[go: up one dir, main page]

TWI405801B - 具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法 - Google Patents

具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法 Download PDF

Info

Publication number
TWI405801B
TWI405801B TW096139396A TW96139396A TWI405801B TW I405801 B TWI405801 B TW I405801B TW 096139396 A TW096139396 A TW 096139396A TW 96139396 A TW96139396 A TW 96139396A TW I405801 B TWI405801 B TW I405801B
Authority
TW
Taiwan
Prior art keywords
polymer
carbon nanotubes
substrate
film
carbon nanotube
Prior art date
Application number
TW096139396A
Other languages
English (en)
Other versions
TW200918586A (en
Inventor
Chen Chi Martin Ma
Siu-Ming Yuen
Chia Yi Chuang
Kuo Chi Yu
Sheng Yen Wu
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW096139396A priority Critical patent/TWI405801B/zh
Priority to US12/081,517 priority patent/US7955654B2/en
Publication of TW200918586A publication Critical patent/TW200918586A/zh
Priority to US13/094,201 priority patent/US8367161B2/en
Application granted granted Critical
Publication of TWI405801B publication Critical patent/TWI405801B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0092Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive pigments, e.g. paint, ink, tampon printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法
本發明係關於一種具有電磁波干擾遮蔽效果之碳奈米管/高分子奈米複合材料,及其製備方法。
美國專利US2007012900-A1添加導電填充物製成導電高分子複合材料來提高材料對電磁波干擾遮蔽的效果,導電填充物是以碳為填充物的基本核心,如天然石墨、合成石墨、碳黑等,在核心外表面鍍上導電金屬,如鎳、銅、鋁、錫、鋅、金、銀、鉑等,選用橡膠烴做為材料之基材。由於該導電填充物的添加,提升了材料的導電性、電穩定性及機械性質,減少金屬的使用量,降低了材料的密度及材料成本。
WO 2007/010517 A1將合成好之聚合物添加到分散於乙醇或乙醚有機溶液的單、多壁奈米管(長度與半徑比大於100)或金屬、分金屬、氧化金屬等奈米粒子的懸浮液中,藉助於加熱迴流或超音波震盪使該聚合物於其中膨潤(swelling),再從該懸浮液中分離出該經過改質的聚合物。改質後的聚合物提升了原材料的強硬度、導電性、磁性,使該材料可以用為醫院之醫療設備達到電磁波干擾的遮蔽效應。
美國專利US2005/0127329 A1使用分散劑將將奈米材料分散在溶劑中,隨後混摻進熱固或熱塑性高分子中,移去溶劑後再添加硬化劑,製得奈米複合材料,奈米材料選用碳奈米管、奈米矽粒子、奈米石墨粒子等,高分子選用Epoxy、PC、壓克力樹酯等。製備出的材料具有高導電性及高導熱性,且提升了原基材的機械強度及尺寸穩定性,降低了表面摩擦力,因此在電磁波干擾的遮蔽效應上有優異的表現,可以應用在電子產品之塗料。
WO2004097853-A1將單壁或多壁碳奈米管及導電填充物(如碳黑或小碳球)添加到粒徑約0.5~5微米的水溶性高分子中,形成網狀結構的導電複合材料。該複合材料在奈米碳管含量0.04~3 wt%時,即達到展透值。可應用於電磁波干擾遮蔽之塗漆,塗料厚度約在25~500微米。
本發明的一主要目的在於提供一種具有電磁波干擾遮蔽效果之碳奈米管/高分子奈米複合材料之製備方法.本發明的較佳具體實施例包括(但不限於)下列項目:1.一種具有電磁波遮蔽效果之碳奈米管/高分子奈米複合材料的製備方法,包含下列步驟:a)製備一分散有碳奈米管的高分子溶液,該高分子溶液含有0.5-10重量%的碳奈米管;及b)將該分散有碳奈米管的高分子溶液塗佈於一基材,及乾燥所獲得的塗層。
2.如前述第1項的方法,其進一步包含c)堆疊多片步驟b)所得到的之具乾燥的塗層的基材。
3.如前述第2項的方法,其中步驟c)進一步包含於堆疊多片該具乾燥的塗層的基材之前先施予黏著劑於該基材上,而使堆疊的多片基材被黏結。
4.如前述第1項的方法,其中步驟b)所得到的之具乾燥的塗層的基材具有一厚度為0.05 mm至0.1 cm的乾燥的塗層。
5.如前述第4項的方法,其中步驟b)所得到的之具乾燥的塗層的基材具有一厚度為0.05 mm至0.1 cm的乾燥的塗層,及步驟c)堆疊2-100片之具乾燥的塗層的基材。
6.如前述第1項的方法,其中步驟a)包含將碳奈米管分散於溶劑中,將高分子單體及自由基起始劑溶解於該溶劑中,並於其中進行自由基聚合反應而形成該分散有碳奈米管的高分子溶液。
7.如前述第1項的方法,其中步驟a)包含將高分子溶於溶劑中或於一溶劑中聚合高分子單體而形成一高分子溶液,再將碳奈米管分散於該高分子溶液而形成該分散有碳奈米管的高分子溶液。
8.如前述第1項的方法,其中該碳奈米管為多壁碳奈米管。
9.如前述第1項的方法,其中該碳奈米管為單壁碳奈米管。
10.如前述第1項的方法,其中該碳奈米管為雙壁碳奈米管。
11.如前述第1項的方法,其中該碳奈米管為竹節形壁碳奈米管。
12.如前述第1項的方法,其中該碳奈米管為螺絲形壁碳奈米管。
13.如前述第1項的方法,其中該碳奈米管為具有二氧化鈦塗層的奈米碳管。
14.如前述第1項的方法,其中該碳奈米管為金屬包覆的奈米碳管。
15.如前述第6項的方法,其中該高分子單體選自丙烯酸,甲基丙烯酸,丙烯酸甲酯,甲基丙烯酸甲酯,及苯乙烯所組成的群組,或者該高分子單體同時為丙烯腈、丁二烯及苯乙烯。
16.如前述第15項的方法,其中該高分子單體為甲基丙烯酸甲酯。
17.如前述第16項的方法,其中將溶劑為N,N-二甲基乙醯胺(DMAc),該自由基起始劑為2,2-偶氮雙異丁腈(AIBN),及該自由基聚合反應係於120℃進行。
18.如前述第7項的方法,其中該高分子選自聚丙烯酸,聚甲基丙烯酸,聚丙烯酸甲酯,聚甲基丙烯酸甲酯,可溶性聚醯亞胺,可溶性聚醯胺醯亞胺,聚醯胺,聚苯乙烯,可溶性聚胺基甲酸酯,不飽和聚酯,丙烯腈-丁二烯-苯乙烯共聚物,聚醚碸(Poly-ether-sulfone,PES),可溶性聚醚醯亞胺(Poly-ether-imide,PEI)及環氧樹脂所組成的群組。
19.如前述第18項的方法,其中該高分子為聚甲基丙烯酸甲酯。
20.如前述第19項的方法,其中甲基丙烯酸甲酯單體被溶解於N,N-二甲基乙醯胺(DMAc)溶劑,加入2,2-偶氮雙異丁腈(AIBN)的自由基起始劑,及於120℃進行自由基聚合反應而形成聚甲基丙烯酸甲酯的溶液。
21.如前述第1項的方法,其中該基材為聚對苯二甲酸伸乙酯(PET)薄膜,聚醯亞胺(PI)薄膜,聚乙烯薄膜,聚丙烯薄膜,或聚氯乙烯薄膜。
22.如前述第21項的的方法,其中該基材為聚對苯二甲酸伸乙酯(PET)薄膜。
23.如前述第1項的方法,其中該基材為包覆電線的絕緣層。
24.如前述第4項的具有電磁波遮蔽效果之碳奈米管/高分子奈米複合材料可塗佈於PP薄膜上.
25.如前述第3項的具有電磁波遮蔽效果之碳奈米管/高分子奈米複合材料可塗佈於PVC薄膜上。
依本發明的一較佳具體實施例所完成的一種具有電磁波干擾遮蔽效果之奈米碳管/高分子複合材料之製備方法,包含以下步驟:(a)多壁碳奈米管(MWCNT)分散於N,N-二甲基乙醯胺(DMAc)溶劑中;(b)加入高分子單體甲基丙烯酸甲酯(MMA)及起始劑2,2-偶氮雙異丁腈(AIBN);(c)於120℃下聚合MMA而形成含有MWCNT/PMMA奈米複合材料的溶液;(d)將該溶液塗佈於PET薄膜上,乾燥所塗佈的塗層;及(e)堆疊多片所得到的之具乾燥的塗層的PET薄膜並作為電磁波遮蔽材料使用。
依本發明的另一較佳具體實施例所完成的一種具有電磁波干擾遮蔽效果之奈米碳管/高分子複合材料之製備方法,包含以下步驟:(A)將高分子單體甲基丙烯酸甲酯(MMA)及起始劑2,2-偶氮雙異丁腈(AIBN)溶解於N,N-二甲基乙醯胺(DMAc)溶劑中;(B)於120℃下聚合MMA而形成含有PMMA的溶液;(C)加入多壁碳奈米管(MWCNT)並藉助超音波將MWCNT分散於PMMA的溶液;(D)將分散有MWCNT的PMMA溶液塗佈於PET薄膜上,乾燥所塗佈的塗層;及(E)堆疊多片所得到的之具乾燥的塗層的PET薄膜並作為電磁波遮蔽材料使用。
本發明將藉由下列實施例被進一步了解,該等實施例僅作為說明之用,而非用於限制本發明範圍。
於下列的實施例及對照例中使用以下材料:多壁奈米碳管(MWCNT):The CNT Company製造,仁川,韓國。此奈米碳管以CVD方法製造。奈米碳管純度為93%,直徑為10-50 nm,長度為1-25 μm,比表面積為150-250 m2 g-1
甲基丙烯酸甲酯(MMA):Acros Organics Co.製造,New Jersey,USA。
2,2-偶氮雙異丁腈(AIBN):Tokyo Chemical Industry Co.,Ltd.製造,Tokyo,Japan.
對照例1
2.62 g多壁碳奈米管分散於97.5g DMAc溶劑中,加入52.5 g高分子單MMA及0.11 g起始劑AIBN,於120℃下反應而成多壁碳奈米管/PMMA奈米複合材料。將上述之多壁碳奈米管/PMMA奈米複合材料模製成20 cm x 20 cm x 0.1 cm之板材.
對照例2~6
重覆對照例1的步驟,但奈米碳管含量不同,其中:對照例2加入奈米碳奈量為0.13g;對照例3加入奈米碳奈量為0.26g;對照例4加入奈米碳奈量為0.39g;對照例5加入奈米碳奈量為0.53 g;及對照例6加入奈米碳奈量為1.31 g。
對照例7
於97.5 g的DMAc中加入52.5 g高分子單體MMA及0.11 g起始劑AIBN,於120℃下反應而形成PMMA,加入2.62 g多壁碳奈米管並以超音波加予分散。將多壁碳奈米管/PMMA奈米複合材料模製成20 cm x 20 cm x 0.1 cm之板材。
對照例8~12
重覆對照例2的步驟,但奈米碳管含量不同,其中:對照例8加入奈米碳奈量為0.13 g;對照例9加入奈米碳奈量為0.26 g;對照例10加入奈米碳奈量為0.39 g;對照例11加入奈米碳奈量為0.53 g;及對照例12加入奈米碳奈量為1.31 g。
實施例1~10
2.62 g多壁碳奈米管分散於97.5 g DMAc溶劑中,加入52.5 g高分子單體MMA及0.11 g起始劑AIBN,於120℃下反應而成多壁碳奈米管/PMMA奈米複合材料。將上述之多壁碳奈米管/PMMA奈米複合材料塗佈於厚度為0.1 mm的PET薄膜上,並加熱揮發塗層中的溶劑,得到厚度為0.1 mm的多壁碳奈米管/PMMA奈米複合材料之塗層。塗佈面積為20 cm x 20 cm。依上述方法製備10片塗佈有多壁碳奈米管/PMMA奈米複合材料塗層的PET薄膜。將單片被塗佈的PET薄膜或多片被塗佈的PET薄膜堆疊在一起並作為電磁波遮蔽材料使用。
實施例11~20
於97.5 g的DMAc中加入52.5 g高分子單體MMA及0.11 g起始劑AIBN,於120℃下反應而形成PMMA,加入2.62 g多壁碳奈米管並以超音波加予分散。將上述之多壁碳奈米管/PMMA奈米複合材料塗佈於厚度為0.1 mm的PET薄膜上,並加熱揮發塗層中的溶劑,得到厚度為0.1 mm的多壁碳奈米管/PMMA奈米複合材料之塗層。塗佈面積為20 cm x 20 cm。依上述方法製備10片塗佈有多壁碳奈米管/PMMA奈米複合材料塗層的PET薄膜。將單片被塗佈的PET薄膜或多片被塗佈的PET薄膜堆疊在一起並作為電磁波遮蔽材料使用。
測試方法:電磁波遮蔽效果(2~18GHz)以HP 8722ES測試,製造商Damaskos,Inc.Concordville,PA,USA.
結果:表1列出對照例1~6的奈米碳管/PMMA複合材料板材於15GHz之電磁波干擾遮蔽效果。表2列出對照例7~12的奈米碳管/PMMA複合材料板材於15GHz之電磁波干擾遮蔽效果。表3列出實施例1之單片被塗佈的PET薄膜或多片被塗佈的PET薄膜堆疊在一起作為電磁波干擾遮蔽材料於15GHz之電磁波遮蔽效果。表4列出實施例2之單片被塗佈的PET薄膜或多片被塗佈的PET薄膜堆疊在一起作為電磁波干擾遮蔽材料於15GHz之電磁波遮蔽效果。表1至表4的結果分別被示於圖1至圖4。從表1至表4及圖1至圖4所顯示的結果可以看出,本發明實施例1及2所製備之單片被塗佈的PET薄膜或多片被塗佈的PET薄膜堆疊在一起作為電磁波干擾遮蔽材料相較於同樣MWCNT用量的奈米碳管/PMMA複合材料板材具有顯著較佳的電磁波干擾遮蔽效果,例如表3中實施例10的41.98 dB(塗層厚度0.1 mm,10片堆疊)對照於表1中對照例1的18.56 dB(厚度0.1 cm板材,MWCNT含量4.76重量%);實施例5的17.03 dB(塗層厚度0.1 mm,5片堆疊)對照於對照例6的10.70 dB(厚度0.1 cm板材,MWCNT含量2.44重量%)。
圖1為對照例1~6之電磁波干擾遮蔽效果(2~18GHz)。
圖2為對照例7~12之電磁波干擾遮蔽效果(2~18GHz)b。
圖3為本發明實施例1~10之電磁波干擾遮蔽效果(2~18GHz)。
圖4本發明實施例11~20之電磁波干擾遮蔽效果(2~18GHz)。

Claims (16)

  1. 一種具有電磁波干擾遮蔽效果之碳奈米管/高分子奈米複合材料的製備方法,包含下列步驟:a)製備一分散有碳奈米管的高分子溶液,該高分子溶液含有0.5-10重量%的碳奈米管;b)將該分散有碳奈米管的高分子溶液塗佈於一基材,及乾燥所獲得的塗層;及c)堆疊多片步驟b)所得到的之具乾燥的塗層的基材,其中該高分子選自聚丙烯酸,聚甲基丙烯酸,聚丙烯酸甲酯,聚甲基丙烯酸甲酯,可溶性聚醯亞胺,可溶性聚醯胺醯亞胺,聚醯胺,聚苯乙烯,可溶性聚胺基甲酸酯,不飽和聚酯,丙烯腈-丁二烯-苯乙烯共聚物,聚醚碸(Poly-ether-sulfone,PES),可溶性聚醚醯亞胺(Poly-ether-imide,PEI)及環氧樹脂所組成的群組;該碳奈米管為多壁碳奈米管、單壁碳奈米管、雙壁碳奈米管、竹節形壁碳奈米管、螺絲形壁碳奈米管、二氧化鈦塗層的奈米碳管或金屬包覆的奈米碳管。
  2. 如申請專利範圍第1項的方法,其中步驟c)進一步包含於堆疊多片該具乾燥的塗層的基材之前先施予黏著劑於該基材上,而使堆疊的多片基材被黏結。
  3. 如申請專利範圍第1項的方法,其中步驟b)所得到的之 具乾燥的塗層的基材具有一厚度為0.05mm至0.1cm的乾燥的塗層。
  4. 如申請專利範圍第3項的方法,其中步驟b)所得到的之具乾燥的塗層的基材具有一厚度為0.05mm至0.1cm的乾燥的塗層,及步驟c)堆疊2-100片之具乾燥的塗層的基材。
  5. 如申請專利範圍第1項的方法,其中步驟a)包含將碳奈米管分散於溶劑中,將高分子單體及自由基起始劑溶解於該溶劑中,並於其中進行自由基聚合反應而形成該分散有碳奈米管的高分子溶液。
  6. 如申請專利範圍第1項的方法,其中步驟a)包含將高分子溶於溶劑中或於一溶劑中聚合高分子單體而形成一高分子溶液,再將碳奈米管分散於該高分子溶液而形成該分散有碳奈米管的高分子溶液。
  7. 如申請專利範圍第5項的方法,其中該高分子單體選自丙烯酸,甲基丙烯酸,丙烯酸甲酯,甲基丙烯酸甲酯,及苯乙烯所組成的群組,或者該高分子單體同時為丙烯腈、丁二烯及苯乙烯。
  8. 如申請專利範圍第7項的方法,其中該高分子單體為甲 基丙烯酸甲酯。
  9. 如申請專利範圍第8項的方法,其中將溶劑為N,N-二甲基乙醯胺(DMAc),該自由基起始劑為2,2-偶氮雙異丁腈(AIBN),及該自由基聚合反應係於120℃進行。
  10. 如申請專利範圍第6項的方法,其中該高分子為聚甲基丙烯酸甲酯。
  11. 如申請專利範圍第10項的方法,其中甲基丙烯酸甲酯單體被溶解於N,N-二甲基乙醯胺(DMAc)溶劑,加入2,2-偶氮雙異丁腈(AIBN)的自由基起始劑,及於120℃進行自由基聚合反應而形成聚甲基丙烯酸甲酯的溶液。
  12. 如申請專利範圍第1項的方法,其中該基材為聚對苯二甲酸伸乙酯(PET)薄膜,聚醯亞胺(PI)薄膜,聚乙烯薄膜,聚丙烯薄膜,或聚氯乙烯薄膜。
  13. 如申請專利範圍第12項的的方法,其中該基材為聚對苯二甲酸伸乙酯(PET)薄膜。
  14. 如申請專利範圍第1項的方法,其中該基材為包覆電線的絕緣層。
  15. 如申請專利範圍第12項的方法,其中該基材為聚丙烯薄膜。
  16. 如申請專利範圍第12項的方法,其中該基材為聚氯乙烯薄膜。
TW096139396A 2007-10-19 2007-10-19 具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法 TWI405801B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW096139396A TWI405801B (zh) 2007-10-19 2007-10-19 具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法
US12/081,517 US7955654B2 (en) 2007-10-19 2008-04-17 Method of preparation of a MWCNT/polymer composite having electromagnetic interference shielding effectiveness
US13/094,201 US8367161B2 (en) 2007-10-19 2011-04-26 Method of preparation of a MWCNT/polymer composite having electromagnetic interference shielding effectiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096139396A TWI405801B (zh) 2007-10-19 2007-10-19 具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法

Publications (2)

Publication Number Publication Date
TW200918586A TW200918586A (en) 2009-05-01
TWI405801B true TWI405801B (zh) 2013-08-21

Family

ID=40563761

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096139396A TWI405801B (zh) 2007-10-19 2007-10-19 具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法

Country Status (2)

Country Link
US (2) US7955654B2 (zh)
TW (1) TWI405801B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699409B (zh) * 2018-03-05 2020-07-21 南韓商三星Sdi股份有限公司 用於電磁屏蔽的導電組成物、由其形成之電磁屏蔽層、包含其之電路板積層體以及形成電磁屏蔽層的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221773A1 (en) * 2008-02-28 2009-09-03 Brigham Young University Methods for direct attachment of polymers to diamond surfaces and diamond articles
US20090218276A1 (en) * 2008-02-29 2009-09-03 Brigham Young University Functionalized diamond particles and methods for preparing the same
US9192915B2 (en) * 2008-05-10 2015-11-24 Brigham Young University Porous composite particulate materials, methods of making and using same, and related apparatuses
WO2009140207A1 (en) 2008-05-10 2009-11-19 Brigham Young University Porous composite particulate materials, methods of making and using same, and related apparatuses
CA2737638A1 (en) * 2008-09-22 2010-03-25 Brigham Young University Functionalized graphitic stationary phase and methods for making and using same
TWI403460B (zh) * 2009-07-31 2013-08-01 Chung Shan Inst Of Science 奈米碳管複合物及其製備方法
AU2011329063A1 (en) 2010-11-17 2013-06-13 Brigham Young University Sonication for improved particle size distribution of core-shell particles
US9484123B2 (en) 2011-09-16 2016-11-01 Prc-Desoto International, Inc. Conductive sealant compositions
CN102673070B (zh) * 2012-05-24 2015-04-22 苏州大学 一种不对称层状树脂基复合材料及其制备方法
GB201214181D0 (en) * 2012-08-08 2012-09-19 Innovative Carbon Ltd Conductive polymeric materials and uses thereof
WO2014130431A2 (en) 2013-02-21 2014-08-28 3M Innovative Properties Company Polymer composites with electromagnetic interference mitigation properties
ES2509390B1 (es) * 2013-04-17 2015-06-03 Universidad Carlos Iii De Madrid Materiales para apantallamiento electromagnético
CN103304777A (zh) * 2013-07-04 2013-09-18 苏州瀚海高分子有限公司 二氧化钛纳米管环氧树脂复合阻燃材料及其制备方法
WO2015094915A1 (en) 2013-12-18 2015-06-25 3M Innovative Properties Company Electromagnetic interference (emi) shielding products using titanium monoxide (tio) based materials
DE102014213676B4 (de) * 2014-07-15 2021-05-06 Robert Bosch Gmbh Batteriezelle, Verfahren zur Herstellung einer Batteriezelle und Batteriesystem
CN105038132A (zh) * 2015-07-31 2015-11-11 苏州天健竹业科技有限公司 一种跑步机用碳纤维材料及其制备方法
US10418146B2 (en) 2016-01-19 2019-09-17 Xerox Corporation Conductive polymer composite
US9884932B2 (en) 2016-06-14 2018-02-06 International Business Machines Corporation Flame-retardant impact modifier
US10233082B2 (en) 2016-10-14 2019-03-19 International Business Machines Corporation Functionalized carbon nanotubes
CN108623962A (zh) * 2017-03-24 2018-10-09 天津大学 基于氢键作用的聚甲基丙烯酸甲酯-碳纳米管复合材料及提高其力学性能的方法
CN107513135B (zh) * 2017-08-11 2020-01-07 河海大学 一种挤拉用高抗剪切含碳纳米管不饱和树脂及其制备方法
US11633881B1 (en) 2018-12-20 2023-04-25 General Nano Llc Heated composite tool and method for building and use
JP6819814B1 (ja) * 2019-03-08 2021-01-27 東レ株式会社 カーボンナノチューブ組成物、半導体素子および無線通信装置
KR102301266B1 (ko) * 2020-12-17 2021-09-13 한현수 케이블 하네스용 엘이디 소켓 및 이를 포함하는 케이블 하네스 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200503611A (en) * 2003-04-28 2005-01-16 Takiron Co Electromagnetic wave shielding light diffusion sheet
TW200505810A (en) * 2003-05-20 2005-02-16 Dsm Ip Assets Bv Nano-structured surface coating process, nano-structured coatings and articles comprising the coating
JP2006054377A (ja) * 2004-08-13 2006-02-23 Asahi Kasei Corp ディスプレイ用フィルター
JP2006328311A (ja) * 2005-05-30 2006-12-07 Mitsubishi Rayon Co Ltd 硬化性樹脂組成物、積層体、およびそれらの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
JP4945888B2 (ja) * 2003-10-09 2012-06-06 富士ゼロックス株式会社 複合体およびその製造方法
DE102005041378A1 (de) * 2005-09-01 2007-03-08 Forschungszentrum Karlsruhe Gmbh Modifizierte Kohlenstoff-Nanopartikel, Verfahren zu deren Herstellung und deren Verwendung
US8329065B2 (en) * 2005-12-06 2012-12-11 Mitsubishi Rayon Co., Ltd. Carbon nanotube-containing composition, composite, and methods for producing them
NZ553043A (en) * 2006-02-15 2008-08-29 Laminex Group Pty Ltd Electromagnetic interference shielding laminate and method of making same
US20080057265A1 (en) * 2006-05-22 2008-03-06 Florida State University Research Foundation Electromagnetic Interference Shielding Structure Including Carbon Nanotubes and Nanofibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200503611A (en) * 2003-04-28 2005-01-16 Takiron Co Electromagnetic wave shielding light diffusion sheet
TW200505810A (en) * 2003-05-20 2005-02-16 Dsm Ip Assets Bv Nano-structured surface coating process, nano-structured coatings and articles comprising the coating
JP2006054377A (ja) * 2004-08-13 2006-02-23 Asahi Kasei Corp ディスプレイ用フィルター
JP2006328311A (ja) * 2005-05-30 2006-12-07 Mitsubishi Rayon Co Ltd 硬化性樹脂組成物、積層体、およびそれらの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699409B (zh) * 2018-03-05 2020-07-21 南韓商三星Sdi股份有限公司 用於電磁屏蔽的導電組成物、由其形成之電磁屏蔽層、包含其之電路板積層體以及形成電磁屏蔽層的方法

Also Published As

Publication number Publication date
US8367161B2 (en) 2013-02-05
US20110200740A1 (en) 2011-08-18
US20090104361A1 (en) 2009-04-23
US7955654B2 (en) 2011-06-07
TW200918586A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
TWI405801B (zh) 具有電磁波干擾遮蔽效應之多壁碳奈米管/高分子奈米複合材之製備方法
Yuen et al. Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites
Nazir et al. Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding
Shen et al. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticles
Han et al. Graphene size-dependent multifunctional properties of unidirectional graphene aerogel/epoxy nanocomposites
Hsiao et al. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite
Ahmadi-Moghadam et al. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites
Al-Saleh et al. A review of vapor grown carbon nanofiber/polymer conductive composites
US20100136327A1 (en) Method of preparation of a MWCNT/polymer composite having electromagnetic interference shielding effectiveness
CN101121791B (zh) 碳纳米管/聚合物复合材料的制备方法
EP3473430B1 (en) Thermally conductive thin film sheet and article comprising same
Zhang et al. Morphologically Controlled Bioinspired Dopamine‐Polypyrrole Nanostructures with Tunable Electrical Properties
Liu et al. Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface
Zhao et al. A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity
JP2019527641A (ja) カーボンナノチューブフィルム構造体およびその製造方法
Haruna et al. Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite
Sun et al. Regulated dielectric loss of polymer composites from coating carbon nanotubes with a cross-linked silsesquioxane shell through free-radical polymerization
Townsend et al. Enhancing mechanical and thermal properties of epoxy nanocomposites via alignment of magnetized SiC whiskers
CN102993460B (zh) 纳米碳管粉体与其形成方法、复合材料的形成方法
CN104603191B (zh) 与碳纳米材料结合的热塑性聚合物及其制备方法
Yuen et al. Preparation, morphology, mechanical and electrical properties of TiO2 coated multiwalled carbon nanotube/epoxy composites
JP5134945B2 (ja) カーボンナノチューブ含有組成物および硬化物
Sato et al. A reinforced, high-κ ternary polymer nanocomposite dielectrics of PVDF, barium titanate nanoparticles, and TEMPO-oxidized cellulose nanofibers
JP2013014448A (ja) カーボンナノチューブ分散組成物およびそれを用いたカーボンナノチューブ含有組成物
Melvin et al. Bending actuation and charge distribution behavior of polyurethane/carbon nanotube electroactive nanocomposites

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees