[go: up one dir, main page]

CN101616513A - line heat source - Google Patents

line heat source Download PDF

Info

Publication number
CN101616513A
CN101616513A CN200810068070A CN200810068070A CN101616513A CN 101616513 A CN101616513 A CN 101616513A CN 200810068070 A CN200810068070 A CN 200810068070A CN 200810068070 A CN200810068070 A CN 200810068070A CN 101616513 A CN101616513 A CN 101616513A
Authority
CN
China
Prior art keywords
heat source
carbon nanotube
layer
source according
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810068070A
Other languages
Chinese (zh)
Other versions
CN101616513B (en
Inventor
王鼎
刘长洪
范守善
姜开利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2008100680705A priority Critical patent/CN101616513B/en
Priority to EP09162562.4A priority patent/EP2136603B1/en
Priority to KR1020090053461A priority patent/KR20090131652A/en
Priority to JP2009154345A priority patent/JP5390280B2/en
Priority to US12/460,848 priority patent/US20100000985A1/en
Priority to US12/460,867 priority patent/US20090314765A1/en
Priority to US12/460,859 priority patent/US20100000989A1/en
Priority to US12/460,870 priority patent/US20100000990A1/en
Priority to US12/460,849 priority patent/US20100000986A1/en
Priority to US12/460,858 priority patent/US20100000988A1/en
Priority to US12/460,817 priority patent/US20100108664A1/en
Priority to US12/460,868 priority patent/US20090321421A1/en
Priority to US12/460,850 priority patent/US20100140257A1/en
Priority to US12/460,853 priority patent/US20090321419A1/en
Priority to US12/460,871 priority patent/US20100230400A1/en
Priority to US12/460,854 priority patent/US20090321420A1/en
Priority to US12/460,855 priority patent/US20100000987A1/en
Priority to US12/460,852 priority patent/US20100140258A1/en
Priority to US12/460,869 priority patent/US20100139845A1/en
Priority to US12/460,851 priority patent/US20090321418A1/en
Priority to US12/462,153 priority patent/US20100000669A1/en
Priority to US12/462,188 priority patent/US20100139851A1/en
Priority to US12/462,155 priority patent/US20100140259A1/en
Publication of CN101616513A publication Critical patent/CN101616513A/en
Priority to US12/655,507 priority patent/US20100122980A1/en
Priority to US12/658,237 priority patent/US20100154975A1/en
Priority to US12/658,184 priority patent/US20100147828A1/en
Priority to US12/658,182 priority patent/US20100147827A1/en
Priority to US12/658,193 priority patent/US20100147829A1/en
Priority to US12/658,198 priority patent/US20100147830A1/en
Priority to US12/660,356 priority patent/US20110024410A1/en
Priority to US12/660,820 priority patent/US20100163547A1/en
Priority to US12/661,150 priority patent/US20100170890A1/en
Priority to US12/661,110 priority patent/US20100218367A1/en
Priority to US12/661,165 priority patent/US20100170891A1/en
Priority to US12/661,133 priority patent/US20100200568A1/en
Priority to US12/661,115 priority patent/US20100200567A1/en
Priority to US12/661,926 priority patent/US20100187221A1/en
Priority to US12/750,186 priority patent/US20100180429A1/en
Application granted granted Critical
Publication of CN101616513B publication Critical patent/CN101616513B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A kind of line heat source comprises a wire substrate; One zone of heating is arranged at the surface of wire substrate; And two electrode gap are arranged at the surface of zone of heating, and are electrically connected with this zone of heating respectively, and wherein, described zone of heating comprises a carbon nanotube layer, and this carbon nanotube layer comprises that a plurality of carbon nano-tube twine lack of alignment mutually.

Description

线热源 line heat source

技术领域 technical field

本发明涉及一种线热源,尤其涉及一种基于碳纳米管的线热源。The invention relates to a line heat source, in particular to a line heat source based on carbon nanotubes.

背景技术 Background technique

热源在人们的生产、生活、科研中起着重要的作用。线热源是常用的热源之一,被广泛应用于电加热器、红外治疗仪、电暖器等领域。Heat sources play an important role in people's production, life and scientific research. The wire heat source is one of the commonly used heat sources, and is widely used in electric heaters, infrared therapeutic devices, electric heaters and other fields.

请参见图1,现有技术提供一种线热源10,其包括一中空圆柱状支架102;一加热层104设置于该支架102表面,一绝缘保护层106设置于该加热层104表面;两个电极110分别设置于支架102两端,且与加热层104电连接;两个夹紧件108分别将两个电极110与加热层101卡固在支架102两端。其中,加热层104通常采用一碳纤维纸通过缠绕或包裹的方式形成。当通过两个电极110对该线热源10施加一电压时,所述加热层104产生焦耳热,并向周围进行热辐射。所述碳纤维纸包括纸基材和杂乱分布于该纸基材中的沥青基碳纤维。其中,纸基材包括纤维素纤维和树脂等的混合物,沥青基碳纤维的直径为3~6毫米,长度为5~20微米。Referring to Fig. 1, the prior art provides a linear heat source 10, which includes a hollow cylindrical support 102; a heating layer 104 is arranged on the surface of the support 102, and an insulating protective layer 106 is arranged on the surface of the heating layer 104; two The electrodes 110 are respectively arranged at two ends of the support 102 and are electrically connected to the heating layer 104 ; Wherein, the heating layer 104 is usually formed by winding or wrapping a carbon fiber paper. When a voltage is applied to the linear heat source 10 through the two electrodes 110, the heating layer 104 generates Joule heat and radiates heat to the surroundings. The carbon fiber paper includes a paper substrate and pitch-based carbon fibers randomly distributed in the paper substrate. Wherein, the paper substrate includes a mixture of cellulose fiber and resin, etc., and the pitch-based carbon fiber has a diameter of 3-6 mm and a length of 5-20 microns.

然而,采用碳纤维纸作为加热层具有以下缺点:第一,碳纤维纸厚度较大,一般为几十微米,使线热源不易做成微型结构,无法应用于微型器件的加热。第二,由于该碳纤维纸中包含了纸基材,所以该碳纤维纸的密度较大,重量大,使得采用该碳纤维纸的线热源使用不便。第三,由于该碳纤维纸中的沥青基碳纤维杂乱分布,所以该碳纤维纸的强度较小,柔性较差,容易破裂,限制了其应有范围。第四,碳纤维纸的电热转换效率较低,不利于节能环保。However, the use of carbon fiber paper as the heating layer has the following disadvantages: First, the thickness of carbon fiber paper is relatively large, generally tens of microns, which makes it difficult for the linear heat source to be made into a microstructure, and cannot be applied to the heating of micro devices. Second, because the carbon fiber paper contains a paper base material, the carbon fiber paper has a high density and a large weight, which makes it inconvenient to use the linear heat source using the carbon fiber paper. Third, due to the random distribution of pitch-based carbon fibers in the carbon fiber paper, the carbon fiber paper has low strength, poor flexibility, and is easy to break, which limits its scope. Fourth, the electrothermal conversion efficiency of carbon fiber paper is low, which is not conducive to energy saving and environmental protection.

有鉴于此,确有必要提供一种线热源,该线热源重量较小,强度大,可以做成微型结构,应用于微型器件的加热,且电热转换效率较低,利于节能环保。In view of this, it is indeed necessary to provide a line heat source, which has a small weight and high strength, can be made into a microstructure, and can be applied to the heating of micro devices, and has low electrothermal conversion efficiency, which is beneficial to energy saving and environmental protection.

发明内容 Contents of the invention

一种线热源包括一线状基底;一加热层设置于线状基底的表面;以及两个电极间隔设置于加热层的表面,并分别与该加热层电连接,其中,所述的加热层包括一碳纳米管层,且该碳纳米管层包括多个碳纳米管相互缠绕,无序排列。A linear heat source includes a linear base; a heating layer is arranged on the surface of the linear base; and two electrodes are arranged on the surface of the heating layer at intervals, and are respectively electrically connected to the heating layer, wherein the heating layer includes a A carbon nanotube layer, and the carbon nanotube layer includes a plurality of carbon nanotubes intertwined and arranged in disorder.

与现有技术相比较,所述的线热源具有以下优点:第一,碳纳米管可以方便地制成任意尺寸的碳纳米管层,既可以应用于宏观领域也可以应用于微观领域。第二,碳纳米管比碳纤维具有更小的密度,所以,采用碳纳米管层的线热源具有更轻的重量,使用方便。第三,碳纳米管层的电热转换效率高,热阻率低,所以该线热源具有升温迅速、热滞后小、热交换速度快的特点。第四,所述的碳纳米管层中的碳纳米管无序排列,具有很好的韧性,可以弯曲折叠成任意形状而不破裂,所以具有较长的使用寿命。Compared with the prior art, the linear heat source has the following advantages: First, carbon nanotubes can be conveniently made into carbon nanotube layers of any size, which can be applied to both macroscopic and microscopic fields. Second, carbon nanotubes have a smaller density than carbon fibers, so the line heat source using the carbon nanotube layer has lighter weight and is easier to use. Third, the carbon nanotube layer has high electrothermal conversion efficiency and low thermal resistivity, so the line heat source has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange speed. Fourth, the carbon nanotubes in the carbon nanotube layer are arranged in disorder, have good toughness, and can be bent and folded into any shape without breaking, so they have a long service life.

附图说明 Description of drawings

图1为现有技术的线热源的结构示意图。Fig. 1 is a schematic structural diagram of a linear heat source in the prior art.

图2为本技术方案实施例的线热源的结构示意图Fig. 2 is the structural representation of the line heat source of the embodiment of the technical solution

图3为图2的线热源沿线III-III的剖面示意图。FIG. 3 is a schematic cross-sectional view of the line heat source in FIG. 2 along line III-III.

图4为图3的线热源沿线IV-IV的剖面示意图。FIG. 4 is a schematic cross-sectional view of the linear heat source in FIG. 3 along line IV-IV.

图5为本技术方案实施例的碳纳米管层的扫描电镜照片。Fig. 5 is a scanning electron micrograph of the carbon nanotube layer of the embodiment of the technical solution.

图6为本技术方案实施例的碳纳米管层的照片。Fig. 6 is a photo of the carbon nanotube layer of the embodiment of the technical solution.

具体实施方式 Detailed ways

以下将结合附图详细说明本技术方案线热源。The linear heat source of the technical solution will be described in detail below in conjunction with the accompanying drawings.

请参阅图2至图4,本技术方案实施例提供一种线热源20,该线热源20包括一线状基底202;一反射层210设置于该线状基底202的表面;一加热层204设置于所述反射层210表面;两个电极206间隔设置于该加热层204的表面,且与该加热层204电连接;以及一绝缘保护层208设置于该加热层204的表面。所述线热源20的长度不限,直径为0.1微米~1.5厘米。本实施例的线热源20的直径优选为1.1毫米~1.1厘米。Please refer to FIG. 2 to FIG. 4 , the embodiment of the technical solution provides a linear heat source 20, the linear heat source 20 includes a linear base 202; a reflective layer 210 is disposed on the surface of the linear base 202; a heating layer 204 is disposed on The surface of the reflective layer 210 ; two electrodes 206 are arranged at intervals on the surface of the heating layer 204 and are electrically connected to the heating layer 204 ; and an insulating protection layer 208 is arranged on the surface of the heating layer 204 . The length of the linear heat source 20 is not limited, and the diameter is 0.1 micron to 1.5 cm. The diameter of the linear heat source 20 in this embodiment is preferably 1.1 millimeters to 1.1 centimeters.

所述线状基底202起支撑作用,其材料可为硬性材料,如:陶瓷、玻璃、树脂、石英等,亦可以选择柔性材料,如:塑料或柔性纤维等。当线状基底202为柔性材料时,该线热源20在使用时可根据需要弯折成任意形状。所述线状基底202的长度、直径以及形状不限,可依据实际需要进行选择。本实施例优选的线状基底202为一陶瓷杆,其直径为1毫米~1厘米。The linear base 202 plays a supporting role, and its material can be hard materials, such as ceramics, glass, resin, quartz, etc., or flexible materials, such as plastics or flexible fibers. When the linear base 202 is made of a flexible material, the linear heat source 20 can be bent into any shape as required. The length, diameter and shape of the linear base 202 are not limited, and can be selected according to actual needs. The preferred linear base 202 in this embodiment is a ceramic rod with a diameter of 1 mm-1 cm.

所述反射层210的材料为一白色绝缘材料,如:金属氧化物、金属盐或陶瓷等。本实施例中,反射层210的材料优选为三氧化二铝,其厚度为100微米~0.5毫米。该反射层210通过溅射的方法沉积于该线状基底202表面。所述反射层210用来反射加热层204所发的热量,使其有效的散发到外界空间去,故,该反射层210为一可选择结构。The reflective layer 210 is made of a white insulating material, such as metal oxide, metal salt or ceramics. In this embodiment, the reflective layer 210 is preferably made of Al2O3, with a thickness of 100 microns to 0.5 mm. The reflective layer 210 is deposited on the surface of the linear substrate 202 by sputtering. The reflective layer 210 is used to reflect the heat generated by the heating layer 204 to effectively dissipate the heat to the external space. Therefore, the reflective layer 210 is an optional structure.

所述加热层204包括一碳纳米管层。该碳纳米管层可以包裹或缠绕于所述反射层210的表面。该碳纳米管层可以利用本身的粘性与该反射层210连接,也可进一步通过粘结剂与反射层210连接。所述的粘结剂为硅胶。可以理解,当该线热源20不包括反射层210时,加热层204可以直接包裹或缠绕于所述线状基底202的表面。The heating layer 204 includes a carbon nanotube layer. The carbon nanotube layer can be wrapped or wound on the surface of the reflective layer 210 . The carbon nanotube layer can be connected to the reflective layer 210 by its own viscosity, or can be further connected to the reflective layer 210 through an adhesive. The adhesive is silica gel. It can be understood that when the linear heat source 20 does not include the reflective layer 210 , the heating layer 204 can be directly wrapped or wound on the surface of the linear base 202 .

该碳纳米管层的长度、宽度和厚度不限,可根据实际需要选择。本技术方案提供的碳纳米管层的长度为1~10厘米,宽度为1~10厘米,厚度为1微米~2毫米。可以理解,碳纳米管层的热响应速度与其厚度有关。在相同面积的情况下,碳纳米管层的厚度越大,热响应速度越慢;反之,碳纳米管层的厚度越小,热响应速度越快。The length, width and thickness of the carbon nanotube layer are not limited and can be selected according to actual needs. The carbon nanotube layer provided by the technical solution has a length of 1-10 cm, a width of 1-10 cm, and a thickness of 1 micron-2 mm. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the thicker the carbon nanotube layer, the slower the thermal response speed; conversely, the smaller the carbon nanotube layer thickness, the faster the thermal response speed.

所述碳纳米管层包括相互缠绕的碳纳米管,请参阅图4。所述的碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构。该碳纳米管层中,碳纳米管为均匀分布,无规则排列,使得该碳纳米管层呈各向同性;碳纳米管相互缠绕,因此该碳纳米管层具有很好的柔韧性,可以弯曲折叠成任意形状而不破裂,请参阅图5。该碳纳米管层中的碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5纳米~10纳米,双壁碳纳米管的直径为1.0纳米~15纳米,多壁碳纳米管的直径为1.5纳米~50纳米。该碳纳米管的长度大于50微米。本实施例中,碳纳米管的长度优选为200~900微米。The carbon nanotube layer includes intertwined carbon nanotubes, please refer to FIG. 4 . The carbon nanotubes attract and intertwine with each other through van der Waals force to form a network structure. In the carbon nanotube layer, the carbon nanotubes are uniformly distributed and arranged randomly, making the carbon nanotube layer isotropic; the carbon nanotubes are intertwined, so the carbon nanotube layer has good flexibility and can be bent Fold into any shape without breaking, see picture 5. The carbon nanotubes in the carbon nanotube layer include one or more of single-wall carbon nanotubes, double-wall carbon nanotubes and multi-wall carbon nanotubes. The single-walled carbon nanotubes have a diameter of 0.5 nm to 10 nm, the double-walled carbon nanotubes have a diameter of 1.0 nm to 15 nm, and the multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm. The length of the carbon nanotube is greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200-900 microns.

本实施例中,加热层204采用厚度为100微米的碳纳米管层。该碳纳米管层的长度为5厘米,碳纳米管薄膜的宽度为3厘米。利用碳纳米管层本身的粘性,将该碳纳米管层包裹于所述反射层210的表面。In this embodiment, the heating layer 204 is a carbon nanotube layer with a thickness of 100 microns. The length of the carbon nanotube layer is 5 cm, and the width of the carbon nanotube film is 3 cm. Using the viscosity of the carbon nanotube layer itself, the carbon nanotube layer is wrapped on the surface of the reflective layer 210 .

所述电极206可设置在加热层204的同一表面上也可以设置在加热层204的不同表面上。所述电极206可通过碳纳米管层的粘性或导电粘结剂(图未示)设置于该加热层204的表面上。导电粘结剂在实现电极206与碳纳米管层电接触的同时,还可将电极206更好地固定于碳纳米管层的表面上。通过该两个电极206可以对加热层204施加电压。其中,两个电极206之间相隔设置,以使采用碳纳米管层的加热层204通电发热时接入一定的阻值避免短路现象产生。优选地,由于线状基底202直径较小,两个电极206间隔设置于线状基底202的两端,并环绕设置于加热层204的表面。The electrodes 206 can be arranged on the same surface of the heating layer 204 or on different surfaces of the heating layer 204 . The electrode 206 can be disposed on the surface of the heating layer 204 through an adhesive or conductive adhesive (not shown) of the carbon nanotube layer. The conductive adhesive can better fix the electrode 206 on the surface of the carbon nanotube layer while realizing the electrical contact between the electrode 206 and the carbon nanotube layer. A voltage can be applied to the heating layer 204 via the two electrodes 206 . Wherein, the two electrodes 206 are spaced apart so that when the heating layer 204 using the carbon nanotube layer is energized and heats up, a certain resistance value is connected to avoid short circuit phenomenon. Preferably, due to the small diameter of the linear base 202 , two electrodes 206 are arranged at two ends of the linear base 202 at intervals, and are arranged around the surface of the heating layer 204 .

所述电极206为导电薄膜、金属片或者金属引线。该导电薄膜的材料可以为金属、合金、铟锡氧化物(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物等。该导电薄膜可以通过物理气相沉积法、化学气相沉积法或其它方法形成于加热层204表面。该金属片或者金属引线的材料可以为铜片或铝片等。该金属片可以通过导电粘结剂固定于加热层204表面。The electrodes 206 are conductive films, metal sheets or metal leads. The material of the conductive thin film can be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ATO), conductive silver paste, conductive polymer and the like. The conductive film can be formed on the surface of the heating layer 204 by physical vapor deposition, chemical vapor deposition or other methods. The material of the metal sheet or the metal lead may be copper sheet or aluminum sheet or the like. The metal sheet can be fixed on the surface of the heating layer 204 by a conductive adhesive.

所述电极206还可以为一碳纳米管结构。该碳纳米管结构包裹或缠绕于反射层210的表面。该碳纳米管结构可通过其自身的粘性或导电粘结剂固定于反射层210的表面。该碳纳米管结构包括定向排列且均匀分布的金属性碳纳米管。具体地,该碳纳米管结构包括至少一有序碳纳米管薄膜或至少一碳纳米管长线。The electrode 206 can also be a carbon nanotube structure. The carbon nanotube structure wraps or wraps around the surface of the reflective layer 210 . The carbon nanotube structure can be fixed on the surface of the reflective layer 210 by its own adhesive or conductive adhesive. The carbon nanotube structure includes aligned and uniformly distributed metallic carbon nanotubes. Specifically, the carbon nanotube structure includes at least one ordered carbon nanotube film or at least one carbon nanotube long line.

本实施例中,优选地,将两个有序碳纳米管薄膜分别设置于沿线状基底202长度方向的两端作为电极206。该两个有序碳纳米管薄膜环绕于加热层204的内表面,并通过导电粘结剂与加热层204之间形成电接触。所述导电粘结剂优选为银胶。由于本实施例中的加热层204也采用碳纳米管层,所以电极206与加热层204之间具有较小的欧姆接触电阻,可以提高线热源20对电能的利用率。In this embodiment, preferably, two ordered carbon nanotube films are respectively arranged at both ends along the length direction of the linear substrate 202 as electrodes 206 . The two ordered carbon nanotube films surround the inner surface of the heating layer 204 and form an electrical contact with the heating layer 204 through a conductive adhesive. The conductive adhesive is preferably silver glue. Since the heating layer 204 in this embodiment also uses a carbon nanotube layer, there is a small ohmic contact resistance between the electrode 206 and the heating layer 204, which can improve the utilization rate of the electric energy of the line heat source 20.

所述绝缘保护层208的材料为一绝缘材料,如:橡胶、树脂等。所述绝缘保护层208厚度不限,可以根据实际情况选择。本实施例中,该绝缘保护层208的材料采用橡胶,其厚度为0.5~2毫米。该绝缘保护层208可通过涂敷或包裹的方法形成于加热层204的表面。所述绝缘保护层208用来防止该线热源20在使用时与外界形成电接触,同时还可以防止加热层204中的碳纳米管层吸附外界杂质。该绝缘保护层208为一可选择结构。The material of the insulating protection layer 208 is an insulating material, such as rubber, resin and the like. The thickness of the insulating protection layer 208 is not limited, and can be selected according to actual conditions. In this embodiment, the insulating protection layer 208 is made of rubber, and its thickness is 0.5-2 mm. The insulating protection layer 208 can be formed on the surface of the heating layer 204 by coating or wrapping. The insulating protection layer 208 is used to prevent the wire heat source 20 from forming electrical contact with the outside world during use, and at the same time prevent the carbon nanotube layer in the heating layer 204 from absorbing foreign impurities. The insulating protection layer 208 is an optional structure.

本实施例中,对厚度为100微米的碳纳米管层进行了电热性能测量。该碳纳米管层长5厘米,宽3厘米。将该碳纳米管层包裹于一直径为1厘米的线状基底202上,且其位于两个电极206之间的长度为3厘米。电流沿着线状基底202的长度方向流入。测量仪器为红外测温仪AZ-8859。当施加电压在1伏~20伏,加热功率为1瓦~40瓦时,碳纳米管层的表面温度为50℃~500℃。可见,该碳纳米管层具有较高的电热转换效率。对于具有黑体结构的物体来说,其所对应的温度为200℃~450℃时就能发出人眼看不见的热辐射(红外线),此时的热辐射最稳定、效率最高,所产生的热辐射热量最大。In this embodiment, the electrothermal performance measurement is carried out on the carbon nanotube layer with a thickness of 100 micrometers. The carbon nanotube layer is 5 cm long and 3 cm wide. The carbon nanotube layer is wrapped on a linear substrate 202 with a diameter of 1 cm and a length of 3 cm between two electrodes 206 . Current flows along the length direction of the linear base 202 . The measuring instrument is an infrared thermometer AZ-8859. When the applied voltage is 1 volt to 20 volts and the heating power is 1 watt to 40 watts, the surface temperature of the carbon nanotube layer is 50°C to 500°C. It can be seen that the carbon nanotube layer has high electrothermal conversion efficiency. For an object with a black body structure, when the corresponding temperature is 200°C to 450°C, it can emit thermal radiation (infrared rays) invisible to the human eye. At this time, the thermal radiation is the most stable and efficient, and the generated thermal radiation Heat max.

