種方法。最初,處理序列可從可購買的SOI基板開始,如第5A圖至第5B圖所圖示。SOI基板可包括底座基板130、頂端矽層140、底座基板與頂端矽層之間的埋入的氧化物層124及後側鈍化層132。在實施例中,底座基板為(100)矽處理晶圓,具有500μm+/-50μm的厚度, 埋入的氧化物層124為1μm+/-0.1μm厚且頂端矽層為7μm至20μm+/-0.5μm厚。頂端矽層亦可經摻雜以改良導電率。舉例而言,大約1017cm-3的含磷摻雜劑濃度產生小於0.1歐姆-公分的電阻率。在實施例中,後側鈍化層132為熱氧化物,具有達到大約2μm厚的厚度,該厚度接近於矽的熱氧化的上限。 5A through 15B illustrate a method of forming a compatible bipolar microdevice transfer head including an open joint groove and a rear side through hole opening between a pair of tantalum electrodes, in accordance with an embodiment of the present invention. Initially, the processing sequence can begin with a commercially available SOI substrate, as illustrated in Figures 5A-5B. The SOI substrate may include a base substrate 130, a top end layer 140, a buried oxide layer 124 between the base substrate and the top end layer, and a back side passivation layer 132. In an embodiment, the base substrate is a (100) 矽 processed wafer having a thickness of 500 μm +/- 50 μm, the buried oxide layer 124 is 1 μm +/- 0.1 μm thick and the top ruthenium layer is 7 μm to 20 μm +/- 0.5 μm. thick. The top ruthenium layer can also be doped to improve conductivity. For example, a phosphorus-containing dopant concentration of about 10 17 cm -3 produces a resistivity of less than 0.1 ohm-cm. In an embodiment, the backside passivation layer 132 is a thermal oxide having a thickness of up to about 2 [mu]m thick that is close to the upper limit of thermal oxidation of the ruthenium.

遮罩層142可隨後形成於頂端矽層140的上方,如在第6A圖至第6B圖所圖示。遮罩層142可經沉積或替代地自頂端矽層140熱生長。在實施例中,遮罩層142為熱生長SiO2層,具有大約0.1μm的厚度。在實施例中,當遮罩層142為熱生長的SiO2時,遮罩層142具有顯著小於埋入的氧化物(SiO2)層124的厚度的厚度,以便在去除圖案化遮罩層期間維持部分圖案化的SOI結構的結構穩定性。 A mask layer 142 can then be formed over the top ruthenium layer 140, as illustrated in Figures 6A-6B. Mask layer 142 may be thermally grown from deposition or alternatively from top ruthenium layer 140. In an embodiment, the mask layer 142 is a thermally grown SiO 2 layer having a thickness of about 0.1 μm. In an embodiment, when the mask layer 142 is thermally grown SiO 2 , the mask layer 142 has a thickness that is significantly less than the thickness of the buried oxide (SiO 2 ) layer 124 during removal of the patterned mask layer. The structural stability of the partially patterned SOI structure is maintained.

參閱第7A圖至第7B圖,遮罩層142隨後經圖案化以形成島144之陣列,該島144之陣列將對應於矽電極的檯面結構。在實施例中,遮罩層為熱生長的SiO2層,且島144藉由塗覆正光阻劑、使用氫氧化鉀(potassium hydroxide;KOH)顯影液曝光及移除光阻劑的未顯影區域來形成。隨後使用諸如離子研磨、電漿蝕刻、活性離子蝕刻(reactive ion etching;RIE)或活性離子束蝕刻(reactive ion beam etching;RIBE)、電子迴旋共振(electron cyclotron resonance;ECR)或感應耦合電漿(inductively coupled plasma;ICP)的適當技術乾式蝕刻遮罩層142以形成島144,終止於矽層140上。若不需要高度的各向異性刻蝕,則可使用使用諸如CF4、SF6或NF3的電漿蝕刻 劑的幹電漿蝕刻技術。隨後藉由O2灰化、接著食人魚蝕刻移除圖案化光阻劑,產生第7A圖至第7B圖圖示的結構。 Referring to Figures 7A through 7B, the mask layer 142 is then patterned to form an array of islands 144 that will correspond to the mesa structure of the germanium electrode. In an embodiment, the mask layer is a thermally grown SiO 2 layer, and the island 144 is exposed by a positive photoresist, using a potassium hydroxide (KOH) developer solution, and removing the undeveloped area of the photoresist. To form. Subsequent use such as ion milling, plasma etching, reactive ion etching (RIE) or reactive ion beam etching (RIBE), electron cyclotron resonance (ECR) or inductively coupled plasma ( A suitable technique for inductively coupled plasma (ICP) dry etches the mask layer 142 to form islands 144, terminating on the germanium layer 140. If required a high degree of anisotropic etching may be used such as the use of CF 4, SF 6 or NF 3 plasma etchant in a dry plasma etching techniques. The patterned photoresist is then removed by O 2 ashing followed by piranha etching to produce the structures illustrated in Figures 7A-7B.

在實施例中,後側通孔開口120A隨後形成於SOI基板中。最初,如第8A圖至第8B圖所圖示,後側通孔開口形成穿過後側鈍化層132及底座基板130,終止於埋入的氧化物層124上。在實施例中,藉由將圖案化正光阻劑塗覆至後側鈍化層132上、接著蝕刻曝露的鈍化層132及幹活性離子刻蝕(DRIE)底座基板130來形成第8A圖至第8B圖圖示的後側通孔開口120A,終止於埋入的氧化物層124上。底座基板130可替代地使用諸如KOH的濕蝕刻劑蝕刻。然而,在(100)平面中KOH濕蝕刻劑優先腐蝕矽,且可產生具有錐形側壁的各向異性V-蝕刻。對於在後側通孔開口120A中更為垂直的側壁可選擇DRIE蝕刻。在蝕刻底座基板130之後,可藉由O2灰化、接著食人魚蝕刻移除圖案化正光阻劑,產生如第8A圖至第8B圖所圖示的結構。 In an embodiment, the back side via opening 120A is subsequently formed in the SOI substrate. Initially, as illustrated in FIGS. 8A-8B, the backside via opening is formed through the backside passivation layer 132 and the base substrate 130, terminating on the buried oxide layer 124. In an embodiment, the 8A to 8B are formed by applying a patterned positive photoresist onto the backside passivation layer 132, followed by etching the exposed passivation layer 132 and the dry reactive ion etching (DRIE) base substrate 130. The rear side via opening 120A illustrated in the figure terminates on the buried oxide layer 124. The base substrate 130 may alternatively be etched using a wet etchant such as KOH. However, the KOH wet etchant preferentially etches germanium in the (100) plane and can produce an anisotropic V-etch with tapered sidewalls. A DRIE etch can be selected for the more vertical sidewalls in the backside via opening 120A. After etching the base substrate 130, the patterned positive photoresist can be removed by O 2 ashing followed by piranha etching to produce a structure as illustrated in FIGS. 8A-8B.

參閱第9A圖至第10B圖,以二部蝕刻序列圖案化矽電極110及矽跡線互連結構104及匯流排互連結構106。首先,如第9A圖至第9B圖中所圖示,頂端矽層140經部分蝕刻穿過,從而界定矽電極110及矽跡線互連結構104及匯流排互連結構106的圖案。在實施例中,此可使用薄的圖案化正光阻劑完成,在時控蝕刻(timed etch)中DRIE將7μm至10μm厚的頂端矽層140大約蝕刻5μm。可使用O2灰化、接著食人魚蝕刻移除圖案化正光阻劑。根據本發明的實施例,第9A圖的邊緣上的光阻劑121中的開口(僅在第9A圖圖示) 對應於用於界定矽電極110及矽跡線互連結構104及匯流排互連結構106的溝槽116的大小,然而,對應於矽電極檯面結構112之間的接頭溝槽117的島144上方的光阻劑121中的開口可大於島144之間的間隙。以此方式,圖案化硬遮罩層142中的島144可用於形成矽電極檯面結構112,相較於單獨使用光阻劑,該矽電極檯面結構112具有檯面結構之間的接頭溝槽117的更高的間隙解析度。在實施例中,接頭溝槽117開口為至少足夠的寬以在鄰近的檯面結構112的側表面上生長介電層118及允許每一矽電極110偏轉至腔136內。舉例而言,接頭溝槽117可為2μm寬或更大。 Referring to Figures 9A through 10B, the germanium electrode 110 and the germanium trace interconnect structure 104 and the busbar interconnect structure 106 are patterned in a two-etch sequence. First, as illustrated in FIGS. 9A-9B, the top germanium layer 140 is partially etched through to define the patterns of the germanium electrode 110 and the germanium trace interconnect structure 104 and the busbar interconnect structure 106. In an embodiment, this can be accomplished using a thin patterned positive photoresist, which is etched approximately 5 [mu]m from a 7 [mu]m to 10 [mu]m thick top germanium layer 140 in a timed etch. The patterned positive photoresist can be removed using O 2 ashing followed by piranha etching. According to an embodiment of the present invention, the opening in the photoresist 121 on the edge of FIG. 9A (illustrated only in FIG. 9A) corresponds to defining the germanium electrode 110 and the germanium trace interconnect structure 104 and the bus bar interconnection The size of the trenches 116 of the structure 106, however, may correspond to openings in the photoresist 121 above the islands 144 of the tab trenches 117 between the germanium electrode mesas 112. In this manner, the islands 144 in the patterned hard mask layer 142 can be used to form the tantalum electrode mesa structure 112 having the tab trenches 117 between the mesa structures as compared to the photoresist alone. Higher gap resolution. In an embodiment, the joint trench 117 opening is at least sufficiently wide to grow the dielectric layer 118 on the side surface of the adjacent mesa structure 112 and to allow each germanium electrode 110 to deflect into the cavity 136. For example, the joint groove 117 can be 2 μm wide or larger.

第二,如第10A圖至第10B圖所圖示島144仍存在,使用島144作為遮罩繼續DRIE蝕刻以形成包括伸出的檯面結構112的矽電極110及矽跡線互連結構104及匯流排互連結構106,終止於下層埋入的氧化物層124上。在完成蝕刻矽層140之後,執行乾式蝕刻技術以移除島144大約0.1μm。在實施例中,當僅移除0.1μm的氧化物且埋入的氧化物層124大約1.0μm厚時,不移除顯著超過0.1μm的曝露的埋入氧化物層124。根據本發明的實施例,埋入的氧化物層124提供部分圖案化SOI結構的結構穩定性且在移除島144期間顯著超過島144的厚度未從埋入的氧化物層124移除。如第10B圖所圖示,埋入的氧化物層124曝露在矽電極之間的接頭溝槽117及圍繞矽電極及在互連結構之間的溝槽116中。 Second, the islands 144 as illustrated in FIGS. 10A-10B are still present, using the island 144 as a mask to continue the DRIE etch to form the germanium electrode 110 and the germanium trace interconnect structure 104 including the extended mesa structure 112 and The busbar interconnect structure 106 terminates on the underlying buried oxide layer 124. After the etching of the germanium layer 140 is completed, a dry etching technique is performed to remove the islands 144 by about 0.1 μm. In an embodiment, when only 0.1 μm of oxide is removed and the buried oxide layer 124 is approximately 1.0 μm thick, the exposed buried oxide layer 124 significantly exceeding 0.1 μm is not removed. In accordance with an embodiment of the present invention, the buried oxide layer 124 provides structural stability to the partially patterned SOI structure and significantly exceeds the thickness of the island 144 during removal of the island 144 from the buried oxide layer 124. As illustrated in FIG. 10B, the buried oxide layer 124 is exposed between the tab trenches 117 between the germanium electrodes and the trenches 116 surrounding the germanium electrodes and between the interconnect structures.

現在參閱第11A圖至第11B圖,SOI晶圓的前側及後側可隨後經氧化以便鈍化矽電極、矽互連結構及後側通孔 開口。在實施例中,可執行高溫濕氧化以便在矽電極110上、檯面結構112之間的接頭溝槽117內部、矽跡線互連結構104及匯流排互連結構106上及溝槽116內部生長大約1μm厚的介電層118。在已經曝露埋入的氧化物層124之處,取決於之前存在的厚度,埋入的氧化物層124厚度可增加或保持相同。在實施例中,介電層118與埋入的氧化物層124為大約相同的厚度。大約1μm厚的氧化物鈍化層133亦同時沿著底座基板130的側壁生長在後側通孔開口120A的內部。 Referring now to Figures 11A through 11B, the front and back sides of the SOI wafer can then be oxidized to passivate the germanium electrode, the germanium interconnect structure, and the back side via. Opening. In an embodiment, high temperature wet oxidation may be performed to grow on the germanium electrode 110, inside the joint trench 117 between the mesa structures 112, on the germanium trace interconnect structure 104 and the busbar interconnect structure 106, and inside the trench 116. A dielectric layer 118 is about 1 μm thick. Where the buried oxide layer 124 has been exposed, the thickness of the buried oxide layer 124 may increase or remain the same depending on the thickness previously present. In an embodiment, the dielectric layer 118 and the buried oxide layer 124 are about the same thickness. An oxide passivation layer 133 of about 1 μm thick is also grown inside the back side via opening 120A along the sidewall of the base substrate 130.

現在參閱第12A圖至第12B圖,厚的圖案化正光阻劑塗覆至矽跡線互連結構104及匯流排互連結構106及矽電極110上方,接著蝕刻接頭溝槽117及溝槽區域137中曝露的埋入氧化物,該蝕刻將對應於形成腔136的位置。可使用O2灰化、接著食人魚蝕刻移除圖案化正光阻劑。 Referring now to FIGS. 12A through 12B, a thick patterned positive photoresist is applied over the germanium trace interconnect structure 104 and the busbar interconnect structure 106 and the germanium electrode 110, followed by etching the joint trench 117 and the trench region. The buried oxide exposed in 137 will correspond to the location where cavity 136 is formed. The patterned positive photoresist can be removed using O 2 ashing followed by piranha etching.

隨後可執行使用適當的乾式蝕刻技術的幹氧化物蝕刻以在後側通孔開口120A內部的埋入的氧化物層124中產生開口,以曝露圖案化矽層140的底表面,在該底表面處形成匯流排互連結構106,如第13A圖至第13B圖所圖示。在實施例中,薄的正光阻劑形成在SOI晶圓的後側上方及後側通孔開口120A內部且經圖案化。隨後蝕刻埋入的氧化物層124以曝露矽層140的底表面。在實施例中,使用RIE執行埋入的氧化物層124的蝕刻。如圖所示,埋入的氧化物層124中的開口比底座基板130(包括氧化物鈍化層133)內部的開口更小(例如,更小的直徑或橫截面)。以此方式,在埋入的氧化物層124內部比在底座基板(包括氧化物鈍化層133)中 具有更小的開口防止不小心蝕刻穿過氧化物鈍化層133或底切氧化物鈍化層133及電性短路通孔120與底座基板130。由於光刻術公差及解析度能力,埋入的氧化物層124內部的開口可具有大於10μm的最小橫截面。 A dry oxide etch using a suitable dry etch technique can then be performed to create an opening in the buried oxide layer 124 inside the backside via opening 120A to expose the bottom surface of the patterned germanium layer 140, at the bottom surface The bus bar interconnect structure 106 is formed as illustrated in Figures 13A-13B. In an embodiment, a thin positive photoresist is formed over the back side of the SOI wafer and inside the back side via opening 120A and patterned. The buried oxide layer 124 is then etched to expose the bottom surface of the tantalum layer 140. In an embodiment, etching of the buried oxide layer 124 is performed using RIE. As shown, the opening in the buried oxide layer 124 is smaller (eg, smaller in diameter or cross-section) than the opening in the interior of the base substrate 130 (including the oxide passivation layer 133). In this way, inside the buried oxide layer 124 than in the base substrate (including the oxide passivation layer 133) The smaller opening prevents inadvertent etching through the oxide passivation layer 133 or the undercut oxide passivation layer 133 and the electrically short via 120 and the base substrate 130. Due to lithography tolerances and resolution capabilities, the openings inside the buried oxide layer 124 may have a minimum cross-section greater than 10 [mu]m.

現在參閱第14A圖至第14B圖,圖案化導電層122形成在通孔開口120A內部的鈍化層133上且與匯流排互連結構106的底表面電性接觸。在實施例中,藉由經由陰影遮罩濺射形成圖案化導電層122。在實施例中,圖案化導電層122包括500埃厚的鈦(Ti)第一層、500埃厚的鈦-鎢(TiW)中間層及1μm至2μm厚的金(Au)外層。在實施例中,圖案化導電層122與匯流排互連結構106進行歐姆接觸。 Referring now to FIGS. 14A-14B, a patterned conductive layer 122 is formed over the passivation layer 133 inside the via opening 120A and in electrical contact with the bottom surface of the busbar interconnect structure 106. In an embodiment, the patterned conductive layer 122 is formed by sputtering through a shadow mask. In an embodiment, the patterned conductive layer 122 includes a 500 angstrom thick titanium (Ti) first layer, a 500 angstrom thick titanium-tungsten (TiW) intermediate layer, and a 1 μm to 2 μm thick gold (Au) outer layer. In an embodiment, the patterned conductive layer 122 is in ohmic contact with the bus bar interconnect structure 106.

現在參閱第15A圖至第15B圖,隨後可在底座基板130中正好在矽電極陣列下方蝕刻一或更多個腔136,使得矽電極陣列可偏轉至一或更多個腔內。在實施例中,分離的腔136正好形成在每一對矽電極下方。在實施例中,單個腔136正好形成在與第一矽跡線互連結構及第二矽跡線互連結構104電性通訊的矽電極陣列的下方。在實施例中,使用時控釋放蝕刻形成腔136至底座基板130中,該蝕刻底切電極引線114及檯面結構112。舉例而言,可使用諸如XeF2或SF6的基於氟的化學物質執行蝕刻。 Referring now to FIGS. 15A-15B, one or more cavities 136 can then be etched in the base substrate 130 just below the ruthenium electrode array such that the ruthenium electrode array can be deflected into one or more cavities. In an embodiment, a separate cavity 136 is formed just below each pair of ruthenium electrodes. In an embodiment, a single cavity 136 is formed just below the array of germanium electrodes in electrical communication with the first meandering interconnect structure and the second meandering interconnect structure 104. In an embodiment, a time-controlled release etch is used to form the cavity 136 into the base substrate 130, which etches the undercut electrode leads 114 and the mesa structure 112. For example, etching can be performed using a fluorine-based chemistry such as XeF 2 or SF 6 .

在形成一或更多個腔136之後,隨後可切割SOI基板,例如,使用雷射切割進行,以形成相容雙極性轉移頭陣列,該相容雙極性轉移頭陣列包括與矽跡線互連結構104及匯流排互連結構106互連的相容轉移頭102之陣列及延伸穿 過底座基板130從底座基板的後側至圖案化矽層140從而電性連接矽電極110與轉移頭元件的工作電路系統的通孔120。 After forming one or more cavities 136, the SOI substrate can then be cut, for example, using laser cutting to form a compatible bipolar transfer head array that includes interconnects with the germanium traces Array and extension of the compatible transfer head 102 interconnected by the structure 104 and the busbar interconnect structure 106 The base substrate 130 extends from the rear side of the base substrate to the patterned germanium layer 140 to electrically connect the drain electrode 120 and the through hole 120 of the working circuit system of the transfer head element.

第16A圖為根據本發明的實施例的具有雙側夾緊支撐梁及檯面接頭的相容雙極性微裝置轉移頭陣列的平面視圖。第16A圖中圖示的特定實施例類似於第1A圖中圖示的實施例,其中一個差異為用於每一相容轉移頭102的該對矽電極110與該對檯面結構112之間的氧化物接頭119接合。由於氧化物接頭119,雙極性微裝置轉移頭中的該對矽電極為雙側夾緊支撐梁形式,該雙側夾緊支撐梁在對側使用矽跡線互連結構104支撐。單個腔136可形成在相容轉移頭102之陣列的下方跨過一對矽跡線互連結構104之間。複數個腔136可形成在複數對矽跡線互連結構104之間或單個腔136可形成在複數對矽跡線互連結構104之間。溝槽116亦可形成在圖案化矽層中界定矽電極110及矽跡線互連結構104及匯流排互連結構106。 Figure 16A is a plan view of a compatible bipolar microdevice transfer head array having dual clamping support beams and mesa joints in accordance with an embodiment of the present invention. The particular embodiment illustrated in FIG. 16A is similar to the embodiment illustrated in FIG. 1A, with one difference being between the pair of 矽 electrodes 110 for each compatible transfer head 102 and the pair of mesa structures 112 The oxide joint 119 is joined. Due to the oxide joint 119, the pair of turns electrodes in the bipolar microdevice transfer head are in the form of a double-sided clamped support beam that is supported on the opposite side using the meander line interconnect structure 104. A single cavity 136 can be formed between the array of compatible transfer heads 102 across a pair of meander line interconnect structures 104. A plurality of cavities 136 may be formed between the plurality of pairs of trace trace interconnect structures 104 or a single cavity 136 may be formed between the plurality of pairs of trace trace interconnect structures 104. Trench 116 may also be formed to define germanium electrode 110 and germanium trace interconnect structure 104 and busbar interconnect structure 106 in the patterned germanium layer.

第16B圖為根據本發明的實施例的具有雙側夾緊支撐梁及檯面接頭的相容雙極性微裝置轉移頭的平面視圖。第16C圖為根據本發明的實施例的沿第16B圖中圖示的相容雙極性微裝置轉移頭的橫向線C-C的橫截面側視圖。第16D圖為根據本發明的實施例的沿第16B圖中圖示的相容雙極性微裝置轉移頭的縱向線D-D的橫截面側視圖。類似於第1B圖至第1D圖圖示的實施例,第16B圖中僅圖示單個相容轉移頭102跨過兩個矽跡線互連結構104之間及藉由兩個矽跡線互連結構104支撐,儘管根據本發明的實施例轉移頭陣列可跨 過矽跡線互連結構104之間。用於每一相容轉移頭102的該對矽電極110與該對檯面結構112之間的氧化物接頭119接合。在圖示的實施例中,氧化物接頭119平行於矽跡線互連結構104。如第16C圖至第16D圖所圖示,矽電極檯面結構112及電極引線114兩者在底座基板130與矽電極110之間的腔136上方延伸且可偏轉至腔136內。在第16D圖圖示的實施例中,氧化物接頭119在埋入的氧化物層124上且與埋入的氧化物層124直接接觸。 Figure 16B is a plan view of a compatible bipolar microdevice transfer head having dual clamping support beams and mesa joints in accordance with an embodiment of the present invention. Figure 16C is a cross-sectional side view of transverse line C-C of the compatible bipolar microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention. Figure 16D is a cross-sectional side view of the longitudinal line D-D of the compatible bipolar microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention. Similar to the embodiment illustrated in FIGS. 1B-1D, only a single compatible transfer head 102 is illustrated across the two trace interconnect structures 104 and through two traces of the traces in FIG. 16B. The structure 104 is supported, although the transfer head array may be spanned in accordance with an embodiment of the present invention Between the trace interconnect interconnect structures 104. The pair of germanium electrodes 110 for each compatible transfer head 102 are joined to the oxide joint 119 between the pair of mesa structures 112. In the illustrated embodiment, the oxide junction 119 is parallel to the meander trace interconnect structure 104. As illustrated in FIGS. 16C through 16D, both the tantalum mesa structure 112 and the electrode leads 114 extend over the cavity 136 between the base substrate 130 and the tantalum electrode 110 and can be deflected into the cavity 136. In the embodiment illustrated in FIG. 16D, oxide junction 119 is on buried oxide layer 124 and is in direct contact with buried oxide layer 124.

第17A圖至第24B圖圖示根據本發明的實施例的形成相容雙極性微裝置轉移頭的方法,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及該對矽電極之間及連接該對矽電極的氧化物接頭以及上側通孔開口及後側通孔開口。在實施例中,引導至第17A圖至第17B圖的處理序列可與第5A圖至第8B圖的處理序列相同,其中一個差異為島144之間的距離。如以下描述中更詳細描述的,島144的圖案化對應於後續待形成的檯面結構112。此外,島144之間的距離對應於氧化物接頭119的寬度,該氧化物接頭119形成於該對矽電極110之間且連接該對矽電極110。因此,由於氧化物接頭119連接雙側夾緊支撐梁配置中的該對矽電極110,故第17A圖至第17B圖中的島144之間的距離可小於第8A圖至第8B圖中的島144之間的距離。舉例而言,島之間的距離可足夠小以允許接頭溝槽117由自檯面結構112熱生長的氧化物完全地填充。舉例而言,接頭溝槽117可為2μm寬或更小。 17A through 24B illustrate a method of forming a compatible bipolar microdevice transfer head including a double-sided clamping support beam and the pair of germanium electrodes, in accordance with an embodiment of the present invention. And an oxide joint connecting the pair of electrodes and an upper through hole opening and a rear side through opening. In an embodiment, the processing sequence directed to FIGS. 17A through 17B may be the same as the processing sequence of FIGS. 5A through 8B, with one difference being the distance between islands 144. As described in more detail in the following description, the patterning of islands 144 corresponds to the mesa structure 112 to be subsequently formed. Further, the distance between the islands 144 corresponds to the width of the oxide joint 119 which is formed between the pair of tantalum electrodes 110 and which is connected to the pair of tantalum electrodes 110. Therefore, since the oxide joint 119 is connected to the pair of 矽 electrodes 110 in the double-sided clamping support beam configuration, the distance between the islands 144 in FIGS. 17A to 17B can be smaller than those in FIGS. 8A to 8B. The distance between the islands 144. For example, the distance between the islands can be small enough to allow the joint trench 117 to be completely filled with oxide that is thermally grown from the mesa structure 112. For example, the joint groove 117 can be 2 μm wide or smaller.

參閱第17A圖至第18B圖,可以二部蝕刻序列圖案 化矽電極110及矽跡線互連結構104及匯流排互連結構106。首先,如第17A圖至第17B圖中所圖示,頂端矽層140經部分蝕刻穿過,界定矽電極110及矽跡線互連結構104及匯流排互連結構106的圖案。在實施例中,此可使用薄的圖案化正光阻劑完成,在時控蝕刻中DRIE蝕刻7μm至10μm厚的頂端矽層140大約5μm。根據本發明的實施例,第17A圖的邊緣上的光阻劑121中的開口(僅在第17A圖圖示)對應於用於界定矽電極110及矽跡線互連結構104及匯流排互連結構106的溝槽116的大小,然而,對應於矽電極檯面結構112之間的接頭溝槽117的島144上方的光阻劑121中的開口可大於島144之間的間隙。以此方式,圖案化硬遮罩層142中的島144可用於形成矽電極檯面結構112,相較於單獨使用光阻劑,該矽電極檯面結構112具有檯面結構之間的接頭溝槽117的更高的間隙解析度。以此方式,圖案化硬遮罩層142中的島144可用於形成矽電極檯面結構112,相較於單獨使用光阻劑,該矽電極檯面結構112具有檯面結構之間更高的間隙解析度,此可幫助增加電極有效面積及橫跨相容轉移頭陣列的所得夾緊力。舉例而言,隨著微裝置大小減小,檯面結構之間的較窄間隙可關於待拾取的微裝置增加可用電極空間。可使用O2灰化、接著食人魚蝕刻移除圖案化正光阻劑。 Referring to FIGS. 17A through 18B, the germanium electrode 110 and the germanium trace interconnect structure 104 and the busbar interconnect structure 106 may be patterned in a two-etch sequence. First, as illustrated in FIGS. 17A-17B, the top germanium layer 140 is partially etched through to define the patterns of the germanium electrode 110 and the germanium trace interconnect structure 104 and the busbar interconnect structure 106. In an embodiment, this can be accomplished using a thin patterned positive photoresist in which DRIE etches a 7 μm to 10 μm thick top germanium layer 140 of about 5 μm in a timed etch. According to an embodiment of the present invention, the opening in the photoresist 121 on the edge of FIG. 17A (illustrated only in FIG. 17A) corresponds to defining the germanium electrode 110 and the germanium trace interconnect structure 104 and the bus bar interconnection The size of the trenches 116 of the structure 106, however, may correspond to openings in the photoresist 121 above the islands 144 of the tab trenches 117 between the germanium electrode mesas 112. In this manner, the islands 144 in the patterned hard mask layer 142 can be used to form the tantalum electrode mesa structure 112 having the tab trenches 117 between the mesa structures as compared to the photoresist alone. Higher gap resolution. In this manner, the islands 144 in the patterned hard mask layer 142 can be used to form the tantalum electrode mesa structure 112, which has a higher gap resolution between the mesa structures than the photoresist alone. This can help increase the effective area of the electrode and the resulting clamping force across the array of compatible transfer heads. For example, as the microdevice size decreases, a narrower gap between the mesa structures can increase the available electrode space with respect to the microdevice to be picked up. The patterned positive photoresist can be removed using O 2 ashing followed by piranha etching.

第二,如第18A圖至第18B圖所圖示島144仍然存在,使用島144作為遮罩繼續DRIE蝕刻以形成包括伸出的檯面結構112的矽電極110及矽跡線互連結構104及匯流排互連結構106,終止於下層埋入的氧化物層124上。在完成蝕刻 矽層140之後,執行乾式蝕刻技術以移除島144大約0.1μm。在實施例中,當僅移除0.1μm的氧化物且埋入的氧化物層124大約1.0μm厚時,不移除顯著超過0.1μm曝露的埋入氧化物層124。根據本發明的實施例,埋入的氧化物層124提供部分圖案化SOI結構的結構穩定性且在移除島144期間顯著超過島144的厚度未從埋入的氧化物層124移除。 Second, the islands 144 as illustrated in FIGS. 18A-18B are still present, using the island 144 as a mask to continue the DRIE etch to form the germanium electrode 110 and the germanium trace interconnect structure 104 including the extended mesa structure 112 and The busbar interconnect structure 106 terminates on the underlying buried oxide layer 124. After etching is completed After the germanium layer 140, a dry etching technique is performed to remove the island 144 by about 0.1 [mu]m. In an embodiment, when only 0.1 μm of oxide is removed and the buried oxide layer 124 is approximately 1.0 μm thick, the buried oxide layer 124 that is significantly exposed beyond 0.1 μm is not removed. In accordance with an embodiment of the present invention, the buried oxide layer 124 provides structural stability to the partially patterned SOI structure and significantly exceeds the thickness of the island 144 during removal of the island 144 from the buried oxide layer 124.

現在參閱第19A圖至第19B圖,SOI晶圓的前側及後側可隨後經氧化以便鈍化矽電極、矽互連結構及後側通孔開口。在實施例中,可執行高溫濕氧化以便在矽電極110上、檯面結構112之間的接頭溝槽117內部、矽跡線互連結構104及匯流排互連結構106上及溝槽116內部生長大約1μm厚的介電層118。如上所述,當介電層118在接頭溝槽117內部生長且填充接頭溝槽117時,介電(例如氧化物)層形成氧化物接頭119。在實施例中,氧化物接頭119完全地填充接頭溝槽117。在已經曝露埋入的氧化物層124,取決於之前存在的厚度,埋入的氧化物層124厚度可增加或保持相同。在實施例中,介電層118與埋入的氧化物層124為大約相同的厚度。大約1μm厚的氧化物鈍化層133亦同時沿著底座基板130的側壁生長在後側通孔開口120A內部。 Referring now to Figures 19A through 19B, the front and back sides of the SOI wafer can then be oxidized to passivate the germanium electrode, the germanium interconnect structure, and the back side via opening. In an embodiment, high temperature wet oxidation may be performed to grow on the germanium electrode 110, inside the joint trench 117 between the mesa structures 112, on the germanium trace interconnect structure 104 and the busbar interconnect structure 106, and inside the trench 116. A dielectric layer 118 is about 1 μm thick. As described above, the dielectric (e.g., oxide) layer forms the oxide joint 119 as the dielectric layer 118 grows inside the joint trench 117 and fills the joint trench 117. In an embodiment, the oxide joint 119 completely fills the joint groove 117. After the buried oxide layer 124 has been exposed, the thickness of the buried oxide layer 124 may increase or remain the same depending on the thickness previously present. In an embodiment, the dielectric layer 118 and the buried oxide layer 124 are about the same thickness. An oxide passivation layer 133 of about 1 μm thick is also grown inside the back side via opening 120A along the sidewall of the base substrate 130.

現在參閱第20A圖至第20B圖,開口(該等開口將成為通孔開口120B的部分)形成在頂端介電層118中以曝露正好在後側通孔開口120A上方及在溝槽區域137(此處將形成一或更多個腔136)處的匯流排互連結構106的區域處的圖案化矽層140。溝槽區域137開口亦同時形成在埋入的氧化物 層124中以曝露底座基板130(此處將形成一或更多個腔136)。可使用厚的圖案化正光阻劑、接著乾式蝕刻頂端介電層118在頂端介電層118及埋入的氧化物層124中形成開口。隨後藉由O2灰化、接著食人魚蝕刻移除圖案化光阻劑,產生第20A圖至第20B圖中的結構。組合蝕刻及圖案化步驟形成通孔開口120B及溝槽區域137開口亦可減少處理操作及需要的遮罩數量。 Referring now to FIGS. 20A through 20B, openings (which will be part of the via opening 120B) are formed in the top dielectric layer 118 to be exposed just above the back side via opening 120A and in the trench region 137 ( A patterned germanium layer 140 at the region of the busbar interconnect structure 106 at one or more of the cavities 136) will be formed herein. The trench region 137 opening is also simultaneously formed in the buried oxide layer 124 to expose the base substrate 130 (where one or more cavities 136 will be formed). Openings may be formed in the top dielectric layer 118 and the buried oxide layer 124 using a thick patterned positive photoresist followed by a dry etched top dielectric layer 118. The patterned photoresist is then removed by O 2 ashing followed by piranha etching to produce the structures in Figures 20A-20B. Forming the etch and patterning steps to form the via opening 120B and the trench region 137 opening also reduces the number of processing operations and the number of masks required.

現在參閱第21A圖至第21B圖,開口形成在矽層140及埋入的氧化物層124中以形成上側通孔開口120B,該上側通孔開口120B連接後側通孔開口120A。藉由形成厚的圖案化正光阻劑、接著執行終止於埋入的氧化物層124上的矽層140的DRIE、接著執行穿過埋入的氧化物層124的RIE,可在矽層140及埋入的氧化物層124中形成開口。隨後藉由O2灰化、接著食人魚蝕刻移除圖案化光阻劑,產生第21A圖至第21B圖中的結構。以此方式,當形成上側通孔開口120B時形成開口穿過埋入的氧化物層124可避免與從SOI結構的後側在埋入的氧化物層124中形成開口相關的光刻術挑戰,不會不利地影響沿著通孔開口120A的側壁的鈍化層133。 Referring now to FIGS. 21A through 21B, openings are formed in the tantalum layer 140 and the buried oxide layer 124 to form an upper side via opening 120B that connects the back side via opening 120A. The ruthenium layer 140 can be formed by forming a thick patterned positive photoresist, then performing DRIE termination of the germanium layer 140 on the buried oxide layer 124, followed by RIE through the buried oxide layer 124. An opening is formed in the buried oxide layer 124. The patterned photoresist is then removed by O 2 ashing followed by piranha etching to produce the structures in Figures 21A-21B. In this manner, forming an opening through the buried oxide layer 124 when the upper via opening 120B is formed may avoid lithography challenges associated with forming an opening in the buried oxide layer 124 from the back side of the SOI structure, The passivation layer 133 along the sidewalls of the via opening 120A is not adversely affected.

隨後圖案化導電層123可形成在匯流排互連結構106的曝露的頂表面上方及匯流排互連結構106的內側表面的內部,如第22A圖至第22B圖所圖示。以此方式,在匯流排互連結構106的頂表面上方部分地形成導電層123可提供更大的表面面積用於與匯流排互連結構106的歐姆接觸。由於匯流排互連結構106比SOI結構的後側表面更靠近SOI結 構的頂表面,故根據一些實施例,與從SOI結構的後表面相比,從SOI結構的頂表面上方在匯流排互連結構106的內側表面的內部形成一層導電層123可能更有效率。在實施例中,藉由經由陰影遮罩濺射形成圖案化導電層123。在實施例中,圖案化導電層123包括500埃厚的鈦(Ti)第一層、500埃厚度鈦-鎢(TiW)中間層及1μm至2μm厚的金(Au)外層。在實施例中,圖案化導電層123與匯流排互連結構106進行歐姆接觸。 The patterned conductive layer 123 can then be formed over the exposed top surface of the bus bar interconnect structure 106 and inside the inner side surface of the bus bar interconnect structure 106, as illustrated in Figures 22A-22B. In this manner, forming the conductive layer 123 partially over the top surface of the busbar interconnect structure 106 can provide a larger surface area for ohmic contact with the busbar interconnect structure 106. Since the bus bar interconnect structure 106 is closer to the SOI junction than the rear side surface of the SOI structure The top surface of the structure, according to some embodiments, may be more efficient to form a conductive layer 123 inside the inner surface of the busbar interconnect structure 106 from above the top surface of the SOI structure as compared to the back surface of the SOI structure. In an embodiment, the patterned conductive layer 123 is formed by sputtering through a shadow mask. In an embodiment, the patterned conductive layer 123 includes a 500 angstrom thick titanium (Ti) first layer, a 500 angstrom thick titanium-tungsten (TiW) intermediate layer, and a 1 μm to 2 μm thick gold (Au) outer layer. In an embodiment, the patterned conductive layer 123 is in ohmic contact with the bus bar interconnect structure 106.

現在參閱第23A圖至第23B圖,圖案化導電層122可在通孔開口120A內部的鈍化層133上形成與圖案化導電層123電性接觸。導電層122可由與導電層123相同或不同的材料形成且可具有相同或不同的厚度。在實施例中,導電層123具有較厚的金層。 Referring now to FIGS. 23A-23B, the patterned conductive layer 122 can be formed in electrical contact with the patterned conductive layer 123 on the passivation layer 133 inside the via opening 120A. The conductive layer 122 may be formed of the same or different material as the conductive layer 123 and may have the same or different thicknesses. In an embodiment, the conductive layer 123 has a thicker gold layer.

現在參閱第24A圖至第24B圖,隨後可在底座基板130中正好在矽電極陣列下方蝕刻一或更多個腔136使得矽電極陣列可偏轉至一或更多個腔內。在實施例中,分離的腔136正好形成在每一對矽電極下方。在實施例中,單個腔136正好形成在與第一矽跡線互連結構及第二矽跡線互連結構104電性通訊的矽電極陣列的下方。在實施例中,使用時控釋放蝕刻形成腔136至底座基板130中,該蝕刻底切電極引線114及檯面結構112。舉例而言,可使用諸如XeF2或SF6的基於氟的化學物質執行蝕刻。在實施例中,一或更多個腔136為大約15μm深。 Referring now to Figures 24A through 24B, one or more cavities 136 can then be etched in the base substrate 130 just below the xenon electrode array such that the tantalum electrode array can be deflected into one or more cavities. In an embodiment, a separate cavity 136 is formed just below each pair of ruthenium electrodes. In an embodiment, a single cavity 136 is formed just below the array of germanium electrodes in electrical communication with the first meandering interconnect structure and the second meandering interconnect structure 104. In an embodiment, a time-controlled release etch is used to form the cavity 136 into the base substrate 130, which etches the undercut electrode leads 114 and the mesa structure 112. For example, etching can be performed using a fluorine-based chemistry such as XeF 2 or SF 6 . In an embodiment, one or more of the cavities 136 are approximately 15 [mu]m deep.

在形成一或更多個腔136之後,隨後可切割SOI基 板,例如,使用雷射切割,以形成相容雙極性轉移頭陣列,該相容雙極性轉移頭陣列包括與矽跡線互連結構104及匯流排互連結構106互連的相容轉移頭102之陣列及延伸穿過底座基板130從底座基板的後側至圖案化矽層140及穿過圖案化矽層140從而電性連接矽電極110與轉移頭元件的工作電路系統的通孔120。 After forming one or more cavities 136, the SOI base can then be cut The plates, for example, use laser cutting to form an array of compatible bipolar transfer heads including compatible transfer heads interconnected with the turns trace interconnect structure 104 and the bus bar interconnect structure 106 An array of 102 and a through hole 120 extending through the base substrate 130 from the rear side of the base substrate to the patterned germanium layer 140 and through the patterned germanium layer 140 to electrically connect the drain electrode 110 and the working circuitry of the transfer head element.

第25A圖至第30B圖圖示根據本發明的實施例的形成相容雙極性微裝置轉移頭的方法,該相容雙極性微裝置轉移頭包括雙側夾緊支撐梁及沉積介電層126、該對矽電極110之間及連接該對矽電極110的氧化物接頭119以及上側通孔開口及後側通孔開口。在實施例中,引導至第25A圖至第25B圖的處理序列可與如上所述的第5A圖至第7B圖及第17A圖至第19B圖的處理序列相同。現在參閱第25A圖至第25B圖,在實施例中開口形成在頂端介電層118中正好在後側通孔開口120A上方且正好在檯面結構112上方。 25A through 30B illustrate a method of forming a compatible bipolar microdevice transfer head including a double-sided clamping support beam and a deposition dielectric layer 126, in accordance with an embodiment of the present invention. The pair of germanium electrodes 110 and the oxide joint 119 connecting the pair of germanium electrodes 110 and the upper through hole opening and the rear side through hole opening. In the embodiment, the processing sequence leading to FIGS. 25A to 25B may be the same as the processing sequences of FIGS. 5A to 7B and 17A to 19B as described above. Referring now to Figures 25A through 25B, in an embodiment the opening is formed in the top dielectric layer 118 just above the back side via opening 120A and just above the mesa structure 112.

現在參閱第25A圖至第25B圖,開口形成在頂端介電層118中以曝露檯面結構112及氧化物接頭119(及視情況地電極引線114的部分),且開口(該等開口將成為通孔開口120B的部分)形成在頂端介電層118中正好在後側通孔開口120A上方。溝槽區域137開口亦同時形成在埋入的氧化物層124中以曝露底座基板130(此處將形成一或更多個腔136)。在圖示的特定實施例中,氧化物接頭119並非完全地從相容轉移頭102中的鄰近的檯面結構112之間移除。使用厚的圖案化正光阻劑、接著乾式蝕刻頂端介電層118,可在頂 端介電層118及埋入的氧化物層124中形成開口。在實施例中,執行時控乾式氧化物蝕刻以保證氧化物接頭119不被完全地移除。在實施例中,頂端介電層118及埋入的氧化物層124具有大約相同的厚度,且當移除小於0.2μm的氧化物接頭119厚度時,可在時控乾式氧化物蝕刻中完全地移除頂端介電層118及埋入的氧化物層124。隨後藉由O2灰化、接著食人魚蝕刻移除圖案化光阻劑,產生第25A圖至第25B圖中的結構。組合蝕刻及圖案化步驟形成通孔開口120A及溝槽區域137開口亦可減少處理操作及需要的遮罩數量。 Referring now to Figures 25A through 25B, openings are formed in the top dielectric layer 118 to expose the terrace surface structure 112 and the oxide tabs 119 (and optionally portions of the electrode leads 114), and the openings (the openings will become A portion of the aperture opening 120B is formed in the top dielectric layer 118 just above the back side via opening 120A. The trench region 137 opening is also simultaneously formed in the buried oxide layer 124 to expose the base substrate 130 (where one or more cavities 136 will be formed). In the particular embodiment illustrated, the oxide joint 119 is not completely removed from between adjacent mesa structures 112 in the compatible transfer head 102. An opening can be formed in the top dielectric layer 118 and the buried oxide layer 124 using a thick patterned positive photoresist followed by dry etching of the top dielectric layer 118. In an embodiment, a time controlled dry oxide etch is performed to ensure that the oxide joint 119 is not completely removed. In an embodiment, the top dielectric layer 118 and the buried oxide layer 124 have approximately the same thickness, and when the thickness of the oxide joint 119 less than 0.2 μm is removed, it can be completely completed in a time-controlled dry oxide etch. The top dielectric layer 118 and the buried oxide layer 124 are removed. The patterned photoresist is then removed by O 2 ashing followed by piranha etching to produce the structures in Figures 25A through 25B. Forming the etch and patterning steps to form the via opening 120A and the trench region 137 opening also reduces the number of processing operations and the number of masks required.

現在參閱第26A圖至第26B圖,在實施例中,第二介電層126形成在頂部表面上方,該頂部表面包括圖案化介電層118、圖案化矽層140及氧化物接頭119,接著使用厚的正光阻劑圖案化第二介電層126及蝕刻第二介電層126。在完成蝕刻之後,經圖案化的第二介電層126覆蓋檯面結構112且亦可覆蓋電極引線114及圖案化介電層118的一部分。圖案化第二介電層126從圖案化矽層140的上方後側通孔開口120A的正上方及溝槽區域137(此處將形成一或更多個腔136)處經移除。在實施例中,第二介電層可具有比介電層118更高的介電常數或介電崩潰強度,且第二介電層具有介於0.5μm至10μm之間的厚度。舉例而言,第二介電層126為藉由原子層沉積(ALD)沉積的Al2O3層、Ta2O5層或HfO2層。 Referring now to FIGS. 26A through 26B, in an embodiment, a second dielectric layer 126 is formed over the top surface, the top surface including a patterned dielectric layer 118, a patterned germanium layer 140, and an oxide joint 119, followed by The second dielectric layer 126 is patterned using a thick positive photoresist and the second dielectric layer 126 is etched. After the etching is completed, the patterned second dielectric layer 126 covers the mesa structure 112 and may also cover portions of the electrode leads 114 and the patterned dielectric layer 118. The patterned second dielectric layer 126 is removed from directly above the upper back via opening 120A of the patterned germanium layer 140 and the trench region 137 where one or more cavities 136 will be formed. In an embodiment, the second dielectric layer can have a higher dielectric constant or dielectric breakdown strength than the dielectric layer 118, and the second dielectric layer has a thickness between 0.5 μm and 10 μm. For example, the second dielectric layer 126 is an Al 2 O 3 layer, a Ta 2 O 5 layer, or an HfO 2 layer deposited by atomic layer deposition (ALD).

現在參閱第27A圖至第27B圖,開口形成在矽層140及埋入的氧化物層124中以形成上側通孔開口120B,該上側通孔開口120B連接後側通孔開口120A。藉由形成厚的圖案 化正光阻劑、接著執行終止於埋入的氧化物層124上的矽層140的DRIE、接著執行穿過埋入的氧化物層124的RIE,可在矽層140及埋入的氧化物層124中形成開口。隨後藉由O2灰化、接著食人魚蝕刻移除圖案化光阻劑,產生第27A圖至第27B圖中的結構。以此方式,當形成上側通孔開口120B時形成開口穿過埋入的氧化物層124可避免與從SOI結構的後側在埋入的氧化物層124中形成開口相關的光刻術的挑戰,不會不利地影響沿著通孔開口120A的側壁的鈍化層133。 Referring now to FIGS. 27A through 27B, openings are formed in the tantalum layer 140 and the buried oxide layer 124 to form an upper side via opening 120B that connects the back side via opening 120A. The ruthenium layer 140 can be formed by forming a thick patterned positive photoresist, then performing DRIE termination of the germanium layer 140 on the buried oxide layer 124, followed by RIE through the buried oxide layer 124. An opening is formed in the buried oxide layer 124. The patterned photoresist is then removed by O 2 ashing followed by piranha etching to produce the structures in panels 27A through 27B. In this manner, forming an opening through the buried oxide layer 124 when the upper via opening 120B is formed can avoid the lithography challenge associated with forming an opening in the buried oxide layer 124 from the back side of the SOI structure. The passivation layer 133 along the sidewalls of the via opening 120A is not adversely affected.

隨後圖案化導電層123形成在匯流排互連結構106的曝露的頂表面上方及匯流排互連結構106的內側表面的內部,如第28A圖至第28B圖所圖示。以此方式,在匯流排互連結構106的頂表面上方部分地形成導電層123可提供更大的表面面積用於與匯流排互連結構106的歐姆接觸。由於匯流排互連結構106比SOI結構的後側表面更靠近SOI結構的頂表面,故根據一些實施例,與從SOI結構的後表面相比,從SOI結構的頂表面上方在匯流排互連結構106的內側表面的內部形成一層導電層123可能更有效率。在實施例中,藉由經由陰影遮罩濺射形成圖案化導電層123。在實施例中,圖案化導電層123包括500埃厚的鈦(Ti)第一層、500埃厚的鈦-鎢(TiW)中間層及1μm至2μm厚的金(Au)外層。在實施例中,圖案化導電層123與匯流排互連結構106進行歐姆接觸。 Patterned conductive layer 123 is then formed over the exposed top surface of bus bar interconnect structure 106 and inside the inner side surface of bus bar interconnect structure 106, as illustrated in Figures 28A-28B. In this manner, forming the conductive layer 123 partially over the top surface of the busbar interconnect structure 106 can provide a larger surface area for ohmic contact with the busbar interconnect structure 106. Since the bus bar interconnect structure 106 is closer to the top surface of the SOI structure than the back side surface of the SOI structure, in accordance with some embodiments, the bus bar interconnects from above the top surface of the SOI structure as compared to the back surface of the SOI structure. Forming a layer of conductive layer 123 inside the inner surface of structure 106 may be more efficient. In an embodiment, the patterned conductive layer 123 is formed by sputtering through a shadow mask. In an embodiment, the patterned conductive layer 123 includes a 500 angstrom thick titanium (Ti) first layer, a 500 angstrom thick titanium-tungsten (TiW) intermediate layer, and a 1 μm to 2 μm thick gold (Au) outer layer. In an embodiment, the patterned conductive layer 123 is in ohmic contact with the bus bar interconnect structure 106.

圖案化導電層122可形成在通孔開口120A內部的鈍化層133上且與圖案化導電層123電性接觸,如第29A圖至第29B圖所圖示。導電層122可由與導電層123相同或不 同的材料形成且可具有相同或不同的厚度。在實施例中,導電層123具有較厚的金層。導電層122、導電層123可沿著通孔120的側表面形成連續的導電層。 The patterned conductive layer 122 may be formed on the passivation layer 133 inside the via opening 120A and in electrical contact with the patterned conductive layer 123 as illustrated in FIGS. 29A-29B. The conductive layer 122 may be the same as or not the conductive layer 123 The same materials are formed and may have the same or different thicknesses. In an embodiment, the conductive layer 123 has a thicker gold layer. The conductive layer 122 and the conductive layer 123 may form a continuous conductive layer along a side surface of the via 120.

現在參閱第30A圖至第30B圖,隨後可在底座基板130中正好在矽電極陣列下方蝕刻一或更多個腔136使得矽電極陣列可偏轉至一或更多個腔內。在實施例中,分離的腔136直接形成在每一對矽電極下方。在實施例中,單個腔136正好形成在與第一矽跡線互連結構及第二矽跡線互連結構104電性通訊的矽電極陣列的下方。在實施例中,使用時控釋放蝕刻形成腔136至底座基板130中,該蝕刻底切電極引線114及檯面結構112。舉例而言,可使用諸如XeF2或SF6的基於氟的化學物質執行蝕刻。在實施例中,一或更多個腔136為大約15μm深。 Referring now to FIGS. 30A through 30B, one or more cavities 136 can then be etched in the base substrate 130 just below the xenon electrode array such that the tantalum electrode array can be deflected into one or more cavities. In an embodiment, separate chambers 136 are formed directly below each pair of ruthenium electrodes. In an embodiment, a single cavity 136 is formed just below the array of germanium electrodes in electrical communication with the first meandering interconnect structure and the second meandering interconnect structure 104. In an embodiment, a time-controlled release etch is used to form the cavity 136 into the base substrate 130, which etches the undercut electrode leads 114 and the mesa structure 112. For example, etching can be performed using a fluorine-based chemistry such as XeF 2 or SF 6 . In an embodiment, one or more of the cavities 136 are approximately 15 [mu]m deep.

在形成一或更多個腔136之後,隨後可切割SOI基板,例如,使用雷射切割,以形成相容雙極性轉移頭陣列,該相容雙極性轉移頭陣列包括與矽跡線互連結構104及匯流排互連結構106互連的相容轉移頭102之陣列及延伸穿過底座基板130從底座基板的後側至圖案化矽層140且穿過圖案化矽層140從而電性連接矽電極110與轉移頭元件的工作電路系統的通孔120。 After forming one or more cavities 136, the SOI substrate can then be diced, for example, using laser dicing to form an array of compatible bipolar transfer heads including interconnected trace interconnect structures An array of compatible transfer heads 102 interconnected by the bus bar interconnect structure 106 and extending through the base substrate 130 from the rear side of the base substrate to the patterned germanium layer 140 and through the patterned germanium layer 140 for electrical connection The electrode 110 is connected to the through hole 120 of the working circuit system of the transfer head element.

第31圖至第37圖圖示根據本發明的實施例的跨過矽跡線互連結構104之間的相容雙極性微裝置轉移頭的各種修改。雖然分別根據以上圖示的處理序列圖示第31圖至第37圖,但應理解,關於第31圖至第37圖的許多各種修改可以 前述處理序列實施。 31 through 37 illustrate various modifications of a compatible bipolar microdevice transfer head between the turns trace interconnect structures 104 in accordance with an embodiment of the present invention. Although FIGS. 31 to 37 are respectively illustrated according to the processing sequence illustrated above, it should be understood that many various modifications regarding FIGS. 31 to 37 may be The aforementioned processing sequence is implemented.

第31圖為根據本發明的實施例的沿著具有懸臂梁及連續的接頭的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極懸臂梁可包括從兩個矽跡線互連結構104延伸的一對電極引線114及藉由連續的氧化物接頭119分離的一對檯面結構112,該連續的氧化物接頭119位於埋入的氧化物層124上且與埋入的氧化物層124直接接觸並且以懸臂梁的縱向長度平行於該對矽跡線互連結構104延伸。在此實施例中,氧化物接頭119沿著懸臂梁的縱向長度沿著該對電極引線114及該對檯面結構112兩者電性絕緣雙極性電極配置中的該對矽電極。如圖所示,電極引線114可包括彎曲115(圖示為90度彎曲)。 Figure 31 is a plan view and cross-sectional side view of line A-A along a compatible bipolar microdevice transfer head having a cantilever beam and a continuous joint, in accordance with an embodiment of the present invention. As shown, the tantalum electrode cantilever beam can include a pair of electrode leads 114 extending from two turns trace interconnect structures 104 and a pair of mesa structures 112 separated by a continuous oxide joint 119, the continuous oxide A joint 119 is located on the buried oxide layer 124 and is in direct contact with the buried oxide layer 124 and extends parallel to the pair of meander trace interconnect structures 104 in a longitudinal extent of the cantilever beam. In this embodiment, the oxide tab 119 electrically insulates the pair of turns in the bipolar electrode configuration along both the pair of electrode leads 114 and the pair of mesa structures 112 along the longitudinal length of the cantilever beam. As shown, the electrode lead 114 can include a bend 115 (shown as a 90 degree bend).

第32圖為根據本發明的實施例的沿著具有懸臂梁及檯面接頭的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極懸臂梁可包括從個矽跡線互連結構104延伸的一對電極引線114及藉由檯面氧化物接頭119分離的一對檯面結構112,該檯面氧化物接頭119位於埋入的氧化物層124上及與埋入的氧化物層124直接接觸且以在懸臂梁的縱向長度平行於該對矽跡線互連結構104延伸。在此實施例中,氧化物接頭119沿著懸臂梁的縱向長度沿著該對檯面結構112電性絕緣雙極性電極配置中的該對矽電極。如圖所示,該對電極引線114藉由圖案化實體分離可包括彎曲115(圖示為90度彎曲)。 Figure 32 is a plan view and cross-sectional side view of line A-A along a compatible bipolar microdevice transfer head having a cantilever beam and a mesa joint, in accordance with an embodiment of the present invention. As shown, the tantalum electrode cantilever beam can include a pair of electrode leads 114 extending from the tantalum trace interconnect structure 104 and a pair of mesa structures 112 separated by mesa oxide tabs 119, the mesa oxide tabs 119 being located The buried oxide layer 124 is in direct contact with the buried oxide layer 124 and extends parallel to the pair of meander trace interconnect structures 104 in the longitudinal length of the cantilever beam. In this embodiment, the oxide tab 119 electrically insulates the pair of turns of the bipolar electrode configuration along the pair of mesa structures 112 along the longitudinal length of the cantilever beam. As shown, the pair of electrode leads 114 can include a bend 115 (shown as a 90 degree bend) by patterning physical separation.

第33圖為根據本發明的實施例的沿著具有雙側夾 緊梁及連續的接頭的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極雙側夾緊梁可包括從兩個矽跡線互連結構104延伸的一對彎曲電極引線114及藉由連續的氧化物接頭119分離的一對檯面結構112,該連續的氧化物接頭119位於埋入的氧化物層124上及與埋入的氧化物層124直接接觸以懸臂梁的縱向長度平行於該對矽跡線互連結構104延伸。在此實施例中,氧化物接頭119沿著雙側夾緊梁的縱向長度沿著該對電極引線114及該對檯面結構112兩者電性絕緣雙極性電極配置中的該對矽電極。如圖所示,電極引線114可各自包括在電極引線從矽跡線互連結構104延伸的鄰近及遠側位置處的彎曲115(圖示為90度)。 Figure 33 is a diagram showing a double side clip along an embodiment in accordance with the present invention. A plan view and a cross-sectional side view of a line A-A of a compatible bipolar microdevice transfer head of a tight beam and a continuous joint. As shown, the tantalum electrode double side clamping beam can include a pair of curved electrode leads 114 extending from the two meander line interconnect structures 104 and a pair of mesa structures 112 separated by a continuous oxide joint 119, which A continuous oxide joint 119 is located on the buried oxide layer 124 and in direct contact with the buried oxide layer 124 such that the longitudinal length of the cantilever beam extends parallel to the pair of meander trace interconnect structures 104. In this embodiment, the oxide joint 119 electrically insulates the pair of turns in the bipolar electrode configuration along both the pair of electrode leads 114 and the pair of mesa structures 112 along the longitudinal length of the double-sided clamping beam. As shown, the electrode leads 114 can each include a bend 115 (shown as 90 degrees) at adjacent and distal locations where the electrode leads extend from the meander line interconnect structure 104.

第34圖為根據本發明的實施例的沿著具有包括一對矽電極(具有雙彎曲及檯面接頭)的雙側夾緊梁的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極雙側夾緊梁可包括從兩個矽跡線互連結構104延伸的一對電極引線114(每一電極引線114具有雙彎曲115)及藉由檯面氧化物接頭119分離的一對檯面結構112,該檯面氧化物接頭119位於埋入的氧化物層124上及與埋入的氧化物層124直接接觸且雙側夾緊梁的橫向寬度平行於該對矽跡線互連結構104延伸。在此實施例中,氧化物接頭119沿著該對檯面結構112之間的懸臂梁的橫向寬度電性絕緣雙極性電極配置中的該對矽電極,該對電極引線114藉由圖案化實體分離。在圖示的實施例中,分開每一電極引線114使得梁配置具有電極引線114的8-形狀配置。 Figure 34 is a plan view and cross-section of line AA of a compatible bipolar microdevice transfer head having a double sided clamping beam including a pair of 矽 electrodes (with double bends and mesa joints) in accordance with an embodiment of the present invention. Sectional side view. As shown, the tantalum electrode double-sided clamping beam can include a pair of electrode leads 114 extending from two turns of trace interconnect structure 104 (each electrode lead 114 having a double bend 115) and by a mesa oxide joint 119 A separate pair of mesa structures 112 on the buried oxide layer 124 and in direct contact with the buried oxide layer 124 and the lateral width of the double-sided clamping beam is parallel to the pair of meandering traces The interconnect structure 104 extends. In this embodiment, the oxide tab 119 electrically insulates the pair of turns in the bipolar electrode configuration along the lateral width of the cantilever beam between the pair of mesa structures 112, the pair of electrode leads 114 being separated by a patterned entity . In the illustrated embodiment, each electrode lead 114 is separated such that the beam configuration has an 8-shaped configuration of electrode leads 114.

第35圖為根據本發明的實施例的沿著具有包括一對矽電極(具有單個彎曲及檯面接頭)的雙側夾緊梁的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極雙側夾緊梁可包括從個矽跡線互連結構104延伸的一對電極引線114(每一電極引線114具有單個雙彎曲115)及藉由檯面氧化物接頭119分離的一對檯面結構112,該檯面氧化物接頭119位於埋入的氧化物層124上及與埋入的氧化物層124直接接觸雙側夾緊梁的橫向寬度垂直於該對矽跡線互連結構104延伸。在此實施例中,氧化物接頭119沿著該對檯面結構112之間的雙側夾緊梁的橫向寬度電性絕緣雙極性電極配置中的該對矽電極對,該對電極引線114藉由圖案化實體分離。 Figure 35 is a plan view and cross-section of line AA of a compatible bipolar microdevice transfer head having a double-sided clamping beam including a pair of 矽 electrodes (having a single curved and mesa joint) in accordance with an embodiment of the present invention. Sectional side view. As shown, the tantalum electrode double-sided clamping beam can include a pair of electrode leads 114 extending from a meandering trace interconnect structure 104 (each electrode lead 114 having a single double bend 115) and by a mesa oxide joint 119 a separate pair of mesa structures 112 on the buried oxide layer 124 and in direct contact with the buried oxide layer 124. The lateral widths of the double-sided clamping beams are perpendicular to the pair of meandering traces. The structure 104 extends. In this embodiment, the oxide joint 119 electrically insulates the pair of tantalum electrodes in the bipolar electrode configuration along a lateral width of the double-sided clamping beam between the pair of mesa structures 112, the pair of electrode leads 114 The patterned entities are separated.

第36圖至第37圖為根據本發明的實施例的沿著具有包括一對矽電極(具有雙彎曲及檯面接頭)的雙側夾緊梁的相容雙極性微裝置轉移頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極雙側夾緊梁可包括一對電極引線114(每一電極引線114具有雙彎曲115)及藉由檯面氧化物接頭119分離的一對檯面結構112,該檯面氧化物接頭119位於埋入的氧化物層124上及與埋入的氧化物層124直接接觸雙側夾緊梁的橫向寬度平行於該對矽跡線互連結構104延伸。在此實施例中,氧化物接頭119沿著該對檯面結構112之間的雙側夾緊梁的橫向寬度電性絕緣雙極性電極配置中的該對矽電極。在第36圖圖示的特定實施例中,梁為W-形狀配置。在第37圖圖示的特定實施例中,梁為S-形狀配置。 36 through 37 are lines AA of a compatible bipolar microdevice transfer head having a double-sided clamping beam including a pair of tantalum electrodes (with double bends and mesa joints) in accordance with an embodiment of the present invention. Plan view and cross section side view. As shown, the tantalum electrode double-sided clamping beam can include a pair of electrode leads 114 (each electrode lead 114 having a double bend 115) and a pair of mesa structures 112 separated by a mesa oxide joint 119, the mesa oxide The joint 119 is located on the buried oxide layer 124 and is in direct contact with the buried oxide layer 124. The lateral width of the double-sided clamping beam extends parallel to the pair of meander line interconnect structures 104. In this embodiment, the oxide joint 119 electrically insulates the pair of turns in the bipolar electrode configuration along the lateral width of the double-sided clamping beam between the pair of mesa structures 112. In the particular embodiment illustrated in Figure 36, the beam is in a W-shape configuration. In the particular embodiment illustrated in Figure 37, the beam is in an S-shape configuration.

根據本發明的實施例,覆蓋檯面結構112的介電層118或介電層126具有適當的厚度及介電常數用於微裝置轉移頭所需要的夾緊壓力,及具有充分的介電強度以不在操作電壓崩潰。第38圖為圖示根據本發明的實施例的從載體基板拾取及轉移微裝置陣列至接收基板的方法的流程圖。在操作3810,相容轉移頭陣列定位在載體基板上的微裝置陣列上方。第39圖為根據本發明的實施例的位於載體基板200上的微裝置陣列上方的相容轉移頭102之陣列的橫截面側視圖。在操作3820,微裝置陣列接觸相容轉移頭陣列。在替代的實施例中,相容轉移頭陣列定位於微裝置陣列上方,該微裝置陣列具有適當的分離該等微裝置氣隙,例如,1nm至10nm該氣隙不顯著影響夾緊壓力。第40圖為根據本發明的實施例的接觸微裝置202之陣列的相容轉移頭102之陣列的橫截面側視圖。如圖所示,相容轉移頭102之陣列的節距為微裝置202之陣列的節距整數倍。在操作3830,將電壓施加於相容轉移頭102之陣列。可自與相容轉移頭陣列通孔120電性連接的轉移頭元件160內部的工作電路系統施加電壓。在操作3840,使用相容轉移頭陣列拾取微裝置陣列。第41圖為根據本發明的實施例的拾取微裝置202之陣列的相容轉移頭102之陣列的橫截面側視圖。隨後在操作3850,將微裝置陣列釋放至接收基板上。舉例而言,接收基板可為(但不限於)顯示基板、照明基板、具有諸如電晶體或IC的功能裝置的基板或具有金屬重新分配線路的基板。第42圖為根據本發明的實施例的釋放至接收基板300上的微裝置202之陣列的橫截面 側視圖。 In accordance with an embodiment of the present invention, the dielectric layer 118 or dielectric layer 126 covering the mesa structure 112 has a suitable thickness and dielectric constant for the clamping pressure required by the microdevice transfer head, and has sufficient dielectric strength to Not operating voltage collapses. Figure 38 is a flow chart illustrating a method of picking up and transferring a microdevice array from a carrier substrate to a receiving substrate in accordance with an embodiment of the present invention. At operation 3810, the compatible transfer head array is positioned over the array of micro devices on the carrier substrate. Figure 39 is a cross-sectional side view of an array of compatible transfer heads 102 over a microdevice array on a carrier substrate 200, in accordance with an embodiment of the present invention. At operation 3820, the micro device array contacts the compatible transfer head array. In an alternate embodiment, the compatible transfer head array is positioned above the micro device array with appropriate separation of the micro device air gaps, for example, 1 nm to 10 nm. The air gap does not significantly affect the clamping pressure. Figure 40 is a cross-sectional side view of an array of compatible transfer heads 102 of an array of contact microdevices 202 in accordance with an embodiment of the present invention. As shown, the pitch of the array of compatible transfer heads 102 is an integer multiple of the pitch of the array of micro devices 202. At operation 3830, a voltage is applied to the array of compatible transfer heads 102. A voltage can be applied from a working circuit system internal to the transfer head element 160 that is electrically coupled to the compatible transfer head array via 120. At operation 3840, the array of microdevices is picked up using a compatible array of transfer heads. Figure 41 is a cross-sectional side view of an array of compatible transfer heads 102 of an array of pick-up micro-devices 202 in accordance with an embodiment of the present invention. The microdevice array is then released onto the receiving substrate at operation 3850. For example, the receiving substrate can be, but is not limited to, a display substrate, an illumination substrate, a substrate having a functional device such as a transistor or an IC, or a substrate having a metal redistribution line. Figure 42 is a cross section of an array of micro devices 202 that are released onto the receiving substrate 300 in accordance with an embodiment of the present invention. Side view.

雖然在第38圖中已經依序圖示操作3810至操作3850,但將理解實施例不受此限制可執行額外的操作可以不同循序執行某些操作。舉例而言,在一個實施例中,在拾取微裝置之前或之時,執行一操作以產生連接微裝置至載體基板的接合層的相變。舉例而言,接合層可具有小於350℃的液相溫度,或更具體而言小於200℃的液相溫度。接合層可由提供至載體基板的黏合的材料形成,然而亦可由能容易地釋放微裝置的媒介形成。在實施例中,接合層為諸如銦或銦合金的材料。若使用微裝置拾取一部分接合層,則可執行額外的操作以在後續處理期間控制部分接合層的相。舉例而言,可從位於轉移頭元件160、載體基板200及/或接收基板300內部的熱源將熱量施加至接合層。 Although operation 3810 through operation 3850 have been illustrated in sequence in FIG. 38, it will be understood that the embodiments are not limited thereto and that additional operations may be performed to perform certain operations in a different order. For example, in one embodiment, an operation is performed to generate a phase change of the bonding layer connecting the micro device to the carrier substrate before or at the time of picking up the micro device. For example, the tie layer can have a liquidus temperature of less than 350 °C, or, more specifically, a liquidus temperature of less than 200 °C. The bonding layer may be formed of a material that is bonded to the carrier substrate, but may also be formed of a medium that can easily release the micro device. In an embodiment, the bonding layer is a material such as indium or an indium alloy. If a micro-device is used to pick up a portion of the bonding layer, additional operations can be performed to control the phase of the portion of the bonding layer during subsequent processing. For example, heat can be applied to the bonding layer from a heat source located within the transfer head element 160, the carrier substrate 200, and/or the receiving substrate 300.

此外,施加電壓以在微裝置上產生夾緊壓力的操作3830可以各種執行。舉例而言,在微裝置陣列接觸相容轉移頭陣列之前、當微裝置接觸相容轉移頭陣列之時或微裝置接觸相容轉移頭陣列之後,可施加電壓。亦可在接合層中產生相變之前、之時或之後施加電壓。 Moreover, operation 3830 of applying a voltage to create a clamping pressure on the micro device can be performed variously. For example, a voltage can be applied before the micro device array contacts the compatible transfer head array, when the micro device contacts the compatible transfer head array, or after the micro device contacts the compatible transfer head array. It is also possible to apply a voltage before, during or after the phase change in the bonding layer.

相容轉移頭102包括雙極性矽電極,跨過每一相容轉移頭102中的該對矽電極施加交流電壓,使得在特定點處當負電壓被施加至一個矽電極時,正電壓被施加至該對矽電極中的另一個矽電極,反之亦然,從而產生拾取壓力。從相容轉移頭102釋放微裝置可使用經變化的方法完成,該等方法包括關閉電壓源,跨過該對矽電極的電壓,改變AC電壓的 波形及將電壓源接地。釋放亦可藉由與在接收基板上微裝置有關的放電完成。 The compatible transfer head 102 includes a bipolar germanium electrode that applies an alternating voltage across the pair of germanium electrodes in each compatible transfer head 102 such that a positive voltage is applied when a negative voltage is applied to a germanium electrode at a particular point To the other of the pair of electrodes, and vice versa, thereby generating a pick-up pressure. Release of the microdevice from the compatible transfer head 102 can be accomplished using a modified method that includes turning off the voltage source, varying the voltage across the pair of electrodes, and varying the AC voltage. Waveform and ground the voltage source. Release can also be accomplished by discharge associated with the microdevice on the receiving substrate.

在使用本發明的各種態樣,對於熟習此項技術者將變得明顯的是以上實施例的組合或變化可能用於形成相容雙極性微裝置轉移頭及頭陣列及用於轉移微裝置及微裝置陣列。儘管已經以特定於結構及/或方法動作的語言描述本發明,然而理解在隨附申請專利範圍中定義的本發明非必要地受限於描述的具體或動作。相反,揭示的具體及動作應理解為所主張發明的尤其合體的實施方式,以用於說明本發明。 In making use of the various aspects of the present invention, it will be apparent to those skilled in the art that combinations or variations of the above embodiments may be used to form compatible bipolar microdevice transfer heads and head arrays and for transferring microdevices and Micro device array. Although the present invention has been described in a language specific to the structure and/or method of operation, it is understood that the invention defined in the appended claims Rather, the specifics and acts of the disclosure are to be understood as a particularly preferred embodiment of the claimed invention.

112‧‧‧檯面結構 112‧‧‧ countertop structure

114‧‧‧電極引線 114‧‧‧Electrode lead

116‧‧‧溝槽 116‧‧‧ trench

118‧‧‧介電層 118‧‧‧ dielectric layer

119‧‧‧氧化物接頭 119‧‧‧Oxide joint

120‧‧‧通孔 120‧‧‧through hole

120A‧‧‧通孔開口 120A‧‧‧through opening

120B‧‧‧通孔開口 120B‧‧‧through opening

122‧‧‧圖案化導電層 122‧‧‧ patterned conductive layer

123‧‧‧圖案化導電層 123‧‧‧ patterned conductive layer

124‧‧‧埋入的氧化物層 124‧‧‧buried oxide layer

130‧‧‧底座基板 130‧‧‧Base substrate

132‧‧‧鈍化層 132‧‧‧ Passivation layer

133‧‧‧鈍化層 133‧‧‧passivation layer

136‧‧‧腔 136‧‧‧ cavity

140‧‧‧矽層 140‧‧‧矽

Claims (20)

一種雙極性微裝置轉移頭陣列,其包含:一底座基板;一靜電轉移頭陣列,每一靜電轉移頭包括一對矽電極及一覆蓋該對矽電極之一頂部表面之介電材料,該對矽電極可偏轉至該底座基板與該對矽電極之間的一腔內。 A bipolar micro device transfer head array comprising: a base substrate; an electrostatic transfer head array, each electrostatic transfer head comprising a pair of germanium electrodes and a dielectric material covering a top surface of one of the pair of germanium electrodes, the pair The ruthenium electrode can be deflected into a cavity between the base substrate and the pair of ruthenium electrodes. 如請求項1之微裝置轉移頭陣列,其中每一對矽電極可偏轉至該相同的腔內。 The microdevice transfer head array of claim 1 wherein each pair of germanium electrodes is deflectable into the same cavity. 如請求項2之微裝置轉移頭陣列,其中該腔位於該底座基板中。 The microdevice transfer head array of claim 2, wherein the cavity is located in the base substrate. 如請求項1之微裝置轉移頭陣列,其中每一對矽電極可偏轉至一分開的腔內。 The microdevice transfer head array of claim 1 wherein each pair of xenon electrodes is deflectable into a separate cavity. 如請求項4之微裝置轉移頭陣列,其中每一腔位於該底座基板中。 The microdevice transfer head array of claim 4, wherein each cavity is located in the base substrate. 如請求項1之微裝置轉移頭陣列,其中該靜電轉移頭陣列包含:一第一矽電極陣列,其與一第一匯流排互連結構(interconnect)電性連接;及 一第二矽電極陣列,其與一第二匯流排互連結構電性連接。 The micro device transfer head array of claim 1, wherein the electrostatic transfer head array comprises: a first electrode array electrically connected to a first bus bar interconnect; A second electrode array is electrically connected to a second bus bar interconnect structure. 如請求項6之微裝置轉移頭陣列,其中該靜電轉移頭陣列包含:第一複數個跡線互連結構,其將該第一矽電極陣列與該第一匯流排互連結構電性互連;及第二複數個跡線互連結構,其將該第二矽電極陣列與該第二匯流排互連結構電性互連。 The micro device transfer head array of claim 6, wherein the electrostatic transfer head array comprises: a first plurality of trace interconnect structures electrically interconnecting the first tantalum electrode array and the first bus bar interconnect structure And a second plurality of trace interconnect structures electrically interconnecting the second drain electrode array and the second bus interconnect structure. 如請求項7之微裝置轉移頭陣列,其中該第一及第二複數個跡線互連結構係矽跡線互連結構,且該第一及第二匯流排互連結構係矽匯流排互連結構。 The micro device transfer head array of claim 7, wherein the first and second plurality of trace interconnect structures are trace trace interconnect structures, and the first and second bus bar interconnect structures are connected to each other Even structure. 如請求項7之微裝置轉移頭陣列,其進一步包含一第一通孔及一第二通孔,該第一通孔延伸穿過該第一匯流排互連結構及該底座基板,該第二通孔延伸穿過該第二匯流排互連結構及該底座基板。 The micro device transfer head array of claim 7, further comprising a first through hole and a second through hole, the first through hole extending through the first bus bar interconnection structure and the base substrate, the second A via extends through the second busbar interconnect structure and the base substrate. 一種相容雙極性轉移頭陣列,包含:一底座基板;一圖案化矽層,位於該底座基板上方,該圖案化矽層包括一第一矽互連結構、電性連接至該第一矽互連結構的一第一矽電極陣列、一第二矽互連結構及電性連接至該第二矽互 連結構的一第二矽電極陣列,其中該第一矽電極陣列及第二矽電極陣列的每一矽電極包括一電極引線及一檯面結構,每一檯面結構突出在該第一矽互連結構及第二矽互連結構的上方,且每一矽電極可偏轉至該底座基板與該矽電極之間的一腔內,其中該第一矽電極陣列及第二矽電極陣列對齊彼此電性絕緣;以及一介電層,該介電層覆蓋該第一矽電極陣列及第二矽電極陣列的每一檯面結構的一頂表面。 A compatible bipolar transfer head array comprising: a base substrate; a patterned germanium layer over the base substrate, the patterned germanium layer comprising a first germanium interconnect structure electrically connected to the first germanium interconnect a first germanium electrode array, a second germanium interconnect structure, and an electrical connection to the second interconnect a second electrode array of the structure, wherein each of the first electrode array and the second electrode array includes an electrode lead and a mesa structure, and each mesa structure protrudes from the first interconnect structure And a second 矽 interconnect structure, and each 矽 electrode is deflectable into a cavity between the base substrate and the 矽 electrode, wherein the first 矽 electrode array and the second 矽 electrode array are electrically insulated from each other And a dielectric layer covering a top surface of each mesa structure of the first tantalum electrode array and the second tantalum electrode array. 如請求項10所述之相容雙極性轉移頭陣列,其中該第一矽電極陣列及第二矽電極陣列中的每一矽電極可偏轉至該底座基板中的一腔內。 The compatible bipolar transfer head array of claim 10, wherein each of the first tantalum electrode array and the second tantalum electrode array is deflectable into a cavity in the base substrate. 如請求項11所述之相容雙極性轉移頭陣列,其中該第一矽電極陣列及第二矽電極陣列可偏轉至該底座基板中的該腔內。 The compatible bipolar transfer head array of claim 11, wherein the first tantalum electrode array and the second tantalum electrode array are deflectable into the cavity in the base substrate. 如請求項10所述之相容雙極性轉移頭陣列,其中該第一矽電極陣列及第二矽電極陣列形成跨過該第一矽互連結構及該第二矽互連結構之間之一支撐梁陣列。 The compatible bipolar transfer head array of claim 10, wherein the first tantalum electrode array and the second tantalum electrode array are formed across one of the first tantalum interconnect structure and the second tantalum interconnect structure Support beam array. 如請求項13所述之相容雙極性轉移頭陣列,進一步包含該第一矽電極陣列第二矽電極陣列之間的一氧化物接頭陣列。 The compatible bipolar transfer head array of claim 13 further comprising an oxide interface array between the second tantalum electrode arrays of the first tantalum electrode array. 如請求項13所述之相容雙極性轉移頭陣列,其中該等支撐梁包括彎曲。 The compatible bipolar transfer head array of claim 13 wherein the support beams comprise a bend. 一種相容雙極性轉移頭陣列,其包含:一底座基板;一絕緣層,其位於該底座基板上;一圖案化裝置層,位於該絕緣層上,該圖案化裝置層包含:一第一跡線互連結構,其與一第一電極陣列整合地形成;一第二跡線互連結構,其與一第二電極陣列整合地形成;其中該第一電極陣列及該第二電極陣列中每一電極包括一突出在該第一跡線互連結構及該第二跡線互連結構上方之檯面結構;其中該第一電極陣列及該第二電極陣列彼此對齊且電性絕緣,且該第一電極陣列及該第二電極陣列之每一電極可朝向該底座基板偏轉;及一介電層,其覆蓋該第一電極陣列及該第二電極陣列每一檯面結構之一頂部表面。 A compatible bipolar transfer head array comprising: a base substrate; an insulating layer on the base substrate; a patterned device layer on the insulating layer, the patterned device layer comprising: a first trace a line interconnect structure integrally formed with a first electrode array; a second trace interconnect structure integrally formed with a second electrode array; wherein each of the first electrode array and the second electrode array An electrode includes a mesa structure protruding above the first trace interconnect structure and the second trace interconnect structure; wherein the first electrode array and the second electrode array are aligned and electrically insulated from each other, and the first An electrode array and each electrode of the second electrode array are deflectable toward the base substrate; and a dielectric layer covering a top surface of each of the first electrode array and the second electrode array. 如請求項16所述之相容雙極性轉移頭陣列,其中該第一跡線互連結構及該第二跡線互連結構貫穿包括該第一電極陣列及該第二電極陣列之該相容雙極性轉移頭陣列之一工作區域。 The compatible bipolar transfer head array of claim 16, wherein the first trace interconnect structure and the second trace interconnect structure comprise the compatibility of the first electrode array and the second electrode array One of the working areas of the bipolar transfer head array. 如請求項16所述之相容雙極性轉移頭陣列,其中該第一電極陣列及該第二電極陣列形成跨過該第一跡線互連結構及該第二跡線互連結構之間之一支撐梁陣列。 The compatible bipolar transfer head array of claim 16, wherein the first electrode array and the second electrode array are formed across the first trace interconnect structure and the second trace interconnect structure A support beam array. 如請求項18所述之相容雙極性轉移頭陣列,其進一步包含介於該第一電極陣列及該第二電極陣列之間之一介電接頭陣列。 The compatible bipolar transfer head array of claim 18, further comprising a dielectric junction array between the first electrode array and the second electrode array. 如請求項18所述之相容雙極性轉移頭陣列,其中該等支撐梁包括彎曲(bends)。 The compatible bipolar transfer head array of claim 18, wherein the support beams comprise bends.
TW102123500A 2012-07-06 2013-07-01 Compliant bipolar micro device transfer head with silicon electrodes TWI567803B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/543,675 US8415767B1 (en) 2012-07-06 2012-07-06 Compliant bipolar micro device transfer head with silicon electrodes
US13/543,680 US8569115B1 (en) 2012-07-06 2012-07-06 Method of forming a compliant bipolar micro device transfer head with silicon electrodes

Publications (2)

Publication Number Publication Date
TW201409551A TW201409551A (en) 2014-03-01
TWI567803B true TWI567803B (en) 2017-01-21

Family

ID=49882435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102123500A TWI567803B (en) 2012-07-06 2013-07-01 Compliant bipolar micro device transfer head with silicon electrodes

Country Status (5)

Country Link
KR (1) KR101702789B1 (en)
CN (1) CN104471698B (en)
DE (1) DE112013003408T5 (en)
TW (1) TWI567803B (en)
WO (1) WO2014008110A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128832B (en) * 2018-10-31 2021-10-22 成都辰显光电有限公司 Micro-component transfer device and method of making the same
CN111799205B (en) * 2019-04-08 2024-02-09 群创光电股份有限公司 Method for manufacturing electronic device
CN111293070A (en) * 2020-02-28 2020-06-16 南京中电熊猫平板显示科技有限公司 Bipolar electrostatic suction head of miniature light-emitting diode and array thereof
CN112259671B (en) * 2020-10-23 2021-11-09 京东方科技集团股份有限公司 Driving backboard, display panel and display device
WO2023018496A1 (en) * 2021-08-08 2023-02-16 ViaMEMS Technologies, Inc. Electrostatic devices to influence beams of charged particles
CN113793884B (en) * 2021-09-15 2024-11-15 中国科学院苏州纳米技术与纳米仿生研究所 Method for preparing Mini-LED display module
CN119446683A (en) * 2023-08-04 2025-02-14 台达电子企业管理(上海)有限公司 Insulation structure and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613154A (en) * 2001-11-09 2005-05-04 图恩斯通系统公司 MEMS device having contact and standoff bumps and related methods
TW200518144A (en) * 2003-10-28 2005-06-01 Axcelis Tech Inc Method of making a MEMS electrostatic chuck
WO2011102718A1 (en) * 2010-02-18 2011-08-25 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Continuous patterned layer deposition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062967B2 (en) * 1991-08-28 2000-07-12 キヤノン株式会社 Cantilever actuator, scanning tunnel microscope and information processing apparatus using the same
JP3640876B2 (en) * 2000-09-19 2005-04-20 株式会社ルネサステクノロジ Semiconductor device and mounting structure of semiconductor device
JP3788268B2 (en) * 2001-05-14 2006-06-21 ソニー株式会社 Manufacturing method of semiconductor device
JP2004079745A (en) * 2002-08-16 2004-03-11 Sony Corp Interposer, manufacturing method therefor, electronic circuit device and manufacturing method therefor
JP4873560B2 (en) 2007-02-08 2012-02-08 株式会社リコー Optical scanning device
US7892610B2 (en) 2007-05-07 2011-02-22 Nanosys, Inc. Method and system for printing aligned nanowires and other electrical devices
JP5376827B2 (en) * 2008-04-30 2013-12-25 アスリートFa株式会社 Ball mounting apparatus and ball mounting method
KR20110055973A (en) * 2009-11-20 2011-05-26 주식회사 하이닉스반도체 Semiconductor chip module and semiconductor package including same
KR101096114B1 (en) * 2009-12-28 2011-12-19 주식회사 코리아 인스트루먼트 Manufacturing method of integrated power semiconductor module substrate
US9105492B2 (en) 2012-05-08 2015-08-11 LuxVue Technology Corporation Compliant micro device transfer head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613154A (en) * 2001-11-09 2005-05-04 图恩斯通系统公司 MEMS device having contact and standoff bumps and related methods
TW200518144A (en) * 2003-10-28 2005-06-01 Axcelis Tech Inc Method of making a MEMS electrostatic chuck
WO2011102718A1 (en) * 2010-02-18 2011-08-25 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Continuous patterned layer deposition

Also Published As

Publication number Publication date
CN104471698A (en) 2015-03-25
CN104471698B (en) 2016-12-07
TW201409551A (en) 2014-03-01
WO2014008110A1 (en) 2014-01-09
DE112013003408T5 (en) 2015-04-09
KR101702789B1 (en) 2017-02-06
KR20150031328A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
US9799547B2 (en) Compliant bipolar micro device transfer head with silicon electrodes
US9000566B2 (en) Compliant micro device transfer head
US8415767B1 (en) Compliant bipolar micro device transfer head with silicon electrodes
US9288899B2 (en) Micro device transfer head array
US8383506B1 (en) Method of forming a compliant monopolar micro device transfer head with silicon electrode
EP3118894B1 (en) Micro device transfer head with silicon electrode
TWI567803B (en) Compliant bipolar micro device transfer head with silicon electrodes
US9425151B2 (en) Compliant electrostatic transfer head with spring support layer
US9828244B2 (en) Compliant electrostatic transfer head with defined cavity
TWI533362B (en) Compliant monopolar micro device transfer head with silicon electrode