CN101616513A - line heat source - Google Patents
line heat source Download PDFInfo
- Publication number
- CN101616513A CN101616513A CN200810068070A CN200810068070A CN101616513A CN 101616513 A CN101616513 A CN 101616513A CN 200810068070 A CN200810068070 A CN 200810068070A CN 200810068070 A CN200810068070 A CN 200810068070A CN 101616513 A CN101616513 A CN 101616513A
- Authority
- CN
- China
- Prior art keywords
- heat source
- carbon nanotube
- layer
- source according
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/04—Heating means manufactured by using nanotechnology
Landscapes
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种线热源,尤其涉及一种基于碳纳米管的线热源。The invention relates to a line heat source, in particular to a line heat source based on carbon nanotubes.
背景技术 Background technique
热源在人们的生产、生活、科研中起着重要的作用。线热源是常用的热源之一,被广泛应用于电加热器、红外治疗仪、电暖器等领域。Heat sources play an important role in people's production, life and scientific research. The wire heat source is one of the commonly used heat sources, and is widely used in electric heaters, infrared therapeutic devices, electric heaters and other fields.
请参见图1,现有技术提供一种线热源10,其包括一中空圆柱状支架102;一加热层104设置于该支架102表面,一绝缘保护层106设置于该加热层104表面;两个电极110分别设置于支架102两端,且与加热层104电连接;两个夹紧件108分别将两个电极110与加热层101卡固在支架102两端。其中,加热层104通常采用一碳纤维纸通过缠绕或包裹的方式形成。当通过两个电极110对该线热源10施加一电压时,所述加热层104产生焦耳热,并向周围进行热辐射。所述碳纤维纸包括纸基材和杂乱分布于该纸基材中的沥青基碳纤维。其中,纸基材包括纤维素纤维和树脂等的混合物,沥青基碳纤维的直径为3~6毫米,长度为5~20微米。Referring to Fig. 1, the prior art provides a
然而,采用碳纤维纸作为加热层具有以下缺点:第一,碳纤维纸厚度较大,一般为几十微米,使线热源不易做成微型结构,无法应用于微型器件的加热。第二,由于该碳纤维纸中包含了纸基材,所以该碳纤维纸的密度较大,重量大,使得采用该碳纤维纸的线热源使用不便。第三,由于该碳纤维纸中的沥青基碳纤维杂乱分布,所以该碳纤维纸的强度较小,柔性较差,容易破裂,限制了其应有范围。第四,碳纤维纸的电热转换效率较低,不利于节能环保。However, the use of carbon fiber paper as the heating layer has the following disadvantages: First, the thickness of carbon fiber paper is relatively large, generally tens of microns, which makes it difficult for the linear heat source to be made into a microstructure, and cannot be applied to the heating of micro devices. Second, because the carbon fiber paper contains a paper base material, the carbon fiber paper has a high density and a large weight, which makes it inconvenient to use the linear heat source using the carbon fiber paper. Third, due to the random distribution of pitch-based carbon fibers in the carbon fiber paper, the carbon fiber paper has low strength, poor flexibility, and is easy to break, which limits its scope. Fourth, the electrothermal conversion efficiency of carbon fiber paper is low, which is not conducive to energy saving and environmental protection.
有鉴于此,确有必要提供一种线热源,该线热源重量较小,强度大,可以做成微型结构,应用于微型器件的加热,且电热转换效率较低,利于节能环保。In view of this, it is indeed necessary to provide a line heat source, which has a small weight and high strength, can be made into a microstructure, and can be applied to the heating of micro devices, and has low electrothermal conversion efficiency, which is beneficial to energy saving and environmental protection.
发明内容 Contents of the invention
一种线热源包括一线状基底;一加热层设置于线状基底的表面;以及两个电极间隔设置于加热层的表面,并分别与该加热层电连接,其中,所述的加热层包括一碳纳米管层,且该碳纳米管层包括多个碳纳米管相互缠绕,无序排列。A linear heat source includes a linear base; a heating layer is arranged on the surface of the linear base; and two electrodes are arranged on the surface of the heating layer at intervals, and are respectively electrically connected to the heating layer, wherein the heating layer includes a A carbon nanotube layer, and the carbon nanotube layer includes a plurality of carbon nanotubes intertwined and arranged in disorder.
与现有技术相比较,所述的线热源具有以下优点:第一,碳纳米管可以方便地制成任意尺寸的碳纳米管层,既可以应用于宏观领域也可以应用于微观领域。第二,碳纳米管比碳纤维具有更小的密度,所以,采用碳纳米管层的线热源具有更轻的重量,使用方便。第三,碳纳米管层的电热转换效率高,热阻率低,所以该线热源具有升温迅速、热滞后小、热交换速度快的特点。第四,所述的碳纳米管层中的碳纳米管无序排列,具有很好的韧性,可以弯曲折叠成任意形状而不破裂,所以具有较长的使用寿命。Compared with the prior art, the linear heat source has the following advantages: First, carbon nanotubes can be conveniently made into carbon nanotube layers of any size, which can be applied to both macroscopic and microscopic fields. Second, carbon nanotubes have a smaller density than carbon fibers, so the line heat source using the carbon nanotube layer has lighter weight and is easier to use. Third, the carbon nanotube layer has high electrothermal conversion efficiency and low thermal resistivity, so the line heat source has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange speed. Fourth, the carbon nanotubes in the carbon nanotube layer are arranged in disorder, have good toughness, and can be bent and folded into any shape without breaking, so they have a long service life.
附图说明 Description of drawings
图1为现有技术的线热源的结构示意图。Fig. 1 is a schematic structural diagram of a linear heat source in the prior art.
图2为本技术方案实施例的线热源的结构示意图Fig. 2 is the structural representation of the line heat source of the embodiment of the technical solution
图3为图2的线热源沿线III-III的剖面示意图。FIG. 3 is a schematic cross-sectional view of the line heat source in FIG. 2 along line III-III.
图4为图3的线热源沿线IV-IV的剖面示意图。FIG. 4 is a schematic cross-sectional view of the linear heat source in FIG. 3 along line IV-IV.
图5为本技术方案实施例的碳纳米管层的扫描电镜照片。Fig. 5 is a scanning electron micrograph of the carbon nanotube layer of the embodiment of the technical solution.
图6为本技术方案实施例的碳纳米管层的照片。Fig. 6 is a photo of the carbon nanotube layer of the embodiment of the technical solution.
具体实施方式 Detailed ways
以下将结合附图详细说明本技术方案线热源。The linear heat source of the technical solution will be described in detail below in conjunction with the accompanying drawings.
请参阅图2至图4,本技术方案实施例提供一种线热源20,该线热源20包括一线状基底202;一反射层210设置于该线状基底202的表面;一加热层204设置于所述反射层210表面;两个电极206间隔设置于该加热层204的表面,且与该加热层204电连接;以及一绝缘保护层208设置于该加热层204的表面。所述线热源20的长度不限,直径为0.1微米~1.5厘米。本实施例的线热源20的直径优选为1.1毫米~1.1厘米。Please refer to FIG. 2 to FIG. 4 , the embodiment of the technical solution provides a
所述线状基底202起支撑作用,其材料可为硬性材料,如:陶瓷、玻璃、树脂、石英等,亦可以选择柔性材料,如:塑料或柔性纤维等。当线状基底202为柔性材料时,该线热源20在使用时可根据需要弯折成任意形状。所述线状基底202的长度、直径以及形状不限,可依据实际需要进行选择。本实施例优选的线状基底202为一陶瓷杆,其直径为1毫米~1厘米。The
所述反射层210的材料为一白色绝缘材料,如:金属氧化物、金属盐或陶瓷等。本实施例中,反射层210的材料优选为三氧化二铝,其厚度为100微米~0.5毫米。该反射层210通过溅射的方法沉积于该线状基底202表面。所述反射层210用来反射加热层204所发的热量,使其有效的散发到外界空间去,故,该反射层210为一可选择结构。The
所述加热层204包括一碳纳米管层。该碳纳米管层可以包裹或缠绕于所述反射层210的表面。该碳纳米管层可以利用本身的粘性与该反射层210连接,也可进一步通过粘结剂与反射层210连接。所述的粘结剂为硅胶。可以理解,当该线热源20不包括反射层210时,加热层204可以直接包裹或缠绕于所述线状基底202的表面。The
该碳纳米管层的长度、宽度和厚度不限,可根据实际需要选择。本技术方案提供的碳纳米管层的长度为1~10厘米,宽度为1~10厘米,厚度为1微米~2毫米。可以理解,碳纳米管层的热响应速度与其厚度有关。在相同面积的情况下,碳纳米管层的厚度越大,热响应速度越慢;反之,碳纳米管层的厚度越小,热响应速度越快。The length, width and thickness of the carbon nanotube layer are not limited and can be selected according to actual needs. The carbon nanotube layer provided by the technical solution has a length of 1-10 cm, a width of 1-10 cm, and a thickness of 1 micron-2 mm. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the thicker the carbon nanotube layer, the slower the thermal response speed; conversely, the smaller the carbon nanotube layer thickness, the faster the thermal response speed.
所述碳纳米管层包括相互缠绕的碳纳米管,请参阅图4。所述的碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构。该碳纳米管层中,碳纳米管为均匀分布,无规则排列,使得该碳纳米管层呈各向同性;碳纳米管相互缠绕,因此该碳纳米管层具有很好的柔韧性,可以弯曲折叠成任意形状而不破裂,请参阅图5。该碳纳米管层中的碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5纳米~10纳米,双壁碳纳米管的直径为1.0纳米~15纳米,多壁碳纳米管的直径为1.5纳米~50纳米。该碳纳米管的长度大于50微米。本实施例中,碳纳米管的长度优选为200~900微米。The carbon nanotube layer includes intertwined carbon nanotubes, please refer to FIG. 4 . The carbon nanotubes attract and intertwine with each other through van der Waals force to form a network structure. In the carbon nanotube layer, the carbon nanotubes are uniformly distributed and arranged randomly, making the carbon nanotube layer isotropic; the carbon nanotubes are intertwined, so the carbon nanotube layer has good flexibility and can be bent Fold into any shape without breaking, see picture 5. The carbon nanotubes in the carbon nanotube layer include one or more of single-wall carbon nanotubes, double-wall carbon nanotubes and multi-wall carbon nanotubes. The single-walled carbon nanotubes have a diameter of 0.5 nm to 10 nm, the double-walled carbon nanotubes have a diameter of 1.0 nm to 15 nm, and the multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm. The length of the carbon nanotube is greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200-900 microns.
本实施例中,加热层204采用厚度为100微米的碳纳米管层。该碳纳米管层的长度为5厘米,碳纳米管薄膜的宽度为3厘米。利用碳纳米管层本身的粘性,将该碳纳米管层包裹于所述反射层210的表面。In this embodiment, the
所述电极206可设置在加热层204的同一表面上也可以设置在加热层204的不同表面上。所述电极206可通过碳纳米管层的粘性或导电粘结剂(图未示)设置于该加热层204的表面上。导电粘结剂在实现电极206与碳纳米管层电接触的同时,还可将电极206更好地固定于碳纳米管层的表面上。通过该两个电极206可以对加热层204施加电压。其中,两个电极206之间相隔设置,以使采用碳纳米管层的加热层204通电发热时接入一定的阻值避免短路现象产生。优选地,由于线状基底202直径较小,两个电极206间隔设置于线状基底202的两端,并环绕设置于加热层204的表面。The
所述电极206为导电薄膜、金属片或者金属引线。该导电薄膜的材料可以为金属、合金、铟锡氧化物(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物等。该导电薄膜可以通过物理气相沉积法、化学气相沉积法或其它方法形成于加热层204表面。该金属片或者金属引线的材料可以为铜片或铝片等。该金属片可以通过导电粘结剂固定于加热层204表面。The
所述电极206还可以为一碳纳米管结构。该碳纳米管结构包裹或缠绕于反射层210的表面。该碳纳米管结构可通过其自身的粘性或导电粘结剂固定于反射层210的表面。该碳纳米管结构包括定向排列且均匀分布的金属性碳纳米管。具体地,该碳纳米管结构包括至少一有序碳纳米管薄膜或至少一碳纳米管长线。The
本实施例中,优选地,将两个有序碳纳米管薄膜分别设置于沿线状基底202长度方向的两端作为电极206。该两个有序碳纳米管薄膜环绕于加热层204的内表面,并通过导电粘结剂与加热层204之间形成电接触。所述导电粘结剂优选为银胶。由于本实施例中的加热层204也采用碳纳米管层,所以电极206与加热层204之间具有较小的欧姆接触电阻,可以提高线热源20对电能的利用率。In this embodiment, preferably, two ordered carbon nanotube films are respectively arranged at both ends along the length direction of the
所述绝缘保护层208的材料为一绝缘材料,如:橡胶、树脂等。所述绝缘保护层208厚度不限,可以根据实际情况选择。本实施例中,该绝缘保护层208的材料采用橡胶,其厚度为0.5~2毫米。该绝缘保护层208可通过涂敷或包裹的方法形成于加热层204的表面。所述绝缘保护层208用来防止该线热源20在使用时与外界形成电接触,同时还可以防止加热层204中的碳纳米管层吸附外界杂质。该绝缘保护层208为一可选择结构。The material of the insulating
本实施例中,对厚度为100微米的碳纳米管层进行了电热性能测量。该碳纳米管层长5厘米,宽3厘米。将该碳纳米管层包裹于一直径为1厘米的线状基底202上,且其位于两个电极206之间的长度为3厘米。电流沿着线状基底202的长度方向流入。测量仪器为红外测温仪AZ-8859。当施加电压在1伏~20伏,加热功率为1瓦~40瓦时,碳纳米管层的表面温度为50℃~500℃。可见,该碳纳米管层具有较高的电热转换效率。对于具有黑体结构的物体来说,其所对应的温度为200℃~450℃时就能发出人眼看不见的热辐射(红外线),此时的热辐射最稳定、效率最高,所产生的热辐射热量最大。In this embodiment, the electrothermal performance measurement is carried out on the carbon nanotube layer with a thickness of 100 micrometers. The carbon nanotube layer is 5 cm long and 3 cm wide. The carbon nanotube layer is wrapped on a
该线热源20在使用时,可以将其设置于所要加热的物体表面或将其与被加热的物体间隔设置,利用其热辐射即可进行加热。另外,还可以将多个该线热源20排列成各种预定的图形使用。该线热源20可以广泛应用于电加热器、红外治疗仪、电暖器等领域。When the
本实施例中,由于碳纳米管具有纳米级的直径,使得制备的碳纳米管结构可以具有较小的厚度,故,采用小直径的线状基底可以制备微型线热源。碳纳米管具有强的抗腐蚀性,使其可以在酸性环境中工作。而且,碳纳米管具有极强的稳定性,即使于3000℃以上高温的真空环境下工作而不会分解,使该线热源20适合于真空高温下工作。另外,碳纳米管比同体积的钢强度高100倍,重量却只有其1/6,所以,采用碳纳米管的线热源20具有更高的强度和更轻的重量。In this embodiment, since the carbon nanotubes have a nanoscale diameter, the prepared carbon nanotube structure can have a smaller thickness, so a micro wire heat source can be prepared by using a small diameter wire substrate. Carbon nanotubes are highly resistant to corrosion, allowing them to work in acidic environments. Moreover, the carbon nanotubes have strong stability and will not decompose even when working in a vacuum environment with a high temperature above 3000° C., making the
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included within the scope of protection claimed by the present invention.