该线热源20在使用时,可以将其设置于所要加热的物体表面或将其与被加热的物体间隔设置,利用其热辐射即可进行加热。另外,还可以将多个该线热源20排列成各种预定的图形使用。该线热源20可以广泛应用于电加热器、红外治疗仪、电暖器等领域。When the linear heat source 20 is in use, it can be arranged on the surface of the object to be heated or arranged at a distance from the object to be heated, and the heat radiation can be used for heating. In addition, multiple linear heat sources 20 can also be arranged in various predetermined patterns for use. The wire heat source 20 can be widely used in fields such as electric heaters, infrared therapeutic instruments, electric heaters and the like.

本实施例中,由于碳纳米管具有纳米级的直径,使得制备的碳纳米管结构可以具有较小的厚度,故,采用小直径的线状基底可以制备微型线热源。碳纳米管具有强的抗腐蚀性,使其可以在酸性环境中工作。而且,碳纳米管具有极强的稳定性,即使于3000℃以上高温的真空环境下工作而不会分解,使该线热源20适合于真空高温下工作。另外,碳纳米管比同体积的钢强度高100倍,重量却只有其1/6,所以,采用碳纳米管的线热源20具有更高的强度和更轻的重量。In this embodiment, since the carbon nanotubes have a nanoscale diameter, the prepared carbon nanotube structure can have a smaller thickness, so a micro wire heat source can be prepared by using a small diameter wire substrate. Carbon nanotubes are highly resistant to corrosion, allowing them to work in acidic environments. Moreover, the carbon nanotubes have strong stability and will not decompose even when working in a vacuum environment with a high temperature above 3000° C., making the wire heat source 20 suitable for working in a vacuum and high temperature. In addition, the strength of carbon nanotubes is 100 times higher than that of steel with the same volume, but its weight is only 1/6. Therefore, the linear heat source 20 using carbon nanotubes has higher strength and lighter weight.

另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included within the scope of protection claimed by the present invention.

Claims (17)

1.一种线热源包括一线状基底;一加热层设置于线状基底的表面;以及两个电极间隔设置于加热层的表面,并分别与该加热层电连接,其特征在于,所述的加热层包括一碳纳米管层,且该碳纳米管层包括多个碳纳米管相互缠绕,无序排列。1. A linear heat source comprises a linear base; a heating layer is arranged on the surface of the linear base; and two electrodes are arranged at intervals on the surface of the heating layer, and are respectively electrically connected to the heating layer, wherein the The heating layer includes a carbon nanotube layer, and the carbon nanotube layer includes a plurality of carbon nanotubes intertwined and arranged in disorder. 2.如权利要求1所述的线热源,其特征在于,所述的碳纳米管层中的碳纳米管之间通过范德华力相互吸引,形成网络状结构。2. The linear heat source according to claim 1, characterized in that the carbon nanotubes in the carbon nanotube layer are attracted to each other by van der Waals force to form a network structure. 3.如权利要求1所述的线热源,其特征在于,所述碳纳米管均匀分布,无规则排列,碳纳米管层呈各向同性。3. The linear heat source according to claim 1, wherein the carbon nanotubes are uniformly distributed and arranged randomly, and the carbon nanotube layer is isotropic. 4.如权利要求1所述的线热源,其特征在于,所述的碳纳米管层的厚度为1微米至2毫米。4. The linear heat source according to claim 1, characterized in that, the thickness of the carbon nanotube layer is 1 micrometer to 2 millimeters. 5.如权利要求1所述的线热源,其特征在于,所述的碳纳米管的长度大于50微米,直径小于50纳米。5. The linear heat source according to claim 1, characterized in that the length of the carbon nanotubes is greater than 50 microns and the diameter is less than 50 nanometers. 6.如权利要求1所述的线热源,其特征在于,所述的碳纳米管层缠绕或包裹设置于线状基底的表面。6. The linear heat source according to claim 1, wherein the carbon nanotube layer is wound or wrapped on the surface of the linear substrate. 7.如权利要求1所述的线热源,其特征在于,所述电极为一导电薄膜、金属片、金属引线或碳纳米管结构。7. The linear heat source according to claim 1, wherein the electrode is a conductive film, a metal sheet, a metal lead or a carbon nanotube structure. 8.如权利要求7所述的线热源,其特征在于,所述碳纳米管结构包括定向排列且均匀分布的金属性碳纳米管。8 . The linear heat source according to claim 7 , wherein the carbon nanotube structure comprises metallic carbon nanotubes aligned and evenly distributed. 9.如权利要求7所述的线热源,其特征在于,所述碳纳米管结构包括至少一有序碳纳米管薄膜或至少一碳纳米管长线。9. The linear heat source according to claim 7, wherein the carbon nanotube structure comprises at least one ordered carbon nanotube film or at least one carbon nanotube long wire. 10.如权利要求7所述的线热源,其特征在于,所述该碳纳米管结构包裹或缠绕于加热层的表面。10 . The linear heat source according to claim 7 , wherein the carbon nanotube structure is wrapped or wound on the surface of the heating layer. 11 . 11.如权利要求10所述的线热源,其特征在于,所述碳纳米管结构通过其自身的粘性或导电粘结剂固定于加热层的表面。11. The linear heat source according to claim 10, characterized in that, the carbon nanotube structure is fixed on the surface of the heating layer by its own adhesive or conductive adhesive. 12.如权利要求1所述的线热源,其特征在于,所述线状基底的材料为柔性材料或硬性材料,且所述柔性材料为塑料或柔性纤维,所述硬性材料为陶瓷、玻璃、树脂、石英。12. The linear heat source according to claim 1, wherein the material of the linear base is flexible material or hard material, and the flexible material is plastic or flexible fiber, and the hard material is ceramic, glass, Resin, Quartz. 13.如权利要求1所述的线热源,其特征在于,所述线热源进一步包括一反射层设置于加热层与线状基底之间。13. The linear heat source according to claim 1, further comprising a reflective layer disposed between the heating layer and the linear base. 14.如权利要求13所述的线热源,其特征在于,所述反射层的材料为金属氧化物、金属盐或陶瓷。14. The linear heat source according to claim 13, characterized in that, the material of the reflective layer is metal oxide, metal salt or ceramics. 15.如权利要求13所述的线热源,其特征在于,所述反射层的厚度为100微米~0.5毫米。15. The linear heat source according to claim 13, characterized in that, the thickness of the reflective layer is 100 microns-0.5 mm. 16.如权利要求1所述的线热源,其特征在于,所述线热源进一步包括一绝缘保护层设置于所述加热层的外表面。16. The wire heat source according to claim 1, characterized in that, the wire heat source further comprises an insulating protection layer disposed on the outer surface of the heating layer. 17.如权利要求1所述的线热源,其特征在于,所述线热源的直径为0.1微米~1.5厘米。17. The wire heat source according to claim 1, characterized in that, the diameter of the wire heat source is 0.1 micron to 1.5 cm.
CN2008100680705A 2008-06-07 2008-06-27 Linear heat source Active CN101616513B (en)

Priority Applications (38)

Application Number Priority Date Filing Date Title
CN2008100680705A CN101616513B (en) 2008-06-27 2008-06-27 Linear heat source
EP09162562.4A EP2136603B1 (en) 2008-06-18 2009-06-12 Heater and method for making the same
KR1020090053461A KR20090131652A (en) 2008-06-18 2009-06-16 Linear heater and manufacturing method
JP2009154345A JP5390280B2 (en) 2008-06-27 2009-06-29 Wire heat source
US12/460,867 US20090314765A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,859 US20100000989A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,870 US20100000990A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,849 US20100000986A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,848 US20100000985A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,817 US20100108664A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,868 US20090321421A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,850 US20100140257A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,853 US20090321419A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,871 US20100230400A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,854 US20090321420A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,855 US20100000987A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,852 US20100140258A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,869 US20100139845A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,851 US20090321418A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/460,858 US20100000988A1 (en) 2008-06-13 2009-07-23 Carbon nanotube heater
US12/462,153 US20100000669A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/462,188 US20100139851A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/462,155 US20100140259A1 (en) 2008-06-13 2009-07-30 Carbon nanotube heater
US12/655,507 US20100122980A1 (en) 2008-06-13 2009-12-31 Carbon nanotube heater
US12/658,237 US20100154975A1 (en) 2008-06-13 2010-02-04 Carbon Nanotube heater
US12/658,184 US20100147828A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/658,182 US20100147827A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/658,193 US20100147829A1 (en) 2008-06-13 2010-02-04 Carbon nanotube heater
US12/658,198 US20100147830A1 (en) 2008-06-07 2010-02-04 Carbon nanotube heater
US12/660,356 US20110024410A1 (en) 2008-06-13 2010-02-25 Carbon nanotube heater
US12/660,820 US20100163547A1 (en) 2008-06-13 2010-03-04 Carbon nanotube heater
US12/661,150 US20100170890A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,110 US20100218367A1 (en) 2008-06-13 2010-03-11 Method for making carbon nanotube heater
US12/661,165 US20100170891A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,133 US20100200568A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,115 US20100200567A1 (en) 2008-06-13 2010-03-11 Carbon nanotube heater
US12/661,926 US20100187221A1 (en) 2008-06-13 2010-03-25 Carbon nanotube hearter
US12/750,186 US20100180429A1 (en) 2008-06-13 2010-03-30 Carbon nanotube heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100680705A CN101616513B (en) 2008-06-27 2008-06-27 Linear heat source

Publications (2)

Publication Number Publication Date
CN101616513A true CN101616513A (en) 2009-12-30
CN101616513B CN101616513B (en) 2011-07-27

Family

ID=41495812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100680705A Active CN101616513B (en) 2008-06-07 2008-06-27 Linear heat source

Country Status (2)

Country Link
JP (1) JP5390280B2 (en)
CN (1) CN101616513B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833687A (en) * 2015-05-06 2015-08-12 中国工程物理研究院核物理与化学研究所 Hot stage for small-angle scattering experiment
CN101616512B (en) * 2008-06-27 2015-09-30 清华大学 Line heat source
CN107353028A (en) * 2017-08-24 2017-11-17 佛山科学技术学院 A kind of winding-type study of carbon nanotubes reinforced ceramic composites
CN115515265A (en) * 2022-10-23 2022-12-23 余定益 An Instantaneous Wire Wound Thick Film Heating Element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147148A (en) * 2010-02-08 2011-08-10 清华大学 Fluid heater and using method thereof
CN104718796A (en) * 2012-08-30 2015-06-17 量子技术集团(新加坡)私人有限公司 Electrical heating element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077167A (en) * 1998-08-31 2000-03-14 Kyocera Corp Planar heating element
JP2002075604A (en) * 2000-06-12 2002-03-15 Toto Ltd Surface heater
EP1346607B1 (en) * 2000-11-29 2012-07-25 Thermoceramix, LLC Resistive heaters and uses thereof
JP4724030B2 (en) * 2001-03-28 2011-07-13 株式会社東芝 ELECTRODE CATALYST MATERIAL FOR FUEL CELL, METHOD FOR PRODUCING ELECTRODE CATALYST MATERIAL FOR FUEL CELL, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE COMPLEX AND FUEL CELL
CN100411979C (en) * 2002-09-16 2008-08-20 清华大学 A carbon nanotube rope and its manufacturing method
WO2004082333A1 (en) * 2003-03-14 2004-09-23 Nanotech Co., Ltd. Seat-like heating units with porous plate-shaped electrode
CN2689638Y (en) * 2004-03-30 2005-03-30 李林林 Carbon fibric heating cable with single conducting wire
KR101458846B1 (en) * 2004-11-09 2014-11-07 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
JP5017522B2 (en) * 2005-09-13 2012-09-05 株式会社アイ.エス.テイ Planar heating element and manufacturing method thereof
CN100427388C (en) * 2005-11-25 2008-10-22 清华大学 A large-area ultra-thin carbon nanotube film and its preparation process
KR100749886B1 (en) * 2006-02-03 2007-08-21 (주) 나노텍 Heating element using carbon nanotube
CN200994196Y (en) * 2006-12-19 2007-12-19 深圳市宝安唐锋电器厂 Electric heating film heating device
CN101409961B (en) * 2007-10-10 2010-06-16 清华大学 Surface heat light source, its preparation method and its application method for heating objects
CN101407312B (en) * 2007-10-10 2011-01-26 鸿富锦精密工业(深圳)有限公司 Apparatus and method for preparing carbon nano-tube film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616512B (en) * 2008-06-27 2015-09-30 清华大学 Line heat source
CN104833687A (en) * 2015-05-06 2015-08-12 中国工程物理研究院核物理与化学研究所 Hot stage for small-angle scattering experiment
CN104833687B (en) * 2015-05-06 2017-08-18 中国工程物理研究院核物理与化学研究所 A kind of thermal station tested for small-angle scattering
CN107353028A (en) * 2017-08-24 2017-11-17 佛山科学技术学院 A kind of winding-type study of carbon nanotubes reinforced ceramic composites
CN107353028B (en) * 2017-08-24 2021-02-19 佛山科学技术学院 Winding type carbon nano tube reinforced ceramic matrix composite material
CN115515265A (en) * 2022-10-23 2022-12-23 余定益 An Instantaneous Wire Wound Thick Film Heating Element
CN115515265B (en) * 2022-10-23 2024-12-06 余定益 An instant heating wire-wound thick film heating element

Also Published As

Publication number Publication date
CN101616513B (en) 2011-07-27
JP5390280B2 (en) 2014-01-15
JP2010010136A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
CN101605409B (en) Surface heat source
TWI486090B (en) Hollow heating source
CN101610613B (en) Line heat source
CN101616513A (en) line heat source
CN101616515B (en) Linear heat source
CN101636005B (en) Plane heat source
CN101636001B (en) Cubic heat source
CN101636007B (en) Plane heat source
CN101616512B (en) Line heat source
CN101616514A (en) line heat source
CN101636011B (en) Hollow heat source
CN101616516B (en) Line heat source
TWI462630B (en) Planar heating source
TWI386363B (en) Linear heater
CN101636004A (en) Plane heat source
TWI380728B (en) Linear heater
TWI380729B (en) Linear heater
TWI448417B (en) Linear heater
CN101626641B (en) Hollow heat source
TWI462627B (en) Hollow heating source
TWI466585B (en) Hollow heating source
TWI465145B (en) Hollow heating source
TW201000395A (en) Linear heater
TWI473524B (en) Hollow heating source
TWI380730B (en) Planar heating source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant