TWI537697B - Programmable low-dropout regulator and methods therefor - Google Patents
Programmable low-dropout regulator and methods therefor Download PDFInfo
- Publication number
- TWI537697B TWI537697B TW100109586A TW100109586A TWI537697B TW I537697 B TWI537697 B TW I537697B TW 100109586 A TW100109586 A TW 100109586A TW 100109586 A TW100109586 A TW 100109586A TW I537697 B TWI537697 B TW I537697B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- voltage
- programmable
- control
- output
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000012546 transfer Methods 0.000 claims description 50
- 230000006870 function Effects 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 11
- 230000003044 adaptive effect Effects 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 8
- 230000001052 transient effect Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 32
- 238000009966 trimming Methods 0.000 description 27
- 239000003990 capacitor Substances 0.000 description 20
- 229910052732 germanium Inorganic materials 0.000 description 11
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 9
- 239000013643 reference control Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 238000007667 floating Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Description
本公開一般涉及低壓差(LDO)調節器,且特別是涉及可程式化LDO及其方法。 The present disclosure relates generally to low dropout (LDO) regulators, and more particularly to programmable LDOs and methods therefor.
低壓差(LDO)調節器旨在提供關於各種各樣工作狀態的、明確定義的電壓供應位準,所述工作狀態包括可變的電源電壓、負載電流、溫度,等等。典型地,這些器件不能裝配用戶模式的數位可程式化特徵(feature)。按照慣例,LDO調節器有時包括一次性可程式化裝置,其可以使用一次性可程式化技術進行程式化,比如在產品測試期間的鐳射微調或金屬線保險絲熔化。 Low dropout (LDO) regulators are intended to provide well-defined voltage supply levels for a wide variety of operating conditions, including variable supply voltage, load current, temperature, and the like. Typically, these devices cannot be equipped with user-programmable digitally programmable features. Conventionally, LDO regulators sometimes include disposable programmable devices that can be programmed using one-time programmable techniques, such as laser trimming during product testing or melting of metal wire fuses.
一些LDO調節器包括控制端子,其能夠連接至接地端,或者能夠被供應特定的位準,以便選擇額定輸出電壓的修正值,提供有限的可程式化性。一些其他的LDO調節器包括端子或端子組,其提供了不可逆的一次性可程式化功能以調整輸出電壓的位準。然而,這種有限的可程式化性並不負責使用特定LDO調節器的多種應用,也無法解決各種終端用戶的需求。 Some LDO regulators include control terminals that can be connected to ground or can be supplied with specific levels to select a correction value for the nominal output voltage, providing limited programmability. Some other LDO regulators include terminals or terminal sets that provide an irreversible one-time programmable function to adjust the level of the output voltage. However, this limited programmability is not responsible for the multiple applications of a particular LDO regulator, nor does it address the needs of various end users.
以下公開了可程式化LDO調節器的實施例,可程式化LDO調節器包括基於二進位控制順序的數位微調機構,其能夠被用來組態LDO調節器中的各種電路塊,包括電壓參考電路、傳遞器件、誤差放大器,及回饋電路。二進位控 制序列能夠儲存在LDO調節器的非揮發性暫存器中,允許在加電時復原被程式化的設置。 Embodiments of a programmable LDO regulator are disclosed below. The programmable LDO regulator includes a digital trimming mechanism based on a binary control sequence that can be used to configure various circuit blocks in the LDO regulator, including voltage reference circuits. , transfer devices, error amplifiers, and feedback circuits. Binary control The sequence can be stored in the non-volatile register of the LDO regulator, allowing the programmed settings to be restored upon power up.
藉由將數位微調機構併入可程式化LDO調節器內,實現各種輸出電壓位準所需要的製造掩模的數量被減低。此外,在前端測試和後端測試這兩段期間內,數位微調提供用於調整LDO調節器電路的功能參數的可靠解決方案。另外,該數字微調機構允許這種參數被多次程式化,增加了處理庫存的靈活性,且降低了向客戶提供LDO調節器產品的周轉時間。 By incorporating a digital trimming mechanism into a programmable LDO regulator, the number of fabrication masks required to achieve various output voltage levels is reduced. In addition, digital trimming provides a reliable solution for adjusting the functional parameters of the LDO regulator circuit during both front-end testing and back-end testing. In addition, the digital fine-tuning mechanism allows such parameters to be programmed multiple times, increasing the flexibility of processing inventory and reducing the turnaround time for providing LDO regulator products to customers.
此外,數字微調機構包括串列介面,其提供終端用戶解決方案用於改變或調整LDO調節器的功能參數。串列介面提供用於對LDO調節器的性能參數進行數位控制的裝置,其允許了與各種控制系統的簡易功能連接,或者在其他電路比如電源管理積體電路(PMIC)系統中的簡易功能整合。此外,串列介面允許容易地訪問LDO調節器的用戶可程式化特徵。 In addition, the digital trimming mechanism includes a serial interface that provides an end user solution for changing or adjusting the functional parameters of the LDO regulator. The serial interface provides means for digitally controlling the performance parameters of the LDO regulator, allowing for easy functional connection to various control systems or simple function integration in other circuits such as power management integrated circuit (PMIC) systems. . In addition, the serial interface allows easy access to user-programmable features of the LDO regulator.
數位微調技術能夠被用於調整與LDO調節器的輸出電壓相關的DC和AC參數。例如,數位微調技術能夠被用來改變輸出電壓位準,比如藉由從一定範圍的預定位準中選擇額定的值。可供選擇地或額外地,這些數位微調技術能夠被應用於調整輸出電壓,以提供增強的精確度。此外,數字微調能夠被用來調整一或多個阻抗以最佳化AC性能。在一例子中,控制電路包括非揮發性的資料儲存媒體,用於儲存信號的數位序列,以控制LDP調節器的功能部件和性能 參數。使用數位序列來控制可程式化LDO調節器的參數,當與一次性可程式化鐳射微調或者用於熔化保險絲的電技術進行比較時,這使得有可能對LDO調節器進行多次程式化。另外,出於產品測試和出於提供用戶模式的微調能力這兩個目的,能夠利用DC和AC參數的數位可程式化性。 Digital trimming techniques can be used to adjust the DC and AC parameters associated with the output voltage of the LDO regulator. For example, digital trimming techniques can be used to change the output voltage level, such as by selecting a nominal value from a predetermined range of predetermined levels. Alternatively or additionally, these digital trimming techniques can be applied to adjust the output voltage to provide enhanced accuracy. In addition, digital trimming can be used to adjust one or more impedances to optimize AC performance. In one example, the control circuit includes a non-volatile data storage medium for storing digital sequences of signals to control the functional components and performance of the LDP regulator parameter. The use of digital sequences to control the parameters of programmable LDO regulators makes it possible to program LDO regulators multiple times when compared to one-time programmable laser trimming or electrical techniques for melting fuses. In addition, digital stylization of DC and AC parameters can be utilized for both product testing and for the purpose of providing fine-tuning capabilities for the user mode.
圖1是包括了控制電路110的低壓差(LDO)調節器電路100的實施例的部分原理圖和部分方塊圖。LDO調節器電路100包括耦合至可程式化電壓參考電路102的電壓輸入(VIN),其經組態以將參考電壓(VREF)提供至輸出端子103。輸出端子103連接至可程式化誤差放大器104的第一輸入。可程式化誤差放大器104還包括耦合至可程式化回饋電路108的第二輸入以接收回饋信號(VF),且包括連接至可程式化傳遞器件106的控制輸入的放大器輸出120。 1 is a partial schematic and partial block diagram of an embodiment of a low dropout (LDO) regulator circuit 100 that includes a control circuit 110. The LDO regulator circuit 100 includes a voltage input (V IN ) coupled to the programmable voltage reference circuit 102 that is configured to provide a reference voltage (V REF ) to the output terminal 103. Output terminal 103 is coupled to a first input of programmable error amplifier 104. The programmable error amplifier 104 also includes a second input coupled to the programmable feedback circuit 108 to receive the feedback signal (V F ) and includes an amplifier output 120 coupled to the control input of the programmable transfer device 106.
可程式化傳遞器件106包括連接至電壓輸入(VIN)的第一輸入,及經組態以承載輸出電壓(VOUT)和負載電流(IL)的輸出端子114。可程式化傳遞器件106將來自電壓輸入(VIN)的功率提供至負載116,負載116通常被指示為負載阻抗(ZL)。 The programmable transfer device 106 includes a first input coupled to a voltage input (V IN ) and an output terminal 114 configured to carry an output voltage (V OUT ) and a load current (I L ). The programmable transfer device 106 provides power from the voltage input (V IN ) to the load 116, which is typically indicated as the load impedance (Z L ).
在所示實施例中,控制電路110經由參考控制輸入122連接至可程式化電壓參考電路102來提供一或多個控制信號,以便有選擇地調整參考電壓的熱係數。控制電路110還經由控制輸入124連接至可程式化誤差放大器104以提供控制信號,以便調整自適應偏置(bias)參數、短路保護參數和/或偏移(offset)參數。在第一模式中,偏置參數被禁用,以應用具有預定位準的固定偏置,從而控制流過誤差放大器 104的靜態電流。在第二模式中,偏置參數被啟用以施加自適應偏置,該偏置經組態以基於負載電流(IL)自動調整流過誤差放大器104的靜態電流。另外,短路保護參數能夠使用經由控制輸入124接收的一或多個控制信號來進行組態,以調整用於提供這種保護的位準,所述保護響應於負載電流(IL)被觸發。而且,DC偏移參數能夠藉由控制輸入124上的控制信號進行組態,以調整誤差放大器的輸入偏移。同樣,能夠使用控制輸入124上的控制信號啟用AC頻率補償機構。 In the illustrated embodiment, control circuit 110 is coupled to programmable voltage reference circuit 102 via reference control input 122 to provide one or more control signals to selectively adjust the thermal coefficient of the reference voltage. Control circuit 110 is also coupled to programmable error amplifier 104 via control input 124 to provide control signals for adjusting adaptive bias parameters, short circuit protection parameters, and/or offset parameters. In the first mode, the bias parameter is disabled to apply a fixed bias with a predetermined level to control the quiescent current flowing through the error amplifier 104. In the second mode, the bias parameter is enabled to apply an adaptive bias configured to automatically adjust the quiescent current flowing through the error amplifier 104 based on the load current (I L ). Additionally, the short circuit protection parameter can be configured using one or more control signals received via control input 124 to adjust the level used to provide such protection, the protection being triggered in response to load current (I L ). Moreover, the DC offset parameter can be configured by controlling the control signal on input 124 to adjust the input offset of the error amplifier. Likewise, the AC frequency compensation mechanism can be enabled using control signals on control input 124.
此外,控制電路110經由傳遞器件控制輸入126連接至可程式化傳遞器件106,以便有選擇地啟用或禁用可程式化傳遞器件106內的電路以控制負載電流(IL)。在一例子中,可程式化傳遞器件106包括電晶體網路,其可組態成對瞬態回應程式化。另外,控制電路110經由回饋控制輸入128連接至可程式化回饋電路108,以便有選擇地調整可程式化回饋電路108的阻抗。可程式化回饋電路108能夠包括電阻-電容(RC)網路,其可程式化以提供所需的複阻抗。此外,可程式化回饋電路108還能夠包括電阻性網路,其可程式化以提供所需的電阻。可程式化回饋電路108提供了對DC輸出電壓位準及LDO調節器電路100的AC性能參數進行調整的能力。 In addition, control circuit 110 is coupled to programmable transfer device 106 via transfer device control input 126 to selectively enable or disable circuitry within programmable device 106 to control load current (I L ). In one example, the programmable transfer device 106 includes a transistor network that can be configured to program a transient response. Additionally, control circuit 110 is coupled to programmable feedback circuit 108 via feedback control input 128 to selectively adjust the impedance of programmable feedback circuit 108. The programmable feedback circuit 108 can include a resistor-capacitor (RC) network that can be programmed to provide the desired complex impedance. In addition, the programmable feedback circuit 108 can also include a resistive network that can be programmed to provide the required resistance. The programmable feedback circuit 108 provides the ability to adjust the DC output voltage level and the AC performance parameters of the LDO regulator circuit 100.
在圖1所示實施例中,可程式化LDO調節器100配備串列介面112,用於從外部源接收指令,且用於和外部源交換資料。串列介面112能夠為定製的單線、雙線、或三線的串列 介面。可供選擇地,串列介面112能夠是標準的I2C匯流排界面、串列周邊介面(SPI)、微型線串列匯流排界面、通用串列匯流排界面、其他的串列介面、或者它們的一些組合。外部源可以是微控制器、微處理器、電源管理積體電路(PMIC)、系統單晶片(SOC)電路、其他類型的電路、或者其任意組合。串列介面112連接至控制電路110,以從外部源接收和向外部源發送控制資訊130和其他資料132。 In the embodiment shown in FIG. 1, the programmable LDO regulator 100 is provided with a serial interface 112 for receiving instructions from an external source and for exchanging data with an external source. The serial interface 112 can be a custom single-wire, two-wire, or three-wire serial interface. Alternatively, the serial interface 112 can be a standard I 2 C bus interface, a serial peripheral interface (SPI), a microwire serial bus interface, a universal serial bus interface, other serial interfaces, or Some combinations of them. The external source can be a microcontroller, a microprocessor, a power management integrated circuit (PMIC), a system single chip (SOC) circuit, other types of circuits, or any combination thereof. The serial interface 112 is coupled to the control circuit 110 to receive and transmit control information 130 and other data 132 from an external source.
除了經由串列介面112發送的數位信號之外,其他的外部信號可在程式化週期內被應用至LDO調節器電路100,以便提供浮閘MOS器件中的穿隧過程所需要的程式化電壓位準(VPP)。即使當器件不被加電時,也能夠在浮閘上保持藉由穿隧過程被程式化的資訊,且該資訊能夠被擦除或者藉由利用程式化信號被重新程式化,所述程式化信號比如是帶有引發電荷穿隧至浮閘或從浮閘穿隧所需要的電壓位準的信號。在一實現中,經由串列介面112提供包括(VPP)的程式化信號。在另一實現中,能夠使用晶片上的電荷泵(未顯示)在內部生成(VPP)。浮閘MOS器件能夠使用電可擦除的可程式化唯讀記憶體(EEPROM)技術、CMOS技術、Bi-CMOS和其他的MOS技術來實現。 In addition to the digital signals transmitted via the serial interface 112, other external signals can be applied to the LDO regulator circuit 100 during the staging cycle to provide the programmed voltage levels required for the tunneling process in the floating gate MOS device. Quasi (V PP ). Even when the device is not powered, information that is programmed by the tunneling process can be maintained on the floating gate, and the information can be erased or reprogrammed by using a stylized signal, the stylization The signal is, for example, a signal with a voltage level required to induce charge tunneling to or from the floating gate. In an implementation, a stylized signal including (V PP ) is provided via the serial interface 112. In another implementation, a (V PP ) can be generated internally using a charge pump (not shown) on the wafer. Floating gate MOS devices can be implemented using electrically erasable programmable read only memory (EEPROM) technology, CMOS technology, Bi-CMOS, and other MOS technologies.
在一實施例中,可程式化誤差放大器104的各種特徵能夠藉由來自控制電路110的數位控制信號被啟用或禁用。代表性的特徵中的一個是與誤差放大器104中的固定偏置對比的自適應偏置。自適應偏置增加誤差放大器104的靜態電流,增加的電流負載(IL)通過可程式化傳遞器件106,因此 提供了更快的瞬態回應。然而,這樣的一種特徵增加了功率消耗且降低了LDO調節器電路100的DC效率。因為在某些應用中功率消耗和DC效率可能是相當重要的,禁用自適應偏置特徵及將誤差放大器104的靜態電流限制至某個最大值的能力可能對某些低功率應用而言是有用的。這樣一種控制功能能夠使用數位信號來實現,該信號可經由串列介面112程式化,且其藉由控制電路110被應用。 In an embodiment, various features of the programmable error amplifier 104 can be enabled or disabled by a digital control signal from the control circuit 110. One of the representative features is an adaptive bias that is compared to a fixed offset in error amplifier 104. The adaptive bias increases the quiescent current of the error amplifier 104, and the increased current load (I L ) passes through the programmable transfer device 106, thus providing a faster transient response. However, such a feature increases power consumption and reduces the DC efficiency of the LDO regulator circuit 100. Because power consumption and DC efficiency may be significant in some applications, the ability to disable the adaptive biasing feature and limit the quiescent current of the error amplifier 104 to a certain maximum may be useful for certain low power applications. of. Such a control function can be implemented using a digital signal that can be programmed via the serial interface 112 and applied by the control circuit 110.
能夠使用數位控制信號被容易地程式化的誤差放大器104的另一特性是短路保護參數。依賴於其實現,來自控制電路110和/或來自串列介面112的數位控制信號能夠被用來選擇觸發短路保護的負載電流(IL)的位準,關閉傳遞器件106。 Another characteristic of the error amplifier 104 that can be easily programmed using the digital control signal is the short circuit protection parameter. Depending on its implementation, the digital control signal from control circuit 110 and/or from serial interface 112 can be used to select the level of load current (I L ) that triggers the short circuit protection, turning off transfer device 106.
可程式化偏移控制機構還能夠使用數位控制信號實現,以便修正誤差放大器104的DC偏移。此外,誤差放大器104的AC性能能夠使用組態了可程式化回饋電路108的數位控制信號來修正,該頻率補償機構與誤差放大器104共同工作。 The programmable offset control mechanism can also be implemented using a digital control signal to modify the DC offset of the error amplifier 104. Moreover, the AC performance of the error amplifier 104 can be modified using a digital control signal configured with a programmable feedback circuit 108 that operates in conjunction with the error amplifier 104.
在工作中,LDO調節器電路100能夠經由串列介面112接收指令和資料,用於控制LDO調節器電路100的DC和AC性能參數。藉由這種方式,LDO調節器電路100被認為是可數字程式化的。在一些實施例中,可能需要在記憶體中儲存組態參數。控制電路110能夠包括揮發性資料儲存器,比如暫存器、緩存、或者其他揮發性記憶體。在圖2中描繪了控制電路110實施例的一個例子,其包括揮發性的和非揮發性 的兩種暫存器。 In operation, LDO regulator circuit 100 is capable of receiving instructions and data via serial interface 112 for controlling DC and AC performance parameters of LDO regulator circuit 100. In this manner, LDO regulator circuit 100 is considered to be digitally programmable. In some embodiments, it may be desirable to store configuration parameters in memory. Control circuitry 110 can include a volatile data store such as a scratchpad, cache, or other volatile memory. An example of an embodiment of control circuit 110 is depicted in FIG. 2, which includes both volatile and non-volatile Two types of registers.
圖2是LDO調節器電路200的實施例,比如圖1中的LDO調節器電路100的部分原理圖和部分方塊圖,其帶有控制電路110的實施例的擴展圖。在所示實施例中,控制電路110包括:揮發性的組態暫存器202、非揮發性的暫存器204,及控制邏輯206。這種揮發性的和非揮發性的暫存器202和204能夠被用來儲存一或多個數位序列,以便控制可程式化電壓參考電路102、可程式化誤差放大器104、可程式化傳遞器件106,及可程式化回饋電路108。 2 is a partial schematic and partial block diagram of an embodiment of an LDO regulator circuit 200, such as the LDO regulator circuit 100 of FIG. 1, with an expanded view of an embodiment of the control circuit 110. In the illustrated embodiment, control circuit 110 includes a volatile configuration register 202, a non-volatile register 204, and control logic 206. The volatile and non-volatile registers 202 and 204 can be used to store one or more digital sequences to control the programmable voltage reference circuit 102, the programmable error amplifier 104, and the programmable transfer device. 106, and a programmable feedback circuit 108.
在一例子中,控制電路110經由串列介面112接收來自外部源的數位控制序列,且將該數位控制序列儲存至組態暫存器202中。被儲存的數位控制序列組態可程式化電壓參考電路102、可程式化誤差放大器104、可程式化傳遞器件106及可程式化回饋電路108的參數,控制與輸出電壓相關聯的DC和AC參數。一旦使用一或多個數位序列實現了LDO調節器電路200的所需性能,控制邏輯206將組態資料(比如數位序列)儲存至非揮發性的暫存器204中。在有意外的功率損耗的情況下,或者當在關閉事件之後恢復供電時,控制邏輯206能夠將組態資料從非揮發性的暫存器204重新載入至揮發性的組態暫存器202中,以便組態LDO調節器電路100的操作。 In an example, control circuit 110 receives a digital control sequence from an external source via serial interface 112 and stores the digital control sequence in configuration register 202. The stored digital control sequence configures the parameters of the programmable voltage reference circuit 102, the programmable error amplifier 104, the programmable transfer device 106, and the programmable feedback circuit 108 to control the DC and AC parameters associated with the output voltage. . Once the desired performance of the LDO regulator circuit 200 is implemented using one or more digital sequences, the control logic 206 stores configuration data, such as a sequence of digits, into the non-volatile registers 204. Control logic 206 can reload configuration data from non-volatile registers 204 to volatile configuration registers 202 in the event of an unexpected power loss, or when power is restored after a shutdown event. In order to configure the operation of the LDO regulator circuit 100.
輸出電壓及相關聯的AC和DC特徵可使用可程式化回饋電路108進行部分調整。可程式化回饋電路108能夠以各種方法實現。在圖3-5中描繪了可程式化回饋電路108的代表 性實施例的例子。 The output voltage and associated AC and DC characteristics can be partially adjusted using the programmable feedback circuit 108. The programmable feedback circuit 108 can be implemented in a variety of ways. Representatives of the programmable feedback circuit 108 are depicted in Figures 3-5 An example of a sexual embodiment.
圖3是圖1中LDO調節器100的可程式化回饋電路108的實施例的方塊圖。可程式化回饋電路108是負反饋網路,其包括第一阻抗網路(或輸入級)302及第二和第三阻抗網路(或輸出級)304和306。阻抗網路302、304和306中的每一個都經由回饋控制輸入128耦合至控制電路110,所述回饋控制輸入128包括第一、第二、和第三回饋控制輸入322、324和326。第一阻抗網路302包括耦合至LDO調節器電路100的輸出端子114的回饋輸入、用於從控制電路110接收以「FC1[0:m-1]」標註的第一回饋控制信號的回饋控制輸入322、和端子312。第二阻抗網路304包括連接至端子312的輸入、用於從控制電路110接收以「FC2[0:n-1]」標註的第二回饋控制信號的第二回饋控制輸入324、和回饋輸出(VOUTF)314,所述回饋輸出(VOUTF)314連接至圖1中所描繪的誤差放大器104的輸入。第二阻抗網路304還包括端子316,其連接至第三阻抗網路306。第三阻抗網路306包括第三回饋控制輸入326以從控制電路110接收以「FC3[0:p-1]」標註的第三回饋控制信號。此外,第三阻抗網路306連接至電源端子,比如接地端。 3 is a block diagram of an embodiment of a programmable feedback circuit 108 of the LDO regulator 100 of FIG. The programmable feedback circuit 108 is a negative feedback network that includes a first impedance network (or input stage) 302 and second and third impedance networks (or output stages) 304 and 306. Each of the impedance networks 302, 304, and 306 is coupled to the control circuit 110 via a feedback control input 128 that includes first, second, and third feedback control inputs 322, 324, and 326. The first impedance network 302 includes a feedback input coupled to the output terminal 114 of the LDO regulator circuit 100, and feedback control for receiving a first feedback control signal labeled "FC1[0:m-1]" from the control circuit 110. Input 322, and terminal 312. The second impedance network 304 includes an input coupled to terminal 312, a second feedback control input 324 for receiving a second feedback control signal labeled "FC2[0:n-1]" from control circuit 110, and a feedback output (V OUTF ) 314, the feedback output (V OUTF ) 314 is coupled to the input of the error amplifier 104 depicted in FIG. The second impedance network 304 also includes a terminal 316 that is coupled to the third impedance network 306. The third impedance network 306 includes a third feedback control input 326 to receive a third feedback control signal labeled "FC3[0:p-1]" from the control circuit 110. Additionally, the third impedance network 306 is coupled to a power supply terminal, such as a ground terminal.
在工作中,控制電路110適合於有選擇地組態第一、第二、和第三阻抗網路302、304、和306中的至少一者,以便提供所需的阻抗,由此修正可程式化回饋電路108的傳遞函數T v (s)。第一阻抗網路302的一種可能的實施例的例子描繪在下面的圖4中。第一阻抗網路302的另一種可能的實施例 的例子和第二和第三阻抗網路304和306的可能實施例的例子被描繪在下面的圖5中。 In operation, control circuit 110 is adapted to selectively configure at least one of first, second, and third impedance networks 302, 304, and 306 to provide a desired impedance, thereby modifying the programmable The transfer function T v (s) of the feedback circuit 108. An example of one possible embodiment of the first impedance network 302 is depicted in Figure 4 below. An example of another possible embodiment of the first impedance network 302 and an example of a possible embodiment of the second and third impedance networks 304 and 306 are depicted in Figure 5 below.
圖4是可程式化回饋電路108中第一阻抗網路400的第一實施例比如圖3中所描繪的第一阻抗網路302的部分原理圖和部分方塊圖。第一阻抗網路400包括連接至電壓輸出114的回饋輸入,且包括端子312。第一阻抗網路400還包括第一阻抗402,該第一阻抗402包括連接至端子312的第一端子,及經由回饋控制開關412連接至回饋輸入的第二端子。第一阻抗網路400還包括第二阻抗404,該第二阻抗404包括連接至端子312的第一端子,及經由回饋控制開關414連接至回饋輸入的第二端子。此外,第一阻抗網路400包括第三阻抗406,該第三阻抗406包括連接至端子312的第一端子,及經由回饋控制開關416連接至回饋輸入的第二端子。 4 is a partial schematic and partial block diagram of a first embodiment of a first impedance network 400 in the programmable feedback circuit 108, such as the first impedance network 302 depicted in FIG. The first impedance network 400 includes a feedback input coupled to the voltage output 114 and includes a terminal 312. The first impedance network 400 also includes a first impedance 402 that includes a first terminal coupled to terminal 312 and a second terminal coupled to the feedback input via a feedback control switch 412. The first impedance network 400 also includes a second impedance 404 that includes a first terminal that is coupled to the terminal 312 and a second terminal that is coupled to the feedback input via a feedback control switch 414. Additionally, the first impedance network 400 includes a third impedance 406 that includes a first terminal coupled to terminal 312 and a second terminal coupled to the feedback input via feedback control switch 416.
在工作中,控制電路110有選擇地啟動開關412、414、和416中的一或多個,以便有選擇地平行連接阻抗402、404、和406中相應的一或多個,以便產生所需的阻抗。雖然顯示了三個阻抗402、404、和406及相關聯的開關412、414、和416,應當理解的是,任意數量的阻抗及其相應聯的開關可以被用來獲得所需阻抗。此外,應當理解的是,阻抗402、404、和406中的每一個能夠包括電阻器、電容器、或者二者兼有,且來自控制器110的控制信號能夠被用來有選擇地平行連接阻抗402、404、和406中的一或多個,以產生所需的阻抗。 In operation, control circuit 110 selectively activates one or more of switches 412, 414, and 416 to selectively connect one or more of impedances 402, 404, and 406 in parallel to produce the desired Impedance. While three impedances 402, 404, and 406 and associated switches 412, 414, and 416 are shown, it should be understood that any number of impedances and their associated switches can be used to achieve the desired impedance. Moreover, it should be understood that each of the impedances 402, 404, and 406 can include a resistor, a capacitor, or both, and control signals from the controller 110 can be used to selectively connect the impedances 402 in parallel. One or more of 404, 406, and 406 to produce the desired impedance.
圖5是第一阻抗網路501的第二實施例比如第一阻抗網路 302的方塊圖,及圖3中所描繪的可程式化回饋電路108的第二阻抗網路304和第三阻抗網路306的實施例的方塊圖。第一阻抗網路501包括連接至圖1中所描繪的LDO調節器電路100的電壓輸出114的回饋輸入,且包括連接至第二阻抗網路304中的回饋輸入的端子312。第二阻抗網路304包括回饋輸出314和第二端子316。第三阻抗網路306包括連接至第二端子316的回饋輸入和連接至接地端的第二端子。 Figure 5 is a second embodiment of a first impedance network 501 such as a first impedance network A block diagram of 302, and a block diagram of an embodiment of the second impedance network 304 and the third impedance network 306 of the programmable feedback circuit 108 depicted in FIG. The first impedance network 501 includes a feedback input coupled to the voltage output 114 of the LDO regulator circuit 100 depicted in FIG. 1 and includes a terminal 312 coupled to a feedback input in the second impedance network 304. The second impedance network 304 includes a feedback output 314 and a second terminal 316. The third impedance network 306 includes a feedback input coupled to the second terminal 316 and a second terminal coupled to the ground.
在圖5所示的實施例中,第一阻抗網路501包括電阻器502、504、506、508、510、512、514、和516,電容器518、520、522、和524,及開關526、528、530、532、534、536、538、和540。電阻器502包括連接至電壓輸出114的第一端子和連接至節點503的第二端子。電阻器504、506、508、510、512、和514串聯連接在節點503和端子312之間。電容器518與電阻器504平行連接。電容器520與電阻器506、508、和510平行連接。電容器522與電阻器512和514平行連接。電容器524與電阻器516平行連接。 In the embodiment shown in FIG. 5, the first impedance network 501 includes resistors 502, 504, 506, 508, 510, 512, 514, and 516, capacitors 518, 520, 522, and 524, and a switch 526, 528, 530, 532, 534, 536, 538, and 540. Resistor 502 includes a first terminal connected to voltage output 114 and a second terminal connected to node 503. Resistors 504, 506, 508, 510, 512, and 514 are connected in series between node 503 and terminal 312. Capacitor 518 is connected in parallel with resistor 504. Capacitor 520 is connected in parallel with resistors 506, 508, and 510. Capacitor 522 is connected in parallel with resistors 512 and 514. Capacitor 524 is connected in parallel with resistor 516.
開關526、528、530、532、534、536、和538中的每一個包括連接至節點503的第一端子、連接至控制電路110的控制端子及第二端子。開關526的第二端子連接至電阻器504的第二端子。開關528的第二端子連接至電阻器506的第一端子,其與電阻器504和一或多個額外的電阻器和電容器(未顯示)平行。開關530的第二端子連接至在電阻器506和508之間的節點。開關532的第二端子連接至在電阻器508和510之間的節點。開關534的第二端子連接至電阻器510, 且與電阻器504、506、508、510和任何介於其間的電阻器平行,及與電容器518、520和任何介於其間的電容器平行。開關536的第二端子包括連接至節點503的第一端子,及連接至電阻器512的第二端子。開關538包括連接至節點503的第一端子、和連接至在電阻器512與514之間的節點的第二端子。開關540包括連接至節點503的第一端子、和連接至在電阻器514與516之間的節點的第二端子。 Each of the switches 526, 528, 530, 532, 534, 536, and 538 includes a first terminal connected to the node 503, a control terminal connected to the control circuit 110, and a second terminal. A second terminal of switch 526 is coupled to a second terminal of resistor 504. The second terminal of switch 528 is coupled to a first terminal of resistor 506 that is parallel to resistor 504 and one or more additional resistors and capacitors (not shown). The second terminal of switch 530 is coupled to a node between resistors 506 and 508. The second terminal of switch 532 is coupled to a node between resistors 508 and 510. A second terminal of the switch 534 is coupled to the resistor 510, And parallel to resistors 504, 506, 508, 510 and any intervening resistors, and parallel to capacitors 518, 520 and any intervening capacitors. The second terminal of switch 536 includes a first terminal connected to node 503 and a second terminal connected to resistor 512. Switch 538 includes a first terminal connected to node 503 and a second terminal connected to a node between resistors 512 and 514. Switch 540 includes a first terminal connected to node 503 and a second terminal connected to a node between resistors 514 and 516.
在工作中,開關526、528、530、532、534、536、538、和540中的每一個經組態以從控制電路110接收控制信號,以有選擇地繞過電阻器504、506、508、510、512、和514及電容器518、520、和522中的一或多個,以實現所需的阻抗。 In operation, each of the switches 526, 528, 530, 532, 534, 536, 538, and 540 is configured to receive a control signal from the control circuit 110 to selectively bypass the resistors 504, 506, 508 One or more of 510, 512, and 514 and capacitors 518, 520, and 522 to achieve the desired impedance.
第二阻抗網路304包括連接至端子312的輸入、連接至誤差放大器104的輸入的回饋輸出314,及連接至第三阻抗網路306的輸入的端子316。第二阻抗網路304還包括多個阻抗542、544、546、和548(及可選擇地包括其他類似的阻抗,這未在圖5中表現),這些阻抗串聯連接在端子312與端子316之間。另外,第二阻抗網路304包括多個開關550、552、554、556、558、和560(及可選擇地包括其他類似的開關,這未在圖5中表現)。多個開關550、552、554、556、和558中的每一個包括連接至回饋輸出314的第一電極、連接至控制電路110的控制輸入,及第二電極。開關550包括連接至在端子312與阻抗542之間的節點的第二電極。開關552和554包括連接至在阻抗542與阻抗544之間的不同節點的第 二電極。開關556包括連接至在阻抗544與546之間的節點的第二電極。開關558和560包括連接至在阻抗546和548之間的不同節點的第二電極。開關562包括連接至在阻抗548和端子316之間的節點的第二電極。 The second impedance network 304 includes an input coupled to terminal 312, a feedback output 314 coupled to the input of error amplifier 104, and a terminal 316 coupled to the input of third impedance network 306. The second impedance network 304 also includes a plurality of impedances 542, 544, 546, and 548 (and optionally other similar impedances, which are not represented in FIG. 5) that are connected in series at terminal 312 and terminal 316. between. Additionally, the second impedance network 304 includes a plurality of switches 550, 552, 554, 556, 558, and 560 (and optionally other similar switches, which are not shown in FIG. 5). Each of the plurality of switches 550, 552, 554, 556, and 558 includes a first electrode coupled to the feedback output 314, a control input coupled to the control circuit 110, and a second electrode. Switch 550 includes a second electrode that is coupled to a node between terminal 312 and impedance 542. Switches 552 and 554 include a connection to a different node between impedance 542 and impedance 544. Two electrodes. Switch 556 includes a second electrode that is coupled to a node between impedances 544 and 546. Switches 558 and 560 include a second electrode that is coupled to a different node between impedances 546 and 548. Switch 562 includes a second electrode that is coupled to a node between impedance 548 and terminal 316.
在工作中,控制電路110將一或多個第二回饋控制信號應用至多個開關550、552、554、556、558、560、和562,以便有選擇地調整在端子312和316之間的阻抗及在端子312和316與回饋輸出314之間的阻抗。 In operation, control circuit 110 applies one or more second feedback control signals to a plurality of switches 550, 552, 554, 556, 558, 560, and 562 to selectively adjust the impedance between terminals 312 and 316. And the impedance between terminals 312 and 316 and feedback output 314.
第三阻抗網路306包括連接至端子316的輸入和連接至接地端的輸出。第三阻抗網路306包括多個阻抗570、572、574、和576,這些阻抗串聯連接在端子316與接地端之間。第三阻抗網路306還包括多個開關578、580、582、和584,這些開關中的每一個都平行地與多個阻抗570、572、574、和576中相應的一個連接。多個開關578、580、582、和584中的每一個都響應於控制電路110(在圖1有所描繪),以便有選擇地繞過這些阻抗中相應的一或多個,以控制第三阻抗網路306的有效阻抗。在工作中,控制電路110經組態以對第一、第二、和第三阻抗網路501、304、和306中的每一個數位程式化,以便提供所需的回饋阻抗,其能夠被用來數位微調LDO調節器100的輸出電壓。 The third impedance network 306 includes an input connected to terminal 316 and an output connected to ground. The third impedance network 306 includes a plurality of impedances 570, 572, 574, and 576 that are connected in series between the terminal 316 and the ground. The third impedance network 306 also includes a plurality of switches 578, 580, 582, and 584, each of which is coupled in parallel with a respective one of the plurality of impedances 570, 572, 574, and 576. Each of the plurality of switches 578, 580, 582, and 584 is responsive to control circuitry 110 (depicted in FIG. 1) to selectively bypass a respective one or more of the impedances to control a third The effective impedance of impedance network 306. In operation, control circuit 110 is configured to program each of the first, second, and third impedance networks 501, 304, and 306 to provide the desired feedback impedance that can be used The output voltage of the LDO regulator 100 is trimmed digitally.
以非揮發性的MOS技術生產150mA LDO調節器的數位微調的實現。電路具有與基於保險熔化微調技術的常規LDO調節器相類似的晶粒尺寸,即,小得足以裝入小外形的電晶體封裝,比如SC-70或其他小外形的封裝中。在這樣 一種具有八個用於微調輸出電壓(VOUT)的控制位元的實現中,LDO調節器的特徵在於用於組態第一阻抗網路501(或者反饋迴路的輸入級)的可程式化位元,及用於為得至高解析度調節而組態第二和第三阻抗網路304和306(或者反饋迴路的輸出級)的可程式化位元。正如之前所討論的,LDO調節器電路100包括用於儲存控制位元的非揮發性暫存器(比如圖2中的非揮發性暫存器204),其配用來組態可程式化回饋電路108以便實現目標輸出電壓值。 The implementation of digital trimming of 150mA LDO regulators with non-volatile MOS technology. The circuit has a grain size similar to that of a conventional LDO regulator based on fuse melting trimming techniques, ie, small enough to fit into a small outline transistor package, such as an SC-70 or other small form factor package. In such an implementation having eight control bits for fine-tuning the output voltage (V OUT ), the LDO regulator is characterized by a programmable program for configuring the first impedance network 501 (or the input stage of the feedback loop) The bits, and the programmable bits used to configure the second and third impedance networks 304 and 306 (or the output stage of the feedback loop) for high resolution adjustment. As previously discussed, the LDO regulator circuit 100 includes a non-volatile register for storing control bits (such as the non-volatile register 204 of FIG. 2) configured to configure programmable feedback. Circuit 108 is to achieve a target output voltage value.
在特定的例子中,藉由控制阻抗網路501、304、和306,LDO調節器的DC輸出電壓能夠以10mV的電壓步進補償進行精細調整。300mV的輸出電壓(VOUT)的初始範圍能夠在數位微調之後降低至100mV。此外,大部分電路能夠以10mV的增量被調整至以2.5V為中心的20mV範圍內的目標電壓。在圖6和7中分別表示了微調之前和之後值的分佈。 In a particular example, by controlling the impedance networks 501, 304, and 306, the DC output voltage of the LDO regulator can be fine-tuned with a step compensation of 10 mV. The initial range of the 300 mV output voltage (V OUT ) can be reduced to 100 mV after digital trimming. In addition, most of the circuits can be adjusted to a target voltage in the range of 20 mV centered at 2.5 V in increments of 10 mV. The distribution of values before and after fine tuning is shown in Figures 6 and 7, respectively.
圖6是描繪了在使用諸如圖1中所描繪的LDO調節器電路100的LDO調節器電路進行微調之前的大量被測試部分的輸出電壓的圖式600。在微調之前,圖式600指示相對於大約2.5V的目標電壓,輸出電壓(VOUT)具有的值在從大約2.35V至大約2.64V的範圍上分佈。 6 is a diagram 600 depicting the output voltage of a large number of tested portions prior to trimming using an LDO regulator circuit such as the LDO regulator circuit 100 depicted in FIG. Prior to fine tuning, graph 600 indicates that the output voltage ( VOUT ) has a value ranging from about 2.35V to about 2.64V with respect to a target voltage of about 2.5V.
圖7是描繪了在使用諸如圖1中所描繪的LDO調節器電路100的LDO調節器電路進行微調之後的大量被測試部分的輸出電壓的圖式700。在被示出的圖式700中,關於被測試部分的絕大多數輸出電壓在以2.5V目標電壓為中心的20mV範圍內。 7 is a diagram 700 depicting the output voltage of a large number of tested portions after fine tuning using an LDO regulator circuit such as the LDO regulator circuit 100 depicted in FIG. In the illustrated diagram 700, most of the output voltage with respect to the portion being tested is in the range of 20 mV centered at a target voltage of 2.5V.
與金屬熔化保險絲技術相比較,數位微調機構提供了在晶圓級上及在裝配之後再根據需要多次靈活程式化的優勢。這種程式化能力消除了在封裝之後最終可能出現的偏移,且提供了在設定電路最終組態時的靈活性。 Compared to metal-fused fuse technology, the digital trimming mechanism offers the advantage of multiple flexible programming at the wafer level and after assembly as needed. This stylization capability eliminates the potential shifts that may occur after packaging and provides flexibility in setting the final configuration of the circuit.
雖然在生產測試流程中輸出位準的精確微調是電壓調節器的數位程式化能力的最重要應用之一,但是對於有效電源管理而言用戶模式的程式化能力也很有用。例如,可攜式無線電收發機能夠使用各種輸出功率位準用於近距離或遠距離傳遞,由此緩和在功率消耗與通信品質之間的折衷。即使當電池電源放電至其額定輸出值以下時,假設可攜式應用支援低功率低電壓工作的話,藉由將LDO調節器100調整至較低的輸出位準,電池電源仍然能夠在該可攜式應用中使用。 While the precise fine-tuning of the output level during the production test flow is one of the most important applications of the voltage regulator's digital stylization capabilities, the stylization capabilities of the user mode are also useful for efficient power management. For example, portable transceivers can use a variety of output power levels for near or long range transmission, thereby mitigating the trade-off between power consumption and communication quality. Even when the battery power supply is discharged below its rated output value, assuming that the portable application supports low-power, low-voltage operation, the battery power can still be carried in the port by adjusting the LDO regulator 100 to a lower output level. Used in applications.
可程式化回饋電路的數位微調還提供了用於調整LDO的頻率補償機構的裝置。因此,設想一個簡化的模式,其中第一阻抗網路等效於包含了並聯連接的電阻器RC和電容器CC的阻抗,這些部件引入了有利於LDO系統的全局穩定性的零點和極點。零點與RC和CC的乘積相關,而極點與CC和正如在回饋網路的節點312處的等效阻抗相關。當第一阻抗被程式化,阻抗網路的組態發生改變,由此改變了等效模型中的RC和CC的值,從而調整了由RC和CC引入的零點和極點的位置,且修正了LDO的AC活動。 The digital trimming of the programmable feedback circuit also provides means for adjusting the frequency compensation mechanism of the LDO. Therefore, a simplified mode is envisioned in which the first impedance network is equivalent to the impedance of the resistor R C and the capacitor C C that are connected in parallel, and these components introduce zeros and poles that contribute to the global stability of the LDO system. The zero is related to the product of R C and C C , and the pole is related to C C and the equivalent impedance at node 312 of the feedback network. When the first impedance is programmed, the configuration of the impedance network changes, thereby changing the values of R C and C C in the equivalent model, thereby adjusting the position of the zero and pole introduced by R C and C C And corrected the AC activity of the LDO.
除了對可程式化回饋電路108進行程式化之外,可程式化電壓參考電路102也是可程式化的。特別地,可程式化電壓 參考電路102能夠提供如下面在圖8中所描繪的電壓模式帶隙參考,或者如下面在圖11中所描繪的電流模式帶隙參考。 In addition to programming the programmable feedback circuit 108, the programmable voltage reference circuit 102 is also programmable. In particular, the programmable voltage Reference circuit 102 can provide a voltage mode bandgap reference as depicted in Figure 8, or a current mode bandgap reference as depicted in Figure 11 below.
圖8是電壓模式帶隙參考電路800的實施例的原理圖,其為圖1中所描繪的可程式化電壓參考電路102的一種可能的實現。該電壓模式帶隙參考電路包括PMOS電晶體802,其具有連接至電源端子的源電極、閘電極,及連接至參考輸出103的汲電極,以便提供帶隙參考電壓(VBGV)。此外,電壓模式帶隙參考電路包括放大器804,其具有連接至電阻器806的第一端子的第一輸入,所述電阻器806具有連接至參考輸出103的第二端子。電阻器806的第一端子還連接至電阻器808的第一端子,該電阻器808具有連接至PNP雙極面結型電晶體810中的發射電極的第二端子。電晶體810包括連接至接地端的基電極和收集電極。 8 is a schematic diagram of an embodiment of a voltage mode bandgap reference circuit 800, which is one possible implementation of the programmable voltage reference circuit 102 depicted in FIG. The voltage mode bandgap reference circuit includes a PMOS transistor 802 having a source electrode connected to a power supply terminal, a gate electrode, and a drain electrode connected to the reference output 103 to provide a bandgap reference voltage (V BGV ). In addition, the voltage mode bandgap reference circuit includes an amplifier 804 having a first input coupled to a first terminal of a resistor 806 having a second terminal coupled to a reference output 103. The first terminal of resistor 806 is also coupled to a first terminal of resistor 808 having a second terminal coupled to a transmit electrode in PNP bipolar junction transistor 810. The transistor 810 includes a base electrode and a collector electrode connected to the ground.
放大器804還包括連接至電阻器812的第一端子的第二輸入,所述電阻器812具有連接至參考輸出103的第二端子。電阻器812的第一端子連接至PNP雙極面結型電晶體814的發射電極。電晶體814包括連接至接地端的基電極和收集電極。 The amplifier 804 also includes a second input coupled to a first terminal of the resistor 812 having a second terminal coupled to the reference output 103. A first terminal of resistor 812 is coupled to the emitter electrode of PNP bipolar junction transistor 814. The transistor 814 includes a base electrode and a collector electrode connected to the ground.
在所示實施例中,參考電壓(VBGV)的溫度係數能夠使用來自控制電路110的數位信號進行微調,以選擇關於電阻器的適當比例。特別是,參考輸出103上的帶隙參考電壓(VBGV)與電晶體814的基極-射極電壓(VEB)加上一溫度分量相關,正如下面在等式1中所指示的。 In the illustrated embodiment, the temperature coefficient of the reference voltage (V BGV ) can be fine tuned using a digital signal from control circuit 110 to select an appropriate ratio for the resistor. In particular, the bandgap reference voltage (V BGV ) on the reference output 103 is related to the base-emitter voltage (V EB ) of the transistor 814 plus a temperature component, as indicated below in Equation 1.
在等式1中,變數(VT)表示電路的熱電壓。帶隙電壓(VBGV)與該熱電壓(VT)和電阻器的比例相關。帶隙電壓(VBGV)可被選擇性地確定,這基於電晶體810的基極-射極電壓(VEB)加上一溫度分量,正如下面在等式2中所指示的:
對等式1的兩側求導,從而得到下面的等式3,該等式描述了偏導數。 The two sides of Equation 1 are derived to obtain Equation 3 below, which describes the partial derivative.
係數表示了藉由PNP電晶體814的射極-基極正向偏置結的電壓降的熱變化。因此,等式3指示了帶隙電壓參考(VBGV)的熱補償能夠藉由修改電阻器的比例及雙極型電晶體的射極區域的比例來進行調整。設想在開氏溫度T=300度時,有的典型熱變化及有的熱變化,則能夠選擇(或程式化)電阻器806、808、和812的電阻值和射極區域的比例n,使得作為溫度函數的帶隙電壓的偏導降低至近似為零,正如下面在等式4中所顯示的。 coefficient The thermal variation of the voltage drop across the emitter-base forward bias junction of PNP transistor 814 is shown. Therefore, Equation 3 indicates that the thermal compensation of the bandgap voltage reference (V BGV ) can be adjusted by modifying the ratio of the resistor and the ratio of the emitter region of the bipolar transistor. Imagine that when the Kelvin temperature is T=300 degrees, there is Typical thermal changes and The thermal change can then select (or program) the resistance value of the resistors 806, 808, and 812 and the ratio n of the emitter region such that the bias of the bandgap voltage as a function of temperature is reduced to approximately zero, as follows Shown in Equation 4.
因此,將可程式化電壓參考電路102實現為如圖8中所描繪的帶隙電壓參考電路,這實現了第一階熱補償。 Thus, the programmable voltage reference circuit 102 is implemented as a bandgap voltage reference circuit as depicted in Figure 8, which achieves first order thermal compensation.
雖然電阻器的電阻能夠在製造期間被調整或固定,但是其他的技術能使用可程式化的電阻性網路或可程式化浮閘電晶體,以對可程式化電壓調節器電路的阻抗進行程式化。在圖9中描繪了可程式化電阻性網路的一種可能的例子,其可用於圖1中的可程式化電壓參考電路102。 Although the resistance of the resistor can be adjusted or fixed during manufacturing, other techniques can use a programmable resistive network or a programmable floating gate transistor to program the impedance of the programmable voltage regulator circuit. Chemical. One possible example of a programmable resistive network is depicted in FIG. 9, which can be used with the programmable voltage reference circuit 102 of FIG.
圖9是電阻性網路900的實施例的原理圖,可使用所述電阻性網路900來代替圖8中的電壓模式帶隙參考電路內的電阻器812。電阻性網路900包括串聯連接的多個電阻器902、904、906、和908。此外,電阻性網路900包括多個開關910、912、914、916、918、920、和922,這些開關中的每一個具有連接在兩個所述電阻器之間的第一電流電極,及連接至參考輸出103的第二電流電極。多個開關910、912、914、916、918、920、和922中的每一個可獨立地藉由控制電路110進行組態,以便有選擇地將參考輸出103經由多個開關910、912、914、916、918、920、和922中的至少一者連接至電阻器902、904、906、和908之間的互連節點,因此實現了一種可程式化機制,用於調整參考電壓(VREF)的隨溫度的變化。 9 is a schematic diagram of an embodiment of a resistive network 900 that can be used in place of resistor 812 in the voltage mode bandgap reference circuit of FIG. Resistive network 900 includes a plurality of resistors 902, 904, 906, and 908 connected in series. In addition, the resistive network 900 includes a plurality of switches 910, 912, 914, 916, 918, 920, and 922, each of which has a first current electrode coupled between the two of the resistors, and Connected to the second current electrode of the reference output 103. Each of the plurality of switches 910, 912, 914, 916, 918, 920, and 922 can be independently configured by the control circuit 110 to selectively pass the reference output 103 via the plurality of switches 910, 912, 914 At least one of 916, 918, 920, and 922 is coupled to the interconnect node between resistors 902, 904, 906, and 908, thus implementing a programmable mechanism for adjusting the reference voltage (V REF ) as a function of temperature.
一般來說,當參考電壓的溫度係數為零時,在工作溫度範圍的中心選擇補償溫度TC,以便最小化在所有實際溫度 上的變化。圖10中示出了參考電壓熱補償的一個例子,其顯示了由電阻性網路900提供的第一階熱補償在不同溫度和不同參考電壓下的工作。 In general, when the temperature coefficient of the reference voltage is zero, the compensation temperature T C is selected at the center of the operating temperature range in order to minimize variations in all actual temperatures. An example of reference voltage thermal compensation is shown in FIG. 10, which shows the operation of the first order thermal compensation provided by resistive network 900 at different temperatures and different reference voltages.
圖10是描繪了關於圖8中電壓模式帶隙參考電路不同值的參考電壓的熱補償的圖式1000。圖式1000顯示了第一條線1002,其指示了在近似-40攝氏度時參考電壓的第一階補償。圖式1000還描繪了第二條線1004,其指示了在近似40攝氏度時參考電壓的第一階補償。線1006指示了在近似120攝氏度時參考電壓的第一階補償。正如圖10中所描繪的,藉由對圖9中所描繪的電阻性網路進行程式化,能夠調整熱補償,使得可程式化電壓參考電路102產生一參考電壓,該參考電壓具有所需的熱係數,且至少在第一階中關於所需的工作參數被補償。 10 is a diagram 1000 depicting thermal compensation of reference voltages for different values of the voltage mode bandgap reference circuit of FIG. Graph 1000 shows a first line 1002 indicating a first order compensation of the reference voltage at approximately -40 degrees Celsius. The equation 1000 also depicts a second line 1004 indicating a first order compensation of the reference voltage at approximately 40 degrees Celsius. Line 1006 indicates the first order compensation of the reference voltage at approximately 120 degrees Celsius. As depicted in FIG. 10, thermal compensation can be adjusted by programming the resistive network depicted in FIG. 9, such that the programmable voltage reference circuit 102 produces a reference voltage having the desired voltage. The thermal coefficient, and at least in the first order, is compensated for the required operating parameters.
雖然在圖8中描繪的可程式化電壓參考電路102的實施例提供了電壓模式帶隙參考,但是有時可能需要將可程式化電壓參考電路102實現為電流模式帶隙參考。電流模式帶隙參考結構能夠在比電壓模式結構所需要的電壓供應位準更低的電壓供應位準上維持功能特性,藉由在電阻器上提供參考電流來方便地產生低位準的參考電壓。類似的數位微調技術能夠被應用於調整由電流模式帶隙參考所生成的參考電壓的熱係數。在圖11中描繪了可程式化電壓參考電路102的這樣一種電流模式帶隙參考實現的一個可能的例子。 Although the embodiment of the programmable voltage reference circuit 102 depicted in FIG. 8 provides a voltage mode bandgap reference, it may sometimes be desirable to implement the programmable voltage reference circuit 102 as a current mode bandgap reference. The current mode bandgap reference structure maintains functional characteristics at a lower voltage supply level than the voltage supply level required for the voltage mode structure, and conveniently produces a low level reference voltage by providing a reference current across the resistor. A similar digital trimming technique can be applied to adjust the thermal coefficient of the reference voltage generated by the current mode bandgap reference. One possible example of such a current mode bandgap reference implementation of the programmable voltage reference circuit 102 is depicted in FIG.
圖11是電流模式電壓參考電路1100的實施例的原理圖,其為圖1中所描繪的可程式化電壓參考電路102的另一種可 能的實現。電流模式參考電路1100包括PMOS電晶體1102、1104、和1106,它們具有連接至電壓供應端子(VDD)的共用的源電極,且具有共用的閘電極。PMOS電晶體1102的汲電極連接至放大器804的第一輸入,且經由電阻器1110且經由與PNP電晶體814串聯的電阻器1112連接至接地端。PMOS電晶體1104的汲電極連接至放大器804的第二輸入,且經由電阻器1118且經由PNP電晶體810連接至接地端。PMOS電晶體1106的汲電極連接至參考輸出103,且經由電阻器1120連接至接地端。 11 is a schematic diagram of an embodiment of a current mode voltage reference circuit 1100, which is another possible implementation of the programmable voltage reference circuit 102 depicted in FIG. The current mode reference circuit 1100 includes PMOS transistors 1102, 1104, and 1106 having a common source electrode connected to a voltage supply terminal (V DD ) and having a common gate electrode. The drain electrode of PMOS transistor 1102 is coupled to a first input of amplifier 804 and is coupled to ground via resistor 1110 and via resistor 1112 in series with PNP transistor 814. The drain electrode of PMOS transistor 1104 is coupled to the second input of amplifier 804 and is coupled to ground via resistor 1118 and via PNP transistor 810. The drain electrode of the PMOS transistor 1106 is connected to the reference output 103 and is connected to the ground via a resistor 1120.
在工作中,當PMOS電晶體1102的汲電極上的第一電流(I1)等於PMOS電晶體1104的汲電極上的第二電流(I2)時,且當電阻器1110與1118大致相等時,由源電流(I3)在電阻器1120上產生的帶隙參考電壓(VBGI)能夠根據下面的等式5來表達。 In operation, when the first current (I 1 ) on the germanium electrode of the PMOS transistor 1102 is equal to the second current (I 2 ) on the germanium electrode of the PMOS transistor 1104, and when the resistors 1110 and 1118 are substantially equal The bandgap reference voltage (V BGI ) generated by the source current (I 3 ) on the resistor 1120 can be expressed according to Equation 5 below.
此外,對等式5的兩側求導顯示實現了如方程6中所示的第一階溫度補償。 Furthermore, the two-sided derivative display of Equation 5 achieves the first-order temperature compensation as shown in Equation 6.
在可供選擇的實施例中,額外的電阻器被提供至放大器 804的輸入與PMOS電晶體1102和1104的汲極之間。在一個例子中,額外的電阻器可以是阻抗網路的一部分,其回應來自控制電路10的控制信號,以提供可調整的阻抗。另外,電阻器1110、1112、1118、和1120(或者任何其他的阻抗,未顯示)中的任何一些或全部可以被實現為可開關的阻抗網路。 In an alternative embodiment, an additional resistor is provided to the amplifier The input of 804 is between the drains of PMOS transistors 1102 and 1104. In one example, the additional resistor can be part of an impedance network that responds to control signals from control circuit 10 to provide an adjustable impedance. Additionally, any or all of resistors 1110, 1112, 1118, and 1120 (or any other impedance, not shown) may be implemented as a switchable impedance network.
在一些情況中,可能需要提供快速啟動選擇,用於快速產生參考電壓(VREF)。特別地,藉由將電容器放至VREF輸出上,有時電容器可以被用來降低輸出雜訊。在這樣一種情況中,電容器應當被快速充電,以便為快速啟動選擇作準備。然而,在低功率環境中,優選低電流用於操作電壓參考,且增加在參考電路的輸出上提供的電流,這能夠導致超過最大允許電流消耗。還有可能提供這種快速啟動功能而不改變電流模式參考的偏置電流。這樣一個電路的例子在下面關於圖12進行了描述。 In some cases, it may be desirable to provide a fast start selection for quickly generating a reference voltage (V REF ). In particular, by placing a capacitor on the V REF output, sometimes a capacitor can be used to reduce output noise. In such a case, the capacitor should be quickly charged to prepare for a quick start selection. However, in low power environments, low current is preferred for operating the voltage reference and increasing the current provided at the output of the reference circuit, which can result in exceeding the maximum allowable current draw. It is also possible to provide this fast start function without changing the bias current of the current mode reference. An example of such a circuit is described below with respect to FIG.
圖12是電流模式電壓參考電路1200的第二實施例的原理圖,其為圖1中所描繪的可程式化電壓參考電路102的另一個可能實現。除了PMOS電晶體1106和電阻器1120被省略之外,電路1200類似於圖11中的電路1100。電路1200提供了快速的開啟時間和被增加的輸出電流能力這兩者。 12 is a schematic diagram of a second embodiment of current mode voltage reference circuit 1200, which is another possible implementation of programmable voltage reference circuit 102 depicted in FIG. Circuit 1200 is similar to circuit 1100 in FIG. 11 except that PMOS transistor 1106 and resistor 1120 are omitted. Circuit 1200 provides both a fast turn-on time and an increased output current capability.
電路1200包括PMOS電晶體1202和1204,它們具有共用源極和閘極,其相應地連接至PMOS電晶體1104的源極和閘極。電路1200還包括放大器1206,其具有連接至電晶體1202的汲極的正輸入、放大器輸出103,及連接至該放大器輸出 103的負輸入。電晶體1204包括連接至放大器輸出103且連接至電阻器1210的第一端子的汲極,所述電阻器1210具有第二端子。電路1200還包括電阻器1208,其具有連接至放大器1206正輸入的第一端子、和連接至電阻器1210的第二端子及連接至電阻器1212的第一端子的第二端子,所述電阻器1212具有連接至接地端的第二端子。電阻器1208的值或多或少地小於電阻器1210的值,使得橫跨電阻器1208兩端的工作電壓加上放大器1206的輸入電壓偏移小於橫跨電阻器1210兩端的工作電壓。在這個例子中,工作電壓是加電之後的穩態電壓。在這個例子中,電阻器1212具有遠低於電阻器1208和1210的阻抗。特別地,電阻器1212的阻抗僅僅是電阻器1208和1210的阻抗的一部分。此外,放大器1206提供電流,但不會沈降電流。 Circuit 1200 includes PMOS transistors 1202 and 1204 having a common source and gate that are coupled to the source and gate of PMOS transistor 1104, respectively. The circuit 1200 also includes an amplifier 1206 having a positive input coupled to the drain of the transistor 1202, an amplifier output 103, and a connection to the amplifier output. Negative input of 103. The transistor 1204 includes a drain connected to the amplifier output 103 and to the first terminal of the resistor 1210, the resistor 1210 having a second terminal. The circuit 1200 also includes a resistor 1208 having a first terminal connected to the positive input of the amplifier 1206, and a second terminal connected to the resistor 1210 and a second terminal connected to the first terminal of the resistor 1212, the resistor The 1212 has a second terminal connected to the ground. The value of resistor 1208 is more or less less than the value of resistor 1210 such that the operating voltage across resistor 1208 plus the input voltage offset of amplifier 1206 is less than the operating voltage across resistor 1210. In this example, the operating voltage is the steady state voltage after power up. In this example, resistor 1212 has an impedance that is much lower than resistors 1208 and 1210. In particular, the impedance of resistor 1212 is only a fraction of the impedance of resistors 1208 and 1210. In addition, amplifier 1206 provides current but does not sink current.
相比於電路1100,電路1200在輸出級上具有兩條電流支路,其對應於電晶體1202和1204。基於電晶體1202和1204相對於彼此及相對電晶體1102和1104的尺寸的確定,流過電晶體1202和1204的電流是可控制的。操作放大器1206驅動放大器輸出103上的電壓以便提供快速啟動選擇。一旦在放大器輸出103上的參考電壓(VBGI)與放大器1206正輸入上的電壓相匹配,放大器1206不再提供快速啟動電流。此外,放大器1206與電晶體1202和1204,及電阻器1208、1210和1212協作,以便調節參考電壓(VREF)而不改變溫度係數。 In contrast to circuit 1100, circuit 1200 has two current branches on the output stage that correspond to transistors 1202 and 1204. Based on the determination of the dimensions of transistors 1202 and 1204 relative to each other and relative to transistors 1102 and 1104, the current flowing through transistors 1202 and 1204 is controllable. Operating amplifier 1206 drives the voltage on amplifier output 103 to provide a quick start selection. Once the reference voltage (V BGI ) on the amplifier output 103 matches the voltage on the positive input of the amplifier 1206, the amplifier 1206 no longer provides a fast start current. In addition, amplifier 1206 cooperates with transistors 1202 and 1204, and resistors 1208, 1210, and 1212 to adjust the reference voltage (V REF ) without changing the temperature coefficient.
在圖11和12的實施例中,且在等式5和6中,能夠選擇電阻器1110和1118的阻抗以實現第一階熱補償。此外,在實 施例中,電阻器1110和1118能夠被實現為電阻性網路。此外,在圖12中的電阻器1210和1212也可被實現為電阻性網路,提供用於快速調整電壓而不會招致電壓參考電路的溫度係數改變的方法。來自這樣一種電阻性網路的許多可能實現的一個可能的例子在下面關於圖13示出,其能夠被程式化以實現所需電阻。 In the embodiment of Figures 11 and 12, and in Equations 5 and 6, the impedance of resistors 1110 and 1118 can be selected to achieve first order thermal compensation. In addition, in fact In an embodiment, resistors 1110 and 1118 can be implemented as a resistive network. In addition, resistors 1210 and 1212 in FIG. 12 can also be implemented as a resistive network, providing a means for quickly adjusting the voltage without incurring a change in the temperature coefficient of the voltage reference circuit. One possible example of many possible implementations from such a resistive network is shown below with respect to Figure 13, which can be programmed to achieve the desired resistance.
圖13是微調電路1300的實施例的原理圖,其可根據圖11的電流模式電壓參考電路的實施例被用來代替電阻器1110和1118中的一或兩個,或者代替包括了圖12中的電流模式電壓參考電路的電阻器1208、1210、和1212的電阻器中的任何一個。微調電路1300包括多個電阻器1302、1304、和1306(及在其之間可能的其他電阻性元件,這些元件未在圖13中表示出來),所述多個電阻器串聯連接在第一端子(H)與第二端子(L)之間。微調電路1300還包括相關聯的多個開關1312、1314、1316、和1318(及在其之間可能的其他開關,這些開關未在圖12中表示出來),其中每個開關具有連接至第二端子(L)的第一電流電極、用於從控制電路110接收數位信號的控制電極,及連接至所述電阻器中的兩個之間的節點的第二電流電極。 13 is a schematic diagram of an embodiment of a trimming circuit 1300 that can be used in place of one or both of the resistors 1110 and 1118 in accordance with an embodiment of the current mode voltage reference circuit of FIG. 11, or instead of including FIG. The current mode voltage reference circuit is any one of the resistors of the resistors 1208, 1210, and 1212. The trimming circuit 1300 includes a plurality of resistors 1302, 1304, and 1306 (and possibly other resistive elements therebetween, which are not shown in FIG. 13), the plurality of resistors being connected in series at the first terminal (H) is between the second terminal (L). The trimming circuit 1300 also includes an associated plurality of switches 1312, 1314, 1316, and 1318 (and possibly other switches therebetween, which are not shown in Figure 12), wherein each switch has a second connection a first current electrode of the terminal (L), a control electrode for receiving a digital signal from the control circuit 110, and a second current electrode connected to a node between two of the resistors.
在工作中,多個開關1312、1314、1316、和1318中的每一個都可以基於來自控制電路110的數位信號獨立地控制,用於調整微調電路的電阻。實現用微調電路代替電阻器1110且也代替電阻器1118,這使得有可能數位地調整電流模式可程式化電壓參考電路102的電阻,以提供熱補償。 相類似地,實現用微調電路代替電阻器1212,這可能藉由數位地調整電路1200中的電阻器1212和/或其他電阻器的值來微調電流模式帶隙參考電壓。 In operation, each of the plurality of switches 1312, 1314, 1316, and 1318 can be independently controlled based on a digital signal from the control circuit 110 for adjusting the resistance of the trimming circuit. Replacing the resistor 1110 with a trimming circuit and also replacing the resistor 1118 makes it possible to digitally adjust the resistance of the current mode programmable voltage reference circuit 102 to provide thermal compensation. Similarly, instead of resistor 1212, a trimming circuit is implemented, which may fine tune the current mode bandgap reference voltage by digitally adjusting the values of resistor 1212 and/or other resistors in circuit 1200.
關於這一點,已經討論了可程式化電壓參考電路102、誤差放大器104,及可程式化回饋電路108的可程式化性。然而,LDO調節器電路100還允許對傳遞器件106程式化。在特定的例子中,藉由將傳遞器件106實現為如圖14中所描繪的電晶體網路1400,有可能調整可程式化傳遞器件106的DC性能和瞬態回應。 In this regard, the programmability of the programmable voltage reference circuit 102, the error amplifier 104, and the programmable feedback circuit 108 has been discussed. However, LDO regulator circuit 100 also allows for programming of transfer device 106. In a particular example, by implementing the transfer device 106 as the transistor network 1400 as depicted in FIG. 14, it is possible to adjust the DC performance and transient response of the programmable transfer device 106.
圖14是電晶體網路1400的實施例的原理圖,其能夠根據圖1中的LDO調節器電路100的實施例被用來實現傳遞器件106。電晶體網路1400包括多個PMOS電晶體1402、1404、和1406,它們具有連接至電壓端子(VIN)的共用的源電極,及連接至誤差放大器104的輸出120的共用的閘電極。PMOS電晶體1402包括PMOS電晶體1408的源電極的汲電極,所述PMOS電晶體1408包括閘電極,該閘電極有選擇地經由開關1410連接至電壓端子(VIN)或者經由開關1412連接至接地端。此外,PMOS電晶體1408包括連接至電壓輸出114的汲電極。 14 is a schematic diagram of an embodiment of a transistor network 1400 that can be used to implement the transfer device 106 in accordance with an embodiment of the LDO regulator circuit 100 of FIG. The transistor network 1400 includes a plurality of PMOS transistors 1402, 1404, and 1406 having a common source electrode coupled to the voltage terminal (V IN ) and a common gate electrode coupled to the output 120 of the error amplifier 104. PMOS transistor 1402 includes a drain electrode of a source electrode of PMOS transistor 1408, the PMOS transistor 1408 includes a gate electrode that is selectively coupled to a voltage terminal (V IN ) via switch 1410 or to ground via switch 1412 end. Additionally, PMOS transistor 1408 includes a germanium electrode coupled to voltage output 114.
PMOS電晶體1404包括汲電極,其連接至PMOS電晶體1414的源電極,所述PMOS電晶體1414包括閘電極,其有選擇地經由開關1416連接至電壓端子(VIN),或者經由開關1418連接至接地端。PMOS電晶體1414還包括汲電極,其連接至電壓輸出114。 The PMOS transistor 1404 includes a germanium electrode coupled to the source electrode of the PMOS transistor 1414, the PMOS transistor 1414 including a gate electrode that is selectively coupled to the voltage terminal (V IN ) via the switch 1416 or via a switch 1418 To the ground. PMOS transistor 1414 also includes a germanium electrode that is coupled to voltage output 114.
PMOS電晶體1406包括汲電極,其連接至PMOS電晶體1420的源電極,所述PMOS電晶體1420包括閘電極,其有選擇地經由開關1422連接至電壓端子(VIN),或者經由開關1424連接至接地端。PMOS電晶體1420還包括汲電極,其連接至電壓輸出114。 PMOS transistor 1406 includes a germanium electrode connected to the source electrode of PMOS transistor 1420, which includes a gate electrode that is selectively coupled to voltage terminal (V IN ) via switch 1422 or via switch 1424 To the ground. PMOS transistor 1420 also includes a germanium electrode that is coupled to voltage output 114.
因此,在所示實施例中,可程式化傳遞器件106被設計帶有多個模組(第一模組,其由包括了電晶體1402和1408的電流通路表示;第二模組,其由包括了電晶體1404和1414的電流通路表示;及第三模組,其由包括了電晶體1406和1420的電流通路表示),這些模組以並聯連接。經由有選擇地將控制信號應用至開關1410、1412、1416、1418、1422、和1424,藉由中斷信號通路的連接來禁用電流通路中的一或多個。這種控制信號由控制電路110藉由傳遞器件控制輸入126提供。當特定的電路應用不需要大的電流負載時,能夠藉由禁用一或多個模組來改進可程式化電壓參考電路102的瞬態回應,從而降低了在輸出上的寄生電容,且改變了傳遞器件106的瞬態回應。 Thus, in the illustrated embodiment, the programmable transfer device 106 is designed with a plurality of modules (a first module represented by a current path including transistors 1402 and 1408; a second module A current path representation of transistors 1404 and 1414 is included; and a third module, represented by current paths including transistors 1406 and 1420, are connected in parallel. By selectively applying control signals to switches 1410, 1412, 1416, 1418, 1422, and 1424, one or more of the current paths are disabled by interrupting the connection of the signal paths. This control signal is provided by control circuit 110 via transfer device control input 126. When a particular circuit application does not require a large current load, the transient response of the programmable voltage reference circuit 102 can be improved by disabling one or more modules, thereby reducing parasitic capacitance at the output and changing The transient response of the device 106 is passed.
雖然以上的討論已經提供了可程式化電壓參考電路102、可程式化傳遞器件106,及可程式化回饋電路108的例子,但是仍可考慮使用各種可能的實現方式來實現可程式化誤差放大器104。下面關於圖15描述了一種可能的例子。 Although the above discussion has provided examples of programmable voltage reference circuit 102, programmable transfer device 106, and programmable feedback circuit 108, it is contemplated that various possible implementations can be used to implement programmable error amplifier 104. . A possible example is described below with respect to Figure 15.
圖15是可程式化誤差放大器104的許多可能實現中的一個的實施例的原理圖。可程式化誤差放大器包括PMOS電晶體1502和1504,它們包括連接至電壓供應端子(VDD)的源電 極、連接在共用節點上的閘電極。電晶體1502包括汲電極,其連接至該電晶體1502的閘電極且連接至NMOS電晶體1506和1510的汲電極,所述NMOS電晶體1506和1510具有共用的閘電極,該閘電極連接至的正輸入端子(INP),該正輸入端子連接至回饋輸出105,以從圖1中所描繪的可程式化回饋電路108接收回饋信號(VF)。NMOS電晶體1506還包括源電極,其連接至NMOS電晶體1508的汲電極,所述NMOS電晶體1508包括連接至第一控制輸入(OC1)的控制電極,及連接至偏置電流源1520的源電極。NMOS電晶體1510包括源電極,其連接至偏置電流源1520。 15 is a schematic diagram of an embodiment of one of many possible implementations of programmable error amplifier 104. The programmable error amplifier includes PMOS transistors 1502 and 1504 including a source electrode connected to a voltage supply terminal (V DD ) and a gate electrode connected to a common node. The transistor 1502 includes a germanium electrode connected to the gate electrode of the transistor 1502 and to the germanium electrodes of the NMOS transistors 1506 and 1510 having a common gate electrode to which the gate electrode is connected A positive input terminal (INP) is coupled to the feedback output 105 to receive a feedback signal (V F ) from the programmable feedback circuit 108 depicted in FIG. The NMOS transistor 1506 also includes a source electrode coupled to the drain electrode of the NMOS transistor 1508, the NMOS transistor 1508 including a control electrode coupled to the first control input (OC1), and a source coupled to the bias current source 1520 electrode. NMOS transistor 1510 includes a source electrode that is coupled to bias current source 1520.
PMOS電晶體1504包括汲電極,其連接至放大器輸出120且連接至NMOS電晶體1518和1512的汲電極,所述NMOS電晶體1518和1512具有連接至負輸入端子(INN)的閘電極,所述負輸入端子(INN)連接至電壓參考輸入103,以從圖1中所描繪的可程式化電壓參考電路102接收參考電壓(VREF)。NMOS電晶體1518包括源電極,其連接至偏置電流源1520。NMOS電晶體1512包括源電極,其連接至NMOS電晶體1514的汲電極,所述NMOS電晶體1514包括連接至第二控制輸入(OC2)的閘電極且包括連接至偏置電流源1520的源電極。第一和第二控制輸入(OC1和OC2)耦合至放大器控制輸入124,以從控制電路110接收放大器控制信號。 PMOS transistor 1504 includes a germanium electrode coupled to amplifier output 120 and to germanium electrodes of NMOS transistors 1518 and 1512 having gate electrodes connected to a negative input terminal (INN), A negative input terminal (INN) is coupled to voltage reference input 103 to receive a reference voltage (V REF ) from the programmable voltage reference circuit 102 depicted in FIG. NMOS transistor 1518 includes a source electrode that is coupled to bias current source 1520. The NMOS transistor 1512 includes a source electrode coupled to the drain electrode of the NMOS transistor 1514, the NMOS transistor 1514 including a gate electrode coupled to the second control input (OC2) and including a source electrode coupled to the bias current source 1520 . First and second control inputs (OC1 and OC2) are coupled to amplifier control input 124 to receive an amplifier control signal from control circuit 110.
在工作中,負輸入(INN)上的參考電壓(VREF)及正輸入(INP)上的回饋電壓(VF)啟動電晶體1510和1518允許電流流動,以便在放大器輸出120上產生放大器輸出信號,其表 示了在VREF和VF之間的差。電晶體1508和1514回應放大器控制輸入124上的控制信號,以便相應地啟用或禁用通過電晶體1506和1512的電流通路,由此調整流過所述電流通路中的一或兩個的電流。因此,控制電路110使用控制信號有選擇地啟用電晶體1506和1512,以有助於差分輸入的增益,根據需要打開或關閉電晶體1508和1514。 In operation, the reference voltage (VREF) on the negative input (INN) and the feedback voltage (VF) on the positive input (INP) enable the transistors 1510 and 1518 to allow current to flow to produce an amplifier output signal on the amplifier output 120, Its table The difference between VREF and VF is shown. Transistors 1508 and 1514 are responsive to control signals on amplifier control input 124 to enable or disable current paths through transistors 1506 and 1512, thereby adjusting the current flowing through one or both of the current paths. Thus, control circuit 110 selectively activates transistors 1506 and 1512 using control signals to facilitate the gain of the differential inputs, turning transistors 1508 and 1514 on or off as needed.
應當認識到,在上面關於圖1-15所討論的LDO調節器電路能夠經組態以由製造商所實現的測試過程中的一部分,其中輸入電壓被應用至LDO調節器的輸入,且組態資料經由串列介面112被提供至LDO調節器,所述組態資料被儲存在非揮發性記憶體比如非揮發性的暫存器204中。組態資料能夠使用控制邏輯206進行解碼以產生控制信號,用於組態可程式化電壓參考電路102、放大器104、傳遞器件106、和可程式化回饋電路108中的任意一些或全部的調節功能。 It will be appreciated that the LDO regulator circuit discussed above with respect to Figures 1-15 can be configured to be part of a test process implemented by the manufacturer where the input voltage is applied to the input of the LDO regulator and configured Data is provided to the LDO regulator via serial interface 112, which is stored in non-volatile memory such as non-volatile registers 204. The configuration data can be decoded using control logic 206 to generate control signals for configuring adjustment functions for any or all of programmable voltage reference circuit 102, amplifier 104, transfer device 106, and programmable feedback circuit 108. .
此外,串列介面112可經由主機系統和控制電路接入,以在任何時刻更新和代替組態資料的全部或一部分。在一實施例中,控制邏輯206解碼組態資料,以在一旦將組態資料接收到組態暫存器中,或者在組態資料被存入非揮發性記憶體之後,產生控制信號,且將控制信號應用至可程式化電壓參考電路102、放大器104、傳遞器件106、和可程式化回饋電路108中的任何一或全部,以便立刻調整調節函數(比如輸出電壓位準、頻率參數、靜態電流限制、或輸出電壓的其他參數)。在另一實施例中,控制邏輯206在啟動時解碼組態資料,且直至下一個啟動事件為止,對組態資料 的任何改變被儲存至非揮發性記憶體中。還是在另一實施例中,回應於經由串列介面112接收的命令,控制邏輯206解碼組態資料。 In addition, the serial interface 112 can be accessed via the host system and control circuitry to update and replace all or a portion of the configuration data at any time. In an embodiment, the control logic 206 decodes the configuration data to generate a control signal upon receipt of the configuration data into the configuration register or after the configuration data is stored in the non-volatile memory, and Applying control signals to any or all of the programmable voltage reference circuit 102, the amplifier 104, the transfer device 106, and the programmable feedback circuit 108 to immediately adjust the adjustment function (eg, output voltage level, frequency parameter, static) Current limit, or other parameters of the output voltage). In another embodiment, the control logic 206 decodes the configuration data at startup and until the next startup event, the configuration data Any changes are stored in non-volatile memory. In still another embodiment, control logic 206 decodes the configuration data in response to commands received via serial interface 112.
結合以上根據圖1-15公開的實施例,可程式化LDO調節器100被公開,其包括可程式化電壓參考電路102、可程式化誤差放大器104、可程式化傳遞器件106、可程式化回饋電路108。此外,可程式化LDO調節器100包括串列介面112和控制電路110,其使得有可能對可程式化LDO調節器100多次程式化,以便調整許多參數以控制輸出電壓(VOUT)的DC和AC兩種參數。對可程式化電壓參考電路102、可程式化誤差放大器104、可程式化傳遞器件106、和可程式化回饋電路108的設定可被儲存在非揮發性的暫存器204中。因此,可程式化LDO調節器可組態成提供具有所需位準且具有所需DC和AC特性的輸出電壓。此外,藉由提供串列介面,LDO調節器電路能夠被數位地、多次地、在製造和測試期間、和在工作期間程式化,所述串列介面可組態成接收包括了數位組態資料(比如二進位序列)的控制資訊。 In conjunction with the embodiments disclosed above with respect to Figures 1-15, a programmable LDO regulator 100 is disclosed that includes a programmable voltage reference circuit 102, a programmable error amplifier 104, a programmable transfer device 106, and a programmable feedback Circuit 108. In addition, the programmable LDO regulator 100 includes a serial interface 112 and a control circuit 110 that makes it possible to program the programmable LDO regulator 100 multiple times to adjust a number of parameters to control the output voltage (V OUT ) DC And AC two parameters. The settings for the programmable voltage reference circuit 102, the programmable error amplifier 104, the programmable transfer device 106, and the programmable feedback circuit 108 can be stored in the non-volatile registers 204. Thus, the programmable LDO regulator can be configured to provide an output voltage having the desired level and having the desired DC and AC characteristics. Furthermore, by providing a serial interface, the LDO regulator circuit can be programmed digitally, multiple times, during manufacturing and testing, and during operation, the serial interface configurable to receive digital configuration including Control information for data (such as binary sequences).
根據一個方面,LDO調節器電路包括誤差放大器,其具有第一、第二、第三、第四、第五、和第六電晶體,及第一和第二開關。第一電晶體包括:源極,其耦合至電源端子;閘極;及汲極,其耦合至控制電極。第二電晶體包括:源極,其耦合至供電端子;閘極,其耦合至第一電晶體的控制端子;及汲極,其耦合至誤差放大器輸出。第三電晶體包括:汲極,其耦合至第一電晶體的汲極;閘極,其耦 合至回饋輸出端子;及源極,其耦合至偏置電流源。第四電晶體包括:汲極,其耦合至第二電晶體的汲極;閘極,其耦合至參考輸出,及源極,其耦合至偏置電流源。第五電晶體包括:汲極,其耦合至第三電晶體的汲極;閘極,其耦合至回饋輸出端子;及源極。第六電晶體包括:汲極,其耦合至第四電晶體的汲極;閘極,其耦合至參考輸出;及源極。第一開關耦合至第五電晶體的源極與偏置電流源之間,且包括耦合至控制電路的控制端子。第二開關耦合至第六電晶體的源極與偏置電流源之間,且包括耦合至控制電路的控制端子。 According to one aspect, an LDO regulator circuit includes an error amplifier having first, second, third, fourth, fifth, and sixth transistors, and first and second switches. The first transistor includes a source coupled to the power supply terminal, a gate, and a drain coupled to the control electrode. The second transistor includes a source coupled to the power supply terminal, a gate coupled to the control terminal of the first transistor, and a drain coupled to the error amplifier output. The third transistor includes: a drain coupled to the drain of the first transistor; a gate coupled And to a feedback output terminal; and a source coupled to the bias current source. The fourth transistor includes a drain coupled to the drain of the second transistor, a gate coupled to the reference output, and a source coupled to the bias current source. The fifth transistor includes a drain coupled to the drain of the third transistor, a gate coupled to the feedback output terminal, and a source. The sixth transistor includes a drain coupled to the drain of the fourth transistor, a gate coupled to the reference output, and a source. A first switch is coupled between the source of the fifth transistor and the bias current source and includes a control terminal coupled to the control circuit. A second switch is coupled between the source of the sixth transistor and the bias current source and includes a control terminal coupled to the control circuit.
在另一方面,LDO電路包括電壓參考,其包括第一、第二、和第三電阻性元件,第一和第二二極體連接的器件,控制電路,放大器,及PMOS電晶體。該PMOS電晶體包括:第一電極,其耦合至電壓輸入;第二電極,其耦合至參考輸出;及控制電極。第一電阻性元件包括:第一端子,其耦合至參考輸出;及第二端子。第二電阻性元件包括:第一端子,其耦合至參考輸出;及第二端子。放大器包括:第一放大器輸入,其耦合至第一電阻性元件的第二端子;第二放大器輸入,其耦合至第二電阻性元件的第二端子;及放大器輸出,其耦合至PMOS控制電極。第三電阻性元件包括:第一端子,其耦合至第一放大器輸入;及第二端子。第一二極體連接器件包括:第一端子,其耦合至第三電阻性網路的第二端子;及第二端子,其耦合至電源端子。第二二極體連接器件包括:第一端子,其耦合至第二放大器 輸入;及第二端子,其耦合至電源端子。控制電路可組態對與第一、第二和第三電阻性元件中的至少一者相關聯的電阻進行程式化,以控制參考電壓的熱係數或者標稱位準。 In another aspect, the LDO circuit includes a voltage reference including first, second, and third resistive elements, first and second diode connected devices, control circuitry, amplifiers, and PMOS transistors. The PMOS transistor includes a first electrode coupled to a voltage input, a second electrode coupled to a reference output, and a control electrode. The first resistive element includes a first terminal coupled to the reference output and a second terminal. The second resistive element includes a first terminal coupled to the reference output and a second terminal. The amplifier includes a first amplifier input coupled to the second terminal of the first resistive element, a second amplifier input coupled to the second terminal of the second resistive element, and an amplifier output coupled to the PMOS control electrode. The third resistive element includes a first terminal coupled to the first amplifier input and a second terminal. The first diode connection device includes a first terminal coupled to the second terminal of the third resistive network and a second terminal coupled to the power supply terminal. The second diode connection device includes: a first terminal coupled to the second amplifier An input; and a second terminal coupled to the power supply terminal. The control circuit is configurable to program the resistance associated with at least one of the first, second, and third resistive elements to control the thermal or nominal level of the reference voltage.
在另一方面,LDO調節器包括電壓參考,其包括第一和第二PMOS電晶體,第一、第二、和第三電阻性元件,放大器,和控制電路。第一和第二PMOS電晶體中的每一個包括:第一電極,其耦合至電壓輸入;控制電極,其耦合至共用節點;及第二電極。放大器包括:正輸入,其耦合至第一PMOS電晶體的第二電極;負輸入;及輸出,其耦合至第二PMOS電晶體的第二電極。第一電阻性元件包括第一端子,其耦合至正輸入及第一PMOS電晶體的第二電極,且包括第二端子。第二電阻性元件包括:第一端子,其耦合至第一電阻性元件的第二端子;及第二端子,其耦合至接地端。第三電阻性元件包括:第一端子,其耦合至放大器的輸出;及第二端子,其耦合至第二電阻性元件的第一端子。控制電路可組態成對與第一、第二和第三電阻性元件中的至少一者相關聯的電阻進行程式化,以控制在放大器輸出處的參考電壓的標稱位準。 In another aspect, an LDO regulator includes a voltage reference including first and second PMOS transistors, first, second, and third resistive elements, an amplifier, and a control circuit. Each of the first and second PMOS transistors includes a first electrode coupled to the voltage input, a control electrode coupled to the common node, and a second electrode. The amplifier includes a positive input coupled to the second electrode of the first PMOS transistor, a negative input, and an output coupled to the second electrode of the second PMOS transistor. The first resistive element includes a first terminal coupled to the positive input and a second electrode of the first PMOS transistor and including a second terminal. The second resistive element includes a first terminal coupled to the second terminal of the first resistive element and a second terminal coupled to the ground. The third resistive element includes a first terminal coupled to the output of the amplifier and a second terminal coupled to the first terminal of the second resistive element. The control circuit can be configured to program a resistor associated with at least one of the first, second, and third resistive elements to control a nominal level of the reference voltage at the output of the amplifier.
仍是在另一方面,LDO調節器包括:電壓調節器、傳遞器件、回饋電路,及誤差放大器。LDO調節器還包括控制電路,該控制電路帶有:非揮發性的記憶體,其可組態成儲存組態資料;及邏輯,其經組態以將組態資料解碼為控制信號,以在電壓調節器、傳遞器件、回饋電路,及誤差放大器中的至少一者上進行數位程式化,以便控制在電壓 輸出上的調節函數。 Still on the other hand, LDO regulators include: voltage regulators, transfer devices, feedback circuits, and error amplifiers. The LDO regulator also includes a control circuit with: non-volatile memory configurable to store configuration data; and logic configured to decode the configuration data into control signals for Digitally stylizing at least one of a voltage regulator, a transfer device, a feedback circuit, and an error amplifier to control the voltage The adjustment function on the output.
在特定的情況下,LDO調節器包括可程式化的參考電路,其回應至少一第一控制信號。該第一控制信號包括一或多個第一參考控制信號,及一或多個第二參考控制信號。可程式化的參考電路包括電晶體,該電晶體包括:第一電流電極,其耦合至電壓輸入;第二電流電極;及控制電極。可程式化參考電路還包括放大器,及第一和第二電阻網路。放大器包括:第一放大器輸入;第二放大器輸入;及放大器輸出,其耦合至電晶體的控制電極。第一電阻網路耦合至第一放大器輸入,且回應一或多個第一參考控制信號以提供第一電阻。第二電阻網路耦合至第二放大器輸入,且回應一或多個第二參考控制信號以提供第二電阻。 In certain instances, the LDO regulator includes a programmable reference circuit that is responsive to at least a first control signal. The first control signal includes one or more first reference control signals and one or more second reference control signals. The programmable reference circuit includes a transistor including: a first current electrode coupled to the voltage input; a second current electrode; and a control electrode. The programmable reference circuit also includes an amplifier, and first and second resistor networks. The amplifier includes a first amplifier input, a second amplifier input, and an amplifier output coupled to the control electrode of the transistor. A first resistor network is coupled to the first amplifier input and responsive to the one or more first reference control signals to provide a first resistance. A second resistor network is coupled to the second amplifier input and responsive to the one or more second reference control signals to provide a second resistor.
在另一特定情況下,LDO調節器包括回饋電路,該回饋電路包括至少一可程式化阻抗網路。該可程式化的阻抗網路回應第四控制信號以調整阻抗。在特定的情況下,可程式化的阻抗網路包括:多個電阻器,其以串聯組態進行耦合;多個電容器,其以串聯組態進行耦合,且與多個電阻器互連;及多個開關,其回應第四控制信號以改變與至少一可程式化阻抗網路相關聯的複阻抗。此外,在一些情況下,LDO調節器包括可程式化的傳遞器件,其在電壓輸出端子上提供電流。控制電路經組態以有選擇地啟用自適應偏置特徵,以組態與電壓輸出相關聯的過流保護的臨界位準,且組態誤差放大器以調整放大器偏移。 In another specific case, the LDO regulator includes a feedback circuit that includes at least one programmable impedance network. The programmable impedance network responds to the fourth control signal to adjust the impedance. In a particular case, the programmable impedance network includes: a plurality of resistors coupled in a series configuration; a plurality of capacitors coupled in a series configuration and interconnected with a plurality of resistors; A plurality of switches responsive to the fourth control signal to change a complex impedance associated with the at least one programmable impedance network. Moreover, in some cases, the LDO regulator includes a programmable transfer device that provides current at the voltage output terminals. The control circuit is configured to selectively enable the adaptive biasing feature to configure the critical level of the overcurrent protection associated with the voltage output and to configure the error amplifier to adjust the amplifier offset.
還是在另一方面中,LDO調節器包括串列介面,其可組 態成耦合至串列連接器,且適合經由該串列連接器發送和接收資料及命令至外部設備。LDO調節器還包括:控制電路,其耦合至串列介面以接收組態資料,且適合基於該組態資料來組態可程式化的參考電路、可程式化的誤差放大器、可程式化的傳遞器件,及可程式化的回饋電路。 In still another aspect, the LDO regulator includes a serial interface that can be grouped The state is coupled to the serial connector and is adapted to send and receive data and commands to the external device via the serial connector. The LDO regulator further includes a control circuit coupled to the serial interface to receive configuration data and adapted to configure a programmable reference circuit, a programmable error amplifier, and a programmable transfer based on the configuration data Devices, and programmable feedback circuits.
在另一特殊方面,一種使用可程式化的低壓差(LDO)調節器提供輸出電壓的方法,其包括經由LDO調節器的串列介面從控制電路接收組態資料,且將該組態資料儲存至非揮發性的記憶體中。該方法還包括使用LDO調節器的控制電路的控制邏輯來解碼組態資料以組態可程式化的參考電路、可程式化的誤差放大器、可程式化的傳遞器件,及可程式化的回饋電路中的至少一者的調節函數,以產生輸出電壓。 In another particular aspect, a method of providing an output voltage using a programmable low dropout (LDO) regulator includes receiving configuration data from a control circuit via a serial interface of an LDO regulator and storing the configuration data Into non-volatile memory. The method also includes decoding configuration data using a control logic of an LDO regulator control circuit to configure a programmable reference circuit, a programmable error amplifier, a programmable transfer device, and a programmable feedback circuit An adjustment function of at least one of the ones to generate an output voltage.
在一種情況下,控制信號包括至少一第一控制信號、至少一第二控制信號、至少一第三控制信號,及至少一第四控制信號。在特定情況下,在解碼組態資料之後,該方法還包括:在LDO調節器的輸入上接收電壓輸入信號;使用根據至少一第一控制信號組態的可程式化的參考電路來生成參考電壓;及使用耦合至輸入且根據至少一第二控制信號進行組態的串列傳遞器件來調節電壓輸入信號,以在輸出端子上產生輸出電壓。此外,該方法包括:使用根據至少一第三控制信號組態的可程式化的回饋電路採樣輸出電壓,以產生回饋電壓;且使用根據至少一第四控制信號組態的可程式化的誤差放大器來將回饋電壓與參考電壓進行 比較,以在誤差放大器的放大器輸出上產生誤差信號,所述放大器輸出耦合至串列傳遞器件以調整輸出電壓。 In one case, the control signal includes at least a first control signal, at least a second control signal, at least a third control signal, and at least a fourth control signal. In a specific case, after decoding the configuration data, the method further comprises: receiving a voltage input signal at an input of the LDO regulator; generating a reference voltage using a programmable reference circuit configured according to the at least one first control signal And adjusting the voltage input signal using a serial transfer device coupled to the input and configured in accordance with the at least one second control signal to produce an output voltage at the output terminal. Additionally, the method includes: sampling the output voltage using a programmable feedback circuit configured in accordance with the at least one third control signal to generate a feedback voltage; and using a programmable error amplifier configured in accordance with the at least one fourth control signal To carry out the feedback voltage and the reference voltage In comparison, an error signal is generated at the amplifier output of the error amplifier, the amplifier output being coupled to the tandem transfer device to adjust the output voltage.
在另一特殊情況下,所述方法包括:經由串列介面接收第二組態資料;將該第二組態資料儲存在非揮發性的記憶體中;及使用控制邏輯解碼第二組態資料,以產生第二控制信號。該第二控制信號被應用以調整可程式化參考電路、可程式化誤差放大器、可程式化傳遞器件,及可程式化回饋電路中的至少一者的調節函數,以產生輸出電壓。 In another special case, the method includes: receiving the second configuration data via the serial interface; storing the second configuration data in non-volatile memory; and decoding the second configuration data using the control logic To generate a second control signal. The second control signal is applied to adjust an adjustment function of at least one of the programmable reference circuit, the programmable error amplifier, the programmable transfer device, and the programmable feedback circuit to generate an output voltage.
雖然本發明已經根據優選的實施例進行了描述,但本領域中的工作人員將認識到,可以在形式和細節上做出改變而不偏離本發明範圍。 Although the present invention has been described in terms of the preferred embodiments, it will be understood by those skilled in the art that
100‧‧‧低壓差(LDO)調節器電路 100‧‧‧ Low dropout (LDO) regulator circuit
102‧‧‧可程式化電壓參考電路 102‧‧‧Programmable voltage reference circuit
103‧‧‧輸出端子 103‧‧‧Output terminal
104‧‧‧可程式化誤差放大器 104‧‧‧Programmable error amplifier
105‧‧‧回饋輸出 105‧‧‧Feedback output
106‧‧‧可程式化傳遞器件 106‧‧‧Programmable transfer device
108‧‧‧可程式化回饋電路 108‧‧‧Programmable feedback circuit
110‧‧‧控制電路 110‧‧‧Control circuit
112‧‧‧串列介面 112‧‧‧Serial interface
114‧‧‧輸出端子 114‧‧‧Output terminal
116‧‧‧負載 116‧‧‧load
120‧‧‧放大器輸出 120‧‧‧Amplifier output
122‧‧‧參考控制輸入 122‧‧‧Reference control input
124‧‧‧放大器控制輸入 124‧‧‧Amplifier Control Input
126‧‧‧傳遞器件控制輸入 126‧‧‧Transfer device control input
128‧‧‧回饋控制輸入 128‧‧‧Feedback control input
130‧‧‧控制資訊 130‧‧‧Control Information
132‧‧‧資料 132‧‧‧Information
200‧‧‧LDO調節器電路 200‧‧‧LDO regulator circuit
202‧‧‧揮發性的組態暫存器 202‧‧‧Volatile configuration register
204‧‧‧非揮發性的暫存器 204‧‧‧Non-volatile register
206‧‧‧控制邏輯 206‧‧‧Control logic
302‧‧‧第一阻抗網路(或輸入級) 302‧‧‧First impedance network (or input stage)
304‧‧‧第二阻抗網路(或輸出級) 304‧‧‧Second impedance network (or output stage)
306‧‧‧第三阻抗網路(或輸出級) 306‧‧‧ Third impedance network (or output stage)
312‧‧‧端子 312‧‧‧ Terminal
314‧‧‧回饋輸出(VOUTF) 314‧‧‧Feedback output (V OUTF )
316‧‧‧端子 316‧‧‧ terminals
322‧‧‧第一回饋控制輸入 322‧‧‧First feedback control input
324‧‧‧第二回饋控制輸入 324‧‧‧Second feedback control input
326‧‧‧第三回饋控制輸入 326‧‧‧ Third feedback control input
400‧‧‧第一阻抗網路 400‧‧‧First impedance network
402‧‧‧第一阻抗 402‧‧‧First impedance
404‧‧‧第二阻抗 404‧‧‧second impedance
406‧‧‧第三阻抗 406‧‧‧ third impedance
412‧‧‧回饋控制開關 412‧‧‧Feedback control switch
414‧‧‧回饋控制開關 414‧‧‧Feedback control switch
416‧‧‧回饋控制開關 416‧‧‧Feedback control switch
501‧‧‧第一阻抗網路 501‧‧‧First impedance network
502‧‧‧電阻器 502‧‧‧Resistors
503‧‧‧節點 503‧‧‧ nodes
504‧‧‧電阻器 504‧‧‧Resistors
506‧‧‧電阻器 506‧‧‧Resistors
508‧‧‧電阻器 508‧‧‧Resistors
510‧‧‧電阻器 510‧‧‧Resistors
512‧‧‧電阻器 512‧‧‧Resistors
514‧‧‧電阻器 514‧‧‧Resistors
516‧‧‧電阻器 516‧‧‧Resistors
518‧‧‧電容器 518‧‧‧ capacitor
520‧‧‧電容器 520‧‧‧ capacitor
522‧‧‧電容器 522‧‧‧ capacitor
524‧‧‧電容器 524‧‧‧ capacitor
526‧‧‧開關 526‧‧‧ switch
528‧‧‧開關 528‧‧‧Switch
530‧‧‧開關 530‧‧‧Switch
532‧‧‧開關 532‧‧‧ switch
534‧‧‧開關 534‧‧‧Switch
536‧‧‧開關 536‧‧‧ switch
538‧‧‧開關 538‧‧‧Switch
540‧‧‧開關 540‧‧‧ switch
542‧‧‧阻抗 542‧‧‧ Impedance
544‧‧‧阻抗 544‧‧‧ Impedance
546‧‧‧阻抗 546‧‧‧ Impedance
548‧‧‧阻抗 548‧‧‧ Impedance
550‧‧‧開關 550‧‧‧ switch
552‧‧‧開關 552‧‧‧Switch
554‧‧‧開關 554‧‧‧Switch
556‧‧‧開關 556‧‧‧Switch
558‧‧‧開關 558‧‧‧Switch
560‧‧‧開關 560‧‧‧ switch
562‧‧‧開關 562‧‧‧ switch
570‧‧‧阻抗 570‧‧‧ Impedance
572‧‧‧阻抗 572‧‧‧ Impedance
574‧‧‧阻抗 574‧‧‧ Impedance
576‧‧‧阻抗 576‧‧‧ Impedance
578‧‧‧開關 578‧‧‧Switch
580‧‧‧開關 580‧‧‧Switch
582‧‧‧開關 582‧‧‧Switch
584‧‧‧開關 584‧‧‧ switch
600‧‧‧使用LDO調節器電路進行微調之前的大量被測試部分的輸出電壓的圖式 600‧‧‧ Schematic diagram of the output voltage of a large number of tested parts before fine-tuning using the LDO regulator circuit
700‧‧‧使用LDO調節器電路進行微調之後的大量被測試部分的輸出電壓的圖式 700‧‧‧A diagram of the output voltage of a large number of tested parts after fine-tuning using the LDO regulator circuit
800‧‧‧電壓模式帶隙參考電路 800‧‧‧Voltage mode bandgap reference circuit
802‧‧‧PMOS電晶體 802‧‧‧ PMOS transistor
804‧‧‧放大器 804‧‧‧Amplifier
806‧‧‧電阻器 806‧‧‧Resistors
808‧‧‧電阻器 808‧‧‧Resistors
810‧‧‧PNP雙極面結型電晶體 810‧‧‧PNP bipolar junction transistor
812‧‧‧電阻器 812‧‧‧Resistors
814‧‧‧PNP雙極面結型電晶體 814‧‧‧PNP bipolar junction transistor
900‧‧‧電阻性網路 900‧‧‧Resistive network
902‧‧‧電阻器 902‧‧‧Resistors
904‧‧‧電阻器 904‧‧‧Resistors
906‧‧‧電阻器 906‧‧‧Resistors
908‧‧‧電阻器 908‧‧‧Resistors
910‧‧‧開關 910‧‧‧ switch
912‧‧‧開關 912‧‧‧ switch
914‧‧‧開關 914‧‧‧ switch
916‧‧‧開關 916‧‧‧ switch
918‧‧‧開關 918‧‧‧Switch
920‧‧‧開關 920‧‧‧ switch
922‧‧‧開關 922‧‧‧ switch
1000‧‧‧關於圖8中電壓模式帶隙參考電路不同值的參考電壓的熱補償的圖式 1000‧‧‧A diagram of the thermal compensation of the reference voltage for different values of the voltage mode bandgap reference circuit in Figure 8.
1002‧‧‧在近似-40攝氏度時參考電壓的第一階補償 1002‧‧‧ First-order compensation of reference voltage at approximately -40 degrees Celsius
1004‧‧‧在近似40攝氏度時參考電壓的第一階補償 1004‧‧‧ First-order compensation of reference voltage at approximately 40 degrees Celsius
1006‧‧‧在近似120攝氏度時參考電壓的第一階補償 1006‧‧‧First-order compensation of reference voltage at approximately 120 degrees Celsius
1100‧‧‧電流模式電壓參考電路 1100‧‧‧ Current mode voltage reference circuit
1102‧‧‧PMOS電晶體 1102‧‧‧ PMOS transistor
1104‧‧‧PMOS電晶體 1104‧‧‧ PMOS transistor
1106‧‧‧PMOS電晶體 1106‧‧‧ PMOS transistor
1110‧‧‧電阻器 1110‧‧‧Resistors
1112‧‧‧電阻器 1112‧‧‧Resistors
1118‧‧‧電阻器 1118‧‧‧Resistors
1120‧‧‧電阻器 1120‧‧‧Resistors
1200‧‧‧電流模式電壓參考電路 1200‧‧‧current mode voltage reference circuit
1202‧‧‧PMOS電晶體 1202‧‧‧ PMOS transistor
1204‧‧‧PMOS電晶體 1204‧‧‧ PMOS transistor
1206‧‧‧放大器 1206‧‧Amplifier
1208‧‧‧電阻器 1208‧‧‧Resistors
1210‧‧‧電阻器 1210‧‧‧Resistors
1212‧‧‧電阻器 1212‧‧‧Resistors
1300‧‧‧微調電路 1300‧‧‧ trimming circuit
1302‧‧‧電阻器 1302‧‧‧Resistors
1304‧‧‧電阻器 1304‧‧‧Resistors
1306‧‧‧電阻器 1306‧‧‧Resistors
1312‧‧‧開關 1312‧‧‧Switch
1314‧‧‧開關 1314‧‧‧Switch
1316‧‧‧開關 1316‧‧‧ switch
1318‧‧‧開關 1318‧‧‧Switch
1400‧‧‧電晶體網路 1400‧‧‧Crystal network
1402‧‧‧PMOS電晶體 1402‧‧‧ PMOS transistor
1404‧‧‧PMOS電晶體 1404‧‧‧ PMOS transistor
1406‧‧‧PMOS電晶體 1406‧‧‧ PMOS transistor
1408‧‧‧PMOS電晶體 1408‧‧‧ PMOS transistor
1410‧‧‧開關 1410‧‧‧Switch
1412‧‧‧開關 1412‧‧‧Switch
1414‧‧‧PMOS電晶體 1414‧‧‧ PMOS transistor
1416‧‧‧開關 1416‧‧‧ switch
1418‧‧‧開關 1418‧‧‧Switch
1420‧‧‧PMOS電晶體 1420‧‧‧ PMOS transistor
1422‧‧‧開關 1422‧‧‧Switch
1424‧‧‧開關 1424‧‧‧Switch
1502‧‧‧PMOS電晶體 1502‧‧‧ PMOS transistor
1504‧‧‧PMOS電晶體 1504‧‧‧ PMOS transistor
1506‧‧‧NMOS電晶體 1506‧‧‧NMOS transistor
1508‧‧‧NMOS電晶體 1508‧‧‧NMOS transistor
1510‧‧‧NMOS電晶體 1510‧‧‧NMOS transistor
1512‧‧‧NMOS電晶體 1512‧‧‧NMOS transistor
1514‧‧‧NMOS電晶體 1514‧‧‧NMOS transistor
1518‧‧‧NMOS電晶體 1518‧‧‧NMOS transistor
1520‧‧‧偏置電流源 1520‧‧‧ bias current source
圖1是可程式化低壓差(LDO)調節器電路的實施例的部分原理圖和部分方塊圖;圖2是圖1中可程式化LDO調節器電路的部分原理圖和部分方塊圖,其帶有控制塊的實施例的擴展圖;圖3是圖1中LDO調節器的回饋電路實施例的方塊圖;圖4是圖3中所描繪的回饋電路的第一阻抗網路的實施例的部分原理圖和部分方塊圖;圖5是圖3中所描繪的回饋電路的第一阻抗網路的第二實施例及第二和第三阻抗網路的實施例的原理圖;圖6是描繪了在使用LDO調節器電路比如在圖1中所描繪的LDO調節器電路進行微調之前的若干被測試部分的輸出電壓的圖式; 圖7是描繪了在使用LDO調節器電路,比如在圖1中所描繪的LDO調節器電路進行微調之後的若干被測試部分的輸出電壓的圖式;圖8是電壓模式帶隙參考電路的實施例的原理圖,其為圖1中所描繪的可程式化電壓參考電路的一種可能實現;圖9是用於圖8中的電壓模式帶隙參考電路的可程式化電阻性網路的實施例的原理圖;圖10是描繪了參考電壓的熱補償的圖式,所述參考電壓的熱補償是用於圖8中的電壓模式帶隙參考電路的電阻器的各種電阻值;圖11是電流模式電壓參考電路的實施例的原理圖,其為圖1中所描繪的可程式化電壓參考電路的可能實現;圖12是電流模式電壓參考電路的第二實施例的原理圖,其為圖1中所描繪的可程式化電壓參考電路的另一可能實現;圖13是根據圖11和12中電流模式電壓參考電路的實施例的微調電路(可程式化的電阻性網路)的實施例的原理圖;圖14是根據圖1中LDO調節器電路的實施例的可程式化傳遞器件的實施例的原理圖;圖15是根據圖1中LDO調節器電路的實施例的可程式化誤差放大器的實施例的原理圖;及在以下描述中,在不同的圖中使用相同參考標記來指明類似的或相同的項目。 1 is a partial schematic and partial block diagram of an embodiment of a programmable low dropout (LDO) regulator circuit; FIG. 2 is a partial schematic and partial block diagram of the programmable LDO regulator circuit of FIG. An expanded view of an embodiment of a control block; FIG. 3 is a block diagram of an embodiment of a feedback circuit of the LDO regulator of FIG. 1; and FIG. 4 is a portion of an embodiment of a first impedance network of the feedback circuit depicted in FIG. Schematic and partial block diagrams; FIG. 5 is a schematic diagram of a second embodiment of a first impedance network of the feedback circuit depicted in FIG. 3 and a second and third impedance network embodiment; FIG. A pattern of output voltages of several tested portions prior to trimming using an LDO regulator circuit such as the LDO regulator circuit depicted in FIG. 1; 7 is a diagram depicting output voltages of several tested portions after trimming using an LDO regulator circuit, such as the LDO regulator circuit depicted in FIG. 1; FIG. 8 is an implementation of a voltage mode bandgap reference circuit Example of an example of a possible implementation of the programmable voltage reference circuit depicted in FIG. 1; FIG. 9 is an embodiment of a programmable resistive network for the voltage mode bandgap reference circuit of FIG. Schematic diagram of FIG. 10 is a diagram illustrating thermal compensation of a reference voltage, the thermal compensation of which is the various resistance values of the resistors used in the voltage mode bandgap reference circuit of FIG. 8; A schematic diagram of an embodiment of a mode voltage reference circuit, which is a possible implementation of the programmable voltage reference circuit depicted in FIG. 1; FIG. 12 is a schematic diagram of a second embodiment of a current mode voltage reference circuit, which is FIG. Another possible implementation of the programmable voltage reference circuit depicted in FIG. 13 is an embodiment of a trimming circuit (programmable resistive network) in accordance with an embodiment of the current mode voltage reference circuit of FIGS. 11 and 12. Figure 14 is a schematic diagram of an embodiment of a programmable transfer device in accordance with an embodiment of the LDO regulator circuit of Figure 1; Figure 15 is a programmable error amplifier in accordance with an embodiment of the LDO regulator circuit of Figure 1. Schematic diagram of an embodiment; and in the following description, the same reference numerals are used in the different figures to indicate similar or identical items.
100‧‧‧低壓差(LDO)調節器電路 100‧‧‧ Low dropout (LDO) regulator circuit
102‧‧‧可程式化電壓參考電路 102‧‧‧Programmable voltage reference circuit
103‧‧‧輸出端子 103‧‧‧Output terminal
104‧‧‧可程式化誤差放大器 104‧‧‧Programmable error amplifier
105‧‧‧回饋輸出 105‧‧‧Feedback output
106‧‧‧可程式化傳遞器件 106‧‧‧Programmable transfer device
108‧‧‧可程式化回饋電路 108‧‧‧Programmable feedback circuit
110‧‧‧控制電路 110‧‧‧Control circuit
112‧‧‧串列介面 112‧‧‧Serial interface
114‧‧‧輸出端子 114‧‧‧Output terminal
116‧‧‧負載 116‧‧‧load
120‧‧‧放大器輸出 120‧‧‧Amplifier output
122‧‧‧參考控制輸入 122‧‧‧Reference control input
124‧‧‧放大器控制輸入 124‧‧‧Amplifier Control Input
126‧‧‧傳遞器件控制輸入 126‧‧‧Transfer device control input
128‧‧‧回饋控制輸入 128‧‧‧Feedback control input
130‧‧‧控制資訊 130‧‧‧Control Information
132‧‧‧資料 132‧‧‧Information
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/759,541 US9411348B2 (en) | 2010-04-13 | 2010-04-13 | Programmable low-dropout regulator and methods therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201211716A TW201211716A (en) | 2012-03-16 |
TWI537697B true TWI537697B (en) | 2016-06-11 |
Family
ID=44760451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100109586A TWI537697B (en) | 2010-04-13 | 2011-03-21 | Programmable low-dropout regulator and methods therefor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102289238B (en) |
TW (1) | TWI537697B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590781A (en) * | 2012-03-03 | 2012-07-18 | 江西省电力科学研究院 | Method for constructing secondary load of universal stepless self-adjusting current mutual inductor |
US9939831B2 (en) * | 2016-01-11 | 2018-04-10 | Sandisk Technologies Llc | Fast settling low dropout voltage regulator |
EP3435192B1 (en) * | 2017-07-28 | 2022-08-24 | NXP USA, Inc. | Ultra low power linear voltage regulator |
CN108710399B (en) * | 2018-04-25 | 2019-10-22 | 电子科技大学 | A LDO Circuit with High Transient Response |
CN110858081A (en) * | 2018-08-23 | 2020-03-03 | 紫光同芯微电子有限公司 | Simple and effective transient enhancement type LDO circuit |
JP6678836B1 (en) | 2019-06-05 | 2020-04-08 | 三菱電機株式会社 | Power supply system |
US11442482B2 (en) | 2019-09-30 | 2022-09-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low-dropout (LDO) regulator with a feedback circuit |
US12248331B2 (en) | 2019-09-30 | 2025-03-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low-dropout (LDO) regulator with a feedback circuit |
CN111857222B (en) * | 2020-06-18 | 2022-04-19 | 苏州浪潮智能科技有限公司 | A system for regulating voltage of a power supply |
CN112327992A (en) * | 2020-11-20 | 2021-02-05 | 唯捷创芯(天津)电子技术股份有限公司 | Voltage bias circuit with adjustable output, chip and communication terminal |
CN112650339A (en) * | 2020-11-30 | 2021-04-13 | 成都海光微电子技术有限公司 | DLDO control circuit |
CN116149411A (en) * | 2022-11-28 | 2023-05-23 | 圣邦微电子(北京)股份有限公司 | Low Dropout Linear Regulator Circuit |
TWI858570B (en) * | 2023-02-24 | 2024-10-11 | 國立中山大學 | Low dropout regulator |
CN118689273B (en) * | 2024-08-26 | 2024-10-25 | 成都玖锦科技有限公司 | Analog auxiliary digital linear voltage stabilizer |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0864956A3 (en) * | 1997-03-12 | 1999-03-31 | Texas Instruments Incorporated | Low dropout regulators |
KR100289846B1 (en) * | 1998-09-29 | 2001-05-15 | 윤종용 | Low power consumption voltage controller |
US6396339B1 (en) * | 2000-06-28 | 2002-05-28 | Texas Instruments Incorporated | Operational amplifier trim method with process and temperature error compensation |
US7400123B1 (en) * | 2006-04-11 | 2008-07-15 | Xilinx, Inc. | Voltage regulator with variable drive strength for improved phase margin in integrated circuits |
CN101093401A (en) * | 2006-06-23 | 2007-12-26 | 联发科技股份有限公司 | Bandgap Voltage Reference Circuit |
CN101169670A (en) * | 2006-10-25 | 2008-04-30 | 盛群半导体股份有限公司 | Voltage stabilizer including output accelerated recovery |
US7633333B2 (en) * | 2006-11-16 | 2009-12-15 | Infineon Technologies Ag | Systems, apparatus and methods relating to bandgap circuits |
US7619402B1 (en) * | 2008-09-26 | 2009-11-17 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Low dropout voltage regulator with programmable on-chip output voltage for mixed signal embedded applications |
-
2011
- 2011-03-21 TW TW100109586A patent/TWI537697B/en active
- 2011-03-23 CN CN201110070007.7A patent/CN102289238B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TW201211716A (en) | 2012-03-16 |
CN102289238A (en) | 2011-12-21 |
CN102289238B (en) | 2016-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI537697B (en) | Programmable low-dropout regulator and methods therefor | |
US9411348B2 (en) | Programmable low-dropout regulator and methods therefor | |
US7619402B1 (en) | Low dropout voltage regulator with programmable on-chip output voltage for mixed signal embedded applications | |
US7541787B2 (en) | Transistor drive circuit, constant voltage circuit, and method thereof using a plurality of error amplifying circuits to effectively drive a power transistor | |
US6448844B1 (en) | CMOS constant current reference circuit | |
US10122270B2 (en) | Tunable voltage regulator circuit | |
US20070296392A1 (en) | Bandgap reference circuits | |
US7843279B2 (en) | Low temperature coefficient oscillator | |
EP1065580B1 (en) | Voltage regulating circuit for a capacitive load | |
US10061334B2 (en) | Voltage regulator | |
CN101093401A (en) | Bandgap Voltage Reference Circuit | |
JPH0690120A (en) | Reference circuit and output current control method | |
WO2016154132A1 (en) | Bandgap voltage generation | |
US8593887B2 (en) | Semiconductor device having reference voltage generating unit | |
KR102444199B1 (en) | Voltage compensation circuit including low-dropout regulators and method of operation thereof | |
JP2002169618A (en) | Constant-voltage power circuit and electronic equipment incorporating the constant-voltage power circuit | |
CN109150164B (en) | Chip for generating constant reference current | |
CN110612499B (en) | Voltage regulator | |
CN108664067B (en) | Low Leakage Low Dropout Regulator with High Bandwidth and Power Supply Rejection | |
JP2006352034A (en) | Fuse circuit and electronic circuit | |
US12040752B2 (en) | Bandgap amplifier biasing and startup scheme | |
US8716994B2 (en) | Analog circuit configured for fast, accurate startup | |
EP3101806B1 (en) | Variable gain amplifier circuit, controller of main amplifier and associated control method | |
CN219225374U (en) | a bias circuit | |
US20250021122A1 (en) | Switch control voltage generator, bandgap reference generator, and method for generating switch voltage thereof |