Claims (17)
Priority Applications (38)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100680705A CN101616513B (en) | 2008-06-27 | 2008-06-27 | Linear heat source |
EP09162562.4A EP2136603B1 (en) | 2008-06-18 | 2009-06-12 | Heater and method for making the same |
KR1020090053461A KR20090131652A (en) | 2008-06-18 | 2009-06-16 | Linear heater and manufacturing method |
JP2009154345A JP5390280B2 (en) | 2008-06-27 | 2009-06-29 | Wire heat source |
US12/460,867 US20090314765A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,859 US20100000989A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,870 US20100000990A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,849 US20100000986A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,848 US20100000985A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,817 US20100108664A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,868 US20090321421A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,850 US20100140257A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,853 US20090321419A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,871 US20100230400A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,854 US20090321420A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,855 US20100000987A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,852 US20100140258A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,869 US20100139845A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,851 US20090321418A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/460,858 US20100000988A1 (en) | 2008-06-13 | 2009-07-23 | Carbon nanotube heater |
US12/462,153 US20100000669A1 (en) | 2008-06-13 | 2009-07-30 | Carbon nanotube heater |
US12/462,188 US20100139851A1 (en) | 2008-06-13 | 2009-07-30 | Carbon nanotube heater |
US12/462,155 US20100140259A1 (en) | 2008-06-13 | 2009-07-30 | Carbon nanotube heater |
US12/655,507 US20100122980A1 (en) | 2008-06-13 | 2009-12-31 | Carbon nanotube heater |
US12/658,237 US20100154975A1 (en) | 2008-06-13 | 2010-02-04 | Carbon Nanotube heater |
US12/658,184 US20100147828A1 (en) | 2008-06-13 | 2010-02-04 | Carbon nanotube heater |
US12/658,182 US20100147827A1 (en) | 2008-06-13 | 2010-02-04 | Carbon nanotube heater |
US12/658,193 US20100147829A1 (en) | 2008-06-13 | 2010-02-04 | Carbon nanotube heater |
US12/658,198 US20100147830A1 (en) | 2008-06-07 | 2010-02-04 | Carbon nanotube heater |
US12/660,356 US20110024410A1 (en) | 2008-06-13 | 2010-02-25 | Carbon nanotube heater |
US12/660,820 US20100163547A1 (en) | 2008-06-13 | 2010-03-04 | Carbon nanotube heater |
US12/661,150 US20100170890A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,110 US20100218367A1 (en) | 2008-06-13 | 2010-03-11 | Method for making carbon nanotube heater |
US12/661,165 US20100170891A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,133 US20100200568A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,115 US20100200567A1 (en) | 2008-06-13 | 2010-03-11 | Carbon nanotube heater |
US12/661,926 US20100187221A1 (en) | 2008-06-13 | 2010-03-25 | Carbon nanotube hearter |
US12/750,186 US20100180429A1 (en) | 2008-06-13 | 2010-03-30 | Carbon nanotube heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100680705A CN101616513B (en) | 2008-06-27 | 2008-06-27 | Linear heat source |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101616513A true CN101616513A (en) | 2009-12-30 |
CN101616513B CN101616513B (en) | 2011-07-27 |
Family
ID=41495812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100680705A Active CN101616513B (en) | 2008-06-07 | 2008-06-27 | Linear heat source |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5390280B2 (en) |
CN (1) | CN101616513B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104833687A (en) * | 2015-05-06 | 2015-08-12 | 中国工程物理研究院核物理与化学研究所 | Hot stage for small-angle scattering experiment |
CN101616512B (en) * | 2008-06-27 | 2015-09-30 | 清华大学 | Line heat source |
CN107353028A (en) * | 2017-08-24 | 2017-11-17 | 佛山科学技术学院 | A kind of winding-type study of carbon nanotubes reinforced ceramic composites |
CN115515265A (en) * | 2022-10-23 | 2022-12-23 | 余定益 | An Instantaneous Wire Wound Thick Film Heating Element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102147148A (en) * | 2010-02-08 | 2011-08-10 | 清华大学 | Fluid heater and using method thereof |
CN104718796A (en) * | 2012-08-30 | 2015-06-17 | 量子技术集团(新加坡)私人有限公司 | Electrical heating element |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000077167A (en) * | 1998-08-31 | 2000-03-14 | Kyocera Corp | Planar heating element |
JP2002075604A (en) * | 2000-06-12 | 2002-03-15 | Toto Ltd | Surface heater |
EP1346607B1 (en) * | 2000-11-29 | 2012-07-25 | Thermoceramix, LLC | Resistive heaters and uses thereof |
JP4724030B2 (en) * | 2001-03-28 | 2011-07-13 | 株式会社東芝 | ELECTRODE CATALYST MATERIAL FOR FUEL CELL, METHOD FOR PRODUCING ELECTRODE CATALYST MATERIAL FOR FUEL CELL, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE COMPLEX AND FUEL CELL |
CN100411979C (en) * | 2002-09-16 | 2008-08-20 | 清华大学 | A carbon nanotube rope and its manufacturing method |
WO2004082333A1 (en) * | 2003-03-14 | 2004-09-23 | Nanotech Co., Ltd. | Seat-like heating units with porous plate-shaped electrode |
CN2689638Y (en) * | 2004-03-30 | 2005-03-30 | 李林林 | Carbon fibric heating cable with single conducting wire |
KR101458846B1 (en) * | 2004-11-09 | 2014-11-07 | 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 | The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns |
JP5017522B2 (en) * | 2005-09-13 | 2012-09-05 | 株式会社アイ.エス.テイ | Planar heating element and manufacturing method thereof |
CN100427388C (en) * | 2005-11-25 | 2008-10-22 | 清华大学 | A large-area ultra-thin carbon nanotube film and its preparation process |
KR100749886B1 (en) * | 2006-02-03 | 2007-08-21 | (주) 나노텍 | Heating element using carbon nanotube |
CN200994196Y (en) * | 2006-12-19 | 2007-12-19 | 深圳市宝安唐锋电器厂 | Electric heating film heating device |
CN101409961B (en) * | 2007-10-10 | 2010-06-16 | 清华大学 | Surface heat light source, its preparation method and its application method for heating objects |
CN101407312B (en) * | 2007-10-10 | 2011-01-26 | 鸿富锦精密工业(深圳)有限公司 | Apparatus and method for preparing carbon nano-tube film |
-
2008
- 2008-06-27 CN CN2008100680705A patent/CN101616513B/en active Active
-
2009
- 2009-06-29 JP JP2009154345A patent/JP5390280B2/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101616512B (en) * | 2008-06-27 | 2015-09-30 | 清华大学 | Line heat source |
CN104833687A (en) * | 2015-05-06 | 2015-08-12 | 中国工程物理研究院核物理与化学研究所 | Hot stage for small-angle scattering experiment |
CN104833687B (en) * | 2015-05-06 | 2017-08-18 | 中国工程物理研究院核物理与化学研究所 | A kind of thermal station tested for small-angle scattering |
CN107353028A (en) * | 2017-08-24 | 2017-11-17 | 佛山科学技术学院 | A kind of winding-type study of carbon nanotubes reinforced ceramic composites |
CN107353028B (en) * | 2017-08-24 | 2021-02-19 | 佛山科学技术学院 | Winding type carbon nano tube reinforced ceramic matrix composite material |
CN115515265A (en) * | 2022-10-23 | 2022-12-23 | 余定益 | An Instantaneous Wire Wound Thick Film Heating Element |
CN115515265B (en) * | 2022-10-23 | 2024-12-06 | 余定益 | An instant heating wire-wound thick film heating element |
Also Published As
Publication number | Publication date |
---|---|
CN101616513B (en) | 2011-07-27 |
JP5390280B2 (en) | 2014-01-15 |
JP2010010136A (en) | 2010-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101605409B (en) | Surface heat source | |
TWI486090B (en) | Hollow heating source | |
CN101610613B (en) | Line heat source | |
CN101616513A (en) | line heat source | |
CN101616515B (en) | Linear heat source | |
CN101636005B (en) | Plane heat source | |
CN101636001B (en) | Cubic heat source | |
CN101636007B (en) | Plane heat source | |
CN101616512B (en) | Line heat source | |
CN101616514A (en) | line heat source | |
CN101636011B (en) | Hollow heat source | |
CN101616516B (en) | Line heat source | |
TWI462630B (en) | Planar heating source | |
TWI386363B (en) | Linear heater | |
CN101636004A (en) | Plane heat source | |
TWI380728B (en) | Linear heater | |
TWI380729B (en) | Linear heater | |
TWI448417B (en) | Linear heater | |
CN101626641B (en) | Hollow heat source | |
TWI462627B (en) | Hollow heating source | |
TWI466585B (en) | Hollow heating source | |
TWI465145B (en) | Hollow heating source | |
TW201000395A (en) | Linear heater | |
TWI473524B (en) | Hollow heating source | |
TWI380730B (en) | Planar heating source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |