[go: up one dir, main page]

TWI364519B - Function detection method - Google Patents

Function detection method Download PDF

Info

Publication number
TWI364519B
TWI364519B TW098125627A TW98125627A TWI364519B TW I364519 B TWI364519 B TW I364519B TW 098125627 A TW098125627 A TW 098125627A TW 98125627 A TW98125627 A TW 98125627A TW I364519 B TWI364519 B TW I364519B
Authority
TW
Taiwan
Prior art keywords
performance
air
temperature
air conditioning
pct
Prior art date
Application number
TW098125627A
Other languages
English (en)
Other versions
TW200951379A (en
Inventor
Pinchuan Chen
Shu Fen Lin
Chen Kun Hus
Yu Huan Wang
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW098125627A priority Critical patent/TWI364519B/zh
Priority to US12/568,857 priority patent/US20110023503A1/en
Publication of TW200951379A publication Critical patent/TW200951379A/zh
Application granted granted Critical
Publication of TWI364519B publication Critical patent/TWI364519B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)

Description

•4 1364519 t 六、發明說明: 【發明所屬之技術領域】 • 本發明係關於一種性能檢測方法,詳而言之,係為一 種高準確度的空調設備之性能特性檢測方法。 【先前技術】 近年來,隨著經濟的起飛與產業的快速發展,用電量 • 與用電需求也隨著大幅增加。但是由於發電容易產生環境 • 污染(例如:二氧化碳的排放所造成氣候暖化)、電廠的土 ^ 地取得不易,且電力來源的開發速度與輸配電系統的建設 腳步並無法滿足日益增加的用電量與用電需求,以致供電 量常常發生不足,而導致了於尖峰用電時段需要限制用電 量的措施。因此,如何有效地節約電能來避免供電量不足, 遂成為社會各界努力的目標。 根據統計,各種用電設備中通常又以空調設備所佔的 用電比例最大,舉例而言,實際的半導體廠房中的用電設 φ 備有製程設備、測試設備及/或空調設備,而空調設備(例 如:恆溫水槽、空調系統、冰水主機等)通常佔了該半導 體廠房用電總量的百分之二十七以上,因此可以合理推 知,從提高空調設備的使用效率為主要目標來著手,即為 一種有效的節約電能之方法。 而若欲提高空調設備的使用效率,除了依據不同的使 用環境來選擇性能最適合的空調設備之外,也必須準確、 即時地得知該空調設備的性能特性,進而得以依據該空調 設備的性能特性調整該空調設備之使用方式。或者是提前 111303 1364519 維修性能狀況出問題的空調設備,以避免電能無形中的耗-損或者是空調設備臨時發生故障。然而,現有的空調設備 之性能檢測方法,大多是依據空調設備供應商於出廠時所 測試的運轉參數(例如:冷凍能力等),配合空調設備之維 護人貝的經驗來予以分析及檢測以得知該空調設備的性能 特性。 惟,現今實際的空調設備大多使用於多變量的使用環 境中,且大多的空調設備(例如冰水主機)於出廠前所作 之檢測資訊,僅於特定的測試環境具有參考價值。再者, 空調設備之運轉特性,亦會隨著設計架構、運轉時間以及 保養狀況等因素而有所改變,例如會隨著運轉時數、維護 保養品質、冰水主機的效率、周邊設備的變化或工作班次 而跟著改變。當然,空調設備的系統運作情形亦會隨著環 境之外氣因素,例如氣候、溫度、濕度、季節性循環等因 素而有所變化。 因此,若利用現有的檢測方式來檢測空調設備的性能 特性(例如人為、歷史經驗法則),不但準確度不高,也無 法即時、有效地掌握空調設備的運作情形,且無法彈性地 調整空調設備的使用方式,亦無法提供相關的維修或保養 人員彈性地調整空調設備的保養排程。 是故,如何提供一種應用於空調設備之性能檢測方 法,能即時'準確、有效地掌握空調設備的性能特性,以 彈性地調整空調設備的使用方式及/或保養排程、降低空調 設備發生臨時故障的機率,進而避免成本的損耗與電能的 4 1Π303 1364519 赛費,遂成為各界亟待解決之課題。 【發明内容】 • 為解決上述各界亟待解決之課題,本發明提供一種性 能檢測方法,係對空調設備在實際運轉狀態下所擷取到之 實際運轉參數進行檢測、分析,進而得知該空調設備之性 能特性,該性能檢測方法包括以下步驟··( 1)於該空調設 備在標準運轉狀態時,擷取該空調設備之標準運轉參數; (2)依據該空調設備之標準運轉參數,產生該空調設備於 ® 標準運轉狀態下的性能模型;(3 )依據該性能模型對擷取 到之該實際運轉參數進行分析,並判斷出該空調設備的性 能特性;以及(4)若判斷出該空調設備的性能特性發生異 常時,予以警示,而若判斷出該空調設備的性能特性係為 正常時,擷取該空調設備在實際運轉狀態下之實際性能並 返回該步驟(3 ),進而持續地進行檢測。 於本發明之一較佳實施態樣,該空調設備係為冷氣 φ 機、中央空調系統及/或冰水主機。而該標準運轉參數與該 實際運轉參數,係分別為該空調設備於標準運轉狀態與實 際運轉狀態的耗電比例(Power Rate)、耗電量、能源效率 比值(Energy Efficiency Rate)、性能係數(Coefficient of Performance)、冷凌負荷(Part Load Ratio ; PLR)、每冷;東 。頓所消耗的電功率、冷卻水出回水溫度、冷卻水流量、冰 水出回水溫度、冰水流量、冷媒壓力及/或外氣溫濕度等。 於本發明之另一較佳實施態樣,該性能模型係可以趨 勢圖及/或曲線圖之形式來予以呈現。此外,係可利用落點 ]11303 1364519 分析、_分巍/·聯性純 到之該空調設備之實際運轉參數進行分析。 因此,相較於習知技術,本發明之性能檢測方法,不 但“ 了檢測的準確度,可即時、有效地掌握空綱 性=性與運作情形,提供相關的維修或保養人員料地 用方式及/或保養排程,進而減低空調設 形,並避免電能的浪費與成本的損耗。 式,由特定的具體實施例說明本發明之實施方 式熟悉此技術之人士可由本說明書所揭示之内容 瞭解2明之其他優點與功效。本發明亦可藉由其他二不同 的具體貫施例加以施行或應用。 ·- -般常見的空調設備,其主要可分為產出物質率统盘 冷部物質系統’而該空調設備係藉由產出 卻 物質系統之間的熱交換作用,不斷產出適合的產出物Γ Γ冰水、冷氣等。舉例而言,冷氣機、中央空調系統與 冰水主機,皆為一般常見的空調設備。 ·… 請參考第!圖,其係清楚示意出冰水主機】,且 水主機1係包含產出物質系統與冷卻物質系統U。 如圖所示,該冰水主撼_ 1么 Λ人王機1係稭由產出物質系統 Γ物質系統11之間的熱交換作用,將高溫冰水降溫以輸 s ^即可利用該低溫冰水提供後續相關的 衣心或廠似施予以利用(利㈣低溫冰水予以降溫 然’亦可使用相關的量測設備量測出該冰水主機]之心 1Π303 6 1364519 溫度、外氣相對濕度、冷媒水質、高溫冰水溫度、冷媒入 水溫度、冷媒出水溫度以及低溫冰水溫度等運轉參數。 請參閱第2圖,其係繪示本發明之性能檢測方法之步 驟流程示意圖,且該性能檢測方法係可應用於空調設備上。
