TWI441343B - 反向變質多接面太陽能電池中異質接面子電池 - Google Patents
反向變質多接面太陽能電池中異質接面子電池 Download PDFInfo
- Publication number
- TWI441343B TWI441343B TW097140523A TW97140523A TWI441343B TW I441343 B TWI441343 B TW I441343B TW 097140523 A TW097140523 A TW 097140523A TW 97140523 A TW97140523 A TW 97140523A TW I441343 B TWI441343 B TW I441343B
- Authority
- TW
- Taiwan
- Prior art keywords
- energy gap
- subcell
- cell
- sub
- solar cell
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims description 179
- 239000000758 substrate Substances 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 48
- 239000004065 semiconductor Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 42
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 22
- 239000011229 interlayer Substances 0.000 claims description 20
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 240000002329 Inga feuillei Species 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 114
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000002131 composite material Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000003667 anti-reflective effect Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- -1 GaInP Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/148—Shapes of potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/142—Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
- H10F10/1425—Inverted metamorphic multi-junction [IMM] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/144—Photovoltaic cells having only PN homojunction potential barriers comprising only Group III-V materials, e.g. GaAs,AlGaAs, or InP photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/163—Photovoltaic cells having only PN heterojunction potential barriers comprising only Group III-V materials, e.g. GaAs/AlGaAs or InP/GaInAs photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/19—Photovoltaic cells having multiple potential barriers of different types, e.g. tandem cells having both PN and PIN junctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係關於太陽能電池半導體裝置之領域,且特定言之係關於包括變質層之多接面太陽能電池。此類裝置亦包括稱為反向變質多接面太陽能電池之太陽能電池。
光伏電池(亦稱為太陽能電池)係已經在過去幾年中變得可用之最重要新能源之一。已經向太陽能電池開發投入了相當大的努力。因而,太陽能電池當前正用於許多商用及以消費者為導向之應用中。儘管已經在此領域中作出了顯著進步,但對太陽能電池滿足較複雜應用需要之要求尚未能跟上需求。例如用於資料通信中之集線器地面電力系統及人造衛星等應用已經極大地增加了對電力與能量轉換特徵得到改良之太陽能電池之需求。
在人造衛星及其他太空相關應用中,人造衛星電力系統之大小、品質及成本取決於所使用之太陽能電池之電力與能量轉換效率。換言之,有效載荷之大小及機載服務之可用性與所提供之電力量成比例。因此,隨著有效載荷變得較為複雜,太陽能電池(其充當機載電力系統之電力轉換裝置)變得愈加重要。
太陽能電池經常被製作成垂直多接面結構,且設置成水平陣列,其中各個太陽能電池串聯連接在一起。陣列之形狀及結構以及其所含有之電池數目部分由所需之輸出電壓及電流決定。
例如在M.W.萬勒斯(M.W. Wanless)等人的"用於高效能III-V光伏能量轉換器之晶格失配方法"(第31屆IEEE光伏專家會議之會議記錄,2005年1月3日至7日,IEEE出版社2005年出版)中描述之反向變質太陽能電池結構展現將來商用高效率太陽能電池開發之重要概念出發點。此參考文獻中所描述之結構展現許多與材料及製作步驟之恰當選擇有關的實際困難。
在本發明之前,先前技術中所揭示之材料及製作步驟尚不足以使用反向變質多接面電池結構生產商業可行且能量高效之太陽能電池。
簡要且概括而言,本發明提供多接面太陽能電池,該多接面太陽能電池包括:底部子電池,其具有在0.8至1.2eV範圍內的能隙;中部子電池,其具有基極及發射極、在1.2至1.6eV之範圍內的能隙,且設置於底部電池上方並與之晶格失配;以及頂部子電池,其具有基極及發射極,且設置於中部電池上方並與之晶格失配,其中該中部及該底部子電池中之基極-發射極接面中的至少一者係異質接面。
在另一態樣中,本發明提供一種多接面太陽能電池’該多接面太陽能電池包括:上部第一太陽能子電池,其具有基極及發射極且具有第一能隙;中部第二太陽能子電池,其鄰近於第一太陽能子電池並具有小於第一能隙之第二能隙且具有異質接面基極及發射極;分級夾層,其鄰近於第二太陽能子電池,該分級夾層具有大於第二能隙之第三能隙;以及下部太陽能子電池,其鄰近於分級夾層,該下部子電池具有小於第二能隙之第四能隙,使得第三子電池相對於第二子電池晶格失配。
在另一態樣中,本發明提供一種光伏太陽能電池,其包括:頂部子電池,其包括具有InGaP半導體材料之基極及發射極層;中部子電池,其包括具有GaAs半導體材料之基極層及具有InGaP半導體材料之發射極層;以及底部子電池,其包括由InGaP構成之發射極層及由InGaAs半導體材料構成之基極層。
在另一態樣中,本發明提供一種多接面太陽能電池,其包括:第一子電池,其包含具有第一能隙及第一晶格常數之第一半導體材料;第二子電池,其包含具有異質接面基極及發射極以及第二能隙及第二晶格常數之第二半導體材料,其中第二能隙小於第一能隙且第二晶格常數大於第一晶格常數;以及晶格常數過渡材料,其安置於第一子電池與第二子電池之間,該晶格常數過渡材料具有自第一晶格常數逐漸變化至第二晶格常數之晶格常數。
在另一態樣中,本發明提供一種形成多接面太陽能電池之方法,該方法包含:形成第一子電池,其包含具有第一能隙及第一晶格常數之第一半導體材料;形成第二子電池,其包含具有第二能隙及第二晶格常數之第二半導體材料,其中第二能隙小於第一能隙且第二晶格常數大於第一晶格常數;以及形成晶格常數過渡材料,其安置於第一子電池與第二子電池之間,該晶格常數過渡材料具有自第一晶格常數逐漸變化至第二晶格常數之晶格常數,其中該等子電池中的至少一者包括異質接面。
在另一態樣中,本發明提供一種形成多接面太陽能電池之方法,該方法包括:形成底部子電池,其具有在0.8至1.2eV範圍內的能隙;形成中部子電池,其具有基極及發射極、在1.2至1.6eV範圍內的能隙,且設置於底部電池上方並與之晶格失配;以及形成頂部子電池,其具有基極及發射極,且設置於中部電池上方並與之晶格失配,其中該中部及該頂部子電池中之基極-發射極接面中的至少一者係異質接面。
在另一態樣中,本發明提供一種形成包含上部子電池、中部子電池及下部子電池之多接面太陽能電池之方法,該方法包括:提供第一基板以用於半導體材料之磊晶成長;在該基板上形成具有基極及發射極之第一太陽能子電池,其具有第一能隙;在第一太陽能子電池上方形成具有基極及發射極之第二太陽能子電池,其具有小於第一能隙之第二能隙;在第二子電池上方形成分級夾層,該分級夾層具有大於第二能隙之第三能隙;以及在分級夾層上方形成具有基極及發射極之第三太陽能子電池,其具有小於第二能隙之第四能隙,使得第三子電池相對於第二子電池晶格失配,其中該等子電池中的至少一者具有異質接面基極-發射極層。
一種形成光伏太陽能電池之方法,該方法包括:形成頂部電池,其包括InGaP半導體材料之基極及發射極層;形成中部電池,其包括具有GaAs半導體材料之基極層及具有InGaP半導體材料之發射極層;以及形成底部電池,其包括由InGaP構成之發射極層及由InGaAs半導體材料構成之基極層。
在另一態樣中,本發明提供一種藉由以下方式來製造太陽能電池之方法:提供第一基板;在第一基板上沈積半導體材料之層序列,從而形成太陽能電池,其中包括至少一個異質接面子電池;在該層序列之上安裝替代基板;以及移除第一基板。
現將描述本發明之細節,包括其示範性態樣及實施例。參看圖式及以下描述,使用相同參考標號來標識相同或功能相似之元件,且希望其以高度簡化之圖解方式說明示範性實施例之主要特徵。此外,並不希望圖式描繪實際實施例之每個特徵或所描繪元件之相對尺寸,且圖式並未按比例繪示。
製作反向變質多接面(IMM)太陽能電池之基本概念係以"顛倒"次序在基板上成長太陽能電池之子電池。意即,在半導體成長基板(例如,GaAs或Ge)上磊晶成長高能隙子電池(即,具有在1.8至2.1eV範圍內之能隙的子電池),其將通常作為面向太陽能輻射之"頂部"子電池,且因此,此類子電池與此基板晶格匹配。接著可在高能隙子電池上成長一或多個較低能隙中部子電池(即,具有在1.2至1.6eV範圍內的能隙)。
在中部子電池上方形成至少一個下部子電池,使得該至少一個下部子電池相對於成長基板大致上晶格失配,且使得該至少一個下部子電池具有第三較低能隙(即,在0.8至1.2eV範圍內的能隙)。在"底部"或大致上晶格失配之下部子電池上方提供替代基板或支撐基板,且隨後移除成長半導體基板。(該成長基板隨後可接著再次用於第二及後續太陽能電池之成長)。
本申請案大體上係針對一種反向變質多接面太陽能電池及其製作方法,該太陽能電池併入有一或多個異質接面。如轉讓給本共同受讓人之法塔米(Fatemi)等人的第7,071,407號相關美國專利中陳述,使用具有晶格匹配及最佳能隙兩者以增強太陽能電池效能之半導體材料係至關重要的。在本發明之一個實施例中,使用較高能隙異質接面中部子電池以增加所產生之光電流及太陽能頻譜的覆蓋範圍。
用高能隙異質接面中部子電池替換習知之同質接面中部子電池除了增加光產生之光電流以外亦具有其他好處。如法塔米等人的第7,071,407號相關美國專利中陳述,高能隙異質接面減少暗飽和電流,即在零照射下形成的熱產生之電荷載流子。
根據以下關係式確定開路電壓(Voc
):
其中k為玻爾茲曼常數(Boltzman constant),T為溫度,q為電子電荷,Jsc
為短路電流密度,n為二極體理想因數,且Jsat
為二極體之飽和電流密度。換言之,使用高能隙異質接面中部子電池降低暗飽和電流,且因而提供較大開路電壓(Voc
)。
具有高能隙異質接面中部子電池之三接面太陽能電池結構提供較高開路電壓及較高短路電流。換言之,藉由利用較高能隙發射極異質接面增加日光或光生光電流,因為與基極區中之吸收相比,可吸收在發射極區中之光子量相對較低。因此,使用異質接面中部子電池之另一優點係具有高能隙半導體材料之發射極較有效地將子能隙日光傳遞至基極區。因此,高能隙異質接面中部子電池提供較大短路電流,因為其提供對光生載流子之較高平均收集概率。
作為背景,圖1係表示某些二元材料及其晶格常數之能隙之曲線圖。三元材料之能隙及晶格常數位於在典型相關聯二元材料之間所繪示之實線上(例如,在曲線圖上GaAlAs介於GaAs與AlAs點之間,其中能隙在GaAs之1.42eV與AlAs之2.16eV之間變動)。因此,依據所需之能隙而定,可恰當地選擇三元材料之材料成分以用於成長。
半導體結構中之各層之晶格常數及電學性質較佳藉由指定恰當反應物成長溫度及時間且藉由使用恰當成分及摻雜劑來控制。使用汽相沈積方法(例如有機金屬汽相磊晶(OMVPE)、金屬有機化學汽相沈積(MOCVD)、分子束磊晶(MBE)或用於顛倒成長之其他汽相沈積方法)可使得形成電池之在單片半導體結構中的層能夠成長為具有所需厚度、元素成分、摻雜劑濃度以及分級及導電性類型。
圖2描繪在基板上磊晶成長三個子電池A、B及C之後根據本發明之反向變質多接面(IMM)太陽能電池結構。上文所述之相關專利申請案中描述之IMM太陽能電池結構之早期實施例併入有同質接面子電池,即基極/發射極層由p-InGaP/n-InGaP頂部電池、n-GaAs/p-GaAs中部電池及n-InGaAs/p-InGaAs底部電池組成。對此類太陽能電池所作之內部量子效率及Voc
資料量測之分析指示此類子電池可受益於藍色回應之改良及暗電流之降低。
太陽能電池之藍色回應之降級與發射極中及窗口/發射極介面處之複合電流相關聯。若位於頂部子電池下方之子電池之發射極能隙(即,中部及底部子電池發射極能隙)大於或等於頂部電池能隙,則將不存在任何輻射將被吸收在發射極中。撞擊於較低能隙子電池上之所有輻射將被吸收在較低摻雜、較佳收集之基極區中,進而使藍色回應最大化。另外,下部子電池發射極及發射極/窗口區中將不存在光學吸收所產生之複合電流。承認,電流收集之改良及增大之Voc
值可能較小,但其對最佳化電池效能具有重要作用。
問題為使來自每一子電池之短路電流密度(Jsc
)及開路電壓(Voc
)最大化。發射極中及窗口/發射極介面處之光學產生之複合電流負面影響Jsc
及Voc
兩者。此問題常常藉由以下方式來解決:(1)成長具有大價能隙偏移之非常低缺陷之窗口/發射極介面,以及(2)在發射極中併入漂移場以將少數載流子驅動至接面。本發明自子電池效能中消除窗口/發射極介面及發射極之光學性質,因為大致所有光學產生之少數載流子均係在基極區中形成。
轉向圖2中所描繪之太陽能電池結構,其中展示基板101,其可為砷化鎵(GaAs)、鍺(Ge)或其他合適之材料。在Ge基板的情況下,在基板上直接沈積成核層(未圖示)。在基板上或在成核層上方(在Ge基板的情況下),進一步沈積緩衝層102及蝕刻終止層103。在GaAs基板的情況下,緩衝層102較佳為GaAs。在Ge基板的情況下,緩衝層102較佳為InGaAs。接著在層103上沈積GaAs之接觸層104,且在接觸層上沈積AlInP之窗口層105。接著在窗口層105上磊晶沈積子電池A,該子電池A由n+發射極層106及p型基極層107組成。子電池A大體上與成長基板101晶格匹配。
應注意,該多接面太陽能電池結構可由週期表中列舉之III至V族元素之任何合適組合(其服從晶格常數及能隙要求)形成,其中III族包括硼(B)、鋁(Al)、鎵(Ga)、銦(In)及鉈(T)。IV族包括碳(C)、矽(Si)、鍺(Ge)及錫(Sn)。V族包括氮(N)、磷(P)、砷(As)、銻(Sb)及鉍(Bi)。
在較佳實施例中,發射極層106由InGa(Al)P組成,且基極層107由InGa(Al)P組成。在前述化學式中位於括號中之鋁或Al項意味著Al係可選成分,且在此情況下可按照在0%至30%範圍內的量使用。根據本發明之發射極層106及基極層107之摻雜分布將結合圖16來論述。
子電池A將在完成根據本發明之製程步驟之後最終成為反向變質結構之"頂部"子電池,該等製程步驟將在下文中描述。
在基極層178之上沈積背面電場("BSF")層108,其用於降低複合損耗,較佳為p+ AlGaInP。
BSF層108自基極/BSF分界面附近之區域驅動少數載流子以使複合損耗效應最小化。換言之,BSF層18降低太陽能子電池A之背側處之複合損耗,且進而降低基極中之複合。
在BSF層108之上沈積重度摻雜p型及n型層序列109,該序列形成隧道二極體,其係用以將子電池A連接至子電池B之電路元件。該等層較佳由p++ AlGaAs及n++ InGaP組成。
在隧道二極體層109之上沈積窗口層110,其較佳為n+ InAlP。子電池B中所使用之窗口層110亦操作以降低複合損耗。窗口層110亦改良下伏接面之電池表面之鈍化作用。熟習此項技術者應明白,可在不脫離本發明範疇的情況下在電池結構中添加或刪除額外層。
在窗口層110之上沈積子電池B之各層:n型發射極層111及p型基極層112。該等層較佳地分別由InGaP及In0.015
GaAs組成(對於Ge基板或成長模板),或分別由InGaP及GaAs組成(對於GaAs基板),但亦可使用符合晶格常數及能隙要求之其他任何合適的材料。因此,子電池B可由GaAs、GaInP、GaInAs、GaAsSb或GaInAsN發射極區及GaAs、GaInAs、GaAsSb或GaInAsN基極區組成。根據本發明之層111及112之摻雜分布將結合圖16來論述。
在本發明之較佳實施例中,中部子電池發射極具有等於頂部子電池發射極之能隙,且底部子電池發射極具有大於中部子電池之基極之能隙的能隙。因此,在製作太陽能電池並進行實施及操作之後,中部子電池B或底部子電池C發射極將均不會暴露於可吸收輻射。大體上,輻射將被吸收在電池B及C之基極中,其具有比發射極窄的能隙。因此,使用異質接面子電池之優點為:(1)該兩個子電池之短波長回應將改良,且(2)發射極/窗口介面處及發射極中之複合電流將減少。該等結果將增加Jsc
及Voc
。
在電池B之上沈積BSF層113,其執行與BSF層109相同之功能。在BSF層113上方沈積p++/n++隧道二極體114,其類似於層109,從而再次形成用以將子電池B連接至子電池C之電路元件。該等層114較佳為p++ AlGaAs及n++ InGaP之混合物。
在隧道二極體114上方沈積障壁層115(較佳地,由n型InGa(Al)P組成),到達約1.0微米之厚度。此障壁層既定用以防止螺旋位錯在與成長方向相反之方向上傳播至中部子電池B及頂部子電池C中或在成長方向上傳播至底部子電池A中,且在2007年9月24日申請之第11/860,183號共同待決美國專利申請案中更明確地描述。
在障壁層115上方沈積變質層(或分級夾層)116。層116較佳為一系列成分階梯分級之InGaAlAs層,其較佳具有單調變化之晶格常數,以便實現自子電池B至子電池C之半導體結構中之晶格常數之逐步過渡,同時使螺旋位錯發生最小化。層116之能隙在其整個厚度中恆定不變,較佳接近1.5eV或者符合略微大於中間子電池B之能隙的值。分級夾層之較佳實施例亦可表達為由(Inx
Ga1-x
)y
Al1-y
As組成,其中x及y經選擇以使得夾層之能隙保持恆定為近似1.50eV。
在替代實施例中,太陽能電池僅具有兩個子電池,且"中部"電池B係最終太陽能電池中之最上部或頂部子電池,其中"頂部"子電池B將通常具有1.8至1.9eV之能隙,則夾層之能隙將保持恆定為1.9eV。
在上文引用之萬勒斯等人論文中所描述之反向變質結構中,變質層由九個成分分級InGaP階梯構成,其中每一階梯層具有0.25微米之厚度。因而,萬勒斯之每一層具有不同能隙。在本發明之較佳實施例中,層116由多個InGaAlAs層組成,其具有單調變化之晶格常數,每一層具有相同能隙,接近1.5eV。
利用例如InGaAlAs等恆定能隙材料之優點為基於砷化物之半導體材料在標準MOCVD反應器中要容易處理得多,同時少量鋁確保變質層之輻射透明度。
雖然本發明之較佳實施例出於可製造性及輻射透明度的原因而針對變質層116利用多個InGaAlAs層,但本發明之其他實施例可利用不同材料系統以實現自子電池B至子電池C之晶格常數變化。因此,使用成分分級InGaP之萬勒斯之系統係本發明之第二實施例。本發明之其他實施例可利用連續分級(與階梯分級相反)的材料。更一般而言,分級夾層可由基於As、P、N、Sb之III-V化合物半導體中之任一者組成,該等半導體經受具有大於或等於第二太陽能電池之晶格參數的平面內晶格參數,且小於或等於第三太陽能電池之晶格參數,並且具有大於第二太陽能電池之能隙能量之能隙能量的限制。
在本發明之另一實施例中,可在InGaAlAs變質層116上方沈積可選之第二障壁層117。第二障壁層117通常將具有與障壁層115之成分不同的成分,且執行本質上相同功能,即防止螺旋位錯傳播。在較佳實施例中,障壁層117係n+型GaInP。
接著在障壁層117上方(或在沒有第二障壁層的情況下,直接在層116上方)沈積窗口層118,其宜由n+型GaInP組成。此窗口層操作以降低子電池"C"中之複合損耗。熟習此項技術者應明白,可在不脫離本發明範疇的情況下,於電池結構中添加或刪除額外層。
在窗口層118之上沈積電池C之各層:n發射極層119及P型基極層120。該等層宜分別由n型InGaAs及p型InGaAs組成,或對於異質接面子電池而由n型InGaP及p型InGaAs組成,但亦可使用符合晶格常數及能隙要求之另一合適材料。層119及120之摻雜分布將結合圖16來論述。
接著在電池C之上沈積BSF層121,其較佳由GaInAsP組成,該BSF層執行與BSF層108及113相同的功能。
最後,在BSF層121上沈積由GaInAs組成之P++接觸層122。
熟習此項技術者應明白,可在不脫離本發明範疇的情況下在電池結構中添加或刪除額外層。
圖3係在下一製程步驟之後圖2之太陽能電池之橫截面圖,在該製程步驟中在p+半導體接觸層122上方沈積金屬接觸層123。該金屬較佳為金屬層序列Ti/Au/Ag/Au。
圖4係在下一製程步驟之後圖3之太陽能電池之橫截面圖,在該製程步驟中在金屬層123上方沈積黏合劑層124。該黏合劑較佳為晶圓接合劑(由密蘇里州羅拉(Rolla,MO.)之布魯爾科技有限公司(Brewer Science,Inc.)製造)。
圖5A係在下一製程步驟之後圖4之太陽能電池之橫截面圖,在該製程步驟中附接替代基板125,其較佳為藍寶石。或者,該替代基板可為GaAs、Ge或Si,或者其他合適材料。替代基板之厚度約為40密耳,且經穿孔有直徑約為1mm且間隔開4mm的孔,以輔助隨後移除黏合劑及基板。作為對使用黏合劑層124之替代方案,可將合適之基板(例如,GaAs)以共熔方式接合至金屬層123。
圖5B係在下一製程步驟之後圖5A之太陽能電池之橫截面圖,在該製程步驟中藉由研磨及/或蝕刻步驟之序列移除原始基板,其中移除基板101、緩衝層103及蝕刻終止層103。特定蝕刻劑之選擇取決於成長基板。
圖5C係圖5B之太陽能電池之橫截面圖,其具有使替代基板125位於該圖式底部之定向。本申請案中之後續圖式將採用此定向。
圖6係圖5B之太陽能電池之簡化橫截面圖,其僅描繪位於替代基板125上方之若干頂部層及下部層。
圖7係在下一製程步驟之後圖6之太陽能電池之橫截面圖,在該製程步驟中藉由HCl/H2
O溶液移除蝕刻終止層103。
圖8係在下一製程步驟序列之後圖7之太陽能電池之橫截面圖,在該製程步驟中在接觸層104上方放置光阻遮罩(未圖示)以形成網格線501。經由蒸發沈積網格線501並以微影方式對其進行圖案化,且使其沈積在接觸層104上方。提離該遮罩以形成金屬網格線501。
圖9係在下一製程步驟之後圖8之太陽能電池之橫截面圖,在該製程步驟中使用該等網格線作為遮罩以使用檸檬酸/過氧化物蝕刻混合物向下蝕刻表面到達窗口層105。
圖10A係其中實施太陽能電池之晶圓之頂部平面圖。僅出於說明之目的而描繪四個電池,且本發明不限於每個晶圓任何特定電池數目。
在每一電池中,存在網格線501(圖9之橫截面中更明確地展示)、互連匯流排線502及接觸墊503。網格及匯流排線之幾何形狀及數目係說明性的,且本發明不限於所說明之實施例。
圖10B係圖10A所展示之具有四個太陽能電池之晶圓之底部平面圖。
圖11係在下一製程步驟之後圖11之太陽能電池之橫截面圖,在該製程步驟中在具有網格線501之晶圓之"底部"側的整個表面上方施加抗反射(ARC)介電塗覆層130。
圖12係根據本發明在下一製程步驟之後圖11之太陽能電池之橫截面圖,在該製程步驟中使用磷化物及砷化物蝕刻劑向下蝕刻溝道510及半導體結構之一部分到達金屬層123,從而界定外圍邊界並留下平台結構,該平台結構構成太陽能電池。圖12中所描繪之橫截面係如自圖13所示之A-A平面看到的橫截面。
圖13係圖12之晶圓之頂部平面圖,其描繪使用磷化物及砷化物蝕刻劑在每一電池之周邊周圍蝕刻之溝道510。
圖14A係本發明第一實施例中在下一製程步驟之後圖12之太陽能電池之橫截面圖,在該製程步驟中藉由碾磨、研磨或蝕刻近似地使替代基板125薄化為相對較薄的層125a。
圖14B係本發明第二實施例中在下一製程步驟之後圖14A之太陽能電池之橫截面圖,在該製程步驟中藉由黏合劑將覆蓋玻璃緊固至電池頂部。
圖15係本發明第三實施例中在下一製程步驟之後圖14B之太陽能電池之橫截面圖,在該製程步驟中將覆蓋玻璃緊固至電池頂部且完全移除替代基板125,從而僅留下形成太陽能電池之背側接觸之金屬接觸層123。該替代基板可在後續晶圓處理操作中再次使用。
圖16係本發明之反向變質多接面太陽能電池之一或多個子電池中之發射極及基極層中之摻雜分布的曲線圖。本發明範疇內之各種摻雜分布及此類摻雜分布之優點在2007年12月13日申請且以引用之方式併入本文中的第11/956,069號共同待決美國專利申請案中更明確地描述。本文所描繪之摻雜分布僅為說明性的,且在不脫離本發明範疇的情況下,可利用其他更複雜分布,如熟習此項技術者將明白。
將瞭解,上文描述之元件中之每一者或兩者或兩者以上一起亦可有效地應用於不同於上述類型之構造的其他類型構造中。
雖然本發明之較佳實施例利用三個子電池之垂直堆疊,但本發明可應用於具有更少或更大數目之子電池(即,雙接面電池、四接面電池、五接面電池等)的堆疊。在四接面或更多接面電池的情況下,亦可利用一個以上變質分級夾層之使用。
根據本發明之結構及方法可應用於藉由適當選擇成長基板之導電性類型而形成具有p/n或n/p配置或兩者之電池。若成長基板具有與電池中之p及n層序列之配置所需要之導電性類型相反的導電性類型,則可在整個電池中使用恰當隧道二極體,如本發明中所說明。
另外,雖然較佳實施例經配置為具有頂部及底部電觸點,但可替代地借助於到達位於子電池之間的側面導電半導體層之金屬觸點來接觸子電池。此類配置可用於形成3端子、4端子及一般而言,n端子裝置。子電池可使用該等額外端子在電路中互連,使得可有效地使用每一子電池中之大部分可用光生電流密度,從而使多接面電池得到高效率,儘管光生電流密度通常在各種子電池中有所不同。
如上文陳述,本發明可利用一或多個或所有同質接面電池或子電池(即,其中在p型半導體與n型半導體之間形成p-n接面之電池或子電池,該p型半導體與該n型半導體兩者具有相同化學成分及相同能隙,不同之處僅為摻雜劑種類及類型)或者一或多個異質接面電池或子電池的布置。具有p型及n型InGaP之子電池A係同質接面子電池之一個實例。或者,如2008年1月_日申請之第11/_號美國專利申請案中更明確地描述,本發明可利用一或多個或所有異質接面電池或子電池,即其中在p型半導體與n型半導體之間形成p-n接面之電池或子電池,其中除了在形成p接面之p型及n型區中利用不同摻雜劑種類及類型以外,在n型及n型區中亦具有半導體材料之不同化學成分及/或在p型區中具有不同能隙能量。
在一些電池中,可在發射極層與基極層之間放置較薄之所謂"本徵層",其具有與發射極或基極層相同或不同的成分。本徵層用以抑制空間電荷區中之少數載流子複合。類似地,基極層或發射極層亦可在其厚度之一部分或全部上方為本徵的或非有意摻雜("ND")的。
窗口或BSF層之成分可利用服從晶格常數及能隙要求之其他半導體化合物,且可包括AlInP、AlAs、AlP、AlGaInP、AlGaAsP、AlGaInAs、AlGaInPAs、GaInP、GaInAs、GaInPAs、AlGaAs、AlInAs、AlInPAs、GaAsSb、AlAsSb、GaAlAsSb、AlInSb、GaInSb、AlGaInSb、AlN、GaN、InN、GaInN、AlGaInN、GaInNAs、AlGaInNAs、ZnSSe、CdSSe及類似材料,且仍落在本發明之精神內。
儘管已將本發明說明並描述為在反向變質多接面太陽能電池中實施,但不希望其侷限於所展示之細節,因為可在不以任何方式脫離本發明之精神的情況下作出各種修改及結構改變。
因此,儘管對本發明之描述主要集中於太陽能電池或光伏裝置,但熟習此項技術者知道,例如熱光伏(TPV)電池、光電偵測器及發光二極體(LED)等其他光電子裝置在結構、物理學及材料上非常類似於光伏裝置,僅在摻雜等態樣具有一些微小變化。舉例來說,光電偵測器可由與上文描述之光伏裝置類似之III-V材料及結構製成,但可能具有較多輕微摻雜區以實現光敏感性而非使電力產生最大化。同樣,LED亦可用類似結構及材料製作,但可能具有較多重度摻雜區以縮短複合時間,因此縮短用以產生光而非電力之輻射壽命。因此,本發明亦適用於具有如上文針對光伏電池所描述之類似結構、材料及物質成分、相關製造物件及改良之光電偵測器及LED。
在不作進一步分析的情況下,前文將全面揭示本發明之要點,使得其他人能夠在不省略自先前技術之觀點來看清楚地構成本發明之一般或特定態樣之本質特性之特徵的情況下藉由應用當前知識來容易地將其修改用於各種應用,且因此,此類修改應當並希望涵蓋於以下申請專利範圍之等效物之意義及範疇內。
1...電池
2...電池
3...電池
4...電池
101...基板
102...緩衝層
103...蝕刻終止層
104...接觸層
105...窗口層
106...發射極層/n+發射極層
107...基極層/p型基極層
108...背面電場("BSF")層
109...隧道二極體層/p型及n型層序列
110...窗口層
111...n型發射極層
112...p型基極層
113...BSF層
114...p++/n++隧道二極體/隧道二極體
115...障壁層
116...變質層(或分級夾層)
117...第二障壁層
118...窗口層
119...n發射極層
120...p型基極層
121...BSF層
122...P++接觸層/p+半導體接觸層
123...黏合劑層
125...替代基板
125a...相對較薄的層
130...抗反射(ARC)介電塗覆層
501...網格線
502...互連匯流排線
503...接觸墊
510...溝道
A...電池
B...電池
C...電池
圖1係表示某些二元材料之能隙及其晶格常數之曲線圖;
圖2係在成長基板上沈積半導體層之後本發明之太陽能電池之橫截面圖;
圖3係在下一製程步驟之後圖2之太陽能電池之橫截面圖;
圖4係在下一製程步驟之後圖3之太陽能電池之橫截面圖;
圖5A係在下一製程步驟之後圖4之太陽能電池之橫截面圖,在該製程步驟中附接替代基板;
圖5B係在下一製程步驟之後圖5A之太陽能電池之橫截面圖,在該製程步驟中移除原始基板;
圖5C係圖5B之太陽能電池之另一橫截面圖,其中替代基板位於該圖式底部;
圖6係在下一製程步驟之後圖5C之太陽能電池之簡化橫截面圖;
圖7係在下一製程步驟之後圖6之太陽能電池之橫截面圖;
圖8係在下一製程步驟之後圖7之太陽能電池之橫截面圖;
圖9係在下一製程步驟之後圖8之太陽能電池之橫截面圖;
圖10A係其中製作太陽能電池之晶圓之頂部平面圖;
圖10B係其中製作太陽能電池之晶圓之底部平面圖;
圖11係在下一製程步驟之後圖9之太陽能電池之橫截面圖;
圖12係在下一製程步驟之後圖11之太陽能電池之橫截面圖;
圖13係在下一製程步驟之後圖12之晶圓之頂部平面圖,在該製程步驟中在電池周圍蝕刻出溝渠;
圖14A係本發明第一實施例中在下一製程步驟之後圖12之太陽能電池之橫截面圖;
圖14B係本發明第二實施例中在下一製程步驟之後圖14A之太陽能電池之橫截面圖;
圖15係本發明第三實施例中在下一製程步驟之後圖14B之太陽能電池之橫截面圖;以及
圖16係根據本發明之變質太陽能電池中之基極層中之摻雜分布的曲線圖。
101...基板
102...緩衝層
103...蝕刻終止層
104...接觸層
105...窗口層
106...發射極層/n+發射極層
107...基極層/p型基極層
108...背面電場("BSF")層
109...隧道二極體層/p型及n型層序列
110...窗口層
111...n型發射極層
112...p型基極層
113...BSF層
114...p++/n++隧道二極體/隧道二極體
115...障壁層
116...變質層(或分級夾層)
117...第二障壁層
118...窗口層
119...n發射極層
120...p型基極層
121...BSF層
122...P++接觸層/p+半導體接觸層
123...金屬層/金屬接觸層
A...電池
B...電池
C...電池
Claims (13)
- 一種多接面太陽能電池,其包含:一上部子電池,其具有一第一能隙;一中部子電池,其鄰近於該上部子電池並具有一小於該第一能隙之第二能隙,且具有一異質接面基極及發射極;一不含磷的分級夾層,其鄰近於該中部子電池,該分級夾層具有一大於該第二能隙之第三能隙;以及一下部子電池,其鄰近於該分級夾層,該下部子電池具有一小於該第二能隙之第四能隙,使得該下部子電池相對於該中部子電池晶格失配。
- 如請求項1之多接面太陽能電池,其中該分級夾層在成分上經分級,以使一側上之該中部子電池與另一側上之該下部子電池晶格匹配。
- 如請求項1之多接面太陽能電池,其中該分級夾層由基於As、N、Sb之III-V化合物半導體中之任一者構成,該等半導體經受具有大於或等於該中部子電池之平面內晶格參數且小於或等於該下部子電池之平面內晶格參數之平面內晶格參數,並且具有一大於該中部子電池之能隙能量之能隙能量的限制。
- 如請求項1之多接面太陽能電池,其中該分級夾層由(Inx Ga1-x )y Al1-y As構成。
- 如請求項1之多接面太陽能電池,其中該上部子電池由InGa(Al)P構成。
- 如請求項1之多接面太陽能電池,其中該中部子電池由InGaP發射極層及一GaAs或In0.015 GaAs基極層構成。
- 如請求項1之多接面太陽能電池,其中該下部子電池由一InGaAs基極層及一InGaP發射極層構成,該InGaP發射極層與該基極晶格匹配。
- 如請求項1之多接面太陽能電池,其中該下部子電池具有一在0.8至1.2eV範圍內的能隙,該中部子電池具有一在1.2至1.6eV範圍內的能隙;且該上部子電池設置在該中部子電池上方並與之晶格匹配,且具有一在1.8至2.1eV範圍內的能隙。
- 如請求項8之多接面太陽能電池,其中該下部子電池設置在一選自由藍寶石、GaAs、Ge或Si之群組的基板上方,且藉由一黏合劑接合至該基板。
- 一種形成一多接面太陽能電池之方法,其包含:形成一第一子電池,其包含一具有一第一能隙及一第一晶格常數之第一半導體材料;形成一第二子電池,其包含一具有一第二能隙及一第二晶格常數之第二半導體材料,其中該第二能隙小於該第一能隙且該第二晶格常數大於該第一晶格常數;以及形成一晶格常數過渡材料,其安置於該第一子電池與該第二子電池之間,該晶格常數過渡材料具有一自該第一晶格常數逐漸變化至該第二晶格常數之晶格常數,該晶格常數過渡材料不包括磷,且具有一大於該第一能隙之第三能隙。
- 如請求項10之方法,其中該過渡材料由基於As、P、N、Sb之III-V化合物半導體中之任一者構成,該等半導體經受具有大於或等於該第一子電池之平面內晶格參數且小於或等於該第二子電池之平面內晶格參數之平面內晶格參數,並且具有一大於該第二子電池之能隙能量之能隙能量的限制,且該晶格常數過渡材料之該能隙保持恆定在1.50eV。
- 如請求項10之方法,其中該第一子電池係由一GaInP、GaAs、GaInAs、GaAsSb或GaInAsN發射極區及一GaAs、GaInAs、GaAsSb或GaInAsN基極區構成,且該第二子電池係由一InGaAs基極及發射極區構成。
- 如請求項10之方法,其中該第二子電池具有一在0.8至1.2eV範圍內之能隙;及該第一子電池具有一在1.2至1.6eV範圍內的能隙,且設置在該第二子電池上方並與之晶格失配。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/023,772 US20090078310A1 (en) | 2007-09-24 | 2008-01-31 | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200941741A TW200941741A (en) | 2009-10-01 |
TWI441343B true TWI441343B (zh) | 2014-06-11 |
Family
ID=40720009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097140523A TWI441343B (zh) | 2008-01-31 | 2008-10-22 | 反向變質多接面太陽能電池中異質接面子電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090078310A1 (zh) |
EP (1) | EP2086024B1 (zh) |
JP (1) | JP5425480B2 (zh) |
CN (1) | CN101499495B (zh) |
TW (1) | TWI441343B (zh) |
Families Citing this family (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100122724A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US20100229926A1 (en) | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US9634172B1 (en) | 2007-09-24 | 2017-04-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US10170656B2 (en) | 2009-03-10 | 2019-01-01 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
US10381501B2 (en) | 2006-06-02 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US9117966B2 (en) | 2007-09-24 | 2015-08-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell |
US20090078309A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US20080029151A1 (en) * | 2006-08-07 | 2008-02-07 | Mcglynn Daniel | Terrestrial solar power system using III-V semiconductor solar cells |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
US20100093127A1 (en) * | 2006-12-27 | 2010-04-15 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US20100233838A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Mounting of Solar Cells on a Flexible Substrate |
US10381505B2 (en) | 2007-09-24 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells including metamorphic layers |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100012175A1 (en) | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US9287438B1 (en) * | 2008-07-16 | 2016-03-15 | Solaero Technologies Corp. | Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US8263853B2 (en) * | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US7741146B2 (en) | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US8330036B1 (en) * | 2008-08-29 | 2012-12-11 | Seoijin Park | Method of fabrication and structure for multi-junction solar cell formed upon separable substrate |
US8912428B2 (en) * | 2008-10-22 | 2014-12-16 | Epir Technologies, Inc. | High efficiency multijunction II-VI photovoltaic solar cells |
US8236600B2 (en) * | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US9018521B1 (en) | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US10541349B1 (en) | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
US7960201B2 (en) * | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US8778199B2 (en) | 2009-02-09 | 2014-07-15 | Emoore Solar Power, Inc. | Epitaxial lift off in inverted metamorphic multijunction solar cells |
US20100206365A1 (en) * | 2009-02-19 | 2010-08-19 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers |
US20100229933A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating |
US9018519B1 (en) | 2009-03-10 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US20100282305A1 (en) | 2009-05-08 | 2010-11-11 | Emcore Solar Power, Inc. | Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys |
US20100319764A1 (en) * | 2009-06-23 | 2010-12-23 | Solar Junction Corp. | Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells |
IT1394853B1 (it) * | 2009-07-21 | 2012-07-20 | Cesi Ct Elettrotecnico Sperimentale Italiano Giacinto Motta S P A | Cella fotovoltaica ad elevata efficienza di conversione |
US8263856B2 (en) * | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
DE102009049397B4 (de) | 2009-10-14 | 2018-09-06 | Solaero Technologies Corp. | Herstellungsverfahren mit Surrogatsubstrat für invertierte metamorphische Multijunction-Solarzellen |
DE102009050454A1 (de) * | 2009-10-23 | 2011-04-28 | Emcore Corp. | Vier-Junction-invertierte-metamorphe-Multijunction-Solarzelle mit zwei metamorphen Schichten |
TWI411116B (zh) * | 2009-11-17 | 2013-10-01 | Epistar Corp | 一種高效率太陽能電池 |
US20110114163A1 (en) * | 2009-11-18 | 2011-05-19 | Solar Junction Corporation | Multijunction solar cells formed on n-doped substrates |
DE102009057020B4 (de) * | 2009-12-03 | 2021-04-29 | Solaero Technologies Corp. | Wachstumssubstrate für invertierte metamorphe Multijunction-Solarzellen |
US10340405B2 (en) * | 2009-12-10 | 2019-07-02 | Epir Technologies, Inc. | Tunnel heterojunctions in Group IV/Group II-IV multijunction solar cells |
JP5215284B2 (ja) | 2009-12-25 | 2013-06-19 | シャープ株式会社 | 多接合型化合物半導体太陽電池 |
WO2011077735A1 (ja) * | 2009-12-25 | 2011-06-30 | 住友化学株式会社 | 半導体基板、半導体基板の製造方法及び光電変換装置の製造方法 |
US20110232730A1 (en) | 2010-03-29 | 2011-09-29 | Solar Junction Corp. | Lattice matchable alloy for solar cells |
TWI562195B (en) * | 2010-04-27 | 2016-12-11 | Pilegrowth Tech S R L | Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication |
US8187907B1 (en) | 2010-05-07 | 2012-05-29 | Emcore Solar Power, Inc. | Solder structures for fabrication of inverted metamorphic multijunction solar cells |
US8642883B2 (en) | 2010-08-09 | 2014-02-04 | The Boeing Company | Heterojunction solar cell |
CN101976691B (zh) * | 2010-08-23 | 2012-11-21 | 北京工业大学 | 一种五结化合物半导体太阳能光伏电池芯片 |
US20170338357A1 (en) | 2016-05-23 | 2017-11-23 | Solar Junction Corporation | Exponential doping in lattice-matched dilute nitride photovoltaic cells |
US9214580B2 (en) * | 2010-10-28 | 2015-12-15 | Solar Junction Corporation | Multi-junction solar cell with dilute nitride sub-cell having graded doping |
US10283658B2 (en) * | 2011-02-09 | 2019-05-07 | The Board Of Regents Of The University Of Oklahoma | Interband cascade devices |
US11121272B2 (en) * | 2011-02-09 | 2021-09-14 | Utica Leaseco, Llc | Self-bypass diode function for gallium arsenide photovoltaic devices |
US9716196B2 (en) | 2011-02-09 | 2017-07-25 | Alta Devices, Inc. | Self-bypass diode function for gallium arsenide photovoltaic devices |
US8962991B2 (en) | 2011-02-25 | 2015-02-24 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
US8766087B2 (en) | 2011-05-10 | 2014-07-01 | Solar Junction Corporation | Window structure for solar cell |
WO2012173619A1 (en) * | 2011-06-15 | 2012-12-20 | Epir Technologies, Inc. | Tunnel heterojunctions in group iv / goup ii-vi multijunction solar cells |
WO2013074530A2 (en) | 2011-11-15 | 2013-05-23 | Solar Junction Corporation | High efficiency multijunction solar cells |
US9153724B2 (en) | 2012-04-09 | 2015-10-06 | Solar Junction Corporation | Reverse heterojunctions for solar cells |
EP2650930A1 (de) * | 2012-04-12 | 2013-10-16 | AZURSPACE Solar Power GmbH | Solarzellenstapel |
CN102651417B (zh) * | 2012-05-18 | 2014-09-03 | 中国科学院苏州纳米技术与纳米仿生研究所 | 三结级联太阳能电池及其制备方法 |
CN102790119B (zh) * | 2012-07-19 | 2015-12-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法 |
CN102969387B (zh) * | 2012-11-08 | 2016-01-06 | 王伟明 | GaInP/GaAs/InGaAs三结太阳能电池外延结构 |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
US9559237B2 (en) * | 2013-04-10 | 2017-01-31 | The Boeing Company | Optoelectric devices comprising hybrid metamorphic buffer layers |
US9853180B2 (en) | 2013-06-19 | 2017-12-26 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with surface passivation |
US9768326B1 (en) | 2013-08-07 | 2017-09-19 | Solaero Technologies Corp. | Fabrication of solar cells with electrically conductive polyimide adhesive |
US9214594B2 (en) | 2013-08-07 | 2015-12-15 | Solaero Technologies Corp. | Fabrication of solar cells with electrically conductive polyimide adhesive |
KR20150092608A (ko) * | 2014-02-05 | 2015-08-13 | 엘지전자 주식회사 | 화합물 태양 전지 |
WO2015120169A1 (en) | 2014-02-05 | 2015-08-13 | Solar Junction Corporation | Monolithic multijunction power converter |
JP2016082041A (ja) * | 2014-10-15 | 2016-05-16 | 株式会社リコー | 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法 |
EP3012874B1 (de) * | 2014-10-23 | 2023-12-20 | AZUR SPACE Solar Power GmbH | Stapelförmige integrierte Mehrfachsolarzelle |
US9758261B1 (en) | 2015-01-15 | 2017-09-12 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with lightweight laminate substrate |
US10087535B2 (en) | 2015-03-23 | 2018-10-02 | Alliance For Sustainable Energy, Llc | Devices and methods for photoelectrochemical water splitting |
EP3091583B1 (en) | 2015-05-07 | 2020-09-23 | SolAero Technologies Corp. | Multijunction inverted metamorphic solar cell |
US10361330B2 (en) | 2015-10-19 | 2019-07-23 | Solaero Technologies Corp. | Multijunction solar cell assemblies for space applications |
US9985161B2 (en) | 2016-08-26 | 2018-05-29 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10403778B2 (en) * | 2015-10-19 | 2019-09-03 | Solaero Technologies Corp. | Multijunction solar cell assembly for space applications |
US9935209B2 (en) | 2016-01-28 | 2018-04-03 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10270000B2 (en) | 2015-10-19 | 2019-04-23 | Solaero Technologies Corp. | Multijunction metamorphic solar cell assembly for space applications |
US10256359B2 (en) | 2015-10-19 | 2019-04-09 | Solaero Technologies Corp. | Lattice matched multijunction solar cell assemblies for space applications |
US20170110613A1 (en) | 2015-10-19 | 2017-04-20 | Solar Junction Corporation | High efficiency multijunction photovoltaic cells |
US9929300B2 (en) | 2015-11-13 | 2018-03-27 | Solaero Technologies Corp. | Multijunction solar cells with electrically conductive polyimide adhesive |
EP3171413A1 (en) | 2015-11-20 | 2017-05-24 | SolAero Technologies Corp. | Inverted metamorphic multijunction solar cell |
US10263134B1 (en) | 2016-05-25 | 2019-04-16 | Solaero Technologies Corp. | Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell |
US12249667B2 (en) | 2017-08-18 | 2025-03-11 | Solaero Technologies Corp. | Space vehicles including multijunction metamorphic solar cells |
US10636926B1 (en) | 2016-12-12 | 2020-04-28 | Solaero Technologies Corp. | Distributed BRAGG reflector structures in multijunction solar cells |
WO2019010037A1 (en) | 2017-07-06 | 2019-01-10 | Solar Junction Corporation | HYBRID MOCVD / MBE EPITAXIAL GROWTH OF MULTI-JUNCTION SOLAR CELLS ADAPTED TO THE HIGH-PERFORMANCE NETWORK |
WO2019067553A1 (en) | 2017-09-27 | 2019-04-04 | Solar Junction Corporation | SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER |
CN107768475B (zh) * | 2017-10-27 | 2019-01-01 | 南京工业大学 | 一种太阳能电池组件 |
CN108182911B (zh) * | 2017-11-16 | 2020-03-24 | 青岛海信电器股份有限公司 | 液晶显示装置、led背光电路及led灯条供电电路 |
US20190181289A1 (en) | 2017-12-11 | 2019-06-13 | Solaero Technologies Corp. | Multijunction solar cells |
WO2020168025A1 (en) * | 2019-02-15 | 2020-08-20 | Alta Devices, Inc. | Self-bypass diode function for gallium arsenide photovoltaic devices |
US11211514B2 (en) | 2019-03-11 | 2021-12-28 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions |
DE102019003069B4 (de) * | 2019-04-30 | 2023-06-01 | Azur Space Solar Power Gmbh | Stapelförmige hochsperrende lll-V-Halbleiterleistungsdioden |
EP3799136B1 (de) * | 2019-09-27 | 2023-02-01 | AZUR SPACE Solar Power GmbH | Monolithische mehrfachsolarzelle mit genau vier teilzellen |
CN111092127A (zh) * | 2019-11-26 | 2020-05-01 | 中国电子科技集团公司第十八研究所 | 一种正向晶格失配三结太阳电池 |
EP3937259A1 (de) * | 2020-07-10 | 2022-01-12 | AZUR SPACE Solar Power GmbH | Monolithische metamorphe mehrfachsolarzelle |
US20220238747A1 (en) | 2021-01-28 | 2022-07-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell |
EP4092762A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4092761A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4092763A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4213224A1 (en) | 2022-01-14 | 2023-07-19 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells with shifted junction |
US20230396206A1 (en) * | 2022-06-02 | 2023-12-07 | Antora Energy, Inc. | Layered window in thermophotovoltaic devices |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US348834A (en) * | 1886-09-07 | Bridle-bit | ||
US3964155A (en) * | 1972-02-23 | 1976-06-22 | The United States Of America As Represented By The Secretary Of The Navy | Method of planar mounting of silicon solar cells |
US4017332A (en) * | 1975-02-27 | 1977-04-12 | Varian Associates | Solar cells employing stacked opposite conductivity layers |
US4255211A (en) * | 1979-12-31 | 1981-03-10 | Chevron Research Company | Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface |
DE3036260A1 (de) * | 1980-09-26 | 1982-04-29 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zur herstellung von elektrischen kontakten an einer silizium-solarzelle |
US4338480A (en) * | 1980-12-29 | 1982-07-06 | Varian Associates, Inc. | Stacked multijunction photovoltaic converters |
US4881979A (en) * | 1984-08-29 | 1989-11-21 | Varian Associates, Inc. | Junctions for monolithic cascade solar cells and methods |
US4612408A (en) * | 1984-10-22 | 1986-09-16 | Sera Solar Corporation | Electrically isolated semiconductor integrated photodiode circuits and method |
JPH0666274B2 (ja) * | 1987-07-01 | 1994-08-24 | 日本電気株式会社 | ▲iii▼−v族化合物半導体の形成方法 |
US4824489A (en) * | 1988-02-02 | 1989-04-25 | Sera Solar Corporation | Ultra-thin solar cell and method |
JPH02218174A (ja) * | 1989-02-17 | 1990-08-30 | Mitsubishi Electric Corp | 光電変換半導体装置 |
US5217539A (en) * | 1991-09-05 | 1993-06-08 | The Boeing Company | III-V solar cells and doping processes |
US5053083A (en) * | 1989-05-08 | 1991-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Bilevel contact solar cells |
US5021360A (en) * | 1989-09-25 | 1991-06-04 | Gte Laboratories Incorporated | Method of farbicating highly lattice mismatched quantum well structures |
US5019177A (en) * | 1989-11-03 | 1991-05-28 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
US5322572A (en) * | 1989-11-03 | 1994-06-21 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
US5376185A (en) * | 1993-05-12 | 1994-12-27 | Midwest Research Institute | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications |
JP3169497B2 (ja) * | 1993-12-24 | 2001-05-28 | 三菱電機株式会社 | 太陽電池の製造方法 |
US5479032A (en) * | 1994-07-21 | 1995-12-26 | Trustees Of Princeton University | Multiwavelength infrared focal plane array detector |
US6281426B1 (en) * | 1997-10-01 | 2001-08-28 | Midwest Research Institute | Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge |
US6482672B1 (en) * | 1997-11-06 | 2002-11-19 | Essential Research, Inc. | Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates |
US5944913A (en) * | 1997-11-26 | 1999-08-31 | Sandia Corporation | High-efficiency solar cell and method for fabrication |
US6166318A (en) * | 1998-03-03 | 2000-12-26 | Interface Studies, Inc. | Single absorber layer radiated energy conversion device |
US6239354B1 (en) * | 1998-10-09 | 2001-05-29 | Midwest Research Institute | Electrical isolation of component cells in monolithically interconnected modules |
US6300557B1 (en) * | 1998-10-09 | 2001-10-09 | Midwest Research Institute | Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters |
US6165873A (en) * | 1998-11-27 | 2000-12-26 | Nec Corporation | Process for manufacturing a semiconductor integrated circuit device |
JP3657143B2 (ja) * | 1999-04-27 | 2005-06-08 | シャープ株式会社 | 太陽電池及びその製造方法 |
US6252287B1 (en) * | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
US6340788B1 (en) * | 1999-12-02 | 2002-01-22 | Hughes Electronics Corporation | Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications |
US6815736B2 (en) * | 2001-02-09 | 2004-11-09 | Midwest Research Institute | Isoelectronic co-doping |
JP3909811B2 (ja) * | 2001-06-12 | 2007-04-25 | パイオニア株式会社 | 窒化物半導体素子及びその製造方法 |
US6660928B1 (en) * | 2002-04-02 | 2003-12-09 | Essential Research, Inc. | Multi-junction photovoltaic cell |
US6690041B2 (en) * | 2002-05-14 | 2004-02-10 | Global Solar Energy, Inc. | Monolithically integrated diodes in thin-film photovoltaic devices |
US8067687B2 (en) * | 2002-05-21 | 2011-11-29 | Alliance For Sustainable Energy, Llc | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
US6794631B2 (en) * | 2002-06-07 | 2004-09-21 | Corning Lasertron, Inc. | Three-terminal avalanche photodiode |
US20060048700A1 (en) * | 2002-09-05 | 2006-03-09 | Wanlass Mark W | Method for achieving device-quality, lattice-mismatched, heteroepitaxial active layers |
US7122734B2 (en) * | 2002-10-23 | 2006-10-17 | The Boeing Company | Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers |
US7071407B2 (en) * | 2002-10-31 | 2006-07-04 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
US6818928B2 (en) * | 2002-12-05 | 2004-11-16 | Raytheon Company | Quaternary-ternary semiconductor devices |
US6951819B2 (en) * | 2002-12-05 | 2005-10-04 | Blue Photonics, Inc. | High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same |
JP4401649B2 (ja) * | 2002-12-13 | 2010-01-20 | キヤノン株式会社 | 太陽電池モジュールの製造方法 |
US7812249B2 (en) * | 2003-04-14 | 2010-10-12 | The Boeing Company | Multijunction photovoltaic cell grown on high-miscut-angle substrate |
US20050211291A1 (en) * | 2004-03-23 | 2005-09-29 | The Boeing Company | Solar cell assembly |
US8227689B2 (en) * | 2004-06-15 | 2012-07-24 | The Boeing Company | Solar cells having a transparent composition-graded buffer layer |
WO2006015185A2 (en) * | 2004-07-30 | 2006-02-09 | Aonex Technologies, Inc. | GaInP/GaAs/Si TRIPLE JUNCTION SOLAR CELL ENABLED BY WAFER BONDING AND LAYER TRANSFER |
US7846759B2 (en) * | 2004-10-21 | 2010-12-07 | Aonex Technologies, Inc. | Multi-junction solar cells and methods of making same using layer transfer and bonding techniques |
FR2878076B1 (fr) * | 2004-11-17 | 2007-02-23 | St Microelectronics Sa | Amincissement d'une plaquette semiconductrice |
US10374120B2 (en) * | 2005-02-18 | 2019-08-06 | Koninklijke Philips N.V. | High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials |
US7166520B1 (en) * | 2005-08-08 | 2007-01-23 | Silicon Genesis Corporation | Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process |
US8637759B2 (en) * | 2005-12-16 | 2014-01-28 | The Boeing Company | Notch filter for triple junction solar cells |
US20090078308A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support |
US20100229926A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US20100186804A1 (en) * | 2009-01-29 | 2010-07-29 | Emcore Solar Power, Inc. | String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US8536445B2 (en) * | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US20090078309A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20080029151A1 (en) * | 2006-08-07 | 2008-02-07 | Mcglynn Daniel | Terrestrial solar power system using III-V semiconductor solar cells |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US7842881B2 (en) * | 2006-10-19 | 2010-11-30 | Emcore Solar Power, Inc. | Solar cell structure with localized doping in cap layer |
US20080149173A1 (en) * | 2006-12-21 | 2008-06-26 | Sharps Paul R | Inverted metamorphic solar cell with bypass diode |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
US20080185038A1 (en) * | 2007-02-02 | 2008-08-07 | Emcore Corporation | Inverted metamorphic solar cell with via for backside contacts |
US20090038679A1 (en) * | 2007-08-09 | 2009-02-12 | Emcore Corporation | Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support |
US20090078311A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100233838A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Mounting of Solar Cells on a Flexible Substrate |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090223554A1 (en) * | 2008-03-05 | 2009-09-10 | Emcore Corporation | Dual Sided Photovoltaic Package |
US20090229658A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells |
US20090229662A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20090288703A1 (en) * | 2008-05-20 | 2009-11-26 | Emcore Corporation | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US8263853B2 (en) * | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US7741146B2 (en) * | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US8236600B2 (en) * | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US20100147366A1 (en) * | 2008-12-17 | 2010-06-17 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector |
US7785989B2 (en) * | 2008-12-17 | 2010-08-31 | Emcore Solar Power, Inc. | Growth substrates for inverted metamorphic multijunction solar cells |
US7960201B2 (en) * | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US20100206365A1 (en) * | 2009-02-19 | 2010-08-19 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US8263856B2 (en) * | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
-
2008
- 2008-01-31 US US12/023,772 patent/US20090078310A1/en not_active Abandoned
- 2008-10-22 TW TW097140523A patent/TWI441343B/zh not_active IP Right Cessation
- 2008-11-12 CN CN200810171863.XA patent/CN101499495B/zh active Active
-
2009
- 2009-01-09 JP JP2009003363A patent/JP5425480B2/ja active Active
- 2009-01-20 EP EP09000718.8A patent/EP2086024B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009182325A (ja) | 2009-08-13 |
TW200941741A (en) | 2009-10-01 |
JP5425480B2 (ja) | 2014-02-26 |
CN101499495B (zh) | 2014-05-14 |
EP2086024A3 (en) | 2012-12-05 |
CN101499495A (zh) | 2009-08-05 |
US20090078310A1 (en) | 2009-03-26 |
EP2086024B1 (en) | 2018-10-31 |
EP2086024A2 (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI441343B (zh) | 反向變質多接面太陽能電池中異質接面子電池 | |
US9691929B2 (en) | Four junction inverted metamorphic multijunction solar cell with two metamorphic layers | |
US8969712B2 (en) | Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer | |
US8039291B2 (en) | Demounting of inverted metamorphic multijunction solar cells | |
US8236600B2 (en) | Joining method for preparing an inverted metamorphic multijunction solar cell | |
US7960201B2 (en) | String interconnection and fabrication of inverted metamorphic multijunction solar cells | |
TWI488316B (zh) | 反向質變之多接面太陽能電池之替代基板 | |
US20090272430A1 (en) | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells | |
US20100206365A1 (en) | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers | |
US20150340530A1 (en) | Back metal layers in inverted metamorphic multijunction solar cells | |
US20090288703A1 (en) | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells | |
US20100229933A1 (en) | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating | |
US20100147366A1 (en) | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector | |
US20090078311A1 (en) | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells | |
US20100282305A1 (en) | Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys | |
US20090272438A1 (en) | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell | |
US20100093127A1 (en) | Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film | |
US20120186641A1 (en) | Inverted multijunction solar cells with group iv alloys | |
US11063168B1 (en) | Inverted multijunction solar cells with distributed bragg reflector | |
US10170656B2 (en) | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |