TWI386363B - Linear heater - Google Patents
Linear heater Download PDFInfo
- Publication number
- TWI386363B TWI386363B TW097128288A TW97128288A TWI386363B TW I386363 B TWI386363 B TW I386363B TW 097128288 A TW097128288 A TW 097128288A TW 97128288 A TW97128288 A TW 97128288A TW I386363 B TWI386363 B TW I386363B
- Authority
- TW
- Taiwan
- Prior art keywords
- heat source
- carbon nanotube
- line heat
- layer
- heating layer
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims description 106
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 79
- 239000002041 carbon nanotube Substances 0.000 claims description 68
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 66
- 238000010438 heat treatment Methods 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 16
- 239000011241 protective layer Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 7
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000002238 carbon nanotube film Substances 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 238000005411 Van der Waals force Methods 0.000 claims description 2
- 239000007767 bonding agent Substances 0.000 claims description 2
- 239000013305 flexible fiber Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical group 0.000 claims description 2
- 229910021404 metallic carbon Inorganic materials 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000002079 double walled nanotube Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 108010053481 Antifreeze Proteins Proteins 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Resistance Heating (AREA)
Description
本發明涉及一種線熱源,尤其涉及一種基於奈米碳管的線熱源。 The invention relates to a line heat source, in particular to a line heat source based on a carbon nanotube.
熱源於人們的生產、生活、科研中起著重要的作用。線熱源係常用的熱源之一,被廣泛應用於電加熱器、紅外治療儀、電暖器等領域。 Heat plays an important role in people's production, life, and research. One of the commonly used heat sources for line heat sources is widely used in electric heaters, infrared therapeutic devices, and electric heaters.
請參見圖1,先前技術提供一種線熱源10,其包括一中空圓柱狀支架102;一加熱層104設置於該支架102表面,一絕緣保護層106設置於該加熱層104表面;兩個電極110分別設置於支架102兩端,且與加熱層104電連接;兩個夾緊件108分別將兩個電極110與加熱層104卡固於支架102兩端。其中,加熱層104通常採用一碳纖維紙通過纏繞或包裹的方式形成。當通過兩個電極110對該線熱源10施加一電壓時,所述加熱層104產生焦耳熱,並向周圍進行熱輻射。所述碳纖維紙包括紙基材及雜亂分佈於該紙基材中的瀝青基碳纖維。其中,紙基材包括纖維素纖維及樹脂等的混合物,瀝青基碳纖維的直徑為3~6毫米,長度為5~20微米。 Referring to FIG. 1 , the prior art provides a line heat source 10 including a hollow cylindrical bracket 102; a heating layer 104 is disposed on the surface of the bracket 102, and an insulating protective layer 106 is disposed on the surface of the heating layer 104; They are respectively disposed at two ends of the bracket 102 and electrically connected to the heating layer 104; the two clamping members 108 respectively fix the two electrodes 110 and the heating layer 104 to both ends of the bracket 102. Wherein, the heating layer 104 is usually formed by winding or wrapping a carbon fiber paper. When a voltage is applied to the line heat source 10 through the two electrodes 110, the heating layer 104 generates Joule heat and thermally radiates to the surroundings. The carbon fiber paper includes a paper substrate and pitch-based carbon fibers that are disorderly distributed in the paper substrate. The paper substrate comprises a mixture of cellulose fibers and a resin, and the pitch-based carbon fibers have a diameter of 3 to 6 mm and a length of 5 to 20 μm.
然而,採用碳纖維紙作為加熱層具有以下缺點:第一,碳纖維紙厚度較大,一般為幾十微米,使線熱源不易做成微型結構,無法應用於微型器件的加熱。第二,由於該碳纖維紙中包含紙基材,故,該碳纖維紙的密度較大,重量大,使得採用該碳纖維紙的線熱源使用不便。第 三,由於該碳纖維紙中的瀝青基碳纖維雜亂分佈,故,該碳纖維紙的強度較小,柔性較差,容易破裂,限制其應有範圍。第四,碳纖維紙的電熱轉換效率較低,不利於節能環保。 However, the use of carbon fiber paper as the heating layer has the following disadvantages: First, the thickness of the carbon fiber paper is large, generally several tens of micrometers, making the line heat source difficult to be made into a micro structure and cannot be applied to the heating of the micro device. Second, since the carbon fiber paper contains a paper substrate, the carbon fiber paper has a large density and a large weight, which makes the use of the line heat source using the carbon fiber paper inconvenient. First Third, since the pitch-based carbon fiber in the carbon fiber paper is disorderly distributed, the carbon fiber paper has low strength, poor flexibility, and is easily broken, thereby limiting its proper range. Fourth, the heat conversion efficiency of carbon fiber paper is low, which is not conducive to energy conservation and environmental protection.
有鑒於此,提供一種重量小,強度大,適應用於微型器件的加熱,且電熱轉換效率較低,利於節能環保的線熱源實為必要。 In view of this, it is necessary to provide a line heat source that is small in weight, high in strength, suitable for heating of a micro device, and has low electrothermal conversion efficiency, and is advantageous for energy saving and environmental protection.
一種線熱源包括一線狀基底;一加熱層設置於線狀基底的表面;及兩個電極間隔設置於加熱層的表面,並分別與該加熱層電連接,其中,所述的加熱層包括一奈米碳管層,且該奈米碳管層包括複數個奈米碳管相互纏繞,無序排列。 A line heat source includes a linear substrate; a heating layer is disposed on a surface of the linear substrate; and two electrodes are disposed on the surface of the heating layer, and are respectively electrically connected to the heating layer, wherein the heating layer comprises a The carbon nanotube layer, and the carbon nanotube layer comprises a plurality of carbon nanotubes intertwined and disorderly arranged.
相較於先前技術,所述的線熱源具有以下優點:第一,奈米碳管可方便地製成任意尺寸的奈米碳管層,既可應用於宏觀領域也可應用於微觀領域。第二,奈米碳管比碳纖維具有更小的密度,故,採用奈米碳管層的線熱源具有更輕的重量,使用方便。第三,奈米碳管層的電熱轉換效率高,熱阻率低,故,該線熱源具有升溫迅速、熱滯後小、熱交換速度快的特點。第四,所述的奈米碳管層中的奈米碳管無序排列,具有很好的韌性,可彎曲折疊成任意形狀而不破裂,故,具有較長的使用壽命。 Compared with the prior art, the line heat source has the following advantages: First, the carbon nanotube can be conveniently fabricated into a carbon nanotube layer of any size, which can be applied to both macroscopic and microscopic fields. Second, the carbon nanotubes have a smaller density than the carbon fibers. Therefore, the line heat source using the carbon nanotube layer has a lighter weight and is convenient to use. Third, the carbon nanotube layer has high electrothermal conversion efficiency and low thermal resistance. Therefore, the line heat source has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange rate. Fourth, the carbon nanotubes in the carbon nanotube layer are disorderly arranged, have good toughness, can be bent and folded into any shape without breaking, and thus have a long service life.
以下將結合附圖詳細說明本技術方案線熱源。 The line heat source of the present technical solution will be described in detail below with reference to the accompanying drawings.
請參閱圖2至圖4,本技術方案實施例提供一種線熱源20,該線熱源20包括一線狀基底202;一反射層210設置於該線狀基底202的表面;一加熱層204設置於所述反射層210表面;兩個電極206間隔設置於該加熱層204的表面,且與該加熱層204電連接;及一絕緣保護層208設置於該加熱層204的表面。所述線熱源20的長度不限,直徑為0.1微米~1.5厘米。本實施例的線熱源20的直徑優選為1.1毫米~1.1厘米。 Referring to FIG. 2 to FIG. 4, the embodiment of the present invention provides a line heat source 20, which includes a linear substrate 202. A reflective layer 210 is disposed on the surface of the linear substrate 202. A heating layer 204 is disposed at the surface. The surface of the reflective layer 210 is disposed on the surface of the heating layer 204 and electrically connected to the heating layer 204; and an insulating protective layer 208 is disposed on the surface of the heating layer 204. The length of the line heat source 20 is not limited, and the diameter is from 0.1 micrometer to 1.5 centimeters. The diameter of the line heat source 20 of the present embodiment is preferably 1.1 mm to 1.1 cm.
所述線狀基底202起支撐作用,其材料可為硬性材料,如:陶瓷、玻璃、樹脂、石英等,亦可選擇柔性材料,如:塑膠或柔性纖維等。當線狀基底202為柔性材料時,該線熱源20使用時可根據需要彎折成任意形狀。所述線狀基底202的長度、直徑及形狀不限,可依據實際需要進行選擇。本實施例優選的線狀基底202為一陶瓷桿,其直徑為1毫米~1厘米。 The linear substrate 202 serves as a supporting material, and the material thereof may be a hard material such as ceramics, glass, resin, quartz, etc., and a flexible material such as plastic or flexible fiber may also be selected. When the linear substrate 202 is a flexible material, the linear heat source 20 can be bent into any shape as needed when used. The length, diameter and shape of the linear substrate 202 are not limited, and may be selected according to actual needs. The preferred linear substrate 202 of this embodiment is a ceramic rod having a diameter of from 1 mm to 1 cm.
所述反射層210的材料為一白色絕緣材料,如:金屬氧化物、金屬鹽或陶瓷等。本實施例中,反射層210的材料優選為三氧化二鋁,其厚度為100微米~0.5毫米。該反射層210通過濺射的方法沈積於該線狀基底202表面。所述反射層210用來反射加熱層204所發的熱量,使其有效的散發到外界空間去,故,該反射層210為一可選擇結構。 The material of the reflective layer 210 is a white insulating material such as a metal oxide, a metal salt or a ceramic. In this embodiment, the material of the reflective layer 210 is preferably aluminum oxide, and the thickness thereof is 100 micrometers to 0.5 millimeters. The reflective layer 210 is deposited on the surface of the linear substrate 202 by sputtering. The reflective layer 210 is used to reflect the heat generated by the heating layer 204 to be effectively radiated to the external space. Therefore, the reflective layer 210 is an optional structure.
所述加熱層204包括一奈米碳管層。該奈米碳管層可包裹或纏繞於所述反射層210的表面。該奈米碳管層可利用本身的黏性與該反射層210連接,也可進一步通過黏結劑與反射層210連接。所述的黏結劑為矽膠。可以理解,當該 線熱源20不包括反射層210時,加熱層204可直接包裹或纏繞於所述線狀基底202的表面。 The heating layer 204 includes a carbon nanotube layer. The carbon nanotube layer may be wrapped or wound around the surface of the reflective layer 210. The carbon nanotube layer may be connected to the reflective layer 210 by its own viscosity, or may be further connected to the reflective layer 210 by a binder. The binder is silicone. Understand that when When the line heat source 20 does not include the reflective layer 210, the heating layer 204 may be directly wrapped or wound around the surface of the linear substrate 202.
該奈米碳管層的長度、寬度及厚度不限,可根據實際需要選擇。本技術方案提供的奈米碳管層的長度為1~10厘米,寬度為1~10厘米,厚度為1微米~2毫米。可以理解,奈米碳管層的熱响應速度與其厚度有關。相同面積的情況下,奈米碳管層的厚度越大,熱响應速度越慢;反之,奈米碳管層的厚度越小,熱响應速度越快。 The length, width and thickness of the carbon nanotube layer are not limited and can be selected according to actual needs. The carbon nanotube layer provided by the technical solution has a length of 1 to 10 cm, a width of 1 to 10 cm, and a thickness of 1 to 2 mm. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the greater the thickness of the carbon nanotube layer, the slower the thermal response speed; conversely, the smaller the thickness of the carbon nanotube layer, the faster the thermal response speed.
所述奈米碳管層包括相互纏繞的奈米碳管,請參閱圖4。所述的奈米碳管之間通過凡德瓦爾力相互吸引、纏繞,形成網絡狀結構。該奈米碳管層中,奈米碳管為均勻分佈,無規則排列,使得該奈米碳管層呈各向同性;奈米碳管相互纏繞,故,該奈米碳管層具有很好的柔韌性,可彎曲折疊成任意形狀而不破裂,請參閱圖5。該奈米碳管層中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~10奈米,雙壁奈米碳管的直徑為1.0奈米~15奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。該奈米碳管的長度大於50微米。本實施例中,奈米碳管的長度優選為200~900微米。 The carbon nanotube layer comprises intertwined carbon nanotubes, see Figure 4. The carbon nanotubes are attracted and entangled by van der Waals force to form a network structure. In the carbon nanotube layer, the carbon nanotubes are uniformly distributed and randomly arranged, so that the carbon nanotube layer is isotropic; the carbon nanotubes are intertwined, so the carbon nanotube layer has a good The flexibility is bendable into any shape without breaking, see Figure 5. The carbon nanotubes in the carbon nanotube layer include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 10 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 15 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. Nano. The length of the carbon nanotubes is greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm.
本實施例中,加熱層204採用厚度為100微米的奈米碳管層。該奈米碳管層的長度為5厘米,奈米碳管薄膜的寬度為3厘米。利用奈米碳管層本身的黏性,將該奈米碳管層包裹於所述反射層210的表面。 In this embodiment, the heating layer 204 is a carbon nanotube layer having a thickness of 100 μm. The carbon nanotube layer has a length of 5 cm and the carbon nanotube film has a width of 3 cm. The carbon nanotube layer is wrapped around the surface of the reflective layer 210 by the viscosity of the carbon nanotube layer itself.
所述電極206可設置於加熱層204的同一表面上也可設置於加熱層204的不同表面上。所述電極206可通過奈米碳管層的黏性或導電黏結劑(圖未示)設置於該加熱層204的表面上。導電黏結劑實現電極206與奈米碳管層電接觸的同時,還可將電極206更好地固定於奈米碳管層的表面上。通過該兩個電極206可對加熱層204施加電壓。其中,兩個電極206之間相隔設置,以使採用奈米碳管層的加熱層204通電發熱時接入一定的阻值避免短路現象產生。優選地,由於線狀基底202直徑較小,兩個電極206間隔設置於線狀基底202的兩端,並環繞設置於加熱層204的表面。 The electrodes 206 may be disposed on the same surface of the heating layer 204 or on different surfaces of the heating layer 204. The electrode 206 may be disposed on the surface of the heating layer 204 through a viscous or conductive adhesive (not shown) of the carbon nanotube layer. The conductive adhesive allows the electrode 206 to be in electrical contact with the carbon nanotube layer while also better securing the electrode 206 to the surface of the carbon nanotube layer. A voltage can be applied to the heating layer 204 through the two electrodes 206. Wherein, the two electrodes 206 are spaced apart from each other so as to connect a certain resistance value when the heating layer 204 using the carbon nanotube layer is energized to avoid short circuit. Preferably, since the linear substrate 202 has a small diameter, the two electrodes 206 are spaced apart from both ends of the linear substrate 202 and surround the surface of the heating layer 204.
所述電極206為導電薄膜、金屬片或者金屬引線。該導電薄膜的材料可為金屬、合金、銦錫氧化物(ITO)、銻錫氧化物(ATO)、導電銀膠、導電聚合物等。該導電薄膜可通過物理氣相沈積法、化學氣相沈積法或其他方法形成於加熱層204表面。該金屬片或者金屬引線的材料可為銅片或鋁片等。該金屬片可通過導電黏結劑固定於加熱層204表面。 The electrode 206 is a conductive film, a metal sheet or a metal lead. The material of the conductive film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ATO), conductive silver paste, conductive polymer, or the like. The conductive film may be formed on the surface of the heating layer 204 by physical vapor deposition, chemical vapor deposition, or the like. The material of the metal piece or the metal lead may be a copper piece or an aluminum piece or the like. The metal sheet may be fixed to the surface of the heating layer 204 by a conductive adhesive.
所述電極206還可為一奈米碳管結構。該奈米碳管結構包裹或纏繞於反射層210的表面。該奈米碳管結構可通過其自身的黏性或導電黏結劑固定於反射層210的表面。該奈米碳管結構包括定向排列且均勻分佈的金屬性奈米碳管。具體地,該奈米碳管結構包括至少一有序奈米碳管薄膜或至少一奈米碳管長線。 The electrode 206 can also be a carbon nanotube structure. The carbon nanotube structure is wrapped or wound around the surface of the reflective layer 210. The carbon nanotube structure can be fixed to the surface of the reflective layer 210 by its own viscous or conductive adhesive. The carbon nanotube structure includes aligned and uniformly distributed metallic carbon nanotubes. Specifically, the carbon nanotube structure comprises at least one ordered carbon nanotube film or at least one nano carbon tube long line.
本實施例中,優選地,將兩個有序奈米碳管薄膜分別設 置於沿線狀基底202長度方向的兩端作為電極206。該兩個有序奈米碳管薄膜環繞於加熱層204的內表面,並通過導電黏結劑與加熱層204之間形成電接觸。所述導電黏結劑優選為銀膠。由於本實施例中的加熱層204也採用奈米碳管層,故,電極206與加熱層204之間具有較小的歐姆接觸電阻,可提高線熱源20對電能的利用率。 In this embodiment, preferably, two ordered carbon nanotube films are separately provided. Both ends along the longitudinal direction of the linear substrate 202 are placed as the electrodes 206. The two ordered carbon nanotube films surround the inner surface of the heating layer 204 and form electrical contact with the heating layer 204 by a conductive bonding agent. The conductive adhesive is preferably a silver paste. Since the heating layer 204 in this embodiment also uses a carbon nanotube layer, the electrode 206 and the heating layer 204 have a small ohmic contact resistance, which can improve the utilization of the electric energy by the line heat source 20.
所述絕緣保護層208的材料為一絕緣材料,如:橡膠、樹脂等。所述絕緣保護層208厚度不限,可根據實際情況選擇。本實施例中,該絕緣保護層208的材料採用橡膠,其厚度為0.5~2毫米。該絕緣保護層208可通過塗敷或包裹的方法形成於加熱層204的表面。所述絕緣保護層208用來防止該線熱源20使用時與外界形成電接觸,同時還可防止加熱層204中的奈米碳管層吸附外界雜質。該絕緣保護層208為一可選擇結構。 The material of the insulating protective layer 208 is an insulating material such as rubber, resin or the like. The thickness of the insulating protection layer 208 is not limited and may be selected according to actual conditions. In this embodiment, the insulating protective layer 208 is made of rubber and has a thickness of 0.5 to 2 mm. The insulating protective layer 208 may be formed on the surface of the heating layer 204 by a coating or wrapping method. The insulating protective layer 208 is used to prevent the line heat source 20 from making electrical contact with the outside when in use, and also prevents the carbon nanotube layer in the heating layer 204 from adsorbing external impurities. The insulating protective layer 208 is an optional structure.
本實施例中,對厚度為100微米的奈米碳管層進行電熱性能測量。該奈米碳管層長5厘米,寬3厘米。將該奈米碳管層包裹於一直徑為1厘米的線狀基底202上,且其位於兩個電極206之間的長度為3厘米。電流沿著線狀基底202的長度方向流入。測量儀器為紅外測溫儀AZ-8859。當施加電壓於1伏~20伏,加熱功率為1瓦~40瓦時,奈米碳管層的表面溫度為50℃~500℃。可見,該奈米碳管層具有較高的電熱轉換效率。對於具有黑體結構的物體來說,其所對應的溫度為200℃~450℃時就能發出人眼看不見的熱輻射(紅外線),此時的熱輻射最穩定、效率最高,所產生的熱輻射熱量最大。 In this embodiment, the thermoelectric properties of the carbon nanotube layer having a thickness of 100 μm were measured. The carbon nanotube layer is 5 cm long and 3 cm wide. The carbon nanotube layer was wrapped on a linear substrate 202 having a diameter of 1 cm, and its length between the two electrodes 206 was 3 cm. Current flows in the length direction of the linear substrate 202. The measuring instrument is an infrared thermometer AZ-8859. When the applied voltage is between 1 volt and 20 volts and the heating power is 1 watt to 40 watts, the surface temperature of the carbon nanotube layer is 50 ° C to 500 ° C. It can be seen that the carbon nanotube layer has a high electrothermal conversion efficiency. For an object with a black body structure, the corresponding temperature of 200 ° C ~ 450 ° C can emit heat radiation (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient, and the heat radiation is generated. The largest amount.
該線熱源20使用時,可將其設置於所要加熱的物體表面或將其與被加熱的物體間隔設置,利用其熱輻射即可進行加熱。另,還可將複數個該線熱源20排列成各種預定的圖形使用。該線熱源20可廣泛應用於電加熱器、紅外治療儀、電暖器等領域。 When the line heat source 20 is used, it can be placed on the surface of the object to be heated or placed at an interval from the object to be heated, and can be heated by the heat radiation. Alternatively, a plurality of the line heat sources 20 may be arranged for use in various predetermined patterns. The line heat source 20 can be widely used in the fields of electric heaters, infrared therapeutic devices, electric heaters and the like.
本實施例中,由於奈米碳管具有奈米級的直徑,使得製備的奈米碳管結構可具有較小的厚度,故,採用小直徑的線狀基底可製備微型線熱源。奈米碳管具有強的抗腐蝕性,使其可於酸性環境中工作。而且,奈米碳管具有極強的穩定性,即使於3000℃以上高溫的真空環境下工作而不會分解,使該線熱源20適合於真空高溫下工作。另,奈米碳管比同體積的鋼強度高100倍,重量卻只有其1/6,故,採用奈米碳管的線熱源20具有更高的強度及更輕的重量。 In the present embodiment, since the carbon nanotubes have a diameter of a nanometer order, the prepared carbon nanotube structure can have a small thickness, and therefore, a microwire heat source can be prepared by using a small-diameter linear substrate. The carbon nanotubes have strong corrosion resistance, making them work in an acidic environment. Moreover, the carbon nanotubes have extremely high stability, and do not decompose even when working in a vacuum environment at a high temperature of 3000 ° C or higher, so that the line heat source 20 is suitable for operation under vacuum high temperature. In addition, the carbon nanotubes are 100 times stronger than the same volume of steel, and the weight is only 1/6. Therefore, the line heat source 20 using the carbon nanotubes has higher strength and lighter weight.
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.
10,20‧‧‧線熱源 10,20‧‧‧Wire heat source
102‧‧‧支架 102‧‧‧ bracket
104,204‧‧‧加熱層 104,204‧‧‧heating layer
106‧‧‧保護層 106‧‧‧Protective layer
108‧‧‧夾緊件 108‧‧‧Clamping parts
110,206‧‧‧電極 110,206‧‧‧ electrodes
202‧‧‧線狀基底 202‧‧‧Linear substrate
208‧‧‧絕緣保護層 208‧‧‧Insulating protective layer
210‧‧‧反射層 210‧‧‧reflective layer
圖1為先前技術的線熱源的結構示意圖。 1 is a schematic structural view of a prior art line heat source.
圖2為本技術方案實施例的線熱源的結構示意圖 2 is a schematic structural diagram of a line heat source according to an embodiment of the present technical solution
圖3為圖2的線熱源沿線Ⅲ-Ⅲ的剖面示意圖。 3 is a schematic cross-sectional view of the line heat source of FIG. 2 taken along line III-III.
圖4為圖3的線熱源沿線Ⅳ-Ⅳ的剖面示意圖。 4 is a cross-sectional view of the line heat source of FIG. 3 taken along line IV-IV.
圖5為本技術方案實施例的奈米碳管層的掃描電鏡照片。 FIG. 5 is a scanning electron micrograph of a carbon nanotube layer according to an embodiment of the present technical solution.
圖6為本技術方案實施例的奈米碳管層的照片。 Figure 6 is a photograph of a carbon nanotube layer of an embodiment of the present technical solution.
20‧‧‧線熱源 20‧‧‧Wire heat source
202‧‧‧線狀基底 202‧‧‧Linear substrate
204‧‧‧加熱層 204‧‧‧heating layer
206‧‧‧電極 206‧‧‧ electrodes
208‧‧‧絕緣保護層 208‧‧‧Insulating protective layer
210‧‧‧反射層 210‧‧‧reflective layer
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097128288A TWI386363B (en) | 2008-07-25 | 2008-07-25 | Linear heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097128288A TWI386363B (en) | 2008-07-25 | 2008-07-25 | Linear heater |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201004860A TW201004860A (en) | 2010-02-01 |
TWI386363B true TWI386363B (en) | 2013-02-21 |
Family
ID=44826072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097128288A TWI386363B (en) | 2008-07-25 | 2008-07-25 | Linear heater |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI386363B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200715334A (en) * | 2005-10-14 | 2007-04-16 | Hon Hai Prec Ind Co Ltd | Electron emission device |
TWI346711B (en) * | 2007-12-14 | 2011-08-11 | Hon Hai Prec Ind Co Ltd | Method of making magnesium matrix nanotube composite material |
-
2008
- 2008-07-25 TW TW097128288A patent/TWI386363B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200715334A (en) * | 2005-10-14 | 2007-04-16 | Hon Hai Prec Ind Co Ltd | Electron emission device |
TWI346711B (en) * | 2007-12-14 | 2011-08-11 | Hon Hai Prec Ind Co Ltd | Method of making magnesium matrix nanotube composite material |
Also Published As
Publication number | Publication date |
---|---|
TW201004860A (en) | 2010-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101605409B (en) | Surface heat source | |
TWI486090B (en) | Hollow heating source | |
CN101636005B (en) | Plane heat source | |
CN101610613B (en) | Line heat source | |
CN101616513A (en) | line heat source | |
CN101616515A (en) | line heat source | |
CN101636001B (en) | Cubic heat source | |
CN101636007B (en) | Plane heat source | |
TWI386363B (en) | Linear heater | |
CN101616512B (en) | Line heat source | |
TWI462630B (en) | Planar heating source | |
CN101616514A (en) | line heat source | |
TWI448417B (en) | Line heat source | |
CN101636011B (en) | Hollow heat source | |
CN101636004A (en) | Plane heat source | |
TWI380728B (en) | Linear heater | |
TWI380729B (en) | Linear heater | |
CN101616516B (en) | Line heat source | |
TWI462627B (en) | Hollow heating source | |
TWI380731B (en) | Planar heating source | |
TWI466585B (en) | Hollow heating source | |
TWI465145B (en) | Hollow heating source | |
TW201000395A (en) | Linear heater | |
TWI380730B (en) | Planar heating source | |
TWI473524B (en) | Hollow heating source |