於步驟S21中,於該空調設備標準的、日常的運轉狀 態時,擷取複數個空調設備之標準運轉參數,並可予以儲 存。該空調設備係可為冷氣機、中央空調系統及/或冰水主 機(如第1圖所示)。而該標準運轉參數係可為該空調設備 於標準的運轉狀態下之耗電比例(Power Rate )、平均耗電 量、能源效率比值(Energy Efficiency Rate)、性能係數 (Coefficient of Performance )、冷床負荷(Part Load Ratio)、每冷凍°頓所消耗的電功率、冷卻水出回水溫度、 冷卻水流量、冰水出回水溫度、冰水流量、冷媒壓力及/ 或外氣溫濕度等。於本發明之一較佳實施態樣,該步驟S21 係可長時間地以定期、持續之方式,並透過相關的參數擷 取裝置(未圖示)來擷取該空調設備的標準運轉參數,並 可將該標準運轉參數予以儲存。此外,於步驟S21中亦可 設定說明訊息之步驟,該說明訊息包括異常情形、造成該 異常情形的原因,以及該異常情形之處理措施及/或相關的 保養說明,並可予以儲存(例如:可以表格之形式儲存於 相關的資料庫中)。接著進至步驟S22。 於步驟S22中,依據複數個該空調設備之標準運轉參 數,產生該空調設備於正常運轉狀態下的性能模型(如以 下第3圖及第4圖所示)。詳而言之,係可利用所操取到之 7 111303 1364519 複數個該空調設備之標準運轉參數其中至少兩個,加以整-理與歸納以形成一該空調設備於正常運轉狀態下的性能模 型(例如數學模型與趨勢函式)。較佳地,該性能模型係可 以趨勢圖或曲線圖之形式來予以呈現,且可將該性能模型 予以儲存。接著進至步驟S23。 於步驟S23中,係於該空調設備實際的運轉狀態下, 擷取複數個該空調設備的實際運轉參數。該實際運轉參數 係可為該空調設備於實際的運轉狀態下之耗電比例、平均 耗電量、能源效率比值、性能係數、冷凍負荷、每冷凍噸 所消耗的電功率、冷卻水出回水溫度、冷卻水流量、冰水 出回水溫度、冰水流量、冷媒壓力及/或外氣溫濕度等。較 佳地,該步驟S23係可以持續、定期的方式,或者是隨機 啟動的方式,並透過相關的參數擷取裝置來擷取該空調設 備於實際運轉狀態下的實際運轉參數,並可將所擷取到之 該實際運轉參數予以儲存。接著進至步驟S24。 於步驟S24中,依據該性能模型來對所擷取到的實際 運轉參數進行分析,進而可判斷出該空調設備的性能特性 及/或運作情形是否發生異常。因此,若判斷出該空調設備 的性能特性及/或運作情形發生異常狀況時,進至步驟 S25 ;若判斷出該空調設備的性能特性係為正常時,則返 回步驟S23進而持續地進行檢測的步驟。 於本發明之較佳實施態樣,係可以落點分析法來對所 擷取到的實際運轉參數進行分析。而落點分析可包括單一 數值落點分析與數值間關聯落點分析。舉例而言,利用單 8 Π1303 1364519 一數值落點分析可分析出外氣溫度、外氣相對濕度、冰水 入水溫度、冰水出水溫度、冷媒入水溫度以及冷媒出水溫 度等運轉參數是否偏高或偏低,以及偏高或偏低之權重數 值。而利用數值間關聯落點分析可藉由比對過去相似的狀 況下之外氣溫度與冷媒出水溫度,進而得知外氣溫度與冷 媒出水溫度的關聯性是否偏高或偏低,以及偏高或偏低之 權重數值。接著,再利用人工智慧、基因演算法及/或類神 經網路即可判斷出該性能特性發生了異常狀況,進一步亦 可利用人工智慧、基因演算法及/或類神經網路,得知性能 特性發生異常的原因(如下表1、2所列示)。值得一提的 是,於得知性能特性發生異常的原因後,復可將其原因歸 納於相關的知識庫(未圖示)中,以利後續進行設備診斷、 知識庫判斷,進而預防更嚴重的問題發生。 表1(單一數值落點分析) 外氣溫度 外氣相對濕度 冷媒水質 冰水入水溫度 正常(權重0) 正常(權重0) 正常(權重0) 正常(權重0) 冷媒入水溫度 冷媒出水溫度 冰水出水溫度 偏高(權重+1) 偏面(權重+1) 正常(權重0) 表2 (數值間落點分析) 冷媒入水溫度 外氣相對濕度 偏南(權重+】) 正常(權重0) 9 川303 « 亦可::口:i發明之另一較佳實施·態樣,於步驟S24中 來對所擷取到的實際選轉參數進行分析 寺方式 :二或類神經網路等方式來判斷該 W生月匕4寸性及/或運作情形是 n又爾 異常的房因,或者是提,得知且避免;生出發生 ::::得知.