[go: up one dir, main page]

TWI533362B - Compliant monopolar micro device transfer head with silicon electrode - Google Patents

Compliant monopolar micro device transfer head with silicon electrode Download PDF

Info

Publication number
TWI533362B
TWI533362B TW102124029A TW102124029A TWI533362B TW I533362 B TWI533362 B TW I533362B TW 102124029 A TW102124029 A TW 102124029A TW 102124029 A TW102124029 A TW 102124029A TW I533362 B TWI533362 B TW I533362B
Authority
TW
Taiwan
Prior art keywords
germanium
array
electrode
layer
interconnect structure
Prior art date
Application number
TW102124029A
Other languages
Chinese (zh)
Other versions
TW201409552A (en
Inventor
果達丹瑞思
比柏安德瑞斯
Original Assignee
樂福科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/543,684 external-priority patent/US8415768B1/en
Priority claimed from US13/543,690 external-priority patent/US8383506B1/en
Application filed by 樂福科技股份有限公司 filed Critical 樂福科技股份有限公司
Publication of TW201409552A publication Critical patent/TW201409552A/en
Application granted granted Critical
Publication of TWI533362B publication Critical patent/TWI533362B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0005Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same
    • B81C99/002Apparatus for assembling MEMS, e.g. micromanipulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/053Arrays of movable structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

具有矽電極之順應單極微裝置傳輸頭 Compliance single-pole micro device transmission head with 矽 electrode

本發明係關於微裝置。更特定而言,本發明的實施例係關於一種順應微裝置傳輸頭及傳輸一或更多個微裝置至接收基板的方法。 This invention relates to microdevices. More particularly, embodiments of the present invention relate to a method of compliant microdevice transfer heads and transferring one or more micro devices to a receiving substrate.

整合及包裝問題是諸如射頻(radio frequency;RF)微電機系統(microelectromechanical system;MEMS)微開關、發光二極體(light-emitting diode;LED)顯示系統及基於MEMS或石英的振盪器的微裝置商業化的主要障礙之一。 Integration and packaging issues are microdevices such as radio frequency (RF) microelectromechanical systems (MEMS) microswitches, light-emitting diode (LED) display systems, and MEMS or quartz based oscillators. One of the main obstacles to commercialization.

用於傳輸裝置的傳統技術包括藉由從傳輸晶圓至接收晶圓的晶圓接合的傳輸。一個此類實施方式為「直接列印」,涉及裝置陣列從傳輸晶圓至接收晶圓的一個接合步驟,隨後移除傳輸晶圓。另一此類實施方式為「傳輸列印」,涉及二個接合/分離步驟。在傳輸列印中,傳輸晶圓可拾取來自施體晶圓的裝置陣列,及隨後將該裝置陣列接合至接收晶圓,接著移除傳輸晶圓。 Conventional techniques for transmission devices include transmission by wafer bonding from a transfer wafer to a receiving wafer. One such implementation is "direct printing," which involves a bonding step of the device array from the transfer wafer to the receiving wafer, followed by removal of the transfer wafer. Another such embodiment is "transfer printing" involving two joining/separating steps. In transport printing, the transport wafer can pick up an array of devices from the donor wafer and then bond the device array to the receiving wafer, then remove the transfer wafer.

已經開發一些列印製程變體,其中在傳輸製程期間 可有選擇地接合及分離裝置。在傳統的直接列印及傳輸列印技術及直接列印及傳輸列印技術的變體兩者中,傳輸晶圓在將裝置接合至接收晶圓之後與裝置分離。此外,傳輸製程中涉及具有該裝置陣列的整個傳輸晶圓。 Some printing process variants have been developed, during which the transfer process The device can be selectively joined and separated. In both conventional direct print and transfer printing techniques and variations of direct print and transfer printing techniques, the transfer wafer is separated from the device after bonding the device to the receiving wafer. In addition, the entire transfer wafer with the array of devices is involved in the transfer process.

本發明揭示一種順應單極微裝置傳輸頭及頭陣列,及傳輸一或更多個微裝置至接收基板的方法。舉例而言,接收基板可為(但不限於)顯示基板、照明基板、具有諸如電晶體或積體電路(integrated circuit;IC)的功能裝置的基板或具有金屬重新分配線路的基板。 The present invention discloses a compliant monopolar micro device transfer head and head array, and a method of transmitting one or more micro devices to a receiving substrate. For example, the receiving substrate can be, but is not limited to, a display substrate, an illumination substrate, a substrate having a functional device such as a transistor or an integrated circuit (IC), or a substrate having a metal redistribution line.

在實施例中,順應微裝置傳輸頭陣列包括底座基板及底座基板上方的圖案化矽層。舉例而言,底座基板可為(100)塊狀矽基板。圖案化矽層包括矽互連結構及與該矽互連結構電性連接的矽電極陣列。每一矽電極包括電極引線及檯面結構,該檯面結構伸出在矽互連結構上方。每一矽電極亦可偏轉至底座基板與矽電極之間的腔內。舉例而言,一或更多個腔可形成在底座基板中。在實施例中,每一矽電極可偏轉至底座基板中分離的腔內。在實施例中,每一矽電極可偏轉至底座基板中同一腔內。腔亦可環繞矽互連結構的端。腔亦可環繞多個矽互連結構的端。諸如二氧化矽、二氧化鉿、氧化鋁或氧化鉭的介電層覆蓋每一檯面結構的頂表面。埋入的氧化物層可形成在圖案化矽層與底座基板之間。在實施例中,通孔延伸穿過底座基板及埋入的二氧化矽層,從底座基板的後側至圖案化矽層與矽互連結構及矽電極陣列電性連接。 In an embodiment, the compliant microdevice transport head array includes a base substrate and a patterned germanium layer over the base substrate. For example, the base substrate can be a (100) block-shaped germanium substrate. The patterned germanium layer includes a germanium interconnect structure and a tantalum electrode array electrically connected to the germanium interconnect structure. Each of the electrodes includes an electrode lead and a mesa structure that extends above the tantalum interconnect structure. Each of the electrodes can also be deflected into the cavity between the base substrate and the ruthenium electrode. For example, one or more cavities can be formed in the base substrate. In an embodiment, each of the turns electrodes can be deflected into separate chambers in the base substrate. In an embodiment, each of the turns electrodes can be deflected into the same cavity in the base substrate. The cavity can also surround the end of the interconnect structure. The cavity can also surround the ends of the plurality of interconnect structures. A dielectric layer such as cerium oxide, cerium oxide, aluminum oxide or cerium oxide covers the top surface of each mesa structure. A buried oxide layer may be formed between the patterned germanium layer and the base substrate. In an embodiment, the via extends through the base substrate and the buried ceria layer, and is electrically connected from the rear side of the base substrate to the patterned germanium layer and the germanium interconnect structure and the germanium electrode array.

在實施例中,第一矽電極陣列從矽互連結構的第一側延伸,且第二矽電極陣列從與第一側相對的矽互連結構的第二側延伸。在此實施例中,第一及第二矽電極陣列可偏轉至底座基板中同一腔內,該腔環繞矽互連結構的一端或第一及第二矽電極陣列可偏轉至底座基板中的分離腔內。 In an embodiment, the first tantalum electrode array extends from a first side of the tantalum interconnect structure and the second tantalum electrode array extends from a second side of the tantalum interconnect structure opposite the first side. In this embodiment, the first and second electrode arrays can be deflected into the same cavity in the base substrate, the cavity surrounding the one end of the interconnect structure or the first and second electrode arrays can be deflected into the base substrate. Inside the cavity.

在實施例中,圖案化矽層進一步包括第二矽互連結構及與該第二矽互連結構電性連接的第二矽電極陣列。第二陣列中的每一矽電極包括電極引線及檯面結構,該檯面結構伸出在第二矽互連結構上方。第二陣列中的每一矽電極亦可偏轉至底座基板與矽電極之間的腔內。諸如二氧化矽、二氧化鉿、氧化鋁或氧化鉭的介電層覆蓋第二陣列中的每一檯面結構的頂表面。在實施例中,第一及第二矽電極陣列中的每一矽電極可偏轉至底座基板中的腔內。舉例而言,第一及第二矽電極陣列可偏轉至底座基板中的同一腔或分離腔內。 In an embodiment, the patterned germanium layer further includes a second germanium interconnect structure and a second germanium electrode array electrically coupled to the second germanium interconnect structure. Each of the second electrodes in the second array includes an electrode lead and a mesa structure that protrudes over the second tantalum interconnect structure. Each of the electrodes in the second array can also be deflected into the cavity between the base substrate and the ruthenium electrode. A dielectric layer such as hafnium oxide, hafnium oxide, aluminum oxide or hafnium oxide covers the top surface of each mesa structure in the second array. In an embodiment, each of the first and second tantalum electrode arrays can be deflected into a cavity in the base substrate. For example, the first and second tantalum electrode arrays can be deflected into the same cavity or separation chamber in the base substrate.

在實施例中,埋入的二氧化矽層在圖案化矽層及底座基板之間。第一通孔延伸穿過底座基板及埋入的二氧化矽層,從底座基板的後側至圖案化矽層且與矽互連結構及矽電極陣列電性連接。第二通孔延伸穿過底座基板及埋入的二氧化矽層,從底座基板的後側至圖案化矽層且與第二矽互連結構及第二矽電極陣列電性連接。通孔可延伸穿過圖案化矽層或終止於圖案化矽層的底表面。 In an embodiment, the buried ruthenium dioxide layer is between the patterned ruthenium layer and the base substrate. The first via extends through the base substrate and the buried ceria layer from the rear side of the base substrate to the patterned germanium layer and is electrically connected to the germanium interconnect structure and the germanium electrode array. The second via extends through the base substrate and the buried ceria layer from the rear side of the base substrate to the patterned germanium layer and is electrically connected to the second germanium interconnect structure and the second germanium electrode array. The via may extend through the patterned germanium layer or terminate in a bottom surface of the patterned germanium layer.

在實施例中,圖案化矽層包括第一矽互連結構及電性連接至該第一矽互連結構的第二矽互連結構及矽電極,該矽電極包括從該第一矽互連結構延伸的第一電極引線及從該 第二互連結構延伸的第二電極引線,其中第一及第二電極引線在檯面結構處接合。在實施例中,通孔延伸穿過底座基板及埋入的二氧化矽層,從底座基板的後側至圖案化矽層,其中通孔與第一及第二矽互連結構及矽電極陣列電性連接。第一及第二電極引線可為直的,或可(例如)在矽電極的矽電極引線中包括一或更多個彎曲。在實施例中,矽電極陣列形成跨過第一及第二矽互連結構之間的支撐梁陣列。舉例而言,支撐梁陣列的縱向長度可垂直於矽互連結構。在實施例中,矽電極陣列形成介於第一及第二矽互連結構之間的懸臂梁陣列。舉例而言,懸臂梁陣列的縱向長度可與矽互連結構平行。 In an embodiment, the patterned germanium layer includes a first germanium interconnect structure and a second germanium interconnect structure electrically connected to the first germanium interconnect structure and a germanium electrode, the germanium electrode including the interconnected from the first germanium a first electrode lead extending from the structure and from the A second electrode lead extending from the second interconnect structure, wherein the first and second electrode leads are joined at the mesa structure. In an embodiment, the via extends through the base substrate and the buried ceria layer from the rear side of the base substrate to the patterned germanium layer, wherein the via and the first and second germanium interconnect structures and the germanium electrode array Electrical connection. The first and second electrode leads can be straight or can include, for example, one or more bends in the tantalum electrode lead of the tantalum electrode. In an embodiment, the tantalum electrode array is formed across an array of support beams between the first and second tantalum interconnect structures. For example, the longitudinal length of the array of support beams can be perpendicular to the tantalum interconnect structure. In an embodiment, the tantalum electrode array forms an array of cantilever beams between the first and second tantalum interconnect structures. For example, the longitudinal length of the cantilever beam array can be parallel to the tantalum interconnect structure.

覆蓋該陣列及第二陣列中的每一檯面結構的頂表面的介電層可由諸如二氧化矽、二氧化鉿、氧化鋁及氧化鉭的材料形成。在一些實施例中,第一介電層位於覆蓋該陣列及第二陣列中的每一檯面結構的頂表面的介電層下方。介電層可具有比第一介電層更高的介電常數或介電擊穿強度。 A dielectric layer covering the top surface of each of the array and the second array of the second array may be formed of a material such as hafnium oxide, hafnium oxide, aluminum oxide, and hafnium oxide. In some embodiments, the first dielectric layer is under the dielectric layer covering the top surface of each mesa structure in the array and the second array. The dielectric layer can have a higher dielectric constant or dielectric breakdown strength than the first dielectric layer.

在實施例中,一種形成順應微裝置傳輸頭陣列的方法包括以下步驟:蝕刻絕緣體上矽堆疊的頂端矽層以形成與矽互連結構電性連接的矽電極陣列,其中每一矽電極包括電極引線及檯面結構,該檯面結構伸出在該矽互連結構上方。介電層隨後形成在矽電極陣列的上方,且將一或更多個腔蝕刻至底座基板內正好在矽電極陣列下方,使得矽電極陣列中的每一矽電極可偏轉至一或更多個腔內。舉例而言,使用SF6或XeF2的氟化電漿可完成一或更多個腔的蝕刻。在實施例 中,在底座基板中正好在每一矽電極下方蝕刻分離的腔。在實施例中,在底座基板中正好在每一矽電極下方蝕刻單個腔。亦可在底座基板中蝕刻單個腔使得該單個腔環繞矽互連結構的一端。 In an embodiment, a method of forming a compliant microdevice transfer head array includes the steps of etching a top germanium layer of a stack of insulators on an insulator to form a germanium electrode array electrically coupled to the germanium interconnect structure, wherein each germanium electrode includes an electrode A lead and mesa structure extending over the interconnect structure. A dielectric layer is then formed over the tantalum electrode array and one or more cavities are etched into the base substrate just below the tantalum electrode array such that each tantalum electrode in the tantalum electrode array can be deflected to one or more Inside the cavity. For example, etching of one or more cavities can be accomplished using a fluorinated plasma of SF 6 or XeF 2 . In an embodiment, the separate chambers are etched just below each of the ruthenium electrodes in the base substrate. In an embodiment, a single cavity is etched just below each germanium electrode in the base substrate. A single cavity can also be etched into the base substrate such that the single cavity surrounds one end of the interconnect structure.

蝕刻頂端矽層可曝露埋入的氧化物層。可使用各種技術完成介電層的形成。在一些實施例中,介電層包括矽電極陣列的熱氧化。在一些實施例中,圖案化層形成於埋入的氧化物層上方及在形成介電層之後形成於介電層上方,且使用圖案化層蝕刻埋入的氧化物層以曝露底座基板的一部分。當在底座基板中正好在矽電極陣列下方蝕刻一或更多個腔時介電層可用作蝕刻遮罩。 Etching the top layer of germanium exposes the buried oxide layer. The formation of the dielectric layer can be accomplished using a variety of techniques. In some embodiments, the dielectric layer comprises thermal oxidation of a tantalum electrode array. In some embodiments, a patterned layer is formed over the buried oxide layer and over the dielectric layer after forming the dielectric layer, and the buried oxide layer is etched using the patterned layer to expose a portion of the base substrate . The dielectric layer can be used as an etch mask when one or more cavities are etched just below the ruthenium electrode array in the base substrate.

後側通孔開口可經蝕刻穿過底座基板正好在矽互連結構下方,且鈍化層可形成於後側通孔開口內部。在實施例中,鈍化層藉由熱氧化底座基板形成於通孔開口內部,同時熱氧化矽電極陣列以形成介電層。圖案化導電層可例如藉由經由陰影遮罩沉積形成於通孔開口內部以與矽互連結構進行電性接觸。 The back side via opening may be etched through the base substrate just below the germanium interconnect structure, and a passivation layer may be formed inside the back side via opening. In an embodiment, the passivation layer is formed inside the via opening by thermally oxidizing the base substrate while thermally oxidizing the tantalum electrode array to form a dielectric layer. The patterned conductive layer can be formed in the via opening through electrical contact, for example, by shadow mask deposition to make electrical contact with the germanium interconnect structure.

在實施例中,蝕刻介電層以曝露矽互連結構的一部分,同時蝕刻穿過埋入的氧化物層以曝露底座基板的部分。隨後蝕刻上側通孔開口穿過矽互連結構的曝露部分及埋入的氧化物層。圖案化導電層隨後可形成於上側通孔開口內部以與矽互連結構電性接觸。 In an embodiment, the dielectric layer is etched to expose a portion of the germanium interconnect structure while etching through the buried oxide layer to expose portions of the base substrate. The upper via opening is then etched through the exposed portion of the germanium interconnect structure and the buried oxide layer. A patterned conductive layer can then be formed inside the upper via opening to make electrical contact with the germanium interconnect structure.

在實施例中,蝕刻介電層以曝露檯面結構中的每一者,同時蝕刻穿過埋入的氧化物層以曝露底座基板的部分。 第二介電層可隨後形成於檯面結構的每一者上方。在實施例中,此可藉由第二介電層的毯覆沉積隨後去除一部分第二介電層而完成。在一些實施例中,毯覆沉積可藉由原子層沉積完成。在實施例中,可額外地蝕刻介電層以曝露矽互連結構的一部分,接著蝕刻第一上側通孔開口穿過矽互連結構的曝露部分及埋入的氧化物層,及在上側通孔開口內部形成圖案化導電層從而與矽互連結構進行電性接觸。形成於檯面結構中的每一者上方的第二介電層及形成於上側通孔開口內部的導電層亦在蝕刻一或更多個腔時可用作蝕刻遮罩。 In an embodiment, the dielectric layer is etched to expose each of the terrace surface structures while etching through the buried oxide layer to expose portions of the base substrate. A second dielectric layer can then be formed over each of the mesa structures. In an embodiment, this can be accomplished by blanket deposition of a second dielectric layer followed by removal of a portion of the second dielectric layer. In some embodiments, blanket deposition can be accomplished by atomic layer deposition. In an embodiment, the dielectric layer may be additionally etched to expose a portion of the germanium interconnect structure, followed by etching the first upper via opening through the exposed portion of the germanium interconnect structure and the buried oxide layer, and on the upper side A patterned conductive layer is formed inside the aperture opening to make electrical contact with the germanium interconnect structure. The second dielectric layer formed over each of the mesa structures and the conductive layer formed inside the upper via opening are also useful as an etch mask when etching one or more cavities.

100‧‧‧塊狀矽基板/順應單極微裝置傳輸頭陣列 100‧‧‧Blocked 矽 substrate/compliant monopolar micro device transfer head array

104‧‧‧矽跡線互連結構 104‧‧‧矽 Trace interconnect structure

106‧‧‧匯流排互連結構 106‧‧‧ Bus Bar Interconnect Structure

110‧‧‧矽電極 110‧‧‧矽 electrode

112‧‧‧檯面結構 112‧‧‧ countertop structure

114‧‧‧電極引線 114‧‧‧Electrode lead

115‧‧‧彎曲 115‧‧‧Bend

116‧‧‧溝槽 116‧‧‧ trench

118‧‧‧介電層 118‧‧‧ dielectric layer

120‧‧‧通孔 120‧‧‧through hole

120A‧‧‧通孔開口 120A‧‧‧through opening

120B‧‧‧通孔開口 120B‧‧‧through opening

122‧‧‧導電層 122‧‧‧ Conductive layer

123‧‧‧導電層 123‧‧‧ Conductive layer

124‧‧‧埋入的氧化物層 124‧‧‧buried oxide layer

126‧‧‧介電層 126‧‧‧ dielectric layer

130‧‧‧底座基板 130‧‧‧Base substrate

132‧‧‧鈍化層 132‧‧‧ Passivation layer

133‧‧‧鈍化層 133‧‧‧passivation layer

136‧‧‧腔 136‧‧‧ cavity

137‧‧‧溝槽區域 137‧‧‧groove area

140‧‧‧矽層 140‧‧‧矽

142‧‧‧遮罩層 142‧‧‧mask layer

144‧‧‧島 144‧‧ Island

160‧‧‧傳輸頭組件 160‧‧‧Transport head assembly

200‧‧‧載體基板 200‧‧‧ Carrier substrate

202‧‧‧微裝置 202‧‧‧Microdevice

300‧‧‧接收基板 300‧‧‧ receiving substrate

4210‧‧‧操作 4210‧‧‧ operation

4220‧‧‧操作 4220‧‧‧ operation

4230‧‧‧操作 4230‧‧‧ operation

4240‧‧‧操作 4240‧‧‧ operation

4250‧‧‧操作 4250‧‧‧ operation

第1A圖為根據本發明的實施例單側夾緊懸臂梁的順應單極微裝置傳輸頭陣列的平面視圖。 1A is a plan view of an array of compliant single-pole microdevice transfer heads for one-sided clamping cantilever beams in accordance with an embodiment of the present invention.

第1B圖為根據本發明的實施例具有一對單側夾緊懸臂梁的順應單極微裝置傳輸頭的平面視圖。 1B is a plan view of a compliant single pole microdevice transfer head having a pair of one-sided clamping cantilever beams in accordance with an embodiment of the present invention.

第1C圖為根據本發明的實施例沿第1B圖中圖示的順應單極微裝置傳輸頭的橫向線C-C的橫截面側視圖。 1C is a cross-sectional side view of the transverse line C-C of the compliant monopolar microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention.

第1D圖為根據本發明的實施例沿第1B圖中圖示的順應單極微裝置傳輸頭的縱向線D-D的橫截面側視圖。 1D is a cross-sectional side view of the longitudinal line D-D of the compliant monopole microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention.

第1E圖為根據本發明的實施例單側夾緊懸臂梁的順應單極微裝置傳輸頭陣列的平面視圖。 1E is a plan view of an array of compliant single-pole microdevice transfer heads for one-sided clamping cantilever beams in accordance with an embodiment of the present invention.

第2A圖至第2B圖為根據本發明的實施例沿著第1A圖的線V-V、W-W、X-X、Y-Y及Z-Z的組合平面視圖及組合橫截面側視圖,圖示順應單極微裝置傳輸頭及後側通孔開口。 2A through 2B are combined plan views and combined cross-sectional side views of lines VV, WW, XX, YY, and ZZ of Fig. 1A, illustrating a unipolar microdevice transfer head and a cross-sectional view thereof, in accordance with an embodiment of the present invention. The rear side through hole is open.

第3A圖至第3B圖為根據本發明的實施例順應單極 微裝置傳輸頭以及上側通孔開口及後側通孔開口的組合平面視圖及組合橫截面側視圖。 3A-3B are compliant monopoles in accordance with an embodiment of the present invention A combined plan view and a combined cross-sectional side view of the microdevice transfer head and the upper through hole opening and the rear side through hole opening.

第4A圖至第4B圖為根據本發明的實施例順應單極微裝置傳輸頭以及上側通孔開口及後側通孔開口的組合平面視圖及組合橫截面側視圖。 4A through 4B are combined plan views and combined cross-sectional side views of a compliant single pole micro device transfer head and an upper through hole opening and a rear side through hole opening, in accordance with an embodiment of the present invention.

第5A圖至第15B圖圖示根據本發明的實施例形成順應單極微裝置傳輸頭及後側通孔開口的方法。 5A through 15B illustrate a method of forming a compliant monopolar micro device transfer head and a rear side via opening in accordance with an embodiment of the present invention.

第16A圖為根據本發明的實施例雙側夾緊支撐梁的順應單極微裝置傳輸頭陣列的平面視圖。 Figure 16A is a plan view of a compliant single pole microdevice transfer head array of a double side clamped support beam in accordance with an embodiment of the present invention.

第16B圖為根據本發明的實施例具有雙側夾緊支撐梁的順應單極微裝置傳輸頭的平面視圖。 Figure 16B is a plan view of a compliant single pole microdevice transfer head having a double clamping support beam in accordance with an embodiment of the present invention.

第16C圖為根據本發明的實施例沿第16B圖中圖示的順應單極微裝置傳輸頭的橫向線C-C的橫截面側視圖。 Figure 16C is a cross-sectional side view of the transverse line C-C of the compliant monopole microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention.

第16D圖為根據本發明的實施例沿第16B圖中圖示的順應單極微裝置傳輸頭的縱向線D-D的橫截面側視圖。 Figure 16D is a cross-sectional side view of the longitudinal line D-D of the compliant single pole microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention.

第17A圖至第28B圖圖示根據本發明的實施例形成順應單極微裝置傳輸頭的方法,該順應單極微裝置傳輸頭包括雙側夾緊支撐梁以及上側通孔開口及後側通孔開口。 17A to 28B illustrate a method of forming a compliant single-pole micro device transfer head including a double-sided clamping support beam and an upper side through hole opening and a rear side through hole opening according to an embodiment of the present invention. .

第29A圖至第34B圖圖示根據本發明的實施例形成順應單極微裝置傳輸頭的方法,該順應單極微裝置傳輸頭包括雙側夾緊支撐梁及沉積的介電層以及上側通孔開口及後側通孔開口。 29A through 34B illustrate a method of forming a compliant single-pole microdevice transfer head including a double-sided clamping support beam and a deposited dielectric layer and an upper via opening, in accordance with an embodiment of the present invention. And the rear side through hole opening.

第35圖為根據本發明的實施例沿著具有懸臂梁的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視 圖。 Figure 35 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a cantilever beam, in accordance with an embodiment of the present invention. Figure.

第36圖為根據本發明的實施例沿著具有懸臂梁及分離的電極引線的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。 Figure 36 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having cantilever beams and separate electrode leads in accordance with an embodiment of the present invention.

第37圖為根據本發明的實施例沿著具有雙側夾緊梁的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。 Figure 37 is a plan view and a cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a double sided clamping beam in accordance with an embodiment of the present invention.

第38圖為根據本發明的實施例沿著具有支撐梁結構及具有多個彎曲的分離的電極引線的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。 Figure 38 is a plan view and cross-sectional side view of line A-A of a compliant single pole microdevice transfer head having a support beam structure and separate curved electrode leads in accordance with an embodiment of the present invention.

第39圖為根據本發明的實施例沿著具有支撐梁結構及多個彎曲的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。 Figure 39 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a support beam structure and a plurality of bends in accordance with an embodiment of the present invention.

第40圖為根據本發明的實施例沿著具有支撐梁結構及多個彎曲的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。 Figure 40 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a support beam structure and a plurality of bends in accordance with an embodiment of the present invention.

第41圖為根據本發明的實施例沿著具有支撐梁結構及多個彎曲的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。 Figure 41 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a support beam structure and a plurality of bends in accordance with an embodiment of the present invention.

第42圖為圖示根據本發明的實施例從載體基板拾取及傳輸微裝置陣列至接收基板的方法的流程圖。 Figure 42 is a flow chart illustrating a method of picking up and transporting a microdevice array from a carrier substrate to a receiving substrate in accordance with an embodiment of the present invention.

第43圖為根據本發明的實施例位於載體基板上的微裝置陣列上方的順應單極微裝置傳輸頭陣列的橫截面側視圖。 Figure 43 is a cross-sectional side view of a compliant monopolar microdevice transfer head array over a microdevice array on a carrier substrate in accordance with an embodiment of the present invention.

第44圖為根據本發明的實施例與微裝置陣列接觸的順應單極微裝置傳輸頭陣列的橫截面側視圖。 Figure 44 is a cross-sectional side view of a compliant single pole micro device transfer head array in contact with a micro device array in accordance with an embodiment of the present invention.

第45圖為根據本發明的實施例拾取微裝置陣列的順應單極微裝置傳輸頭陣列的橫截面側視圖。 Figure 45 is a cross-sectional side view of a compliant single pole micro device transfer head array for picking up a micro device array in accordance with an embodiment of the present invention.

第46圖為根據本發明的實施例釋放至接收基板上的微裝置陣列的橫截面側視圖。 Figure 46 is a cross-sectional side view of an array of micro devices released onto a receiving substrate in accordance with an embodiment of the present invention.

本發明的實施例描述一種順應單極微裝置傳輸頭及頭陣列,及傳輸微裝置及微裝置陣列至接收基板的方法。舉例而言,順應單極微裝置傳輸頭及頭陣列可用於將諸如但不限於,二極體、LED、電晶體、IC及MEMS的微裝置從載體基板傳輸至接收基板,該接收基板諸如但不限於顯示基板、照明基板及具有諸如電晶體或積體電路(IC)的功能裝置的基板或具有金屬重新分配線路的基板。 Embodiments of the present invention describe a method of compliant monopolar micro device transfer heads and head arrays, and a transfer micro device and micro device array to a receiving substrate. For example, a compliant monopolar micro device transfer head and head array can be used to transfer micro devices such as, but not limited to, diodes, LEDs, transistors, ICs, and MEMS from a carrier substrate to a receiving substrate, such as but not It is limited to a display substrate, an illumination substrate, and a substrate having a functional device such as a transistor or an integrated circuit (IC) or a substrate having a metal redistribution line.

在各種實施例中,參閱圖式進行描述。然而,可無需此等具體細節中的一或更多個來實踐某些實施例,或結合其他已知的方法及配置來實踐某些實施例。在以下描述中,闡明許多具體細節,諸如具體配置、尺寸及製程等等,以便提供對本發明的透徹理解。在其他情況中,沒有以具體細節描述眾所周知的半導體製程及製造技術,以便不會不必要地模糊本發明。遍及此說明書引用「一個實施例」及「實施例」等等意謂結合實施例描述的特定特徵、結構、配置或特性包括在本發明的至少一個實施例中。因此,遍及此說明書各處的片語「在一個實施例中」、「實施例」等等的出現不一定 代表本發明的相同實施例。此外,在一或更多個實施例中,特定特徵、結構、配置或特性可以任何適當的方式組合。 In various embodiments, the description is made with reference to the drawings. However, some embodiments may be practiced without one or more of these specific details, or in combination with other known methods and configurations. In the following description, numerous specific details are set forth, such as, In other instances, well-known semiconductor processes and fabrication techniques have not been described in detail in order to not unnecessarily obscure the invention. The specific features, structures, configurations, or characteristics described in connection with the embodiments are included in the description of the embodiments. Therefore, the appearance of the phrase "in one embodiment", "embodiment", etc. throughout the specification is not necessarily Representative of the same embodiment of the invention. Furthermore, the particular features, structures, configurations, or characteristics may be combined in any suitable manner in one or more embodiments.

如此處使用的術語「之上方」、「至」、「之間」及「之上」可代表一個層相對於其他層的相對位置。在另一層「之上方」或「之上」或接合「至」另一層的一個層可與該另一層直接接觸或可具有一或更多個插入層。層「之間」的一個層可直接接觸該等層或可具有一或更多個插入層。 The terms "above", "to", "between" and "above" as used herein may denote the relative position of one layer relative to the other. A layer "on" or "above" another layer or "on" another layer may be in direct contact with the other layer or may have one or more intervening layers. A layer "between" the layers may be in direct contact with the layers or may have one or more intervening layers.

如此處使用的術語「微」裝置或「微」LED結構可代表根據本發明的實施例的某些裝置或結構的描述性大小。如此處所使用的,術語「微」裝置或結構意謂代表1至100μm的尺寸數量級。然而,將理解,本發明的實施例非必要地限制於此,且實施例的某些態樣可適合於更大的或可能更小的尺寸數量級。 The term "micro" device or "micro" LED structure as used herein may refer to a descriptive size of certain devices or structures in accordance with embodiments of the present invention. As used herein, the term "micro" device or structure means of the order of magnitude of 1 to 100 μm. However, it will be understood that embodiments of the invention are not necessarily limited thereto, and that certain aspects of the embodiments may be suitable for larger or possibly smaller orders of magnitude.

在一個態樣中,不受限於特定理論,本發明的實施例描述微裝置傳輸頭及頭陣列,該等微裝置傳輸頭及頭陣列根據靜電夾的原理操作、使用相反電荷的吸引力拾取微裝置。根據本發明的實施例,拉入電壓被施加至微裝置傳輸頭,以便在微裝置上產生夾緊壓力及拾取微裝置。舉例而言,傳輸頭可包括單極電極配置。 In one aspect, without being limited to a particular theory, embodiments of the present invention describe microdevice transfer heads and head arrays that operate according to the principle of electrostatic chucks, using an attractive charge of opposite charges Micro device. In accordance with an embodiment of the invention, a pull-in voltage is applied to the micro device transfer head to create a clamping pressure and pick up the micro device on the micro device. For example, the transfer head can include a monopolar electrode configuration.

在一個態樣中,本發明的實施例描述一種順應單極微裝置傳輸頭及一種傳輸的方法,在該方法中,相較於非順應傳輸頭陣列,順應單極微裝置傳輸頭陣列賦能與微裝置陣列改良的接觸。順應單極微裝置傳輸頭包括矽電極,該矽電極可偏轉至底座基板與矽電極之間的腔內。在應用中,當順 應單極微裝置傳輸頭陣列下降至微裝置陣列上時,與較高的或受污染的微裝置相關的可偏轉的矽電極可比與載體基板上的較矮的微裝置相關的矽電極偏轉更多。以此方式,順應單極微裝置傳輸頭可補償微裝置的高度的變化。補償高度變化可導致施加至某些微裝置的壓縮力減少,導致保護微裝置及傳輸頭陣列的實體完整性。補償高度變化亦可幫助每一順應傳輸頭與每一微裝置進行接觸,且保證拾取每一所欲的微裝置。沒有微裝置傳輸頭的順應性質,不規則微裝置高度或單個微裝置的頂表面上的顆粒可妨止其餘的傳輸頭與陣列中其餘的微裝置進行接觸。因此,氣隙可形成於彼等傳輸頭與微裝置之間。因有此氣隙,有可能目標施加電壓不會產生充分的克服氣隙的夾緊壓力,從而產生不完全的拾取製程。 In one aspect, embodiments of the present invention describe a compliant monopolar micro device transfer head and a method of transmission in which unidirectional micro-device transfer head arrays are energized and micro-compared to non-compliant transfer head arrays Improved contact of the array of devices. The compliant monopolar microdevice transfer head includes a ruthenium electrode that can be deflected into a cavity between the base substrate and the ruthenium electrode. In the application, when When the monopole micro device transfer head array is lowered onto the micro device array, the deflectable xenon electrode associated with the higher or contaminated micro device can deflect more than the xenon electrode associated with the shorter micro device on the carrier substrate. . In this way, the compliant monopolar microdevice transfer head can compensate for variations in the height of the micro device. Compensating for height variations can result in reduced compression forces applied to certain microdevices, resulting in physical integrity of the protection microdevice and the array of transport heads. Compensating for height variations also helps each compliant transfer head to make contact with each micro device and to ensure that each desired micro device is picked up. Without the compliant nature of the microdevice transfer head, the irregular microdevice height or particles on the top surface of the individual microdevices may prevent the remaining transport heads from coming into contact with the remaining microdevices in the array. Thus, an air gap can be formed between their transfer heads and the micro device. Because of this air gap, it is possible that the target applied voltage does not produce a sufficient clamping pressure against the air gap, resulting in an incomplete pick-up process.

在另一態樣中,本發明的實施例描述由可購買的包括底座基板、埋入氧化物層及頂端矽層的絕緣體上矽(silicon-on-insulator;SOI)基板,形成順應單極微裝置傳輸頭陣列的方式。在此實施例中,矽互連結構及矽電極陣列由SOI基板的頂端矽層形成。在實施例中,單極靜電傳輸頭包括矽電極,該矽電極包括檯面結構及一或更多個電極引線。用於矽電極的檯面結構伸出在矽互連結構上方以提供本地的接觸點,從而在拾取操作期間拾取特定的微裝置。以此方式,不一定形成圖案化金屬電極。已經觀察到當金屬電極及電極引線的圖案化使用負光阻劑時,例如,可能難以控制光阻劑在不同深度(例如,沿著檯面結構的頂表面及下側壁兩者)的曝露。在光阻劑移除期間亦已經觀察到圖案化金屬層的剝 落,潛在影響傳輸頭的可操作性。根據本發明的實施例,在檯面結構上方形成圖案化金屬電極並非必需。相反,檯面結構的伸出輪廓藉由圖案化矽電極形成以包括對應於檯面結構的凸起部分,該凸起部分遠離底座基板及在矽互連結構上方伸出。 In another aspect, embodiments of the present invention describe a compliant unipolar microdevice formed from a commercially available silicon-on-insulator (SOI) substrate including a base substrate, a buried oxide layer, and a top germanium layer. The way the head array is transmitted. In this embodiment, the germanium interconnect structure and the germanium electrode array are formed by the top germanium layer of the SOI substrate. In an embodiment, the monopolar electrostatic transfer head includes a germanium electrode comprising a mesa structure and one or more electrode leads. A mesa structure for the tantalum electrode extends over the tantalum interconnect structure to provide a local contact point to pick up a particular micro device during the picking operation. In this way, it is not necessary to form a patterned metal electrode. It has been observed that when the metal electrode and electrode lead are patterned using a negative photoresist, for example, it may be difficult to control the exposure of the photoresist at different depths (eg, along both the top and bottom sidewalls of the mesa structure). Stripping of the patterned metal layer has also been observed during photoresist removal Falling, potentially affecting the operability of the transport head. According to an embodiment of the invention, it is not necessary to form a patterned metal electrode over the mesa structure. In contrast, the projecting profile of the mesa structure is formed by patterning the erbium electrode to include a raised portion corresponding to the mesa structure that extends away from the base substrate and over the 矽 interconnect structure.

根據本發明的實施例製備的矽電極可包括整體形成的檯面結構,該等檯面結構相較於非整體地形成的具有圖案化金屬電極的檯面結構實質上更高。光刻法可限制圖案化金屬電極結構至5μm至10μm的高度,然而矽電極檯面結構可達到20μm至30μm或更高。更高的電極結構亦可為污染物顆粒提供更大的間隙且減少非目標微裝置上出現的雜散效應。當相較於金屬化檯面結構時,對於表面污染及微裝置傳輸頭關於微裝置載體基板的平面對準的誤差,具有整體形成的檯面結構的矽電極可為更穩健的。 The tantalum electrode prepared in accordance with an embodiment of the present invention may comprise an integrally formed mesa structure that is substantially higher than a mesa structure having a patterned metal electrode that is not integrally formed. Photolithography can limit the patterned metal electrode structure to a height of 5 μm to 10 μm, whereas the tantalum electrode mesa structure can reach 20 μm to 30 μm or higher. Higher electrode configurations can also provide greater clearance for contaminant particles and reduce spurious effects on non-target microdevices. The tantalum electrode having an integrally formed mesa structure may be more robust when compared to metallized mesa structures, for surface contamination and errors in the planar alignment of the microdevice carrier with respect to the microdevice carrier substrate.

在另一態樣中,本發明的實施例描述由可購買的絕緣體上矽(SOI)基板形成微裝置傳輸頭陣列的方式,該方式允許具有最少處理步驟的處理序列。處理序列並不要求金屬沉積及圖案化步驟來形成金屬電極,此減輕了熱處理限制且允許藉由高溫熱氧化形成介電層及鈍化層,引起沉積及圖案化操作的減少。根據本發明的實施例的處理序列可合併不同特徵結構的同時蝕刻或氧化操作,減少處理期間需要的遮罩的數量。 In another aspect, embodiments of the present invention describe a manner in which a microdevice transport head array is formed from a commercially available insulator-on-insulator (SOI) substrate that allows for a processing sequence with minimal processing steps. The processing sequence does not require metal deposition and patterning steps to form the metal electrode, which reduces heat treatment limitations and allows the formation of dielectric and passivation layers by high temperature thermal oxidation, resulting in reduced deposition and patterning operations. A processing sequence in accordance with embodiments of the present invention can incorporate simultaneous etching or oxidation operations of different features to reduce the number of masks required during processing.

在另一態樣中,本發明的實施例描述傳輸頭及傳輸頭陣列,該傳輸頭及傳輸頭陣列包括延伸穿過底座基板從底 座基板的後側至圖案化矽層的通孔,該通孔用於連接電極與傳輸頭元件的工作電路系統。根據本發明的實施例的處理序列亦賦能延伸穿過底座基板的通孔使用高溫熱氧化生長的鈍化。 In another aspect, embodiments of the present invention describe a transmission head and an array of transmission heads, the transmission head and the array of transmission heads including extending through the base substrate from the bottom The back side of the base substrate is to the through hole of the patterned ruthenium layer for connecting the working circuit of the electrode and the transfer head element. The processing sequence in accordance with an embodiment of the present invention also imparts passivation that extends through the via of the base substrate using high temperature thermal oxidation growth.

在又一態樣中,本發明的實施例描述用於使用順應傳輸頭陣列大量傳輸預先製造的微裝置的陣列的方式。舉例而言,預先製造的微裝置可具有特定功能,諸如但不限於,用於發光的LED、用於邏輯及記憶體的矽IC及用於射頻(RF)通訊的砷化鎵(GaAs)電路。在一些實施例中,將可能用於拾取的微LED裝置陣列描述為具有10μm乘以10μm節距,或5μm乘以5μm節距。在此等密度下,6吋基板(例如)可容納具有10μm乘以10μm節距的大約1.65億個微LED裝置,或具有5μm乘以5μm節距的大約6.6億個微LED裝置。包括匹配對應的微LED裝置陣列的節距的整數倍數的順應傳輸頭陣列的傳輸工具可用於拾取及傳輸微LED裝置陣列至接收基板。以此方式,有可能以高傳輸率整合及裝配微LED裝置至不同類整合的系統,包括從微顯示器至大面積顯示器範圍中的任何大小的基板。舉例而言,1cm乘以1cm的微裝置傳輸頭陣列可拾取及傳輸十萬個以上的微裝置,其中更大的微裝置傳輸頭陣列能夠傳輸更多的微裝置。 In yet another aspect, embodiments of the present invention describe a manner for mass transmitting an array of pre-fabricated microdevices using a compliant transport head array. For example, pre-fabricated microdevices may have specific functions such as, but not limited to, LEDs for illumination, germanium ICs for logic and memory, and gallium arsenide (GaAs) circuits for radio frequency (RF) communication. . In some embodiments, an array of micro LED devices that may be used for picking is described as having a pitch of 10 [mu]m by 10 [mu]m, or a pitch of 5 [mu]m by 5 [mu]m. At these densities, a 6-inch substrate, for example, can accommodate approximately 165 million micro-LED devices having a pitch of 10 μm by 10 μm, or approximately 660 million micro-LED devices having a pitch of 5 μm by 5 μm. A transfer tool comprising a compliant transfer head array that matches an integer multiple of the pitch of the corresponding array of micro LED devices can be used to pick up and transport the array of micro LED devices to the receiving substrate. In this way, it is possible to integrate and assemble micro LED devices to different types of integrated systems at high transmission rates, including substrates of any size ranging from microdisplays to large area displays. For example, a 1 cm by 1 cm array of micro device transfer heads can pick up and transport more than 100,000 micro devices, with larger micro device transfer head arrays capable of transmitting more micro devices.

現在參閱第1A圖,提供單側夾緊懸臂梁的單極微裝置傳輸頭陣列的一部分之平面視圖,且該平面視圖包括在不同深度的視圖。在圖示的特定實施例中,從順應單極微裝置傳輸頭陣列的頂表面來看,陰影區域圖示矽電極及矽互連 結構的佈置。從順應單極微裝置傳輸頭陣列的後側表面來看,較暗的陰影圖示後側通孔連接。以此方式,平面視圖提供關於已經由SOI晶圓的兩側形成的結構的細節。 Referring now to FIG. 1A, a plan view of a portion of a single pole microdevice transfer head array of single side clamp cantilever beams is provided, and the plan view includes views at different depths. In the particular embodiment illustrated, the shaded area illustrates the tantalum electrode and the tantalum interconnect as viewed from the top surface of the array of unidirectional microdevice transfer head arrays. The layout of the structure. The darker shading illustrates the rear side via connection as viewed from the rear side surface of the array of unidirectional microdevice transfer heads. In this way, the plan view provides details about the structure that has been formed by the sides of the SOI wafer.

如圖所示,順應單極微裝置傳輸頭陣列100包括順應傳輸頭陣列,該順應傳輸頭陣列的每一者包括連接至矽跡線互連結構104及匯流排互連結構106的佈置的矽電極110。如圖所示,匯流排互連結構106可形成在包括順應傳輸頭陣列的順應傳輸頭陣列的工作區域週邊周圍或外面。在實施例中,每一順應傳輸頭包括矽電極110,其中每一矽電極110包括檯面結構112及連接至矽互連結構104的電極引線114。如圖所示,每一順應傳輸頭採用單側夾緊懸臂梁的形式夾緊至矽跡線互連結構104。在圖示的實施例中,順應單極微裝置傳輸頭陣列100中的檯面結構陣列112以與待拾取的微裝置大約相同的節距佈置,例如,10μm乘以10μm,或5μm乘以5μm。 As shown, the compliant monopolar microdevice transfer head array 100 includes a compliant transfer head array, each of which includes a tantalum electrode connected to the arrangement of the meander trace interconnect structure 104 and the busbar interconnect structure 106. 110. As shown, the busbar interconnect structure 106 can be formed around or outside the perimeter of the work area including the array of compliant transport heads that conform to the array of transport heads. In an embodiment, each compliant transfer head includes a germanium electrode 110, wherein each germanium electrode 110 includes a mesa structure 112 and an electrode lead 114 connected to the germanium interconnect structure 104. As shown, each compliant transfer head is clamped to the meander line interconnect structure 104 in the form of a one-sided clamp cantilever beam. In the illustrated embodiment, the mesa structure array 112 in the unipolar microdevice transfer head array 100 is arranged at approximately the same pitch as the micro device to be picked up, for example, 10 [mu]m by 10 [mu]m, or 5 [mu]m by 5 [mu]m.

在實施例中,形成一或更多個通孔120穿過底座基板的後側至圖案化矽層以與互連結構106進行接觸,以便電性連接矽電極110與傳輸頭元件的工作電路系統。在第1A圖圖示的實施例中,圖式左側的互連結構106可連接至第一電壓源VA,且圖式右側的互連結構106可連接至第二電壓源VB,或連接至第一電壓源VA。當每一傳輸頭為作為單極傳輸頭可操作時,電壓源VA及電壓源VB可同時地施加相同的電壓,使得矽電極中的每一者具有相同的電壓。 In an embodiment, one or more vias 120 are formed through the back side of the base substrate to the patterned germanium layer to make contact with the interconnect structure 106 to electrically connect the drain electrode 110 with the working circuitry of the transfer head element. . In the embodiment illustrated in FIG. 1A, the interconnect structure 106 on the left side of the drawing can be connected to the first voltage source V A , and the interconnect structure 106 on the right side of the drawing can be connected to the second voltage source V B , or connected To the first voltage source V A . When each of the transfer heads is operable as a unipolar transfer head, the voltage source V A and the voltage source V B can simultaneously apply the same voltage such that each of the germanium electrodes has the same voltage.

第1B圖為根據本發明的實施例的具有一對單側夾 緊懸臂梁的順應單極微裝置傳輸頭的平面視圖。在圖示的特定實施例中,矽電極110夾緊至矽跡線互連結構104的對側。出於說明清楚的目的,第1B圖中僅圖示單對傳輸頭從矽互連結構104的對側延伸,儘管根據本發明的實施例矽互連結構陣列可從矽互連結構104的一側或兩側延伸。第1C圖為根據本發明的實施例的沿第1B圖中圖示的順應單極微裝置傳輸頭的橫向線C-C的橫截面側視圖。在第1C圖圖示的實施例中,第一矽電極陣列110從矽互連結構的一側延伸且第二矽電極陣列110從矽互連結構104的對側延伸。在另一實施例中,矽電極陣列110僅從矽互連結構104的一側延伸。第1D圖為根據本發明的實施例沿第1B圖中圖示的順應單極微裝置傳輸頭的縱向線D-D的橫截面側視圖。如第1C圖至第1D圖所圖示,一或更多個腔136可形成在底座基板130中矽電極陣列110下方,使得矽電極檯面結構112及引線114在該一或更多個腔136上方延伸且可偏轉至該一或更多個腔136內。在實施例中,腔136為矽互連結構104的對側上分離的腔。在實施例中,腔136為相同的腔。舉例而言,腔136可環繞矽互連結構104及位於第一及第二矽電極陣列110的下方。溝槽116亦可形成在圖案化矽層中界定矽電極110及矽互連結構104、矽互連結構106,如以下描述更詳細描述的。若腔136不環繞矽互連結構104的端,則溝槽116亦可形成在圖案化矽層中位於矽互連結構104的端部。 1B is a pair of single side clips in accordance with an embodiment of the present invention A plan view of the compliant single-pole microdevice transfer head of the cantilever beam. In the particular embodiment illustrated, the erbium electrode 110 is clamped to the opposite side of the erbium trace interconnect structure 104. For purposes of clarity of illustration, only a single pair of transfer heads are illustrated in FIG. 1B extending from opposite sides of the germanium interconnect structure 104, although an array of interconnect structures may be from one of the interconnect structures 104 in accordance with an embodiment of the present invention. Extending side or side. 1C is a cross-sectional side view of the transverse line C-C of the compliant monopolar microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention. In the embodiment illustrated in FIG. 1C, the first tantalum electrode array 110 extends from one side of the tantalum interconnect structure and the second tantalum electrode array 110 extends from the opposite side of the tantalum interconnect structure 104. In another embodiment, the erbium electrode array 110 extends only from one side of the erbium interconnect structure 104. 1D is a cross-sectional side view of the longitudinal line D-D of the compliant monopole microdevice transfer head illustrated in FIG. 1B, in accordance with an embodiment of the present invention. As illustrated in FIGS. 1C-1D, one or more cavities 136 may be formed under the ruthenium electrode array 110 in the base substrate 130 such that the 矽 electrode mesa structure 112 and the leads 114 are in the one or more cavities 136. The upper portion extends and can be deflected into the one or more cavities 136. In an embodiment, the cavity 136 is a separate cavity on the opposite side of the germanium interconnect structure 104. In an embodiment, the cavities 136 are the same cavity. For example, the cavity 136 can surround the germanium interconnect structure 104 and be located below the first and second germanium electrode arrays 110. Trench 116 may also be formed in the patterned germanium layer to define germanium electrode 110 and germanium interconnect structure 104, germanium interconnect structure 106, as described in more detail below. If the cavity 136 does not surround the end of the germanium interconnect structure 104, the trench 116 may also be formed in the patterned germanium layer at the end of the germanium interconnect structure 104.

第1E圖為根據本發明的實施例的單側夾緊懸臂梁的順應單極微裝置傳輸頭陣列的平面視圖。第1E圖類似於第 1A圖,其中一個差異為第1A圖中的矽電極陣列110遠離矽互連結構104朝向另一矽互連結構104延伸。在第1e圖圖示的實施例中,矽電極陣列110遠離矽互連結構104朝向另一矽電極陣列110延伸。在此實施例中,單個腔136可佔據對向的矽電極陣列110之間的空間,或溝槽116可形成在對向的矽電極陣列110之間的空間中。 1E is a plan view of a compliant single-pole microdevice transfer head array of a one-sided clamp cantilever beam in accordance with an embodiment of the present invention. Figure 1E is similar to the first 1A, one of the differences is that the tantalum electrode array 110 in FIG. 1A extends away from the tantalum interconnect structure 104 toward the other tantalum interconnect structure 104. In the embodiment illustrated in FIG. 1e, the tantalum electrode array 110 extends away from the tantalum interconnect structure 104 toward the other tantalum electrode array 110. In this embodiment, a single cavity 136 can occupy the space between the opposing tantalum electrode arrays 110, or the trenches 116 can be formed in the space between the opposing tantalum electrode arrays 110.

現在參閱第2A圖至第2B圖、第3A圖至第3B圖及第4A圖至第4B圖,該等圖一起圖示根據本發明的實施例的各種不同的順應單極傳輸頭陣列配置。將理解,雖然分別圖示及描述以下變體,但該等變體不一定彼此不相容,且在一或更多個實施例中該等變體可以任何適當的方式組合。 Referring now to FIGS. 2A-2B, 3A-3B, and 4A-4B, the figures together illustrate various different compliant monopole head array configurations in accordance with embodiments of the present invention. It will be understood that while the following variations are illustrated and described separately, the variations are not necessarily incompatible with each other, and in one or more embodiments the variations may be combined in any suitable manner.

第2A圖至第2B圖為根據本發明的實施例沿著第1A圖及第1E圖的線V-V、W-W、X-X、Y-Y及Z-Z的組合平面視圖及組合橫截面側視圖。第3A圖至第3B圖及第4A圖至第4B圖為與在第2A圖至第2B圖中的彼等方式類似繪製的組合平面視圖及組合橫截面側視圖。組合視圖並非表示針對圖示的所有不同特徵結構的精確的相對位置,確切而言,組合視圖組合先前在第1A圖中識別的不同位置處的具體特徵結構,以便更容易地表示處理序列的特定變化。舉例而言,雖然組合橫截面側視圖圖示一個通孔120對應於一個矽電極110,但從第1A圖清楚的是一個通孔120可與沿著一或更多個互連結構104的複數個矽電極110電性連接。如圖所示,線W-W及線Y-Y沿著通孔120。如圖所示,線V-V及線Z-Z沿著界定矽電極110及矽互連結構104、矽互連結構106的一 或更多個溝槽116。如圖所示,線X-X穿過包括矽電極110的單極傳輸頭。再次參閱第1A圖,一或更多個腔136可形成在所有矽電極110周圍及下方,及互連結構104、互連結構106之間。 2A through 2B are combined plan views and combined cross-sectional side views of lines V-V, W-W, X-X, Y-Y, and Z-Z along Figs. 1A and 1E, in accordance with an embodiment of the present invention. 3A to 3B and 4A to 4B are combined plan views and combined cross-sectional side views similar to those in the 2A to 2B drawings. The combined view does not represent an exact relative position for all of the different features of the illustration, in particular, the combined view combines the specific features at different locations previously identified in Figure 1A to more easily represent the specificity of the processing sequence Variety. For example, although a combined cross-sectional side view illustrates one via 120 corresponding to one germanium electrode 110, it is clear from FIG. 1A that one via 120 can be complex with one or more interconnect structures 104. The germanium electrodes 110 are electrically connected. As shown, the line W-W and the line Y-Y are along the through hole 120. As shown, the lines V-V and the lines Z-Z are along a side defining the germanium electrode 110 and the germanium interconnect structure 104, the germanium interconnect structure 106. Or more than one groove 116. As shown, line X-X passes through a monopole transfer head that includes a ruthenium electrode 110. Referring again to FIG. 1A, one or more cavities 136 can be formed around and below all of the germanium electrodes 110, and between the interconnect structure 104, the interconnect structure 106.

再次參閱第2A圖至第2B圖,矽電極110包括檯面結構112及電極引線114,其中檯面結構112為矽電極110的凸起部分。介電層118覆蓋矽電極110的頂表面。在圖示的實施例中,每一懸臂梁順應傳輸頭可單獨偏轉至腔136內。通孔開口120A可延伸穿過底座基板130,從底座基板的後側至互連結構106所在的圖案化矽層140。在第2A圖至第2B圖圖示的特定實施例中,通孔開口120A延伸穿過埋入的氧化物層124及終止於互連結構106所定位的圖案化矽層140的底表面。鈍化層132形成在底座基板130的後側上,且鈍化層133形成在通孔開口120A內部的側表面上。當底座基板由矽形成時,鈍化層132、鈍化層133使通孔120之間的電短路絕緣。埋入的氧化物層124亦使矽電極110與互連結構104、106之間的電短路絕緣。 Referring again to FIGS. 2A-2B, the ruthenium electrode 110 includes a mesa structure 112 and an electrode lead 114, wherein the mesa structure 112 is a raised portion of the ruthenium electrode 110. Dielectric layer 118 covers the top surface of germanium electrode 110. In the illustrated embodiment, each cantilever compliant transfer head can be individually deflected into the cavity 136. The via opening 120A can extend through the base substrate 130 from the back side of the base substrate to the patterned germanium layer 140 where the interconnect structure 106 is located. In the particular embodiment illustrated in FIGS. 2A-2B, the via opening 120A extends through the buried oxide layer 124 and terminates at the bottom surface of the patterned germanium layer 140 where the interconnect structure 106 is positioned. A passivation layer 132 is formed on the rear side of the base substrate 130, and a passivation layer 133 is formed on a side surface inside the via opening 120A. When the base substrate is formed of tantalum, the passivation layer 132 and the passivation layer 133 insulate the electrical short between the vias 120. The buried oxide layer 124 also insulates the tantalum electrode 110 from the electrical short between the interconnect structures 104,106.

第2A圖至第2B圖圖示的通孔120延伸穿過底座基板130,從底座基板的後側至圖案化矽層140。在實施例中,通孔120接觸圖案化矽層140中的一或更多個匯流排互連結構106。在其他實施例中,通孔120可接觸圖案化矽層140中的其他特徵結構或互連結構。沿著線W-W的通孔120可電性連接至第一互連結構106,該第一互連結構106連接至第一電壓源VA,且沿著線Y-Y的通孔120可電性連接至第二互連 結構106,該第二互連結構106連接至第二電壓源VB。在實施例中,沿著線W-W及沿著線Y-Y的通孔120連接至同一電壓源。在圖示的特定實施例中,通孔開口120A延伸穿過埋入的氧化物層124且終止於互連結構106的底表面。鈍化層132形成在底座基板130的後側上及通孔開口120A內部的側表面上。導電層122形成在鈍化層133上且與互連結構106的底表面電性接觸。在圖示的特定實施例中,導電層122不完全地填充通孔開口120A,且導電層122為實體地及電性地分離,以便防止連接至不同的電壓源VA、VB的通孔120之間的短路。導電層122可橫跨第1A圖左側的兩個通孔120,且導電層122亦沿著第1A圖右側的線Y-Y電性地及實體地與通孔120分離。在實施例中,電性連接至同一電壓源的通孔120可或不可實體地及電性地連接。在實施例中,第2A圖至第2B圖中圖示的結構使用共六個遮罩形成。 The through holes 120 illustrated in FIGS. 2A-2B extend through the base substrate 130 from the rear side of the base substrate to the patterned ruthenium layer 140. In an embodiment, the vias 120 contact one or more of the bus bar interconnect structures 106 in the patterned germanium layer 140. In other embodiments, the vias 120 may contact other features or interconnect structures in the patterned germanium layer 140. The via 120 along the line WW can be electrically connected to the first interconnect structure 106, the first interconnect structure 106 is connected to the first voltage source V A , and the via 120 along the line YY can be electrically connected to A second interconnect structure 106 is coupled to the second voltage source V B . In an embodiment, the vias 120 along the line WW and along line YY are connected to the same voltage source. In the particular embodiment illustrated, via opening 120A extends through buried oxide layer 124 and terminates at the bottom surface of interconnect structure 106. The passivation layer 132 is formed on the rear side of the base substrate 130 and the side surface inside the via opening 120A. Conductive layer 122 is formed on passivation layer 133 and in electrical contact with the bottom surface of interconnect structure 106. In the particular embodiment illustrated, the conductive layer 122 does not completely fill the via opening 120A, and the conductive layer 122 is physically and electrically separated to prevent vias connected to different voltage sources V A , V B . Short circuit between 120. The conductive layer 122 can span the two via holes 120 on the left side of FIG. 1A, and the conductive layer 122 is also electrically and physically separated from the via hole 120 along the line YY on the right side of FIG. In an embodiment, the vias 120 electrically connected to the same voltage source may or may not be physically and electrically connected. In the embodiment, the structures illustrated in FIGS. 2A to 2B are formed using a total of six masks.

第3A圖至第3B圖為根據本發明的實施例順應單極微裝置傳輸頭、上側通孔開口及後側通孔開口的組合平面視圖及組合橫截面側視圖。如圖所示,在一個實施例中,上側通孔開口120B可形成在後側通孔開口120A的上方以形成通孔120。將自以下描述中明顯看出,可形成上側通孔開口120B以便與矽互連結構106進行電性接觸及形成開口穿過埋入的氧化物層124,而沒有與光刻術相關的挑戰,不會不利地影響沿著通孔開口120A的側壁的該鈍化層133。導電層123可視情況形成在矽互連結構106的曝露的頂表面上方及矽互連結構106的內側表面內部。以此方式,在矽互連結構106的頂 表面上方部分地形成導電層123可提供更大的表面面積用於與矽互連結構106的歐姆接觸。由於矽互連結構106比SOI結構的後側表面更靠近SOI結構的頂表面,故根據一些實施例,與從SOI結構的後表面相比,從SOI結構的頂表面上方在互連結構106的內側表面的內部形成導電層123可能更有效率。導電層123可由與導電層122相同或不同的材料形成。導電層122、導電層123可沿著通孔120的側表面形成連續的導電層。在實施例中,第3A圖至第3B圖圖示的結構使用共八個遮罩形成。 3A through 3B are combined plan views and combined cross-sectional side views of a compliant single pole micro device transfer head, an upper side through hole opening, and a rear side through hole opening, in accordance with an embodiment of the present invention. As shown, in one embodiment, an upper through hole opening 120B may be formed over the rear side through hole opening 120A to form a through hole 120. As will be apparent from the description below, upper via opening 120B can be formed to make electrical contact with germanium interconnect structure 106 and to form openings through buried oxide layer 124 without the challenges associated with lithography, The passivation layer 133 along the sidewalls of the via opening 120A is not adversely affected. Conductive layer 123 may optionally be formed over the exposed top surface of germanium interconnect structure 106 and inside the inner surface of germanium interconnect structure 106. In this way, at the top of the interconnect structure 106 The partial formation of the conductive layer 123 over the surface can provide a larger surface area for ohmic contact with the germanium interconnect structure 106. Since the germanium interconnect structure 106 is closer to the top surface of the SOI structure than the back side surface of the SOI structure, in accordance with some embodiments, the interconnect structure 106 is over the top surface of the SOI structure from the back surface of the SOI structure. Forming the conductive layer 123 inside the inner surface may be more efficient. The conductive layer 123 may be formed of the same or different material as the conductive layer 122. The conductive layer 122 and the conductive layer 123 may form a continuous conductive layer along a side surface of the via 120. In the embodiment, the structures illustrated in FIGS. 3A to 3B are formed using a total of eight masks.

第4A圖至第4B圖為根據本發明的實施例順應單極微裝置傳輸頭的組合平面視圖及組合橫截面側視圖,該順應單極微裝置傳輸頭包括沉積的介電層126以及上側通孔開口及後側通孔開口。應理解,雖然在第4A圖至第4B圖中共同圖示沉積介電層126以及上側通孔開口及後側通孔開口,但本發明的彼實施例不受此限制,且不要求沉積介電層126連同上側通孔開口及後側通孔開口一起。如圖所示,在一個實施例中,可部分地或完全地移除介電層118。在第4A圖至第4B圖圖示的特定實施例中,從檯面結構112上方移除介電層118。第二介電層126在檯面結構112的頂部表面上方及傳輸頭陣列的剩餘外形上方形成,該第二介電層126可包括介電層118的部分。介電層126亦可覆蓋上側通孔開口120B及對應的導電層123中的任一者,且介電層126可部分地或完全地填充矽互連結構106內部的上側通孔開口120B。在實施例中,介電層126具有比介電層118更高的介電常數及/或介電 擊穿強度。在實施例中,介電層118為熱生長的SiO2且介電層126為原子層沉積(atomic layer deposition;ALD)SiO2、Al2O3、Ta2O5或RuO2。將理解,雖然第4A圖至第4B圖圖示為第3A圖至第3B圖的變體,但介電層126的特徵可與第2A圖至第2B圖中圖示的實施例組合。在實施例中,使用共九個遮罩形成第4A圖至第4B圖圖示的結構。 4A through 4B are combined plan views and combined cross-sectional side views of a compliant monopolar microdevice transfer head including a deposited dielectric layer 126 and an upper via opening, in accordance with an embodiment of the present invention. And the rear side through hole opening. It should be understood that although the deposition dielectric layer 126 and the upper side via opening and the back side via opening are collectively illustrated in FIGS. 4A-4B, the embodiment of the present invention is not limited thereto, and deposition is not required. The electrical layer 126 is along with the upper through hole opening and the rear side through hole opening. As shown, in one embodiment, the dielectric layer 118 can be partially or completely removed. In the particular embodiment illustrated in FIGS. 4A-4B, dielectric layer 118 is removed from mesa structure 112. A second dielectric layer 126 is formed over the top surface of the mesa structure 112 and over the remaining profile of the transfer head array, and the second dielectric layer 126 can include portions of the dielectric layer 118. The dielectric layer 126 may also cover any of the upper via opening 120B and the corresponding conductive layer 123, and the dielectric layer 126 may partially or completely fill the upper via opening 120B inside the germanium interconnect structure 106. In an embodiment, dielectric layer 126 has a higher dielectric constant and/or dielectric breakdown strength than dielectric layer 118. In an embodiment, the dielectric layer 118 is thermally grown SiO 2 and the dielectric layer 126 is atomic layer deposition (ALD) SiO 2 , Al 2 O 3 , Ta 2 O 5 or RuO 2 . It will be understood that although FIGS. 4A-4B illustrate variants of FIGS. 3A-3B, the features of dielectric layer 126 may be combined with the embodiments illustrated in FIGS. 2A-2B. In the embodiment, a structure illustrated in FIGS. 4A to 4B is formed using a total of nine masks.

第5A圖至第15B圖圖示根據本發明的實施例形成順應單極微裝置傳輸頭及後側通孔開口的方法。最初,處理序列可從可購買的SOI基板開始,如第5A圖至第5B圖所圖示。SOI基板可包括底座基板130、頂端矽層140、底座基板與頂端矽層之間的埋入的氧化物層124及後側鈍化層132。在實施例中,底座基板為(100)矽處理晶圓,具有500μn+/-50μm的厚度,埋入的氧化物層124為1μm+/-0.1μm厚且頂端矽層為7μm至20μm+/-0.5μm厚。頂端矽層亦可經摻雜以改良導電率。舉例而言,大約1017cm-3的含磷摻雜劑濃度產生小於0.1歐姆-公分的電阻率。在實施例中,後側鈍化層132為熱氧化物,具有達到大約2μm厚的厚度,該厚度接近於矽的熱氧化的上限。 5A through 15B illustrate a method of forming a compliant monopolar micro device transfer head and a rear side via opening in accordance with an embodiment of the present invention. Initially, the processing sequence can begin with a commercially available SOI substrate, as illustrated in Figures 5A-5B. The SOI substrate may include a base substrate 130, a top end layer 140, a buried oxide layer 124 between the base substrate and the top end layer, and a back side passivation layer 132. In an embodiment, the base substrate is a (100) 矽 processed wafer having a thickness of 500 μ n +/- 50 μm, the buried oxide layer 124 is 1 μm +/- 0.1 μm thick and the top ruthenium layer is 7 μm to 20 μm +/- 0.5 μm. thick. The top ruthenium layer can also be doped to improve conductivity. For example, a phosphorus-containing dopant concentration of about 10 17 cm -3 produces a resistivity of less than 0.1 ohm-cm. In an embodiment, the backside passivation layer 132 is a thermal oxide having a thickness of up to about 2 [mu]m thick that is close to the upper limit of thermal oxidation of the ruthenium.

遮罩層142可隨後形成於頂端矽層140的上方,如在第6A圖至第6B圖所圖示。可沉積或替代地自頂端矽層140熱生長遮罩層142。在實施例中,遮罩層142為熱生長SiO2層,具有大約0.1μm的厚度。在實施例中,當遮罩層142為熱生長的SiO2時,遮罩層142具有顯著小於埋入的氧化物(SiO2)層124的厚度的厚度,以便在去除圖案化遮罩層期間維 持經部分圖案化SOI結構的結構穩定性。 A mask layer 142 can then be formed over the top ruthenium layer 140, as illustrated in Figures 6A-6B. The mask layer 142 may be deposited or alternatively thermally grown from the top ruthenium layer 140. In an embodiment, the mask layer 142 is a thermally grown SiO 2 layer having a thickness of about 0.1 μm. In an embodiment, when the mask layer 142 is thermally grown SiO 2 , the mask layer 142 has a thickness that is significantly less than the thickness of the buried oxide (SiO 2 ) layer 124 during removal of the patterned mask layer. The structural stability of the partially patterned SOI structure is maintained.

參閱第7A圖至第7B圖,遮罩層142隨後經圖案化以形成島陣列144,該島陣列144將對應於矽電極的檯面結構。在實施例中,遮罩層為熱生長的SiO2層,且藉由塗覆正光阻劑、使用氫氧化鉀(potassium hydroxide;KOH)顯影液曝光及移除光阻劑的未顯影區域來形成島144。隨後使用諸如離子研磨、電漿蝕刻、活性離子蝕刻(reactive ion etching;RIE)或活性離子束蝕刻(reactive ion beam etching;RIBE)、電子迴旋共振(electron cyclotron resonance;ECR)或感應耦合電漿(inductively coupled plasma;ICP)的適當技術乾式蝕刻遮罩層142以形成島144,終止於矽層140上。若不需要高度的各向異性刻蝕,則可使用使用諸如CF4、SF6或NF3的電漿蝕刻劑的幹電漿蝕刻技術。隨後藉由O2灰化接著食人魚蝕刻移除圖案化光阻劑,產生第7A圖至第7B圖圖示的結構。 Referring to Figures 7A through 7B, mask layer 142 is then patterned to form island array 144, which will correspond to the mesa structure of the germanium electrode. In an embodiment, the mask layer is a thermally grown SiO 2 layer and is formed by coating a positive photoresist, exposing with a potassium hydroxide (KOH) developer, and removing the undeveloped regions of the photoresist. Island 144. Subsequent use such as ion milling, plasma etching, reactive ion etching (RIE) or reactive ion beam etching (RIBE), electron cyclotron resonance (ECR) or inductively coupled plasma ( A suitable technique for inductively coupled plasma (ICP) dry etches the mask layer 142 to form islands 144, terminating on the germanium layer 140. If required a high degree of anisotropic etching may be used such as the use of CF 4, SF 6 or NF 3 plasma etchant in a dry plasma etching techniques. The patterned photoresist is then removed by O 2 ashing followed by piranha etching to produce the structures illustrated in Figures 7A-7B.

在實施例中,後側通孔開口120A隨後形成於SOI基板中。最初,如第8A圖至第8B圖所圖示,形成後側通孔開口穿過後側鈍化層132及底座基板130,終止於埋入的氧化物層124上。在實施例中,藉由將圖案化正光阻劑塗覆至後側鈍化層132上,隨後蝕刻曝露的鈍化層132及乾式活性離子刻蝕(DRIE)底座基板130來形成第8A圖至第8B圖圖示的後側通孔開口120A,終止於埋入的氧化物層124上。底座基板130可替代地使用諸如KOH的濕蝕刻劑蝕刻。然而,在(100)平面中KOH濕蝕刻劑優先腐蝕矽,且可產生具有錐形側壁的各向異性V蝕刻。針對在後側通孔開口120A中更為垂直的側 壁可選擇DRIE蝕刻。在蝕刻底座基板130之後,可藉由O2灰化、接著食人魚蝕刻移除圖案化正光阻劑,產生如第8A圖至第8B圖所圖示的結構。 In an embodiment, the back side via opening 120A is subsequently formed in the SOI substrate. Initially, as illustrated in FIGS. 8A-8B, the rear via opening is formed through the backside passivation layer 132 and the base substrate 130, terminating on the buried oxide layer 124. In an embodiment, 8A through 8B are formed by applying a patterned positive photoresist onto the backside passivation layer 132, followed by etching the exposed passivation layer 132 and the dry reactive ion etching (DRIE) base substrate 130. The rear side via opening 120A illustrated in the figure terminates on the buried oxide layer 124. The base substrate 130 may alternatively be etched using a wet etchant such as KOH. However, the KOH wet etchant preferentially etches germanium in the (100) plane and can produce an anisotropic V etch with tapered sidewalls. A DRIE etch can be selected for the more vertical sidewalls in the backside via opening 120A. After etching the base substrate 130, the patterned positive photoresist can be removed by O 2 ashing followed by piranha etching to produce a structure as illustrated in FIGS. 8A-8B.

參閱第9A圖至第10B圖,用二部分蝕刻序列圖案化矽電極110及互連結構104、106。首先,如第9A圖至第9B圖中所圖示,部分蝕穿頂端矽層140,從而界定矽電極110及互連結構104、106的圖案。在實施例中,此可使用薄的圖案化正光阻劑完成,在時控蝕刻(timed etch)中DRIE將7μm至10μm厚的頂端矽層140大約蝕刻5μm。可使用O2灰化、接著食人魚蝕刻移除圖案化正光阻劑。根據本發明的實施例,光阻劑121中的開口(僅在第9A圖圖示)對應於用於界定矽電極110及互連結構104、106的溝槽116的大小。如圖所示,光阻劑121可重疊用於界定檯面結構112的島144。以此方式,經圖案化硬遮罩層142中的島144可用於形成矽電極檯面結構112,相較於單獨使用光阻劑,該矽電極檯面結構112具有更高的解析度。 Referring to Figures 9A through 10B, the germanium electrode 110 and interconnect structures 104, 106 are patterned with a two-part etch sequence. First, as illustrated in FIGS. 9A-9B, the top germanium layer 140 is partially etched away to define the pattern of the germanium electrode 110 and interconnect structures 104,106. In an embodiment, this can be accomplished using a thin patterned positive photoresist, which is etched approximately 5 [mu]m from a 7 [mu]m to 10 [mu]m thick top germanium layer 140 in a timed etch. The patterned positive photoresist can be removed using O 2 ashing followed by piranha etching. In accordance with an embodiment of the present invention, the opening in photoresist 111 (illustrated only in FIG. 9A) corresponds to the size of trench 116 used to define germanium electrode 110 and interconnect structures 104,106. As shown, the photoresist 121 can overlap the islands 144 that define the mesa structure 112. In this manner, the islands 144 in the patterned hard mask layer 142 can be used to form the tantalum electrode mesa structure 112, which has a higher resolution than the photoresist alone.

第二,如第10A圖至第10B圖所圖示島144仍存在,使用島144作為遮罩繼續DRIE蝕刻以形成包括伸出的檯面結構112的矽電極110及矽互連結構104、106,終止於下層埋入的氧化物層124上。在完成蝕刻矽層140之後,執行乾式蝕刻技術以移除島144大約0.1μm。在實施例中,當僅移除0.1μm的氧化物及埋入的氧化物124大約1.0μm厚時,不移除顯著超過0.1μm的曝露的埋入的氧化物124。根據本發明的實施例,埋入的氧化物124提供部分圖案化SOI結構的結 構穩定性及在移除島144期間顯著超過島144的厚度沒有被從埋入的氧化物124移除。如第10B圖所圖示,埋入的氧化物層124曝露在矽電極周圍及互連結構之間的溝槽116中。 Second, as illustrated in FIGS. 10A-10B, islands 144 are still present, using island 144 as a mask to continue DRIE etching to form germanium electrodes 110 and germanium interconnect structures 104, 106 including extended mesa structures 112, The termination is performed on the underlying buried oxide layer 124. After the etching of the germanium layer 140 is completed, a dry etching technique is performed to remove the islands 144 by about 0.1 μm. In an embodiment, when only 0.1 μm of oxide and buried oxide 124 are removed by about 1.0 μm thick, the exposed buried oxide 124 significantly exceeding 0.1 μm is not removed. In accordance with an embodiment of the invention, the buried oxide 124 provides a junction of a partially patterned SOI structure The stability of the structure and the significant extent beyond the island 144 during removal of the island 144 are not removed from the buried oxide 124. As illustrated in FIG. 10B, the buried oxide layer 124 is exposed in the trench 116 around the germanium electrode and between the interconnect structures.

現在參閱第11A圖至第11B圖,SOI晶圓的前側及後側可隨後被氧化以便鈍化矽電極、矽互連結構及後側通孔開口。在實施例中,可執行高溫濕氧化以便在矽電極110上、矽互連結構104、106上及溝槽116內部生長大約1μm厚的氧化物層118。在已經曝露埋入的氧化物層124之處,取決於之前存在的厚度,埋入的氧化物層124厚度可增加或保持相同。在實施例中,氧化物層118與埋入的氧化物層124為大約相同的厚度。大約1μm厚的氧化物鈍化層133亦同時沿著底座基板130的側壁生長在後側通孔開口120A的內部。 Referring now to Figures 11A through 11B, the front and back sides of the SOI wafer can then be oxidized to passivate the germanium electrode, the germanium interconnect structure, and the back side via opening. In an embodiment, high temperature wet oxidation may be performed to grow an oxide layer 118 of about 1 [mu]m thick on the germanium electrode 110, on the germanium interconnect structures 104, 106, and inside the trenches 116. Where the buried oxide layer 124 has been exposed, the thickness of the buried oxide layer 124 may increase or remain the same depending on the thickness previously present. In an embodiment, oxide layer 118 is approximately the same thickness as buried oxide layer 124. An oxide passivation layer 133 of about 1 μm thick is also grown inside the back side via opening 120A along the sidewall of the base substrate 130.

現在參閱第12A圖至第12B圖,厚的圖案化正光阻劑塗覆至互連結構104、106及矽電極110上方,隨後蝕刻溝槽區域137中曝露的埋入的氧化物,該曝露的埋入的氧化物將對應於形成腔136的位置。可使用O2灰化接著食人魚蝕刻移除圖案化正光阻劑。 Referring now to FIGS. 12A through 12B, a thick patterned positive photoresist is applied over the interconnect structures 104, 106 and the germanium electrode 110, followed by etching the buried oxide exposed in the trench region 137, the exposed The buried oxide will correspond to the location where cavity 136 is formed. The patterned positive photoresist can be removed using O 2 ashing followed by piranha etching.

隨後可執行使用適當的乾式蝕刻技術的幹氧化物蝕刻以在後側通孔開口120A內部的埋入的氧化物層124中產生開口,以曝露圖案化矽層140的底表面,在該底表面處形成矽互連結構106,如第13A圖至第13B圖所圖示。在實施例中,薄的正光阻劑形成在SOI晶圓的後側上方及後側通孔開口120A內部且經圖案化。隨後蝕刻埋入的氧化物層124以曝露矽層140的底表面。在實施例中,使用RIE執行埋入的氧 化物層124的蝕刻。如圖所示,埋入的氧化物層124中的開口比底座基板130(包括氧化物鈍化層133)內部的開口更小(例如,更小的直徑或橫截面)。以此方式,在埋入的氧化物層124內部比在底座基板(包括氧化物鈍化層133)中具有更小的開口防止不小心蝕刻穿過氧化物鈍化層133或底切氧化物鈍化層133及電性短路後側通孔120與底座基板130。由於光刻術公差及解析度能力,埋入的氧化物層124內部的開口可具有大於10μm的最小橫截面。 A dry oxide etch using a suitable dry etch technique can then be performed to create an opening in the buried oxide layer 124 inside the backside via opening 120A to expose the bottom surface of the patterned germanium layer 140, at the bottom surface A germanium interconnect structure 106 is formed as illustrated in Figures 13A-13B. In an embodiment, a thin positive photoresist is formed over the back side of the SOI wafer and inside the back side via opening 120A and patterned. The buried oxide layer 124 is then etched to expose the bottom surface of the tantalum layer 140. In an embodiment, burying oxygen is performed using RIE Etching of the layer 124. As shown, the opening in the buried oxide layer 124 is smaller (eg, smaller in diameter or cross-section) than the opening in the interior of the base substrate 130 (including the oxide passivation layer 133). In this manner, having a smaller opening inside the buried oxide layer 124 than in the base substrate (including the oxide passivation layer 133) prevents inadvertent etching through the oxide passivation layer 133 or the undercut oxide passivation layer 133 And electrically shorting the rear side via 120 and the base substrate 130. Due to lithography tolerances and resolution capabilities, the openings inside the buried oxide layer 124 may have a minimum cross-section greater than 10 [mu]m.

現在參閱第14A圖至第14B圖,圖案化導電層122形成在通孔開口120A內部的鈍化層133上且與矽互連結構106的底表面電性接觸。在實施例中,藉由經由陰影遮罩濺射而形成圖案化導電層122。在實施例中,圖案化導電層122包括500埃厚度的鈦(Ti)的第一層、500埃厚的鈦-鎢(TiW)的中間層及1μm至2μm厚的金(Au)的外層。在實施例中,經圖案化導電層122與矽互連結構106進行歐姆接觸。 Referring now to FIGS. 14A through 14B, patterned conductive layer 122 is formed over passivation layer 133 inside via opening 120A and in electrical contact with the bottom surface of germanium interconnect structure 106. In an embodiment, the patterned conductive layer 122 is formed by sputtering through a shadow mask. In an embodiment, the patterned conductive layer 122 includes a first layer of titanium (Ti) having a thickness of 500 angstroms, an intermediate layer of titanium-tungsten (TiW) of 500 angstroms thick, and an outer layer of gold (Au) having a thickness of 1 μm to 2 μm. In an embodiment, the patterned conductive layer 122 is in ohmic contact with the germanium interconnect structure 106.

現在參閱第15A圖至第15B圖,隨後可在底座基板130中正好在矽電極陣列下方蝕刻一或更多個腔136,使得矽電極陣列可偏轉至一或更多個腔內。在實施例中,分離的腔136正好形成在每一矽電極下方。在實施例中,單個腔136正好形成在與第一互連結構104電性通訊的第一矽電極陣列的下方及正好形成在與第二互連結構電性連接的第二矽電極陣列的下方。在實施例中,分離的腔136正好形成在與第一互連結構104電性通訊的第一矽電極陣列的下方及正好形成在與第二互連結構電性連接的第二矽電極陣列的下方。在實 施例中,使用時控釋放蝕刻形成腔136至底座基板130中,該蝕刻底切電極引線114及檯面結構112。舉例而言,可使用諸如XeF2或SF6的基於氟的化學物質執行蝕刻。 Referring now to FIGS. 15A-15B, one or more cavities 136 can then be etched in the base substrate 130 just below the ruthenium electrode array such that the ruthenium electrode array can be deflected into one or more cavities. In an embodiment, a separate cavity 136 is formed just below each of the ruthenium electrodes. In an embodiment, a single cavity 136 is formed just below the first germanium electrode array in electrical communication with the first interconnect structure 104 and just below the second germanium electrode array electrically coupled to the second interconnect structure. . In an embodiment, the separate cavity 136 is formed just below the first electrode array in electrical communication with the first interconnect structure 104 and is formed just in the second electrode array electrically coupled to the second interconnect structure. Below. In an embodiment, a time-controlled release etch is used to form the cavity 136 into the base substrate 130, which etches the undercut electrode leads 114 and the mesa structure 112. For example, etching can be performed using a fluorine-based chemistry such as XeF 2 or SF 6 .

在形成一或更多個腔136之後,隨後可將SOI基板例如使用雷射切割進行切割,以形成順應傳輸頭陣列,該順應傳輸頭陣列包括與矽互連結構104、106互連的順應單極傳輸頭陣列及延伸穿過底座基板130從底座基板的後側至圖案化矽層140,從而電性連接矽電極110與傳輸頭元件的工作電路系統的通孔120。 After forming one or more cavities 136, the SOI substrate can then be subsequently cut, for example using laser cutting, to form an array of compliant transport heads including compliant arrays interconnected with germanium interconnect structures 104, 106 The pole transfer head array extends through the base substrate 130 from the rear side of the base substrate to the patterned germanium layer 140 to electrically connect the drain electrode 110 with the through hole 120 of the working circuit system of the transfer head element.

第16A圖為根據本發明的實施例的雙側夾緊支撐梁的順應單極微裝置傳輸頭陣列的平面視圖。第16A圖中圖示的特定實施例類似於第1A圖中圖示的實施例,其中一個差異為用於每一順應單極傳輸頭的矽電極110包括從第一互連結構延伸的第一電極引線114、從第二互連結構104延伸的第二電極引線114,其中第一及第二電極引線114在檯面結構112處接合。因此,矽電極110形成雙側夾緊支撐梁,該雙側夾緊支撐梁在對側使用矽互連結構104支撐。在實施例中,第一及第二互連結構104連接至相同電壓源。 Figure 16A is a plan view of a compliant single pole microdevice transfer head array of a double sided clamping support beam in accordance with an embodiment of the present invention. The particular embodiment illustrated in Figure 16A is similar to the embodiment illustrated in Figure 1A, wherein one difference is that the germanium electrode 110 for each compliant monopole transfer head includes a first extension from the first interconnect structure An electrode lead 114, a second electrode lead 114 extending from the second interconnect structure 104, wherein the first and second electrode leads 114 are joined at the mesa structure 112. Thus, the haptic electrode 110 forms a double-sided clamping support beam that is supported on the opposite side using a 矽 interconnect structure 104. In an embodiment, the first and second interconnect structures 104 are connected to the same voltage source.

第16B圖為根據本發明的實施例具有雙側夾緊支撐梁的順應單極微裝置傳輸頭的平面視圖。第16C圖為根據本發明的實施例沿第16B圖中圖示的順應單極微裝置傳輸頭的橫向線C-C的橫截面側視圖。第16D圖為根據本發明的實施例沿第16B圖中圖示的順應單極微裝置傳輸頭的縱向線D-D的橫截面側視圖。類似於第1B圖至第1D圖圖示的實施例, 第16B圖中僅圖示單個傳輸頭跨過兩個矽跡線互連結構104之間及藉由兩個矽跡線互連結構104支撐,儘管根據本發明的實施例傳輸頭陣列可跨過矽互連結構104之間。在圖示的實施例中,支撐梁的縱向長度平行於矽互連結構104。如第16C圖至第16D圖所圖示,矽電極檯面結構112及引線114兩者在底座基板130與矽電極110之間的腔136上方延伸及可偏轉至腔136內。 Figure 16B is a plan view of a compliant single pole microdevice transfer head having a double clamping support beam in accordance with an embodiment of the present invention. Figure 16C is a cross-sectional side view of the transverse line C-C of the compliant monopole microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention. Figure 16D is a cross-sectional side view of the longitudinal line D-D of the compliant single pole microdevice transfer head illustrated in Figure 16B, in accordance with an embodiment of the present invention. Similar to the embodiment illustrated in Figures 1B through 1D, In Fig. 16B, only a single transfer head is illustrated spanning between two turns of trace interconnect structure 104 and supported by two turns of trace interconnect structure 104, although an array of transfer heads may be crossed in accordance with an embodiment of the present invention. Between the interconnect structures 104. In the illustrated embodiment, the longitudinal length of the support beam is parallel to the tantalum interconnect structure 104. As illustrated in FIGS. 16C through 16D, both the erbium mesa structure 112 and the leads 114 extend over the cavity 136 between the base substrate 130 and the 矽 electrode 110 and are deflectable into the cavity 136.

再次參閱第16A圖,單個腔136可形成在跨過一對矽互連結構104之間的矽電極陣列110下方。在另一實施例中,分離的腔136可形成在每一矽電極110下方。在另一實施例中,單個腔136可形成在跨過第一對矽互連結構之間的第一矽電極陣列下方及跨過第二對矽互連結構之間的第二矽電極陣列下方。在另一實施例中,第一腔136可形成在跨過第一對矽互連結構之間的第一矽電極陣列下方及與第一腔136分離的第二腔136形成在跨過第二對矽互連結構之間的第二矽電極陣列下方。溝槽116亦可形成在圖案化矽層中界定矽電極110及矽互連結構104、106。若腔136不環繞矽互連結構104的一端,則溝槽116亦可形成在圖案化矽層中位於矽互連結構104的該端。 Referring again to FIG. 16A, a single cavity 136 can be formed under the tantalum electrode array 110 between a pair of tantalum interconnect structures 104. In another embodiment, a separate cavity 136 can be formed under each of the ruthenium electrodes 110. In another embodiment, a single cavity 136 can be formed under the first 矽 electrode array between the first 矽 interconnect structure and across the second 矽 electrode array between the second 矽 interconnect structures . In another embodiment, the first cavity 136 can be formed over the first 矽 electrode array between the first pair of 矽 interconnect structures and the second cavity 136 separated from the first cavity 136 is formed across the second Opposite the second electrode array between the interconnect structures. Trench 116 may also be formed to define germanium electrode 110 and germanium interconnect structures 104, 106 in the patterned germanium layer. If the cavity 136 does not surround one end of the germanium interconnect structure 104, the trench 116 may also be formed in the patterned germanium layer at the end of the germanium interconnect structure 104.

第17A圖至第28B圖圖示根據本發明的實施例形成順應單極微裝置傳輸頭的方法,該順應單極微裝置傳輸頭包括雙側夾緊支撐梁以及上側通孔開口及後側通孔開口。在實施例中,第17A圖至第20B圖的處理序列可與關於第5A圖至第8B圖描述的處理序列相同。參閱第21A圖至第22B圖, 在二部分蝕刻序列中可圖案化矽電極110及互連結構104、106。首先,如第21A圖至第21B圖中所圖示,部分蝕穿頂端矽層140,從而界定矽電極110及互連結構104、106的圖案。在實施例中,此可使用薄的圖案化正光阻劑完成,在時控蝕刻中DRIE蝕刻7μm至10μm厚的頂端矽層140大約5μm。可使用O2灰化接著食人魚蝕刻移除圖案化正光阻劑。 17A to 28B illustrate a method of forming a compliant single-pole micro device transfer head including a double-sided clamping support beam and an upper side through hole opening and a rear side through hole opening according to an embodiment of the present invention. . In the embodiment, the processing sequence of FIGS. 17A to 20B may be the same as the processing sequence described with respect to FIGS. 5A to 8B. Referring to Figures 21A-22B, the germanium electrode 110 and interconnect structures 104, 106 can be patterned in a two-part etch sequence. First, as illustrated in FIGS. 21A-21B, the top germanium layer 140 is partially etched away to define the pattern of the germanium electrode 110 and the interconnect structures 104,106. In an embodiment, this can be accomplished using a thin patterned positive photoresist in which DRIE etches a 7 μm to 10 μm thick top germanium layer 140 of about 5 μm in a timed etch. The patterned positive photoresist can be removed using O 2 ashing followed by piranha etching.

第二,如第18A圖至第18B圖所圖示島144仍然存在,使用島144作為遮罩繼續DRIE蝕刻以形成包括伸出的檯面結構112的矽電極110及互連結構104、106,終止於下層埋入的氧化物層124上。在完成蝕刻矽層140之後,執行乾式蝕刻技術以移除島144大約0.1μm。在實施例中,當僅移除0.1μm的氧化物且埋入的氧化物124大約1.0μm厚時,不移除顯著超過0.1μm曝露的埋入的氧化物124。根據本發明的實施例,埋入的氧化物124提供部分圖案化SOI結構的結構穩定性且在移除島144期間顯著超過島144的厚度沒有被從埋入的氧化物124移除。 Second, the islands 144 as illustrated in Figures 18A through 18B are still present, using the island 144 as a mask to continue the DRIE etch to form the germanium electrode 110 and interconnect structures 104, 106 including the extended mesa structure 112, terminating On the oxide layer 124 buried in the lower layer. After the etching of the germanium layer 140 is completed, a dry etching technique is performed to remove the islands 144 by about 0.1 μm. In an embodiment, when only 0.1 [mu]m of oxide is removed and the buried oxide 124 is about 1.0 [mu]m thick, the buried oxide 124 that is significantly over 0.1 [mu]m exposed is not removed. In accordance with an embodiment of the invention, the buried oxide 124 provides structural stability to the partially patterned SOI structure and significantly exceeds the thickness of the island 144 during removal of the island 144 from being removed from the buried oxide 124.

現在參閱第23A圖至第23B圖,SOI晶圓的前側及後側可隨後被氧化以便鈍化矽電極、矽互連結構及後側通孔開口。在實施例中,可執行高溫濕氧化以便在矽電極110上、矽互連結構104、106上及溝槽116內部生長大約1μm厚的氧化物層118。在已經曝露埋入的氧化物層124之處,取決於之前存在的厚度,埋入的氧化物層124厚度在熱氧化期間可增加或保持相同。在實施例中,氧化物層118與埋入的氧化物層124為大約相同的厚度。大約1μm厚的氧化物鈍化層133 亦同時沿著底座基板130的側壁在後側通孔開口120A內部生長。 Referring now to Figures 23A through 23B, the front and back sides of the SOI wafer can then be oxidized to passivate the germanium electrode, the germanium interconnect structure, and the back side via opening. In an embodiment, high temperature wet oxidation may be performed to grow an oxide layer 118 of about 1 [mu]m thick on the germanium electrode 110, on the germanium interconnect structures 104, 106, and inside the trenches 116. Where the buried oxide layer 124 has been exposed, the thickness of the buried oxide layer 124 may increase or remain the same during thermal oxidation, depending on the thickness previously present. In an embodiment, oxide layer 118 is approximately the same thickness as buried oxide layer 124. An oxide passivation layer 133 of about 1 μm thick At the same time, it is grown inside the rear side through hole opening 120A along the side wall of the base substrate 130.

現在參閱第24A圖至第24B圖,開口(該等開口將成為通孔開口120B的部分)形成在頂端介電層118中以曝露正好在後側通孔開口120A上方及在溝槽區域137(此處將形成一或更多個腔136)處的矽互連結構106的區域處的圖案化矽層140。溝槽區域137開口亦同時形成在埋入的氧化物層124中以曝露底座基板130(此處將形成一或更多個腔136)。使用厚的圖案化正光阻劑接著乾式蝕刻頂端介電層118,可在頂端介電層118及埋入的氧化物層124中形成開口。隨後藉由O2灰化接著食人魚蝕刻移除圖案化光阻劑,產生第20A圖至第20B圖圖示的結構。組合蝕刻及圖案化步驟形成通孔開口120B及溝槽區域137開口亦可減少處理操作及所需要的遮罩數量。 Referring now to Figures 24A through 24B, openings (which will be part of the via opening 120B) are formed in the top dielectric layer 118 to be exposed just above the back side via opening 120A and in the trench region 137 ( A patterned germanium layer 140 at the region of the germanium interconnect structure 106 at one or more of the cavities 136) will be formed herein. The trench region 137 opening is also simultaneously formed in the buried oxide layer 124 to expose the base substrate 130 (where one or more cavities 136 will be formed). Openings can be formed in the top dielectric layer 118 and the buried oxide layer 124 using a thick patterned positive photoresist followed by dry etching of the top dielectric layer 118. The patterned photoresist is then removed by O 2 ashing followed by piranha etching to produce the structures illustrated in Figures 20A-20B. Forming the etch and patterning steps to form the via opening 120B and the trench region 137 opening also reduces the number of processing operations and the number of masks required.

現在參閱第25A圖至第25B圖,開口形成在矽層140及埋入的氧化物層124中以形成上側通孔開口120B,該上側通孔開口120B連接後側通孔開口120A。藉由形成厚的圖案化正光阻劑,接著執行終止於埋入的氧化物層124上的矽層140的DRIE,隨後執行穿過埋入的氧化物層124的RIE,開口可形成在矽層140及埋入的氧化物層124中。隨後藉由O2灰化接著食人魚蝕刻移除圖案化光阻劑,產生第25A圖至第25B圖中的結構。以此方式,當形成上側通孔開口120B時形成開口穿過埋入的氧化物層124可避免與從SOI結構的後側在埋入的氧化物層124中形成開口相關的光刻術的挑戰,不 會不利地影響沿著通孔開口120A的側壁的鈍化層133。 Referring now to FIGS. 25A through 25B, openings are formed in the tantalum layer 140 and the buried oxide layer 124 to form an upper side via opening 120B that connects the back side via opening 120A. By forming a thick patterned positive photoresist, DRIE of the germanium layer 140 terminating on the buried oxide layer 124 is then performed, followed by RIE through the buried oxide layer 124, and the opening can be formed in the germanium layer 140 and buried oxide layer 124. O 2 ashing followed by piranha etch followed by removing the patterned photoresist to produce the structure of FIG. 25A through FIG. 25B. In this manner, forming an opening through the buried oxide layer 124 when the upper via opening 120B is formed can avoid the lithography challenge associated with forming an opening in the buried oxide layer 124 from the back side of the SOI structure. The passivation layer 133 along the sidewalls of the via opening 120A is not adversely affected.

隨後經圖案化導電層123可形成在矽互連結構106的曝露的頂表面上方及矽互連結構106的內側表面的內部,如第26A圖至第26B圖所圖示。以此方式,在矽互連結構106的頂表面上方部分地形成導電層123可提供更大的表面面積用於與矽互連結構106的歐姆接觸。由於矽互連結構106比SOI結構的後側表面更靠近SOI結構的頂表面,故根據一些實施例,與從SOI結構的後表面相比,從SOI結構的頂表面上方在互連結構106的內側表面的內部形成一層導電層123可能更有效率。在實施例中,藉由經由陰影遮罩濺射形成圖案化導電層123。在實施例中,經圖案化導電層123包括500埃厚的鈦(Ti)的第一層、500埃厚的鈦-鎢(TiW)的中間層及1μm至2μm厚的金(Au)的外層。在實施例中,圖案化導電層123與矽互連結構106進行歐姆接觸。 Subsequent patterned conductive layer 123 may be formed over the exposed top surface of germanium interconnect structure 106 and inside the inner surface of germanium interconnect structure 106, as illustrated in Figures 26A-26B. In this manner, the partial formation of the conductive layer 123 over the top surface of the germanium interconnect structure 106 can provide a larger surface area for ohmic contact with the germanium interconnect structure 106. Since the germanium interconnect structure 106 is closer to the top surface of the SOI structure than the back side surface of the SOI structure, in accordance with some embodiments, the interconnect structure 106 is over the top surface of the SOI structure from the back surface of the SOI structure. Forming a conductive layer 123 inside the inner surface may be more efficient. In an embodiment, the patterned conductive layer 123 is formed by sputtering through a shadow mask. In an embodiment, the patterned conductive layer 123 comprises a first layer of 500 angstroms thick titanium (Ti), an intermediate layer of 500 angstroms thick titanium-tungsten (TiW), and an outer layer of gold (Au) 1 μm to 2 μm thick. . In an embodiment, the patterned conductive layer 123 is in ohmic contact with the germanium interconnect structure 106.

現在參閱第27A圖至第27B圖,圖案化導電層122可在通孔開口120A內部的鈍化層133上形成且與圖案化導電層123電性接觸。導電層122可由與導電層123相同或不同的材料形成且可具有相同或不同的厚度。在實施例中,導電層123具有較厚的金層。 Referring now to FIGS. 27A through 27B, the patterned conductive layer 122 can be formed on the passivation layer 133 inside the via opening 120A and in electrical contact with the patterned conductive layer 123. The conductive layer 122 may be formed of the same or different material as the conductive layer 123 and may have the same or different thicknesses. In an embodiment, the conductive layer 123 has a thicker gold layer.

現在參閱第28A圖至第28B圖,隨後可在底座基板130中正好在矽電極陣列下方蝕刻一或更多個腔136使得矽電極陣列可偏轉至一或更多個腔內。在實施例中,分離的腔136正好形成在每一矽電極下方。在實施例中,單個腔136正好形成在與第一及第二互連結構104電性通訊的矽電極陣 列的下方。可如上關於第16A圖所述蝕刻其他腔配置。在實施例中,使用時控釋放蝕刻形成腔136至底座基板130中,該蝕刻底切電極引線114及檯面結構112。舉例而言,可使用諸如XeF2或SF6的基於氟的化學物質執行蝕刻。在實施例中,一或更多個腔136為大約15μm深。 Referring now to Figures 28A through 28B, one or more cavities 136 can then be etched in the base substrate 130 just below the tantalum electrode array such that the tantalum electrode array can be deflected into one or more cavities. In an embodiment, a separate cavity 136 is formed just below each of the ruthenium electrodes. In an embodiment, a single cavity 136 is formed just below the array of germanium electrodes in electrical communication with the first and second interconnect structures 104. Other cavity configurations can be etched as described above with respect to Figure 16A. In an embodiment, a time-controlled release etch is used to form the cavity 136 into the base substrate 130, which etches the undercut electrode leads 114 and the mesa structure 112. For example, etching can be performed using a fluorine-based chemistry such as XeF 2 or SF 6 . In an embodiment, one or more of the cavities 136 are approximately 15 [mu]m deep.

在形成一或更多個腔136之後,隨後可將SOI基板例如使用雷射切割進行切割,以形成順應單極傳輸頭陣列,該順應單極傳輸頭陣列包括與矽互連結構104、106互連的順應單極傳輸頭陣列及延伸穿過底座基板130從底座基板的後側至圖案化矽層140且穿過圖案化矽層140從而電性連接矽電極110與傳輸頭元件的工作電路系統的通孔120。 After forming one or more cavities 136, the SOI substrate can then be subsequently cut, for example using laser cutting, to form a compliant unipolar transmission head array that includes the 矽 interconnect structures 104, 106 a compliant monopolar transmission head array and a working circuit system extending through the base substrate 130 from the rear side of the base substrate to the patterned germanium layer 140 and through the patterned germanium layer 140 to electrically connect the germanium electrode 110 and the transfer head element Through hole 120.

第29A圖至第34B圖圖示根據本發明的實施例形成順應單極微裝置傳輸頭的方法,該順應單極微裝置傳輸頭包括雙側夾緊支撐梁及沉積的介電層以及上側通孔開口及後側通孔開口。在實施例中,引導至第29A圖至第29B圖的處理序列可與如上所述的第17A圖至第23B圖的處理序列相同。現在參閱第29A圖至第29B圖,在實施例中開口形成在頂端介電層118中正好在後側通孔開口120A上方及正好在檯面結構112上方。溝槽區域137開口亦同時形成在埋入的氧化物層124中以曝露底座基板130(此處將形成一或更多個腔136)。使用厚的圖案化正光阻劑接著乾式蝕刻頂端介電層118,可在頂端介電層118及埋入的氧化物層124中形成開口。在實施例中,頂端介電層118及埋入的氧化物層124具有大約相同的厚度。在實施例中,頂端介電層118及埋入的 氧化物層124可使用時控乾式氧化物蝕刻移除。隨後藉由O2灰化接著食人魚蝕刻移除圖案化光阻劑,產生第29A圖至第29B圖中的結構。組合蝕刻及圖案化步驟形成通孔開口120A及溝槽區域137開口亦可減少處理操作及所需要的遮罩數量。 29A through 34B illustrate a method of forming a compliant single-pole microdevice transfer head including a double-sided clamping support beam and a deposited dielectric layer and an upper via opening, in accordance with an embodiment of the present invention. And the rear side through hole opening. In the embodiment, the processing sequence leading to FIGS. 29A to 29B may be the same as the processing sequence of FIGS. 17A to 23B as described above. Referring now to Figures 29A through 29B, in the embodiment the opening is formed in the top dielectric layer 118 just above the back side via opening 120A and just above the mesa structure 112. The trench region 137 opening is also simultaneously formed in the buried oxide layer 124 to expose the base substrate 130 (where one or more cavities 136 will be formed). Openings can be formed in the top dielectric layer 118 and the buried oxide layer 124 using a thick patterned positive photoresist followed by dry etching of the top dielectric layer 118. In an embodiment, the top dielectric layer 118 and the buried oxide layer 124 have approximately the same thickness. In an embodiment, the top dielectric layer 118 and the buried oxide layer 124 can be removed using a time-controlled dry oxide etch. O 2 ashing followed by piranha etch followed by removing the patterned photoresist to produce the structure of FIG. 29A through FIG. 29B. Forming the etch and patterning steps to form via openings 120A and trench regions 137 openings also reduces processing operations and the number of masks required.

現在參閱第30A圖至第30B圖,在實施例中,第二介電層126形成在頂部表面上方,該第二介電層126包括圖案化介電層118及圖案化矽層140,隨後使用厚的正光阻劑圖案化第二介電層126及蝕刻第二介電層126。在完成蝕刻之後,經圖案化的第二介電層126覆蓋檯面結構112及亦可覆蓋電極引線114及經圖案化介電層118的一部分。經圖案化第二介電層126從圖案化矽層140的上方後側通孔開口120A的正上方及溝槽區域137(此處將形成一或更多個腔136)處被移除。在實施例中,第二介電層可具有比介電層118更高的介電常數或介電擊穿強度,且具有0.5μm至10μm之間的厚度。舉例而言,第二介電層126為藉由原子層沉積(ALD)沉積的Al2O3、Ta2O5或HfO2層。 Referring now to FIGS. 30A through 30B, in an embodiment, a second dielectric layer 126 is formed over the top surface, and the second dielectric layer 126 includes a patterned dielectric layer 118 and a patterned germanium layer 140 for subsequent use. A thick positive photoresist patterns the second dielectric layer 126 and etches the second dielectric layer 126. After the etching is completed, the patterned second dielectric layer 126 covers the mesa structure 112 and may also cover portions of the electrode leads 114 and the patterned dielectric layer 118. The patterned second dielectric layer 126 is removed from directly above the upper back via opening 120A of the patterned germanium layer 140 and the trench region 137 where one or more cavities 136 will be formed. In an embodiment, the second dielectric layer can have a higher dielectric constant or dielectric breakdown strength than the dielectric layer 118 and have a thickness between 0.5 μm and 10 μm. For example, the second dielectric layer 126 is an Al 2 O 3 , Ta 2 O 5 , or HfO 2 layer deposited by atomic layer deposition (ALD).

現在參閱第31A圖至第31B圖,開口形成在矽層140及埋入的氧化物層124中以形成上側通孔開口120B,該等上側通孔開口120B連接後側通孔開口120A。藉由形成厚的圖案化正光阻劑,接著執行終止於埋入的氧化物層124上的矽層140的DRIE,隨後執行穿過埋入的氧化物層124的RIE,開口可形成在矽層140及埋入的氧化物層124中。隨後藉由O2灰化接著食人魚蝕刻移除圖案化光阻劑,產生第31A圖至第31B圖圖示的結構。以此方式,當形成上側通孔開口120B 時形成開口穿過埋入的氧化物層124可避免與從SOI結構的後側在埋入的氧化物層124中形成開口相關的光刻術的挑戰,不會不利地影響沿著通孔開口120A的側壁的鈍化層133。 Referring now to FIGS. 31A through 31B, openings are formed in the tantalum layer 140 and the buried oxide layer 124 to form upper side via openings 120B that connect the back side via openings 120A. By forming a thick patterned positive photoresist, DRIE of the germanium layer 140 terminating on the buried oxide layer 124 is then performed, followed by RIE through the buried oxide layer 124, and the opening can be formed in the germanium layer 140 and buried oxide layer 124. O 2 ashing followed by piranha etch followed by removing the patterned photoresist to produce the structure of FIGS. 31A through 31B illustrated in FIG. In this manner, forming an opening through the buried oxide layer 124 when the upper via opening 120B is formed can avoid the lithography challenge associated with forming an opening in the buried oxide layer 124 from the back side of the SOI structure. The passivation layer 133 along the sidewalls of the via opening 120A is not adversely affected.

隨後經圖案化導電層123形成在矽互連結構106的曝露的頂表面上方及矽互連結構106的內側表面的內部,如第32A圖至第32B圖所圖示。以此方式,在矽互連結構106的頂表面上方部分地形成導電層123可提供更大的表面面積用於與矽互連結構106的歐姆接觸。由於矽互連結構106比SOI結構的後側表面更靠近SOI結構的頂表面,故根據一些實施例,與從SOI結構的後表面相比,從SOI結構的頂表面上方在互連結構106的內側表面的內部形成一層導電層123可能更有效率。在實施例中,藉由經由陰影遮罩濺射形成圖案化導電層123。在實施例中,圖案化導電層123包括500埃厚的鈦(Ti)的第一層、500埃厚的鈦-鎢(TiW)的中間層及1μm至2μm厚的金(Au)的外層。在實施例中,圖案化導電層123與矽互連結構106進行歐姆接觸。 Patterned conductive layer 123 is then formed over the exposed top surface of germanium interconnect structure 106 and inside the inner surface of germanium interconnect structure 106, as illustrated in Figures 32A-32B. In this manner, the partial formation of the conductive layer 123 over the top surface of the germanium interconnect structure 106 can provide a larger surface area for ohmic contact with the germanium interconnect structure 106. Since the germanium interconnect structure 106 is closer to the top surface of the SOI structure than the back side surface of the SOI structure, in accordance with some embodiments, the interconnect structure 106 is over the top surface of the SOI structure from the back surface of the SOI structure. Forming a conductive layer 123 inside the inner surface may be more efficient. In an embodiment, the patterned conductive layer 123 is formed by sputtering through a shadow mask. In an embodiment, the patterned conductive layer 123 includes a first layer of 500 angstroms thick titanium (Ti), an intermediate layer of 500 angstroms thick titanium-tungsten (TiW), and an outer layer of gold (Au) 1 μm to 2 μm thick. In an embodiment, the patterned conductive layer 123 is in ohmic contact with the germanium interconnect structure 106.

圖案化導電層122可形成在通孔開口120A內部的鈍化層133上且與圖案化導電層123電性接觸,如第33A圖至第33B圖所圖示。導電層122可由與導電層123相同或不同的材料形成且可具有相同或不同的厚度。在實施例中,導電層123具有較厚的金層。導電層122、123可沿著通孔120的側表面形成連續的導電層。 The patterned conductive layer 122 may be formed on the passivation layer 133 inside the via opening 120A and in electrical contact with the patterned conductive layer 123 as illustrated in FIGS. 33A to 33B. The conductive layer 122 may be formed of the same or different material as the conductive layer 123 and may have the same or different thicknesses. In an embodiment, the conductive layer 123 has a thicker gold layer. The conductive layers 122, 123 may form a continuous conductive layer along the side surface of the via 120.

現在參閱第34A圖至第34B圖,隨後可在底座基板130中正好在矽電極陣列下方蝕刻一或更多個腔136,使得矽 電極陣列可偏轉至一或更多個腔內。在實施例中,分離的腔136正好形成在每一矽電極下方。在實施例中,單個腔136正好形成在與第一及第二互連結構104電性通訊的矽電極陣列的下方。可如上關於第16A圖所述蝕刻其他腔配置。在實施例中,使用時控釋放蝕刻形成腔136至底座基板130中,該蝕刻底切電極引線114及檯面結構112。舉例而言,可使用諸如XeF2或SF6的基於氟的化學物質執行蝕刻。在實施例中,一或更多個腔136為大約15μm深。 Referring now to Figures 34A through 34B, one or more cavities 136 can then be etched in the base substrate 130 just below the xenon electrode array such that the tantalum electrode array can be deflected into one or more cavities. In an embodiment, a separate cavity 136 is formed just below each of the ruthenium electrodes. In an embodiment, a single cavity 136 is formed just below the array of germanium electrodes in electrical communication with the first and second interconnect structures 104. Other cavity configurations can be etched as described above with respect to Figure 16A. In an embodiment, a time-controlled release etch is used to form the cavity 136 into the base substrate 130, which etches the undercut electrode leads 114 and the mesa structure 112. For example, etching can be performed using a fluorine-based chemistry such as XeF 2 or SF 6 . In an embodiment, one or more of the cavities 136 are approximately 15 [mu]m deep.

在形成一或更多個腔136之後,隨後可將SOI基板例如使用雷射切割進行切割,以形成順應傳輸頭陣列,該順應傳輸頭陣列包括與矽互連結構104、106互連的順應傳輸頭陣列及延伸穿過底座基板130從底座基板的後側至圖案化矽層140及穿過圖案化矽層140從而電性連接矽電極110與傳輸頭元件的工作電路系統的通孔120。 After forming one or more cavities 136, the SOI substrate can then be subsequently cut, for example using laser cutting, to form a compliant transfer head array that includes compliant transmissions interconnected with the germanium interconnect structures 104, 106 The head array and the through hole 120 extending through the base substrate 130 from the rear side of the base substrate to the patterned germanium layer 140 and through the patterned germanium layer 140 to electrically connect the drain electrode 110 and the working circuit system of the transfer head element.

第35圖至第41圖圖示根據本發明的實施例的跨過矽互連結構104之間的順應單極微裝置傳輸頭的各種修改。雖然分別根據以上圖示的處理序列圖示第35圖至第41圖,但將理解,關於第31圖至第37圖描述的許多各種修改可以實施在前述處理序列中。 35 through 41 illustrate various modifications of a compliant single pole micro device transfer head between the turns interconnect structures 104 in accordance with an embodiment of the present invention. Although FIGS. 35 to 41 are respectively illustrated in accordance with the processing sequence illustrated above, it will be understood that many of the various modifications described with respect to FIGS. 31 to 37 can be implemented in the aforementioned processing sequence.

第35圖為根據本發明的實施例沿著具有懸臂梁的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。在實施例中,矽電極懸臂梁可包括一對接合的矽電極引線114及檯面結構112。在圖示的實施例中,一對矽電極引線114從一對矽互連結構104延伸,包括彎曲115(圖示為90 度彎曲)及經接合作為平行於矽互連結構對104延伸的單個矽電極引線114。如圖所示,矽電極懸臂梁的縱向長度平行於矽互連結構對104。 Figure 35 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a cantilever beam, in accordance with an embodiment of the present invention. In an embodiment, the tantalum electrode cantilever beam can include a pair of bonded tantalum electrode leads 114 and mesa structures 112. In the illustrated embodiment, a pair of tantalum electrode leads 114 extend from a pair of tantalum interconnect structures 104, including a bend 115 (shown as 90) And bent as a single tantalum electrode lead 114 extending parallel to the tantalum interconnect structure pair 104. As shown, the longitudinal length of the 矽 electrode cantilever beam is parallel to the 矽 interconnect structure pair 104.

第36圖為根據本發明的實施例沿著具有懸臂梁及分離的電極引線的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。在實施例中,矽電極懸臂梁可包括一對接合的矽電極引線114及檯面結構112。在圖示的實施例中,一對矽電極引線114從一對矽互連結構104延伸,包括彎曲115(圖示為90度彎曲)及在檯面結構112處接合。如圖所示,矽電極懸臂梁的縱向長度平行於矽互連結構對104。 Figure 36 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having cantilever beams and separate electrode leads in accordance with an embodiment of the present invention. In an embodiment, the tantalum electrode cantilever beam can include a pair of bonded tantalum electrode leads 114 and mesa structures 112. In the illustrated embodiment, a pair of tantalum electrode leads 114 extend from a pair of tantalum interconnect structures 104, including bends 115 (shown as 90 degree bends) and joined at mesa structure 112. As shown, the longitudinal length of the 矽 electrode cantilever beam is parallel to the 矽 interconnect structure pair 104.

第37圖為根據本發明的實施例的沿著具有雙側夾緊梁的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極雙側夾緊梁可包括從兩個矽互連結構104延伸的一對彎曲矽電極引線114。彎曲矽電極引線對114與兩個矽互連結構104在兩個位置處連接,及沿著平行於矽互連結構對的支撐梁的縱向長度接合在一起。電極引線對114可跨過兩個矽互連結構104之間,其中每一電極引線包括一對彎曲115(圖示為90度彎曲)。 Figure 37 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a double sided clamping beam, in accordance with an embodiment of the present invention. As shown, the tantalum electrode double side clamping beam can include a pair of curved tantalum electrode leads 114 extending from the two tantalum interconnect structures 104. The curved tantalum electrode lead pair 114 is joined to the two tantalum interconnect structures 104 at two locations and joined together along a longitudinal length of the support beam parallel to the tantalum interconnect structure pair. The electrode lead pair 114 can span between the two turns interconnect structures 104, with each electrode lead including a pair of bends 115 (shown as a 90 degree bend).

第38圖為根據本發明的實施例沿著具有支撐梁結構及具有多個彎曲的分離的電極引線的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。如圖所示,一對矽電極引線114從一對矽互連結構104延伸及在檯面結構112處接合,其中每一矽電極引線包括雙彎曲115(圖示為90度彎曲)。此外,可分離電極引線114中的每一者使得梁配置 假定矽電極引線114之間的8-形狀配置。 Figure 38 is a plan view and cross-sectional side view of line A-A of a compliant single pole microdevice transfer head having a support beam structure and separate curved electrode leads in accordance with an embodiment of the present invention. As shown, a pair of tantalum electrode leads 114 extend from a pair of tantalum interconnect structures 104 and are joined at mesa structure 112, wherein each tantalum electrode lead includes a double bend 115 (shown as a 90 degree bend). In addition, each of the detachable electrode leads 114 enables beam configuration The 8-shape configuration between the erbium electrode leads 114 is assumed.

第39圖為根據本發明的實施例沿著具有支撐梁結構及多個彎曲的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極雙側夾緊梁可包括從一對互連結構104延伸及在檯面結構112處接合的一對矽電極引線114。每一矽電極引線114包括單個彎曲115。 Figure 39 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a support beam structure and a plurality of bends in accordance with an embodiment of the present invention. As shown, the tantalum electrode double side clamping beam can include a pair of tantalum electrode leads 114 extending from a pair of interconnect structures 104 and joined at the mesa structure 112. Each turn electrode lead 114 includes a single bend 115.

第40圖為根據本發明的實施例沿著具有支撐梁結構及多個彎曲的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。第41圖為根據本發明的實施例沿著具有支撐梁結構及多個彎曲的順應單極微裝置傳輸頭的線A-A的平面視圖及橫截面側視圖。如圖所示,矽電極雙側夾緊梁可包括一對矽電極引線114,每一矽電極引線114具有雙彎曲115。在第40圖圖示的特定實施例中,梁處於W-形狀配置。在第41圖圖示的特定實施例中,梁處於S-形狀配置。 Figure 40 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a support beam structure and a plurality of bends in accordance with an embodiment of the present invention. Figure 41 is a plan view and cross-sectional side view of line A-A along a compliant single pole microdevice transfer head having a support beam structure and a plurality of bends in accordance with an embodiment of the present invention. As shown, the tantalum electrode double side clamping beam can include a pair of tantalum electrode leads 114, each tantalum electrode lead 114 having a double bend 115. In the particular embodiment illustrated in Figure 40, the beam is in a W-shaped configuration. In the particular embodiment illustrated in Figure 41, the beam is in an S-shape configuration.

根據本發明的實施例,覆蓋檯面結構112的介電層118或126具有適當的厚度及介電常數用於達成微裝置傳輸頭所需要的夾緊壓力,且具有充分的介電強度以不在操作電壓下擊穿。第42圖為圖示根據本發明的實施例從載體基板拾取及傳輸微裝置陣列至接收基板的方法的流程圖。在操作4210,順應傳輸頭陣列定位在載體基板上的微裝置陣列上方。第43圖為根據本發明的實施例位於載體基板200上的微裝置陣列上方的順應單極微裝置傳輸頭陣列的橫截面側視圖。在操作4220,微裝置陣列接觸順應傳輸頭陣列。在替代的實施例中,順應傳輸頭陣列定位於微裝置陣列上方,該微 裝置陣列具有適當的分離該等微裝置的氣隙,例如,1nm至10nm,該氣隙不顯著影響夾緊壓力。第44圖為根據本發明的實施例與微裝置陣列202接觸的順應單極微裝置傳輸頭陣列的橫截面側視圖。如圖所示,順應傳輸頭陣列的節距為微裝置陣列202的節距的整數倍。在操作4230,將電壓施加於順應傳輸頭陣列。可自與順應傳輸頭陣列經由通孔120電性連接的順應傳輸頭元件160內部的工作電路系統施加電壓。在操作4240,使用順應傳輸頭陣列拾取微裝置陣列。第45圖為根據本發明的實施例拾取微裝置陣列202的順應傳輸頭陣列的橫截面側視圖。在操作4250,微裝置陣列隨後被釋放至接收基板上。舉例而言,接收基板可為(但不限於)顯示基板、照明基板、具有諸如電晶體或IC的功能裝置的基板或具有金屬重新分配線路的基板。第46圖為根據本發明的實施例的釋放至接收基板300上的微裝置陣列202的橫截面側視圖。 In accordance with an embodiment of the present invention, the dielectric layer 118 or 126 covering the mesa structure 112 has a suitable thickness and dielectric constant for achieving the clamping pressure required for the microdevice transfer head and has sufficient dielectric strength to be out of operation. Breakdown under voltage. Figure 42 is a flow chart illustrating a method of picking up and transporting a microdevice array from a carrier substrate to a receiving substrate in accordance with an embodiment of the present invention. At operation 4210, the compliant transfer head array is positioned over the array of micro devices on the carrier substrate. Figure 43 is a cross-sectional side view of a compliant monopolar microdevice transfer head array over a microdevice array on a carrier substrate 200, in accordance with an embodiment of the present invention. At operation 4220, the array of micro devices contacts the array of compliant transfer heads. In an alternative embodiment, the compliant transmission head array is positioned above the micro device array, the micro The array of devices has an appropriate air gap separating the micro devices, for example, 1 nm to 10 nm, which does not significantly affect the clamping pressure. Figure 44 is a cross-sectional side view of a compliant monopolar microdevice transfer head array in contact with a microdevice array 202 in accordance with an embodiment of the present invention. As shown, the pitch of the compliant transmission head array is an integer multiple of the pitch of the microdevice array 202. At operation 4230, a voltage is applied to the compliant transmission head array. A voltage can be applied from a working circuitry internal to the compliant transfer head element 160 that is electrically coupled to the compliant transfer head array via vias 120. At operation 4240, the array of microdevices is picked up using an array of compliant transport heads. Figure 45 is a cross-sectional side view of a compliant transmission head array for picking up a microdevice array 202 in accordance with an embodiment of the present invention. At operation 4250, the micro device array is then released onto the receiving substrate. For example, the receiving substrate can be, but is not limited to, a display substrate, an illumination substrate, a substrate having a functional device such as a transistor or an IC, or a substrate having a metal redistribution line. Figure 46 is a cross-sectional side view of a microdevice array 202 released onto a receiving substrate 300 in accordance with an embodiment of the present invention.

雖然在第42圖中已經依序圖示操作4210至操作4250,但將理解實施例不受此限制且可執行額外的操作,且可以不同循序執行某些操作。舉例而言,在一個實施例中,在拾取微裝置之前或之時,執行一操作以產生連接微裝置至載體基板的接合層的相變。舉例而言,接合層可具有小於350℃的液相溫度,或更具體而言小於200℃的液相溫度。接合層可由提供至載體基板的黏合的材料形成,然而亦可由能容易地釋放微裝置的媒介形成。在實施例中,接合層為諸如銦或銦合金的材料。若使用微裝置拾取一部分接合層,則可執行 額外的操作以在後續處理期間控制部分接合層的相。舉例而言,可從位於傳輸頭元件160、載體基板200及/或接收基板300內部的熱源將熱量施加至接合層。 Although operation 4210 through operation 4250 have been sequentially illustrated in FIG. 42, it will be understood that the embodiments are not limited thereto and that additional operations may be performed, and that certain operations may be performed in a different order. For example, in one embodiment, an operation is performed to generate a phase change of the bonding layer connecting the micro device to the carrier substrate before or at the time of picking up the micro device. For example, the tie layer can have a liquidus temperature of less than 350 °C, or, more specifically, a liquidus temperature of less than 200 °C. The bonding layer may be formed of a material that is bonded to the carrier substrate, but may also be formed of a medium that can easily release the micro device. In an embodiment, the bonding layer is a material such as indium or an indium alloy. Executable if a micro device is used to pick up a part of the bonding layer Additional operations are performed to control the phase of the portion of the bonding layer during subsequent processing. For example, heat can be applied to the bonding layer from a heat source located within the transfer head element 160, the carrier substrate 200, and/or the receiving substrate 300.

此外,施加電壓以在微裝置上產生夾緊壓力的操作4230可以各種次序執行。舉例而言,在微裝置陣列接觸順應傳輸頭陣列之前、當微裝置接觸順應傳輸頭陣列之時或微裝置接觸順應傳輸頭陣列之後,可施加電壓。亦可在接合層中產生相變之前、之時或之後施加電壓。 Moreover, operation 4230 of applying a voltage to create a clamping pressure on the micro device can be performed in various orders. For example, a voltage can be applied before the micro device array contacts the compliant transport head array, when the micro device contacts the compliant transport head array, or after the micro device contacts the compliant transport head array. It is also possible to apply a voltage before, during or after the phase change in the bonding layer.

在順應傳輸頭包括單極矽電極的情況下,施加電壓至單極矽電極陣列以產生拾取壓力。從順應傳輸頭釋放微裝置可使用經變化的方法完成,該等方法包括關閉電壓源,降低電壓及將電壓源接地。釋放亦可藉由與在接收基板上置放微裝置有關的放電完成。 Where the compliant transfer head includes a monopolar germanium electrode, a voltage is applied to the monopolar germanium electrode array to generate a pick-up pressure. The release of the microdevice from the compliant transfer head can be accomplished using a modified method that includes turning off the voltage source, lowering the voltage, and grounding the voltage source. Release can also be accomplished by discharge associated with placing the microdevice on the receiving substrate.

在使用本發明的各種態樣時,對於熟習此項技術者將變得明顯的是以上實施例的組合或變化可能用於形成順應單極微裝置傳輸頭及頭陣列及用於傳輸微裝置及微裝置陣列。儘管已經以特定於結構特徵及/或方法動作的語言描述本發明,然而將理解在隨附申請專利範圍中定義的本發明非必要地受限於描述的具體特徵或動作。相反,所揭示的具體特徵及動作應理解為所主張發明的尤其合體的實施方式,以用於說明本發明。 In making use of the various aspects of the present invention, it will be apparent to those skilled in the art that combinations or variations of the above embodiments may be used to form compliant monopolar microdevice transfer heads and head arrays and for transmitting microdevices and micro Device array. Although the present invention has been described in language specific to structural features and/or methods, it is to be understood that the invention is not limited to the specific features or acts described. Rather, the specific features and acts disclosed are to be understood as a particularly preferred embodiment of the claimed invention.

112‧‧‧檯面結構 112‧‧‧ countertop structure

114‧‧‧電極引線 114‧‧‧Electrode lead

116‧‧‧溝槽 116‧‧‧ trench

118‧‧‧介電層 118‧‧‧ dielectric layer

120‧‧‧通孔 120‧‧‧through hole

120A‧‧‧後側通孔開口 120A‧‧‧Back side through hole opening

120B‧‧‧上側通孔開口 120B‧‧‧Upper through hole opening

122‧‧‧圖案化導電層 122‧‧‧ patterned conductive layer

123‧‧‧圖案化導電層 123‧‧‧ patterned conductive layer

124‧‧‧埋入的氧化物層 124‧‧‧buried oxide layer

130‧‧‧底座基板 130‧‧‧Base substrate

132‧‧‧鈍化層 132‧‧‧ Passivation layer

133‧‧‧鈍化層 133‧‧‧passivation layer

136‧‧‧腔 136‧‧‧ cavity

140‧‧‧矽層 140‧‧‧矽

Claims (20)

一種順應(compliant)微裝置傳輸頭陣列,該順應微裝置傳輸頭陣列包含:一底座基板;一圖案化矽層,位於該底座基板上方,該圖案化矽層包括一矽互連結構及電性連接至該矽互連結構的一矽電極陣列,其中每一矽電極包括一電極引線及一檯面結構,其中每一檯面結構突出於該矽互連結構的上方且每一矽電極可偏轉至該底座基板與該矽電極之間的一腔內;以及一介電層,該介電層覆蓋每一檯面結構的一頂表面。 A compliant micro device transmission head array includes: a base substrate; a patterned germanium layer over the base substrate, the patterned germanium layer including a germanium interconnect structure and electrical An array of electrodes connected to the germanium interconnect structure, wherein each germanium electrode includes an electrode lead and a mesa structure, wherein each mesa structure protrudes above the germanium interconnect structure and each germanium electrode is deflectable to the a cavity between the base substrate and the germanium electrode; and a dielectric layer covering a top surface of each mesa structure. 如請求項1所述之順應微裝置傳輸頭陣列,其中該矽電極陣列中的每一矽電極可偏轉至該底座基板中的一腔內。 The compliant micro device transport head array of claim 1, wherein each of the xenon electrode arrays is deflectable into a cavity in the base substrate. 如請求項2所述之順應微裝置傳輸頭陣列,其中該矽電極陣列可偏轉至該底座基板中的該同一腔內。 The compliant microdevice transport head array of claim 2, wherein the tantalum electrode array is deflectable into the same cavity in the base substrate. 如請求項3所述之順應微裝置傳輸頭陣列,其中該矽電極陣列從該矽互連結構的一第一側延伸,且進一步包含一第二矽電極陣列,該第二矽電極陣列從與該第一側相對的該矽互連結構的一第二側延伸。 The compliant micro device transmission head array of claim 3, wherein the 矽 electrode array extends from a first side of the 矽 interconnect structure, and further comprising a second 矽 electrode array, the second 矽 electrode array The first side of the first side extends opposite a second side of the meandering interconnect structure. 如請求項1所述之順應微裝置傳輸頭陣列,其中該圖案化矽層位於一埋入的氧化物層上及與該埋入的氧化物層直接接觸。 The compliant microdevice transport head array of claim 1, wherein the patterned germanium layer is on a buried oxide layer and is in direct contact with the buried oxide layer. 如請求項5所述之順應微裝置傳輸頭陣列,該順應微裝置傳輸頭陣列進一步包含一通孔,該通孔延伸穿過該底座基板及該埋入的二氧化矽層,從該底座基板的一後側至該圖案化矽層,並與該矽互連結構及該矽電極陣列電性連接。 The compliant micro device transmission head array according to claim 5, the compliant micro device transmission head array further comprising a through hole extending through the base substrate and the buried erbium oxide layer, from the base substrate A back side to the patterned germanium layer is electrically connected to the germanium interconnect structure and the germanium electrode array. 如請求項4所述之順應微裝置傳輸頭陣列,其中該第二矽電極陣列可偏轉至該底座基板中與該腔分隔之一第二腔內。 The compliant microdevice transport head array of claim 4, wherein the second tantalum electrode array is deflectable into a second cavity in the base substrate that is separated from the cavity. 如請求項4所述之順應微裝置傳輸頭陣列,其中該第二矽電極陣列可偏轉至該底座基板中之相同腔內,其中該腔環繞該矽互連結構之一端。 The compliant microdevice transport head array of claim 4, wherein the second tantalum electrode array is deflectable into the same cavity in the base substrate, wherein the cavity surrounds one end of the tantalum interconnect structure. 如請求項1所述之順應微裝置傳輸頭陣列,其中該圖案化矽層進一步包括一第二矽互連結構及電性連接至該第二矽互連結構之一第二矽電極陣列,其中該第二矽電極陣列中之該等矽電極之每一者包括一電極引線及一檯面結構,其中每一檯面結構突出於該第二矽互連結構上方且該第二矽電極陣列中之每一矽電極可偏轉至該底座基板與所述矽電極之間的一腔內;以及該介電層覆蓋該第二矽電極陣列中之每一檯面結構之一頂表面。 The compliant micro device transfer head array of claim 1, wherein the patterned germanium layer further comprises a second germanium interconnect structure and a second germanium electrode array electrically connected to the second germanium interconnect structure, wherein Each of the germanium electrodes in the second electrode array includes an electrode lead and a mesa structure, wherein each mesa structure protrudes above the second germanium interconnect structure and each of the second germanium electrode arrays A drain electrode may be deflected into a cavity between the base substrate and the drain electrode; and the dielectric layer covers a top surface of each of the mesa structures in the second tantalum electrode array. 如請求項9所述之順應微裝置傳輸頭陣列,其中該矽電極陣列中之每一矽電極及該第二矽電極陣列中之每一矽電極可偏轉至該底座基板中之一腔內。 The compliant micro device transmission head array of claim 9, wherein each of the 矽 electrode array and each of the second 矽 electrode arrays are deflectable into a cavity in the base substrate. 如請求項10所述之順應微裝置傳輸頭陣列,其中該矽電極陣列可偏轉至該底座基板中之一第一腔內,以及該第二矽電極陣列可偏轉至該底座基板中與該第一腔分隔之一第二腔內。 The compliant micro device transmission head array of claim 10, wherein the 矽 electrode array is deflectable into one of the first cavities of the base substrate, and the second 矽 electrode array is deflectable into the pedestal substrate A cavity separates one of the second chambers. 如請求項10所述之順應微裝置傳輸頭陣列,其中該矽電極陣列及該第二矽電極陣列可偏轉至該底座基板中之同一腔內。 The compliant micro device transport head array of claim 10, wherein the 矽 electrode array and the second 矽 electrode array are deflectable into the same cavity in the base substrate. 如請求項10所述之順應微裝置傳輸頭陣列,其進一步包含:一埋入的二氧化矽層,其位於該圖案化矽層及該底座基板之間; 一第一通孔,其延伸穿過該底座基板及該埋入的二氧化矽層,從該底座基板的一後側至該圖案化矽層,並與該矽互連結構及該矽電極陣列電性連接;以及一第二通孔,其延伸穿過該底座基板及該埋入的二氧化矽層,從該底座基板的該後側至該圖案化矽層,並與該第二矽互連結構及該第二矽電極陣列電性連接;其中該矽互連結構與該第二矽互連結構電絕緣。 The compliant micro device transport head array of claim 10, further comprising: a buried ruthenium dioxide layer between the patterned ruthenium layer and the base substrate; a first through hole extending through the base substrate and the buried ruthenium dioxide layer, from a rear side of the base substrate to the patterned ruthenium layer, and the 矽 interconnect structure and the 矽 electrode array Electrically connecting; and a second through hole extending through the base substrate and the buried ruthenium dioxide layer, from the rear side of the base substrate to the patterned ruthenium layer, and interacting with the second 矽The connection structure and the second electrode array are electrically connected; wherein the germanium interconnect structure is electrically insulated from the second germanium interconnect structure. 如請求項1所述之順應微裝置傳輸頭陣列,其中該圖案化矽層進一步包括與該矽互連結構電性連接之一第二矽互連結構,其中每一矽電極進一步包括一第二電極引線,其中該電極引線自該矽互連結構延伸,且該第二電極引線自該第二矽互連結構延伸。 The compliant micro device transport head array of claim 1, wherein the patterned germanium layer further comprises a second germanium interconnect structure electrically connected to the germanium interconnect structure, wherein each germanium electrode further comprises a second An electrode lead, wherein the electrode lead extends from the germanium interconnect structure, and the second electrode lead extends from the second germanium interconnect structure. 如請求項14所述之順應微裝置傳輸頭陣列,其中該電極引線及該第二電極引線皆包括一或多個彎曲。 The compliant microdevice transport head array of claim 14, wherein the electrode lead and the second electrode lead each comprise one or more bends. 如請求項14所述之順應微裝置傳輸頭陣列,其中該矽電極陣列形成一支撐梁陣列,該支撐梁陣列跨過該矽互連結構及該第二矽互連結構之間。 The compliant microdevice transport head array of claim 14, wherein the tantalum electrode array forms an array of support beams that span between the tantalum interconnect structure and the second tantalum interconnect structure. 如請求項16所述之順應微裝置傳輸頭陣列,其中該支撐梁陣列之縱向長度垂直於該矽互連結構及該第二矽互連結構。 The compliant microdevice transport head array of claim 16, wherein the longitudinal length of the support beam array is perpendicular to the 矽 interconnect structure and the second 矽 interconnect structure. 如請求項14所述之順應微裝置傳輸頭陣列,其中該矽電極陣列形成位於該矽互連結構及該第二矽互連結構之間的一懸臂梁陣列。 The compliant microdevice transport head array of claim 14, wherein the tantalum electrode array forms an array of cantilever beams between the tantalum interconnect structure and the second tantalum interconnect structure. 如請求項18所述之順應微裝置傳輸頭陣列,其中該懸臂梁陣列之縱向長度平行於該矽互連結構及該第二矽互連結構。 The compliant microdevice transport head array of claim 18, wherein the longitudinal length of the cantilever beam array is parallel to the tantalum interconnect structure and the second tantalum interconnect structure. 如請求項14所述之順應微裝置傳輸頭陣列,其進一步包含: 一埋入的二氧化矽層,其位於該圖案化矽層及該底座基板之間;一通孔,其延伸穿過該底座基板及該埋入的二氧化矽層,從該底座基板的一後側至該圖案化矽層,並與該矽互連結構、該第二矽互連結構及該矽電極陣列電性連接。 The compliant micro device transport head array of claim 14, further comprising: a buried ruthenium dioxide layer between the patterned ruthenium layer and the base substrate; a through hole extending through the base substrate and the buried ruthenium dioxide layer, from a rear of the base substrate The patterned germanium layer is laterally connected to the germanium interconnect structure, the second germanium interconnect structure, and the germanium electrode array.
TW102124029A 2012-07-06 2013-07-04 Compliant monopolar micro device transfer head with silicon electrode TWI533362B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/543,684 US8415768B1 (en) 2012-07-06 2012-07-06 Compliant monopolar micro device transfer head with silicon electrode
US13/543,690 US8383506B1 (en) 2012-07-06 2012-07-06 Method of forming a compliant monopolar micro device transfer head with silicon electrode

Publications (2)

Publication Number Publication Date
TW201409552A TW201409552A (en) 2014-03-01
TWI533362B true TWI533362B (en) 2016-05-11

Family

ID=49882436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102124029A TWI533362B (en) 2012-07-06 2013-07-04 Compliant monopolar micro device transfer head with silicon electrode

Country Status (2)

Country Link
TW (1) TWI533362B (en)
WO (1) WO2014008111A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640133A (en) * 1995-06-23 1997-06-17 Cornell Research Foundation, Inc. Capacitance based tunable micromechanical resonators
JP2006148602A (en) * 2004-11-19 2006-06-08 Seiko Epson Corp Vibrator manufacturing method, vibrator and electronic device
KR100800825B1 (en) * 2006-08-31 2008-02-04 동부일렉트로닉스 주식회사 COM actuator structure using MEMS process and its manufacturing method
TWI331984B (en) * 2007-10-05 2010-10-21 Pixart Imaging Inc Method for fabricating micromachined structures
US7829366B2 (en) * 2008-02-29 2010-11-09 Freescale Semiconductor, Inc. Microelectromechanical systems component and method of making same

Also Published As

Publication number Publication date
TW201409552A (en) 2014-03-01
WO2014008111A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
US9000566B2 (en) Compliant micro device transfer head
US9799547B2 (en) Compliant bipolar micro device transfer head with silicon electrodes
US9288899B2 (en) Micro device transfer head array
US8383506B1 (en) Method of forming a compliant monopolar micro device transfer head with silicon electrode
EP3118894B1 (en) Micro device transfer head with silicon electrode
US8415767B1 (en) Compliant bipolar micro device transfer head with silicon electrodes
TWI567803B (en) Compliant bipolar micro device transfer head with silicon electrodes
US9828244B2 (en) Compliant electrostatic transfer head with defined cavity
TWI533362B (en) Compliant monopolar micro device transfer head with silicon electrode