___:= = 識庫物Z知術’續續_備診斷及知 於步驟S25中,甚4,,丨^ , 或運作情形發生該^設備祕能特性及/ 簡訊等)。舉例而1 才貝1可提出警示(例如:警報、 作情形、狀況設備的性能特性或運 出警示的同時,二出Γ提出警示。較佳地,當提 述所提供之相關的星能的異常原因,且依據該前 的故障處理料及_目_;;成/^=、因’以及預定 策。詳而言之,可以的處理對 地師選出最有可能的異常㈣ 二二^法,自動 議較佳的故障處理措施及養的原因’進而建 員或保養人員進行檢測、維=養步ν ’以利相關的維修人 ‘ >或保養。如下表3所列示。 1Π303 10 i3645l9
表3 異 常情形 --'~~~·' 造成異常的可能原因 —-----_ 「 -- —- 建議的故障處理措施及/或 保養步驟 遽轉效率 偏低 ^___—--- (水冷式)水管堵塞或水 流太慢。(氣冷式)散 熱片髒汙或散熱風扇 故障。 ------- (水冷式)請清洗過濾器;請 更換修理浮球;請檢查水 位;請清理冷凝器。(氣冷 式)請清潔或更換散熱片。 凃媒温度 過高 大氣濕球過高、風扇故 障或冷卻塔通風不良。 請加大水塔;請檢^ 請淨空水塔空氣出入口。 請檢修冰水機是否 障。 冰水溫度 過高 一____ ----— 冰水機不當運轉。 冷媒溫差 過大 冷媒流量過小。 ~-— 請檢修濾閥是否堵塞 基即建請清洗濾閥;請檢杳 間門是否可正常開啟;請清 洗水垢。 冷媒量不 足 高壓過高或低壓過低。 建議可充填冷媒。 ---—^ 請參閱第3圖係清楚緣示出該空調設備於標準的運轉 狀態下,以相關的參數擷取裝置長時間地、定期、持續: 擷取該空調設備之標準運轉夢數(耗電比例與冷凍負荷) 後’再經過整理與歸納後所產生的性能模型(數學模型 ]] Π1303 1364519 形係可〜== 斷出空調設備的性能特性或運作情 演算法來 表現值)位於該趨勢線之上方=,點(量測 備之性能特性與運轉狀況越來越差。當然,亦== =/或麵等分析方式,來分析該空調設備的實“ 轉麥數與標準運轉參數之間的關係。 不 請參閱第6圖係清楚繪示出利用如第 來對操取到的實際運轉參數進行分析 —二==丄= 亚非位於較佳區域中,因此,即可判斷出p〜、見值) 能特性、運作情形或運轉狀況可能發生了 生 亦可利相歸分析及/或_雜分析等 〃田… :調=?實=轉參數與標準運轉參數之=: 付^的疋,於性能係數(y#〇與冷;東負荷( 構成的性能曲線巾,曲線的料區 能特性的較佳表現區域。 Μ …周叹備的性 综上所述,本發明之性能檢測方法具有以下優點. 提』=。可透過自動化與規範化的檢S’程序, ⑺預先警示。藉由分析可判斷出 特性或運作情形是否發生異常’或者是是否即將 重的故障。因此,即可彈性地調整不適當的使时式與調艾 Π1303 13 4排軽,進而節省電能的損耗與避免空調設備發生臨 、故障或更嚴4的故障之情形。 (3 )快速處理。可快速協助相關的維修人員 人員恤诽敕、* 只·^ 1示臀 、、、屋4可能故障之原因,進而自動提供至少—種較 乜的建議處理對策。 古據此,不但可解決一般習知技術中檢測結果準確度不 :::問題,亦可即時、準確、有效地掌握空調設備的:能 、運作情形與運轉狀況,並據此彈性地調整空調設備 =使用方式及/或保養触’以及降心糖備發生臨時故 早的機率’進而避免成本的損耗與電能的浪費。 惟,上述實施例僅為例示性說明本發明之原理及其功 效:而非用於限制本發明。奸熟習此項技術之人均^在 ==背本發明之精神及範訂,對上述實施例進行修飾與 【圖式簡單說明】 第1圖係為冰水主機之架構示意圖; 第2圖絲本發明之_檢财法之步驟流程示意 第3圖係為耗電比例與冷;東負荷之性能模型示音圖. 第4圖係為性能係數與冷;東負荷之性能模型示意圖·’
第5圖係為利用耗電比例與冷;東負荷之性能模型進 落點分析之示意圖;以及 T 第6圖係為利用性能係數與冷清負荷之性能模型 落點分析之示意圖。 】】】3〇3 1364519 【主要元件符號說明】 1 冰水主機 10 產出物質系統 11 冷卻物質系統 S21〜S25 步驟
15 ]]]303

Claims (1)

1364519 - 第98125627號專利申請案 101年2月ifa修正替換頁 七、申請專利範圍: 1. 一種性能檢測方法,係對空調設備在實際運轉狀態下 所擷取到之實際運轉參數檢測該空調設備之性能特 性,該性能檢測方法包括以下步驟: (1 )擷取該空調設備在標準運轉狀態下的複數個 標準運轉參數; (2) 依據該空調設備之複數個標準運轉參數之至 少二者,產生該空調設備於標準運轉狀態下的性能模 型; (3) 依據該性能模型對擷取到的該實際運轉參數 進行分析,並判斷出該空調設備的性能特性;以及 (4) 於判斷出該空調設備的性能特性係為異常 時,予以警示,而於判斷出該空調設備的性能特性係 為正常時,擷取該空調設備在實際運轉狀態下之該實 際運轉參數並返回該步驟(3)。 2. 如申請專利範圍第1項之性能檢測方法,復包括設定 說明訊息之步驟,該說明訊息包括異常情形、造成該 異常情形的原因,以及該異常情形之處理措施及/或保 養說明。 3. 如申請專利範圍第2項之性能檢測方法,其中,於判 斷出該空調設備的性能特性發生異常時復包括依據該 性能特性的異常情形自該說明訊息取得與該異常情形 相應之内容的步驟,以建議處理對策。 4. 如申請專利範圍第1項之性能檢測方法,復包括依據 16 111303(修正版) 1364519 f 第98125627號專利申請案 ' 101年2月15"日修正替換頁 該空調設備之標準運轉參數儲存該標準運轉參數以及 該性能模型之步驟。 5. 如申請專利範圍第4項之性能檢測方法,其中,該性 能模型係為趨勢圖及/或曲線圖。 6. 如申請專利範圍第1項之性能檢測方法,其中,係以 定期及/或持續之方式擷取該標準運轉參數以及該實 際運轉參數。
如申請專利範圍第4或6項之性能檢測方法,其中, 該標準運轉參數係為該空調設備於標準運轉狀態時之 耗電比例(Power Rate)、平均耗電量、能源效率比值 (Energy Efficiency Rate)、性能係數(coefficient of Performance)、冷柬負荷(Part Load Ratio)、每冷冰嘲 所消耗的電功率、冷卻水出回水溫度、冷卻水流量、‘ 冰水出回水溫度、冰水流量、冷媒壓力及/或外氣溫濕 度。 φ 8.如申請專利範圍第1項之性能檢測方法,其中,係利 用落點分析、回歸分析及/或關聯性分析對所擷取到之 该實際運轉參數進行分析。 9.如申請專利範圍第6或8項之性能檢測方法,其中, 該實際運轉參數係為該空調設備於實際運轉狀態時之 耗電比例、平均耗電量、能源效率比值、性能係數、 冷凍負荷、每冷凍噸所消耗的電功率、冷卻水出回水 溫度、冷卻水流量、冰水出回水溫度、冰水流量、冷 媒壓力及/或外氣溫濕度。 17 111303(修正版) 1364519 第98125627>專利申請案 101年2月修正管換頁 10.如申請專利範圍第1項之性能檢測方法,其中,該空 調設備係為冷暖氣機、空調箱、熱泵、冷卻水塔、中 央空調系統及/或冰水主機。 18 111303(修正版) 1364519 r年曰修復)正替換頁
低溫^林 高溫
第1圖
111303 1364519
S21 S22 S23 S24 S25
第2圖 111303 2 1364519 y月/日修(E)正替換頁 70.00% 60.00% 50.00% '40.00% 30.00% JJ S ^ 20.00% 10.00% 0.00% ^
0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% y = 0.167x2+ 0.7659X + 0.0222 R2 = 〇Ιδ756 PLR
第3圖 111303 3 1364519 、°窣>•月V(曰修(¾正替換頁 COP
第4圖
4 111303 1364519 ,月Θ曰修(¾正替換頁
耗電比例(%)
第5圖 5 111303 1364519 COP
第6圖
111303 6
TW098125627A 2009-07-30 2009-07-30 Function detection method TWI364519B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098125627A TWI364519B (en) 2009-07-30 2009-07-30 Function detection method
US12/568,857 US20110023503A1 (en) 2009-07-30 2009-09-29 Performance detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098125627A TWI364519B (en) 2009-07-30 2009-07-30 Function detection method

Publications (2)

Publication Number Publication Date
TW200951379A TW200951379A (en) 2009-12-16
TWI364519B true TWI364519B (en) 2012-05-21

Family

ID=43525694

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125627A TWI364519B (en) 2009-07-30 2009-07-30 Function detection method

Country Status (2)

Country Link
US (1) US20110023503A1 (zh)
TW (1) TWI364519B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666532B (zh) * 2017-10-05 2019-07-21 群光電能科技股份有限公司 效能預測方法
TWI865942B (zh) * 2022-10-14 2024-12-11 緯創資通股份有限公司 設備保養建議方法、電子裝置及電腦可讀取記錄媒體

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201215823A (en) * 2010-10-05 2012-04-16 Heng Kang Technology Co Ltd Water-side facility energy-saving control method of air conditioner system
TWI414734B (zh) * 2010-10-15 2013-11-11 Ind Tech Res Inst 冰水主機動態特性模型建立方法、冰水主機監控方法及冰水主機監控裝置
US9024765B2 (en) 2012-01-11 2015-05-05 International Business Machines Corporation Managing environmental control system efficiency
US11062062B2 (en) 2015-11-19 2021-07-13 Carrier Corporation Diagnostics system for a chiller and method of evaluating performance of a chiller
US10161834B1 (en) 2016-02-05 2018-12-25 William R Henry Method to determine performance of a chiller and chiller plant
GB2562639B (en) * 2016-02-08 2021-02-17 Mitsubishi Electric Corp Refrigeration device and controller for refrigeration device
CN107907005B (zh) * 2017-10-12 2019-11-01 国网河北能源技术服务有限公司 一种直接空冷凝汽器翅片换热面清洁状态的监测方法
CN108960565B (zh) 2018-05-28 2021-08-13 广东工业大学 柔性材料卷对卷加工设备的性能检测方法、系统及其组件
CN111103475A (zh) * 2018-10-29 2020-05-05 珠海格力电器股份有限公司 空调的检测方法和装置
CN109615093A (zh) * 2018-11-26 2019-04-12 北京国网富达科技发展有限责任公司 变压器检修方式确定方法及装置
CN110471380A (zh) * 2019-08-15 2019-11-19 四川长虹电器股份有限公司 一种用于智能家居系统的空调故障监控及预警方法
CN113312524A (zh) * 2020-02-27 2021-08-27 高齐能源科技股份有限公司 冰水主机的性能评估方法
CN113985040A (zh) * 2021-09-29 2022-01-28 武汉钢铁有限公司 一种实验室检测设备精度控制的控制方法及装置
CN115493248A (zh) * 2022-09-14 2022-12-20 苏州思萃融合基建技术研究所有限公司 一种中央空调系统全生命周期的智能诊断方法和系统
CN117804112B (zh) * 2024-02-29 2024-05-07 浙江恒隆智慧科技集团有限公司 冷热源系统Ai能源效率管理系统
CN118705783B (zh) * 2024-07-12 2025-02-14 北京鸿昱节能科技有限公司 热泵机组及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145112A (en) * 1990-10-08 1992-09-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Air conditioner
US6121593A (en) * 1998-08-19 2000-09-19 Duck Creek Energy, Inc. Home appliances provided with control systems which may be actuated from a remote location
US6241156B1 (en) * 1999-05-13 2001-06-05 Acutherm L.P. Process and apparatus for individual adjustment of an operating parameter of a plurality of environmental control devices through a global computer network
US7092794B1 (en) * 2000-10-05 2006-08-15 Carrier Corporation Method and apparatus for connecting to HVAC device
US6889173B2 (en) * 2002-10-31 2005-05-03 Emerson Retail Services Inc. System for monitoring optimal equipment operating parameters
WO2004049088A1 (en) * 2002-11-22 2004-06-10 Radar Hvac-Refrigeration Inc. Refrigeration monitor
US7133748B2 (en) * 2004-05-27 2006-11-07 International Business Machines Corporation Method and system for synchronizing climate control devices
US7666004B2 (en) * 2006-06-29 2010-02-23 Siemens Industry, Inc. Devices, systems, and/or methods regarding a programmable logic controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666532B (zh) * 2017-10-05 2019-07-21 群光電能科技股份有限公司 效能預測方法
US10578329B2 (en) 2017-10-05 2020-03-03 Chicony Power Technology Co., Ltd. Performance forecasting method
TWI865942B (zh) * 2022-10-14 2024-12-11 緯創資通股份有限公司 設備保養建議方法、電子裝置及電腦可讀取記錄媒體

Also Published As

Publication number Publication date
US20110023503A1 (en) 2011-02-03
TW200951379A (en) 2009-12-16

Similar Documents

Publication Publication Date Title
TWI364519B (en) Function detection method
CN101988867A (zh) 性能检测方法
CN1198186C (zh) 空气调节装置用热源机的管理装置和管理方法
CN108562854B (zh) 一种电机异常状态在线预警方法
TW201734427A (zh) 冷凍空調主機之能源效率比值(eer)量測驗證及分析的方法
CN102080864B (zh) 一种空调压力值实时监测方法及装置
CN107676923A (zh) 一种医院空调系统冷却塔故障自动判断方法及装置
CN106556480B (zh) 一种热量表耐久性冷热冲击试验异常点检测方法
CN111306706B (zh) 一种空调联动控制方法及系统
CN111397934B (zh) 一种地源热泵系统性能检测及优化控制方法、装置
CN109945394A (zh) 一种中央空调冷冻水系统小温差综合征精确诊断方法
CN110715814B (zh) 一种开式冷却塔在线综合诊断系统及方法
CN110953687A (zh) 一种空调的健康度评价方法、系统及存储介质
CN115493248A (zh) 一种中央空调系统全生命周期的智能诊断方法和系统
CN118734614A (zh) 一种基于ai技术的螺杆空压站房节能优化控制方法及系统
CN111780355A (zh) 一种监测空调运行状态的方法及装置
CN112240267A (zh) 基于风速相关性与风功率曲线的风机监测方法
CN116151644A (zh) 一种基于能源物联网的冷冻站评价系统及方法
CN118733850B (zh) 一种基于数字孪生的机电能源可视化分析处理系统
CN113847704B (zh) 空调机组的故障判断方法
CN118856643A (zh) 舱载冷却用一种双冷源制冷系统
CN118276497B (zh) 一种密集烤烟房环境智能管控系统
CN115657627A (zh) 工厂公辅设备能效诊断系统及方法
CN115356366A (zh) 薄板烘丝机蒸汽品质稳定性的评价方法、存储介质及应用
Chang et al. Real-time fault detection and condition monitoring system for chiller

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees